WO2004074443A2 - Glyphosate resistant class i 5-enolpyruvylshikimate-3-phosphate synthase (epsps) - Google Patents
Glyphosate resistant class i 5-enolpyruvylshikimate-3-phosphate synthase (epsps) Download PDFInfo
- Publication number
- WO2004074443A2 WO2004074443A2 PCT/US2004/004636 US2004004636W WO2004074443A2 WO 2004074443 A2 WO2004074443 A2 WO 2004074443A2 US 2004004636 W US2004004636 W US 2004004636W WO 2004074443 A2 WO2004074443 A2 WO 2004074443A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seq
- glyphosate
- epsps
- dna
- plant
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1085—Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
- C12N9/1092—3-Phosphoshikimate 1-carboxyvinyltransferase (2.5.1.19), i.e. 5-enolpyruvylshikimate-3-phosphate synthase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8274—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
- C12N15/8275—Glyphosate
Definitions
- EPSPS PHOSPHATE SYNTHASE
- This invention relates to plant molecular biology and plant genetic engineering for herbicide resistance and, more particularly, to class I 5-enolpyruvylshikimate-3-phosphate synthases modified for glyphosate resistance.
- Plant genetic engineering methods are used to modify class I 5-enolpyruvylshikimate-3-phosphate synthase DNA and the encoded proteins, and to transfer these molecules into plants of agronomic importance.
- the invention comprises DNA and protein compositions of glyphosate resistant 5- enolpyruvylshikimate-3-phosphate synthases, and to the plants containing these compositions.
- N-phosphonomethylglycine also known as glyphosate
- Glyphosate is a well-known herbicide that has activity on a broad spectrum of plant species.
- Glyphosate is the active ingredient of Roundup® (Monsanto Co., St Louis, MO), a herbicide having a long history of safe use and a desirably short half-life in the environment. When applied to a plant surface, glyphosate moves systemically through the plant. Glyphosate is phytotoxic due to its inhibition of the shikimic acid pathway, which provides a precursor for the synthesis of aromatic amino acids.
- Glyphosate inhibits the class I 5 -enolpyruvylshikimate-3 -phosphate synthase (EPSPS) found in plants and some bacteria. Glyphosate tolerance in plants can be achieved by the expression of a modified class I EPSPS that has lower affinity for glyphosate, yet still retains its catalytic activity in the presence of glyphosate (U.S. Patent 4,535,060, and 6,040,497).
- “Tolerant” or “tolerance” refers to a reduced effect of an agent on the growth and development, and yield of a plant, in particular, tolerance to the phytotoxic effects of a herbicide, especially glyphosate.
- Enzymes such as, class II EPSPSs have been isolated from bacteria that are naturally resistant to glyphosate and when the enzyme is expressed as a transgene in plants provides glyphosate tolerance to the plants (U.S. Patent 5,633,435 and 5,094,945). Enzymes that degrade glyphosate in plant tissues (U.S. Patent 5,463,175) are also capable of conferring plant tolerance to glyphosate. DNA constructs that contain the necessary genetic elements to express the glyphosate resistant enzymes or degradative enzymes create chimeric transgenes useful in plants.
- transgenes are used for the production of transgenic crops that are tolerant to glyphosate, thereby allowing glyphosate to be used for effective weed control with minimal concern of crop damage.
- glyphosate tolerance has been genetically engineered into corn (U.S. Patent 5,554,798), wheat (Zhou et al. Plant Cell Rep. 15:159-163, 1995), soybean (WO 9200377) and canola (WO 9204449).
- the transgenes for glyphosate tolerance and transgenes for tolerance to other herbicides, for example the bar gene (Sh.Bar) may be included in DNA constructs for use as a selectable marker for plant transformation (present invention pMON81519; and Toki et al.
- Plant Physiol., 100:1503-1507, 1992; Thompson et al. EMBO J. 6:2519-2523, 1987; phosphinothricin acetyltransferase DeBlock et al. EMBO J., 6:2513-2522, 1987, glufosinate herbicide) are also useful as selectable markers or scorable markers and can provide a useful phenotype for selection of transgenic plants when the marker gene is linked with other agronomically useful traits.
- class I EPSPS enzyme that has been successfully engineered for resistance to its inhibitor herbicide.
- Variants of class I EPSPS have been isolated (Pro-Ser, U.S. Patent 4,769,061; Gly-Ala, U.S. Patent 4,971,908; Gly-Ala, Gly-Asp, U.S. Patent 5,310,667; Gly-Ala, Ala-Thr, U.S. Patent 5,8866,775) that are resistant to glyphosate.
- EPSPS variants either do not demonstrate a sufficiently high Ki for glyphosate or have a K m for phosphoenol pyruvate (PEP) too high to be effective as a glyphosate resistance enzyme for use in plants (Padgette et. al, In "Herbicide-resistant Crops", Chapter 4 pp 53-83. ed. Stephen Duke, Lewis Pub, CRC Press Boca Raton, FI 1996).
- PEP phosphoenol pyruvate
- TIPS T102I/P106S
- a glyphosate tolerant EPSPS has also been isolated from the weed Eleusine indica [WO 01/66704].
- glyphosate tolerance is used extensively as a positive selectable marker in plants and is a valuable phenotype for use in crop production.
- the stacking and combining of existing transgene traits with newly developed traits is enhanced when distinct positive selectable marker genes are used.
- the marker genes provide either a distinct phenotype, such as, antibiotic or herbicide tolerance, or a molecular distinction discernable by methods used for DNA detection.
- the transgenic plants can be screened for the stacked traits by analysis for multiple antibiotic or herbicide tolerance or for the presence of novel DNA molecules by DNA detection methods.
- the present invention provides DNA and protein compositions of glyphosate resistant variant class I EPSP synthases.
- the present invention also provides DNA constructs useful in plants and transgenic plants that exhibit glyphosate tolerance.
- an isolated modified EPSPS DNA molecule encoding a glyphosate tolerant EPSPS protein having an isoleucine or leucine at position 102, and an amino acid at position 106 selected from the group consisting of threonine, glycine, cysteine, alanine, and isoleucine.
- a DNA construct that comprises a promoter that functions in plant cells operably linked to a modified EPSPS DNA molecule encoding a glyphosate tolerant EPSPS protein having an isoleucine or leucine at position 102, and an amino acid at position 106 selected from the group consisting of threonine, glycine, cysteine, alanine, and isoleucine.
- a transgenic plant than contains the DNA construct, wherein the transgenic plant is tolerant to glyphosate herbicide.
- a method of preparing a fertile transgenic plant comprising providing a plant expression cassette having a modified EPSPS gene encoding an EPSPS protein having isoleucine or leucine at position 102, and an amino acid at position 106 selected from the group consisting of threonine, glycine, cysteine, alanine, and isoleucine; and contacting recipient plant cells with the plant expression cassette under conditions permitting the uptake of the plant expression cassette by the recipient cells; and selecting the recipient plant cells that contain the plant expression cassette; and regenerating plants from the selected recipient plant cells; and identifying a fertile transgenic plant that is tolerant to glyphosate.
- a fertile glyphosate tolerant transgenic plant that contains a plant expression cassette having a modified plant EPSPS gene encoding an EPSPS protein having isoleucine or leucine at position 102, and an amino acid at position 106 selected from the group consisting of threonine, glycine, cysteine, alanine, and isoleucine that is crossed to another plant to provide progeny that are tolerant to glyphosate.
- a method for controlling weeds in a field of crop plants wherein the field of crop plants is treated with an effective amount of a glyphosate containing herbicide and the crop plants contain a plant expression cassette having a modified EPSPS gene encoding an EPSPS protein having isoleucine or leucine at position 102, and an amino acid at position 106 selected from the group consisting of threonine, glycine, cysteine, alanine, and isoleucine.
- FIG. 1 Polynucleotide and polypeptide sequence of maize EPSPS.
- FIG. 1 DNA construct map of pMON70461 (wild-type EPSPS).
- Figure 4. DNA primer sequences
- DNA construct map of pMON58452 (ZmTIPT variant) Figure 6.
- DNA construct map of pMON30167 (CP4 EPSPS) Figure 7.
- DNA construct map of pMON70472 (ZmTIPT variant) Figure 8.
- DNA construct map of pMON70475 (ZmTIPA variant) Figure 9.
- DNA construct map of pMON70467 (ZmPT variant) Figure 10.
- DNA construct map of pMON81548 (LsTIPA variant) Figure 12.
- DNA construct map of pMON58491 (AtTIPA variant)
- the present invention is based, in part, on the construction of a glyphosate resistant EPSPS and utilizing DNA molecules that encode the EPSPS in a DNA construct to provide herbicide tolerance to transgenic plants expressing the glyphosate resistant EPSPS in its tissues.
- the following descriptions are provided to better define the present invention and to guide those of ordinary skill in the art in the practice of the present invention. Unless otherwise noted, terms are to be understood according to conventional usage by those of ordinary skill in the relevant art.
- Methods of the present invention include designing EPSPS proteins that confer a glyphosate tolerant trait to the plant into which they are introduced.
- Polynucleotide molecules encoding proteins involved in herbicide tolerance are known in the art, and include, but are not limited to a polynucleotide molecule encoding 5-enolpyruvylshikimate-3 -phosphate synthase (EPSPS, described in U.S. Patent 5,627,061, 5,633,435, and 6,040,497; Padgette et al. Herbicide Resistant Crops, Lewis Publishers, 53-85, 1996; and Penaloza- azquez, et al. Plant Cell Reports 14:482-487, 1995; and aroA (U.S. Patent 5,094,945) for glyphosate tolerance.
- EPSPS 5-enolpyruvylshikimate-3 -phosphate synthase
- Glyphosate refers to N-phosphonomethylglycine and its' salts. Glyphosate is the active ingredient of Roundup® herbicide (Monsanto Co.). Plant treatments with “glyphosate” refer to treatments with the Roundup® or Roundup Ultra® herbicide formulation, unless otherwise stated. Glyphosate as N-phosphonomethylglycine and its' salts (not formulated Roundup® herbicide) are components of synthetic culture media used for the selection of bacteria and plant tolerance to glyphosate or used to determine enzyme resistance in in vitro biochemical assays.
- Examples of commercial formulations of glyphosate include, without restriction, those sold by Monsanto Company as ROUNDUP®, ROUNDUP® ULTRA, ROUNDUP® ULTRAMAX, ROUNDUP® CT, ROUNDUP® EXTRA, ROUNDUP® BIACTIVE, ROUNDUP® BIOFORCE, RODEO®, POLARIS®, SPARK® and ACCORD® herbicides, all of which contain glyphosate as its isopropylammonium salt; those sold by Monsanto Company as ROUNDUP® DRY and RIVAL® herbicides, which contain glyphosate as its ammonium salt; that sold by Monsanto Company as ROUNDUP® GEOFORCE, which contains glyphosate as its sodium salt; and that sold by Zeneca Limited as TOUCHDOWN® herbicide, which contains glyphosate as its trimethylsulfonium salt.
- EPSPS wild-type EPSPS
- Glyphosate tolerance can also be achieved by the expression of EPSPS variants that have lower affinity for glyphosate and therefore retain their catalytic activity in the presence of glyphosate, for example, aroA P-S (U.S. Patent 5,094,945), CP4 EPSPS (U.S. Patent 5,633,435), maize TIPS (U.S.
- Patent 6,040,497) 101/192 and 101/144 variants (U.S. Patent 5,866,775 and U.S. Patent 6,225,112, Howe et al., Mol. Breeding 10:153-164, 2002).
- glyphosate tolerance has been genetically engineered into corn (U.S. Patent No. 5,554,798, 6,040,497), wheat (Zhou et al. Plant Cell Rep. 15:159-163,1995), soybean (WO 9200377), cotton (WO 0234946), and canola (WO 9204449).
- Variants of the wild-type EPSPS enzyme have been isolated that are glyphosate- resistant as a result of alterations in the EPSPS amino acid coding sequence (Kishore et al., Annu. Rev. Biochem. 57:627-663,1988; Schulz et al., Arch. Microbiol. 137:121-123, 1984; Sost et al., FEBS Lett. 173:238-241, 1984; Kishore et al., In "Biotechnology for Crop Protection” ACS Symposium Series No. 379. eds. Hedlin et al., 37-48,1988).
- variants typically have a higher K, for glyphosate than the wild-type EPSPS enzyme that confers the glyphosate-tolerant phenotype, but these variants are also characterized by a high K m for PEP that makes the enzyme kinetically less efficient.
- the apparent K m for PEP and the apparent K; for glyphosate for the native EPSPS from E. coli are 10 ⁇ M and 0.5 ⁇ M while for a glyphosate- resistant isolate having a single amino acid substitution of an alanine for the glycine at position 96 these values are 220 ⁇ M and A .0 mM, respectively.
- EPSPS variant known as the TIPS mutation (a substitution of isoleucine for threonine at amino acid position 102 and a substitution of serine for proline at amino acid position 106) comprises two mutations that when introduced into the polypeptide sequence of Zea mays EPSPS confers glyphosate resistance to the enzyme.
- Transgenic plants containing this mutant enzyme are tolerant to glyphosate.
- Identical mutations may be made in the genes encoding glyphosate sensitive EPSPS enzymes from other sources to create glyphosate resistant enzymes.
- the present invention provides amino acid substitutions in a class I EPSPS that demonstrates enhanced glyphosate resistance over any previously described modified class I EPSPSs.
- the present invention relates specifically to certain double variants of class I EPSPSs that are glyphosate resistant, but still retain a functional level of PEP substrate binding activity.
- novel double variants of class I EPSPSs for glyphosate resistance it was necessary to construct a number of single variants useful as controls for the assay and for demonstration that the double variant is necessary to obtain both a glyphosate resistant enzyme and an enzyme that still retains a sufficient level of substrate binding activity to serve as a functional replacement for a native class I EPSPS.
- chloroplast transit peptides are engineered in a DNA molecule to encode a fusion of the CTP to the N terminus of an EPSPS creating a chimeric molecule.
