WO2004072232A2 - Covalent tethering of functional groups to proteins - Google Patents
Covalent tethering of functional groups to proteins Download PDFInfo
- Publication number
- WO2004072232A2 WO2004072232A2 PCT/US2004/002607 US2004002607W WO2004072232A2 WO 2004072232 A2 WO2004072232 A2 WO 2004072232A2 US 2004002607 W US2004002607 W US 2004002607W WO 2004072232 A2 WO2004072232 A2 WO 2004072232A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- protein
- mutant
- hydrolase
- amino acid
- substrate
- Prior art date
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 321
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 259
- 125000000524 functional group Chemical group 0.000 title claims abstract description 132
- 102000004157 Hydrolases Human genes 0.000 claims abstract description 323
- 108090000604 Hydrolases Proteins 0.000 claims abstract description 323
- 239000000758 substrate Substances 0.000 claims abstract description 292
- 238000000034 method Methods 0.000 claims abstract description 138
- 108020001507 fusion proteins Proteins 0.000 claims abstract description 62
- 102000037865 fusion proteins Human genes 0.000 claims abstract description 62
- 210000004027 cell Anatomy 0.000 claims description 315
- 235000018102 proteins Nutrition 0.000 claims description 249
- 150000007523 nucleic acids Chemical class 0.000 claims description 101
- 235000001014 amino acid Nutrition 0.000 claims description 100
- 238000006467 substitution reaction Methods 0.000 claims description 92
- 102000004190 Enzymes Human genes 0.000 claims description 72
- 108090000790 Enzymes Proteins 0.000 claims description 72
- 150000001875 compounds Chemical class 0.000 claims description 70
- 102000039446 nucleic acids Human genes 0.000 claims description 63
- 108020004707 nucleic acids Proteins 0.000 claims description 63
- 125000005647 linker group Chemical group 0.000 claims description 61
- 230000027455 binding Effects 0.000 claims description 58
- 238000009739 binding Methods 0.000 claims description 58
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 56
- 229940024606 amino acid Drugs 0.000 claims description 55
- 150000001413 amino acids Chemical class 0.000 claims description 51
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 49
- 102000006635 beta-lactamase Human genes 0.000 claims description 49
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 48
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 48
- 125000000539 amino acid group Chemical group 0.000 claims description 47
- 229910001868 water Inorganic materials 0.000 claims description 47
- 108090000204 Dipeptidase 1 Proteins 0.000 claims description 46
- 230000014509 gene expression Effects 0.000 claims description 46
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 claims description 44
- 239000007787 solid Substances 0.000 claims description 40
- 150000002148 esters Chemical class 0.000 claims description 31
- 239000003550 marker Substances 0.000 claims description 26
- 102000040430 polynucleotide Human genes 0.000 claims description 26
- 108091033319 polynucleotide Proteins 0.000 claims description 26
- 239000002157 polynucleotide Substances 0.000 claims description 26
- 229960001153 serine Drugs 0.000 claims description 26
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 claims description 25
- 102000005962 receptors Human genes 0.000 claims description 24
- 108020003175 receptors Proteins 0.000 claims description 24
- 239000011616 biotin Substances 0.000 claims description 22
- 229960002685 biotin Drugs 0.000 claims description 22
- 235000020958 biotin Nutrition 0.000 claims description 22
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 21
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 claims description 21
- 230000003213 activating effect Effects 0.000 claims description 18
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 claims description 17
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 claims description 17
- 230000000295 complement effect Effects 0.000 claims description 17
- 102000034287 fluorescent proteins Human genes 0.000 claims description 15
- 108091006047 fluorescent proteins Proteins 0.000 claims description 15
- 102000040945 Transcription factor Human genes 0.000 claims description 14
- 108091023040 Transcription factor Proteins 0.000 claims description 14
- 235000018417 cysteine Nutrition 0.000 claims description 14
- 239000003814 drug Substances 0.000 claims description 14
- 229940079593 drug Drugs 0.000 claims description 14
- 239000000834 fixative Substances 0.000 claims description 14
- 239000003446 ligand Substances 0.000 claims description 14
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 claims description 13
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 claims description 13
- 241000187693 Rhodococcus rhodochrous Species 0.000 claims description 13
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 claims description 12
- 229910052736 halogen Inorganic materials 0.000 claims description 12
- 229910052799 carbon Inorganic materials 0.000 claims description 11
- 229960002885 histidine Drugs 0.000 claims description 11
- 125000004429 atom Chemical group 0.000 claims description 10
- 150000002632 lipids Chemical class 0.000 claims description 10
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 claims description 9
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 claims description 9
- 235000004554 glutamine Nutrition 0.000 claims description 9
- 210000003463 organelle Anatomy 0.000 claims description 9
- 108010078791 Carrier Proteins Proteins 0.000 claims description 8
- 108091006146 Channels Proteins 0.000 claims description 8
- 102000034573 Channels Human genes 0.000 claims description 8
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 claims description 8
- 125000005843 halogen group Chemical group 0.000 claims description 8
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 claims description 8
- 230000002163 immunogen Effects 0.000 claims description 8
- 108010052285 Membrane Proteins Proteins 0.000 claims description 7
- 102000018697 Membrane Proteins Human genes 0.000 claims description 7
- 230000001086 cytosolic effect Effects 0.000 claims description 7
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 claims description 7
- 235000014304 histidine Nutrition 0.000 claims description 7
- 229910052717 sulfur Inorganic materials 0.000 claims description 7
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 claims description 6
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 claims description 6
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 claims description 6
- 229930040373 Paraformaldehyde Natural products 0.000 claims description 6
- 229960003767 alanine Drugs 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 102000044158 nucleic acid binding protein Human genes 0.000 claims description 6
- 108700020942 nucleic acid binding protein Proteins 0.000 claims description 6
- 229920002866 paraformaldehyde Polymers 0.000 claims description 6
- 102000004506 Blood Proteins Human genes 0.000 claims description 5
- 108010017384 Blood Proteins Proteins 0.000 claims description 5
- 102000006404 Mitochondrial Proteins Human genes 0.000 claims description 5
- 108010058682 Mitochondrial Proteins Proteins 0.000 claims description 5
- 102000007999 Nuclear Proteins Human genes 0.000 claims description 5
- 108010089610 Nuclear Proteins Proteins 0.000 claims description 5
- 108010089430 Phosphoproteins Proteins 0.000 claims description 5
- 102000007982 Phosphoproteins Human genes 0.000 claims description 5
- 102000001253 Protein Kinase Human genes 0.000 claims description 5
- 241000316848 Rhodococcus <scale insect> Species 0.000 claims description 5
- 241000191967 Staphylococcus aureus Species 0.000 claims description 5
- 101710172711 Structural protein Proteins 0.000 claims description 5
- 235000004279 alanine Nutrition 0.000 claims description 5
- 229960005261 aspartic acid Drugs 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 150000001945 cysteines Chemical class 0.000 claims description 5
- 229940049906 glutamate Drugs 0.000 claims description 5
- 229930195712 glutamate Natural products 0.000 claims description 5
- 230000002503 metabolic effect Effects 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 108060006633 protein kinase Proteins 0.000 claims description 5
- 108091006024 signal transducing proteins Proteins 0.000 claims description 5
- 102000034285 signal transducing proteins Human genes 0.000 claims description 5
- 239000004471 Glycine Substances 0.000 claims description 4
- 239000002616 MRI contrast agent Substances 0.000 claims description 4
- 125000000217 alkyl group Chemical group 0.000 claims description 4
- 229960001230 asparagine Drugs 0.000 claims description 4
- 235000003704 aspartic acid Nutrition 0.000 claims description 4
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 claims description 4
- 229960005190 phenylalanine Drugs 0.000 claims description 4
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 claims description 3
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 claims description 3
- 235000009582 asparagine Nutrition 0.000 claims description 3
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 claims description 3
- 229930182817 methionine Natural products 0.000 claims description 2
- 230000000875 corresponding effect Effects 0.000 claims 57
- 229940009098 aspartate Drugs 0.000 claims 6
- CKLJMWTZIZZHCS-REOHCLBHSA-L aspartate group Chemical group N[C@@H](CC(=O)[O-])C(=O)[O-] CKLJMWTZIZZHCS-REOHCLBHSA-L 0.000 claims 5
- 102000003886 Glycoproteins Human genes 0.000 claims 2
- 108090000288 Glycoproteins Proteins 0.000 claims 2
- 150000001412 amines Chemical class 0.000 claims 2
- 230000008878 coupling Effects 0.000 claims 2
- 238000010168 coupling process Methods 0.000 claims 2
- 238000005859 coupling reaction Methods 0.000 claims 2
- 230000002596 correlated effect Effects 0.000 claims 1
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 claims 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 109
- 230000004927 fusion Effects 0.000 description 88
- 102220482561 Lactotransferrin_H272Y_mutation Human genes 0.000 description 86
- 108020004705 Codon Proteins 0.000 description 77
- 229940088598 enzyme Drugs 0.000 description 74
- 108090000765 processed proteins & peptides Proteins 0.000 description 61
- 239000013598 vector Substances 0.000 description 54
- -1 FAM- C14H24O4-CI Chemical compound 0.000 description 51
- 230000000694 effects Effects 0.000 description 50
- 108020004414 DNA Proteins 0.000 description 42
- 239000006166 lysate Substances 0.000 description 41
- 230000003197 catalytic effect Effects 0.000 description 39
- 102000004196 processed proteins & peptides Human genes 0.000 description 38
- 108091026890 Coding region Proteins 0.000 description 36
- 229920001184 polypeptide Polymers 0.000 description 36
- 239000000047 product Substances 0.000 description 34
- 239000000523 sample Substances 0.000 description 34
- 239000011324 bead Substances 0.000 description 31
- 238000006243 chemical reaction Methods 0.000 description 31
- 239000000543 intermediate Substances 0.000 description 29
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 28
- 238000001514 detection method Methods 0.000 description 27
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 27
- 101150031494 blaZ gene Proteins 0.000 description 26
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 26
- 239000002953 phosphate buffered saline Substances 0.000 description 26
- 108010090804 Streptavidin Proteins 0.000 description 25
- 238000004458 analytical method Methods 0.000 description 25
- 125000003729 nucleotide group Chemical group 0.000 description 23
- 239000000203 mixture Substances 0.000 description 22
- 230000035772 mutation Effects 0.000 description 22
- 239000002773 nucleotide Substances 0.000 description 22
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 21
- 108091034117 Oligonucleotide Proteins 0.000 description 21
- 239000012634 fragment Substances 0.000 description 21
- 239000005090 green fluorescent protein Substances 0.000 description 21
- 238000001819 mass spectrum Methods 0.000 description 21
- 239000000463 material Substances 0.000 description 21
- ABZLKHKQJHEPAX-UHFFFAOYSA-N tetramethylrhodamine Chemical compound C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=CC=C1C([O-])=O ABZLKHKQJHEPAX-UHFFFAOYSA-N 0.000 description 21
- 238000002372 labelling Methods 0.000 description 20
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 19
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 19
- 239000000243 solution Substances 0.000 description 19
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 18
- 241000588724 Escherichia coli Species 0.000 description 18
- 239000012528 membrane Substances 0.000 description 18
- 108010052090 Renilla Luciferases Proteins 0.000 description 17
- 230000004044 response Effects 0.000 description 17
- 239000002585 base Substances 0.000 description 16
- 230000015572 biosynthetic process Effects 0.000 description 16
- 238000000338 in vitro Methods 0.000 description 16
- 238000001727 in vivo Methods 0.000 description 16
- 230000003993 interaction Effects 0.000 description 16
- 238000000746 purification Methods 0.000 description 16
- 238000013518 transcription Methods 0.000 description 16
- 230000035897 transcription Effects 0.000 description 16
- 239000003623 enhancer Substances 0.000 description 15
- 238000009396 hybridization Methods 0.000 description 15
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 14
- 108010070675 Glutathione transferase Proteins 0.000 description 14
- 102000005720 Glutathione transferase Human genes 0.000 description 14
- 108060001084 Luciferase Proteins 0.000 description 14
- 239000005089 Luciferase Substances 0.000 description 14
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 14
- 239000003153 chemical reaction reagent Substances 0.000 description 14
- 238000004128 high performance liquid chromatography Methods 0.000 description 14
- 230000002829 reductive effect Effects 0.000 description 14
- 238000000926 separation method Methods 0.000 description 14
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 13
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 13
- 210000000170 cell membrane Anatomy 0.000 description 13
- 239000000975 dye Substances 0.000 description 13
- 239000000499 gel Substances 0.000 description 13
- 230000007062 hydrolysis Effects 0.000 description 13
- 238000006460 hydrolysis reaction Methods 0.000 description 13
- 230000003301 hydrolyzing effect Effects 0.000 description 13
- 210000004962 mammalian cell Anatomy 0.000 description 13
- 230000003287 optical effect Effects 0.000 description 13
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 12
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 12
- 238000003556 assay Methods 0.000 description 12
- 125000004432 carbon atom Chemical group C* 0.000 description 12
- 230000001105 regulatory effect Effects 0.000 description 12
- 241000894007 species Species 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- 238000001262 western blot Methods 0.000 description 12
- 238000001712 DNA sequencing Methods 0.000 description 11
- 241000282414 Homo sapiens Species 0.000 description 11
- 239000004233 Indanthrene blue RS Substances 0.000 description 11
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 11
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 11
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 11
- 239000013592 cell lysate Substances 0.000 description 11
- 238000005119 centrifugation Methods 0.000 description 11
- 239000003795 chemical substances by application Substances 0.000 description 11
- 238000005406 washing Methods 0.000 description 11
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 10
- 102000053602 DNA Human genes 0.000 description 10
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 10
- ODKSFYDXXFIFQN-BYPYZUCNSA-N L-arginine Chemical compound OC(=O)[C@@H](N)CCCN=C(N)N ODKSFYDXXFIFQN-BYPYZUCNSA-N 0.000 description 10
- 210000004899 c-terminal region Anatomy 0.000 description 10
- 230000008859 change Effects 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 10
- 230000006870 function Effects 0.000 description 10
- 239000002609 medium Substances 0.000 description 10
- 230000008488 polyadenylation Effects 0.000 description 10
- 238000003786 synthesis reaction Methods 0.000 description 10
- 230000008685 targeting Effects 0.000 description 10
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- 108010004901 Haloalkane dehalogenase Proteins 0.000 description 9
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 9
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 9
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 9
- 239000002253 acid Substances 0.000 description 9
- 239000000872 buffer Substances 0.000 description 9
- 239000000460 chlorine Substances 0.000 description 9
- 230000001965 increasing effect Effects 0.000 description 9
- 238000011534 incubation Methods 0.000 description 9
- 239000011541 reaction mixture Substances 0.000 description 9
- 108700010070 Codon Usage Proteins 0.000 description 8
- 241000196324 Embryophyta Species 0.000 description 8
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 8
- 108091034057 RNA (poly(A)) Proteins 0.000 description 8
- 229920002684 Sepharose Polymers 0.000 description 8
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 8
- 229960000723 ampicillin Drugs 0.000 description 8
- 230000001413 cellular effect Effects 0.000 description 8
- 238000010367 cloning Methods 0.000 description 8
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 8
- 239000013612 plasmid Substances 0.000 description 8
- 108091008146 restriction endonucleases Proteins 0.000 description 8
- 238000002741 site-directed mutagenesis Methods 0.000 description 8
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 7
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 7
- 108010021466 Mutant Proteins Proteins 0.000 description 7
- 102000008300 Mutant Proteins Human genes 0.000 description 7
- 150000001350 alkyl halides Chemical class 0.000 description 7
- 239000013604 expression vector Substances 0.000 description 7
- 238000002866 fluorescence resonance energy transfer Methods 0.000 description 7
- 239000012737 fresh medium Substances 0.000 description 7
- 239000001963 growth medium Substances 0.000 description 7
- 230000033001 locomotion Effects 0.000 description 7
- 238000002703 mutagenesis Methods 0.000 description 7
- 231100000350 mutagenesis Toxicity 0.000 description 7
- 239000012038 nucleophile Substances 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 7
- 230000010076 replication Effects 0.000 description 7
- 239000011780 sodium chloride Substances 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- 238000005160 1H NMR spectroscopy Methods 0.000 description 6
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 6
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 239000000020 Nitrocellulose Substances 0.000 description 6
- 208000037065 Subacute sclerosing leukoencephalitis Diseases 0.000 description 6
- 206010042297 Subacute sclerosing panencephalitis Diseases 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 6
- 230000003115 biocidal effect Effects 0.000 description 6
- 239000012091 fetal bovine serum Substances 0.000 description 6
- 229920001220 nitrocellulos Polymers 0.000 description 6
- 238000010898 silica gel chromatography Methods 0.000 description 6
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 6
- 102000002226 Alkyl and Aryl Transferases Human genes 0.000 description 5
- 108010014722 Alkyl and Aryl Transferases Proteins 0.000 description 5
- 108090001008 Avidin Proteins 0.000 description 5
- 108010074860 Factor Xa Proteins 0.000 description 5
- 102100025169 Max-binding protein MNT Human genes 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 5
- 229930182555 Penicillin Natural products 0.000 description 5
- 230000004913 activation Effects 0.000 description 5
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 5
- 238000003491 array Methods 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 5
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N benzo-alpha-pyrone Natural products C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 5
- 238000009835 boiling Methods 0.000 description 5
- 238000004113 cell culture Methods 0.000 description 5
- 238000003776 cleavage reaction Methods 0.000 description 5
- 210000003527 eukaryotic cell Anatomy 0.000 description 5
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 5
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000000269 nucleophilic effect Effects 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 238000003752 polymerase chain reaction Methods 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 230000007017 scission Effects 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- 230000003612 virological effect Effects 0.000 description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 241000124008 Mammalia Species 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 4
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 4
- 102000035195 Peptidases Human genes 0.000 description 4
- 108091005804 Peptidases Proteins 0.000 description 4
- 108020004511 Recombinant DNA Proteins 0.000 description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 4
- 239000006180 TBST buffer Substances 0.000 description 4
- 230000003321 amplification Effects 0.000 description 4
- 230000000692 anti-sense effect Effects 0.000 description 4
- 239000000427 antigen Substances 0.000 description 4
- 108091007433 antigens Proteins 0.000 description 4
- 102000036639 antigens Human genes 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- 229940098773 bovine serum albumin Drugs 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 150000001720 carbohydrates Chemical class 0.000 description 4
- 235000014633 carbohydrates Nutrition 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 239000002299 complementary DNA Substances 0.000 description 4
- 239000000356 contaminant Substances 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical compound O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 description 4
- 238000001378 electrochemiluminescence detection Methods 0.000 description 4
- 230000005284 excitation Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 4
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 230000001976 improved effect Effects 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 238000004020 luminiscence type Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 108020004999 messenger RNA Proteins 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000013642 negative control Substances 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 238000007899 nucleic acid hybridization Methods 0.000 description 4
- 229940049954 penicillin Drugs 0.000 description 4
- HMFHBZSHGGEWLO-UHFFFAOYSA-N pentofuranose Chemical group OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 239000007793 ph indicator Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229910052938 sodium sulfate Inorganic materials 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 4
- 231100000419 toxicity Toxicity 0.000 description 4
- 230000001988 toxicity Effects 0.000 description 4
- 239000003053 toxin Substances 0.000 description 4
- 231100000765 toxin Toxicity 0.000 description 4
- 108700012359 toxins Proteins 0.000 description 4
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 4
- 150000003952 β-lactams Chemical class 0.000 description 4
- VFWCMGCRMGJXDK-UHFFFAOYSA-N 1-chlorobutane Chemical compound CCCCCl VFWCMGCRMGJXDK-UHFFFAOYSA-N 0.000 description 3
- ABAUJBZQEHFSKW-UHFFFAOYSA-N 2-[2-(6-chlorohexoxy)ethoxy]ethanamine Chemical compound NCCOCCOCCCCCCCl ABAUJBZQEHFSKW-UHFFFAOYSA-N 0.000 description 3
- 241000972773 Aulopiformes Species 0.000 description 3
- 108020004256 Beta-lactamase Proteins 0.000 description 3
- 102000014914 Carrier Proteins Human genes 0.000 description 3
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 3
- 238000002965 ELISA Methods 0.000 description 3
- 108010093099 Endoribonucleases Proteins 0.000 description 3
- 102000002494 Endoribonucleases Human genes 0.000 description 3
- 101001047090 Homo sapiens Potassium voltage-gated channel subfamily H member 2 Proteins 0.000 description 3
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 3
- 108091092195 Intron Proteins 0.000 description 3
- 108090000862 Ion Channels Proteins 0.000 description 3
- 102000004310 Ion Channels Human genes 0.000 description 3
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 3
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 3
- 239000006391 Luria-Bertani Medium Substances 0.000 description 3
- SAFOWTLXYAYECG-UHFFFAOYSA-N N-[2-[2-(6-chlorohexoxy)ethoxy]ethyl]hexanamide Chemical compound CCCCCC(=O)NCCOCCOCCCCCCCl SAFOWTLXYAYECG-UHFFFAOYSA-N 0.000 description 3
- 239000007832 Na2SO4 Substances 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- BELBBZDIHDAJOR-UHFFFAOYSA-N Phenolsulfonephthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2S(=O)(=O)O1 BELBBZDIHDAJOR-UHFFFAOYSA-N 0.000 description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 3
- 229920005654 Sephadex Polymers 0.000 description 3
- 239000012507 Sephadex™ Substances 0.000 description 3
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- 150000008065 acid anhydrides Chemical class 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- CYKQAPMSSKXQPX-UHFFFAOYSA-N anthracen-9-ylmethyl n-[2-(2-hydroxyethoxy)ethyl]carbamate Chemical compound C1=CC=C2C(COC(=O)NCCOCCO)=C(C=CC=C3)C3=CC2=C1 CYKQAPMSSKXQPX-UHFFFAOYSA-N 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 102000000072 beta-Arrestins Human genes 0.000 description 3
- 108010080367 beta-Arrestins Proteins 0.000 description 3
- 230000012292 cell migration Effects 0.000 description 3
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 3
- 235000001671 coumarin Nutrition 0.000 description 3
- 150000004775 coumarins Chemical class 0.000 description 3
- 210000000805 cytoplasm Anatomy 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 239000003480 eluent Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 229960002989 glutamic acid Drugs 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 238000003119 immunoblot Methods 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 230000002779 inactivation Effects 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 229960003136 leucine Drugs 0.000 description 3
- 238000003670 luciferase enzyme activity assay Methods 0.000 description 3
- 230000005291 magnetic effect Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 210000004897 n-terminal region Anatomy 0.000 description 3
- 231100000956 nontoxicity Toxicity 0.000 description 3
- 230000030648 nucleus localization Effects 0.000 description 3
- 229960003531 phenolsulfonphthalein Drugs 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 230000026731 phosphorylation Effects 0.000 description 3
- 238000006366 phosphorylation reaction Methods 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 3
- 235000019515 salmon Nutrition 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 3
- 229910000162 sodium phosphate Inorganic materials 0.000 description 3
- 230000009870 specific binding Effects 0.000 description 3
- 239000011550 stock solution Substances 0.000 description 3
- 229960005322 streptomycin Drugs 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 230000005030 transcription termination Effects 0.000 description 3
- 238000001890 transfection Methods 0.000 description 3
- 230000014616 translation Effects 0.000 description 3
- 230000032258 transport Effects 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- SJHPCNCNNSSLPL-CSKARUKUSA-N (4e)-4-(ethoxymethylidene)-2-phenyl-1,3-oxazol-5-one Chemical compound O1C(=O)C(=C/OCC)\N=C1C1=CC=CC=C1 SJHPCNCNNSSLPL-CSKARUKUSA-N 0.000 description 2
- 125000006552 (C3-C8) cycloalkyl group Chemical group 0.000 description 2
- ZTEHOZMYMCEYRM-UHFFFAOYSA-N 1-chlorodecane Chemical compound CCCCCCCCCCCl ZTEHOZMYMCEYRM-UHFFFAOYSA-N 0.000 description 2
- AXAVXPMQTGXXJZ-UHFFFAOYSA-N 2-aminoacetic acid;2-amino-2-(hydroxymethyl)propane-1,3-diol Chemical compound NCC(O)=O.OCC(N)(CO)CO AXAVXPMQTGXXJZ-UHFFFAOYSA-N 0.000 description 2
- TWJNQYPJQDRXPH-UHFFFAOYSA-N 2-cyanobenzohydrazide Chemical compound NNC(=O)C1=CC=CC=C1C#N TWJNQYPJQDRXPH-UHFFFAOYSA-N 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- 108020005029 5' Flanking Region Proteins 0.000 description 2
- BPVHBBXCESDRKW-UHFFFAOYSA-N 5(6)-carboxyfluorescein Chemical compound C12=CC=C(O)C=C2OC2=CC(O)=CC=C2C21OC(=O)C1=CC(C(=O)O)=CC=C21.C12=CC=C(O)C=C2OC2=CC(O)=CC=C2C11OC(=O)C2=CC=C(C(=O)O)C=C21 BPVHBBXCESDRKW-UHFFFAOYSA-N 0.000 description 2
- CJIJXIFQYOPWTF-UHFFFAOYSA-N 7-hydroxycoumarin Natural products O1C(=O)C=CC2=CC(O)=CC=C21 CJIJXIFQYOPWTF-UHFFFAOYSA-N 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- 238000004435 EPR spectroscopy Methods 0.000 description 2
- 241000672609 Escherichia coli BL21 Species 0.000 description 2
- 108060002716 Exonuclease Proteins 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 2
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 2
- 108010024636 Glutathione Proteins 0.000 description 2
- 108010031186 Glycoside Hydrolases Proteins 0.000 description 2
- 102000005744 Glycoside Hydrolases Human genes 0.000 description 2
- HVLSXIKZNLPZJJ-TXZCQADKSA-N HA peptide Chemical compound C([C@@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 HVLSXIKZNLPZJJ-TXZCQADKSA-N 0.000 description 2
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 108060003951 Immunoglobulin Proteins 0.000 description 2
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 2
- QNAYBMKLOCPYGJ-UWTATZPHSA-N L-Alanine Natural products C[C@@H](N)C(O)=O QNAYBMKLOCPYGJ-UWTATZPHSA-N 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 102000003960 Ligases Human genes 0.000 description 2
- 108090000364 Ligases Proteins 0.000 description 2
- 239000000232 Lipid Bilayer Substances 0.000 description 2
- 239000006142 Luria-Bertani Agar Substances 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- TUNFSRHWOTWDNC-UHFFFAOYSA-N Myristic acid Natural products CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 description 2
- 235000021360 Myristic acid Nutrition 0.000 description 2
- VQPRNSWQIAHPMS-HNNXBMFYSA-N N(6)-dansyl-L-lysine Chemical group C1=CC=C2C(N(C)C)=CC=CC2=C1S(=O)(=O)NCCCC[C@H](N)C(O)=O VQPRNSWQIAHPMS-HNNXBMFYSA-N 0.000 description 2
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 2
- QIAFMBKCNZACKA-UHFFFAOYSA-N N-benzoylglycine Chemical compound OC(=O)CNC(=O)C1=CC=CC=C1 QIAFMBKCNZACKA-UHFFFAOYSA-N 0.000 description 2
- 229930193140 Neomycin Natural products 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 102000008299 Nitric Oxide Synthase Human genes 0.000 description 2
- 108010021487 Nitric Oxide Synthase Proteins 0.000 description 2
- 108010077850 Nuclear Localization Signals Proteins 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 102000004316 Oxidoreductases Human genes 0.000 description 2
- 108090000854 Oxidoreductases Proteins 0.000 description 2
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 2
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 2
- 108700008625 Reporter Genes Proteins 0.000 description 2
- 102000006382 Ribonucleases Human genes 0.000 description 2
- 108010083644 Ribonucleases Proteins 0.000 description 2
- 108091028664 Ribonucleotide Proteins 0.000 description 2
- 239000012722 SDS sample buffer Substances 0.000 description 2
- 108091081021 Sense strand Proteins 0.000 description 2
- 238000012300 Sequence Analysis Methods 0.000 description 2
- 108010022999 Serine Proteases Proteins 0.000 description 2
- 102000012479 Serine Proteases Human genes 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 241000191940 Staphylococcus Species 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 2
- 241000589494 Xanthobacter autotrophicus Species 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000010933 acylation Effects 0.000 description 2
- 238000005917 acylation reaction Methods 0.000 description 2
- 238000001042 affinity chromatography Methods 0.000 description 2
- 125000000304 alkynyl group Chemical group 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 239000012062 aqueous buffer Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000000225 bioluminescence resonance energy transfer Methods 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 210000003850 cellular structure Anatomy 0.000 description 2
- 150000001780 cephalosporins Chemical group 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 238000004440 column chromatography Methods 0.000 description 2
- 238000005094 computer simulation Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229960000956 coumarin Drugs 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 150000003950 cyclic amides Chemical class 0.000 description 2
- 230000009089 cytolysis Effects 0.000 description 2
- 125000001295 dansyl group Chemical group [H]C1=C([H])C(N(C([H])([H])[H])C([H])([H])[H])=C2C([H])=C([H])C([H])=C(C2=C1[H])S(*)(=O)=O 0.000 description 2
- 230000020176 deacylation Effects 0.000 description 2
- 238000005947 deacylation reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005695 dehalogenation reaction Methods 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 239000003398 denaturant Substances 0.000 description 2
- 239000005547 deoxyribonucleotide Substances 0.000 description 2
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- 230000005670 electromagnetic radiation Effects 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 102000013165 exonuclease Human genes 0.000 description 2
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 2
- 238000001917 fluorescence detection Methods 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 238000002523 gelfiltration Methods 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 235000013922 glutamic acid Nutrition 0.000 description 2
- 239000004220 glutamic acid Substances 0.000 description 2