- a chimeric polynucleic acid coding sequence is comprised of two or more open reading frames joined in-frame that encode a chimeric protein, for example, a chloroplast transit peptide and an EPSPS enzyme.
- a chimeric gene refers to the multiple genetic elements derived from heterologous sources operably linked to comprise a gene. The CTP directs the glyphosate resistant enzyme into the plant chloroplast.
- chloroplast transit peptide regions are contained in the native coding sequence (for example, CTP2, Klee et al., Mol. Gen. Genet. 210:47-442, 1987).
- the CTP is cleaved from the EPSPS enzyme at the chloroplast membrane to create a "mature EPSPS or EPSPS enzyme" that refers to the polypeptide sequence of the processed protein product remaining after the chloroplast transit peptide has been removed.
- the native CTP may be substituted with a heterologous CTP during construction of a transgene plant expression cassette.
- Many chloroplast-localized proteins including EPSPS, are expressed from nuclear genes as precursors and are targeted to the chloroplast by a chloroplast transit peptide (CTP) that is removed during the import steps.
- chloroplast proteins include the small subunit (SSU) of ribulose-l,5,-bisphosphate carboxylase (rubisco), ferredoxin, ferredoxin oxidoreductase, the light-harvesting complex protein I and protein II, and thioredoxin F.
- non-chloroplast proteins may be targeted to the chloroplast by use of protein fusions with a CTP and that a CTP sequence is sufficient to target a protein to the chloroplast.
- a suitable chloroplast transit peptide such as, the Arabidopsis thaliana EPSPS CTP (Klee et al., Mol. Gen. Genet. 210:437-442 (1987), and the Petunia hybrida EPSPS CTP (della-Cioppa et al., Proc. Natl. Acad. Sci.
- Modification and changes may be made in the structure of the DNA polynucleotides of the invention and still obtain a DNA molecule that transcribes a mRNA that encodes the modified functional EPSPS protein of the present invention.
- the amino acid substitutions disclosed herein provide an improved characteristic to the protein, for example, enhanced glyphosate resistant EPSP synthase.
- Amino-acid substitutions or amino-acid variants are preferably substitutions of a single amino-acid residue for another amino-acid residue at one or more positions within the protein. Substitutions, deletions, insertions or any combination thereof can be combined to arrive at a final construct.
- the present invention involves the substitution of amino acids in a class I EPSPS protein to provide a new feature of the protein, such as, glyphosate resistance.
- RNA bases for example adenine, uracil, guanine and cytosine, it is the mRNA that is directly translated into polypeptides. It is understood that when designing a DNA polynucleotide for use in a construct, the DNA bases would be substituted, for example, thymine instead of uracil. Codon refers to a sequence of three nucleotides that specify a particular amino acid. Codon usage or "codon bias" refers to the frequency of use of codons encoding amino acids in the coding sequences of organisms. A codon usage table would be consulted when selecting substituting codons for an artificial DNA sequence.
- sequence of codons provides a coding sequence that refers to the region of continuous sequential nucleic acid triplets encoding a protein, polypeptide, or peptide sequence.
- encoding DNA refers to chromosomal DNA, plasmid DNA, cDNA, or artificial DNA polynucleotide that encodes any of the proteins discussed herein.
- Plasmid refers to a circular, extrachromosomal, self-replicating piece of DNA.
- endogenous refers to materials originating from within an organism or cell.
- Exogenous refers to materials originating from outside of an organism or cell. This typically applies to nucleic acid molecules used in producing transformed or transgenic host cells and plants.
- the term "genome” as it applies to bacteria encompasses both the chromosome and plasmids within a bacterial host cell. Encoding nucleic acids of the present invention introduced into bacterial host cells can therefore be either chromosomally-integrated or plasmid- localized.
- the term "genome” as it applies to plant cells encompasses not only chromosomal DNA found within the nucleus, but organelle DNA found within subcellular components of the cell.
- the term "gene” refers to polynucleic acids that comprise chromosomal DNA, plasmid DNA, cDNA, an artificial DNA polynucleotide, or other DNA that is transcribed into an RNA molecule, wherein the RNA may encode a peptide, polypeptide, or protein, and the genetic elements flanking the coding sequence that are involved in the regulation of expression of the mRNA or polypeptide of the present invention.
- a "fragment" of a gene is a portion of a full- length polynucleic acid molecule that is of at least a minimum length capable of transcription into a RNA, translation into a peptide, or useful as a probe or primer in a DNA detection method.
- Polynucleic acids of the present invention introduced into plant cells can therefore be either chromosomally-integrated or organelle-localized.
- the modified EPSPSs of the present invention are targeted to the chloroplast by a chloroplast transit peptide located at the N-terminus of the coding sequence.
- the gene encoding the modified EPSPSs may be integrated into the chloroplast genome, thereby eliminating the need for a chloroplast transit peptide.
- Heterologous DNA sequence refers to a polynucleotide sequence that originates from a foreign source or species or, if from the same source, is modified from its original form.
- Homologous DNA refers to DNA from the same source as that of the recipient cell.
- Hybridization refers to the ability of a strand of nucleic acid to join with a complementary strand via base pairing. Hybridization occurs when complementary sequences in the two nucleic acid strands bind to one another.
- the nucleic acid probes and primers of the present invention hybridize under stringent conditions to a target DNA sequence. Any conventional nucleic acid hybridization or amplification method can be used to identify the presence of DNA from a transgenic event in a sample.
- a transgenic "event” is produced by transformation of a plant cell with heterologous DNA, i.e., a nucleic acid construct that includes a transgene of interest; regeneration of a population of plants resulting from the insertion of the transgene into the genome of the plant cell, and selection of a particular plant characterized by insertion into a particular genome location.
- the term “event” refers to the original transformant plant and progeny of the transformant that include the heterologous DNA.
- the term “event” also includes progeny produced by a sexual outcross between the event and another plant that wherein the progeny includes the heterologous DNA. Nucleic acid molecules or fragments thereof are capable of specifically hybridizing to other nucleic acid molecules under certain circumstances.
- nucleic acid molecules are said to be capable of specifically hybridizing to one another if the two molecules are capable of forming an anti-parallel, double- stranded nucleic acid structure.
- a nucleic acid molecule is said to be the "complement” of another nucleic acid molecule if they exhibit complete complementarity.
- molecules are said to exhibit "complete complementarity" when every nucleotide of one of the molecules is complementary to a nucleotide of the other.
- Two molecules are said to be "minimally complementary” if they can hybridize to one another with sufficient stability to permit them to remain annealed to one another under at least conventional "low-stringency" conditions.
- the molecules are said to be “complementary” if they can hybridize to one another with sufficient stability to permit them to remain annealed to one another under conventional "high-stringency” conditions.
- Conventional stringency conditions are described by Sambrook et al., Molecular Cloning - A Laboratory Manual, 2nd. ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1989), herein referred to as Sambrook et al., (1989), and by Haymes et al., In: Nucleic Acid Hybridization, A Practical Approach, IRL Press, Washington, DC (1985). Departures from complete complementarity are therefore permissible, as long as such departures do not completely preclude the capacity of the molecules to form a double-stranded structure.
- a nucleic acid molecule In order for a nucleic acid molecule to serve as a primer or probe it need only be sufficiently complementary in sequence to be able to form a stable double-stranded structure under the particular solvent and salt concentrations employed.
- a substantially homologous sequence is a nucleic acid sequence that will specifically hybridize to the complement of the nucleic acid sequence to which it is being compared under high stringency conditions.
- stringent conditions is functionally defined with regard to the hybridization of a nucleic-acid probe to a target nucleic acid (such as, to a particular nucleic-acid sequence of interest) by the specific hybridization procedure discussed in Sambrook et al., 1989, at 9.52-9.55. See also, Sambrook et al., 1989 at 9.47-9.52, 9.56-9.58; Kanehisa, (Nucl. Acids Res. 12:203-213, 1984); and Wetmur and Davidson, (J. Mol. Biol.
- nucleotide sequences of the invention may be used for their ability to selectively form duplex molecules with complementary stretches of DNA fragments.
- relatively stringent conditions for example, one will select relatively low salt and/or high temperature conditions, such as provided by about 0.02 M to about 0.15 M NaCl at temperatures of about 50°C to about 70°C.
- a stringent condition for example, is to wash the hybridization filter at least twice with high-stringency wash buffer (0.2X SSC, 0.1% SDS, 65° C).
- Appropriate stringency conditions that promote DNA hybridization for example, 6.0 x sodium chloride/sodium citrate (SSC) at about 45°C, followed by a wash of 2.0 x SSC at 50°C, are known to those skilled in the art or can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6.
- the salt concentration in the wash step can be selected from a low stringency of about 2.0 x SSC at 50°C to a high stringency of about 0.2 x SSC at 50°C.
- the temperature in the wash step can be increased from low stringency conditions at room temperature, about 22°C, to high stringency conditions at about 65°C.
- Both temperature and salt may be varied, or either the temperature or the salt concentration may be held constant while the other variable is changed. Such selective conditions tolerate little, if any, mismatch between the probe and the template or target strand.
- Detection of DNA molecules via hybridization is well known to those of skill in the art, and the teachings of U.S. Patent 4,965,188 and 5,176,995 are exemplary of the methods of hybridization analyses.
- Identity refers to the degree of similarity between two polynucleic acid or protein sequences.
- An alignment of the two sequences is performed by a suitable computer program.
- a widely used and accepted computer program for performing sequence alignments is CLUSTALW vl.6 (Thompson, et al. Nucl. Acids Res., 22: 4673-4680, 1994).
- the number of matching bases or amino acids is divided by the total number of bases or amino acids, and multiplied by 100 to obtain a percent identity. For example, if two 580 base pair sequences had 145 matched bases, they would be 25 percent identical. If the two compared sequences are of different lengths, the number of matches is divided by the shorter of the two lengths.
- the shorter sequence is less than 150 bases or 50 amino acids in length, the number of matches are divided by 150 (for nucleic acid bases) or 50 (for amino acids), and multiplied by 100 to obtain a percent identity.
- Intron refers to a genetic element that is a portion of a gene not translated into protein, even though it is transcribed into RNA, the intron sequence being "spliced out” from the mature messenger RNA.
- nucleic acid molecule is substantially separated away from other nucleic acid sequences with which the nucleic acid is normally associated, such as, from the chromosomal or extrachromosomal DNA of a cell in which the nucleic acid naturally occurs.
- a nucleic acid molecule is an isolated nucleic acid molecule when it comprises a transgene or part of a transgene present in the genome of another organism.
- the term also embraces nucleic acids that are biochemically purified so as to substantially remove contaminating nucleic acids and other cellular components.
- transgene refers to any polynucleic acid molecule nonnative to a cell or organism transformed into the cell or organism.
- Transgene also encompasses the component parts of a native plant gene modified by insertion of a nonnative polynucleic acid molecule by directed recombination or site specific mutation.
- "Isolated,” “Purified,” “Homogeneous” polypeptides A polypeptide is “isolated” if it has been separated from the cellular components (nucleic acids, lipids, carbohydrates, and other polypeptides) that naturally accompany it or that is chemically synthesized or recombinant.
- a polypeptide molecule is an isolated polypeptide molecule when it is expressed from a transgene in another organism.
- a monomeric polypeptide is isolated when at least 60% by weight of a sample is composed of the polypeptide, preferably 90% or more, more preferably 95% or more, and most preferably more than 99%. Protein purity or homogeneity is indicated, for example, by polyacrylamide gel electrophoresis of a protein sample, followed by visualization of a single polypeptide band upon staining the polyacrylamide gel; high pressure liquid chromatography; or other conventional methods. Proteins can be purified by any of the means known in the art, for example as described in Guide to Protein Purification, ed. Academic Press, San Diego, 1990; and Scopes, Protein Purification: Principles and Practice, Springer Verlag, New York, 1982.
- mutant generally refers to a naturally-occurring ("wild-type") polynucleic acid or polypeptide.
- wild-type a modification of a native isolated polynucleotide and polypeptide has occurred to provide a variant polypeptide with a particular phenotype, for example, amino acid substitution in a native glyphosate sensitive EPSPS to provide a glyphosate resistant EPSPS.
- the polynucleotide modified in this manner is nonnative with respect to the genetic elements normally found linked to a naturally occurring unmodified polynucleotide.
- variant DNA molecules of the present invention are DNA molecules containing changes in an EPSPS coding sequence, such as, changes that include one or more nucleotides of a native EPSPS coding sequence being deleted, added, and/or substituted, such that the variant EPSPS gene encodes a modified protein that retains EPSPS activity and is now resistant to glyphosate herbicide.
- Variant DNA molecules can be produced, for example, by standard DNA mutagenesis techniques or by chemically synthesizing the variant DNA molecule or a portion thereof.
- nucleic acids are discussed, for example, in Beaucage et al., Tetra. Letts. 22:1859-1862 (1981), and Matteucci et al., J. Am. Chem. Soc. 103:3185- (1981).
- Chemical synthesis of nucleic acids can be performed, for example, on automated oligonucleotide synthesizers. Such variants preferably do not change the reading frame of the protein-coding region of the nucleic acid.
- the present invention also encompasses fragments of a protein that lacks at least one residue of a full-length protein, but that substantially maintains activity of the protein.
- a first nucleic-acid molecule is "operably linked" with a second nucleic-acid molecule when the first nucleic-acid molecule is placed in a functional relationship with the second nucleic-acid molecule.
- a promoter is operably linked to a protein-coding nucleic acid sequence if the promoter effects the transcription or expression of the coding sequence.
- operably linked DNA molecules are contiguous and, where necessary to join two protein-coding regions, in reading frame.
- plant encompasses any higher plant and progeny thereof, including monocots (for example, corn, rice, wheat, barley, etc.), dicots (for example, soybean, cotton, canola, tomato, potato, Arabidopsis, tobacco, etc.), gymnosperms (pines, firs, cedars, etc.) and includes parts of plants, including reproductive units of a plant (for example, seeds, bulbs, tubers, fruit, flowers, etc. ) or other parts or tissues from that the plant can be reproduced.
- monocots for example, corn, rice, wheat, barley, etc.
- dicots for example, soybean, cotton, canola, tomato, potato, Arabidopsis, tobacco, etc.
- gymnosperms pines, firs, cedars, etc.
- reproductive units of a plant for example, seeds, bulbs, tubers, fruit, flowers, etc.
- Polyadenylation signal or “polyA signal” refers to a nucleic acid sequence located 3' to a coding region that causes the addition of adenylate nucleotides to the 3' end of the mRNA transcribed from the coding region.
- PCR Polymerase chain reaction
- amplicon a DNA sequence of nucleic acid
- Copies of a DNA molecule are prepared by shuttling a DNA polymerase between two amplimers.
- the basis of this amplification method is multiple cycles of temperature changes to denature, then re-anneal amplimers (DNA primer molecules), followed by extension to synthesize new DNA strands in the region located between the flanking amplimers.
- Nucleic-acid amplification can be accomplished by any of the various nucleic-acid amplification methods known in the art, including the polymerase chain reaction (PCR).
- PCR amplification methods have been developed to amplify up to 22 kb of genomic DNA and up to 42 kb of bacteriophage DNA (Cheng et al., Proc. Natl. Acad. Sci. USA 91:5695-5699, 1994). These methods as well as other methods known in the art of DNA amplification may be used in the practice of the present invention.
- promoter refers to a polynucleic acid molecule that functions as a regulatory element, usually found upstream (5') to a coding sequence, that controls expression of the coding sequence by controlling production of messenger RNA (mRNA) by providing the recognition site for RNA polymerase and/or other factors necessary for start of transcription at the correct site.
- mRNA messenger RNA
- a promoter or promoter region includes variations of promoters derived by means of ligation to various regulatory sequences, random or controlled mutagenesis, and addition or duplication of enhancer sequences.
- the promoter region disclosed herein, and biologically functional equivalents thereof, are responsible for driving the transcription of coding sequences under their control when introduced into a host as part of a suitable recombinant DNA construct, as demonstrated by its ability to produce mRNA.
- a "recombinant" nucleic acid is made by a combination of two otherwise separated segments of nucleic acid sequence, for example, by chemical synthesis or by the manipulation of isolated segments of polynucleic acids by genetic engineering techniques.
- the term "recombinant DNA construct” refers to any agent such as a plasmid, cosmid, virus, autonomously replicating sequence, phage, or linear or circular single-stranded or double- stranded DNA or RNA nucleotide sequence, derived from any source, capable of genomic integration or autonomous replication, comprising a DNA molecule that one or more DNA sequences have been linked in a functionally operative manner.
- Such recombinant DNA constructs are capable of introducing a 5' regulatory sequence or promoter region and a DNA sequence for a selected gene product into a cell in such a manner that the DNA sequence is transcribed into a functional mRNA that is translated and therefore expressed.
- Recombinant DNA constructs may be constructed to be capable of expressing antisense RNAs, or stabilized double stranded antisense RNA in order to inhibit expression of a specific target RNA of interest.
- Resistance refers to an enzyme that is able to function in the presence of a toxin, for example, naturally occurring glyphosate resistant class II EPSP synthases resistant to glyphosate or a modified EPSPS enzyme having catalytic activity that is unaffected by at a herbicide concentration that normally disrupts the same activity in the wild type enzyme, for example, the modified class I EPSP synthases of the present invention.
- An enzyme that has resistance to a herbicide may also have the function of detoxifying the herbicide, for example, phosphinothricin acetyltransferase, and glyphosate oxidoreductase.
- Selectable marker refers to a polynucleic acid molecule that encodes a protein, which confers a phenotype facilitating identification of cells containing the polynucleic acid molecule.
- Selectable markers include those genes that confer resistance to antibiotics (for example, ampicillin, kanamycin), complement a nutritional deficiency (for example, uracil, histidine, leucine), or impart a visually distinguishing characteristic (for example, color changes or fluorescence).
- Useful dominant selectable marker genes include genes encoding antibiotic resistance genes (for example, neomycin phosphotransferase, npt); and herbicide resistance genes (for example, phosphinothricin acetyltransferase, class II EPSP synthase, modified class I EPSP synthase).
- antibiotic resistance genes for example, neomycin phosphotransferase, npt
- herbicide resistance genes for example, phosphinothricin acetyltransferase, class II EPSP synthase, modified class I EPSP synthase.
- An "artificial polynucleotide” as used in the present invention is a DNA sequence designed according to the methods of the present invention and created as an isolated DNA molecule for use in a DNA construct that provides expression of a protein in host cells, or for the purposes of cloning into appropriate constructs or other uses known to those skilled in the art.
- Computer programs are available for these purposes, including but not limited to the "BestFit” or “Gap” programs of the Sequence Analysis Software Package, Genetics Computer Group (GCG), Inc., University of Wisconsin Biotechnology Center, Madison, WI 53711.
- the artificial polynucleotide may be created by a one or more methods known in the art, that include, but are not limited to: overlapping PCR.
- An artificial polynucleotide as used herein, is non-naturally occurring and can be substantially divergent from other polynucleotides that code for the identical or nearly identical protein.
- DNA constructs are made that contain various genetic elements necessary for the expression of the EPSPS coding sequence in plants.
- DNA construct refers to the heterologous genetic elements operably linked to each other making up a recombinant DNA molecule and may comprise elements that provide expression of a DNA polynucleotide molecule in a host cell and elements that provide maintenance of the construct in the host cell.
- a plant expression cassette comprises the operable linkage of genetic elements that when transferred into a plant cell provides expression of a desirable gene product.
- Plant expression cassette refers to chimeric DNA segments comprising the regulatory elements that are operably linked to provide the expression of a transgene product in plants.
- Promoters, leaders, introns, transit peptide encoding polynucleic acids, 3' transcriptional termination regions are all genetic elements that may be operably linked by those skilled in the art of plant molecular biology to provide a desirable level of expression or functionality to a glyphosate resistant class I EPSPS of the present invention.
- a DNA construct can contain one or more plant expression cassettes expressing the DNA molecules of the present invention or other DNA molecules useful in the genetic engineering of crop plants.
- a variety of promoters specifically active in vegetative tissues can be used to express the EPSPS polynucleic acid molecules of the present invention.
- tuber-specific promoters include, but are not limited to the class I and II patatin promoters (Bevan et al., EMBO J. 8:1899-1906, 1986; Koster-Topfer et al., Mol Gen Genet. 219:390-396, 1989; Mignery et al., Gene. 62:27-44, 1988; Jefferson et al, Plant Mol. Biol.
- the promoter for the potato tuber ADPGPP genes both the large and small subunits; the sucrose synthase promoter (Salanoubat and Belliard, Gene. 60:47-56, 1987; Salanoubat and Belliard, Gene 84: 181-185, 1989); and the promoter for the major tuber proteins including the 22 kd protein complexes and proteinase inhibitors (Hannapel, Plant Physiol. 101:703-704, 1993).
- leaf-specific promoters include, but are not limited to the ribulose biphosphate carboxylase (RBCS or RuBISCO) promoters (see, for example, Matsuoka et al., Plant J.
- Root-specific promoter examples include, but are not limited to the promoter for the acid chitinase gene (Samac et al., Plant Mol. Biol.
- Another class of useful vegetative tissue-specific promoters is meristematic (root tip and shoot apex) promoters.
- meristematic root tip and shoot apex
- SHOOTMERISTEMLESS and “SCARECROW” promoters, which are active in the developing shoot or root apical meristems can be used (Di Laurenzio et al., Cell 86:423- 433, 1996; Long, Nature 379:66-69, 1996).
- Another example of a useful promoter is that which controls the expression of 3-hydroxy-3- methylglutaryl coenzyme A reductase HMG2 gene, whose expression is restricted to meristematic and floral (secretory zone of the stigma, mature pollen grains, gynoecium vascular tissue, and fertilized ovules) tissues (see, for example, Enjuto et al., Plant Cell. 7:517-527, 1995).
- Another example of a useful promoter is that which controls the expression of knl-related genes from maize and other species that show meristem-specific expression (see, for example, Granger et al., Plant Mol. Biol.
- KNAT1 promoter Another example of a meristematic promoter is the Arabidopsis thaliana KNAT1 promoter.
- KNAT1 transcript In the shoot apex, KNAT1 transcript is localized primarily to the shoot apical meristem; the expression of KNATI in the shoot meristem decreases during the floral transition and is restricted to the cortex of the inflorescence stem (see, for example, Lincoln et al., Plant Cell 6:1859-1876, 1994).
- Suitable seed-specific promoters can be derived from the following genes: MAC1 from maize (Sheridan et al., Genetics 142:1009-1020, 1996; Cat3 from maize (GenBank No. L05934, Abler et al., Plant Mol. Biol. 22:10131-1038, 1993); viviparous-1 from Arabidopsis (Genbank No. U93215); Atimycl from Arabidopsis (Urao et al., Plant Mol. Biol. 32:571-57, 1996; Conceicao et al., Plant 5:493-505, 1994); napA from Brassica napus (GenBank No.
- the ovule-specific promoter for BEL1 gene can also be used (Reiser et al. Cell 83:735-742, 1995, GenBank No. U39944; Ray et al, Proc. Natl. Acad. Sci. USA 91:5761-5765, 1994).
- the egg and central cell specific MEA (FIS1) and FIS2 promoters are also useful reproductive tissue-specific promoters (Luo et al., Proc. Natl. Acad. Sci. USA, 97:10637-10642, 2000; Dahlle-Calzada, et al., Genes Dev. 13:2971-2982, 1999).
- a maize pollen-specific promoter has been identified in maize (Guerrero et al., Mol. Gen. Genet. 224:161-168, 1990). Other genes specifically expressed in pollen have been described (see, for example, Wakeley et al., Plant Mol. Biol. 37:187-192, 1998; Ficker et al, Mol. Gen. Genet. 257:132-142, 1998; Kulikauskas et al. Plant Mol. Biol. 34:809-814, 1997; Treacy et al. Plant Mol. Biol. 34:603-611, 1997).
- the translation leader sequence means a DNA molecule located between the promoter of a gene and the coding sequence.
- the translation leader sequence is present in the fully processed mRNA upstream of the translation start sequence.
- the translation leader sequence may affect processing of the primary transcript to mRNA, mRNA stability or translation efficiency.
- Examples of translation leader sequences include maize and petunia heat shock protein leaders, plant virus coat protein leaders, plant rubisco gene leaders among others (Turner and Foster, Molecular Biotechnology 3:225, 1995).
- the "3' non-translated sequences” means DNA sequences located downstream of a structural polynucleotide sequence and include sequences encoding polyadenylation and other regulatory signals capable of affecting mRNA processing or gene expression.
- the polyadenylation signal functions in plants to cause the addition of polyadenylate nucleotides to the 3' end of the mRNA precursor.
- the polyadenylation sequence can be derived from the natural gene, from a variety of plant genes, or from T-DNA.
- An example of the polyadenylation sequence is the nopaline synthase 3' sequence (nos 3'; Fraley et al, Proc. Natl. Acad. Sci. USA 80: 4803-4807, 1983).
- the DNA construct of the present invention may be introduced into the genome of a desired plant host by a variety of conventional transformation techniques that are well known to those skilled in the art.
- Transformation refers to a process of introducing an exogenous polynucleic acid molecule (for example, a DNA construct, a recombinant polynucleic acid molecule) into a cell or protoplast and that exogenous polynucleic acid molecule is incorporated into a host cell genome or an organelle genome (for example, chloroplast or mitochondria) or is capable of autonomous replication.
- Transformed or transgenic refers to a cell, tissue, organ, or organism into which a foreign polynucleic acid, such as a DNA vector or recombinant polynucleic acid molecule.
- a “transgenic” or “transformed” cell or organism also includes progeny of the cell or organism and progeny produced from a breeding program employing such a "transgenic" plant as a parent in a cross and exhibiting an altered phenotype resulting from the presence of the foreign polynucleic acid molecule.
- Methods of transformation of plant cells or tissues include, but are not limited to Agrobacterium mediated transformation method and the Biolistics or particle-gun mediated transformation method.
- Suitable plant transformation vectors for the purpose of Agrobacterium mediated transformation include those elements derived from a tumor inducing (Ti) plasmid of Agrobacterium tumefaciens, for example, right border (RB) regions and left border (LB) regions, and others disclosed by Herrera-Estrella et al. Nature 303:209 (1983); Bevan, Nucleic Acids Res.l2:8711-8721 (1984); Klee et al, Bio-Technology 3(7):637-642 (1985).
- Ti tumor inducing
- DNA constructs of this invention can be prepared that incorporate the class I EPSPS variant coding sequences of the present invention for use in directing the expression of the sequences directly from the host plant cell plastid. Examples of such constructs suitable for this purpose and methods that are known in the art and are generally described, for example, in Svab et al, Proc.
- a plasmid expression vector suitable for the introduction of a polynucleic acid encoding a polypeptide of present invention in monocots using electroporation or particle-gun mediated transformation is composed of the following: a promoter that is constitutive or tissue- specific; an intron that provides a splice site to facilitate expression of the gene, such as the maize Hsp70 intron (U.S. Patent 5,593,874); and a 3' polyadenylation sequence such as the nopaline synthase 3' sequence (T-nos 3'; Fraley et al, Proc. Natl. Acad. Sci. USA 80: 4803-4807, 1983).
- This expression cassette may be assembled on high copy replicons suitable for the production of large quantities of DNA.
- the cells can be cultured, then regenerated into whole plants.
- “Regeneration” refers to the process of growing a plant from a plant cell (for example, plant protoplast or explant). Such regeneration techniques rely on manipulation of certain phytohormones in a tissue culture growth medium, typically relying on a biocide and/or herbicide marker that has been introduced together with the desired nucleotide sequences.