- 229960002743 glutamine Drugs 0.000 description 2
- 229960003180 glutathione Drugs 0.000 description 2
- 239000011544 gradient gel Substances 0.000 description 2
- 150000008282 halocarbons Chemical class 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 102000018358 immunoglobulin Human genes 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 229960000310 isoleucine Drugs 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 2
- 238000001638 lipofection Methods 0.000 description 2
- 238000010859 live-cell imaging Methods 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 2
- 238000000816 matrix-assisted laser desorption--ionisation Methods 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 229960004452 methionine Drugs 0.000 description 2
- 238000000520 microinjection Methods 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 238000000329 molecular dynamics simulation Methods 0.000 description 2
- 231100000219 mutagenic Toxicity 0.000 description 2
- 230000003505 mutagenic effect Effects 0.000 description 2
- 229960004927 neomycin Drugs 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 210000004940 nucleus Anatomy 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 150000002972 pentoses Chemical group 0.000 description 2
- 108010011903 peptide receptors Proteins 0.000 description 2
- 102000014187 peptide receptors Human genes 0.000 description 2
- 125000001151 peptidyl group Chemical group 0.000 description 2
- 230000008823 permeabilization Effects 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 150000004713 phosphodiesters Chemical group 0.000 description 2
- 239000008057 potassium phosphate buffer Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 210000002243 primary neuron Anatomy 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 210000001236 prokaryotic cell Anatomy 0.000 description 2
- 235000019833 protease Nutrition 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 2
- 238000006862 quantum yield reaction Methods 0.000 description 2
- 239000011535 reaction buffer Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000010188 recombinant method Methods 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 125000006853 reporter group Chemical group 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000002336 ribonucleotide Substances 0.000 description 2
- 125000002652 ribonucleotide group Chemical group 0.000 description 2
- 239000012723 sample buffer Substances 0.000 description 2
- FSYKKLYZXJSNPZ-UHFFFAOYSA-N sarcosine Chemical compound C[NH2+]CC([O-])=O FSYKKLYZXJSNPZ-UHFFFAOYSA-N 0.000 description 2
- 238000010845 search algorithm Methods 0.000 description 2
- 238000013207 serial dilution Methods 0.000 description 2
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 238000000527 sonication Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 210000001768 subcellular fraction Anatomy 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 229960002898 threonine Drugs 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- 229960004441 tyrosine Drugs 0.000 description 2
- ORHBXUUXSCNDEV-UHFFFAOYSA-N umbelliferone Chemical compound C1=CC(=O)OC2=CC(O)=CC=C21 ORHBXUUXSCNDEV-UHFFFAOYSA-N 0.000 description 2
- 229960004295 valine Drugs 0.000 description 2
- 108700026220 vif Genes Proteins 0.000 description 2
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 2
- HNYAWMSQSBERBE-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) hexanoate Chemical compound CCCCCC(=O)ON1C(=O)CCC1=O HNYAWMSQSBERBE-UHFFFAOYSA-N 0.000 description 1
- AOUOVFRSCMDPFA-QSDJMHMYSA-N (2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-amino-3-carboxypropanoyl]amino]-4-carboxybutanoyl]amino]-3-methylbutanoyl]amino]butanedioic acid Chemical compound OC(=O)C[C@@H](C(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](N)CC(O)=O AOUOVFRSCMDPFA-QSDJMHMYSA-N 0.000 description 1
- CQYBNXGHMBNGCG-FXQIFTODSA-N (2s,3as,7as)-2,3,3a,4,5,6,7,7a-octahydro-1h-indol-1-ium-2-carboxylate Chemical compound C1CCC[C@@H]2[NH2+][C@H](C(=O)[O-])C[C@@H]21 CQYBNXGHMBNGCG-FXQIFTODSA-N 0.000 description 1
- LJRDOKAZOAKLDU-UDXJMMFXSA-N (2s,3s,4r,5r,6r)-5-amino-2-(aminomethyl)-6-[(2r,3s,4r,5s)-5-[(1r,2r,3s,5r,6s)-3,5-diamino-2-[(2s,3r,4r,5s,6r)-3-amino-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-hydroxycyclohexyl]oxy-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl]oxyoxane-3,4-diol;sulfuric ac Chemical compound OS(O)(=O)=O.N[C@@H]1[C@@H](O)[C@H](O)[C@H](CN)O[C@@H]1O[C@H]1[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](N)C[C@@H](N)[C@@H]2O)O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)N)O[C@@H]1CO LJRDOKAZOAKLDU-UDXJMMFXSA-N 0.000 description 1
- NXLNNXIXOYSCMB-UHFFFAOYSA-N (4-nitrophenyl) carbonochloridate Chemical compound [O-][N+](=O)C1=CC=C(OC(Cl)=O)C=C1 NXLNNXIXOYSCMB-UHFFFAOYSA-N 0.000 description 1
- 125000000923 (C1-C30) alkyl group Chemical group 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- PQBOTZNYFQWRHU-UHFFFAOYSA-N 1,2-dichlorobutane Chemical compound CCC(Cl)CCl PQBOTZNYFQWRHU-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- 125000004973 1-butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000004972 1-butynyl group Chemical group [H]C([H])([H])C([H])([H])C#C* 0.000 description 1
- LVZIWKFQFKNSMO-UHFFFAOYSA-N 1-chlorobutan-1-ol Chemical compound CCCC(O)Cl LVZIWKFQFKNSMO-UHFFFAOYSA-N 0.000 description 1
- LORZEOQACCXJLI-UHFFFAOYSA-N 1-chlorodecan-1-ol Chemical compound CCCCCCCCCC(O)Cl LORZEOQACCXJLI-UHFFFAOYSA-N 0.000 description 1
- MLRVZFYXUZQSRU-UHFFFAOYSA-N 1-chlorohexane Chemical compound CCCCCCCl MLRVZFYXUZQSRU-UHFFFAOYSA-N 0.000 description 1
- HUBPTZAIVRQPLP-UHFFFAOYSA-N 1-chlorooctan-1-ol Chemical compound CCCCCCCC(O)Cl HUBPTZAIVRQPLP-UHFFFAOYSA-N 0.000 description 1
- CNDHHGUSRIZDSL-UHFFFAOYSA-N 1-chlorooctane Chemical compound CCCCCCCCCl CNDHHGUSRIZDSL-UHFFFAOYSA-N 0.000 description 1
- 125000006039 1-hexenyl group Chemical group 0.000 description 1
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical class C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 1
- 125000006017 1-propenyl group Chemical group 0.000 description 1
- 125000000530 1-propynyl group Chemical group [H]C([H])([H])C#C* 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- 108020004465 16S ribosomal RNA Proteins 0.000 description 1
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 1
- 108030005680 2,5-dioxopiperazine hydrolases Proteins 0.000 description 1
- GIAFURWZWWWBQT-UHFFFAOYSA-N 2-(2-aminoethoxy)ethanol Chemical compound NCCOCCO GIAFURWZWWWBQT-UHFFFAOYSA-N 0.000 description 1
- TXHAHOVNFDVCCC-UHFFFAOYSA-N 2-(tert-butylazaniumyl)acetate Chemical compound CC(C)(C)NCC(O)=O TXHAHOVNFDVCCC-UHFFFAOYSA-N 0.000 description 1
- FUOOLUPWFVMBKG-UHFFFAOYSA-N 2-Aminoisobutyric acid Chemical compound CC(C)(N)C(O)=O FUOOLUPWFVMBKG-UHFFFAOYSA-N 0.000 description 1
- JTQHMWXGZDZSMI-UHFFFAOYSA-N 2-[2-(6-chlorohexoxy)ethoxy]ethylazanium;2,2,2-trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F.[NH3+]CCOCCOCCCCCCCl JTQHMWXGZDZSMI-UHFFFAOYSA-N 0.000 description 1
- MOKRXKRFEVPPJV-UHFFFAOYSA-N 2-[2-[2-[2-(2-chloroethoxy)ethoxy]ethoxy]ethyl]isoindole-1,3-dione Chemical compound C1=CC=C2C(=O)N(CCOCCOCCOCCCl)C(=O)C2=C1 MOKRXKRFEVPPJV-UHFFFAOYSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- GOJUJUVQIVIZAV-UHFFFAOYSA-N 2-amino-4,6-dichloropyrimidine-5-carbaldehyde Chemical group NC1=NC(Cl)=C(C=O)C(Cl)=N1 GOJUJUVQIVIZAV-UHFFFAOYSA-N 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- 125000000069 2-butynyl group Chemical group [H]C([H])([H])C#CC([H])([H])* 0.000 description 1
- 108010052386 2-haloacid dehalogenase Proteins 0.000 description 1
- 125000006040 2-hexenyl group Chemical group 0.000 description 1
- JWAZRIHNYRIHIV-UHFFFAOYSA-N 2-naphthol Chemical compound C1=CC=CC2=CC(O)=CC=C21 JWAZRIHNYRIHIV-UHFFFAOYSA-N 0.000 description 1
- 125000006024 2-pentenyl group Chemical group 0.000 description 1
- IPFDTWHBEBJTLE-UHFFFAOYSA-N 2h-acridin-1-one Chemical class C1=CC=C2C=C3C(=O)CC=CC3=NC2=C1 IPFDTWHBEBJTLE-UHFFFAOYSA-N 0.000 description 1
- OALHHIHQOFIMEF-UHFFFAOYSA-N 3',6'-dihydroxy-2',4',5',7'-tetraiodo-3h-spiro[2-benzofuran-1,9'-xanthene]-3-one Chemical class O1C(=O)C2=CC=CC=C2C21C1=CC(I)=C(O)C(I)=C1OC1=C(I)C(O)=C(I)C=C21 OALHHIHQOFIMEF-UHFFFAOYSA-N 0.000 description 1
- XMTQQYYKAHVGBJ-UHFFFAOYSA-N 3-(3,4-DICHLOROPHENYL)-1,1-DIMETHYLUREA Chemical compound CN(C)C(=O)NC1=CC=C(Cl)C(Cl)=C1 XMTQQYYKAHVGBJ-UHFFFAOYSA-N 0.000 description 1
- 125000004975 3-butenyl group Chemical group C(CC=C)* 0.000 description 1
- 125000000474 3-butynyl group Chemical group [H]C#CC([H])([H])C([H])([H])* 0.000 description 1
- BXRLWGXPSRYJDZ-UHFFFAOYSA-N 3-cyanoalanine Chemical compound OC(=O)C(N)CC#N BXRLWGXPSRYJDZ-UHFFFAOYSA-N 0.000 description 1
- 125000006041 3-hexenyl group Chemical group 0.000 description 1
- 101150110188 30 gene Proteins 0.000 description 1
- AJNUQUGWNQHQDJ-UHFFFAOYSA-N 4',5'-bis(1,3,2-dithiarsolan-2-yl)-3',6'-dihydroxyspiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound S1CCS[As]1C=1C(O)=CC=C(C23C4=CC=CC=C4C(=O)O3)C=1OC1=C2C=CC(O)=C1[As]1SCCS1 AJNUQUGWNQHQDJ-UHFFFAOYSA-N 0.000 description 1
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 1
- YOQMJMHTHWYNIO-UHFFFAOYSA-N 4-[6-[16-[2-(2,4-dicarboxyphenyl)-5-methoxy-1-benzofuran-6-yl]-1,4,10,13-tetraoxa-7,16-diazacyclooctadec-7-yl]-5-methoxy-1-benzofuran-2-yl]benzene-1,3-dicarboxylic acid Chemical compound COC1=CC=2C=C(C=3C(=CC(=CC=3)C(O)=O)C(O)=O)OC=2C=C1N(CCOCCOCC1)CCOCCOCCN1C(C(=CC=1C=2)OC)=CC=1OC=2C1=CC=C(C(O)=O)C=C1C(O)=O YOQMJMHTHWYNIO-UHFFFAOYSA-N 0.000 description 1
- 108010088791 4-chlorobenzoate dehalogenase Proteins 0.000 description 1
- 108030006380 4-chlorobenzoyl-CoA dehalogenases Proteins 0.000 description 1
- 125000006042 4-hexenyl group Chemical group 0.000 description 1
- 101710169336 5'-deoxyadenosine deaminase Proteins 0.000 description 1
- JONMFQDPDRYYAZ-LNLFQRSKSA-N 5-[(3as,4s,6ar)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]-n-[2-[2-(6-chlorohexoxy)ethoxy]ethyl]pentanamide Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)NCCOCCOCCCCCCCl)SC[C@@H]21 JONMFQDPDRYYAZ-LNLFQRSKSA-N 0.000 description 1
- QRXMUCSWCMTJGU-UHFFFAOYSA-N 5-bromo-4-chloro-3-indolyl phosphate Chemical compound C1=C(Br)C(Cl)=C2C(OP(O)(=O)O)=CNC2=C1 QRXMUCSWCMTJGU-UHFFFAOYSA-N 0.000 description 1
- 125000006043 5-hexenyl group Chemical group 0.000 description 1
- 102100025908 5-oxoprolinase Human genes 0.000 description 1
- 108010020519 6-aminohexanoate-cyclic-dimer hydrolase Proteins 0.000 description 1
- RRHXPUCIXLAHIY-UHFFFAOYSA-N 7-aminochromen-2-one Chemical compound C1=CC(=O)OC2=CC(N)=CC=C21 RRHXPUCIXLAHIY-UHFFFAOYSA-N 0.000 description 1
- LOSIULRWFAEMFL-UHFFFAOYSA-N 7-deazaguanine Chemical compound O=C1NC(N)=NC2=C1CC=N2 LOSIULRWFAEMFL-UHFFFAOYSA-N 0.000 description 1
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 1
- 240000006409 Acacia auriculiformis Species 0.000 description 1
- 241000242764 Aequorea victoria Species 0.000 description 1
- 241000589158 Agrobacterium Species 0.000 description 1
- CXISPYVYMQWFLE-VKHMYHEASA-N Ala-Gly Chemical group C[C@H]([NH3+])C(=O)NCC([O-])=O CXISPYVYMQWFLE-VKHMYHEASA-N 0.000 description 1
- 102000005369 Aldehyde Dehydrogenase Human genes 0.000 description 1
- 108020002663 Aldehyde Dehydrogenase Proteins 0.000 description 1
- 108010007828 Allantoinase Proteins 0.000 description 1
- 101100084406 Ambrosia artemisiifolia D106 gene Proteins 0.000 description 1
- 108090000915 Aminopeptidases Proteins 0.000 description 1
- 102000004400 Aminopeptidases Human genes 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 108010078554 Aromatase Proteins 0.000 description 1
- 102000014654 Aromatase Human genes 0.000 description 1
- 108030004804 Aspartic endopeptidases Proteins 0.000 description 1
- 102000009422 Aspartic endopeptidases Human genes 0.000 description 1
- 108010043599 Atrazine chlorohydrolase Proteins 0.000 description 1
- 239000012583 B-27 Supplement Substances 0.000 description 1
- 238000000035 BCA protein assay Methods 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- FMMWHPNWAFZXNH-UHFFFAOYSA-N Benz[a]pyrene Chemical compound C1=C2C3=CC=CC=C3C=C(C=C3)C2=C2C3=CC=CC2=C1 FMMWHPNWAFZXNH-UHFFFAOYSA-N 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241000701822 Bovine papillomavirus Species 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 241001453380 Burkholderia Species 0.000 description 1
- 125000000739 C2-C30 alkenyl group Chemical group 0.000 description 1
- 125000000041 C6-C10 aryl group Chemical group 0.000 description 1
- 101100297347 Caenorhabditis elegans pgl-3 gene Proteins 0.000 description 1
- 102000000584 Calmodulin Human genes 0.000 description 1
- 108010041952 Calmodulin Proteins 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 102000004031 Carboxy-Lyases Human genes 0.000 description 1
- 108090000489 Carboxy-Lyases Proteins 0.000 description 1
- 102000004308 Carboxylic Ester Hydrolases Human genes 0.000 description 1
- 108090000863 Carboxylic Ester Hydrolases Proteins 0.000 description 1
- 108030006033 Carboxymethylhydantoinases Proteins 0.000 description 1
- 108010006303 Carboxypeptidases Proteins 0.000 description 1
- 102000005367 Carboxypeptidases Human genes 0.000 description 1
- 108010080937 Carboxypeptidases A Proteins 0.000 description 1
- 102000000496 Carboxypeptidases A Human genes 0.000 description 1
- 102000011727 Caspases Human genes 0.000 description 1
- 108010076667 Caspases Proteins 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- 102100026657 Cathepsin Z Human genes 0.000 description 1
- 229930186147 Cephalosporin Natural products 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 108020004638 Circular DNA Proteins 0.000 description 1
- 108091033380 Coding strand Proteins 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 108010066906 Creatininase Proteins 0.000 description 1
- 108010067937 Cyanuric acid amidohydrolase Proteins 0.000 description 1
- 108010069514 Cyclic Peptides Proteins 0.000 description 1
- 102000001189 Cyclic Peptides Human genes 0.000 description 1
- 102000003950 Cysteine Endopeptidases Human genes 0.000 description 1
- 108090000395 Cysteine Endopeptidases Proteins 0.000 description 1
- 108030001451 Cysteine-type carboxypeptidases Proteins 0.000 description 1
- 102000002004 Cytochrome P-450 Enzyme System Human genes 0.000 description 1
- CKLJMWTZIZZHCS-UHFFFAOYSA-N D-OH-Asp Natural products OC(=O)C(N)CC(O)=O CKLJMWTZIZZHCS-UHFFFAOYSA-N 0.000 description 1
- 101710105693 D-alanyl-D-alanine carboxypeptidase DacA Proteins 0.000 description 1
- QNAYBMKLOCPYGJ-UHFFFAOYSA-N D-alpha-Ala Natural products CC([NH3+])C([O-])=O QNAYBMKLOCPYGJ-UHFFFAOYSA-N 0.000 description 1
- 101710154385 D-aminopeptidase Proteins 0.000 description 1
- KDXKERNSBIXSRK-RXMQYKEDSA-N D-lysine Chemical compound NCCCC[C@@H](N)C(O)=O KDXKERNSBIXSRK-RXMQYKEDSA-N 0.000 description 1
- XUIIKFGFIJCVMT-GFCCVEGCSA-N D-thyroxine Chemical compound IC1=CC(C[C@@H](N)C(O)=O)=CC(I)=C1OC1=CC(I)=C(O)C(I)=C1 XUIIKFGFIJCVMT-GFCCVEGCSA-N 0.000 description 1
- 108010078339 DNA alkyltransferase Proteins 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 238000007399 DNA isolation Methods 0.000 description 1
- 230000004543 DNA replication Effects 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 101710088194 Dehydrogenase Proteins 0.000 description 1
- 108020005199 Dehydrogenases Proteins 0.000 description 1
- 101100125027 Dictyostelium discoideum mhsp70 gene Proteins 0.000 description 1
- 108091000126 Dihydroorotase Proteins 0.000 description 1
- 102100034581 Dihydroorotase Human genes 0.000 description 1
- 102100036238 Dihydropyrimidinase Human genes 0.000 description 1
- 102000004860 Dipeptidases Human genes 0.000 description 1
- 108090001081 Dipeptidases Proteins 0.000 description 1
- 108090000194 Dipeptidyl-peptidases and tripeptidyl-peptidases Proteins 0.000 description 1
- 102000003779 Dipeptidyl-peptidases and tripeptidyl-peptidases Human genes 0.000 description 1
- 108010065556 Drug Receptors Proteins 0.000 description 1
- 102000013138 Drug Receptors Human genes 0.000 description 1
- 208000030453 Drug-Related Side Effects and Adverse reaction Diseases 0.000 description 1
- 108700034914 EC 3.1.11.- Proteins 0.000 description 1
- 108700033427 EC 3.1.14.- Proteins 0.000 description 1
- 108700035364 EC 3.1.21.- Proteins 0.000 description 1
- 108700034659 EC 3.1.25.- Proteins 0.000 description 1
- 108700034815 EC 3.1.26.- Proteins 0.000 description 1
- 108700035727 EC 3.1.5.- Proteins 0.000 description 1
- 108700035400 EC 3.1.6.- Proteins 0.000 description 1
- 108700035615 EC 3.1.7.- Proteins 0.000 description 1
- 108700034637 EC 3.2.-.- Proteins 0.000 description 1
- 102000056416 EC 3.3.2.- Human genes 0.000 description 1
- 108700033070 EC 3.3.2.- Proteins 0.000 description 1
- 108700035154 EC 3.4.15.- Proteins 0.000 description 1
- 102000051496 EC 3.4.15.- Human genes 0.000 description 1
- 108700033355 EC 3.4.19.- Proteins 0.000 description 1
- 102000057898 EC 3.4.19.- Human genes 0.000 description 1
- 108700035675 EC 3.4.99.- Proteins 0.000 description 1
- 101710121765 Endo-1,4-beta-xylanase Proteins 0.000 description 1
- 108010037179 Endodeoxyribonucleases Proteins 0.000 description 1
- 102000011750 Endodeoxyribonucleases Human genes 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 102000005486 Epoxide hydrolase Human genes 0.000 description 1
- 108020002908 Epoxide hydrolase Proteins 0.000 description 1
- 241000283074 Equus asinus Species 0.000 description 1
- 241001198387 Escherichia coli BL21(DE3) Species 0.000 description 1
- 241001646716 Escherichia coli K-12 Species 0.000 description 1
- 101710198556 Esterase EstB Proteins 0.000 description 1
- 108090000371 Esterases Proteins 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 108010002700 Exoribonucleases Proteins 0.000 description 1
- 102000004678 Exoribonucleases Human genes 0.000 description 1
- XZWYTXMRWQJBGX-VXBMVYAYSA-N FLAG peptide Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@@H](N)CC(O)=O)CC1=CC=C(O)C=C1 XZWYTXMRWQJBGX-VXBMVYAYSA-N 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- 229920001917 Ficoll Polymers 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 102000004366 Glucosidases Human genes 0.000 description 1
- 108010056771 Glucosidases Proteins 0.000 description 1
- 102000034575 Glutamate transporters Human genes 0.000 description 1
- 108091006151 Glutamate transporters Proteins 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- MVORZMQFXBLMHM-QWRGUYRKSA-N Gly-His-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)CN)CC1=CN=CN1 MVORZMQFXBLMHM-QWRGUYRKSA-N 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 101150031823 HSP70 gene Proteins 0.000 description 1
- 108010039976 Haloacetate dehalogenase Proteins 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000833492 Homo sapiens Jouberin Proteins 0.000 description 1
- 101000615488 Homo sapiens Methyl-CpG-binding domain protein 2 Proteins 0.000 description 1
- 101000651236 Homo sapiens NCK-interacting protein with SH3 domain Proteins 0.000 description 1
- 101000881168 Homo sapiens SPARC Proteins 0.000 description 1
- 108090000144 Human Proteins Proteins 0.000 description 1
- 102000003839 Human Proteins Human genes 0.000 description 1
- 241000701024 Human betaherpesvirus 5 Species 0.000 description 1
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 108030006043 Imidazolonepropionases Proteins 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 108010036012 Iodide peroxidase Proteins 0.000 description 1
- 102000011845 Iodide peroxidase Human genes 0.000 description 1
- 102100024407 Jouberin Human genes 0.000 description 1
- 108010025815 Kanamycin Kinase Proteins 0.000 description 1
- CKLJMWTZIZZHCS-UWTATZPHSA-N L-Aspartic acid Natural products OC(=O)[C@H](N)CC(O)=O CKLJMWTZIZZHCS-UWTATZPHSA-N 0.000 description 1
- ZQISRDCJNBUVMM-UHFFFAOYSA-N L-Histidinol Natural products OCC(N)CC1=CN=CN1 ZQISRDCJNBUVMM-UHFFFAOYSA-N 0.000 description 1
- 235000019766 L-Lysine Nutrition 0.000 description 1
- FFEARJCKVFRZRR-UHFFFAOYSA-N L-Methionine Natural products CSCCC(N)C(O)=O FFEARJCKVFRZRR-UHFFFAOYSA-N 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- ZGUNAGUHMKGQNY-ZETCQYMHSA-N L-alpha-phenylglycine zwitterion Chemical compound OC(=O)[C@@H](N)C1=CC=CC=C1 ZGUNAGUHMKGQNY-ZETCQYMHSA-N 0.000 description 1
- 229930064664 L-arginine Natural products 0.000 description 1
- 235000014852 L-arginine Nutrition 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- 239000004201 L-cysteine Substances 0.000 description 1
- 235000013878 L-cysteine Nutrition 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- ZQISRDCJNBUVMM-YFKPBYRVSA-N L-histidinol Chemical compound OC[C@@H](N)CC1=CNC=N1 ZQISRDCJNBUVMM-YFKPBYRVSA-N 0.000 description 1
- 229930182844 L-isoleucine Natural products 0.000 description 1
- 108010021738 L-lysine-lactamase Proteins 0.000 description 1
- 229930195722 L-methionine Natural products 0.000 description 1
- 125000000393 L-methionino group Chemical group [H]OC(=O)[C@@]([H])(N([H])[*])C([H])([H])C(SC([H])([H])[H])([H])[H] 0.000 description 1
- 229930182821 L-proline Natural products 0.000 description 1
- 125000000174 L-prolyl group Chemical group [H]N1C([H])([H])C([H])([H])C([H])([H])[C@@]1([H])C(*)=O 0.000 description 1
- DGYHPLMPMRKMPD-UHFFFAOYSA-N L-propargyl glycine Natural products OC(=O)C(N)CC#C DGYHPLMPMRKMPD-UHFFFAOYSA-N 0.000 description 1
- 125000000510 L-tryptophano group Chemical group [H]C1=C([H])C([H])=C2N([H])C([H])=C(C([H])([H])[C@@]([H])(C(O[H])=O)N([H])[*])C2=C1[H] 0.000 description 1
- 101710128836 Large T antigen Proteins 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- HNDWYLYAYNBWMP-AJNGGQMLSA-N Leu-Ile-Lys Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CC(C)C)N HNDWYLYAYNBWMP-AJNGGQMLSA-N 0.000 description 1
- 241000209510 Liliopsida Species 0.000 description 1
- 102000006830 Luminescent Proteins Human genes 0.000 description 1
- 108010047357 Luminescent Proteins Proteins 0.000 description 1
- 239000006137 Luria-Bertani broth Substances 0.000 description 1
- 108090000856 Lyases Proteins 0.000 description 1
- 102000004317 Lyases Human genes 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 108030005677 Maleimide hydrolases Proteins 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 101710175625 Maltose/maltodextrin-binding periplasmic protein Proteins 0.000 description 1
- 102000001696 Mannosidases Human genes 0.000 description 1
- 108010054377 Mannosidases Proteins 0.000 description 1
- 102000006166 Metallocarboxypeptidases Human genes 0.000 description 1
- 108030000089 Metallocarboxypeptidases Proteins 0.000 description 1
- 108090000131 Metalloendopeptidases Proteins 0.000 description 1
- 102000003843 Metalloendopeptidases Human genes 0.000 description 1
- 102100021299 Methyl-CpG-binding domain protein 2 Human genes 0.000 description 1
- 241000906086 Miris Species 0.000 description 1
- 102000010909 Monoamine Oxidase Human genes 0.000 description 1
- 108010062431 Monoamine oxidase Proteins 0.000 description 1
- 102000007474 Multiprotein Complexes Human genes 0.000 description 1
- 108010085220 Multiprotein Complexes Proteins 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- 102000004868 N-Methyl-D-Aspartate Receptors Human genes 0.000 description 1
- 108090001041 N-Methyl-D-Aspartate Receptors Proteins 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 101710198130 NADPH-cytochrome P450 reductase Proteins 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 108091005461 Nucleic proteins Proteins 0.000 description 1
- BZQFBWGGLXLEPQ-UHFFFAOYSA-N O-phosphoryl-L-serine Natural products OC(=O)C(N)COP(O)(O)=O BZQFBWGGLXLEPQ-UHFFFAOYSA-N 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- 101710116435 Outer membrane protein Proteins 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 206010034133 Pathogen resistance Diseases 0.000 description 1
- 101710096751 Penicillin-binding protein 2x Proteins 0.000 description 1
- 108010077524 Peptide Elongation Factor 1 Proteins 0.000 description 1
- 108090000279 Peptidyltransferases Proteins 0.000 description 1
- 108090001050 Phosphoric Diester Hydrolases Proteins 0.000 description 1
- 102000004861 Phosphoric Diester Hydrolases Human genes 0.000 description 1
- 108090000754 Phosphoric Triester Hydrolases Proteins 0.000 description 1
- 102000004203 Phosphoric Triester Hydrolases Human genes 0.000 description 1
- 101100124346 Photorhabdus laumondii subsp. laumondii (strain DSM 15139 / CIP 105565 / TT01) hisCD gene Proteins 0.000 description 1
- 241000235648 Pichia Species 0.000 description 1
- 108091036407 Polyadenylation Proteins 0.000 description 1
- 241001505332 Polyomavirus sp. Species 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 102100022807 Potassium voltage-gated channel subfamily H member 2 Human genes 0.000 description 1
- 101000621511 Potato virus M (strain German) RNA silencing suppressor Proteins 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 108010092650 Pyroglutamate Hydrolase Proteins 0.000 description 1
- 230000006819 RNA synthesis Effects 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 108091007187 Reductases Proteins 0.000 description 1
- 102000000505 Ribonucleotide Reductases Human genes 0.000 description 1
- 108010041388 Ribonucleotide Reductases Proteins 0.000 description 1
- 241000714474 Rous sarcoma virus Species 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 102100037599 SPARC Human genes 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 108010077895 Sarcosine Proteins 0.000 description 1
- 241000235346 Schizosaccharomyces Species 0.000 description 1
- 241000242583 Scyphozoa Species 0.000 description 1
- 239000012506 Sephacryl® Substances 0.000 description 1
- 102000003667 Serine Endopeptidases Human genes 0.000 description 1
- 108090000083 Serine Endopeptidases Proteins 0.000 description 1
- 102000034328 Serine-type carboxypeptidases Human genes 0.000 description 1
- 108030000574 Serine-type carboxypeptidases Proteins 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 102100021941 Sorcin Human genes 0.000 description 1
- 101710089292 Sorcin Proteins 0.000 description 1
- 108010055297 Sterol Esterase Proteins 0.000 description 1
- 102000000019 Sterol Esterase Human genes 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 101150006914 TRP1 gene Proteins 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 102000004126 Thiolester Hydrolases Human genes 0.000 description 1
- 108010082788 Thiolester Hydrolases Proteins 0.000 description 1
- 102000002933 Thioredoxin Human genes 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 108030005531 Threonine endopeptidases Proteins 0.000 description 1
- 102000007983 Threonine endopeptidases Human genes 0.000 description 1
- 108010022394 Threonine synthase Proteins 0.000 description 1
- 102000005497 Thymidylate Synthase Human genes 0.000 description 1
- 101710183280 Topoisomerase Proteins 0.000 description 1
- 206010070863 Toxicity to various agents Diseases 0.000 description 1
- 101710120037 Toxin CcdB Proteins 0.000 description 1
- 102000003929 Transaminases Human genes 0.000 description 1
- 108090000340 Transaminases Proteins 0.000 description 1
- 108010028230 Trp-Ser- His-Pro-Gln-Phe-Glu-Lys Proteins 0.000 description 1
- 108020005202 Viral DNA Proteins 0.000 description 1
- 238000000333 X-ray scattering Methods 0.000 description 1
- 241000589506 Xanthobacter Species 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 108020002494 acetyltransferase Proteins 0.000 description 1
- 102000005421 acetyltransferase Human genes 0.000 description 1
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical group C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 238000001261 affinity purification Methods 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 108010047495 alanylglycine Proteins 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 230000033115 angiogenesis Effects 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- JCJNNHDZTLRSGN-UHFFFAOYSA-N anthracen-9-ylmethanol Chemical compound C1=CC=C2C(CO)=C(C=CC=C3)C3=CC2=C1 JCJNNHDZTLRSGN-UHFFFAOYSA-N 0.000 description 1
- KGVKQBCPCNTBHZ-UHFFFAOYSA-N anthracen-9-ylmethyl n-[2-[2-(4-chlorobutoxy)ethoxy]ethyl]carbamate Chemical compound C1=CC=C2C(COC(=O)NCCOCCOCCCCCl)=C(C=CC=C3)C3=CC2=C1 KGVKQBCPCNTBHZ-UHFFFAOYSA-N 0.000 description 1
- 150000001454 anthracenes Chemical class 0.000 description 1
- 230000001745 anti-biotin effect Effects 0.000 description 1
- 230000009830 antibody antigen interaction Effects 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012223 aqueous fraction Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 235000009697 arginine Nutrition 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 229910052789 astatine Inorganic materials 0.000 description 1
- RYXHOMYVWAEKHL-UHFFFAOYSA-N astatine atom Chemical compound [At] RYXHOMYVWAEKHL-UHFFFAOYSA-N 0.000 description 1
- 239000005441 aurora Substances 0.000 description 1
- 238000005815 base catalysis Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- SJCPQBRQOOJBFM-UHFFFAOYSA-N benzo[a]phenalen-1-one Chemical class C1=CC=C2C(C(=O)C=C3)=C4C3=CC=CC4=CC2=C1 SJCPQBRQOOJBFM-UHFFFAOYSA-N 0.000 description 1
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 description 1
- 239000003782 beta lactam antibiotic agent Substances 0.000 description 1
- 102000007379 beta-Arrestin 2 Human genes 0.000 description 1
- 108010032967 beta-Arrestin 2 Proteins 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 238000010256 biochemical assay Methods 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 108010083912 bleomycin N-acetyltransferase Proteins 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- UHBYWPGGCSDKFX-UHFFFAOYSA-N carboxyglutamic acid Chemical compound OC(=O)C(N)CC(C(O)=O)C(O)=O UHBYWPGGCSDKFX-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000006037 cell lysis Effects 0.000 description 1
- 210000003855 cell nucleus Anatomy 0.000 description 1
- 238000003570 cell viability assay Methods 0.000 description 1
- 230000019522 cellular metabolic process Effects 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229940124587 cephalosporin Drugs 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 230000035605 chemotaxis Effects 0.000 description 1
- 238000013375 chromatographic separation Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000012539 chromatography resin Substances 0.000 description 1
- 239000003593 chromogenic compound Substances 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000006059 cover glass Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000000287 crude extract Substances 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 230000003436 cytoskeletal effect Effects 0.000 description 1
- 210000004292 cytoskeleton Anatomy 0.000 description 1
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 description 1
- SUYVUBYJARFZHO-UHFFFAOYSA-N dATP Natural products C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-UHFFFAOYSA-N 0.000 description 1
- RGWHQCVHVJXOKC-SHYZEUOFSA-J dCTP(4-) Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)C1 RGWHQCVHVJXOKC-SHYZEUOFSA-J 0.000 description 1
- HAAZLUGHYHWQIW-KVQBGUIXSA-N dGTP Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 HAAZLUGHYHWQIW-KVQBGUIXSA-N 0.000 description 1
- NHVNXKFIZYSCEB-XLPZGREQSA-N dTTP Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C1 NHVNXKFIZYSCEB-XLPZGREQSA-N 0.000 description 1
- 125000003493 decenyl group Chemical group [H]C([*])=C([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000005070 decynyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C#C* 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000326 densiometry Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 229950006137 dexfosfoserine Drugs 0.000 description 1
- 101150068461 dhaA gene Proteins 0.000 description 1
- 230000005292 diamagnetic effect Effects 0.000 description 1
- 229940111685 dibasic potassium phosphate Drugs 0.000 description 1
- 108091022884 dihydropyrimidinase Proteins 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 1
- 101150052825 dnaK gene Proteins 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 210000001671 embryonic stem cell Anatomy 0.000 description 1
- 108010048367 enhanced green fluorescent protein Proteins 0.000 description 1
- 238000007824 enzymatic assay Methods 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 235000020774 essential nutrients Nutrition 0.000 description 1
- 239000000469 ethanolic extract Substances 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 241001233957 eudicotyledons Species 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N ferric oxide Chemical compound O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229960005191 ferric oxide Drugs 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 238000002073 fluorescence micrograph Methods 0.000 description 1
- 238000002875 fluorescence polarization Methods 0.000 description 1
- 238000001506 fluorescence spectroscopy Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- 238000010230 functional analysis Methods 0.000 description 1
- RJOJUSXNYCILHH-UHFFFAOYSA-N gadolinium(3+) Chemical compound [Gd+3] RJOJUSXNYCILHH-UHFFFAOYSA-N 0.000 description 1
- CMIHHWBVHJVIGI-UHFFFAOYSA-N gadolinium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Gd+3].[Gd+3] CMIHHWBVHJVIGI-UHFFFAOYSA-N 0.000 description 1
- JLYXXMFPNIAWKQ-GNIYUCBRSA-N gamma-hexachlorocyclohexane Chemical compound Cl[C@H]1[C@H](Cl)[C@@H](Cl)[C@@H](Cl)[C@H](Cl)[C@H]1Cl JLYXXMFPNIAWKQ-GNIYUCBRSA-N 0.000 description 1
- JLYXXMFPNIAWKQ-UHFFFAOYSA-N gamma-hexachlorocyclohexane Natural products ClC1C(Cl)C(Cl)C(Cl)C(Cl)C1Cl JLYXXMFPNIAWKQ-UHFFFAOYSA-N 0.000 description 1
- 239000010437 gem Substances 0.000 description 1
- 238000003633 gene expression assay Methods 0.000 description 1
- 102000054767 gene variant Human genes 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-L glutamate group Chemical group N[C@@H](CCC(=O)[O-])C(=O)[O-] WHUUTDBJXJRKMK-VKHMYHEASA-L 0.000 description 1
- 125000000291 glutamic acid group Chemical group N[C@@H](CCC(O)=O)C(=O)* 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000000971 hippocampal effect Effects 0.000 description 1
- 210000001320 hippocampus Anatomy 0.000 description 1