- Choice of methodology for the regeneration step is not critical, with suitable protocols being available for hosts from Leguminoseae (for example, alfalfa, soybean, clover), Umbelliferae (carrot, celery, parsnip), Cruciferae (for example, cabbage, radish, canola/rapeseed), Cucurbitaceae (for example, melons and cucumber), Gramineae (for example, wheat, barley, rice, maize), Solanaceae (for example, potato, tobacco, tomato, peppers), various floral crops, such as sunflower, and nut-bearing trees, such as almonds, cashews, walnuts, and pecans. See, for example, Ammirato et al. Handbook of Plant Cell Culture - Crop Species.
- transgenic plants containing the exogenous polynucleic acid molecule that encodes a polypeptide of interest are well known in the art.
- the regenerated plants are self-pollinated to provide homozygous transgenic plants, as discussed above. Otherwise, pollen obtained from the regenerated plants is crossed to seed- grown plants of agronomically important lines. Conversely, pollen from plants of these important lines is used to pollinate regenerated plants.
- Plants that can be made to have enhanced glyphosate tolerance by practice of the present invention include, but are not limited to, Acacia, alfalfa, aneth, apple, apricot, artichoke, arugula, asparagus, avocado, banana, barley, beans, beet, blackberry, blueberry, broccoli, brussels sprouts, cabbage, canola, cantaloupe, carrot, cassava, cauliflower, celery, cherry, cilantro, citrus, Clementines, coffee, corn, cotton, cucumber, Douglas fir, eggplant, endive, escarole, eucalyptus, fennel, figs, forest trees, gourd, grape, grapefruit, honey dew, jicama, kiwifruit, lettuce, leeks, lemon, lime, Loblolly pine, mango, melon, mushroom, nut, oat, okra, onion, orange, an ornamental plant, papaya, parsley, pea, peach, peanut, pear,
- Mutagenesis of a DNA molecule encoding a class I EPSPS was directed at a region of the protein defined by a polypeptide sequence -G-T-X r X 2 -R-P- (SEQ ID NO:l) of the class I EPSPS, where Xi and X 2 are any amino acid.
- the invention described herein provides for the mutagenesis of a gene encoding a class I EPSPS, wherein the mutagenesis results in a polypeptide sequence of (SEQ ID NO:2) in this region of the class I EPSPS protein related to the binding of the enzyme substrate and the glyphosate molecule.
- amino acid substitutions in SEQ ID NO:l that will result in a glyphosate resistant class I EPSPS include replacing the native threonine (T) at X 4 with amino acids isoleucine (I) or leucine (L), and replacing the native proline (P) at X 3 with threonine, glycine, cysteine, alanine, or isoleucine.
- the amino acid positions 102 and 106 are designated according to the maize EPSPS polypeptide sequence shown in Figure 1, however, other plant class I EPSPS coding sequences ( Figure 2), for example, petunia and soybean can be used as templates for site-directed mutagenesis as the relative positions of the threonine and proline amino acids, respectively, are conserved; however, a slightly different amino acid position number in the EPSPS polypeptide sequence may occur because of variations in the starting point of mature EPSPSs from various sources (U.S. Patent No: 5,866,775, Figure 1), those variations are recognized by those skilled in the art and are within the scope of the present invention.
- site-directed mutagenesis of prokaryote class I EPSPS DNA coding sequences for example, E. coli ( Figure 2) can be performed using mutagenesis primers designed to hybridize to these DNA molecules to create the EPSPS variants -G-X 4 -X ⁇ -X 2 -R-X 3 - (SEQ ID NO:2) as described herein.
- Mutations were made using plant EPSPS DNA coding sequence template as an example of class I EPSPSs. Mutations of the DNA coding sequence result in variant EPSPS protein molecules by the substitution of codons (Table 1) encoding for amino acids in the DNA sequence.
- the variant protein sequences that have two amino acid substitutions compared to the wild type protein sequence are referred to as double variants, a single amino acid substitution is referred to as a single variant. All the variants were made using the PCR-based QuickChangeTM Site-directed Mutagenesis Kit (Stratagene, La Jolla, CA, Cat. No. 200518) following the manufactures instructions.
- each mutagenesis primer was designed, and then ordered from Invitrogen Corp, Custom Primers (Carlsbad, CA). Mutagenesis of a maize wild-type DNA molecule (SEQ ID NO:3) encoding the EPSPS enzyme was performed using pMON70461 ( Figure 3) as the template. pMON70461 contains the unmodified wild-type maize EPSPS coding sequence.
- TIPS T102I, P106S variant
- TIPSMut-1-U SEQ ID NO:4
- TIPSMut-2-L SEQ ID NO:5
- the single EPSPS variants were created by mutagenesis of the maize wild-type EPSPS DNA coding sequence as controls for measuring the efficacy of the double variant EPSPSs.
- the following single EPSPS variants were created using PCR mutagenesis: the T102I variant (primers Il-U (SEQ ID NO:6) and I2-L (SEQ ID NO:7), pMON58455), the P106T variant (primers mEmut-9-U (SEQ ID NO:8) and mEmut-10-L (SEQ ID NO:9), pMON70467, Figure 9), the P106S variant (primers mEmut-7-U (SEQ ID NO: 10) and mEmut-8-L (SEQ ID NO: 11), pMON70466), and the P106L variant (primers Hl-U (SEQ ID NO:12) and H2-L (SEQ ID NO: 13), pMON58451) were created using the unmodified wild-type maize EPSPS coding sequence contained
- the double variants of the present invention were made using pMON58452 ( Figure 5) as the template.
- This pMON58452 EPSPS gene template contains the maize EPSPS double variant T102I, P106T (TIPT) that was constructed by mutagenesis of pMON70467 with the mutagenesis primers mEmut-9-U and mEmut-10-L.
- the various mutagenesis primer sequences were designed and then were synthesized by Invitrogen Corp, Custom Primers and used in combination in a PCR to create the variant EPSPS coding sequences.
- the PCR was set up in a 50 ⁇ l reaction in the following manner: dH 2 0 38 ⁇ l; 2 mM dNTP 1 ⁇ L; 10X buffer 5 ⁇ L; pMON58452 1 ⁇ L (10 ng); primer-U 2 ⁇ L; primer-L 2 ⁇ L; pfu Turbo enzyme 1 ⁇ L.
- PCR was carried out on a MJ Research PTC-200 thermal cycler using the following program: Step 1 - 94°C for 30 seconds; Step 2 - 94°C for 30 seconds; Step 3 - 55°C for 1 minute; Step 4 - 68°C for 14 minute; Step 5 - go to step 2, 16 times; Step 6 - End.
- Dpnl is a methylation- and hemimethylation-specific restriction enzyme and will cleave only those double-stranded DNA plasmid containing at least one wild-type, methylated, strand, leaving the mutated plasmid intact.
- 1 ⁇ l of the treated reaction mixture was used to transform the competent E. coli strain XLl-blue (Stratagene Corp, La Jolla, CA) following the manufacturer's instruction.
- the transformed cells were plated onto a Petri dish containing carbenicillin at a final concentration of 0.1 mg/mL. The dish was then incubated at 37°C overnight. Single colonies were picked the next day and used to inoculate a 3 mL liquid culture containing 0.1 mg/mL carbenicillin. The liquid culture was incubated overnight at 37°C with agitation at 250 rpm. Plasmid DNA was prepared from 1 mL of the liquid culture using Qiagen' s miniprep Kit (Qiagen Corp. Cat. No. 27160). The DNA was eluted in 50 ⁇ l of dH 2 0.
- EPSPS coding sequences were modified to contain the TIPA variant.
- the EPSPS coding sequence of Arabidopsis thaliana (Columbia) EPSPS 1 and EPSPS coding sequences of lettuce (Lactuca sativa) were isolated for mutagensis.
- RT-PCT was used to isolate the coding sequence of the mature protein of both AtEPSPSl and lettuce EPSPS. All of the primers were ordered from Invitrogen.
- the leaf tissues of both Arabidopsis and lettuce were ground into powder in liquid nitrogen with a mortar and pestle. Total RNA was isolated using Qiagene's RNeasy mini kit (cat.
- RT-PCR reactions were performed using one-step-RT-PCR kit (Invitrogen #10928-034) in a 50 ⁇ L reaction containing: dH 2 024 ⁇ L; reaction buffer 50 ⁇ L; total RNA 20 ⁇ L; AtEPSPS- F primer (SEQ ID NO:28) (10 ⁇ M) 1 ⁇ L; AtEPSPS-R (SEQ ID NO:29) (lO ⁇ M) 1 ⁇ L; Taq 1 ⁇ L.
- RT-PCR was carried out on a MJ Research PTC-200 thermal cycler using the following program: Step 1 - 40°C for 30 seconds; Step 2 - 94°C for 2 minutes; Step 3 - 94°C for 20 seconds; Step 4 - 65°C for 30 seconds; Step 5 - 68°C for 1 minute 30 seconds; Step 6 - go to step 3, 30 times; Step 7 - End. Both PCR reactions yielded an approximately 1.3 kilo base band on a 1 percent agarose electrophoresis gel.
- the lettuce EPSPS coding sequence was isolated using the primers LsEPSPS-F (SEQ ID NO:30) and LsEPSPS-R (SEQ ID NO:31) in the above described method.
- the RT-PCR products were cloned into PCR-II vector (Invitrogen Corp.) and the DNA molecules sequenced.
- the Arabidopsis and lettuce EPSPS TIPA variants were generated using the PCR-based QuickChangeTM Site-directed Mutagenesis Kit (Stratagene Cat. No.200518) and the DNA mutagenesis primers AtEPSPS-TIPA-F (SEQ ID NO:32) and AtEPSPS-TIPA-R (SEQ ID NO:33) for the Arabidopsis EPSPS coding sequence mutation, and LsEPSPS-TIPA-F (SEQ ID NO:34) and LsEPSPS-TIPA-R (SEQ ID NO:35) for the lettuce EPSPS coding sequence mutation and the PCR conditions were as described above.
- the wild type and variant EPSPS coding sequences were cloned into a pET-19b base vector (Novagen, Madison, WI).
- the plant (maize) class I EPSPS variants so created were assigned pMON plasmid numbers (Table 2).
- the variant EPSPS proteins were purified from the E. coli host using the protocols outlined in the pET system manual, 9th edition (Novagen) or by the following method. A single colony or a few microliters from a glycerol stock was inoculated into 4 mL LB medium containing 0.1 mg/mL carbenicillin antibiotic. The culture was incubated with shaking at 37 C for 4 hours. The cultures were stored at 4° C overnight.
- Benzonase (125 Units) was added to the resuspension and the cell suspension was then incubated on a rotating mixer for 20 minutes at room temperature. The cell debris was removed by centifugation at 10,000 rpm for 20 minutes at room temperature. The supernatant was passed through a 0.45 ⁇ m syringe-end filter and transferred to a fresh tube. A pre-packed columns containing 1.25 mL of His-Bind resin was equilibrated with 10 mL of 5 mM imidazole, 0.5 M NaCl, 20 mM Tris-HCl pH 7.9 (IX Binding Buffer). The column was then loaded with the prepared cell extract.
- the column was then washed with 10 mL of IX Binding Buffer, followed with 10 mL of 60 mM imidazole, 0.5 M NaCl, 20 mM Tris- HCl pH 7.9 (IX Wash Buffer).
- the protein was eluted with 5 mL of 1 M imidazole, 0.5 M NaCl, 20 mM Tris-HCl pH 7.9 (IX elution buffer). Finally the protein was dialyzed into 50 mM Tris-HCl pH 6.8. The resulting protein solution was concentrated to ⁇ 0.1-0.4 mL using Ultrafree - centrifugal device (Biomax-IOK MW cutoff, Millipore Corp, MA).
- Proteins were diluted to 10 mg/mL and 1 mg/mL in 50 mM Tris pH 6.8, 30 percent final glycerol and stored at -20°C. Protein concentration was determined using Bio-Rad protein assay (Bio-Rad Laboratories, CA). Bovine serum albumin was used to generate a standard curve 1-5 ⁇ g. Samples (10 ⁇ L) were added to wells in a 96 well-plate and mixed with 200 ⁇ L of Bio-Rad protein assay reagent (1 part dye reagent concentrated parts water). The samples were read at OD 59 5 after ⁇ 5 minutes using a spectraMAX 250 plate reader (Molecular Devices Corporation, Sunnyvale, CA) and compared to the standard curve.
- Bio-Rad protein assay Bio-Rad Laboratories, CA
- Bovine serum albumin was used to generate a standard curve 1-5 ⁇ g. Samples (10 ⁇ L) were added to wells in a 96 well-plate and mixed with 200 ⁇ L of Bio-R
- the EPSPS enzyme assays contained 50 mM K + -HEPES pH 7.0 and 1 mM shikimate-3 -phosphate (Assay mix).
- the K m -PEP were determined by incubating assay mix (30 ⁇ L) with enzyme (10 ⁇ L) and varying concentrations of [ 14 C] PEP in a total volume of 50 ⁇ L.
- the reactions were quenched after various times with 50 ⁇ L of 90 percent ethanol/0.1 M acetic acid pH 4.5 (quench solution).
- the samples were centrifuged at 14,000 revolutions per minute and the resulting supernatants were analyzed for 14 C-EPSP production by HPLC.
- the percent conversion of 14 C-PEP to 14 C-EPSP was determined by HPLC radioassay using an AX100 weak anion exchange HPLC column (4.6 x 250 mm, SynChropak) with 0.26 M isocratic potassium phosphate eluant, pH 6.5 at 1 mL/minute mixed with Ultima-Flo AP cocktail at 3 mL/min (Packard). Initial velocities were calculated by multiplying fractional turnover per unit time by the initial concentration of the substrate.
- the assays were done such that the 14 C-PEP to 14 C-EPSP turnover was ⁇ 30 percent.
- bovine serum albumin (BSA) and phosphoenolpyruvate (PEP) were obtained from Sigma.
- Phosphoenol-[l- 14 C]pyruvate (29 mCi/mmol) was from Amersham Corp. (Piscataway, NJ).