- 101150113423 hisD gene Proteins 0.000 description 1
- 108091008039 hormone receptors Proteins 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229960002591 hydroxyproline Drugs 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 238000003365 immunocytochemistry Methods 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 210000003000 inclusion body Anatomy 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000017730 intein-mediated protein splicing Effects 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- 235000013980 iron oxide Nutrition 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 238000001155 isoelectric focusing Methods 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- BRHPBVXVOVMTIQ-ZLELNMGESA-N l-leucine l-leucine Chemical compound CC(C)C[C@H](N)C(O)=O.CC(C)C[C@H](N)C(O)=O BRHPBVXVOVMTIQ-ZLELNMGESA-N 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- QDLAGTHXVHQKRE-UHFFFAOYSA-N lichenxanthone Natural products COC1=CC(O)=C2C(=O)C3=C(C)C=C(OC)C=C3OC2=C1 QDLAGTHXVHQKRE-UHFFFAOYSA-N 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000009630 liquid culture Methods 0.000 description 1
- 235000018977 lysine Nutrition 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 101150023497 mcrA gene Proteins 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- CEQFOVLGLXCDCX-WUKNDPDISA-N methyl red Chemical compound C1=CC(N(C)C)=CC=C1\N=N\C1=CC=CC=C1C(O)=O CEQFOVLGLXCDCX-WUKNDPDISA-N 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 238000009629 microbiological culture Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 230000025608 mitochondrion localization Effects 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 229940111688 monobasic potassium phosphate Drugs 0.000 description 1
- 235000019796 monopotassium phosphate Nutrition 0.000 description 1
- FEWXHAJCUUDLRR-UHFFFAOYSA-N n-[2-[2-(6-chlorohexoxy)ethoxy]ethyl]-3-[[4-[5-[4-(dimethylamino)phenyl]-1,3-oxazol-2-yl]phenyl]sulfonylamino]propanamide Chemical compound C1=CC(N(C)C)=CC=C1C1=CN=C(C=2C=CC(=CC=2)S(=O)(=O)NCCC(=O)NCCOCCOCCCCCCCl)O1 FEWXHAJCUUDLRR-UHFFFAOYSA-N 0.000 description 1
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N n-hexyl alcohol Natural products CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- VOFUROIFQGPCGE-UHFFFAOYSA-N nile red Chemical compound C1=CC=C2C3=NC4=CC=C(N(CC)CC)C=C4OC3=CC(=O)C2=C1 VOFUROIFQGPCGE-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 125000005187 nonenyl group Chemical group C(=CCCCCCCC)* 0.000 description 1
- 231100000028 nontoxic concentration Toxicity 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005071 nonynyl group Chemical group C(#CCCCCCCC)* 0.000 description 1
- 238000001216 nucleic acid method Methods 0.000 description 1
- 238000001668 nucleic acid synthesis Methods 0.000 description 1
- 125000004365 octenyl group Chemical group C(=CCCCCCC)* 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005069 octynyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C#C* 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000004091 panning Methods 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 229960001639 penicillamine Drugs 0.000 description 1
- 150000002960 penicillins Chemical class 0.000 description 1
- 125000003538 pentan-3-yl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 229940066734 peptide hydrolases Drugs 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 238000002823 phage display Methods 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- UYWQUFXKFGHYNT-UHFFFAOYSA-N phenylmethyl ester of formic acid Natural products O=COCC1=CC=CC=C1 UYWQUFXKFGHYNT-UHFFFAOYSA-N 0.000 description 1
- BZQFBWGGLXLEPQ-REOHCLBHSA-N phosphoserine Chemical compound OC(=O)[C@@H](N)COP(O)(O)=O BZQFBWGGLXLEPQ-REOHCLBHSA-N 0.000 description 1
- USRGIUJOYOXOQJ-GBXIJSLDSA-N phosphothreonine Chemical compound OP(=O)(O)O[C@H](C)[C@H](N)C(O)=O USRGIUJOYOXOQJ-GBXIJSLDSA-N 0.000 description 1
- DCWXELXMIBXGTH-UHFFFAOYSA-N phosphotyrosine Chemical compound OC(=O)C(N)CC1=CC=C(OP(O)(O)=O)C=C1 DCWXELXMIBXGTH-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 210000002706 plastid Anatomy 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920002704 polyhistidine Polymers 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000009465 prokaryotic expression Effects 0.000 description 1
- 229960002429 proline Drugs 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000003498 protein array Methods 0.000 description 1
- 230000020978 protein processing Effects 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 230000004850 protein–protein interaction Effects 0.000 description 1
- 229950010131 puromycin Drugs 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 238000001945 resonance Rayleigh scattering spectroscopy Methods 0.000 description 1
- 238000004366 reverse phase liquid chromatography Methods 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- QSHGUCSTWRSQAF-FJSLEGQWSA-N s-peptide Chemical compound C([C@@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C=CC(OS(O)(=O)=O)=CC=1)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(O)=O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCCN)C(O)=O)NC(=O)[C@@H](NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C1=CC=C(OS(O)(=O)=O)C=C1 QSHGUCSTWRSQAF-FJSLEGQWSA-N 0.000 description 1
- 101150025220 sacB gene Proteins 0.000 description 1
- 229940043230 sarcosine Drugs 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 230000009834 selective interaction Effects 0.000 description 1
- 239000006152 selective media Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000012772 sequence design Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 238000011895 specific detection Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- DFVFTMTWCUHJBL-BQBZGAKWSA-N statine Chemical compound CC(C)C[C@H](N)[C@@H](O)CC(O)=O DFVFTMTWCUHJBL-BQBZGAKWSA-N 0.000 description 1
- 229960002317 succinimide Drugs 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- UEUXEKPTXMALOB-UHFFFAOYSA-J tetrasodium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O UEUXEKPTXMALOB-UHFFFAOYSA-J 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- 108060008226 thioredoxin Proteins 0.000 description 1
- 229940094937 thioredoxin Drugs 0.000 description 1
- 229940034208 thyroxine Drugs 0.000 description 1
- XUIIKFGFIJCVMT-UHFFFAOYSA-N thyroxine-binding globulin Natural products IC1=CC(CC([NH3+])C([O-])=O)=CC(I)=C1OC1=CC(I)=C(O)C(I)=C1 XUIIKFGFIJCVMT-UHFFFAOYSA-N 0.000 description 1
- 230000036964 tight binding Effects 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- FGMPLJWBKKVCDB-UHFFFAOYSA-N trans-L-hydroxy-proline Natural products ON1CCCC1C(O)=O FGMPLJWBKKVCDB-UHFFFAOYSA-N 0.000 description 1
- 238000003151 transfection method Methods 0.000 description 1
- 239000012096 transfection reagent Substances 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000010474 transient expression Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- ZMANZCXQSJIPKH-UHFFFAOYSA-O triethylammonium ion Chemical compound CC[NH+](CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-O 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 125000003258 trimethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- 229960004799 tryptophan Drugs 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 108010072106 tumstatin (74-98) Proteins 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 238000002371 ultraviolet--visible spectrum Methods 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
- 238000003260 vortexing Methods 0.000 description 1
- 239000001018 xanthene dye Substances 0.000 description 1
- 150000003732 xanthenes Chemical class 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000002132 β-lactam antibiotic Substances 0.000 description 1
- 229940124586 β-lactam antibiotics Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C217/00—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
- C07C217/02—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
- C07C217/04—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
- C07C217/06—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted
- C07C217/08—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted the oxygen atom of the etherified hydroxy group being further bound to an acyclic carbon atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C271/00—Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
- C07C271/06—Esters of carbamic acids
- C07C271/08—Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
- C07C271/10—Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
- C07C271/16—Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/02—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
- C07D209/44—Iso-indoles; Hydrogenated iso-indoles
- C07D209/48—Iso-indoles; Hydrogenated iso-indoles with oxygen atoms in positions 1 and 3, e.g. phthalimide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D233/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
- C07D233/54—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
- C07D233/64—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms, e.g. histidine
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D311/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
- C07D311/02—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D311/78—Ring systems having three or more relevant rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D311/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
- C07D311/02—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D311/78—Ring systems having three or more relevant rings
- C07D311/80—Dibenzopyrans; Hydrogenated dibenzopyrans
- C07D311/82—Xanthenes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/06—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D493/00—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
- C07D493/02—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
- C07D493/10—Spiro-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D495/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
- C07D495/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
- C07D495/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F5/00—Compounds containing elements of Groups 3 or 13 of the Periodic Table
- C07F5/02—Boron compounds
- C07F5/022—Boron compounds without C-boron linkages
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/78—Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
- C12N9/86—Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in cyclic amides, e.g. penicillinase (3.5.2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/34—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y308/00—Hydrolases acting on halide bonds (3.8)
- C12Y308/01—Hydrolases acting on halide bonds (3.8) in C-halide substances (3.8.1)
- C12Y308/01005—Haloalkane dehalogenase (3.8.1.5)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/58—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S436/00—Chemistry: analytical and immunological testing
- Y10S436/80—Fluorescent dyes, e.g. rhodamine
Definitions
- This invention relates to the field of biochemical assays and reagents. More specifically, this invention relates to mutant proteins covalently linked (tethered) to one or more functional groups and to methods for their use.
- Labels e.g., those that are covalently linked to a molecule of interest, permit the ready detection of that molecule in a complex mixture.
- the label may be one that is added by chemical synthesis in vitro or attached in vivo, e.g., via recombinant techniques. For instance, the attachment of fluorescent or other labels onto proteins has traditionally been accomplished by in vitro chemical modification after protein purification (Hermanson, 1996).
- green fluorescent protein from the jellyfish Aequorea victoria can be genetically fused with many host proteins to produce fluorescent chimeras in situ (Tsien, 1998; Chalfie et al., 1998).
- GFP-based indicators are currently employed in a variety of assays, e.g., measuring pH (Kneen et al., 1998; Llopis et al., 1998; Miesenb ⁇ ck et al, 1998), Ca 2+ (Miyawaki et al., 1997; Rosomer et al., 1997), and membrane potential (Siegel et al., 1997)
- the fluorescence of intrinsically labeled proteins such as GFP is limited by the properties of protein structure, e.g., a limited range of fluorescent colors and relatively low intrinsic brightness (Cubitt et al., 1995; Orm ⁇ et al., 1996).
- Griffen et al. synthesized a tight-binding pair of molecular components: a small receptor domain composed of as few as six natural amino acids and a small ( ⁇ 700 dalton), synthetic ligand that could be linked to various spectroscopic probes or crosslinks.
- the receptor domain included four cysteines at the i, i + 1, i + 4, and i + 5 positions of an ⁇ helix and the ligand was 4',5'-bis(l,3,2-dithioarsolan-2- yl)fluorescein (FLASH). Griffen et al.
- the ligand had relatively few binding sites in nontransfected mammalian cells, was membrane-permeant and was nonfluorescent until it bound with high affinity and specificity to a tetracysteine domain in a recombinant protein, resulting in cells being fluorescently labeled ("FLASH" labeled) with a nanomolar or lower dissociation constant.
- FLASH fluorescently labeled
- Stroffekova et al. disclose that FLASH-EDT 2 binds non-specifically to endogenous cysteine-rich proteins.
- labeling proteins by FLASH is limited by the range of fluorophores that may be used.
- Receptor-mediated targeting methods use genetically encoded targeting sequences to localize fluorophores to virtually any cellular site, provided that the targeted protein is able to fold properly.
- cDNA transfection was used to target a single-chain antibody (sFv) to a specified site in a cell.
- sFv single-chain antibody
- conjugates of a hapten (4- ethoxymethylene-2-phenyl-2-oxazolin-5-one, phOx) and a fluorescent probe e.g., BODIPY FI, tetramethylrhodamine, and fluorescein
- a fluorescent probe e.g., BODIPY FI, tetramethylrhodamine, and fluorescein
- the invention provides methods, compositions and kits for tethering (linking), e.g., via a covalent or otherwise stable bond, one or more functional groups to a protein of the invention or to a fusion protein (chimera) which includes a protein of the invention.
- a protein of the invention is structurally related to a wild-type (native) hydrolase but comprises at least one amino acid substitution relative to the corresponding wild-type hydrolase and binds a substrate of the corresponding wild-type hydrolase but lacks or has reduced catalytic activity relative to the corresponding wild-type hydrolase (which mutant protein is referred to herein as a mutant hydrolase).
- tethering occurs, for instance, in solution or suspension, in a cell, on a solid support or at solution/surface interfaces, by employing a substrate for a hydrolase which includes a reactive group and which has been modified to include one or more functional groups.
- a substrate includes a substrate having a reactive group and optionally one or more functional groups.
- a substrate which includes one or more functional groups is generally referred to herein as a substrate of the invention.
- a "functional group” is a molecule which is detectable or is capable of detection (e.g., a chromophore, fluorophore or luminophore), or can be bound or attached to a second molecule (e.g., biotin, hapten, or a cross-linking group) or includes one or more amino acids, e.g., a peptide or polypeptide including an antibody or receptor, one or more nucleotides, lipids including lipid bilayers, a solid support, e.g., a sedimental particle, and the like.
- a functional group may have more than one property such as being capable of detection and being bound to another molecule.
- a "reactive group” is the minimum number of atoms in a substrate which are specifically recognized by a particular wild-type or mutant hydrolase of the invention.
- the interaction of a reactive group in a substrate and a wild-type hydrolase results in a product and the regeneration of the wild-type hydrolase.
- a substrate e.g., a substrate of the invention, may also optionally include a linker, e.g., a cleavable linker.
- a substrate useful in the invention is one which is specifically bound by a mutant hydrolase, and preferably results in a bond formed with an amino acid, e.g., the reactive residue, of the mutant hydrolase which bond is more stable than the bond formed between the substrate and the corresponding amino acid of the wild-type hydrolase. While the mutant hydrolase specifically binds substrates which may be specifically bound by the corresponding wild-type hydrolase, no product or substantially less product, e.g., 2-, 10-, 100-, or 1000-fold less, is formed from the interaction between the mutant hydrolase and the substrate under conditions which result in product formation by a reaction between the corresponding wild-type hydrolase and substrate.
- the lack of, or reduced amounts of, product formation by the mutant hydrolase is due to at least one substitution in the mutant hydrolase, which substitution results in the mutant hydrolase forming a bond with the substrate which is more stable than the bond formed between the corresponding wild-type hydrolase and the substrate.
- the bond formed between a mutant hydrolase and a substrate of the invention has a half-life (i.e., fc / -) that is at least 2-fold, and more preferably at least 4- or even 10-fold, and up to 100-, 1000- or 10,000-fold, greater than the t /2 of the bond formed between a corresponding wild-type hydrolase and the substrate under conditions which result in product formation by the corresponding wild-type hydrolase.
- the bond formed between the mutant hydrolase and the substrate has a t / . of at least 30 minutes and preferably at least 4 hours, and up to at least 10 hours, and is resistant to disruption by washing, protein denaturants, and/or high temperatures, e.g., the bond is stable to boiling in SDS.
- the substrate is a substrate for a dehalogenase, e.g., a haloalkane dehalogenase or a dehalogenase that cleaves carbon-halogen bonds in an aliphatic or aromatic halogenated substrate, such as a substrate for Rhodococcus, Staphylococcus, Pseudomonas, Burkholderia, Agrobacterium or Xanthobacter dehalogenase, or a substrate for a serine beta-lactamase.
- a substrate of the invention optionally includes a linker which physically separates one or more functional groups from the reactive group in the substrate.
- a substrate of the invention can include a linker of sufficient length and structure so that the one or more functional groups of the substrate of the invention do not disturb the 3-D structure of the hydrolase (wild-type or mutant).
- a substrate of the invention for a dehalogenase includes a reactive group such as (CH 2 ) 2-3 X where X is a halide and a functional group such as tetramethylrhodamine (TAMRA), e.g., TAMRA- C 14 H 24 O 4 -Cl.
- TAMRA tetramethylrhodamine
- a linker is preferably 12 to 30 atoms in length.
- the linker may not always be present in a substrate of the invention, however, in some embodiments, the physical separation of the reactive group and the functional group may be needed so that the reactive group can interact with the reactive residue in the mutant hydrolase to form a covalent bond.
- the linker does not substantially alter, e.g., impair, the specificity or reactivity of a substrate having the linker with the wild-type or mutant hydrolase relative to the specificity or reactivity of a corresponding substrate which lacks the linker with the wild-type or mutant hydrolase.
- the presence of the linker preferably does not substantially alter, e.g., impair, one or more properties, e.g., the function, of the functional group.
- the invention provides a compound of formula (I): R-linker-A-X, wherein R is one or more functional groups, wherein the linker is a multiatom straight or branched chain including C, N, S, or O, wherein A-X is a substrate for a dehalogenase, and wherein X is a halogen.
- R is one or more functional groups
- the linker is a multiatom straight or branched chain including C, N, S, or O
- A-X is a substrate for a dehalogenase
- X is a halogen.
- an alkylhalide is covalently attached to a linker, L, which is a group or groups that covalently attach one or more functional groups to form a substrate for a dehalogenase.
- DhaA.H272F a mutant dehalogenase, DhaA.H272F
- DhaA wliich included 5-(and 6-) carboxy fluorescein (FAM), e.g., FAM- C 14 H 24 O 4 -CI, TAMRA, e.g., TAMRA-C 14 H 24 O 4 -Cl, and biotin, e.g., biotin- C 18 H 32 O 4 -Cl, and there was no significant quenching effect of this binding on FAM or TAMRA fluorescence or on biotin binding to streptavidin.
- FAM carboxy fluorescein
- the substrate is R-(CH 2 ) 2 O(CH 2 ) 2 O(CH 2 ) 2 O(CH 2 ) 6 Cl, wherein R is a functional group.
- a functional group may be reacted with a molecule such as NH(CH 2 ) 2 O(CH 2 ) 2 O(CH 2 ) 2 O(CH 2 ) 6 Cl.
- substrates of the invention are permeable to the plasma membranes of cells.
- the plasma membranes of prokaryotic (E. coli) and eukaryotic (CHO-K1) cells were permeable to TAMRA-C 14 H 24 O 4 -Cl and biotin-C 18 H 32 O 4 -Cl and, these substrates were rapidly and efficiently loaded into and washed out of cells in the absence of a mutant hydrolase. In the presence of a mutant hydrolase, at least a portion of the substrate was prevented from being washed out of the cells.
- the bound portion of the substrate can serve as a marker or as a means to capture the mutant hydrolase or a fusion thereof.
- the invention further provides methods for preparing a substrate for a hydrolase which substrate is modified to include one or more functional groups.
- exemplary functional groups for use in the invention include, but are not limited to, an amino acid, protein, e.g., enzyme, antibody or other immunogenic protein, a radionuclide, a nucleic acid molecule, a drug, a lipid, biotin, avidin, streptavidin, a magnetic bead, a solid support, an electron opaque molecule, chromophore, MRI contrast agent, a dye, e.g., a xanthene dye, a calcium sensitive dye, e.g., l-[2-amino-5-(2,7-dichloro-6-hydroxy-3-oxy-9-xanthenyl)- phenoxy]-2-(2'-amino-5'-methylphenoxy)ethane-N,N,N',N'-tetraacetic acid (Ffuo-3), a sodium sensitive dye,
- the invention also includes a mutant hydrolase which comprises at least one amino acid substitution relative to a corresponding wild-type hydrolase, which substitution(s) renders the mutant hydrolase capable of forming a bond, e.g., a covalent bond with a substrate for the corresponding hydrolase, e.g., a substrate of the invention, which is more stable than the bond formed between a corresponding wild-type hydrolase and the substrate.
- a mutant hydrolase which comprises at least one amino acid substitution relative to a corresponding wild-type hydrolase, which substitution(s) renders the mutant hydrolase capable of forming a bond, e.g., a covalent bond with a substrate for the corresponding hydrolase, e.g., a substrate of the invention, which is more stable than the bond formed between a corresponding wild-type hydrolase and the substrate.
- the mutant hydrolase of the invention comprises at least one amino acid substitution in a residue which, in the wild-type hydrolase, is associated with activating a water molecule, e.g., a residue in a catalytic triad or an auxiliary residue, wherein the activated water molecule cleaves the bond formed between a catalytic residue in the wild-type hydrolase and a substrate of the hydrolase.
- a water molecule e.g., a residue in a catalytic triad or an auxiliary residue
- an "auxiliary residue” is a residue which alters the activity of another residue, e.g., it enhances the activity of a residue that activates a water molecule.
- Residues which activate water within the scope of the invention include but are not limited to those involved in acid-base catalysis, for instance, histidine, aspartic acid and glutamic acid.
- the mutant hydrolase of the invention comprises at least one amino acid substitution in a residue which, in the wild-type hydrolase, forms an ester intermediate by nucleophilic attack of a substrate for the hydrolase.
- wild-type dehalogenase DhaA cleaves carbon-halogen bonds in halogenated hydrocarbons (HaloCs-Halo o).
- the catalytic center of DhaA is a classic catalytic triad including a nucleophile, an acid and a histidine residue.
- the amino acids in the triad are located deep inside the catalytic pocket of DhaA (about 10 A long and about 20 A 2 in cross section).
- the halogen atom in a halogenated substrate for DhaA for instance, the chlorine atom of a Cl- alkane substrate, is positioned in close proximity to the catalytic center of DhaA.
- DhaA binds the substrate, likely forms an ES complex, and an ester intermediate is formed by nucleophilic attack of the substrate by AsplO ⁇ (the numbering is based on the protein sequence of DhaA) of DhaA ( Figure 1). His272 of DhaA then activates water and the activated water hydrolyzes the intermediate, releasing product from the catalytic center.
- mutant DhaAs e.g., a DhaA.H272F mutant, which likely retains the 3-D structure based on a computer modeling study and basic physico-chemical characteristics of wild- type DhaA (DhaA.WT), were not capable of hydrolyzing one or more substrates of the wild-type enzyme, e.g., for Cl-alkanes, releasing the corresponding alcohol released by the wild-type enzyme.
- DhaA.WT basic physico-chemical characteristics of wild- type DhaA
- mutant serine beta-lactamases e.g., a blaZ.E166D mutant, a blaZ.N170Q mutant and a blaZ.E166D:N170Q mutant, were not capable of hydrolyzing one or more substrates of a wild-type serine beta-lactamase.
- a mutant hydrolase is a mutant dehalogenase comprising at least one amino acid substitution in a residue which, in the wild-type dehalogenase, is associated with activating a water molecule, e.g., a residue in a catalytic triad or an auxiliary residue, wherein the activated water molecule cleaves the bond formed between a catalytic residue in the wild-type dehalogenase and a substrate of the dehalogenase.
- at least one substitution is in a residue corresponding to residue 272 in DhaA from Rhodococcus rhodochrous.
- a "corresponding residue” is a residue which has the same activity (function) in one wild-type protein relative to a reference wild-type protein and optionally is in the same relative position when the primary sequences of the two proteins are aligned.
- a residue which forms part of a catalytic triad and activates a water molecule in one enzyme may be residue 272 in that enzyme, which residue 272 corresponds to residue 73 in another enzyme, wherein residue 73 forms part of a catalytic triad and activates a water molecule.
- a mutant dehalogenase of the invention has a phenylalanine residue at a position corresponding to residue 272 in DhaA from Rhodococcus rhodochrous.
- a mutant hydrolase is a mutant dehalogenase comprising at least one amino acid substitution in a residue corresponding to residue 106 in DhaA from Rhodococcus rhodochrous.
- a mutant dehalogenase of the invention has a cysteine or a glutamate residue at a position corresponding to residue 106 in DhaA from Rhodococcus rhodochrous.
- the mutant hydrolase is a mutant dehalogenase comprising at least two amino acid substitutions, one in a residue corresponding to residue 106 and one in a residue corresponding to residue 272 in DhaA from Rhodococcus rhodochrous.
- the mutant hydrolase is a mutant serine beta-lactamase comprising at least one amino acid substitution in a residue corresponding to residue 166 or residue 170 in a serine beta-lactamase of Staphylococcus aureus PCI.
- the mutant hydrolase may be a fusion protein, e.g., a fusion protein expressed from a recombinant DNA which encodes the mutant hydrolase and at least one protein of interest or a fusion protein formed by chemical synthesis.
- the fusion protein may comprise a mutant hydrolase and an enzyme of interest, e.g., luciferase, RNasin or RNase, and/or a channel protein, a receptor, a membrane protein, a cytosolic protein, a nuclear protein, a structural protein, a phosphoprotein, a kinase, a signaling protein, a metabolic protein, a mitochondrial protein, a receptor associated protein, a fluorescent protein, an enzyme substrate, a transcription factor, a transporter protein and/or a targeting sequence, e.g., a myristilation sequence, a mitochondrial localization sequence, or a nuclear localization sequence, that directs the mutant hydrolase, for example, a fusion protein, to a particular location.
- the protein of interest may be fused to the N-terminus or the C-terminus of the mutant hydrolase.
- the fusion protein comprises a protein of interest at the N-terminus, and another protein, e.g., a different protein, at the C-terminus, of the mutant hydrolase.
- the protein of interest may be a fluorescent protein or an antibody.
- the proteins in the fusion are separated by a connector sequence, e.g., preferably one having at least 2 amino acid residues, such as one having 13 to 17 amino acid residues. The presence of a connector sequence in a fusion protein of the invention does not substantially alter the function of either protein in the fusion relative to the function of each individual protein.
- the presence of a connector sequence does not substantially alter the stability of the bond formed between the mutant dehalogenase and a substrate therefor or the activity of the luciferase.
- a connector sequence is a sequence recognized by an enzyme, e.g., a cleavable sequence.
- the connector sequence may be one recognized by a caspase, e.g., DEVD (SEQ ID NO:64), or is a photocleavable sequence.
- the fusion protein may comprise a protein of interest at the N-terminus and, preferably, a different protein of interest at the C-terminus of the mutant hydrolase.
- fusions of a mutant DhaA with GST (at the N-terminus), a Flag sequence (at the C-terminus) and Renilla luciferase (at the N-terminus or C-terminus) had no detectable effect on bond formation between the mutant DhaA and a substrate for wild-type DhaA which includes a functional group.
- a fusion of a Flag sequence and DhaA.H272F could be attached to a solid support via a streptavidin-biotin- C 18 H 32 O 4 -DhaA.H272F bridge (an SFlag-ELISA experiment).
- a fusion of Renilla luciferase (R.Luc) and DhaA.H272F could be attached to MagnesilTM particles coated with a substrate for wild-type DhaA which includes a functional group.
- the attached fusion comprising R.Luc was shown to be enzymatically active.
- Exemplary proteins of interest include, but are not limited to, an immunogenic protein, fluorescent protein, selectable marker protein, membrane protein, cytosolic protein, nuclear protein, structural protein, enzyme, e.g., RNase, enzyme substrate, receptor protein, transporter protein, transcription factor, channel protein, e.g., ion channel protein, phospho-protein, kinase, signaling protein, metabolic protein, mitochondrial protein, receptor associated protein, nucleic acid binding protein, extracellular matrix protein, secreted protein, receptor ligand, serum protein, or a protein with reactive cysteines.
- an immunogenic protein e.g., fluorescent protein, selectable marker protein, membrane protein, cytosolic protein, nuclear protein, structural protein, enzyme, e.g., RNase, enzyme substrate, receptor protein, transporter protein, transcription factor, channel protein, e.g., ion channel protein, phospho-protein, kinase, signaling protein, metabolic protein, mitochondrial protein, receptor associated protein, nucleic acid binding protein, extracellular matrix protein, secret
- the invention also includes compositions and kits comprising a substrate for a hydrolase which includes a linker, a substrate for a hydrolase which includes one or more functional groups and optionally a linker, a linker which includes one or more functional groups, a substrate for a hydrolase which lacks one or more functional groups and optionally includes a linker, a linker, or a mutant hydrolase, or any combination thereof.
- the invention includes a solid support comprising a substrate of the invention, a kit comprising a substrate of the invention, a kit comprising a vector encoding a dehalogenase of the invention, or a kit comprising a vector encoding a serine beta-lactamase of the invention.
- an isolated nucleic acid molecule comprising a nucleic acid sequence encoding a hydrolase.
- the isolated nucleic acid molecule comprises a nucleic acid sequence which is optimized for expression in at least one selected host.
- Optimized sequences include sequences which are codon optimized, i.e., codons wliich are employed more frequently in one organism relative to another organism, e.g., a distantly related organism, as well as modifications to add or modify Kozak sequences and/or introns, and/or to remove undesirable sequences, for instance, potential transcription factor binding sites.
- the polynucleotide includes a nucleic acid sequence encoding a dehalogenase, which nucleic acid sequence is optimized for expression is a selected host cell.
- the optimized polynucleotide no longer hybridizes to the corresponding non- optimized sequence, e.g., does not hybridize to the non-optimized sequence under medium or high stringency conditions.
- the polynucleotide has less than 90%, e.g., less than 80%, nucleic acid sequence identity to the corresponding non-optimized sequence and optionally encodes a polypeptide having at least 80%, e.g., at least 85%, 90% or more, amino acid sequence identity with the polypeptide encoded by the non-optimized sequence.
- Constructs e.g., expression cassettes, and vectors comprising the isolated nucleic acid molecule, as well as kits comprising the isolated nucleic acid molecule, construct or vector are also provided.
- the method comprises introducing to a host cell a recombinant nucleic acid molecule encoding a mutant hydrolase of the invention so as to express the mutant hydrolase.
- the mutant hydrolase may be isolated from the cell.
- the mutant hydrolase may be expressed transiently or stably, constitutively or under tissue-specific or drug-regulated promoters, and the like.