- the maize EPSPS variants that were cloned into pET-19b and from which proteins were expressed and assayed, included the double variants TIPS, TIPT, TIPG, TIPC, TIPA, TIPV, TIPM, TIPL, and TIPI; and single variants T102I, P106S, P106T, and P106L (Table 2).
- the enzymes were purified and assayed for apparent K m of PEP (K m -PEP) and inhibition by glyphosate (Kj).
- K m -PEP K m -PEP
- Kj glyphosate
- the TIPS variant is well known and is currently in the commercial Roundup Ready ® corn product GA21 (U.S.
- Patent 6,040,497 and its kinetic parameters serve as the baseline value for a glyphosate resistant class I EPSPS enzyme that is sufficient to provide glyphosate tolerance to a transgenic plant. All the variants were characterized and the kinetic parameters are shown in Table 2. Substantial differences were observed between these variants. Surprisingly, the results showed that two of the new variants, TIPA and TIPT, were more resistant to glyphosate than the TIPS variant and demonstrated a similar K m -PEP. These EPSPS enzyme double variants will provide enhanced glyphosate tolerance when appropriately expressed in transgenic plants.
- the variant TIPG has similar K m -PEP as the wild-type enzyme (WT), but has a Kj of only 38.6 ⁇ M, not an improvement over TIPS, but this Ki should be sufficient to provide glyphosate tolerance in transgenic plants when appropriately expressed.
- the variants TIPC and TIPI show a high level of resistance to glyphosate but have 1.7-fold and 2.2-fold higher K m -PEP than the wild-type enzyme, respectively. Although TIPC and TIPI are somewhat less efficient than the wild-type enzyme for K m -PEP, they do show a high level of resistance to glyphosate and when these are overexpressed as a transgene in plant cells, these enzymes should be sufficient to provide glyphosate tolerance.
- CP4 EPSPS enzyme kinetics of the naturally occurring class II glyphosate resistant EPSPS isolated from Agrobacterium strain CP4
- CP4 EPSPS enzyme kinetics of the naturally occurring class II glyphosate resistant EPSPS isolated from Agrobacterium strain CP4
- pMON21104 RecA promoter/GlO leader/CP4 EPSPS/T7 terminator
- Ki Ki for glyphosate of 5100 ⁇ M.
- a maize EPSPS-TIPT DNA molecule was isolated from pMON58452 by incorporating Sph I and Eco RI endonuclease sites in the ends with DNA primer molecules ZmAroA-1 (SEQ ID NO:40) and ZmAroA-2 (SEQ ID NO:41).
- the amplified mEPSPS-TIPT DNA fragment was digested with Sphl and Eco RI and gel purified.
- a triple ligation was performed with the two pMON30167 fragments and the modified maize EPSPS- TIPT DNA fragment.
- the ligated plasmid was transformed into E. coli strain XL 1 -blue following the manufacturer's instruction and screened for colonies with the correct plasmid.
- a DNA construct containing the TIPT variant (pMON70472, Figure 7) under the control of rice actin promoter was transformed into corn plant cells (LH198 x Hill) by an Agrobacterium mediated transformation method.
- a disarmed Agrobacterium strain C58 harboring the binary DNA construct of the present invention is used.
- the DNA construct is transferred into Agrobacterium by a triparental mating method (Ditta et al, Proc. Natl. Acad. Sci. 77:7347-7351, 1980).
- Liquid cultures of Agrobacterium are initiated from glycerol stocks or from a freshly streaked plate and grown overnight at 26°C-28°C with shaking (approximately 150 rpm) to mid-log growth phase in liquid LB medium, pH 7.0 containing the appropriate antibiotics.
- the Agrobacterium cells are resuspended in the inoculation medium (liquid CM4C) and the density is adjusted to OD 6 6o of 1.
- Freshly isolated Type II immature HiIIxLH198 and Hill corn embryos are inoculated with Agrobacterium containing a construct and co-cultured several days in the dark at 23 °C. The embryos are then transferred to delay media and incubated at 28 °C for several or more days.
- the treated plants were scored for vegetative (glypT) and reproductive tolerance (fertile) to glyphosate.
- Four of the eight single copy events (50%) showed no vegetative injury due to the glyphosate application at V4 (%V4 glypT).
- a 64 oz Roundup® Ultra treatment was applied at around the V7 stage and the plants were scored for vegetative glyphosate tolerance and male fertility (%V7glypT/fertile). All four of the events 100% (4/4) that were single copy and vegetatively tolerant to glyphosate at V4 were also vegetatively tolerant and fully male fertile after the V7 treatment.
- CP4 EPSPS commercial standard glyphosate resistant EPSPS
- DNA constructs containing the TIPT variant of a class I EPSPS provide plants that are vegetatively and reproductively tolerant to a glyphosate containing herbicide.
- the ZmTIPT variant was constructed into a plant expression construct suitable for dicot plant expression.
- the DNA construct was designated pMON81519 and is illustrated in Figure 10.
- the DNA construct and control constructs were transferred into Agrobacterium by a triparental mating method as previously described.
- the transformed Agrobacterium cells were used to transfer the plant expression cassette into Arabidopsis and tobacco cells.
- Arabidopsis embryos were transformed by an Agrobacterium mediated method essentially as described by Bechtold N, et al, CR Acad Sci Paris Sciences di la vie/life sciences 316: 1194-1199, (1993).
- An Agrobacterium strain ABI containing a DNA construct is prepared as inoculum by growing in a culture tube containing 10 mis Luria Broth and antibiotics.
- the Agrobacterium inoculum is pelleted by centrifugation and resuspended in 25 ml Infiltration Medium (MS Basal Salts 0.5%, Gamborg's B-5 Vitamins 1%, Sucrose 5%, MES 0.5 g/L, pH 5.7) with 0.44 nM benzylaminopurine (10 ul of a 1.0 mg/L stock in DMSO per liter) and 0.02% Silwet L-77 to an OD 60 o of 0.6.
- Mature flowering Arabidopsis plants are vacuum infiltrated in a vacuum chamber with the Agrobacterium inoculum by inverting the pots containing the plants into the inoculum. The chamber is sealed, a vacuum is applied for several minutes, release the vacuum suddenly, blot the pots to remove excess inoculum, cover pots with plastic domes and place pots in a growth chamber at 21 °C 16 hours light and 70% humidity. Approximately 2 weeks after vacuum infiltration of the inoculum, cover each plant with a Lawson 511 pollination bag. Approximately 4 weeks post infiltration, withhold water from the plants to permit dry down. Harvest seed approximately 2 weeks after dry down.
- the transgenic Arabidopsis plants produced by the infiltrated seed embryos are selected from the nontransgenic plants by a germination selection method.
- the harvested seed is surface sterilized then spread onto the surface of selection media plates containing MS Basal Salts 4.3 g/L, Gamborg's B-5 (500 X) 2.0 g/L, MES 0.5 g/L, and 8 g/L Phytagar with Carbenicillin 250mg/L, Cefotaxime 100 mg/L, and PPM 2 ml/L and 300 ⁇ M glyphosate added as a filter sterilized liquid solution, after autoclaving.
- the pMON81519 VI events and control construct pMON81517 glyphosate tolerant transgenic Arabidopsis plants are selected by spray application of glyphosate herbicide at a rate of 24 ounces/acre, the surviving plants are transplanted into individual pots.
- the VI plants are sprayed a second time corresponding to the observation of bolting, approximately 16 days after the at a rate of 24 ounces/acre.
- the second spray will determine the efficacy of the two constructs for conferring reproductive tolerance.
- the plants are observed for vegetative and reproductive effects of glyphosate application.
- Tobacco is a well known model plant for testing of transgene constructs and the methods of transformation are well known in the art of plant transformation. Briefly, tobacco leaf tissue is cut and placed onto solid pre-culture plates containing the appropriate culture medium. The day before Agrobacterium inoculation, a 10 ⁇ l loop of a transformed Agrobacterium culture containing pMON81519 or control construct is placed into a tube containing 10 mis of YEP media with appropriate antibiotics to maintain selection of the DNA construct. The tube is put into a shaker to grow overnight at 28 °C. The OD 6 oo of the Agrobacterium is adjusted to 0.15 - 0.30 OD 6 oowith TXD medium.
- the plants are treated with 16-24 oz/Acre glyphosate and scored for vegetative and reproductive tolerance.
- the results shown in Table 4 demonstrate that the percentage of plants showing glyphosate tolerance and fertility is about the same for the ZmTIPT class I EPSPS variant as for the class II EPSPS.
- Class I EPSPSs can be modified by site-directed mutagenesis methods or random mutagenesis method to provide an enzyme that is resistant to glyphosate.
- the present invention preferably provides amino acid substitutions of the Thrl02 and Pro 106 positions.
- Thrl02 codon was replaced with a leucine(L, Leu) codon and the Pro 106 codon was replaced with an alanine (A, Ala) codon by site-directed modification of the corresponding codons in a maize EPSPS DNA coding sequence resulting in a variant ZmTLPA (SEQ ID NO:44) that provides a glyphosate resistant enzyme.
- the Thrl02 codon was replaced with a codon for Glutamine (Q, Gin), the Pro 106 codon modified to an Ala codon, resulting in a TQPA variant.
- the PCR was set up in a 50 ⁇ l reaction in the following manner: dH 2 0 38 ⁇ l; 2 mM dNTP 1 ⁇ L; 10X buffer 5 ⁇ L; pMON70461 1 ⁇ L (10 ng); ZmTLPA-1 (SEQ ID NO:45) 2 ⁇ L; ZmTLPA-2 (SEQ ID N0:46) 2 ⁇ L; pfu Turbo enzyme 1 ⁇ L.
- the PCR was carried out on a MJ Research PTC-200 thermal cycler using the following program: Step 1 - 94°C for 2'; Step 2 - 94°C for30"; Step 3 - 55°C for 30"; Step 4 - 68°C for 14'; Step 5 - go to step 2, 16 times; Step 6 - End.
- 1 ⁇ l of the restriction enzyme Dpnl was added to each 50 ⁇ l of PCR reaction and the mixture was incubated at 37°C for 1 hour. After the Dpnl treatment, 1 ⁇ l of the treated reaction mixture was used to transform the competent E. coli strain XLl-blue strain (Stratagene) following the manufacturer's instruction.
- the transformed cells were plated on a Petri dish containing carbenicillin at a final concentration of 0.1 mg/mL. The plate was then incubated at 37°C overnight. Single colonies were picked the next day and used to inoculate a 3 mL liquid culture containing 0.1 mg/mL carbenicillin. The liquid culture was incubated overnight at 37°C with agitation at 250 rpm. Plasmid DNA was prepared from 1 mL of the liquid culture using Qiagen's miniprep Kit (Cat. No. 27160). The DNA was eluted in 50 ⁇ l of dH 2 0. The entire coding region of three independent clones from each mutagenesis was sequenced and confirmed to contain the desired mutation. The variant coding sequences were inserted into a pET19 expression vector in the proper orientation to provide expression of the variant enzyme as a translational fusion with a purification tag.
- TLPA and TQPA mutant maize EPSPS enzymes
- K substrate binding
- K resistance to glyphosate
- Table 5 results are shown in Table 5.
- WT wild type unmodified maize EPSPS
- TIPA wild type unmodified maize EPSPS
- the results provide evidence that the TLPA variant is resistant to glyphosate and has sufficient enzyme kinetics that when expressed in a transgenic plant will provide glyphosate tolerance to the transgenic plant when fused with a CTP or modified for chloroplast expression.