- an isolated host cell comprising a recombinant nucleic acid molecule encoding a mutant hydrolase of the invention.
- the invention provides a method to detect or determine the presence or amount of a mutant hydrolase.
- the method includes contacting a mutant hydrolase with a hydrolase substrate which comprises one or more functional groups.
- the mutant hydrolase comprises at least one amino acid substitution relative to a corresponding wild-type hydrolase, wherein the at least one amino acid substitution results in the mutant hydrolase forming a bond with the substrate which is more stable than the bond formed between the corresponding wild-type hydrolase and the substrate, and wherein the at least one amino acid substitution in the mutant hydrolase is a substitution at an amino acid residue in the corresponding wild-type hydrolase that is associated with activating a water molecule which cleaves the bond formed between the corresponding wild-type hydrolase and the substrate or at an amino acid residue in the corresponding wild-type hydrolase that forms an ester intermediate with the substrate.
- the presence or amount of the functional group is detected or determined, thereby detecting or determining the presence or amount of the mutant hydrolase.
- the mutant hydrolase is in or on the surface of a cell. In another embodiment, the mutant hydrolase is in a cell lysate.
- a mutant hydrolase and a substrate for a corresponding hydrolase which includes one or more functional groups e.g., to isolate a molecule or to detect or determine the presence or amount of, location, e.g., intracellular, subcellular or extracellular location, or movement of certain molecules in cells.
- a method to isolate a molecule of interest in a sample includes contacting a sample with a fusion protein comprising a mutant hydrolase and a protein which binds a molecule of interest with a hydrolase substrate which comprises one or more functional groups.
- the mutant hydrolase comprises at least one amino acid substitution relative to a corresponding wild-type hydrolase, wherein the at least one amino acid substitution results in the mutant hydrolase forming a bond with the substrate wliich is more stable than the bond formed between the corresponding wild-type hydrolase and the substrate, and wherein the at least one amino acid substitution in the mutant hydrolase is a substitution at an amino acid residue in the corresponding wild-type hydrolase that is associated with activating a water molecule which cleaves the bond formed between the corresponding wild-type hydrolase and the substrate or at an amino acid residue in the corresponding wild-type hydrolase that forms an ester intermediate with the substrate.
- at least one functional group is a solid support or a molecule which binds to a solid support.
- the sample contains intact cells while in another embodiment, the sample is a cell lysate or subcellular fraction. Then the molecule of interest is isolated.
- the invention includes method to isolate a protein of interest.
- the method includes contacting a fusion protein comprising a mutant hydrolase and a protein of interest with a hydrolase substrate which comprises at least one functional group.
- the mutant hydrolase comprises at least one amino acid substitution relative to a corresponding wild-type hydrolase, wherein the at least one amino acid substitution results in the mutant hydrolase forming a bond with the substrate which is more stable than the bond formed between the wild- type hydrolase and the substrate, and wherein the at least one amino acid substitution in the mutant hydrolase is a substitution at an amino acid residue in the wild-type hydrolase that is associated with activating a water molecule which cleaves a bond formed between the wild-type hydrolase and the substrate or at an amino acid residue in the wild-type hydrolase that forms an ester intermediate with the substrate.
- at least one functional group is a solid support or a molecule which binds to a solid support. Then the protein of interest is isolated.
- the invention includes a method to identify an agent that alters the interaction of a protein of interest with a molecule suspected of interacting with the protein of interest.
- the method includes contacting at least one agent with the molecule suspected of interacting with the protein of interest, a fusion protein comprising mutant hydrolase and the protein of interest, and a hydrolase substrate which comprises one or more functional groups.
- the mutant hydrolase comprises at least one amino acid substitution relative to a corresponding wild-type hydrolase, wherein the at least one amino acid substitution results in the mutant hydrolase forming a bond with the substrate which is more stable than the bond formed between the corresponding wild-type hydrolase and the substrate, and wherein the at least one amino acid substitution in the mutant hydrolase is a substitution at an amino acid residue in the corresponding wild-type hydrolase that is associated with activating a water molecule wliich cleaves a bond formed between the corresponding wild-type hydrolase and the substrate at an amino acid residue in the wild-type hydrolase that forms an ester intermediate with the substrate.
- at least one functional group is a solid support or a molecule which binds to a solid support. Then it is determined whether the agent alters the interaction between the protein of interest and the molecule suspected of interacting with the protein of interest.
- a substrate of the invention bound to a solid support or a mutant hydrolase bound to a solid support may be used to generate protein arrays, cell arrays, vesicle/organelle arrays and cell membrane arrays.
- the invention thus provides methods to monitor the expression, location and/or movement (trafficking) of proteins in a cell as well as to monitor changes in microenvironments within a cell.
- the use of a mutant hydrolase and a substrate of the invention permits functional analysis of proteins, e.g., ion channels.
- the use of two pairs of a mutant hydrolase/substrate permits multiplexing, simultaneous detection, and FRET- or BRET-based assays.
- mutant dehalogenases with substitutions at different residues of a catalytic triad may each preferentially bind certain substrates of the invention but not others or a mutant dehalogenase and a mutant beta-lactamase may be employed with their respective substrates, thus permitting multiplexing.
- Other applications include capturing the stable complex which results from contacting the mutant hydrolase with a corresponding substrate of the invention, on a solid substrate for analytical or industrial purposes (e.g., to study kinetic parameters of the tethered enzyme, to generate enzyme chains/arrays, to metabolize industrial components, and the like), to detect protein-protein interactions, to determine the effect of different compounds/drugs on an interaction between a fusion protein comprising a protein of interest and a mutant hydrolase with other molecules, to isolate or purify molecules which bind to a protein of interest fused to the mutant hydrolase, or to isolate or purify cells, organelles or fragments thereof.
- a protein of interest may be fused to a mutant hydrolase and then linked to a solid support via the specific interaction of a functional group which is a ligand for an acceptor group and is present in a substrate of the invention, with an acceptor group present on the solid support.
- a substrate may be contacted with the fusion protein prior to contact with the solid support, contacted with the solid support prior to contact with the fusion protein, or simultaneously contacted with the fusion protein and the solid support.
- Such a system permits the resulting complex to be employed to detect or isolate molecules which bind to the protein of interest.
- the binding molecule may be a protein, e.g., a fusion of the binding protein and a functional group, e.g., GFP, luciferase, an antibody, e.g., one conjugated to horseradish peroxidase (HRP), alkaline phosphatase (AP) or a fluorophore.
- a functional group e.g., GFP, luciferase
- an antibody e.g., one conjugated to horseradish peroxidase (HRP), alkaline phosphatase (AP) or a fluorophore.
- the mutant hydrolase may be expressed on the outside surface of cells (e.g., via a fusion with a plasma membrane protein).
- the mutant hydrolase is expressed on the cytosolic surface of the organelle of interest.
- the mutant hydrolase is fused with an extracellular matrix component or an outer membrane protein and tethered to a three-dimensional cell culture or a platform for tissue engineering.
- primary neurons or embryonic stem cells may be grown on the platform to form a feeder layer.
- Other applications include detecting or labeling cells.
- the use of a mutant hydrolase and a corresponding substrate of the invention permits the detection of cells, for instance, to detect cell migration in vitro or in vivo after implantation or injection into animals (e.g., angiogenesis/chemotaxis assays, migration of implanted neurons, normal, malignant, or recombinantly modified cells implanted/injected into animals, and the like), and live cell imaging followed by immunocytochemistry.
- the invention provides a method to label newly synthesized proteins. For example, cells comprising a vector which expresses a mutant hydrolase of the invention or a fusion thereof, are contacted with a substrate for the hydrolase which lacks a functional group.
- Cells are then contacted with an agent, e.g., an inducer of gene expression, and a substrate for the hydrolase which contains one or more functional groups.
- an agent e.g., an inducer of gene expression
- a substrate for the hydrolase which contains one or more functional groups e.g., an inducer of gene expression
- the presence, amount or location of the mutant hydrolase or fusion thereof is then detected or determined.
- the presence, amount or location of the mutant hydrolase or fusion thereof is due to newly synthesized mutant hydrolase or a fusion thereof.
- cells comprising a vector wliich expresses a mutant hydrolase of the invention or a fusion thereof, are contacted with a substrate for the hydrolase having a functional group, e.g., a green fluorophore, then contacted with an agent and a substrate havinga different functional group, e.g., a red fluorophore.
- the mutant hydrolase is fused to a membrane localization signal and so can be
- the invention provides a method to label a cell.
- the method includes contacting a cell comprising a mutant hydrolase with a hydrolase substrate which comprises one or more functional groups.
- the mutant hydrolase comprises at least one amino acid substitution relative to a corresponding wild-type hydrolase, wherein the at least one amino acid substitution results in the mutant hydrolase forming a bond with the substrate which is more stable than the bond formed between the corresponding wild-type hydrolase and the substrate, and wherein the at least one amino acid substitution in the mutant hydrolase is a substitution at an amino acid residue in the corresponding wild-type hydrolase that is associated with activating a water molecule wliich cleaves a bond formed between the corresponding wild-type hydrolase and the substrate or at an amino acid residue in the corresponding wild-type hydrolase that forms an ester intermediate with the substrate.
- Cells expressing selectable marker proteins are used to stably transform cells with foreign DNA. It may be desirable to observe which cells contain selectable marker proteins as well as fluorescently labeled molecules. For instance, it may be preferable to label the selectable marker protein with a fluorescent molecule that is added exogenously to living cells. By this method, the selectable marker protein becomes visible when only when needed by addition of the fluorophore, and the fluorescence will subsequently be lost when selectable marker proteins are naturally regenerated through cellular metabolism.
- the invention provides a method for labeling a cell which expresses a selectable marker protein.
- the method includes providing a cell comprising an expression cassette comprising a nucleic acid sequence encoding a fusion protein.
- the fusion protein comprises a selectable marker protein, e.g., one which confers resistance to at least one antibiotic, and a second protein that is capable of stably and optionally irreversibly binding a substrate or a portion thereof which includes an optically detectable molecule.
- the protein may be an alkyl transferase which irreversibly transfers an alkyl group and an optically detectable molecule from a substrate to itself, thereby labeling the alkyl transferase, e.g., an alkyl transferase such as O -alkylguanine DNA alkyltransferase.
- an alkyl transferase such as O -alkylguanine DNA alkyltransferase.
- Exemplary proteins useful in this embodiment of the invention include, but are not limited to, alkyl transferases, peptidyl glycine- alpha-amidating monoxygenases, type I topoisomerases, hydrolases, e.g., serine and epoxide hydrolases as well as the mutant hydrolases described herein, aminotransferases, cytochrome P450 monooxygenases, acetyl transferases, decarboxylases, oxidases, e.g., monoamine oxidases, reductases, e.g., ribonucleotide reductase, synthetases, e.g., cyclic ADP ribose synthetase or thymidylate synthetase, dehydrogenases, e.g., aldehyde dehydrogenase, synthases, e.g., nitric oxide synthase (NOS),
- a stable bond i.e., one which is formed between a substrate and a wild-type or mutant enzyme, has a t 2 of at least 30 minutes and preferably at least 4 hours, and up to at least 10 hours, and is resistant to disruption by washing, protein denaturants, and/or high temperatures, e.g., the bond is stable to boiling in SDS.
- the cell which expresses the fusion protein is contacted with the substrate so as to label the cell.
- the cell is fixed prior to contact with the substrate.
- the substrate and fixative are contacted with the cell at the same time.
- the fixative is added to the cell after the cell is contacted with the substrate.
- the fusion protein forms an ester bond with the substrate. In another embodiment, the fusion protein forms a thioester bond with the substrate. Also provided is a fusion gene encoding the fusion protein, and a cell which expresses the fusion protein.
- a preservative such as paraformaldehyde, acetone or methanol which generally maintains most features of cellular structure.
- fixative such as paraformaldehyde, acetone or methanol which generally maintains most features of cellular structure.
- Such fixed cells are then often analyzed by adding fluorescent stains or fluorescently labeled antibodies to reveal specific structures within the cells.
- Another method to fluorescently label cells is to express a fluorescent protein, e.g., GFP, in cells prior to fixation.
- GFP fluorescent protein
- the invention provides a method for labeling a cell with a functional group, e.g., fluorophore.
- the method includes providing a cell which expresses a mutant hydrolase of the mvention or a fusion thereof, and contacting the cell with a hydrolase substrate which includes at least one functional group.
- the cell is fixed prior to contact with the substrate.
- the substrate and fixative are contacted with the cell at the same time.
- the fixative is added to the cell after the cell is contacted with the substrate. Then the presence or location of the mutant hydrolase, or fusion thereof, in the cell is detected or determined.
- the mutant hydrolase forms an ester bond with the substrate, while in another embodiment, the mutant hydrolase forms a thioester bond with the substrate.
- the invention also provides processes and intermediates disclosed herein that are useful for preparing compounds, compositions, nucleic acids, proteins, or other materials of the invention.
- Figure 1 is a schematic of a reaction in the catalytic triad of Rhodococcus rhodochrous dehalogenase with an alkylhalide substrate.
- Figure 2 shows a three-dimensional model of a wild-type DhaA
- Rhodococcus rhodochrous dehalogenase and four mutant DhaAs (H283Q, G, A or F).
- a cyan ribbon is a 3-D model of the DhaA.WT based on the crystal structure of this protein (Newman et al., 1999) (panel A).
- the purple ribbon is a 3-D model of the H272Q, H272G and H272A mutants (panel A), or a 3-D model of the H272F mutant (panel B).
- Three-dimensional models were generated by calculating a Molecular Probability Density Function followed by several optimization steps including Restrained Stimulated Annealing Molecular Dynamics (MD) scheme. 3-D modeling was done on Silicon Graphics computer-station using software Insightll (USA).
- Figure 3 shows the purification of wild-type and mutant DhaA proteins.
- GST-DhaA.WT-Flag (odd numbered lanes) and GST-DhaA.H272F-Flag (even numbered lanes) fusion proteins were found to be soluble and efficiently purified on GSS-Sepharose 4FF (lanes 3 and 4-crude E. coli supernatant; lanes 5 and 6- washes; lanes 7 through 10- ⁇ urified proteins).
- Treatment of the fusion proteins with Factor Xa led to the formation of two proteins, GST and DhaA (WT or mutant; lanes 11 and 12, respectively).
- GST was efficiently removed on GSS-Sepharose 4FF (WT or mutant; lanes 13 and 14, respectively). All proteins had the predicted molecular weight.
- Figure 4 illustrates the hydrolysis of 1-Cl-butane by wild-type DhaA and mutant DhaAs.
- Figure 5 shows precipitation of DhaA.WT and DhaA.H272F/A/G/ Q mutants with various concentrations of (NH 4 ) 2 SO 4 .
- Panel A lanes 1-4, DhaA.WT; lanes 5-8, DhaA.H272G; and lanes 9- 12, DhaA.H272Q.
- Panel B lanes ⁇ -A, DhaA.WT; lanes 5-8, DhaA.H272F; and lanes 9-12, DhaA.H272A.
- Figure 6 depicts the substrate specificity of wild-type DhaA. Using a phenol red-based assay (Esss), the initial rate of the reaction was determined during the first 60 seconds after enzyme addition by four 15 second readings.
- Figure 7 shows substrates for DhaA which include a functional group (e.g., 5-(and 6-)-carboxyfluorescein (FAM), Anth (anthracene) or biotin) and a linker.
- Figure 8A shows a HPLC separation of products of FAM-C 1 H 24 O 4 -Cl hydrolysis by wild-type DhaA.
- Figure 8B shows a HPLC analysis of product (as a percent of substrate) produced by wild-type DhaA hydrolysis of FAM-C 14 H 2 O -Cl over time.
- Figure 9 shows SDS-PAGE analysis of the binding of wild-type DhaA (lanes 1, 3, and 5 in panel A and lanes 1-8 in panel B) and mutant DhaA (DhaA.H272F); (lanes 2, 4, and 6 in panel A and lanes 9-14 in panel B), to TAMRA-C 14 H 24 O 4 -Cl (lanes 1 and 2 in panel A); ROX-C 14 H 24 O 4 -Cl (lanes 3 and 4 in panel A); FAM-C 14 H 24 O 4 -Cl (lanes 5 and 6 in panel A); or biotin- C 18 H 32 O 4- Cl (panel B).
- the concentration of biotin-C 18 H 32 O 4 -Cl in panel B as: 0 ⁇ M (lanes 1 and 8), 125 ⁇ M (lanes 2 and 9) 25 ⁇ M (lanes 3 and 10), 5 ⁇ M (lanes 4 and 11), 1 ⁇ M (lanes 5 and 12), 0.2 ⁇ M (lanes 6 and 13), and 0.04 ⁇ M (lanes 7 and 14).
- Figure 10 illustrates that pretreatment of a mutant DhaA with a substrate, biotin-C 18 H 3 O 4 -Cl, blocks binding of another substrate.
- Samples 2, 4, 6, 8, and 10 were pretreated with biotin- C 18 H 32 O 4 -Cl.
- Figure 11 shows MALDI-TOF analysis of enzyme substrate complexes. Mass spectra of GST-DhaA.WT or GST-DhaA.H272F incubated with FAM- C H 2 O -Cl.
- Figure 12 illustrates SDS-PAGE analysis of the binding properties of DhaA mutants with substitutions at residue 106, and DhaA mutants with substitutions at residue 106 and residue 272, to TAMRA-C 14 H 2 O 4 -Cl.
- 2 ⁇ g of protein and 25 ⁇ M TAMRA-C 14 H 2 O 4 -Cl in 32 ⁇ l were incubated for one hour at room temperature. 10 ⁇ l of each reaction was loaded per lane.
- the gel was imaged with a 570 nm filter.
- Figure 13 depicts analysis of Renilla luciferase activity in samples having a fusion of luciferase and a mutant DhaA tethered to a solid support (a streptavidin coated plate). Capture of the fusion was accomplished using a substrate of DhaA (i.e., biotin-C 18 H 32 O -Cl). No activity was found in fractions with a fusion of Renilla luciferase and wild-type DhaA.
- DhaA i.e., biotin-C 18 H 32 O -Cl
- Figure 14 shows SDS-PAGE analysis of two-fold serial dilutions of E. coli expressing either wild-type DhaA (DhaA.WT-Flag, lanes 1-4 of each panel) or mutant DhaA.H272F (DhaA.H272F-Flag, lanes 5-7 of each panel) treated with biotin-C 1 sH 32 O 4 -Cl (panel A) or TAMRA-C 12 H 24 ⁇ 4 -Cl (panel B) in vivo. Arrows mark proteins with M r corresponding to M r of DhaA-Flag.
- Figure 15 shows the binding of TAMRA-C 12 H 24 O 4 -Cl to eukaryotic cell proteins in vivo.
- Two-fold serial dilutions of proteins from CHO-K1 cells expressing either DhaA.WT-Flag (lanes 1-4) or DhaA.H272F-Flag (lanes 5-8) were treated with TAMRA-C 12 H 2 O 4 -Cl.
- Figure 16 illustrates the permeability of TAMRA-C 12 H 24 O 4 -Cl to CHO- Kl cells.
- CHO-K1 cells A, bright field image
- TAMRA- C 12 H 28 0 -C1 25 ⁇ M, for 5 minutes at 37°C
- Panel C shows the cells after the washing procedure.
- Figure 17 shows images of cells transfected with GFP-connector- DhaA.WT-Flag or GFP-connector-DhaA.H272F-Flag.
- CHO-K1 cells were transfected with DNA coding GFP-connector-DhaA.WT-Flag (panels A-C) or GFP-connector-DhaA.H272F-Flag (panels D-F) and treated with TAMRA- C 12 H 28 O 4 -Cl.
- Panels A D-bright field
- panels B E-GFP filter set
- panels C F-TAMRA filter set.
- Figure 18 shows Western blot analysis of proteins from cells transfected with GFP-connector-DhaA.WT-Flag (lanes 1-4) or GFP-connector- DhaA.H272F-Flag (lanes 5-8).
- CHO-K1 cells were transfected with either GFP- connector-DhaA.WT-Flag or GFP-connector-DhaA.H272F-Flag and then treated with TAMRA-C 14 H 24 O 4 -Cl (25 ⁇ M) for 0, 5, 15 or 60 minutes, washed with PBS (4 x 1.0 ml), and collected in SDS-sample buffer. The samples were resolved on SDS-PAGE, and analyzed on a fluoroimager.
- Figure 19 illustrates the toxicity of selected substrates (panel A, TAMRA and panel B, ROX) for CHO-K1 cells.
- Figure 20 illustrates a reaction scheme for a serine beta-lactamase.
- the reaction begins with the formation of a precovalent encounter complex (Figure 19A), and moves through a high-energy acylation tetrahedral intermediate (Figure 19B) to form a transiently stable acyl-enzyme intermediate, forming an ester through the catalytic residue Ser70 ( Figure 19C).
- the acyl- enzyme is attacked by hydrolytic water (Figure 19D) to form a high-energy deacylation intermediate (Figure 19E) (Minasov et al., 2002), which collapses to form the hydrolyzed product ( Figure 19F).
- the product is then expelled, regenerating free enzyme.
- Figure 21 shows hydrolysis of FAP by GST-blaZ over time.
- Figure 22 shows the binding of bocellin to fusions of GST and blaZ.E166D, blaZ.N170Q or blaZ.E166D:N170Q.
- Figure 23 shows the binding of CCF2 to fusions of GST and blaZ.E166D, blaZ.N170Q or blaZ.E166D:N170Q.
- Figure 24 provides fluorescence and DIG images of living CHO-K1 cells transfected with a construct encoding GFP-connector-DhaA.H272F-NLS3 and stained with TAMRA-C 14 H 24 O 4 -Cl.
- NLS3 tandem repeat of a nuclear localization sequence from SV40 T antigen.
- Figure 25 shows fluorescence images of living CHO-K1 cells transfected with a construct encoding GFP- ⁇ -arrestin2 (left) and a construct encoding DhaA.H272F- ⁇ -arrestin2 and stained with TAMRA-C 14 H 24 O 4 (right).
- Figure 26 shows an SDS-PAGE analysis of DhaA expression inE. coli.
- the arrow indicates the location of the DhaA protein, -s, lysate before centrifugation;
- Figure 27 shows an immunoblot analysis of DhaA containing lysates.
- Lanes 1, Wild-type DhaA crude lysate; 2, Wild-type DhaA cell-free lysate; 3, DhaA.H272F crude lysate; 4, DhaA.H272F cell-free lysate; 5, vector control crude lysate; 6, vector control cell-free lysate; 7, Molecular weight standards; 8, DhaA.E130Q CI mutant crude lysate; 9, DhaA.E130Q CI mutant cell-free lysate; 10, DhaA.E130L A5 mutant crude lysate; 11, DhaA.E130L A5 mutant cell-free lysate; 12, DhaA.E130A A12 mutant crude lysate; 13, DhaA.E130A A12 mutant cell-free lysate; 14, Molecular weight standards.
- the arrow indicates the location of the DhaA protein.
- Figure 28 provides ffuoroimage analysis of in vitro covalent alkyl- enzyme formation. Lanes: 1, Fluorescent molecular weight standards; 2, DhaA wild-type; 3, DhaA.H272F mutant; 4, DhaA- (vector only control); 5, DhaA.E130Q mutant; 6, DhaA.E130L mutant; 7, DhaA.E130A mutant.
- the arrow indicates the location of the fluorescent enzyme-alkyl covalent intermediate.
- Figure 29 provides fluoroimage analysis of covalent alkyl-enzyme formation in whole cells.
- Lanes 1, Fluorescent molecular weight standards; 2, DhaA wild-type; 3, DhaA.H272F mutant; 4, DhaA- (vector only control); 5, DhaA.E130Q mutant; 6, DhaA.E130L mutant; 7, DhaA.E130A mutant; 8, Fluorescent molecular weight standards.
- the arrow indicates the location of the fluorescent enzyme-alkyl covalent intermediate.
- Figures 30 A-B show Western blot analyses of DhaA-Flag captured on streptavidin (SA) coated beads.
- SA streptavidin
- DhaA.H272F-Flag were treated with (A) or without (B) biotin-C 18 H 32 O 4 -Cl (25 ⁇ M, 0.1% DMSO, 60 minutes, 37°C). Excess biotin-C 18 H 32 O 4 -Cl was washed out, cells were lysed, and 10 ⁇ l of cell lysate was incubated with 5 ⁇ l of SA- coated beads (Pierce) for 60 minutes at room temperature (RT). Cell lysates (lane 1), proteins which were not bound to beads (lane 2), and proteins which were bound to beads (lane 3) were resolved on SDS-PAGE, transferred to nitrocellulose membrane, and probed with anti-Flag antibody (Sigma).
- Figures 30 C-D illustrate analyses of hRXuc-DliaA captured on SA coated beads.
- CHO-K1 cells transiently expressing hR.Luc-connector- DhaA.H272F-Flag were treated with or without biotin-C 18 H 32 O 4 -Cl (25 ⁇ M, 0.1% DMSO, 60 minutes, 37°C).
- Cells were lysed, and 10 ⁇ l of cell lysate was incubated with 5 ⁇ l of SA-coated beads (Pierce) for 60 minutes at room temperature.
- nucleophile is a molecule which donates electrons.
- a "selectable marker protein” encodes an enzymatic activity that confers to a cell the ability to grow in medium lacking what would otherwise be an essential nutrient (e.g., the TRP1 gene in yeast cells) or in a medium with an antibiotic or other drug, i.e., the expression of the gene encoding the selectable marker protein in a cell confers resistance to an antibiotic or drug to that cell relative to a corresponding cell without the gene.
- the marker is said to be a positive selectable marker (e.g., antibiotic resistance genes which confer the ability to grow in the presence of the appropriate antibiotic).
- Selectable markers can also be used to select against host cells containing a particular gene (e.g., the sacB gene wliich, if expressed, kills the bacterial host cells grown in medium containing 5% sucrose); selectable markers used in this manner are referred to as negative selectable markers or counter-selectable markers.
- Common selectable marker gene sequences include those for resistance to antibiotics such as ampicillin, tetracycline, kanamycin, puromycin, bleomycin, streptomycin, hygromycin, neomycin, ZeocinTM, and the like.
- Selectable auxotrophic gene sequences include, for example, hisD, which allows growth in histidine free media in the presence of histidinol.
- Suitable selectable marker genes include a bleomycin-resistance gene, a metallothionein gene, a hygromycin B- phosphotransferase gene, the AURI gene, an adenosine deaminase gene, an aminoglycoside phosphotransferase gene, a dihydrofolate reductase gene, a thymidine kinase gene, a xanthine-guanine phosphoribosyltransferase gene, and the like.
- nucleic acid is a covalently linked sequence of nucleotides in wliich the 3' position of the pentose of one nucleotide is joined by a phosphodiester group to the 5' position of the pentose of the next, and in which the nucleotide residues (bases) are linked in specific sequence, i.e., a linear order of nucleotides.
- a "polynucleotide”, as used herein, is a nucleic acid containing a sequence that is greater than about 100 nucleotides in length.
- oligonucleotide or “primer”, as used herein, is a short polynucleotide or a portion of a polynucleotide.
- the term “oligonucleotide” or “oligo” as used herein is defined as a molecule comprised of 2 or more deoxyribonucleotides or ribonucleotides, preferably more than 3, and usually more than 10, but less than 250, preferably less than 200, deoxyribonucleotides or ribonucleotides.
- the oligonucleotide may be generated in any manner, including chemical synthesis, DNA replication, amplification, e.g., polymerase chain reaction (PCR), reverse transcription (RT), or a combination thereof.
- a “primer” is an oligonucleotide wliich is capable of acting as a point of initiation for nucleic acid synthesis when placed under conditions in which primer extension is initiated.
- a primer is selected to have on its 3' end a region that is substantially complementary to a specific sequence of the target (template).
- a primer must be sufficiently complementary to hybridize with a target for primer elongation to occur.
- a primer sequence need not reflect the exact sequence of the target. For example, a non-complementary nucleotide fragment may be attached to the 5' end of the primer, with the remainder of the primer sequence being substantially complementary to the target.
- Non-complementary bases or longer sequences can be interspersed into the primer provided that the primer sequence has sufficient complementarity with the sequence of the target to hybridize and thereby form a complex for synthesis of the extension product of the primer.
- Primers matching or complementary to a gene sequence may be used in amplification reactions, RT-PCR and the like.
- Nucleic acid molecules are said to have a "5'-terminus” (5' end) and a "3'-terminus” (3' end) because nucleic acid phosphodiester linkages occur to the 5' carbon and 3' carbon of the pentose ring of the substituent mononucleotides.
- the end of a polynucleotide at which a new linkage would be to a 5' carbon is its 5' terminal nucleotide.
- the end of a polynucleotide at which a new linkage would be to a 3' carbon is its 3' terminal nucleotide.
- a terminal nucleotide, as used herein, is the nucleotide at the end position of the 3'- or 5'-terminus.
- DNA molecules are said to have "5' ends” and "3' ends” because mononucleotides are reacted to make oligonucleotides in a manner such that the 5' phosphate of one mononucleotide pentose ring is attached to the 3' oxygen of its neighbor in one direction via a phosphodiester linkage. Therefore, an end of an oligonucleotides referred to as the "5' end” if its 5' phosphate is not linked to the 3' oxygen of a mononucleotide pentose ring and as the "3' end” if its 3' oxygen is not linked to a 5' phosphate of a subsequent mononucleotide pentose ring.
- a nucleic acid sequence even if internal to a larger oligonucleotide or polynucleotide, also may be said to have 5' and 3' ends.
- discrete elements are referred to as being "upstream” or 5' of the "downstream” or 3' elements. This terminology reflects the fact that transcription proceeds in a 5' to 3' fashion along the DNA strand.
- promoter and enhancer elements that direct transcription of a linked gene are generally located 5' or upstream of the coding region.
- enhancer elements can exert their effect even when located 3' of the promoter element and the coding region.
- Transcription termination and polyadenylation signals are located 3' or downstream of the coding region.
- the term "codon” as used herein, is a basic genetic coding unit, consisting of a sequence of three nucleotides that specify a particular amino acid to be incorporation into a polypeptide chain, or a start or stop signal.
- the term "coding region" when used in reference to structural gene refers to the nucleotide sequences that encode the amino acids found in the nascent polypeptide as a result of translation of a mRNA molecule.
- the coding region is bounded on the 5' side by the nucleotide triplet "ATG” which encodes the initiator methionine and on the 3' side by a stop codon (e.g., TAA, TAG, TGA).
- ATG nucleotide triplet
- TGT stop codon
- the coding region is also known to initiate by a nucleotide triplet "TTG”.
- isolated and/or purified refer to in vitro preparation, isolation and/or purification of a nucleic acid molecule, a polypeptide, peptide or protein, so that it is not associated with in vivo substances.
- isolated when used in relation to a nucleic acid, as in “isolated oligonucleotide” or “isolated polynucleotide” refers to a nucleic acid sequence that is identified and separated from at least one contaminant with which it is ordinarily associated in its source. An isolated nucleic acid is present in a form or setting that is different from that in which it is found in nature. In contrast, non-isolated nucleic acids (e.g., DNA and RNA) are found in the state they exist in nature.
- isolated nucleic acid e.g., DNA and RNA
- a given DNA sequence e.g., a gene
- RNA sequences e.g., a specific mRNA sequence encoding a specific protein
- RNA sequences are found in the cell as a mixture with numerous other mRNAs that encode a multitude of proteins.
- the "isolated nucleic acid molecule” which includes a polynucleotide of genomic, cDNA, or synthetic origin or some combination thereof, the "isolated nucleic acid molecule” (1) is not associated with all or a portion of a polynucleotide in which the "isolated nucleic acid molecule” is found in nature, (2) is operably linked to a polynucleotide wliich it is not linked to in nature, or (3) does not occur in nature as part of a larger sequence.
- the isolated nucleic acid molecule may be present in single-stranded or double-stranded form.
- the nucleic acid When a nucleic acid molecule is to be utilized to express a protein, the nucleic acid contains at a minimum, the sense or coding strand (i.e., the nucleic acid may be single-stranded), but may contain both the sense and anti-sense strands (i.e., the nucleic acid may be double-stranded).
- wild-type refers to a gene or gene product that has the characteristics of that gene or gene product isolated from a naturally occurring source.
- a wild-type gene is that which is most frequently observed in a population and is thus arbitrarily designated the "wild-type” form of the gene.
- mutant refers to a gene or gene product that displays modifications in sequence and/or functional properties (i.e., altered characteristics) when compared to the wild-type gene or gene product. It is noted that naturally-occurring mutants can be isolated; these are identified by the fact that they have altered characteristics when compared to the wild-type gene or gene product.
- the term "recombinant DNA molecule” means a hybrid DNA sequence comprising at least two nucleotide sequences not normally found together in nature.
- vector is used in reference to nucleic acid molecules into which fragments of DNA may be inserted or cloned and can be used to transfer DNA segment(s) into a cell and capable of replication in a cell. Vectors may be derived from plasmids, bacteriophages, viruses, cosmids, and the like.
- the terms "recombinant vector”, “expression vector” or “construct” as used herein refer to DNA or RNA sequences containing a desired coding sequence and appropriate DNA or RNA sequences necessary for the expression of the operably linked coding sequence in a particular host organism.
- Prokaryotic expression vectors include a promoter, a ribosome binding site, an origin of replication for autonomous replication in a host cell and possibly other sequences, e.g. an optional operator sequence, optional restriction enzyme sites.
- a promoter is defined as a DNA sequence that directs RNA polymerase to bind to DNA and to initiate RNA synthesis.
- Eukaryotic expression vectors include a promoter, optionally a polyadenylation signal and optionally an enhancer sequence.
- a polynucleotide having a nucleotide sequence "encoding a peptide, protein or polypeptide” means a nucleic acid sequence comprising the coding region of a gene, or a fragment thereof which encodes a gene product having substantially the same activity as the corresponding full-length peptide, protein or polypeptide.
- the coding region may be present in either a cDNA, genomic DNA or RNA form.
- the oligonucleotide may be single-stranded (i.e., the sense strand) or double-stranded.
- Suitable control elements such as enhancers/promoters, splice junctions, polyadenylation signals, etc.
- the coding region utilized in the expression vectors of the present invention may contain endogenous enhancers/promoters, splice junctions, intervening sequences, polyadenylation signals, etc.
- the coding region may contain a combination of both endogenous and exogenous control elements.
- transcription regulatory element refers to a genetic element or sequence that controls some aspect of the expression of nucleic acid sequence(s).
- a promoter is a regulatory element that facilitates the initiation of transcription of an operably linked coding region.
- Other regulatory elements include, but are not limited to, transcription factor binding sites, splicing signals, polyadenylation signals, termination signals and enhancer elements.
- Promoters and enhancers consist of short arrays of DNA sequences that interact specifically with cellular proteins involved in transcription.
- Promoter and enhancer elements have been isolated from a variety of eukaryotic sources including genes in yeast, insect and mammalian cells.
- Promoter and enhancer elements have also been isolated from viruses and analogous control elements, such as promoters, are also found in prokaryotes. The selection of a particular promoter and enhancer depends on the cell type used to express the protein of interest. Some eukaryotic promoters and enhancers have a broad host range while others are functional in a limited subset of cell types.
- the SV40 early gene enhancer is very active in a wide variety of cell types from many mammalian species and has been widely used for the expression of proteins in mammalian cells.
- Two other examples of promoter/enhancer elements active in a broad range of mammalian cell types are those from the human elongation factor 1 gene (Uetsuki et al., 1989; Kim et al., 1990; and Mizushima and Nagata, 1990) and the long terminal repeats of the Rous sarcoma virus (Gorman et al., 1982); and the human cytomegalovirus (Boshart et al., 1985).
- promoter/enhancer denotes a segment of DNA containing sequences capable of providing both promoter and enhancer functions (i.e., the functions provided by a promoter element and an enhancer element as described above).
- promoter/promoter may be "endogenous” or “exogenous” or “heterologous.”
- An “endogenous” enhancer/promoter is one that is naturally linked with a given gene in the genome.
- an “exogenous” or “heterologous” enhancer/promoter is one that is placed in juxtaposition to a gene by means of genetic manipulation (i.e., molecular biological techniques) such that transcription of the gene is directed by the linked enhancer/promoter.
- Splicing signals mediate the removal of introns from the primary RNA transcript and consist of a splice donor and acceptor site (Sambrook et al., 1989).
- a commonly used splice donor and acceptor site is the splice junction from the 16S RNA of SV40.
- Efficient expression of recombinant DNA sequences in eukaryotic cells requires expression of signals directing the efficient termination and polyadenylation of the resulting transcript. Transcription termination signals are generally found downstream of the polyadenylation signal and are a few hundred nucleotides in length.
- the term "poly(A) site” or "poly(A) sequence” as used herein denotes a DNA sequence which directs both the termination and polyadenylation of the nascent RNA transcript. Efficient polyadenylation of the recombinant transcript is desirable, as transcripts lacking a poly(A) tail are unstable and are rapidly degraded.
- the poly(A) signal utilized in an expression vector may be "heterologous” or "endogenous.”
- An endogenous poly(A) signal is one that is found naturally at the 3' end of the coding region of a given gene in the genome.
- a heterologous poly(A) signal is one which has been isolated from one gene and positioned 3' to another gene.
- a commonly used heterologous poly(A) signal is the SV40 poly(A) signal.
- the SV40 poly(A) signal is contained on a 237 bp Bam ⁇ . VBcl I restriction fragment and directs both termination and polyadenylation (Sambrook et al., 1989).
- Eukaryotic expression vectors may also contain "viral replicons "or "viral origins of replication.”
- Viral replicons are viral DNA sequences which allow for the extrachromosomal replication of a vector in a host cell expressing the appropriate replication factors.
- Vectors containing either the S V40 or polyoma virus origin of replication replicate to high copy number (up to 10 4 copies/cell) in cells that express the appropriate viral T antigen.
- vectors containing the replicons from bovine papillomavirus or Epstein-Barr virus replicate extrachromosomally at low copy number (about 100 copies/cell).
- the term "in vitro" refers to an artificial environment and to processes or reactions that occur within an artificial environment.
- in vitro environments include, but are not limited to, test tubes and cell lysates.
- in situ refers to cell culture.
- in vivo refers to the natural environment (e.g., an animal or a cell) and to processes or reaction that occur within a natural environment.
- expression system refers to any assay or system for determining (e.g., detecting) the expression of a gene of interest.
- Those skilled in the field of molecular biology will understand that any of a wide variety of expression systems maybe used.
- a wide range of suitable mammalian cells are available from a wide range of sources (e.g., the American Type Culture
- Expression systems include in vitro gene expression assays where a gene of interest (e.g., a reporter gene) is linked to a regulatory sequence and the expression of the gene is monitored following treatment with an agent that inhibits or induces expression of the gene. Detection of gene expression can be through any suitable means including, but not limited to, detection of expressed mRNA or protein (e.g., a detectable product of a reporter gene) or through a detectable change in the phenotype of a cell expressing the gene of interest.
- a gene of interest e.g., a reporter gene
- Detection of gene expression can be through any suitable means including, but not limited to, detection of expressed mRNA or protein (e.g., a detectable product of a reporter gene) or through a detectable change in the phenotype of a cell expressing the gene of interest.
- Expression systems may also comprise assays where a cleavage event or other nucleic acid or cellular change is detected.
- gene refers to a DNA sequence that comprises coding sequences and optionally control sequences necessary for the production of a polypeptide from the DNA sequence.
- the polypeptide can be encoded by a full- length coding sequence or by any portion of the coding sequence so long as the portion encodes a gene product with substantially the same activity as the full- length polypeptide.
- Nucleic acids are known to contain different types of mutations.
- a "point" mutation refers to an alteration in the sequence of a nucleotide at a single base position from the wild-type sequence. Mutations may also refer to insertion or deletion of one or more bases, so that the nucleic acid sequence differs from a reference, e.g., a wild-type, sequence.
- hybridize and “hybridization” refer to the annealing of a complementary sequence to the target nucleic acid, i.e., the ability of two polymers of nucleic acid (polynucleotides) containing complementary sequences to anneal through base pairing.
- annealed and “hybridized” are used interchangeably throughout, and are intended to encompass any specific and reproducible interaction between a complementary sequence and a target nucleic acid, including binding of regions having only partial complementarity.
- Certain bases not commonly found in natural nucleic acids may be included in the nucleic acids of the present invention and include, for example, inosine and 7-deazaguanine.
- nucleic acid technology can determine duplex stability empirically considering a number of variables including, for example, the length of the complementary sequence, base composition and sequence of the oligonucleotide, ionic strength and incidence of mismatched base pairs.
- the stability of a nucleic acid duplex is measured by the melting temperature, or "T m ".
- T m melting temperature
- the T m of a particular nucleic acid duplex under specified conditions is the temperature at which on average half of the base pairs have disassociated.
- stringency is used in reference to the conditions of temperature, ionic strength, and the presence of other compounds, under which nucleic acid hybridizations are conducted.
- hybridization conditions are generally evident to one skilled in the art and is usually guided by the purpose of the hybridization, the type of hybridization (DNA-DNA or DNA-RNA), and the level of desired relatedness between the sequences (e.g., Sambrook et al., 1989; Nucleic Acid Hybridization, A Practical Approach, IRL Press, Washington D.C, 1985, for a general discussion of the methods).
- the stability of nucleic acid duplexes is known to decrease with an increased number of mismatched bases, and further to be decreased to a greater or lesser degree depending on the relative positions of mismatches in the hybrid duplexes.
- the stringency of hybridization can be used to maximize or minimize stability of such duplexes.
- Hybridization stringency can be altered by: adjusting the temperature of hybridization; adjusting the percentage of helix destabilizing agents, such as formamide, in the hybridization mix; and adjusting the temperature and/or salt concentration of the wash solutions.
- the final stringency of hybridizations often is determined by the salt concentration and/or temperature used for the post-hybridization washes.
- High stringency conditions when used in reference to nucleic acid hybridization include conditions equivalent to binding or hybridization at 42 °C in a solution consisting of 5X SSPE (43.8 g/1 NaCl, 6.9 g/1 NaH 2 PO 4 H 2 O and 1.85 g/1 EDTA, pH adjusted to 7.4 with NaOH), 0.5% SDS, 5X Denhardt's reagent and 100 ⁇ g/ml denatured salmon sperm DNA followed by washing in a solution comprising 0.1X SSPE, 1.0% SDS at 42°C when a probe of about 500 nucleotides in length is employed.
- 5X SSPE 43.8 g/1 NaCl, 6.9 g/1 NaH 2 PO 4 H 2 O and 1.85 g/1 EDTA, pH adjusted to 7.4 with NaOH
- SDS 5X Denhardt's reagent
- 100 ⁇ g/ml denatured salmon sperm DNA followed by washing in a solution comprising 0.1X SSPE, 1.0% SDS at 42°
- “Medium stringency conditions” when used in reference to nucleic acid hybridization include conditions equivalent to binding or hybridization at 42 °C in a solution consisting of 5X SSPE (43.8 g/1 NaCl, 6.9 g/1 NaH 2 PO 4 H 2 O and 1.85 g/1 EDTA, pH adjusted to 7.4 with NaOH), 0.5% SDS, 5X Denhardt's reagent and 100 ⁇ g/ml denatured salmon sperm DNA followed by washing in a solution comprising 1.0X SSPE, 1.0% SDS at 42°C when a probe of about 500 nucleotides in length is employed.
- Low stringency conditions include conditions equivalent to binding or hybridization at 42° C in a solution consisting of 5X SSPE (43.8 g/1 NaCl, 6.9 g/1 NaH 2 PO 4 H 2 O and 1.85 g/1 EDTA, pH adjusted to 7.4 with NaOH), 0.1% SDS, 5X Denhardt's reagent [50X Denhardt's contains per 500 ml: 5 g Ficoll (Type 400, Pharmacia), 5 g BSA (Fraction V; Sigma)] and 100 g/ml denatured salmon sperm DNA followed by washing in a solution comprising 5X SSPE, 0.1% SDS at 42 °C when a probe of about 500 nucleotides in length is employed.
- nucleic acid molecules of the invention encode a variant (mutant) of a naturally-occurring (wild-type) protein or fragment thereof which has substantially the same activity as the full length mutant protein.
- a mutant protein has an amino acid sequence that is at least 85%, preferably 90%, and most preferably 95% or 99%, identical to the amino acid sequence of a corresponding wild-type protein.
- Polypeptide molecules are said to have an "amino terminus” (N-terminus) and a “carboxy terminus” (C-terminus) because peptide linkages occur between the backbone amino group of a first amino acid residue and the backbone carboxyl group of a second amino acid residue.
- N-terminal and C-terminal in reference to polypeptide sequences refer to regions of polypeptides including portions of the N-terminal and C-terminal regions of the polypeptide, respectively.
- a sequence that includes a portion of the N-terminal region of polypeptide includes amino acids predominantly from the N-terminal half of the polypeptide chain, but is not limited to such sequences.
- an N-terminal sequence may include an interior portion of the polypeptide sequence including bases from both the N-terminal and C-terminal halves of the polypeptide.
- C-terminal regions may, but need not, include the amino acid defining the ultimate N-terminus and C-terminus of the polypeptide, respectively.
- isolated when used in relation to a polypeptide, as in "isolated protein” or “isolated polypeptide” refers to a polypeptide that is identified and separated from at least one contaminant with which it is ordinarily associated in its source.
- an isolated polypeptide (1) is not associated with proteins found in nature, (2) is free of other proteins from the same source, e.g., free of human proteins, (3) is expressed by a cell from a different species, or (4) does not occur in nature.
- non-isolated polypeptides e.g., proteins and enzymes
- isolated polypeptide include a polypeptide, peptide or protein encoded by cDNA or recombinant RNA including one of synthetic origin, or some combination thereof.
- recombinant protein or “recombinant polypeptide” as used herein refers to a protein molecule expressed from a recombinant DNA molecule.
- native protein is used herein to indicate a protein isolated from a naturally occurring (i.e., a nonrecombinant) source. Molecular biological techniques may be used to produce a recombinant form of a protein with identical properties as compared to the native form of the protein.
- fusion polypeptide refers to a chimeric protein containing a protein of interest (e.g., luciferase, an affinity tag or a targeting sequence) joined to a different protem, e.g., a mutant hydrolase.
- a protein of interest e.g., luciferase, an affinity tag or a targeting sequence
- the term "antibody” refers to a protein having one or more polypeptides substantially encoded by immunoglobulin genes or fragments of immunoglobulin genes.
- the recognized immunoglobulin genes include the kappa, lambda, alpha, gamma, delta, epsilon and mu constant region genes, as well as the myriad of immunoglobulin variable region genes.
- Light chains are classified as either kappa or lambda.
- Heavy chains are classified as gamma, mu, alpha, delta, or epsilon, which in turn define the immunoglobulin classes, IgG, IgM, IgA, IgD and IgE, respectively.
- the basic immunoglobulin (antibody) structural unit is known to comprise a tetramer.
- Each tetramer is composed of two identical pairs of polypeptide chains, each pair having one "light” (about 25 kD) and one "heavy” chain (about 50-70 kD).
- the N-terminus of each chain defines a variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition.
- the terms variable light chain (Y ) and variable heavy chain (V # ) refer to these light and heavy chains respectively.
- Antibodies may exist as intact immunoglobulms, or as modifications in a variety of forms including, for example, FabFc 2 , Fab, Fv, Fd, (Fab') 2 , an Fv fragment containing only the light and heavy chain variable regions, a Fab or (Fab)' fragment containing the variable regions and parts of the constant regions, a single-chain antibody, e.g., scFv, CDR-grafted antibodies and the like.
- the heavy and light chain of a Fv may be derived from the same antibody or different antibodies thereby producing a chimeric Fv region.
- the antibody may be of animal (especially mouse or rat) or human origin or may be chimeric or humanized. As used herein the term "antibody" includes these various forms.
- transformed cell is meant a cell into which (or into an ancestor of which) has been introduced a nucleic acid molecule of the invention.
- a nucleic acid molecule of the invention may be introduced into a suitable cell line so as to create a stably transfected cell line capable of producing the protein or polypeptide encoded by the nucleic acid molecule.
- Vectors, cells, and methods for constructing such cell lines are well known in the art.
- the words “transformants” or “transformed cells” include the primary transformed cells derived from the originally transformed cell without regard to the number of transfers.
- progeny may not be precisely identical in DNA content, due to deliberate or inadvertent mutations. Nonetheless, mutant progeny that have the same functionality as screened for in the originally transformed cell are included in the definition of transformants.
- the term "homology" refers to a degree of complementarity. There may be partial homology or complete homology (i.e., identity). Homology is often measured using sequence analysis software (e.g., Sequence Analysis Software Package of the Genetics Computer Group. University of Wisconsin Biotechnology Center. 1710 University Avenue. Madison, WI 53705). Such software matches similar sequences by assigning degrees of homology to various substitutions, deletions, insertions, and other modifications.
- Conservative substitutions typically include substitutions within the following groups: glycine, alanine; valine, isoleucine, leucine; aspartic acid, glutamic acid, asparagine, glutamine; serine, threonine; lysine, arginine; and phenylalanine, tyrosine.
- purified or “to purify” means the result of any process that removes some of a contaminant from the component of interest, such as a protein or nucleic acid. The percent of a purified component is thereby increased in the sample.
- operably linked refers to the linkage of nucleic acid sequences in such a manner that a nucleic acid molecule capable of directing the transcription of a given gene and/or the synthesis of a desired protein molecule is produced.
- the term also refers to the linkage of sequences encoding amino acids in such a manner that a functional (e.g., enzymatically active, capable of binding to a binding partner, capable of inhibiting, etc.) protein or polypeptide, or a precursor thereof, e.g., the pre- or prepro-form of the protein or polypeptide, is produced.
- poly-histidine tract refers to a molecule comprising two to ten histidine residues, e.g., a poly-histidine tract of five to ten residues.
- a poly-histidine tract allows the affinity purification of a covalently linked molecule on an immobilized metal, e.g., nickel, zinc, cobalt or copper, chelate column or through an interaction with another molecule (e.g., an antibody reactive with the His tag).
- pure means an object species is the predominant species present (i.e., on a molar basis it is more abundant than any other individual species in the composition), and preferably a substantially purified fraction is a composition wherein the object species comprises at least about 50 percent (on a molar basis) of all macromolecular species present.
- a substantially pure composition will comprise more than about 80 percent of all macromolecular species present in the composition, more preferably more than about 85%, about 90%, about 95%, and about 99%.
- the object species is purified to essential homogeneity (contaminant species cannot be detected in the composition by conventional detection methods) wherein the composition consists essentially of a single macromolecular species.
- Mutant hydrolases within the scope of the invention include but are not limited to those prepared via recombinant techniques, e.g., site-directed mutagenesis or recursive mutagenesis, and comprise one or more amino acid substitutions which render the mutant hydrolase capable of forming a stable, e.g., covalent, bond with a substrate, such as a substrate modified to contain one or more functional groups, for a corresponding nonmutant (wild-type) hydrolase.
- Hydrolases within the scope of the invention include, but are not limited to, peptidases, esterases (e.g., cholesterol esterase), glycosidases (e.g., glucosamylase), phosphatases (e.g., alkaline phosphatase) and the like.
- esterases e.g., cholesterol esterase
- glycosidases e.g., glucosamylase
- phosphatases e.g., alkaline phosphatase
- hydrolases include, but are not limited to, enzymes acting on ester bonds such as carboxylic ester hydrolases, thiolester hydrolases, phosphoric monoester hydrolases, phosphoric diester hydrolases, triphosphoric monoester hydrolases, sulfuric ester hydrolases, diphosphoric monoester hydrolases, phosphoric triester hydrolases, exodeoxyribonucleases producing 5'- phosphomonoesters, exoribonucleases producing 5'-phos ⁇ homonoesters, exoribonucleases producing 3'-phosphomonoesters, exonucleases active with either ribo- or deoxyribonucleic acid, exonucleases active with either ribo- or deoxyribonucleic acid, endodeoxyribonucleases producing 5'- phosphomonoesters, endodeoxyribonucleases producing other than 5'- phosphomonoesters, site-specific endodeoxyribon
- hydrolases acting on halide bonds include, but are not limited to, alkylhalidase, 2-haloacid dehalogenase, haloacetate dehalogenase, thyroxine deiodinase, haloalkane dehalogenase, 4-chlorobenzoate dehalogenase, 4-chlorobenzoyl-CoA dehalogenase, and atrazine chlorohydrolase.
- hydrolases that act on carbon-nitrogen bonds in cyclic amides include, but are not limited to, barbirurase, dihydropyrimidinase, dihydroorotase, carboxymethylhydantoinase, allantoinase, ⁇ -lactamase, imidazolonepropionase, 5-oxoprolinase (ATP- hydrolysing), creatininase, L-lysine-lactamase, 6-aminohexanoate-cyclic-dimer hydrolase, 2,5-dioxopiperazine hydrolase, N-methylhydantoinase (ATP- hydrolysing), cyanuric acid amidohydrolase, maleimide hydrolase.
- Beta- lactamase as used herein includes Class A, Class C and Class D beta-lactamases as well as D-ala carboxypeptidase/transpeptidase, esterase EstB, penicillin binding protein 2X, penicillin binding protein 5, and D-amino peptidase.
- the beta-lactamase is a serine beta-lactamase, e.g., one having a catalytic serine residue at a position corresponding to residue 70 in the serine beta-lactamase of S. aureus PCI, and a glutamic acid residue at a position corresponding to residue 166 in the serine beta-lactamase of S.
- the mutant hydrolase is a haloalkane dehalogenase, e.g., such as those found in Gram-negative (Keuning et al., 1985) and Gram- positive haloalkane-utilizing bacteria (Keuning et al., 1985; Yokota et al., 1987; Scholtz et al., 1987; Sallis et al., 1990).
- Haloalkane dehalogenases including DhlA from Xanthobacter autotrophicus GJ10 (Janssen et al., 1988, 1989) and DhaA from Rhodococcus rhodochrous, are enzymes wliich catalyze hydrolytic dehalogenation of corresponding hydrocarbons.
- Halogenated aliphatic hydrocarbons subject to conversion include C 2 -C 10 saturated aliphatic hydrocarbons which have one or more halogen groups attached, wherein at least two of the halogens are on adjacent carbon atoms.
- Such aliphatic hydrocarbons include volatile chlorinated aliphatic (VGA) hydrocarbons.
- VGA's include, for example, aliphatic hydrocarbons such as dichloroethane, 1,2-dichloro- ⁇ ropane, 1,2-dichlorobutane and 1,2,3-trichloropro ⁇ ane.
- halogenated hydrocarbon as used herein means a halogenated aliphatic hydrocarbon.
- halogen includes chlorine, bromine, iodine, fluorine, astatine and the like.
- a preferred halogen is chlorine.
- the invention includes a fusion protein comprising a mutant hydrolase and amino acid sequences for a protein of interest, e.g., sequences for a marker protein or affinity tag, e.g., luciferase, GFP, or a polyhistidine sequence, a nucleic acid binding protein, an extracellular matrix protein, a secreted protein, a receptor ligand, a serum protein, an immunogenic protein, a fluorescent protein, a protein with reactive cysteines, a receptor protein, e.g., NMDA receptor, a channel protein, e.g., a sodium-, potassium- or a calcium-sensitive channel protein including a HERG channel protein, or a transporter protein, e.g., EAAT1-4 glutamate transporter, as well as targeting signals, e.g., a plastid targeting signal, a nuclear localization signal or a myristilation sequence.
- a marker protein or affinity tag e.g., luciferase, G
- a nucleic acid molecule comprising a nucleic acid sequence encoding a hydrolase or a fusion thereof is optionally optimized for expression in a particular host cell and also optionally operably linked to transcription regulatory sequences, e.g., one or more enhancers, a promoter, a transcription termination sequence or a combination thereof, to form an expression cassette.
- transcription regulatory sequences e.g., one or more enhancers, a promoter, a transcription termination sequence or a combination thereof
- a nucleic acid sequence encoding a hydrolase or a fusion thereof is optimized by replacing codons in a wild-type or mutant hydrolase sequence with codons which are preferentially employed in a particular (selected) cell.
- Preferred codons have a relatively high codon usage frequency in a selected cell, and preferably their introduction results in the introduction of relatively few transcription factor binding sites for transcription factors present in the selected host cell, and relatively few other undesirable structural attributes.
- the optimized nucleic acid product has an improved level of expression due to improved codon usage frequency, and a reduced risk of inappropriate transcriptional behavior due to a reduced number of undesirable transcription regulatory sequences.
- An isolated and optimized nucleic acid molecule of the invention may have a codon composition that differs from that of the corresponding wild-type nucleic acid sequence at more than 30%, 35%, 40% or more than 45%, e.g., 50%, 55%, 60% or more of the codons.
- Preferred codons for use in the invention are those wliich are employed more frequently than at least one other codon for the same amino acid in a particular organism and, more preferably, are also not low-usage codons in that organism and are not low-usage codons in the organism used to clone or screen for the expression of the nucleic acid molecule.
- preferred codons for certain amino acids may include two or more codons that are employed more frequently than the other (non-preferred) codon(s).
- the presence of codons in the nucleic acid molecule that are employed more frequently in one organism than in another organism results in a nucleic acid molecule which, when introduced into the cells of the organism that employs those codons more frequently, is expressed in those cells at a level that is greater than the expression of the wild-type or parent nucleic acid sequence in those cells.
- the codons that are different are those employed more frequently in a mammal, while in another embodiment the codons that are different are those employed more frequently in a plant.
- Preferred codons for different organisms are known to the art, e.g., see www.kazusa.or.ip./codon/.
- a particular type of mammal e.g., a human, may have a different set of preferred codons than another type of mammal.
- a particular type of plant may have a different set of preferred codons than another type of plant.
- the majority of the codons that differ are ones that are preferred codons in a desired host cell.
- preferred codons for organisms including mammals (e.g., humans) and plants are known to the art (e.g., Wada et al., 1990; Ausubel et al., 1997).
- preferred human codons include, but are not limited to, CGC (Arg), CTG (Leu), TCT (Ser), AGC (Ser), ACC (Thr), CCA (Pro), CCT (Pro), GCC (Ala), GGC (Gly), GTG (Val), ATC (He), ATT (He), AAG (Lys), AAC (Asn), CAG (Gin), CAC (His), GAG (Glu), GAC (Asp), TAC (Tyr), TGC (Cys) and TTC (Phe) (Wada et al., 1990).
- synthetic nucleic acid molecules of the invention have a codon composition which differs from a wild type nucleic acid sequence by having an increased number of the preferred human codons, e.g., CGC, CTG, TCT, AGC, ACC, CCA, CCT, GCC, GGC, GTG, ATC, ATT, AAG, AAC, CAG, CAC, GAG, GAC, TAC, TGC, TTC, or any combination thereof.
- the preferred human codons e.g., CGC, CTG, TCT, AGC, ACC, CCA, CCT, GCC, GGC, GTG, ATC, ATT, AAG, AAC, CAG, CAC, GAG, GAC, TAC, TGC, TTC, or any combination thereof.
- the nucleic acid molecule of the invention may have an increased number of CTG or TTG leucine-encoding codons, GTG or GTC valine-encoding codons, GGC or GGT glycine-encoding codons, ATC or ATT isoleucine-encoding codons, CCA or CCT proline-encoding codons, CGC or CGT arginine-encoding codons, AGC or TCT serine-encoding codons, ACC or ACT threonine-encoding codon, GCC or GCT alanine-encoding codons, or any combination thereof, relative to the wild-type nucleic acid sequence.
- preferred C preferred C.
- elegans codons include, but are not limited, to UUC (Phe), UUU (Phe), CUU (Leu), UUG (Leu), AUU (He), GUU (Val), GUG (Val), UCA (Ser), UCU (Ser), CCA (Pro), ACA (Thr), ACU (Thr), GCU (Ala), GCA (Ala), UAU (Tyr), CAU (His), CAA (Gin), AAU (Asn), AAA (Lys), GAU (Asp), GAA (Glu), UGU (Cys), AGA (Arg), CGA (Arg), CGU (Arg), GGA (Gly), or any combination thereof.
- preferred Drosophilia codons include, but are not limited to, UUC (Phe), CUG (Leu), CUC (Leu), AUC (He), AUU (He), GUG (Val), GUC (Val), AGC (Ser), UCC (Ser), CCC (Pro), CCG (Pro), ACC (Thr), ACG (Thr), GCC (Ala), GCU (Ala), UAC (Tyr), CAC (His), CAG (Gin), AAC (Asn), AAG (Lys), GAU (Asp), GAG (Glu), UGC (Cys), CGC (Arg), GGC (Gly), GGA (gly), or any combination thereof.
- Preferred yeast codons include but are not limited to UUU (Phe), UUG (Leu), UUA (Leu), CCU (Leu), AUU (He), GUU (Val), UCU (Ser), UCA (Ser), CCA (Pro), CCU (Pro), ACU (Thr), ACA (Thr), GCU (Ala), GCA (Ala), UAU (Tyr), UAC (Tyr), CAU (His), CAA (Gin), AAU (Asn), AAC (Asn), AAA (Lys), AAG (Lys), GAU (Asp), GAA (Glu), GAG (Glu), UGU (Cys), CGU (Trp), AGA (Arg), CGU (Arg), GGU (Gly), GGA (Gly), or any combination thereof.
- nucleic acid molecules having an increased number of codons that are employed more frequently in plants have a codon composition which differs from a wild-type or parent nucleic acid sequence by having an increased number of the plant codons including, but not limited to, CGC (Arg), CTT (Leu), TCT (Ser), TCC (Ser), ACC (Thr), CCA (Pro), CCT (Pro), GCT (Ser), GGA (Gly), GTG (Val), ATC (He), ATT (He), AAG (Lys), AAC (Asn), CAA (Gin), CAC (His), GAG (Glu), GAC (Asp), TAC (Tyr), TGC (Cys), TTC (Phe), or any combination thereof (Murray et al., 1989).
- Preferred codons may differ for different types of plants (Wada et al., 1990).
- an optimized nucleic acid sequence encoding a hydrolase or fusion thereof has less than 100%, e.g., less than 90% or less than 80%, nucleic acid sequence identity relative to a non-optimized nucleic acid sequence encoding a corresponding hydrolase or fusion thereof.
- an optimized nucleic acid sequence encoding DhaA has less than about 80% nucleic acid sequence identity relative to non-optimized (wild-type) nucleic acid sequence encoding a corresponding DhaA, and the DhaA encoded by the optimized nucleic acid sequence optionally has at least 85% amino acid sequence identity to a corresponding wild-type DhaA.
- the activity of a DhaA encoded by the optimized nucleic acid sequence is at least 10%, e.g., 50% or more, of the activity of a DhaA encoded by the non-optimized sequence, e.g., a mutant DhaA encoded by the optimized nucleic acid sequence binds a substrate with substantially the same efficiency, i.e., at least 50%, 80%, 100% or more, as the mutant DhaA encoded by the non-optimized nucleic acid sequence binds the same substrate.
- the nucleic acid molecule or expression cassette may be introduced to a vector, e.g., a plasmid or viral vector, which optionally includes a selectable marker gene, and the vector introduced to a cell of interest, for example, a prokaryotic cell such as E. coli, Streptomyces spp., Bacillus spp., Staphylococcus spp. and the like, as well as eukaryotic cells including a plant (dicot or monocot), fungus, yeast, e.g., Pichia, Saccharomyces or Schizosaccharomyces, or mammalian cell.
- a vector e.g., a plasmid or viral vector, which optionally includes a selectable marker gene
- a cell of interest for example, a prokaryotic cell such as E. coli, Streptomyces spp., Bacillus spp., Staphylococcus spp. and the like, as well as
- Preferred mammalian cells include bovine, caprine, ovine, canine, feline, non-human primate, e.g., simian, and human cells.
- Preferred mammalian cell lines include, but are not limited to, CHO, COS, 293, Hela, CV- 1, SH-SY5Y (human neuroblastoma cells), HEK293, and NIH3T3 cells.
- the expression of the encoded mutant hydrolase may be controlled by any promoter capable of expression in prokaryotic cells or eukaryotic cells.
- Preferred prokaryotic promoters include, but are not limited to, SP6, T7, T5, tac, bla, trp, gal, lac or maltose promoters.
- Preferred eukaryotic promoters include, but are not limited to, constitutive promoters, e.g., viral promoters such as CMV, SV40 and RSV promoters, as well as regulatable promoters, e.g., an inducible or repressible promoter such as the tet promoter, the hsp70 promoter and a synthetic promoter regulated by CRE.