- Further amino acid substitutions at the 106 position that include threonine, glycine, cysteine and isoleucine are expected to result in a glyphosate resistant enzyme as observed in combination with the T-I modification at position 102.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Cell Biology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MXPA05008725A MXPA05008725A (en) | 2003-02-18 | 2004-02-17 | Glyphosate resistant class i 5-enolpyruvylshikimate-3-phosphate synthase (epsps). |
AU2004213818A AU2004213818B2 (en) | 2003-02-18 | 2004-02-17 | Glyphosate resistant class I 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) |
CA2516221A CA2516221C (en) | 2003-02-18 | 2004-02-17 | Glyphosate resistant class i 5-enolpyruvylshikimate-3-phosphate synthase (epsps) |
EP04711867.4A EP1594961B1 (en) | 2003-02-18 | 2004-02-17 | Glyphosate resistant class i 5-enolpyruvylshikimate-3-phosphate synthase (epsps) |
BRPI0407592A BRPI0407592B1 (en) | 2003-02-18 | 2004-02-17 | Glyphosate resistant class i 5-enolpyruvilshikimato-3-phosphate synthase (epsps), dna molecule encoding it, dna construct and processes for preparing a glyphosate tolerant plant and weed control |
US10/545,266 US7723575B2 (en) | 2003-02-18 | 2004-02-17 | Glyphosate resistant class I 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) |
US12/688,711 US8436159B2 (en) | 2003-02-18 | 2010-01-15 | Glyphosate resistant class I 5-endolpyruvylshikimate-3-phosphate synthase (EPSPS) |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US44843803P | 2003-02-18 | 2003-02-18 | |
US60/448,438 | 2003-02-18 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10545266 A-371-Of-International | 2004-02-17 | ||
US12/688,711 Division US8436159B2 (en) | 2003-02-18 | 2010-01-15 | Glyphosate resistant class I 5-endolpyruvylshikimate-3-phosphate synthase (EPSPS) |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2004074443A2 true WO2004074443A2 (en) | 2004-09-02 |
WO2004074443A3 WO2004074443A3 (en) | 2004-12-16 |
Family
ID=32908590
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2004/004636 WO2004074443A2 (en) | 2003-02-18 | 2004-02-17 | Glyphosate resistant class i 5-enolpyruvylshikimate-3-phosphate synthase (epsps) |
Country Status (10)
Country | Link |
---|---|
US (2) | US7723575B2 (en) |
EP (1) | EP1594961B1 (en) |
CN (2) | CN101173273B (en) |
AR (2) | AR043207A1 (en) |
AU (1) | AU2004213818B2 (en) |
BR (1) | BRPI0407592B1 (en) |
CA (1) | CA2516221C (en) |
MX (1) | MXPA05008725A (en) |
WO (1) | WO2004074443A2 (en) |
ZA (1) | ZA200506582B (en) |
Cited By (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007030432A2 (en) | 2005-09-06 | 2007-03-15 | Monsanto Technology Llc | Vectors and methods for improved plant transformation efficiency |
WO2007143690A2 (en) | 2006-06-06 | 2007-12-13 | Monsanto Technology Llc | Methods for weed control |
WO2008112633A2 (en) | 2007-03-09 | 2008-09-18 | Monsanto Technology Llc | Method of meristem excision and transformation |
US7838729B2 (en) | 2007-02-26 | 2010-11-23 | Monsanto Technology Llc | Chloroplast transit peptides for efficient targeting of DMO and uses thereof |
WO2011000498A1 (en) | 2009-07-01 | 2011-01-06 | Bayer Bioscience N.V. | Methods and means for obtaining plants with enhanced glyphosate tolerance |
US7939721B2 (en) | 2006-10-25 | 2011-05-10 | Monsanto Technology Llc | Cropping systems for managing weeds |
WO2011076889A1 (en) | 2009-12-23 | 2011-06-30 | Bayer Cropscience Ag | Plants tolerant to hppd inhibitor herbicides |
WO2011076877A1 (en) | 2009-12-23 | 2011-06-30 | Bayer Cropscience Ag | Plants tolerant to hppd inhibitor herbicides |
WO2011076882A1 (en) | 2009-12-23 | 2011-06-30 | Bayer Cropscience Ag | Plants tolerant to hppd inhibitor herbicides |
WO2011076885A1 (en) | 2009-12-23 | 2011-06-30 | Bayer Cropscience Ag | Plants tolerant to hppd inhibitor herbicides |
WO2011076892A1 (en) | 2009-12-23 | 2011-06-30 | Bayer Cropscience Ag | Plants tolerant to hppd inhibitor herbicides |
EP2361986A1 (en) | 2006-05-16 | 2011-08-31 | Monsanto Technology LLC | Use of non-agrobacterium bacterial species for plant transformation |
EP2453012A1 (en) | 2010-11-10 | 2012-05-16 | Bayer CropScience AG | HPPD variants and methods of use |
WO2012130684A1 (en) | 2011-03-25 | 2012-10-04 | Bayer Cropscience Ag | Use of n-(1,2,5-oxadiazol-3-yl)benzamides for controlling unwanted plants in areas of transgenic crop plants being tolerant to hppd inhibitor herbicides |
WO2012130685A1 (en) | 2011-03-25 | 2012-10-04 | Bayer Cropscience Ag | Use of n-(tetrazol-4-yl)- or n-(triazol-3-yl)arylcarboxamides or their salts for controlling unwanted plants in areas of transgenic crop plants being tolerant to hppd inhibitor herbicides |
WO2013026740A2 (en) | 2011-08-22 | 2013-02-28 | Bayer Cropscience Nv | Methods and means to modify a plant genome |
WO2014043435A1 (en) | 2012-09-14 | 2014-03-20 | Bayer Cropscience Lp | Hppd variants and methods of use |
USRE44971E1 (en) | 2006-06-06 | 2014-06-24 | Monsanto Technology Llc | Method for selection of transformed cells |
WO2014138339A2 (en) | 2013-03-07 | 2014-09-12 | Athenix Corp. | Toxin genes and methods for their use |
US9121022B2 (en) | 2010-03-08 | 2015-09-01 | Monsanto Technology Llc | Method for controlling herbicide-resistant plants |
WO2015138394A2 (en) | 2014-03-11 | 2015-09-17 | Bayer Cropscience Lp | Hppd variants and methods of use |
CN105331725A (en) * | 2015-11-30 | 2016-02-17 | 中国农业大学 | Flanking sequence of maroACC transgenetic anti-herbicide corn CC-2 and application thereof |
EP3023499A1 (en) | 2008-07-16 | 2016-05-25 | Monsanto Technology LLC | Methods and vectors for producing transgenic plants |
US9416363B2 (en) | 2011-09-13 | 2016-08-16 | Monsanto Technology Llc | Methods and compositions for weed control |
US9422557B2 (en) | 2011-09-13 | 2016-08-23 | Monsanto Technology Llc | Methods and compositions for weed control |
US9422558B2 (en) | 2011-09-13 | 2016-08-23 | Monsanto Technology Llc | Methods and compositions for weed control |
US9540655B2 (en) | 2010-12-03 | 2017-01-10 | Dow Agrosciences Llc | Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof |
US9540656B2 (en) | 2010-12-03 | 2017-01-10 | Dow Agrosciences Llc | Stacked herbicide tolerance event 8291.45.36.2, related transgenic soybean lines, and detection thereof |
US9540642B2 (en) | 2013-11-04 | 2017-01-10 | The United States Of America, As Represented By The Secretary Of Agriculture | Compositions and methods for controlling arthropod parasite and pest infestations |
WO2017040343A1 (en) | 2015-08-28 | 2017-03-09 | Pioneer Hi-Bred International, Inc. | Ochrobactrum-mediated transformation of plants |
WO2017042259A1 (en) | 2015-09-11 | 2017-03-16 | Bayer Cropscience Aktiengesellschaft | Hppd variants and methods of use |
WO2017059341A1 (en) | 2015-10-02 | 2017-04-06 | Monsanto Technology Llc | Recombinant maize b chromosome sequence and uses thereof |
US9732353B2 (en) | 2011-07-13 | 2017-08-15 | Dow Agrosciences Llc | Stacked herbicide tolerance event 8264.42.32.1, related transgenic soybean lines, and detection thereof |
US9777288B2 (en) | 2013-07-19 | 2017-10-03 | Monsanto Technology Llc | Compositions and methods for controlling leptinotarsa |
US9840715B1 (en) | 2011-09-13 | 2017-12-12 | Monsanto Technology Llc | Methods and compositions for delaying senescence and improving disease tolerance and yield in plants |
US9850496B2 (en) | 2013-07-19 | 2017-12-26 | Monsanto Technology Llc | Compositions and methods for controlling Leptinotarsa |
US9920326B1 (en) | 2011-09-14 | 2018-03-20 | Monsanto Technology Llc | Methods and compositions for increasing invertase activity in plants |
WO2018098214A1 (en) | 2016-11-23 | 2018-05-31 | Bayer Cropscience Lp | Axmi669 and axmi991 toxin genes and methods for their use |
US10000767B2 (en) | 2013-01-28 | 2018-06-19 | Monsanto Technology Llc | Methods and compositions for plant pest control |
WO2018119336A1 (en) | 2016-12-22 | 2018-06-28 | Athenix Corp. | Use of cry14 for the control of nematode pests |
WO2018136611A1 (en) | 2017-01-18 | 2018-07-26 | Bayer Cropscience Lp | Use of bp005 for the control of plant pathogens |
WO2018136604A1 (en) | 2017-01-18 | 2018-07-26 | Bayer Cropscience Lp | Bp005 toxin gene and methods for its use |
US10041068B2 (en) | 2013-01-01 | 2018-08-07 | A. B. Seeds Ltd. | Isolated dsRNA molecules and methods of using same for silencing target molecules of interest |
WO2018165091A1 (en) | 2017-03-07 | 2018-09-13 | Bayer Cropscience Lp | Hppd variants and methods of use |
US10077451B2 (en) | 2012-10-18 | 2018-09-18 | Monsanto Technology Llc | Methods and compositions for plant pest control |
US10240162B2 (en) | 2012-05-24 | 2019-03-26 | A.B. Seeds Ltd. | Compositions and methods for silencing gene expression |
WO2019083808A1 (en) | 2017-10-24 | 2019-05-02 | Basf Se | Improvement of herbicide tolerance to hppd inhibitors by down-regulation of putative 4-hydroxyphenylpyruvate reductases in soybean |
WO2019083810A1 (en) | 2017-10-24 | 2019-05-02 | Basf Se | Improvement of herbicide tolerance to 4-hydroxyphenylpyruvate dioxygenase (hppd) inhibitors by down-regulation of hppd expression in soybean |
US10334848B2 (en) | 2014-01-15 | 2019-07-02 | Monsanto Technology Llc | Methods and compositions for weed control using EPSPS polynucleotides |
US10378012B2 (en) | 2014-07-29 | 2019-08-13 | Monsanto Technology Llc | Compositions and methods for controlling insect pests |
US10435701B2 (en) | 2013-03-14 | 2019-10-08 | Monsanto Technology Llc | Methods and compositions for plant pest control |
US10557138B2 (en) | 2013-12-10 | 2020-02-11 | Beeologics, Inc. | Compositions and methods for virus control in Varroa mite and bees |
US10568328B2 (en) | 2013-03-15 | 2020-02-25 | Monsanto Technology Llc | Methods and compositions for weed control |
US10612019B2 (en) | 2013-03-13 | 2020-04-07 | Monsanto Technology Llc | Methods and compositions for weed control |
US10609930B2 (en) | 2013-03-13 | 2020-04-07 | Monsanto Technology Llc | Methods and compositions for weed control |
US10655136B2 (en) | 2015-06-03 | 2020-05-19 | Monsanto Technology Llc | Methods and compositions for introducing nucleic acids into plants |
US10683505B2 (en) | 2013-01-01 | 2020-06-16 | Monsanto Technology Llc | Methods of introducing dsRNA to plant seeds for modulating gene expression |
US10760086B2 (en) | 2011-09-13 | 2020-09-01 | Monsanto Technology Llc | Methods and compositions for weed control |
US10801028B2 (en) | 2009-10-14 | 2020-10-13 | Beeologics Inc. | Compositions for controlling Varroa mites in bees |
US10808249B2 (en) | 2011-09-13 | 2020-10-20 | Monsanto Technology Llc | Methods and compositions for weed control |
US10806146B2 (en) | 2011-09-13 | 2020-10-20 | Monsanto Technology Llc | Methods and compositions for weed control |
US10829828B2 (en) | 2011-09-13 | 2020-11-10 | Monsanto Technology Llc | Methods and compositions for weed control |
EP3748003A1 (en) | 2016-01-26 | 2020-12-09 | Monsanto Technology LLC | Compositions and methods for controlling insect pests |
US10883103B2 (en) | 2015-06-02 | 2021-01-05 | Monsanto Technology Llc | Compositions and methods for delivery of a polynucleotide into a plant |
US10888579B2 (en) | 2007-11-07 | 2021-01-12 | Beeologics Inc. | Compositions for conferring tolerance to viral disease in social insects, and the use thereof |
US10968449B2 (en) | 2015-01-22 | 2021-04-06 | Monsanto Technology Llc | Compositions and methods for controlling Leptinotarsa |
US10988764B2 (en) | 2014-06-23 | 2021-04-27 | Monsanto Technology Llc | Compositions and methods for regulating gene expression via RNA interference |
US11091770B2 (en) | 2014-04-01 | 2021-08-17 | Monsanto Technology Llc | Compositions and methods for controlling insect pests |
US11732268B2 (en) | 2016-06-28 | 2023-08-22 | Monsanto Technology Llc | Methods and compositions for use in genome modification in plants |
US11807857B2 (en) | 2014-06-25 | 2023-11-07 | Monsanto Technology Llc | Methods and compositions for delivering nucleic acids to plant cells and regulating gene expression |
US11920140B2 (en) | 2017-08-22 | 2024-03-05 | Napigen, Inc. | Organelle genome modification using polynucleotide guided endonuclease |
WO2024137438A2 (en) | 2022-12-19 | 2024-06-27 | BASF Agricultural Solutions Seed US LLC | Insect toxin genes and methods for their use |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2004213818B2 (en) * | 2003-02-18 | 2008-06-05 | Monsanto Technology Llc | Glyphosate resistant class I 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) |
US7674958B2 (en) * | 2005-12-01 | 2010-03-09 | Athenix Corporation | GRG23 and GRG51 genes conferring herbicide resistance |
RU2008148945A (en) * | 2006-05-12 | 2010-06-20 | Коммонвелт Сайентифик энд Индастриал Рисерч Организейшн (AU) | ENZYMES FOR HERBICIDES DEGRADATION |