- Preferred vectors for bacterial expression include pGEX-5X-3, and for eukaryotic expression include pCrneo-CMV.
- nucleic acid molecule, expression cassette and/or vector of the invention may be introduced to a cell by any method including, but not limited to, calcium-mediated transformation, elecfroporation, microinjection, lipofection, particle bombardment and the like. III. Functional Groups
- Functional groups useful in the substrates and methods of the invention are molecules that are detectable or capable of detection.
- a functional group within the scope of the invention is capable of being covalently linked to one reactive substituent of a bifunctional linker or a substrate for a hydrolase, and, as part of a substrate of the invention, has substantially the same activity as a functional group which is not linked to a substrate found in nature and is capable of forming a stable complex with a mutant hydrolase.
- Functional groups thus have one or more properties that facilitate detection, and optionally the isolation, of stable complexes between a substrate having that functional group and a mutant hydrolase.
- functional groups include those with a characteristic electromagnetic spectral property such as emission or absorbance, magnetism, electron spin resonance, electrical capacitance, dielectric constant or electrical conductivity as well as functional groups which are ferromagnetic, paramagnetic, diamagnetic, luminescent, electrochemiluminescent, fluorescent, phosphorescent, chromatic, antigenic, or have a distinctive mass.
- a functional group includes, but is not limited to, a nucleic acid molecule, i.e., DNA or RNA, e.g., an oligonucleotide or nucleotide, a protein, e.g., a luminescent protein, a peptide, for instance, an epitope recognized by a ligand, e.g., biotin or streptavidin, a hapten, an amino acid, a lipid, a lipid bilayer, a solid support, a fluorophore, a chromophore, a reporter molecule, a radionuclide, an electron opaque molecule, a MRI contrast agent, e.g., manganese, gadolinium (III) or iron-oxide particles, and the like.
- a nucleic acid molecule i.e., DNA or RNA
- a protein e.g., a luminescent protein
- a peptide for instance, an epi
- a nucleic acid molecule can be detected by hybridization, amplification, binding to a nucleic acid binding protein specific for the nucleic acid molecule, enzymatic assays (e.g., if the nucleic acid molecule is a ribozyme), or, if the nucleic acid molecule itself comprises a molecule which is detectable or capable of detection, for instance, a radiolabel or biotin, it can be detected by an assay suitable for that molecule.
- enzymatic assays e.g., if the nucleic acid molecule is a ribozyme
- the nucleic acid molecule itself comprises a molecule which is detectable or capable of detection, for instance, a radiolabel or biotin, it can be detected by an assay suitable for that molecule.
- Exemplary functional groups include haptens, e.g., molecules useful to enhance immunogenicity such as keyhole limpet hemacyanin (KLH), cleavable labels, for instance, photocleavable biotin, and fluorescent labels, e.g., N- hydroxysuccinimide (NHS) modified coumarin and succinimide or sulfonosuccinimide modified BODIPY (which can be detected by UV and/or visible excited fluorescence detection), rhodamine, e.g., R110, rhodols, CRG6, Texas Methyl Red (TAMRA), Rox5, FAM, or fluoroscein, coumarin derivatives, e.g., 7 aminocoumarin, and 7-hydroxycoumarin, 2-amino-4-methoxynapthalene, 1-hydroxypyren ⁇ , resoruf ⁇ n, phenalenones or benzphenalenones (U.S.
- KLH keyhole
- Patent No. 4,812,409 acridinones (U.S. Patent No. 4,810,636), anthracenes, and derivatives of ⁇ - and ⁇ -napthol, fluorinated xanthene derivatives including fluorinated fluoresceins and rhodols (e.g., U.S. Patent No. 6,162,931), and bioluminescent molecules, e.g., luciferase or GFP.
- a fluorescent (or bioluminescent) functional group linked to a mutant hydrolase by virtue of being linked to a substrate for a corresponding wild-type hydrolase, may be used to sense changes in a system, like phosphorylation, in real time.
- a fluorescent molecule such as a chemosensor of metal ions, e.g., a 9- carbonylanthracene modified glycyl-histidyl-lysine (GHK) for Cu
- a substrate of the invention may be employed to label proteins which bind the substrate.
- a bioluminescent or fluorescent functional group such as BODIPY, rhodamine green, GFP, or infrared dyes, also finds use as a functional group and may, for instance, be employed in interaction studies, e.g., using BRET, FRET, LRET or electrophoresis.
- Another class of functional group is a molecule that selectively interacts with molecules containing acceptor groups (an "affinity" molecule).
- an affinity molecule a substrate for a hydrolase which includes an affinity molecule can facilitate the separation of complexes having such a substrate and a mutant hydrolase, because of the selective interaction of the affinity molecule with another molecule, e.g., an acceptor molecule, that may be biological or non-biological in origin.
- the specific molecule with which the affinity molecule interacts referred to as the acceptor molecule
- the acceptor molecule could be a small organic molecule, a chemical group such as a sulfhydryl group (-SH) or a large biomolecule such as an antibody or other naturally occurring ligand for the affinity molecule.
- the binding is normally chemical in nature and may involve the formation of covalent or non-covalent bonds or interactions such as ionic or hydrogen bonding.
- the acceptor molecule might be free in solution or itself bound to a solid or semi-solid surface, a polymer matrix, or reside on the surface of a solid or semi-solid substrate.
- the interaction may also be triggered by an external agent such as light, temperature, pressure or the addition of a chemical or biological molecule that acts as a catalyst.
- the detection and/or separation of the complex from the reaction mixture occurs because of the interaction, normally a type of binding, between the affinity molecule and the acceptor molecule.
- affinity molecules include molecules such as immunogenic molecules, e.g., epitopes of proteins, peptides, carbohydrates or lipids, i.e., any molecule which is useful to prepare antibodies specific for that molecule; biotin, avidin, streptavidin, and derivatives thereof; metal binding molecules; and fragments and combinations of these molecules.
- affinity molecules include His5 (HHHHH) (SEQ ID NO: 19), HisX6 (HHHHHH) (SEQ ID NO:20), C-myc (EQKLISEEDL) (SEQ ID NO:21), Flag (DYKDDDDK) (SEQ ID NO:22), SteptTag (WSHPQFEK) (SEQ ID NO:23), HA Tag (YPYDVPDYA) (SEQ ID NO:24), thioredoxin, cellulose binding domain, chitin binding domain, S-peptide, T7 peptide, calmodulin binding peptide, C-end RNA tag, metal binding domains, metal binding reactive groups, amino acid reactive groups, inteins, biotin, streptavidin, and maltose binding protein.
- a substrate for a hydrolase wliich includes biotin is contacted with a mutant hydrolase.
- the presence of the biotin in a complex between the mutant hydrolase and the substrate permits selective binding of the complex to avidin molecules, e.g., streptavidin molecules coated onto a surface, e.g., beads, microwells, nitrocellulose and the like.
- Suitable surfaces include resins for chromatographic separation, plastics such as tissue culture surfaces or binding plates, microtiter dishes and beads, ceramics and glasses, particles including magnetic particles, polymers and other matrices.
- the treated surface is washed with, for example, phosphate buffered saline (PBS), to remove molecules that lack biotin and the biotin-containing complexes isolated.
- PBS phosphate buffered saline
- these materials may be part of biomolecular sensing devices such as optical fibers, chemfets, and plasmon detectors.
- an affinity molecule is dansyllysine.
- Antibodies which interact with the dansyl ring are commercially available (Sigma Chemical; St. Louis, MO) or can be prepared using known protocols such as described in Antibodies: A Laboratory Manual (Harlow and Lane, 1988).
- the anti-dansyl antibody is immobilized onto the packing material of a chromatographic column. This method, affinity column chromatography, accomplishes separation by causing the complex between a mutant hydrolase and a substrate of the invention to be retained on the column due to its interaction with the immobilized antibody, while other molecules pass through the column. The complex may then be released by disrupting the antibody- antigen interaction.
- chromatographic column materials such as ion- exchange or affinity Sepharose, Sephacryl, Sephadex and other chromatography resins are commercially available (Sigma Chemical; St. Louis, MO; Pharmacia Biotech; Piscataway, N. J.). Dansyllysine may conveniently be detected because of its fluorescent properties.
- separation can also be performed through other biochemical separation methods such as immunoprecipitation and immobilization of antibodies on filters or other surfaces such as beads, plates or resins.
- complexes of a mutant hydrolase and a substrate of the invention may be isolated by coating magnetic beads with an affinity molecule-specific or a hydrolase-specific antibody. Beads are oftentimes separated from the mixture using magnetic fields.
- Another class of functional molecules includes molecules detectable using electromagnetic radiation and includes but is not limited to xanthene fluorophores, dansyl fluorophores, coumarins and coumarin derivatives, fluorescent acridinium moieties, benzopyrene based fluorophores, as well as 7- nitrobenz-2-oxa- 1 ,3 -diazole, and 3 -N-(7-nitrobenz-2-oxa- 1 ,3 -diazol-4-yl)-2,3 - diamino-propionic acid.
- the fluorescent molecule has a high quantum yield of fluorescence at a wavelength different from native amino acids and more preferably has high quantum yield of fluorescence that can be excited in the visible, or in both the UV and visible, portion of the spectrum.
- the molecule Upon excitation at a preselected wavelength, the molecule is detectable at low concentrations either visually or using conventional fluorescence detection methods.
- Electrochemiluminescent molecules such as ruthenium chelates and its derivatives or nitroxide amino acids and their derivatives are detectable at femtomolar ranges and below.
- a variety of molecules with physical properties based on the interaction and response of the molecule to electromagnetic fields and radiation can be used to detect complexes between a mutant hydrolase and a substrate of the invention. These properties include absorption in the UV, visible and infrared regions of the electromagnetic spectrum, presence of chromophores which are Raman active, and can be further enhanced by resonance Raman spectroscopy, electron spin resonance activity and nuclear magnetic resonances and molecular mass, e.g., via a mass spectrometer.
- Methods to detect and/or isolate complexes having affinity molecules include chromatographic techniques including gel filtration, fast-pressure or high-pressure liquid chromatography, reverse-phase chromatography, affinity chromatography and ion exchange chromatography.
- Other methods of protein separation are also useful for detection and subsequent isolation of complexes between a mutant hydrolase and a substrate of the invention, for example, electrophoresis, isoelectric focusing and mass spectrometry.
- Linkers including gel filtration, fast-pressure or high-pressure liquid chromatography, reverse-phase chromatography, affinity chromatography and ion exchange chromatography.
- linker refers to a group or groups that covalently attach one or more functional groups to a substrate which includes a reactive group or to a reactive group.
- a linker as used herein, is not a single covalent bond.
- the structure of the linker is not crucial, provided it yields a substrate that can be bound by its target enzyme.
- the linker can be a divalent group that separates a functional group (R) and the reactive group by about 5 angstroms to about 1000 angstroms, inclusive, in length.
- linkers include linkers that separate R and the reactive group by about 5 angstroms to about 100 angstroms, as well as linkers that separate R and the substrate by about 5 angstroms to about 50 angstroms, by about 5 angstroms to about 25 angstroms, by about 5 angstroms to about 500 angstroms, or by about 30 angstroms to about 100 angstroms.
- the linker is an amino acid.
- the linker is a peptide.
- the linker is a divalent branched or unbranched carbon chain comprising from about 2 to about 30 carbon atoms, which chain optionally includes one or more (e.g., 1 , 2, 3, or 4) double or triple bonds.
- the linker is a divalent branched or unbranched carbon chain comprising from about 2 to about 30 carbon atoms.
- the linker is a divalent branched or unbranched carbon chain comprising from about 2 to about 20 carbon atoms, which chain optionally includes one or more (e.g., 1, 2, 3, or 4) double or triple bonds.
- (C ! -C 3 o)alkyl can be methyl, ethyl, propyl, isopropyl, butyl, iso-butyl, sec-butyl, pentyl, 3-pentyl, hexyl, heptyl, octyl, nonyl, or decyl;
- (C 3 - C 8 )cycloalkyl can be cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl;
- (C 2 - C 3 o)alkenyl can be vinyl, allyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3- butenyl, 1,-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1- hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl
- amino acid when used with reference to a linker, comprises the residues of the natural amino acids (e.g., Ala, Arg, Asn, Asp, Cys, Glu, Gin, Gly, His, Hyl, Hyp, He, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, and Val) in D or L form, as well as unnatural amino acids (e.g., phosphoserine, phosphothreonine, phosphotyrosine, hydroxyproline, gamma-carboxyglutamate; hippuric acid, octahydroindole-2-carboxylic acid, statine, l,2,3,4,-tetrahydroisoquinoline-3-carboxylic acid, penicillamine, ornithine, citruline, ⁇ -methyl-alanine, para-benzoylphenylalanine, phenylglycine, propargylglycine, sarco
- the term also includes natural and unnatural amino acids bearing a conventional amino protecting group (e.g., acetyl or benzyloxycarbonyl), as well as natural and unnatural amino acids protected at the carboxy terminus (e.g. as a ( -C ⁇ alkyl, phenyl or benzyl ester or amide).
- a conventional amino protecting group e.g., acetyl or benzyloxycarbonyl
- natural and unnatural amino acids protected at the carboxy terminus e.g. as a ( -C ⁇ alkyl, phenyl or benzyl ester or amide.
- Other suitable amino and carboxy protecting groups are known to those skilled in the art (see for example, Greene, Protecting Groups In Organic Synthesis; Wiley: New York, 1981, and references cited therein).
- An amino acid can be linked to another molecule through the carboxy terminus, the amino terminus, or through any other convenient point of attachment, such as, for example, through the sulfur of
- peptide when used with reference to a linker, describes a sequence of 2 to 25 amino acids (e.g. as defined hereinabove) or peptidyl residues.
- the sequence may be linear or cyclic.
- a cyclic peptide can be prepared or may result from the formation of disulfide bridges between two cysteine residues in a sequence.
- a peptide can be linked to another molecule through the carboxy terminus, the amino terminus, or through any other convenient point of attachment, such as, for example, through the sulfur of a cysteine.
- a peptide comprises 3 to 25, or 5 to 21 amino acids.
- Peptide derivatives can be prepared as disclosed in U.S. Patent Numbers 4,612,302; 4,853,371; and 4,684,620. Peptide sequences specifically recited herein are written with the amino terminus on the left and the carboxy terminus on the right.
- a substrate of the invention for a dehalogenase which has a linker has the formula (I):
- A-X is a haloaliphatic or haloaromatic substrate for a dehalogenase.
- A is CH CH 2 or CH 2 CH 2 CH 2 .
- a linker in a subsfrate for a dehalogenase such as a Rhodococcus dehalogenase, is a multiatom straight or branched chain including C, N, S, or O, and preferably 11-30 atoms when the functional group R includes an aromatic ring system or is a solid support.
- a substrate of the invention for a dehalogenase which has a linker has formula (II):
- R is one or more functional groups, such as a fluorophore, biotin, luminophore, or a fluorogenic or luminogenic molecule, or is a solid support, including microspheres, membranes, glass beads, and the like.
- R is a radiolabel, or a small detectable atom such as a spectroscopically active isotope
- the linker can be 0-30 atoms.
- the CH 2 C1 2 reaction mixture was then washed with a 2% sodium hydroxide (w/w) solution until noj->-nitrophenol was observed in the organic layer.
- the dichloromethane was dried with sodium sulfate, filtered, and evaporated under reduced pressure.
- Triethylammonium 3- [5- [2-(4-tert-Butyl-7-diethylan ⁇ ino-chromen-2- ylidene)-ethylidene]-3-(5- ⁇ 2-[2-(6-chlorohexyloxy)-ethoxy]-ethylcarbamoyl ⁇ - pentyl)-2 ? 4,6-trioxo-tetrahydro ⁇ yriinidin-l-yl]-propane-l-sulfonic cid anion.
- the title compound was prepared using the above methodology. Purification was accomplished using preparative scale HPLC. Mass spectrum, m/e Calcd for C 42 H 62 C1N 4 O 10 S": 849.4(100%), 850.4(48.8%), 851.4(36.4%). Found: 849.6, 850.5, 851.5.
- 2-(2- ⁇ 2-[2-(2-Chloroethoxy)-ethoxy]-ethoxy ⁇ -ethyl)-isoindole-l,3-dione 2-(2- ⁇ 2-[2-(2-Hydroxy-ethoxy)-ethoxy]-ethoxy ⁇ -ethyl)-isoindole-l,3-dione (0.5 g, 1.55 mmol) was prepared by the method of Nielsen, J. and Janda, K.D. (Methods: A Companion to Methods in Enzymology 6, 361-371 (1994)).
- a mutant hydrolase and a corresponding subsfrate which includes a functional group are employed to label a cell, e.g., a cell in an organism or cell culture, or a cellular component.
- a cell e.g., a cell in an organism or cell culture, or a cellular component.
- cells are contacted with a vector encoding the mutant hydrolase, such as one encoding a fusion between the mutant hydrolase and a nuclear localization signal.
- the expression of the vector in the cell may be transient or stable.
- the cell is contacted with a substrate of the invention recognized by the mutant hydrolase.
- cells are concurrently contacted with the vector and the substrate.
- the substrates of the invention are preferably soluble in an aqueous or mostly aqueous solution, including water and aqueous solutions having a pH greater than or equal to about 6. Stock solutions of substrates of the invention, however, may be dissolved in organic solvent before diluting into aqueous solution or buffer.
- organic solvents are aprotic polar solvents such as DMSO, DMF, N-methylpyrrolidone, acetone, acetonitrile, dioxane, tetrahydrofuran and other nonhydroxylic, completely water-miscible solvents.
- the amount of substrate of the invention employed is the minimum amount required to detect the presence of the functional group in the sample comprising a mutant hydrolase or a fusion thereof, within a reasonable time, with minimal background or undesirable labeling.
- concentration of a substrate of the invention and a corresponding mutant hydrolase to be used is dependent upon the experimental conditions and the desired results.
- concentration of a substrate of the invention typically ranges from nanomolar to micromolar.
- concentration for the substrate of the invention with a corresponding mutant hydrolase is determined by systematic variation in substrate until satisfactory labeling is accomplished. The starting ranges are readily determined from methods known in the art.
- a subsfrate which includes a functional group with optical properties is employed with a mutant hydrolase to label a sample.
- a substrate is combined with the sample of interest comprising the mutant hydrolase for a period of time sufficient for the mutant hydrolase to bind the substrate, after which the sample is illuminated at a wavelength selected to elicit the optical response of the functional group.
- the sample is washed to remove residual, excess or unbound substrate.
- the labeling is used to determine a specified characteristic of the sample by further comparing the optical response with a standard or expected response.
- the mutant hydrolase bound substrate is used to monitor specific components of the sample with respect to their spatial and temporal distribution in the sample.
- the mutant hydrolase bound subsfrate is employed to determine or detect the presence or quantity of a certain molecule.
- the mutant hydrolase bound substrate is used to analyze the sample for the presence of a molecule that responds specifically to the functional group.
- a detectable optical response means a change in, or occurrence of, a parameter in a test system that is capable of being perceived, either by direct observation or instrumentally. Such detectable responses include the change in, or appearance of, color, fluorescence, reflectance, chemiluminescence, light polarization, light scattering, or x-ray scattering.
- the detectable response is a change in fluorescence, such as a change in the intensity, excitation or emission wavelength distribution of fluorescence, fluorescence lifetime, fluorescence polarization, or a combination thereof.
- the detectable optical response may occur throughout the sample comprising a mutant hydrolase or a fusion thereof or in a localized portion of the sample comprising a mutant hydrolase or a fusion thereof. Comparison of the degree of optical response with a standard or expected response can be used to determine whether and to what degree the sample comprising a mutant hydrolase or a fusion thereof possesses a given characteristic.
- the functional group is a ligand for an acceptor molecule.
- the subsfrate comprises a functional group that is a member of a specific binding pair (a ligand)
- the complementary member is immobilized on a solid or semi-solid surface, such as a polymer, polymeric membrane or polymeric particle (such as a polymeric bead).
- Representative specific binding pairs include biotin and avidin (or streptavidin or anti-biotin), IgG and protein A or protein G, drug and drug receptor, toxin and toxin receptor, carbohydrate and lectin or carbohydrate receptor, peptide and peptide receptor, protein and protein receptor, enzyme substrate and enzyme, sense DNA or RNA and antisense (complementary) DNA or RNA, hormone and hormone receptor, and ion and chelator.
- Ligands for which naturally occurring receptors exist include natural and synthetic proteins, including avidin and streptavidin, antibodies, enzymes, and hormones; nucleotides and natural or synthetic oligonucleotides, including primers for RNA and single- and double- stranded DNA; lipids; polysaccharides and carbohydrates; and a variety of drugs, including therapeutic drugs and drugs of abuse and pesticides.
- the functional group is a chelator of calcium, sodium, magnesium, potassium, or another biologically important metal ion
- the subsfrate comprising such a functional group functions as an indicator of the ion.
- such a subsfrate may act as a pH indicator.
- the detectable optical response of the ion indicator is a change in fluorescence.
- the sample comprising a mutant hydrolase or a fusion thereof is typically labeled by passive means, i.e., by incubation with the substrate.
- any method of introducing the substrate into the sample comprising a mutant hydrolase or a fusion thereof such as microinjection of a substrate into a cell or organelle, can be used to introduce the substrate into the sample comprising a mutant hydrolase or a fusion thereof.
- the substrates of the present invention are generally non-toxic to living cells and other biological components, within the concentrations of use.
- the sample comprising a mutant hydrolase or a fusion thereof can be observed immediately after contact with a substrate of the invention.
- the sample comprising a mutant hydrolase or a fusion thereof is optionally combined with other solutions in the course of labeling, including wash solutions, permeabilization and/or fixation solutions, and other solutions containing additional detection reagents. Washing following contact with the subsfrate generally improves the detection of the optical response due to the decrease in non-specific background after washing. Satisfactory visualization is possible without washing by using lower labeling concentrations.
- fixatives and fixation conditions are known in the art, including formaldehyde, paraformaldehyde, formalin, glutaraldehyde, cold methanol and 3:1 methanol: acetic acid.
- Fixation is typically used to preserve cellular morphology and to reduce biohazards when working with pathogenic samples. Selected embodiments of the substrates are well retained in cells. Fixation is optionally followed or accompanied by permeabilization, such as with acetone, ethanol, DMSO or various detergents, to allow bulky substrates of the invention, to cross cell membranes, according to methods generally known in the art.
- the use of a substrate may be combined with the use of an additional detection reagent that produces a detectable response due to the presence of a specific cell component, intracellular substance, or cellular condition, in a sample comprising a mutant hydrolase or a fusion thereof. Where the additional detection reagent has spectral properties that differ from those of the substrate, multi-color applications are possible.
- the sample comprising a mutant hydrolase or a fusion thereof is illuminated with a wavelength of light that results in a detectable optical response, and observed with a means for detecting the optical response. While some substrates are detectable colorimetrically, using ambient light, other substrates are detected by the fluorescence properties of the parent fluorophore.
- the substrates, including subsfrates bound to the complementary specific binding pair member display intense visible absorption as well as fluorescence emission.
- Selected equipment that is useful for illuminating the substrates of the invention includes, but is not limited to, hand-held ultraviolet lamps, mercury arc lamps, xenon lamps, argon lasers, laser diodes, and YAG lasers. These illumination sources are optionally integrated into laser scanners, fluorescence microplate readers, standard or mini fluorometers, or chromatographic detectors.
- This colorimetric absorbance or fluorescence emission is optionally detected by visual inspection, or by use of any of the following devices: CCD cameras, video cameras, photographic film, laser scanning devices, fluorometers, photodiodes, quantum counters, epifluorescence microscopes, scanning microscopes, flow cytometers, fluorescence microplate readers, or by means for amplifying the signal such as photomultiplier tubes.
- the instrument is optionally used to distinguish and discriminate between the substrate comprising a functional group which is a fluorophore and a second fluorophore with detectably different optical properties, typically by distinguishing the fluorescence response of the substrate from that of the second fluorophore.
- examination of the sample comprising a mutant hydrolase or a fusion thereof optionally includes isolation of particles within the sample comprising a mutant hydrolase or a fusion thereof based on the fluorescence response of the substrate by using a sorting device.
- intracellular movements may be monitored using a fusion of the mutant hydrolase of the invention.
- beta-arrestin is a regulator of G-protein coupled receptors, that moves from the cytoplasm to the cell membrane when it is activated.
- a cell containing a fusion of a mutant hydrolase and beta-arrestin and a subsfrate of the invention allows the detection of the movement of beta-arrestin from the cytoplasm to the cell membrane as it associates with activated G-protein coupled receptors.
- FRET may be employed with a fusion of the mutant hydrolase and a fluorescent protein, e.g., GFP, or a fusion with a protein that binds fluorescent molecules, e.g., O-alkylguanine-DNA alkyltransferase (AGT) (Keppler et al., 2003).
- a fusion of a mutant hydrolase and a protein of interest and a second fusion of a fluorescent protein and a molecule suspected of interacting with the protein of interest may be employed to study the interaction of the protein of interest with the molecule, e.g., using FRET.
- One cell may contain the fusion of a mutant hydrolase and a protein of interest while another cell may contain the second fusion of a fluorescent protein and a molecule suspected of interacting with the protein of interest.
- a population with those two cells may be contacted with a subsfrate and an agent, e.g., a drug, after which the cells are monitored to detect the effect of agent administration on the two populations.
- the mutant hydrolase is fused to a fluorescent protein.
- the fusion protein can thus be detected in cells by detecting the fluorescent protein or by contacting the cells with a substrate of the invention and detecting the functional group in the subsfrate.
- the detection of the fluorescent protein may be conducted before the detection of the functional group.
- the detection of the functional group may be conducted before the detection of the fluorescent protein.
- those cells can be contacted with additional substrates, e.g., those having a different functional group, and the different functional group in the cell detected, which functional group is covalently linked to mutant hydrolase not previously bound by the first subsfrate.
- a fusion of a mutant hydrolase and a transcription factor may be employed to monitor activation of transcription activation pathways.
- a fusion of a mutant hydrolase to a transcription factor present in the cytoplasm in an inactive form but which is translocated to the nucleus upon activation can monitor transcription activation pathways.
- biotin is employed as a functional group in a substrate and the fusion includes a mutant hydrolase fused to a protein of interest suspected of interacting with another molecule, e.g., a protein, in a cell.
- a mutant hydrolase fused to a protein of interest suspected of interacting with another molecule, e.g., a protein, in a cell.
- the use of such reagents permits the capture of the other molecule wliich interacts in the cell with the protein fused to the mutant hydrolase, thereby identifying and/or capturing (isolating) the interacting molecule(s).
- the mutant hydrolase is fused to a protein that is secreted. Using that fusion and a substrate of the invention, the secreted protein may be detected and/or monitored. Similarly, when the mutant hydrolase is fused to a membrane protein that is transported between different vesicular compartments, in the presence of the substrate, protein processing within these compartments can be detected. In yet another embodiment, when the mutant hydrolase is fused to an ion channel or transport protein, or a protein that is closely associated with the channel or transport protein, the movement of ions across cell or organelle membranes can be monitored in the presence of a substrate of the invention which contains an ion sensitive fluorophore. Likewise, when the mutant hydrolase is fused to proteins associated with vesicals or cytoskeleton, in the presense of the subsfrate, transport of proteins or vesicals along cytoskeletal structures can be readily detected.
- the functional group is a drug or toxin.
- a drug or toxin By combining a substrate with such a functional group with a fusion of a mutant hydrolase and a targeting molecule such as an antibody, e.g., one which binds to an antigen associated with specific tumor cells, a drug or toxin can be targeted within a cell or within an animal.
- the functional group may be a fluorophore which, when present in a substrate and combined with a fusion of a mutant hydrolase and a targeting molecule such as a single chain antibody, the targeting molecule is labeled, e.g., a labeled antibody for in vitro applications such as an ELISA.
- a mutant hydrolase on the cell surface when fused to a protein expressed on the cell surface, when combined with a substrate of the invention, e.g., one which contains a fluorophore, may be employed to monitor cell migration (e.g., cancer cell migration) in vivo or in vitro.
- the substrate of the invention is one that has low or no permeability to the cell membrane.
- such a system can be used to monitor the effect of different agents, e.g., drugs, on different pools of cells.
- the mutant hydrolase is fused to a HERG channel. Cells expressing such a fusion, in the presence of a subsfrate of the invention which includes a K+-sensitive fluorophore, may be employed to monitor the activity of the HERG channel, e.g., to monitor drug-toxicity.
- the substrate of the invention includes a functional group useful to monitor for hydrophobic regions, e.g., Nile Red, in a cell or organism.
- mutant hydrolases and subsfrates of the invention are useful in a wide variety of assays, e.g., phage display, panning, ELISA, Western blot, fluorometric microvolume assay technology (FMAT), and cell and subcellular staining.
- assays e.g., phage display, panning, ELISA, Western blot, fluorometric microvolume assay technology (FMAT), and cell and subcellular staining.
- oligonucleotides were synthesized, purified and sequenced by Promega Corporation (Madison, WI) or the University of Iowa DNA Facility (Iowa City, Iowa). Restriction enzymes and DNA modifying enzymes were obtained from Promega Corporation (Madison, WI), New England Biolabs, Inc. (Beverly, MA) or Stratagene Cloning Systems (La Jolla, CA), and were used according to the manufacturer's protocols. Competent E. coli JM109 were provided by Promega Corporation or purchased from Stratagene Cloning Systems. Small-scale plasmid DNA isolations were done using the Qiagen Plasmid Mini Kit (Qiagen Inc., Chatsworth, CA). DNA ligations were performed with pre-tested reagent kits purchased from Stratagene Cloning Systems. DNA fragments were purified with QIAquick Gel Extraction Kits or QIAquick PCR purification Kits purchased from Qiagen Inc.
- the vectors used for generating DhaA mutants and their fusions were as follows: pET21 (Invitrogen, Carlsbad, CA), pRL-null (Promega, Madison, WI), pGEX-5x-3 (Amersham Biosciences; Piscataway, NJ), and EGFP and DsRED2 (both from CLONTECH, Palo Alto, CA),.
- Sigma- Aldrich was the source of Anti Flag R monoclonal antibody antibodies (anti FLAG R M2 monoclonal antibody (mouse) (F3165)), Anti FLAG R M2 HRP Conjugate and Anti FLAG R M2 FITC conjugate (A8592 and F4049, respectively).
- Chemicon was the source of monoclonal anti-Renilla luciferase antibody (MAB4410).
- Promega Corp. was the source of HRP conjugated goat anti-mouse IgG and HRP-conjugated streptavidin (W4021 and G714, respectively).
- Glutathione Sepharose 4 FF, glutathione, MonoQ and Sephadex G-25 prepackaged columns were from Amersham Biosciences.
- Luria-Broth (“LB”) was provided by Promega Corporation. Methods PCR reactions. DNA amplification was performed using standard polymerase chain reaction buffers supplied by Promega Corp. Typically, 50 ⁇ l reactions included lx concentration of the manufacturer's supplied buffer, 1.5 mM MgCl 2 , 125 ⁇ M dATP, 125 ⁇ M dCTP, 125 ⁇ M dGTP, 125 ⁇ M dTTP, 0.10- 1.0 ⁇ M forward and reverse primers, 5 U AmpliTaq® DNA Polymerase and ⁇ 1 ng target DNA. Unless otherwise indicated, the thermal profile for amplification of DNA was 35 cycles of 0.5 minutes at 94°C; 1 minute at 55°C; and 1 minute at 72°C.
- TBST buffer 10 mM Tris-HCI, 150 mM NaCl, pH 7.6, containing 0.05% Tween 20
- blocking solution 3% dry milk or 1% BSA in TBST buffer
- membranes were washed with 50 ml of TBST buffer and incubated with anti-FLAG R monoclonal antibody M2 (dilution 1 :5,000), aaXi-Renilla luciferase monoclonal antibody (dilution 1 :5,000), or HRP-conjugated streptavidin (dilution 1 : 10,000) for 45 minutes at room temperature.
- Protein concentration was measured by the microtiter protocol of the Pierce BCA Protein assay (Pierce, Rockford, IL) using bovine serum albumin (BSA) as a standard.
- Rhodococcus rodochorus was kindly provided by Dr. Clifford J. Unkefer (Los Alamos National Laboratory, Los Alamos, NM) (Schindler et al., 1999; Newman et al., 1999). Bacteria were cultured in LB using a premixed reagent provided by Promega Corp. Freezer stocks of E. coli BL21 ( ⁇ DE3) pET3a (stored in 10% glycerol, -80°C) were used to inoculate Luria-Bertani agar plates supplemented with ampicillin (50 ⁇ g/ml) (Sambrook et al., 1989).
- Single colonies were selected and used to inoculate two 10 ml cultures of Luria-Bertani medium containing 50 ⁇ g/ml ampicillin.
- the cells were cultured for 8 hours at 37°C with shaking (220 rpm), after which time 2 ml was used to inoculate each of two 50 ml of Luria-Bertani medium containing 50 ⁇ g/ml ampicillin, which were grown overnight at 37°C with shaking.
- Ten milliliters of this culture was used to inoculate each of two 0.5 L Luria-Bertani medium with ampicillin.
- IPTG isopropyl- 1-thio- ⁇ -D- galactopyranoside
- CHO-K1 cells (ATCC-CCL61) were cultured in a 1:1 mixture of Ham's F12 nutrients and Dulbecco's modified minimal essential medium supplemented with 10% fetal bovine serum (FBS), 100 U/ml penicillin, and 100 mg/ml streptomycin, in an atmosphere of 95% air and 5% CO 2 at 37°C.
- Rat hippocampal (El 8) primary neurons were isolated as described below. Briefly, fragments of embryonic (El 8) rat hippocampus in HibernateTM E media (GIBCO, Invitrogen, Carlsbad, CA), obtained from Dr.
- Fluorescence Fluorescence in cells in 96 well plates was measured on fluorescent plate reader CytoFluorll (Beckman) at an E ex /E em appropriate for particular fluorophores (e.g., E ex /Eem for TAMRA is 540/575 nm).
- Example II A DhaA-Based Tethering System A. Wild-Type and Mutant DhaA Proteins and Fusions Thereof A halo-alkane dehydrogenase from Rhodococcus rhodochrous is a product of the DhaA gene (MW about 33 kDa). This enzyme cleaves carbon- halogen bonds in aliphatic and aromatic halogenated compounds, e.g., HaloC 3 - HaloCio.
- the catalytic center of DhaA is a typical "catalytic triad", comprising a nucleophile, an acid and a histidine residue.
- mutant DhaA vectors Promega' s in vitro mutagenesis kit which is based on four primer overlap-extension method was employed (Ho et al., 1989) to produce DhaA.H272 to F, A, G, or H mutations.
- the external primers were oligonucleotides 5'-
- GST-DhaA (WT or H272F/A/G/H mutants) fusion cassettes were constructed by cloning the appropriate DhaA coding regions into SaWNotl sites of pGEX5x3 vector. Two primers (5'-
- the resulting fragments were inserted into the SaWNotl site of pGEX- 5X-3, a vector containing a glutathione S-transferase (GST) gene, a sequence encoding a Factor Xa cleavage site, and multiple cloning sites (MCS) followed by a stop codon.
- GST glutathione S-transferase
- MCS multiple cloning sites
- Two complementary oligonucleotides (5'- CCGGTGACTACAAGGACGATGACGACAAGTGAAGC-3', sense, SEQ ID NO:9, and 5'-GCTTCACTTGTCGTCATCGTCCTTGTAGTCA-3', antisense, SEQ ID NO: 10) coding the Flag peptide (Kodak Imaging Systems, Rochester, NY) were annealed.
- the annealed DNA had an Agel site at the 5' end and an EcoR4711l at the 3' end.
- the annealed DNA was digested with Agel and EcoR47lll and then subcloned into the GST-DhaA.WT or GST-DhaA.H272F mutant constructs at the Agel and EcoR47lll sites. All gene fusion constructs were confirmed by DNA sequencing.
- enzyme expression was induced by the addition of isopropyl-b-D-thiogalactopyranoside (at a final concentration of0.5 mM) when the culture reached an optical density of 0.6 at 600 nm.
- the cells were harvested in Buffer A (10 mM Tris-SO 4 , 1 mM EDTA, 1 mM ⁇ - mercaptoethanol, and 10 % glycerol, pH 7.5), and disrupted by sonication using a Vibra CellTM sonicator (Sonics & Materials, Danbury, CT, USA). Cell debris was removed by centrifugation at 19,800 x g for 1 hour.
- the crude extract was further purified on a GSS-Sepharose 4 fast flow column (Amersham
- the reaction buffer for a pH-indicator dye system consisted of 1 mM HEPES-SO 4 (pH 8.2), 20 mM Na 2 SO 4 , and 1 mM EDTA. Phenol red was added to a final concentration 25 ⁇ g/ml. The halogenated compounds were added to apparent concentrations that could insure that the dissolved fraction of the substrate was sufficient for the maximum velocity of the dehalogenation reaction.
- the substrate-buffer solution was vigorously mixed for 30 seconds by vortexing, capped to prevent significant evaporation of the substrate and used within 1-2 hours. Prior to each kinetic determination, the phenol red was titrated with a standardized solution of HCl to provide an apparent extinction coefficient.
- the steady-state kinetic constants for DhaA were determined at 558 nm at room temperature on a Beckman Du640 spectrophotometer (Beckman Coulter, Fullerton, CA). Kinetic constants were calculated from initial rates using the computer program SigmaPlot.
- One unit of enzyme activity is defined as the amount required to dehalogenate 1.0 mM of substrate/minute under the specific conditions. Results As shown in Figure 4, using 0.1 mg/ml of enzyme and 10 mM subsfrate at pH 7.0-8.2, no catalytic activity was found with any of four mutants. Under these conditions, the wild-type enzyme had an activity with 1-Cl-butane of 5 units/mg of protein. Thus, the activity of the mutants was reduced by at least 700-fold.
- DhaA.H272F mutant was precipitated by 45-70% of (NH 4 ) 2 SO 4 . No precipitation of these proteins was observed at low (NH 4 ) 2 SO 4 concentrations.
- the DhaA.H272Q, DhaA.H272G and DhaA.H272A mutants could be precipitated by 10% (NH 4 ) 2 SO 4 . This is a strong indication of the significant change of the physico-chemical characteristics of the DhaA.H272Q,
- the chlorine atom of Cl-alkane is likely positioned in close proximity to the catalytic amino acids of DhaA (WT or mutant) ( Figure 2).
- the crystal structure of DhaA indicates that these amino acids are located deep inside of the catalytic pocket of DhaA (approximately 10 A long and about 20 A 2 in cross section).
- a linker was designed to connect the Cl- containing substrate with a functional group so that the functional group is located outside of the catalytic pocket, i.e., so as not to disturb/destroy the 3-D structure of DhaA.
- DhaA.WT was contacted with various Cl-alkane alcohols. As shown in Figure 6, DhaA.WT can hydrolyze 1 -Cl-alkane alcohols with 4-10 carbon atoms. Moreover, the initial rate of hydrolysis (IRH) of Cl- alkanes had an inverse relationship to the length of a carbon chain, although poor solubility of long-chain Cl-alkanes in aqueous buffers may affect the efficiency of the enzyme-substrate interaction.
- Ethanol extracts of Cl-alkanes or products of Cl-alkane hydrolysis were analyzed using analytical reverse phase C 18 column (Adsorbosphere HS, 5 ⁇ , 150 x 4.6 mm; Hewlett-Packard, Clifton, NJ) with a linear gradient of 10 mM ammonium acetate (pH 7.0):ACN (acetonitrile) from 25:75 to 1:99 (v/v) applied over 30 minutes at 1.0 ml/minute. Quantitation of the separated compounds was based on the integrated surface of the collected peaks.
- Figure 8 A shows the complete separation of the substrate and the product of the reaction.
- Figure 8B indicates that wild-type DhaA very efficiently hydrolyzed FAM-C 14 H 2 O 4 -Cl. Similar results were obtained when TAMRA- C 14 H 24 O 4 -Cl or ROX.5-C 14 H 2 O 4 -Cl were used as subsfrates (data not shown). Taken together these data confirm the results of the pH-indicator dye-based assay showing complete inactivation of DhaA by the DhaA.H272F mutation.
- C Covalent Tethering of Functional Groups to DhaA Mutants In Vitro Materials and Methods
- MALDI analysis of proteins was performed at the University of Wisconsin Biotechnology Center using a matrix assisted laser desorption/ionization time-of-life (MALDI-TOF) mass spectrometer Bruker Biflex III (Bruker, USA.).
- MALDI-TOF matrix assisted laser desorption/ionization time-of-life
- Oligonucleotides employed to prepare DhaA.D106 mutants include for DhaA.D106C:
- DhaA.D106E 5'-CTTGGGTTTGGAAGAGGTCGTCCTGGTCATCCACGAATGGGGC-3' (SEQ ID NO:52) and 5'-CTTGGGTTTGGAAGAGGTCGTCCTGGTCATCCACGAATGGGGC-3' (SEQ ID NO:52) and 5'-CTTGGGTTTGGAAGAGGTCGTCCTGGTCATCCACGAATGGGGC-3' (SEQ ID NO:52) and 5'-
- the annealed oligonucleotides contained a Styl site at the 5' end and the Blpl site at the 3' end.
- the annealed oligonucleotides were digested with Styl and Blpl and subcloned into GST-DhaA. WT or GST-DhaA.H272F at Styl and Blpl sites. All mutants were confirmed by DNA sequencing. Results
- the gels containing proteins were incubated with FAM ⁇ C 1 H 2 O - CI, TAMRA-C 1 H 2 O 4 -Cl, or ROX.5-C 14 H 24 O 4 -Cl and were analyzed by fluoroimager (Hitachi, Japan) at an E ex /Eem appropriate for each fluorophore. Gels containing proteins incubated with biotin-C 18 H 32 O 4 -Cl were transferred to a nitrocellulose membrane and probed with HRP conjugated streptavidin.
- TAMRA-C 1 H 2 O 4 -Cl (lanes 1 and 2 in panel A), FAM-C 14 H 24 O 4 -Cl (lanes 3 and 4 in panel A), and ROX.5-C 14 H 24 O 4 -Cl (lanes 5 and 6 in panel A) bound to DhaA.H272F (lanes 2, 4 and 6 in panel A) but not to DhaA.WT (lanes 1, 3 and 5 in panel A).
- Biotin-C 18 H 34 O -Cl bound to DhaA.H272F (lanes 9-14 in panel B) but not to DhaA.WT (lanes 1-8 in panel B).
- DhaA.H272 mutants bind the substrates in a highly specific manner, since pretreatment of the mutants with one of the substrates (biotin-C 18 H 3 O 4 -Cl) completely blocked the binding of another substrate (TAMRA-C 14 H 24 O 4 -Cl) ( Figure 10).
- DhaA mutants at another residue in the catalytic triad, residue 106 were prepared.
- the residue at position 106 in wild-type DhaA is D, one of the known nucleophilic amino acid residues.
- D at residue 106 in DhaA was substituted with nucleophilic amino acid residues other than D, e.g., C, Y and E, which may form a bond with a substrate which is more stable than the bond formed between wild-type DhaA and the substrate.
- cysteine is a known nucleophile in cysteine-based enzymes, and those enzymes are not known to activate water.
- a control mutant, DhaA.D106Q, single mutants DhaA.D106C, DhaA.D106Y, and DhaA.D106E, as well as double mutants DhaA.D106C:H272F, DhaA.D106E:H272F, DhaA.D106Q:H272F, and DhaA.D106Y:H272F were analyzed for binding to TAMRA-C 14 H 24 O -Cl ( Figure 12). As shown in Figure 12, TAMRA-C 14 H 24 O 4 -Cl bound to
- the bond formed between TAMRA-C 14 H 24 O -Cl and cysteine or glutamate at residue 106 in a mutant DhaA is stable relative to the bond formed between TAMRA-C 14 H 24 O 4 -Cl and wild-type DhaA.
- Other substitutions at position 106 alone or in combination with substitutions at other residues in DhaA may yield similar results.
- certain substitutions at position 106 alone or in combination with substitutions at other residues in DhaA may result in a mutant DhaA that forms a bond with only certain substrates.
- phRLuc-linker-DhaA.WT-Flag and phRLuc-linker-DhaA.H272F-Flag fusion cassettes were constructed by cloning the phRLuc coding region into the Nhel/Sall sites of the pCIneo vector which contains a myristic acid attachment peptide coding sequence (MAS).
- MAS myristic acid attachment peptide coding sequence
- Two primers (5'- GCTTCACTTGTCGTCATCGTCCTTGTAGTCA-3'; SEQ ID NO: 11) and (5'- GCTTCACTTGTCGTCATCGTCCTTGTAGTCA-3'; SEQ ID NO: 12) were designed to add Nhel and Sail sites to the 5' and 3' coding regions, respectively, of phRLuc and to amplify a 900 bp fragment from a phRLuc template (pGL3 vector, Promega).
- FIG. 13 A shows Renilla luciferase activity captured on the plate. Analysis of these data indicated that only the fusion containing the mutant DhaA was captured. The efficiency of capturing was very high (more than 50% of Renilla luciferase activity added to the plate was captured). In contrast, the efficiency of capturing of fusions containing wild-type DhaA as well as Renilla luciferase was negligibly small ( ⁇ 0.1%).
- Prefreatment of RXuc-connector- DhaA.H272F with a non-biotinylated substrate (TAMRA-C 14 H 24 O 4 -Cl) decreased the efficiency of capturing by about 80%. Further, there was no effect of prefreatment with a nonbiotinylated substrate on the capturing of the R.Luc- connector-DhaA.WT or Renilla luciferase.
- DhaA.WT-Flag and DhaA.H272F-Flag coding regions were excised from pGEX-5X-3.DhaA.WT-Flag or pGEX-5X-3.DhaA.H272F-Flag, respectively, gel purified, and inserted into Sall/Notl restriction sites of pCIneo.CMV vector (Promega). The constructs were confirmed by DNA sequencing.
- CHO-K1 cells were plated in 24 well plates (Labsystems) and transfected with a pCIneo-CMV.DhaA.WT-Flag or pCIneo-CMV.DhaA.H272F-Flag vector.
- Figures 14A and B show the binding of biotin-C 18 H 32 O 4 -Cl (A) and TAMRA-C 12 H 24 O 4 -Cl (B) to E. coli proteins in vivo.
- the low molecular band on Figure 14A is an E. coli protein recognizable by HRP-SA, while the fluorescence detected in the bottom part of Panel B was fluorescence of free TAMRA-C 12 H 24 O 4 -Cl.
- Figure 15 shows the binding of TAMRA-C 12 H 24 O 4 -Cl to eukaryotic cell proteins in vivo.
- CHO-K1 Cells ATCC-CCL61 were cultured in a 1:1 mixture of Ham's F12 nutrients and Dulbecco's modified minimal essential medium supplemented with 10% fetal bovine serum (FBS), 100 U/ml penicillin, and 100 mg/ml streptomycin, in an atmosphere of 95% air and 5% CO 2 at 37°C.
- FBS fetal bovine serum
- penicillin 100 U/ml penicillin
- streptomycin 100 mg/ml streptomycin
- the level of fluorescence in cells in 96 well plates was measured on fluorescent plate reader CytoFluor II (Beckman) at E ex /E em equal 480/520 nm and 540/575 nm for FAM- and TAMRA-modified subsfrates, respectively. Fluorescent images of the cells were taken on inverted epifluorescent microscope Axiovert-100 (Carl Zeiss) with filter sets appropriate for detection of FITC and TAMRA. Results
- CHO-K1 cells freated with TAMRA-C 14 H 28 O 4 - Cl could be quickly and efficiently loaded with TAMRA-C 14 H 28 O 4 -Cl.
- Image analysis indicated that the fluorescent dye crossed the cell membrane.
- Figure 16 also shows that TAMRA-C 14 H 28 O 4 -Cl could be efficiently washed out of the cells. Taken together these data indicate that the plasma membrane of CHO-K1 cells is permeable to TAMRA-C 1 H 28 O 4 -Cl.
- FAM-C 14 H 24 O 4 -Cl did not cross the plasma membrane of CHO-K1 cells, even when cells were prefreated with FAM-C 14 H 24 O -Cl at high concenfrations (i.e., 100 ⁇ M) and for much longer periods of time (60 minutes) (data not shown).
- the different permeabilities of the cell plasma membrane for various substrates of the invention e.g., TAMRA-C ⁇ H O -Cl and FAM-C 1 H 24 O 4 -Cl, provides a unique opportunity to label proteins expressed on the cell surface and proteins expressed inside the cell with different fluorophores, thereby allowing biplexing.
- a GFP-connector-DhaA fusion cassette was constructed by replacing the
- Cells transiently expressing GFP-connector-DhaA.WT-Flag or GFP- connector-DhaA.H272F-Flag fusion proteins were plated in LT-II chambers (Nunc) at a density of 30,000 cells/cm 2 . The next day, media was replaced with fresh media containing 25 ⁇ M of TAMRA-C 14 H 24 O 4 -Cl and the cells were placed back into in a CO 2 incubator for 60 minutes. At the end of the incubation, media containing substrates was removed, cells were quickly washed with PBS (pH 7.4; four consecutive washes: 1.0 ml/cm 2 ; 5 seconds each) and new media was added to the cells.
- PBS pH 7.4; four consecutive washes: 1.0 ml/cm 2 ; 5 seconds each
- the cells were placed back into in a CO 2 incubator and after 60 minutes the cells were quickly washed with PBS (pH 7.4; four consecutive washes: 1.0 ml/cm ; 5 seconds each). Fluorescent images of the cells were taken on inverted epifluorescent microscope Axiovert- 100 (Carl Zeiss) with filter sets appropriate for detection of GFP and TAMRA. Results
- cells transfected with either GFP- connector-DhaA.WT-Flag or GFP-connector-DhaA.H272F-Flag showed robust expression of the protein(s) with light emitting characteristics of GFP.
- Analysis of the images of the same cells taken with a TAMRA-filter set showed that cells expressing GFP-connector-DhaA.WT-Flag were dark and could not be distinguished from cells that do not express this fusion protein.
- cells expressing GFP-connector-DhaA.H272F-Flag were very bright and unmistakably recognizable.
- DhaA-based fusion proteins (see Table II) with DhaA at the C- or N-terminus of the fusion and a connector sequence, e.g., one having 13 to 17 amino acids, between the two proteins, were prepared. The data showed that the functional activity of both proteins in the fusion was preserved.
- CHO-K1 cells were plated in 96 well plates to a density of 5,000 cells per well. The next day, media was replaced with fresh media containing 0-100 ⁇ M concenfrations of Cl-alkanes and the cells were placed back into a CO 2 incubator for different periods of time. Viability of the cells was measured with CellTiter-GloTM Luminescence Cell Viability Assay (Promega) according to the manufacturer's protocol. Generally, 100 ⁇ l of CellTiter-GloTM reagent was added directly to the cells and the luminescence was recorded at 10 minutes using a DYNEX MLX microtiter plate luminometer.
- TAMRA-C 14 H 4 O -Cl showed no toxicity on CHO-Kl cells even after a 4 hour treatment at a 100 ⁇ M concentration the (the highest concentration tested). After a 24 hour treatment, no toxicity was detected at concentrations of 6.25 ⁇ M (the "maximum non-toxic concentration"). At concentrations > 6.25 ⁇ M, the relative luminescence in CHO-Kl cells was reduced in a dose-dependent manner with an IC 50 of about 100 ⁇ M. No toxicity of biotin-C 18 H 34 O 4 -Cl was observed even after 24 hours of treatment at 100 ⁇ M.
- ROX5-C 14 H 24 O 4 -Cl had a pronounced toxic effect as a reduction of the RLU in CHO-Kl cells could be detected after a 1 hour freatment.
- the IC50 value of this effect was about 75 ⁇ M with no apparent ATP reduction at a 25 ⁇ M concentration.
- the IC 50 value of ROX5-C 14 H 2 O 4 -Cl toxicity and the "maximum non-toxic concenfration" of ROX5-C 14 H 4 O 4 -Cl decreased in a time-dependent manner reaching 12.5 ⁇ M and 6.25 ⁇ M, respectively.
- TKO lipid was diluted by adding 7 ⁇ l of lipid per 100 ⁇ l of serum-free DMEM:F 12 media, and then 1.2 ⁇ g of transfection-grade DhaA.D106C DNA was added per 100 ⁇ l of lipid containing media. The mixture was incubated at room temperature for 15 minutes, and then 25 ⁇ l aliquots were transferred into individual culture chambers (0.3 ⁇ g DNA). Cells were returned to the incubator for 5-6 hours, washed two times with growth media, 300 ⁇ l of fresh growth media was added, and then cells were incubated for an additional 24 hours. Transfected or non-transfected control cells were incubated with 12.5 ⁇ M
- the PBS was replaced with 50% methanol in PBS and cells were incubated for 15 minutes, followed by a 15 minute incubation in 95% methanol.
- a third set of images was captured and then an equal volume mixture of methanol and acetone was applied to the cells and incubated for 15 minutes.
- the media was replaced with PBS and a fourth set of images was collected.
- the plasmid pTS32 harboring Staphylococcus aureus PCI blaZ gene was kindly provided by Dr. O. Herzberg (University of Maryland Biotechnology Institute).
- the blaZ gene has the following sequence: AGCTTACTAT GCCATTATTA ATAACTTAGC CATTTCAACA CCTTCTTTCA AATATTTATAATAAACTATT GACACCGATA TTACAATTGT AATATTATTG ATTTATAAAA ATTACAACTGTAATATCGGA GGGTTTATTT TGAAAAAGTT AATATTTTTA ATTGTAATTG CTTTAGTTTTAAGTGCATGT AATTCAAACA GTTCACATGC CAAAGAGTTA AATGATTTAG AAAAAAAATATAATGCTCAT ATTGGTGTTT ATGCTTTAGA
- CTATTTTGTTAGAACAAGTA CCTTATAATA AGTTAAATAA AAAAGTACAT ATTAACAAAG ATGATATAGTTGCTTATTCT CCTATTTTAG AAAAATATGT AGGAAAAGAT ATCACTTTAA AAGCACTTATTGAGGCTTCA ATGACATATA GTGATAATAC AGCAAACAAT AAAATTATAA AAGAAATCGGTGGAATCAAA AAAGTTAAAC AACGTCTAAA AGAACTAGGA GATAAAGTAA CAAATCCAGTTAGATATGAG ATAGAATTAA ATTACTATTC ACCAAAGAGC AAAAAAGATA CTTCAACACCTGCTGCCTTC GGTAAGACCC TTAATAAACT TATCGCCAAT GGAAAATTAA GCAAAGAAAACAAAAAATTC TTACTTGATT TAATGTTAAA TAATAAAAGC GGAGATACTT TAATTAAAGACGGTGTTCC A AAAGACTATA AGGTTGCTGA TAAAAGTGGT CAAGCAATAA CATATGCTTCTAGAAATG
- GST-blaZ (WT and E166D, N170Q, or E166D:N170Q mutants) fusion cassettes were constructed by infroducing point mutations into the blaZ gene and cloning the blaZ coding regions into SaWAgel sites of pGEX5x3 vector.
- the internal mutagenic primers were as follows: E166D (5'- CCAGTTAGATATGACATAGAATTAAATTACTATTCACC-3', SEQ ID NO:56; 5'-GGTGAATAGTAATTTAATTCTATGTCATATCTAACTGG-3', SEQ ID NO:57); N170Q (5'- CCAGTTAGATATGAGATAGAATTACAGTACTATTCACC-3 ' , SEQ ID NO:58; and 5'-GGTGAATAGTACTGTAATTCTATCTCTAACTGG- 3', SEQ ID NO:59); and E166D:N170Q
- SEQ ID NO:63 were designed to add N-terminal Sail site and a Kozak sequence to the 5' coding region, add sa. Agel site to the 3' coding regions ofblaZ, and to amplify a 806 bp fragment from a blaZ.W ⁇ template. The resulting fragment was inserted into the SaWAgel site of the vector pGEX-5X-3 containing a glutathione S-transferase (GST) gene, a sequence coding a Factor Xa cleavage site, and multiple cloning sites (MCS) followed by a sequence coding for Flag and stop codons. These gene fusion constructs were confirmed by DNA sequencing.
- GST glutathione S-transferase
- MCS multiple cloning sites
- the GST-blaZ (WT or mutants) fusion proteins were overexpressed in competent E. coli BL21 ( ⁇ DE3) cells and purified essentially as described for DhaA and GST-DhaA fusion proteins (except the potassium phosphate buffer (0.1 M, pH 6.8) was used instead of Buffer A). Homogeneity of the proteins was verified by SDS-PAGE.
- the cephalosporin core links a 7-hydroxycoumarin to a fluorescein.
- excitation of the coumarin results in FRET to the fluorescein, which emits green light (E em - 520 nm).
- Cleavage of CCF2 by ⁇ -lactamase results in spatial separation of the two dyes, disrupting FRET such that excitation of coumarin now gives rise to blue fluorescence (E ex - 447 nm).
- CCF2 was purchased from Aurora Biosciences Corporation (San Diego, CA). Reduction of the FRET signal and an increase in blue fluorescence were measured on Fluorescence Multi-well Plate Reader CytoFluorll (PerSeptive Biosystems, Framingham, MA, USA). Results
- All ⁇ -lactamases including ⁇ -lactamase from Staphylococcus aureus PCI, hydrolyze ⁇ -lactams of different chemical structure. The efficiency of hydrolysis depends on the type of the enzyme and chemical structure of the substrate. Penicillin is considered to be a preferred subsfrate for ⁇ -lactamase from Staphylococcus aureus PCI.
- the bond between blaZ mutants and fluorescent subsfrates was very strong, and probably covalent, since boiling with SDS followed by SDS-PAGE did not disrupt the bond.
- the binding efficiency of double mutant b/ ⁇ Z.E166D:N170Q was much higher than binding efficiency of either of the single mutants, and the binding efficiency of b Z.N170Q was higher than binding efficiency of blaZ.El66D.
- an amino acid substitution at position 166 or 170 e.g., Glul66Asp or Asnl70Gly enables the mutant beta-lactamase to trap a substrate and therefore tether the functional group of the substrate to the mutant beta-lactamase via a stable, e.g., covalent, bond.
- mutation of an amino acid that has an auxiliary effect on H O activation increased the efficiency of tethering.
- a GFP-connector-DhaA.H272F-NLS3 fusion cassette was constructed by inserting a sequence encoding NLS3 (three tandem repeats of the Nuclear Localization Sequence (NLS) from simian virus large T-antigen) into the Agel/BamHl sites of a pCIneo.GFP-connector-DhaA.H272F-Flag vector.
- NLS3 Nuclear Localization Sequence from simian virus large T-antigen
- a DhaA.H272F- ⁇ -arr ⁇ s ⁇ in2 fusion cassette was constructed by replacing the pGFP coding region in Packard's vector encoding GFP - ⁇ -arrestin2 (Packard #6310176- 1 F 1 ) with the DhaA.H272F-Flag coding region.
- Two primers (5'-ATTATGCTGAGTGATATCCC-3'; SEQ ID NO:39, and 5*-
- CTCGGTACCAAGCTCCTTGTAGTCA-3'; SEQ ID NO:40) were designed to add a Kpnl site to the 3 ' coding region of DhaA, and to amplify a 930 bp fragment from a ⁇ GEX5X-3.DhaA.H272F-Flag template.
- the pGFP 2 coding region was excised with Nhel and Kpnl restriction enzymes, then the 930 bp fragment containing encoding DhaA.H272F was inserted into the Mel and Kpnl sites of the GFP 2 - ⁇ -arrestin2 coding vector.
- the sequence of the fusion construct was confirmed by DNA sequencing.
- CHO-Kl or 3T3 cells transiently expressing GFP-connector- DhaA.H272F-NLS3, GFP - ⁇ -arrestin2 or DhaA.H272F- ⁇ -arrestin2 fusion proteins were plated in LT-II chambers (Nunc) at a density of 30,000 cells/cm 2 . The next day, media was replaced with fresh media containing 25 ⁇ M of TAMRA-C 1 H 24 O -Cl and the cells were placed back into a CO 2 incubator for 60 minutes.
- GFP and TAMRA were co- localized in the cell nucleus of cells expression GFP-connector-DhaA.H272F- NLS3 and contacted with TAMRA-C 14 H 24 O 4 -Cl.
- GFP- ⁇ -arrestin2 expressing cells have a typical ⁇ -arrestin2 cytosolic localization.
- a fluoroscan of the SDS-PAGE gel of DhaA.H272F- ⁇ -arrestin2 showed strong binding of a TAMRA containing DhaA substrate to cells expressing DhaA.H272F- ⁇ -arrestin2.
- Haloalkane dehalogenases use a three-step mechanism for cleavage of the carbon-halogen bond. This reaction is catalyzed by a triad of amino acid residues composed of a nucleophile, base and acid which, for the haloalkane dehalogenase from Xanthobacter autotrophicus (DhlA), are residues Aspl24, His289 and Asp260, respectively (Franken et al., 1991), and in Rhodococcus dehalogenase enzyme (DhaA), Aspl06, His272 and Glul30 (Newman et al., 1999).
- DhlA Rhodococcus dehalogenase enzyme
- the role of the third member of the catalytic triad is not yet fully understood.
- the catalytic acid is hydrogen bonded to the catalytic His residue and may assist the His residue in its function by increasing the basicity of nitrogen in the imidazole ring.
- Krooshof et al. (1997), using site-directed mutagenesis to study the role of the DhlA catalytic acid Asp260, demonstrated that a D260N mutant was catalytically inactive. Furthermore, this residue apparently had an important structural role since the mutant protein accumulated mainly in inclusion bodies.
- haloalkane dehalogenase from Sphinogomonas paucimobilis is the enzyme involved in ⁇ -hexachlorocyclohexane degradation (Nagata et al., 1997).
- Hynkova et al., (1999) replaced the putative catalytic residue (Glu-132) of the LinB with glutamine (Q) residue.
- Glu-132 putative catalytic residue
- Q glutamine
- coli strain JM109 (e!4-(McrA-) recAl endAl gyrA96 thi-1 hsdR17(tK- mK+) supE44 relAl A(lac-proAB) [F' traD36 proAB lacPZ ⁇ Ml ⁇ ]) was used as the host for gene expression and whole cell enzyme labeling studies.
- a mutant plasmid containing a H272F mutation in DhaA designated pGEX5X3DhaAH272F-FLAG, was used as a positive control in labeling studies and the cloning vector ⁇ GEX5X3 was used as a negative control.
- oligonucleotides used for mutagenesis is shown below.
- the underlined nucleotides indicate the position of the altered codons.
- the oligonucleotides were synthesized by Integrated DNA Technologies (Coralville, IA) at the 100 nmole scale and modified by phosphorylation at the 5' end.
- Site-directed mutagenesis was performed using the QuikChange Multi kit according to the manufacturer's instructions (Stratagene, La Jolla, CA). The mutagenesis reactions were introduced into competent E. coli XL10 Gold cells and transformants were selected on LB agar plates containing ampicillin (100 ⁇ g/mL). Plasmid DNA isolated from individual transformants was initially screened for the loss of an Ec RI site due to replacement of the glutamate codon (GAAttc). Clones suspected of containing the desired codon change from each reaction were selected and subjected to DNA sequence analysis (SeqWright, Houston, TX). The primer used to confirm the sequence of the mutants in the pGEX5X3 vector was as follows: 5' GGGCTGGCAAGCCACGTTTGGTG 3' (SEQ ID NO:44).
- DhaA mutant analysis The three DhaA El 30 substitution mutants were compared to the following constructs: Wild-type DhaA, DhaA.H272F, and a DhaA negative control (pGEX5X3 vector only).
- Overnight cultures of each clone were grown in 2 mL of LB containing ampicillin (100 ⁇ g/mL) by shaking at 30°C. The overnight cultures were diluted 1 :50 into a sterile flask containing 50 mL fresh LB medium and ampicillin (100 ⁇ g/mL). The cultures were incubated with shaking at 25°C to minimize the production of insoluble protein species.
- IPTG 0.1 mM
- TAMRA tetramethylrhodamine
- the cell density of each culture was adjusted to prior to adding subsfrate to a concentration of 15 ⁇ M.
- the cells were incubated with gentle agitation at 4°C for approximately 18 hours.
- 20 ⁇ l of cells from each labeling reaction was added to 6 ⁇ l of 4X SDS loading dye and the samples were boiled for about 3 minutes prior to being loaded onto a 4-20% acrylamide gel (Tris glycine).