US9045765B2 (en) * | 2006-06-09 | 2015-06-02 | Athenix Corporation | EPSP synthase genes conferring herbicide resistance |
AR061366A1 (en) | 2006-06-13 | 2008-08-20 | Athenix Corp | EPSP IMPROVED SYNTHESES: COMPOSITIONS AND METHODS OF THE SAME USE |
CN101878307B (en) * | 2007-09-27 | 2017-07-28 | 陶氏益农公司 | Using sour 3 phosphate synthase genes of 5 enolpyrul-shikimates as the engineered zinc finger of target |
WO2009085982A1 (en) * | 2007-12-19 | 2009-07-09 | Monsanto Technology Llc | Method to enhance yield and purity of hybrid crops |
AU2009210450A1 (en) * | 2008-02-01 | 2009-08-13 | Athenix Corporation | Directed evolution of GRG31 and GRG36 EPSP synthase enzymes |
CN101570744B (en) * | 2008-04-28 | 2013-05-01 | 中国农业科学院生物技术研究所 | EPSP synthase of high-resistance glyphosate as well as coded sequence and application thereof |
AU2009333021B2 (en) * | 2008-12-31 | 2015-09-10 | Sapphire Energy, Inc. | Genetically engineered herbicide resistant algae |
CN102458099B (en) | 2009-06-05 | 2015-08-19 | 佛罗里达大学研究基金公司 | The separation of sugarcane Lignin biosynthesis gene and targeted inhibition |
CN101831443A (en) * | 2010-03-25 | 2010-09-15 | 中国农业科学院生物技术研究所 | Gene for encoding 5-enolpyrul-shikimate-3-phosphate synthase and application thereof |
WO2012148275A1 (en) * | 2011-04-29 | 2012-11-01 | Keygene N.V. | Glyphosate resistance enhancement |
MX344968B (en) | 2012-02-01 | 2017-01-12 | Dow Agrosciences Llc | Chloroplast transit peptide. |
CN102911950A (en) * | 2012-10-23 | 2013-02-06 | 中国农业大学 | Broomcorn glyphosate resistance 5-enolpyruvoyl shikimic acid-3-phosphosynthase (EPSPS) and application thereof |
US9650646B2 (en) | 2013-01-11 | 2017-05-16 | University Of Florida Research Foundation, Inc. | Materials and methods to increase plant growth and yield |
US9758792B2 (en) | 2013-05-02 | 2017-09-12 | Syngenta Participations Ag | Glyphosate resistant class 1 EPSPS genes |
WO2015057600A1 (en) | 2013-10-18 | 2015-04-23 | E. I. Du Pont De Nemours And Company | Glyphosate-n-acetyltransferase (glyat) sequences and methods of use |
WO2015164457A1 (en) | 2014-04-22 | 2015-10-29 | E. I. Du Pont De Nemours And Company | Plastidic carbonic anhydrase genes for oil augmentation in seeds with increased dgat expression |
AU2015288157A1 (en) | 2014-07-11 | 2017-01-19 | E. I. Du Pont De Nemours And Company | Compositions and methods for producing plants resistant to glyphosate herbicide |
US10801036B2 (en) | 2015-07-02 | 2020-10-13 | Arcadia Biosciences Inc. | Wheat having resistance to glyphosate DUe to alterations in 5-enol-pyruvylshikimate-3 phosphate synthase |
US20190017067A1 (en) * | 2016-01-12 | 2019-01-17 | Regents Of The University Of Minnesota | Glyphosate tolerant plants having modified 5-enolpyruvylshikimate-3-phosphate synthase gene regulation |
CN105866414A (en) * | 2016-02-28 | 2016-08-17 | 浙江大学 | Transgenic protein g10-epsps quantitative detection method and used kit |
WO2018034984A1 (en) * | 2016-08-19 | 2018-02-22 | Yale University | Transgene and mutational control of sexuality in maize and related grasses |
WO2019089381A1 (en) * | 2017-11-01 | 2019-05-09 | Monsanto Technology Llc | Methods and compositions for glyphosate tolerance in plants |
CN114965840B (en) * | 2021-02-24 | 2024-06-14 | 公安部物证鉴定中心 | Method for detecting glyphosate, glufosinate and metabolites in biological fluid |
CN114606249B (en) * | 2022-03-25 | 2024-06-28 | 浙江新安化工集团股份有限公司 | Nucleic acid molecule encoding AM79 EPSPS protein and application thereof |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4535060A (en) | 1983-01-05 | 1985-08-13 | Calgene, Inc. | Inhibition resistant 5-enolpyruvyl-3-phosphoshikimate synthetase, production and use |
US5633435A (en) * | 1990-08-31 | 1997-05-27 | Monsanto Company | Glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthases |
US5866775A (en) * | 1990-09-28 | 1999-02-02 | Monsanto Company | Glyphosate-tolerant 5-enolpyruvyl-3-phosphoshikimate synthases |
FR2736929B1 (en) * | 1995-07-19 | 1997-08-22 | Rhone Poulenc Agrochimie | ISOLATED DNA SEQUENCE THAT MAY SERVE AS A REGULATION ZONE IN A CHIMERIC GENE FOR USE IN PLANT TRANSFORMATION |
FR2736926B1 (en) * | 1995-07-19 | 1997-08-22 | Rhone Poulenc Agrochimie | 5-ENOL PYRUVYLSHIKIMATE-3-PHOSPHATE SYNTHASE MUTEE, CODING GENE FOR THIS PROTEIN AND PROCESSED PLANTS CONTAINING THIS GENE |
US6040497A (en) | 1997-04-03 | 2000-03-21 | Dekalb Genetics Corporation | Glyphosate resistant maize lines |
EP1894467A3 (en) | 1997-04-03 | 2008-07-16 | DeKalb Genetics Corporation | Use of glyphosate resistant maize lines |
GB9711015D0 (en) * | 1997-05-28 | 1997-07-23 | Zeneca Ltd | Improvements in or relating to organic compounds |
CZ20013856A3 (en) * | 1999-04-29 | 2002-04-17 | Syngenta Ltd. | Plants resistant to herbicides |
AR025996A1 (en) | 1999-10-07 | 2002-12-26 | Valigen Us Inc | NON-TRANSGENIC PLANTS RESISTANT TO HERBICIDES. |
DE60111613T2 (en) * | 2000-03-09 | 2006-05-18 | Monsanto Technology Llc. | METHOD FOR PRODUCING GLYPHOSATE TOLERANT PLANTS |
CN1325642C (en) * | 2001-05-24 | 2007-07-11 | 中山大学 | Method for optimizing gene and antiroundup gene obtained by said method and expression carrier |
AU2004213818B2 (en) * | 2003-02-18 | 2008-06-05 | Monsanto Technology Llc | Glyphosate resistant class I 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) |
-
2004
- 2004-02-17 AU AU2004213818A patent/AU2004213818B2/en not_active Expired
- 2004-02-17 CA CA2516221A patent/CA2516221C/en not_active Expired - Lifetime
- 2004-02-17 EP EP04711867.4A patent/EP1594961B1/en not_active Expired - Lifetime
- 2004-02-17 BR BRPI0407592A patent/BRPI0407592B1/en active IP Right Grant
- 2004-02-17 US US10/545,266 patent/US7723575B2/en not_active Expired - Lifetime
- 2004-02-17 CN CN2007101802847A patent/CN101173273B/en not_active Expired - Lifetime
- 2004-02-17 CN CNB2004800098432A patent/CN100352919C/en not_active Expired - Lifetime
- 2004-02-17 MX MXPA05008725A patent/MXPA05008725A/en active IP Right Grant
- 2004-02-17 WO PCT/US2004/004636 patent/WO2004074443A2/en active Application Filing
- 2004-02-18 AR ARP040100492A patent/AR043207A1/en active IP Right Grant
-
2005
- 2005-08-17 ZA ZA200506582A patent/ZA200506582B/en unknown
-
2010
- 2010-01-15 US US12/688,711 patent/US8436159B2/en active Active
-
2012
- 2012-08-24 AR ARP120103136A patent/AR087673A2/en active IP Right Grant
Non-Patent Citations (6)
Title |
---|
DATTA ET AL., BIO-TECHNOLOGY, vol. 8, 1990, pages 736 - 740 |
HAYASHIMOTO, PLANT PHYSIOL., vol. 93, 1990, pages 857 - 863 |
KLEE ET AL., ANN. REV. PLANT PHYS., vol. 38, 1987, pages 467 - 486 |
SYMPOSIUM ON MOLECULAR STRATEGIES FOR CROP IMPROVEMENT, 16 April 1990 (1990-04-16) |
VASIL ET AL., BIO/TECHNOLOGY, vol. 10, 1992, pages 667 - 674 |
VASIL ET AL., BIO/TECHNOLOGY, vol. 8, 1990, pages 429 - 434 |
Cited By (120)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3536793A1 (en) | 2005-09-06 | 2019-09-11 | Monsanto Technology LLC | Vectors and methods for improved plant transformation efficiency |
WO2007030432A2 (en) | 2005-09-06 | 2007-03-15 | Monsanto Technology Llc | Vectors and methods for improved plant transformation efficiency |
EP3196311A1 (en) | 2006-05-16 | 2017-07-26 | Monsanto Technology LLC | Use of non-agrobacterium bacterial species for plant transformation |
EP2371964A1 (en) | 2006-05-16 | 2011-10-05 | Monsanto Technology LLC | Use of non-agrobacterium bacterial species for plant transformation |
EP2361986A1 (en) | 2006-05-16 | 2011-08-31 | Monsanto Technology LLC | Use of non-agrobacterium bacterial species for plant transformation |
EP2803728A1 (en) | 2006-05-16 | 2014-11-19 | Monsanto Technology LLC | Use of non-agrobacterium bacterial species for plant transformation |
EP3608413A1 (en) | 2006-05-16 | 2020-02-12 | Monsanto Technology LLC | Use of non-agrobacterium bacterial species for plant transformation |
USRE44971E1 (en) | 2006-06-06 | 2014-06-24 | Monsanto Technology Llc | Method for selection of transformed cells |
US7855326B2 (en) | 2006-06-06 | 2010-12-21 | Monsanto Technology Llc | Methods for weed control using plants having dicamba-degrading enzymatic activity |
USRE45048E1 (en) | 2006-06-06 | 2014-07-22 | Monsanto Technology Llc | Methods for weed control using plants having dicamba-degrading enzymatic activity |
WO2007143690A2 (en) | 2006-06-06 | 2007-12-13 | Monsanto Technology Llc | Methods for weed control |
US8629328B2 (en) | 2006-06-06 | 2014-01-14 | Monsanto Technology Llc | Methods for weed control using plants transformed with dicamba monooxygenase |
US7939721B2 (en) | 2006-10-25 | 2011-05-10 | Monsanto Technology Llc | Cropping systems for managing weeds |
EP2454940A2 (en) | 2006-10-25 | 2012-05-23 | Monsanto Technology LLC | Cropping systems for managing weeds |
US8791325B2 (en) | 2007-02-26 | 2014-07-29 | Monsanto Technology Llc | Chloroplast transit peptides for efficient targeting of DMO and uses thereof |
US7838729B2 (en) | 2007-02-26 | 2010-11-23 | Monsanto Technology Llc | Chloroplast transit peptides for efficient targeting of DMO and uses thereof |
US8084666B2 (en) | 2007-02-26 | 2011-12-27 | Monsanto Technology Llc | Chloroplast transit peptides for efficient targeting of DMO and uses thereof |
US8420888B2 (en) | 2007-02-26 | 2013-04-16 | Monsanto Technology Llc | Chloroplast transit peptides for efficient targeting of DMO and uses thereof |
EP2425709A1 (en) | 2007-03-09 | 2012-03-07 | Monsanto Technology, LLC | Preparation and use of plant embryo explants for transformation |
EP3916097A1 (en) | 2007-03-09 | 2021-12-01 | Monsanto Technology LLC | Preparation and use of plant embryo explants for transformation |
WO2008112633A2 (en) | 2007-03-09 | 2008-09-18 | Monsanto Technology Llc | Method of meristem excision and transformation |
EP2811026A2 (en) | 2007-03-09 | 2014-12-10 | Monsanto Technology LLC | Methods for plant transformation using spectinomycin selection |
WO2008112645A2 (en) | 2007-03-09 | 2008-09-18 | Monsanto Technology Llc | Methods for plant transformation using spectinomycin selection |
EP2450448A1 (en) | 2007-03-09 | 2012-05-09 | Monsanto Technology LLC | Methods for plant transformation using spectinomycin selection |
EP3290520A1 (en) | 2007-03-09 | 2018-03-07 | Monsanto Technology LLC | Preparation and use of plant embryo explants for transformation |
US10888579B2 (en) | 2007-11-07 | 2021-01-12 | Beeologics Inc. | Compositions for conferring tolerance to viral disease in social insects, and the use thereof |
EP3023499A1 (en) | 2008-07-16 | 2016-05-25 | Monsanto Technology LLC | Methods and vectors for producing transgenic plants |
WO2011000498A1 (en) | 2009-07-01 | 2011-01-06 | Bayer Bioscience N.V. | Methods and means for obtaining plants with enhanced glyphosate tolerance |
US10801028B2 (en) | 2009-10-14 | 2020-10-13 | Beeologics Inc. | Compositions for controlling Varroa mites in bees |
WO2011076877A1 (en) | 2009-12-23 | 2011-06-30 | Bayer Cropscience Ag | Plants tolerant to hppd inhibitor herbicides |
WO2011076889A1 (en) | 2009-12-23 | 2011-06-30 | Bayer Cropscience Ag | Plants tolerant to hppd inhibitor herbicides |
WO2011076892A1 (en) | 2009-12-23 | 2011-06-30 | Bayer Cropscience Ag | Plants tolerant to hppd inhibitor herbicides |
WO2011076885A1 (en) | 2009-12-23 | 2011-06-30 | Bayer Cropscience Ag | Plants tolerant to hppd inhibitor herbicides |
WO2011076882A1 (en) | 2009-12-23 | 2011-06-30 | Bayer Cropscience Ag | Plants tolerant to hppd inhibitor herbicides |
US9121022B2 (en) | 2010-03-08 | 2015-09-01 | Monsanto Technology Llc | Method for controlling herbicide-resistant plants |
US11812738B2 (en) | 2010-03-08 | 2023-11-14 | Monsanto Technology Llc | Polynucleotide molecules for gene regulation in plants |
EP3231872A1 (en) | 2010-03-08 | 2017-10-18 | Monsanto Technology LLC | Polynucleotide molecules for gene regulation in plants |
US9988634B2 (en) | 2010-03-08 | 2018-06-05 | Monsanto Technology Llc | Polynucleotide molecules for gene regulation in plants |
EP2453012A1 (en) | 2010-11-10 | 2012-05-16 | Bayer CropScience AG | HPPD variants and methods of use |
EP2669372A1 (en) | 2010-11-10 | 2013-12-04 | Bayer CropScience AG | HPPD variants and methods of use |
EP2669370A1 (en) | 2010-11-10 | 2013-12-04 | Bayer CropScience AG | HPPD variants and methods of use |
EP2669369A1 (en) | 2010-11-10 | 2013-12-04 | Bayer CropScience AG | HPPD variants and methods of use |
EP2669373A1 (en) | 2010-11-10 | 2013-12-04 | Bayer CropScience AG | HPPD variants and methods of use |
EP2669371A1 (en) | 2010-11-10 | 2013-12-04 | Bayer CropScience AG | HPPD variants and methods of use |
US11819022B2 (en) | 2010-12-03 | 2023-11-21 | Dow Agrosciences Llc | Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof |
US11425906B2 (en) | 2010-12-03 | 2022-08-30 | Dow Agrosciences Llc | Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof |
US10973229B2 (en) | 2010-12-03 | 2021-04-13 | Dow Agrosciences Llc | Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof |
US9540655B2 (en) | 2010-12-03 | 2017-01-10 | Dow Agrosciences Llc | Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof |
US9540656B2 (en) | 2010-12-03 | 2017-01-10 | Dow Agrosciences Llc | Stacked herbicide tolerance event 8291.45.36.2, related transgenic soybean lines, and detection thereof |
US10400250B2 (en) | 2010-12-03 | 2019-09-03 | Dow Agrosciences Llc | Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof |
WO2012130684A1 (en) | 2011-03-25 | 2012-10-04 | Bayer Cropscience Ag | Use of n-(1,2,5-oxadiazol-3-yl)benzamides for controlling unwanted plants in areas of transgenic crop plants being tolerant to hppd inhibitor herbicides |
WO2012130685A1 (en) | 2011-03-25 | 2012-10-04 | Bayer Cropscience Ag | Use of n-(tetrazol-4-yl)- or n-(triazol-3-yl)arylcarboxamides or their salts for controlling unwanted plants in areas of transgenic crop plants being tolerant to hppd inhibitor herbicides |
US9732353B2 (en) | 2011-07-13 | 2017-08-15 | Dow Agrosciences Llc | Stacked herbicide tolerance event 8264.42.32.1, related transgenic soybean lines, and detection thereof |
US9670496B2 (en) | 2011-08-22 | 2017-06-06 | Bayer Cropscience N.V. | Methods and means to modify a plant genome |
US10538774B2 (en) | 2011-08-22 | 2020-01-21 | Basf Agricultural Solutions Seed, Us Llc | Methods and means to modify a plant genome |
WO2013026740A2 (en) | 2011-08-22 | 2013-02-28 | Bayer Cropscience Nv | Methods and means to modify a plant genome |
US10808249B2 (en) | 2011-09-13 | 2020-10-20 | Monsanto Technology Llc | Methods and compositions for weed control |
US10760086B2 (en) | 2011-09-13 | 2020-09-01 | Monsanto Technology Llc | Methods and compositions for weed control |
US9840715B1 (en) | 2011-09-13 | 2017-12-12 | Monsanto Technology Llc | Methods and compositions for delaying senescence and improving disease tolerance and yield in plants |
US9416363B2 (en) | 2011-09-13 | 2016-08-16 | Monsanto Technology Llc | Methods and compositions for weed control |
US9422557B2 (en) | 2011-09-13 | 2016-08-23 | Monsanto Technology Llc | Methods and compositions for weed control |
US9422558B2 (en) | 2011-09-13 | 2016-08-23 | Monsanto Technology Llc | Methods and compositions for weed control |
US10435702B2 (en) | 2011-09-13 | 2019-10-08 | Monsanto Technology Llc | Methods and compositions for delaying senescence and improving disease tolerance and yield in plants |
US10806146B2 (en) | 2011-09-13 | 2020-10-20 | Monsanto Technology Llc | Methods and compositions for weed control |
US10829828B2 (en) | 2011-09-13 | 2020-11-10 | Monsanto Technology Llc | Methods and compositions for weed control |
US9920326B1 (en) | 2011-09-14 | 2018-03-20 | Monsanto Technology Llc | Methods and compositions for increasing invertase activity in plants |
US10428338B2 (en) | 2011-09-14 | 2019-10-01 | Monsanto Technology Llc | Methods and compositions for increasing invertase activity in plants |
US10934555B2 (en) | 2012-05-24 | 2021-03-02 | Monsanto Technology Llc | Compositions and methods for silencing gene expression |
US10240162B2 (en) | 2012-05-24 | 2019-03-26 | A.B. Seeds Ltd. | Compositions and methods for silencing gene expression |
US10240161B2 (en) | 2012-05-24 | 2019-03-26 | A.B. Seeds Ltd. | Compositions and methods for silencing gene expression |
WO2014043435A1 (en) | 2012-09-14 | 2014-03-20 | Bayer Cropscience Lp | Hppd variants and methods of use |
EP3173477A1 (en) | 2012-09-14 | 2017-05-31 | Bayer Cropscience LP | Hppd variants and methods of use |
EP3683307A2 (en) | 2012-09-14 | 2020-07-22 | BASF Agricultural Solutions Seed US LLC | Hppd variants and methods of use |
US10077451B2 (en) | 2012-10-18 | 2018-09-18 | Monsanto Technology Llc | Methods and compositions for plant pest control |
US10844398B2 (en) | 2012-10-18 | 2020-11-24 | Monsanto Technology Llc | Methods and compositions for plant pest control |
US10041068B2 (en) | 2013-01-01 | 2018-08-07 | A. B. Seeds Ltd. | Isolated dsRNA molecules and methods of using same for silencing target molecules of interest |
US10683505B2 (en) | 2013-01-01 | 2020-06-16 | Monsanto Technology Llc | Methods of introducing dsRNA to plant seeds for modulating gene expression |
US10000767B2 (en) | 2013-01-28 | 2018-06-19 | Monsanto Technology Llc | Methods and compositions for plant pest control |
EP3626828A2 (en) | 2013-03-07 | 2020-03-25 | BASF Agricultural Solutions Seed US LLC | Toxin genes and methods for their use |
WO2014138339A2 (en) | 2013-03-07 | 2014-09-12 | Athenix Corp. | Toxin genes and methods for their use |
US10609930B2 (en) | 2013-03-13 | 2020-04-07 | Monsanto Technology Llc | Methods and compositions for weed control |
US10612019B2 (en) | 2013-03-13 | 2020-04-07 | Monsanto Technology Llc | Methods and compositions for weed control |
US10435701B2 (en) | 2013-03-14 | 2019-10-08 | Monsanto Technology Llc | Methods and compositions for plant pest control |
US10568328B2 (en) | 2013-03-15 | 2020-02-25 | Monsanto Technology Llc | Methods and compositions for weed control |
US9856495B2 (en) | 2013-07-19 | 2018-01-02 | Monsanto Technology Llc | Compositions and methods for controlling Leptinotarsa |
US9777288B2 (en) | 2013-07-19 | 2017-10-03 | Monsanto Technology Llc | Compositions and methods for controlling leptinotarsa |
US10597676B2 (en) | 2013-07-19 | 2020-03-24 | Monsanto Technology Llc | Compositions and methods for controlling Leptinotarsa |
US11377667B2 (en) | 2013-07-19 | 2022-07-05 | Monsanto Technology Llc | Compositions and methods for controlling Leptinotarsa |
US9850496B2 (en) | 2013-07-19 | 2017-12-26 | Monsanto Technology Llc | Compositions and methods for controlling Leptinotarsa |
US9540642B2 (en) | 2013-11-04 | 2017-01-10 | The United States Of America, As Represented By The Secretary Of Agriculture | Compositions and methods for controlling arthropod parasite and pest infestations |
US10927374B2 (en) | 2013-11-04 | 2021-02-23 | Monsanto Technology Llc | Compositions and methods for controlling arthropod parasite and pest infestations |
US10100306B2 (en) | 2013-11-04 | 2018-10-16 | Monsanto Technology Llc | Compositions and methods for controlling arthropod parasite and pest infestations |
US10557138B2 (en) | 2013-12-10 | 2020-02-11 | Beeologics, Inc. | Compositions and methods for virus control in Varroa mite and bees |
US10334848B2 (en) | 2014-01-15 | 2019-07-02 | Monsanto Technology Llc | Methods and compositions for weed control using EPSPS polynucleotides |
WO2015138394A2 (en) | 2014-03-11 | 2015-09-17 | Bayer Cropscience Lp | Hppd variants and methods of use |
US11091770B2 (en) | 2014-04-01 | 2021-08-17 | Monsanto Technology Llc | Compositions and methods for controlling insect pests |
US10988764B2 (en) | 2014-06-23 | 2021-04-27 | Monsanto Technology Llc | Compositions and methods for regulating gene expression via RNA interference |
US11807857B2 (en) | 2014-06-25 | 2023-11-07 | Monsanto Technology Llc | Methods and compositions for delivering nucleic acids to plant cells and regulating gene expression |
US11124792B2 (en) | 2014-07-29 | 2021-09-21 | Monsanto Technology Llc | Compositions and methods for controlling insect pests |
US10378012B2 (en) | 2014-07-29 | 2019-08-13 | Monsanto Technology Llc | Compositions and methods for controlling insect pests |
US10968449B2 (en) | 2015-01-22 | 2021-04-06 | Monsanto Technology Llc | Compositions and methods for controlling Leptinotarsa |
US10883103B2 (en) | 2015-06-02 | 2021-01-05 | Monsanto Technology Llc | Compositions and methods for delivery of a polynucleotide into a plant |
US10655136B2 (en) | 2015-06-03 | 2020-05-19 | Monsanto Technology Llc | Methods and compositions for introducing nucleic acids into plants |
WO2017040343A1 (en) | 2015-08-28 | 2017-03-09 | Pioneer Hi-Bred International, Inc. | Ochrobactrum-mediated transformation of plants |
WO2017042259A1 (en) | 2015-09-11 | 2017-03-16 | Bayer Cropscience Aktiengesellschaft | Hppd variants and methods of use |
US11732269B2 (en) | 2015-10-02 | 2023-08-22 | Monsanto Technology Llc | Recombinant maize B chromosome sequence and uses thereof |
WO2017059341A1 (en) | 2015-10-02 | 2017-04-06 | Monsanto Technology Llc | Recombinant maize b chromosome sequence and uses thereof |
CN105331725A (en) * | 2015-11-30 | 2016-02-17 | 中国农业大学 | Flanking sequence of maroACC transgenetic anti-herbicide corn CC-2 and application thereof |
CN105331725B (en) * | 2015-11-30 | 2018-04-24 | 中国农业大学 | Turn flanking sequence and its application of maroACC gene antiweed corn Cs C-2 |
EP3748003A1 (en) | 2016-01-26 | 2020-12-09 | Monsanto Technology LLC | Compositions and methods for controlling insect pests |
US11732268B2 (en) | 2016-06-28 | 2023-08-22 | Monsanto Technology Llc | Methods and compositions for use in genome modification in plants |
WO2018098214A1 (en) | 2016-11-23 | 2018-05-31 | Bayer Cropscience Lp | Axmi669 and axmi991 toxin genes and methods for their use |
WO2018119336A1 (en) | 2016-12-22 | 2018-06-28 | Athenix Corp. | Use of cry14 for the control of nematode pests |
WO2018136611A1 (en) | 2017-01-18 | 2018-07-26 | Bayer Cropscience Lp | Use of bp005 for the control of plant pathogens |
WO2018136604A1 (en) | 2017-01-18 | 2018-07-26 | Bayer Cropscience Lp | Bp005 toxin gene and methods for its use |
WO2018165091A1 (en) | 2017-03-07 | 2018-09-13 | Bayer Cropscience Lp | Hppd variants and methods of use |
US11920140B2 (en) | 2017-08-22 | 2024-03-05 | Napigen, Inc. | Organelle genome modification using polynucleotide guided endonuclease |
WO2019083808A1 (en) | 2017-10-24 | 2019-05-02 | Basf Se | Improvement of herbicide tolerance to hppd inhibitors by down-regulation of putative 4-hydroxyphenylpyruvate reductases in soybean |
WO2019083810A1 (en) | 2017-10-24 | 2019-05-02 | Basf Se | Improvement of herbicide tolerance to 4-hydroxyphenylpyruvate dioxygenase (hppd) inhibitors by down-regulation of hppd expression in soybean |
WO2024137438A2 (en) | 2022-12-19 | 2024-06-27 | BASF Agricultural Solutions Seed US LLC | Insect toxin genes and methods for their use |
Also Published As
Publication number | Publication date |
---|---|
AU2004213818A1 (en) | 2004-09-02 |
BRPI0407592A (en) | 2006-02-21 |
ZA200506582B (en) | 2006-05-31 |
AU2004213818B2 (en) | 2008-06-05 |
MXPA05008725A (en) | 2005-09-20 |
AR087673A2 (en) | 2014-04-09 |
EP1594961A2 (en) | 2005-11-16 |
CA2516221A1 (en) | 2004-09-02 |
US20060143727A1 (en) | 2006-06-29 |
CN101173273A (en) | 2008-05-07 |
WO2004074443A3 (en) | 2004-12-16 |
US20100197499A1 (en) | 2010-08-05 |
US8436159B2 (en) | 2013-05-07 |
BRPI0407592B1 (en) | 2019-12-31 |
CN101173273B (en) | 2013-03-20 |
AR043207A1 (en) | 2005-07-20 |
CN1774503A (en) | 2006-05-17 |
US7723575B2 (en) | 2010-05-25 |
CA2516221C (en) | 2014-05-13 |
EP1594961B1 (en) | 2013-12-25 |
CN100352919C (en) | 2007-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2004213818B2 (en) | Glyphosate resistant class I 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) | |
AU2003247962B2 (en) | Methods for using artificial polynucleotides and compositions thereof to reduce transgene silencing | |
AU2005267423B2 (en) | Microbial glyphosate resistant 5-enolpyruvylshikimate-3-phosphate synthases | |
US9758792B2 (en) | Glyphosate resistant class 1 EPSPS genes | |
US20140342913A1 (en) | Genes providing tolerance to pds inhibitors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2004213818 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004711867 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2006143727 Country of ref document: US Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10545266 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 2004213818 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2516221 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1936/CHENP/2005 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005/06582 Country of ref document: ZA Ref document number: PA/a/2005/008725 Country of ref document: MX Ref document number: 200506582 Country of ref document: ZA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20048098432 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 2004711867 Country of ref document: EP |
|
ENPW | Started to enter national phase and was withdrawn or failed for other reasons |
Ref document number: PI0407592 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: PI0407592 Country of ref document: BR |
|
ENPZ | Former announcement of the withdrawal of the entry into the national phase was wrong |
Ref document number: PI0407592 Country of ref document: BR Free format text: REFERENTE A RPI 1832 DE 14/02/2006 |
|
WWP | Wipo information: published in national office |
Ref document number: 10545266 Country of ref document: US |