- a 25 ⁇ l sample of each labeling reaction was added to 6 ⁇ l of 4X SDS loading dye and the samples were boiled for about 3 minutes prior to being loaded onto a 4-20% acrylamide gel (Tris glycine).
- the gels were imaged using a Fluorlmager SI instrument (Amersham Biosciences, Piscataway, NJ) set to detect emission at 570 nm.
- DhaA catalytic acid was probed by site-directed mutagenesis.
- the DhaA codon El 30 was replaced with a codon for glutamine (Q), leucine (L) or alanine (A), as these substitutions would likely be least disruptive to the structure of the enzyme.
- restriction endonuclease screening and DNA sequence analysis was used to verify the desired codon changes. Sequence verified DhaA.E130Q, DhaA.E130L and DhaA.E OA clones, designated CI, A5 and A12, respectively, were chosen for further analysis.
- the E130 mutants were analyzed for protein expression and for their ability to form a covalent alkyl- enzyme intermediate with a TAMRA labeled haloalkane subsfrate.
- the three El 30 gene variants were over-expressed inE. coli JM109 cells following induction with IPTG. SDS-PAGE analysis of crude cell lysates showed that cultures expressing the wild-type and mutant dhaA genes accumulated protein to approximately the same level ( Figure 26; lanes 2, 4, 6, 8, 10, and 12).
- the DhaA.E130 mutants were also examined for their ability to generate an alkyl-enzyme covalent intermediate. Crude lysates prepared from IPTG induced cultures of the various constructs were incubated in the presence of the TAMRA labeled substrate. Figure 28 showed that the DhaA.H272F mutant (lane 3) was very efficient at producing this intermediate. No such product could be detected with either the WT DhaA or negative control lysates. Upon initial examination, the DhaA.E130 mutants did not appear to produce detectable levels of the covalent product. However, upon closer inspection of the fluoroimage extremely faint bands were observed that could potentially represent minute amounts of the covalent intermediate ( Figure 28; lanes 5-7). Based on these results, the ability of whole cells to generate a covalent, fluorescent alkyl- enzyme intermediate was investigated.
- Figure 29 shows the results of an in vivo labeling experiment comparing each of the DhaA.E130 mutants with positive (DhaA.H272F mutant) and negative (DhaA-) controls.
- the DhaA.H272F mutant was capable of generating a covalent alkyl-enzyme intermediate as evidenced by the single fluorescent band near the molecular weight predicted for the GST-DhaA-Flag fusion ( Figure 29, lane 3).
- no such product could be detected with either the wild-type or negative control cultures ( Figure 29, lanes 2 and 3) but very faint fluorescent bands migrating at the correct position were again detected with all three DhaA.E130 substituted mutants ( Figure 29, lanes 5-7).
- the cells were lysed by trituriation through a needle (IM1 23GTW).
- IM1 23GTW IM1 23GTW
- cell lysates were incubated with MagnaBind Streptavidin coated beads (Pierce #21344) according to the manufacturer's protocol. Briefly, cell lysates were incubated with beads for 60 minutes at room temperature (RT) using a rotating disk.
- Biotin-C 18 H 32 O -Cl was efficiently hydrolyzed by wild-type DhaA, and covalently bound to DhaA.H272F and DhaA.H272F fusion proteins in vitro and in vivo. Moreover, binding was observed both in E. coli and in mammalian cells. Control experiments indicated that about 80% of the DhaA.H272F-Flag protein expressed in CHO-Kl cells was labeled after a 60 minute treatment. CHO-Kl cells transiently expressing DhaA.H272F-Flag were treated with biotin-C 18 H 32 O 4 -Cl.
- Biotin-C 18 H 32 O -Cl treated cells were lysed and cell lysates were incubated with SA-coated beads. Binding of DhaA.H272F to beads was analyzed by Western blot using anti-Flag R antibody. As shown in Figure 30D, DhaA.H272F-Flag capturing was not detected in the absence of biotin- C 18 H 32 O 4 -Cl freatment. At the same time, more than 50% of the DhaA.H272F- Flag expressed in cells was captured on SA-coated beads if the cells were treated with biotin-Ci 8 H 32 O -Cl.
- a synthetic DhaA.H272F gene was prepared which had a human codon bias, low CG content, selected restriction enzyme recognition sites and a reduced number of transcription regulatory sites.
- the amino acid sequence of a codon-optimized DhaA gene and flanking sequences included: 1) a Gly inserted at position 2, due to introduction of an improved Kozak sequence (GCCACCATGG; SEQ ID NO:45) and a BamHl site (thus the H272F active site mutation in DhaA mutants with the Gly insertion is at position 273); 2) a A292G substitution due to introduction of a Smal/Xmal/Aval site wliich, in the DhaA mutant with the Gly insertion, is at position 293; 3) the addition of Ala-Gly at the C-terminus due to infroduction of
- SEQ ID NO:51 has the following sequence: atgtcagaaatcggtacaggcttccccttcgacccccattatgtggaag cctgggcgagcgtat gcactacgtcgatgttggaccgcgggatggcacgcctgtgctgttcctgcacggtaacccgacct cgtcctacctgtggcgcaacatcatcccgcatgtagcaccgagtcatcggtgcattgctccagac ctgatcgggatgggaaaatcggacaaaccagacctcgattattttcttcgacgaccacgtccgcta cctcttcatcgaagcctttttgggtttgggaagctctttcatcgaagcctttttga
- Codon usage data was obtained from the Codon Usage Database (http://www.kazusa.or.jp/codon ), wliich is based on: GenBank Release 131.0 of 15 August 2002 (See, Nakamura et al., 2000). Codon usage tables were downloaded for: HS: Homo sapiens [gbpri] 50,031 CDS's (21,930,294 codons); MM: Mus musculus [gbrod] 23,113 CDS's (10,345,401 codons); EC:
- HS and MM were compared and found to be closely similar, thus the HS table was used.
- EC and EC K12 were compared and found to be closely similar, therefore the EC KI 2 table was employed.
- codons The overall strategy for selecting codons was to adapt codon usage for optimal expression in mammalian cells while avoiding low-usage E. coli codons. One "best" codon was selected for each amino acid and used to back-translate the desired protein sequence to yield a starting gene sequence. Another selection criteria was to avoid high usage frequency HS codons which contain CG dinucleotides, as methylation of CG has been implicated in transcriptional gene regulation and can cause down-regulation of gene expression in stable cell lines. Thus, all codons containing CG (8 human codons) and TA (4 human codons, except for Tyr codons) were excluded. Codons ending in C were also avoided as they might form a CG with a downstream codon. Ofthe remaining codons, those with highest usage in HS were selected, unless a codon with a slightly lower usage had substantially higher usage in E. coli. DhaA Gene Sequences
- DhaA.v2.1 codon usage tables in Vector NTI 8.0 (Informax) were employed.
- the DhaA.v2.1 protein sequence (SEQ ID NO:48) was back translated to create a starting gene sequence, hD ? «A.v2.1-0, and flanking regions were then added, as described above, to create hD/z ⁇ A.v2.1- 0F (SEQ ID NO:49).
- promoter modules i.e., 2 transcription factor binding sites with defined orientation
- eukaryotic transcription regulatory sites including a Kozak sequence, splice donor/acceptor sequences, polyA addition sequences
- prokaryotic transcription regulatory sequences including E. coli promoters
- Matrix name (core similarity threshold/matrix similarity threshold): U$AatII (0.75/1.00), U$BamHI (0.75/1.00), U$BglI (0.75/1.00), U$BglII (0.75/1.00), U$BsaI (0.75/1.00), U$BsmAI (0.75/1.00), U$BsmBI (0.75/1.00), U$BstEII (0.75/1.00), U$BstXI (0.75/1.00), U$Csp45I (0.75/1.00), U$CspI (0.75/1.00), U$DraI (0.75/1.00), U$EC-P-10 (1.00/Optimized), U$EC- P-35 (1.00/Optimized), U$EC-Prom (1.00/Optimized), U$EC-RBS (0.75/1.00), U$EcoRI (0.75/1.00), U$EcoRV (0.75/1.00), U$
- SequenceShaper remaining thresholds e.g. 0.70/Opt-0.05.
- C'AATTG A unique Munl/Mfel (C'AATTG) site was introduced to allow removal of the C-terminal 34 amino acids, including a putative myristylation site (GSEIAR) near the C-terminus. Another unique site, a Nrul site, was introduced to allow removal ofthe C-terminal 80-100 amino acids.
- Vertebrate transcription factor binding sequence families (core similarity: 0.75/matrix similarity: opt) and promoter modules (default parameters: optimized threshold or 80% of maximum score) found in different DhaA genes are shown in Table V.
- the remaining transcription factor binding sequence matches in hDhaA.v2.1-6F included in the 5' flanking region: Family: V$NEUR (NeuroD, Beta2, HLH domain), best match: DNA binding site for NEURODl (BETA-2 / E47 dimer) (MEDLINE 9108015): in the open reading frame: Family: VSGATA (GATA binding factors), best match: GATA-binding factor 1 (MEDLINE 94085373). Family: V$PCAT (Promoter CCAAT binding factors), best match: cellular and viral CCAAT box, (MEDLINE 90230299).
- VSRXRF Farnesoid X - activated receptor
- RXR FXR dimer Farnesoid X - activated receptor
- V$HNF1 Hepatic Nuclear Factor 1
- VSBRNF Brn POU domain factors
- POU transcription factor Brn-3 MEDLINE 9111308
- V$RBIT (Regulator of B-Cell IgH transcription), best match: Bright, B cell regulator of IgH franscription (MEDLINE 96127903).
- V$CREB Camp-Responsive Element Binding proteins
- E4BP4, bZIP domain transcriptional repressor
- Family: V$HOMS Homeodomain subfamily S8
- Family: V$NKXH NKX/DLX - Homeodomain sites
- Family: V$TBPF Tiata- Binding Protein Factor
- V$NKXH NKX/DLX - Homeodomain sites
- Prostate-specific homeodomain protein NKX3.1 MEDLINE 10871312.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Immunology (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Medicinal Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Food Science & Technology (AREA)
- Cell Biology (AREA)
- Biophysics (AREA)
- Tropical Medicine & Parasitology (AREA)
- Enzymes And Modification Thereof (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
- Pyrane Compounds (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006503174A JP4748685B2 (en) | 2003-01-31 | 2004-01-30 | Covalent tethering of functional groups to proteins |
CA002514564A CA2514564A1 (en) | 2003-01-31 | 2004-01-30 | Covalent tethering of functional groups to proteins |
EP04707032.1A EP1594962B1 (en) | 2003-01-31 | 2004-01-30 | Covalent tethering of functional groups to proteins |
AU2004211584A AU2004211584B2 (en) | 2003-01-31 | 2004-01-30 | Covalent tethering of functional groups to proteins |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US44409403P | 2003-01-31 | 2003-01-31 | |
US60/444,094 | 2003-01-31 | ||
US47465903P | 2003-05-30 | 2003-05-30 | |
US60/474,659 | 2003-05-30 |
Publications (3)
Publication Number | Publication Date |
---|---|
WO2004072232A2 true WO2004072232A2 (en) | 2004-08-26 |
WO2004072232A9 WO2004072232A9 (en) | 2004-10-14 |
WO2004072232A3 WO2004072232A3 (en) | 2005-01-27 |
Family
ID=32871922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2004/002607 WO2004072232A2 (en) | 2003-01-31 | 2004-01-30 | Covalent tethering of functional groups to proteins |
Country Status (7)
Country | Link |
---|---|
US (9) | US7238842B2 (en) |
EP (5) | EP2455457B1 (en) |
JP (1) | JP4748685B2 (en) |
KR (1) | KR20050109934A (en) |
AU (1) | AU2004211584B2 (en) |
CA (1) | CA2514564A1 (en) |
WO (1) | WO2004072232A2 (en) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006132607A1 (en) * | 2005-06-10 | 2006-12-14 | National University Of Singapore | Mutant allergen(s) |
WO2006093529A3 (en) * | 2004-07-30 | 2007-03-22 | Promega Corp | Covalent tethering of functional groups to proteins and substrates therefor |
US7238842B2 (en) | 2003-01-31 | 2007-07-03 | Promega Corporation | Covalent tethering of functional groups to proteins |
WO2008054821A2 (en) * | 2006-10-30 | 2008-05-08 | Promega Corporation | Mutant hydrolase proteins with enhanced kinetics and functional expression |
US7425436B2 (en) | 2004-07-30 | 2008-09-16 | Promega Corporation | Covalent tethering of functional groups to proteins and substrates therefor |
EP1969374A2 (en) * | 2006-01-04 | 2008-09-17 | Stanford University | Self-illuminating quantum dot systems and methods of use thereof |
WO2010012962A2 (en) | 2008-07-31 | 2010-02-04 | Cis-Bio International | Method for detecting membrane protein internalization |
WO2010125314A1 (en) | 2009-04-30 | 2010-11-04 | Cis-Bio International | Method for detecting compounds modulating dimers of vft domain membrane proteins |
WO2011018586A2 (en) | 2009-08-13 | 2011-02-17 | Cis Bio International | Method for predetermining the binding of a given compound to a membrane receptor |
EP2395358A3 (en) * | 2004-07-30 | 2012-10-24 | Promega Corporation | Covalent tethering of functional groups to proteins and substrates therefor |
JP2013013412A (en) * | 2006-05-25 | 2013-01-24 | Inst For Advanced Study | Method for identifying sequence motif, and application thereof |
WO2013038113A1 (en) | 2011-09-16 | 2013-03-21 | Cisbio Bioassays | Method for determining the glycosylation of an antibody |
US8470523B2 (en) | 2005-09-05 | 2013-06-25 | Cis Bio International | Method for detecting intracellular interaction between biomolecules |
WO2013140074A1 (en) | 2012-03-19 | 2013-09-26 | Cisbio Bioassays | Method for determining the ability of an antibody to keep cells close to one another |
WO2014074445A1 (en) | 2012-11-06 | 2014-05-15 | New England Biolabs. Inc. | Compositions and methods for the transfer of a hexosamine to a modified nucleotide in a nucleic acid |
WO2014153408A1 (en) | 2013-03-19 | 2014-09-25 | Directed Genomics, Llc | Enrichment of target sequences |
EP2850078A4 (en) * | 2012-08-28 | 2016-01-27 | Pierce Biotechnology Inc | Benzopyrylium compounds |
WO2016093838A1 (en) | 2014-12-11 | 2016-06-16 | New England Biolabs, Inc. | Enrichment of target sequences |
US9790537B2 (en) | 2014-01-29 | 2017-10-17 | Promega Corporation | Quinone-masked probes as labeling reagents for cell uptake measurements |
US9840730B2 (en) | 2010-11-02 | 2017-12-12 | Promega Corporation | Oplophorus-derived luciferases, novel coelenterazine substrates, and methods of use |
US9927430B2 (en) | 2014-01-29 | 2018-03-27 | Promega Corporation | Pro-substrates for live cell applications |
WO2019062876A1 (en) | 2017-09-29 | 2019-04-04 | 华东理工大学 | Fluorescent probe, preparation method therefor and use thereof |
WO2019218876A1 (en) | 2018-05-18 | 2019-11-21 | 华东理工大学 | Fluorescent probe and preparation method and use thereof |
US11034991B2 (en) | 2016-03-16 | 2021-06-15 | Oryzon Genomics S.A. | Methods to determine KDM1A target engagement and chemoprobes useful therefor |
WO2021183921A1 (en) | 2020-03-12 | 2021-09-16 | New England Biolabs, Inc. | A rapid diagnostic test for lamp |
US11209437B2 (en) | 2016-07-20 | 2021-12-28 | Fluorescence Diagnosis (Shanghai) Biotech Company | Fluorescent probe and preparation method and use thereof |
WO2022040443A2 (en) | 2020-08-21 | 2022-02-24 | New England Biolabs, Inc. | A rapid diagnostic test for lamp |
US11453870B2 (en) | 2021-01-28 | 2022-09-27 | Genequantum Healthcare (Suzhou) Co. Ltd. | Ligase fusion proteins and application thereof |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070087400A1 (en) * | 2004-07-30 | 2007-04-19 | Aldis Darzins | Covalent tethering of functional groups to proteins and substrates therefor |
CA2581122A1 (en) * | 2004-12-07 | 2006-06-15 | Effector Cell Institute, Inc. | Cell measuring method |
JP2009512443A (en) * | 2005-10-20 | 2009-03-26 | ザ スクリップス リサーチ インスチチュート | Fc labeling for immunostaining and immunotargeting |
US20070224620A1 (en) * | 2006-02-08 | 2007-09-27 | Promega Corporation | Compositions and methods for capturing and analyzing cross-linked biomolecules |
US7449299B2 (en) * | 2006-03-10 | 2008-11-11 | David Bauer | Quantum dot nanoparticle-based universal neurotoxin biosensor |
DE102006045607A1 (en) * | 2006-09-25 | 2008-03-27 | Leica Microsystems Cms Gmbh | Method for spatially high-resolution examination of a structure of a sample labeled with a fluorescent substance |
US8476014B2 (en) * | 2010-02-19 | 2013-07-02 | Los Alamos National Security, Llc | Probe and method for DNA detection |
CN103180324A (en) | 2010-11-02 | 2013-06-26 | 普罗美加公司 | Coelenterazine derivatives and methods of using same |
WO2012078559A2 (en) | 2010-12-07 | 2012-06-14 | Yale University | Small-molecule hydrophobic tagging of fusion proteins and induced degradation of same |
JP6522339B2 (en) | 2011-11-21 | 2019-05-29 | プロメガ コーポレイションPromega Corporation | Carboxy X Rhodamine Analogue |
JP6231503B2 (en) | 2012-03-09 | 2017-11-15 | プロメガ コーポレイションPromega Corporation | pH sensor |
US9585975B2 (en) * | 2012-04-27 | 2017-03-07 | Northwestern University | MRI contrast agents |
WO2014022423A2 (en) | 2012-07-31 | 2014-02-06 | Hantash Basil M | Hla g-modified cells and methods |
SG11201504520XA (en) | 2012-12-12 | 2015-07-30 | Promega Corp | Compositions and methods for capture of cellular targets of bioactive agents |
US10168323B2 (en) | 2013-03-15 | 2019-01-01 | Promega Corporation | Compositions and methods for capture of cellular targets of bioactive agents |
EP2969435B1 (en) | 2013-03-15 | 2021-11-03 | Promega Corporation | Substrates for covalent tethering of proteins to functional groups or solid surfaces |
EP3137512B1 (en) * | 2014-04-30 | 2021-05-26 | Arlanxeo Singapore Pte. Ltd. | Diluent for the production of butyl rubber |
US10618907B2 (en) | 2015-06-05 | 2020-04-14 | Promega Corporation | Cell-permeable, cell-compatible, and cleavable linkers for covalent tethering of functional elements |
EP3429575A4 (en) * | 2016-03-16 | 2019-10-23 | Purdue Research Foundation | Carbonic anhydrase ix targeting agents and methods |
WO2018148489A1 (en) | 2017-02-09 | 2018-08-16 | Promega Corporation | Analyte detection immunoassay |
EP3845902B1 (en) * | 2017-06-23 | 2022-09-14 | NanoTemper Technologies GmbH | Methods for measuring inter- and/or intra-molecular interactions |
JP7432529B2 (en) | 2018-05-30 | 2024-02-16 | プロメガ コーポレイション | Broad Spectrum Kinase Binders |
EP3891503A2 (en) | 2018-12-04 | 2021-10-13 | Promega Corporation | Broad spectrum gpcr binding agents |
EP3941195A4 (en) | 2019-03-20 | 2023-03-22 | Promega Corporation | Photoaffinity probes |
EP3816180A1 (en) | 2019-10-31 | 2021-05-05 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Circularly permutated haloalkane transferase fusion molecules |
US20220275350A1 (en) | 2019-04-16 | 2022-09-01 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e. V. | Circularly permutated haloalkane transferase fusion molecules |
CN110646417B (en) * | 2019-10-24 | 2021-10-15 | 福建医科大学 | Rapid pyridoxal phosphate determination method taking nanogold as chromogenic probe |
US12061202B2 (en) | 2019-12-10 | 2024-08-13 | Promega Corporation | Compositions and methods for bioluminescent detection using multifunctional probes |
EP4153770A2 (en) | 2020-05-22 | 2023-03-29 | Promega Corporation | Enhancement of kinase target engagement |
JP2023540934A (en) | 2020-08-28 | 2023-09-27 | プロメガ コーポレイション | RAS protein target engagement assay |
EP4206674A1 (en) | 2021-12-28 | 2023-07-05 | Encodia, Inc. | High-throughput serotyping and antibody profiling assays |
US20240174992A1 (en) | 2022-05-04 | 2024-05-30 | Promega Corporation | Split modified dehalogenase variants |
WO2023215514A2 (en) | 2022-05-04 | 2023-11-09 | Promega Corporation | Bioluminescence-triggered photocatalytic labeling |
WO2023215432A1 (en) | 2022-05-04 | 2023-11-09 | Promega Corporation | Circularly permuted dehalogenase variants |
US20240132859A1 (en) | 2022-05-04 | 2024-04-25 | Promega Corporation | Modified dehalogenase with extended surface loop regions |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001053303A1 (en) | 2000-01-20 | 2001-07-26 | Centre National De La Recherche Scientifique (Cnrs) | Organosilicon compounds, preparation method and uses thereof |
WO2001060415A1 (en) | 2000-02-18 | 2001-08-23 | The Immune Response Corporation | Methods and compositions for gene delivery |
Family Cites Families (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1229532B (en) | 1961-04-14 | 1966-12-01 | Boehringer Sohn Ingelheim | Process for the preparation of new piperidine derivatives |
US3131122A (en) * | 1961-04-14 | 1964-04-28 | Boehringer Sohn Ingelheim | Method of producing analgesia with n-substituted-4-phenyl-4-carbalkoxypiperidines |
US4574079A (en) * | 1983-05-27 | 1986-03-04 | Gavras Haralambos P | Radiolabeled angiotensin converting enzyme inhibitors for radiolabeling mammalian organ sites |
US4612302A (en) | 1983-11-14 | 1986-09-16 | Brigham And Women's Hospital | Clinical use of somatostatin analogues |
US4684620A (en) | 1984-09-04 | 1987-08-04 | Gibson-Stephens Neuropharmaceuticals, Inc. | Cyclic polypeptides having mu-receptor specificity |
US4812409A (en) | 1986-01-31 | 1989-03-14 | Eastman Kodak Company | Hydrolyzable fluorescent substrates and analytical determinations using same |
DE3614647A1 (en) * | 1986-04-30 | 1987-11-05 | Euratom | 7-PHENYL ACETIC ACID-4-ALKYL-COUMARINYLAMIDES, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE IN METHODS FOR THE FLUOROMETRIC DETERMINATION OF THE ACTIVITY OF HYDROLASES, ESPECIALLY PENICILLIN G ACYLASE |
US4853371A (en) | 1986-06-17 | 1989-08-01 | The Administrators Of The Tulane Educational Fund | Therapeutic somatostatin analogs |
EP0258898B1 (en) * | 1986-09-04 | 1992-04-22 | Idemitsu Kosan Company Limited | Liquid-crystalline polymer |
US4810636A (en) | 1986-12-09 | 1989-03-07 | Miles Inc. | Chromogenic acridinone enzyme substrates |
CS259396B1 (en) * | 1987-05-06 | 1988-10-14 | Jozef Luston | 1,2,2,6,6-pentamethyl-4-(delta-bromalkoxy) piperidines and method of their preparation |
SE8900130L (en) | 1989-01-16 | 1990-07-17 | Klaus Mosbach | THE CONCEPT THAT USING MANUFACTURED ARTIFICIAL ANTIBODIES BY MOLECULE IMPRESSION METHOD BY IMPRINTING ANY ANTIGEN AND BY MANUFACTUREING ARTIFIED ENTYZYMES BY IMPRINTING |
US5071469A (en) * | 1989-04-21 | 1991-12-10 | E. I. Du Pont De Nemours And Company | Herbicidal benzylsulfonamides |
US5498694A (en) * | 1989-05-25 | 1996-03-12 | La Jolla Cancer Research Foundation | Peptides of the cytoplasmic domain of integrin |
US5128247A (en) * | 1989-08-14 | 1992-07-07 | Board Of Regents, The University Of Texas System | Methods for isolation of nucleic acids from eukaryotic and prokaryotic sources |
US5099020A (en) * | 1989-11-27 | 1992-03-24 | Abbott Laboratories | Barbiturate assay compositions and methods |
DK0564531T3 (en) * | 1990-12-03 | 1998-09-28 | Genentech Inc | Enrichment procedure for variant proteins with altered binding properties |
EP0603266B1 (en) * | 1991-08-23 | 1999-05-12 | Molecular Probes, Inc. | Use of haloalkyl derivatives of reporter molecules to analyze metabolic activity in cells |
US5576424A (en) * | 1991-08-23 | 1996-11-19 | Molecular Probes, Inc. | Haloalkyl derivatives of reporter molecules used to analyze metabolic activity in cells |
FR2700855B1 (en) * | 1993-01-28 | 1995-03-03 | Commissariat Energie Atomique | Immunometric determination of an antigen or a hapten. |
US5372944A (en) * | 1993-10-14 | 1994-12-13 | The Dow Chemical Company | Method for conversion of halogenated hydrocarbons to halohydrins |
US5523209A (en) * | 1994-03-14 | 1996-06-04 | The Scripps Research Institute | Methods for identifying inhibitors of integrin activation |
US5503977A (en) * | 1994-04-22 | 1996-04-02 | California Institute Of Technology | Split ubiquitin protein sensor |
JP3583489B2 (en) | 1994-12-22 | 2004-11-04 | 日清紡績株式会社 | Carbodiimide derivative |
CH689633A5 (en) | 1995-01-10 | 1999-07-30 | Von Roll Umwelttechnik Ag | Process for cooling and cleaning of flue gases. |
EP0856026A1 (en) * | 1995-10-19 | 1998-08-05 | Receptagen Corporation | Discrete-length polyethylene glycols |
US6537776B1 (en) * | 1999-06-14 | 2003-03-25 | Diversa Corporation | Synthetic ligation reassembly in directed evolution |
US5786428A (en) | 1996-03-27 | 1998-07-28 | California Institute Of Technology | Adsorbents for amino acid and peptide separation |
US6255461B1 (en) | 1996-04-05 | 2001-07-03 | Klaus Mosbach | Artificial antibodies to corticosteroids prepared by molecular imprinting |
US6162931A (en) | 1996-04-12 | 2000-12-19 | Molecular Probes, Inc. | Fluorinated xanthene derivatives |
US5945526A (en) * | 1996-05-03 | 1999-08-31 | Perkin-Elmer Corporation | Energy transfer dyes with enhanced fluorescence |
US6416733B1 (en) * | 1996-10-07 | 2002-07-09 | Bristol-Myers Squibb Pharma Company | Radiopharmaceuticals for imaging infection and inflammation |
US5853993A (en) * | 1996-10-21 | 1998-12-29 | Hewlett-Packard Company | Signal enhancement method and kit |
US5932421A (en) * | 1996-12-06 | 1999-08-03 | The Scripps Research Institute | Methods and cell lines for identification of regulators of integrin activation |
IL131209A0 (en) | 1997-02-13 | 2001-01-28 | Dow Chemical Co | Recombinant haloaliphatic dehalogenases |
US6333154B1 (en) * | 1997-12-04 | 2001-12-25 | Institut Pasteur | Bacterial multi-hybrid system and applications thereof |
WO2001046476A1 (en) * | 1999-12-23 | 2001-06-28 | Maxygen, Inc. | Alteration of hydrolase genes and screening of the resulting libraries for the ability to catalyze specific reactions |
US20020045194A1 (en) | 2000-04-10 | 2002-04-18 | Cravatt Benjamin F. | Proteomic analysis |
EP1322625A2 (en) | 2000-10-02 | 2003-07-02 | Molecular Probes Inc. | Reagents for labeling biomolecules having aldehyde or ketone moieties |
US7078504B2 (en) | 2000-12-01 | 2006-07-18 | Diversa Corporation | Enzymes having dehalogenase activity and methods of use thereof |
JP2005502310A (en) | 2000-12-01 | 2005-01-27 | ディヴァーサ コーポレイション | Hydrolase enzymes and applications in kinetic resolution |
CA2434139C (en) * | 2001-01-23 | 2014-05-27 | President And Fellows Of Harvard College | Nucleic-acid programmable protein arrays |
DE60237792D1 (en) | 2001-04-10 | 2010-11-04 | Ecole Polytech | Process for using O6-alkylguanine-DNA alkyltransferases |
GB0111987D0 (en) * | 2001-05-16 | 2001-07-04 | Univ Sheffield | Method |
US7176242B2 (en) | 2001-11-08 | 2007-02-13 | Elan Pharmaceuticals, Inc. | N,N′-substituted-1,3-diamino-2-hydroxypropane derivatives |
AU2003252111A1 (en) | 2002-07-19 | 2004-02-09 | Diversa Corporation | Fluorescent proteins, nucleic acids encoding them and methods for making and using them |
WO2004048530A2 (en) * | 2002-11-22 | 2004-06-10 | Carnegie Mellon University | Compositions and methods for the reversible capture of biomolecules |
WO2004072232A2 (en) | 2003-01-31 | 2004-08-26 | Promega Corporation | Covalent tethering of functional groups to proteins |
US7429472B2 (en) * | 2003-01-31 | 2008-09-30 | Promega Corporation | Method of immobilizing a protein or molecule via a mutant dehalogenase that is bound to an immobilized dehalogenase substrate and linked directly or indirectly to the protein or molecule |
US7195882B2 (en) * | 2003-06-03 | 2007-03-27 | Roche Diagnostics Operations, Inc. | Monoclonal antibodies specific for buprenorphine and metabolites thereof |
US20050095651A1 (en) * | 2003-08-12 | 2005-05-05 | The Regents Of The University Of California | Photoswitchable method for the ordered attachment of proteins to surfaces |
US20070087400A1 (en) * | 2004-07-30 | 2007-04-19 | Aldis Darzins | Covalent tethering of functional groups to proteins and substrates therefor |
US7425436B2 (en) * | 2004-07-30 | 2008-09-16 | Promega Corporation | Covalent tethering of functional groups to proteins and substrates therefor |
US20070224620A1 (en) * | 2006-02-08 | 2007-09-27 | Promega Corporation | Compositions and methods for capturing and analyzing cross-linked biomolecules |
WO2008054821A2 (en) * | 2006-10-30 | 2008-05-08 | Promega Corporation | Mutant hydrolase proteins with enhanced kinetics and functional expression |
-
2004
- 2004-01-30 WO PCT/US2004/002607 patent/WO2004072232A2/en active Search and Examination
- 2004-01-30 CA CA002514564A patent/CA2514564A1/en not_active Abandoned
- 2004-01-30 US US10/768,976 patent/US7238842B2/en not_active Ceased
- 2004-01-30 AU AU2004211584A patent/AU2004211584B2/en not_active Ceased
- 2004-01-30 EP EP11005044.0A patent/EP2455457B1/en not_active Expired - Lifetime
- 2004-01-30 EP EP10075510.7A patent/EP2341134B1/en not_active Expired - Lifetime
- 2004-01-30 EP EP11005045.7A patent/EP2455458B1/en not_active Expired - Lifetime
- 2004-01-30 JP JP2006503174A patent/JP4748685B2/en not_active Expired - Lifetime
- 2004-01-30 KR KR1020057014186A patent/KR20050109934A/en not_active Application Discontinuation
- 2004-01-30 EP EP10075509.9A patent/EP2369006B1/en not_active Expired - Lifetime
- 2004-01-30 EP EP04707032.1A patent/EP1594962B1/en not_active Expired - Lifetime
-
2007
- 2007-04-12 US US11/786,792 patent/US7867726B2/en not_active Expired - Lifetime
-
2008
- 2008-09-17 US US12/284,010 patent/USRE42931E1/en not_active Expired - Lifetime
-
2010
- 2010-12-21 US US12/975,020 patent/US8257939B2/en not_active Expired - Fee Related
-
2012
- 2012-04-18 US US13/450,233 patent/US8895787B2/en not_active Expired - Lifetime
- 2012-04-18 US US13/450,217 patent/US8921620B2/en not_active Expired - Lifetime
-
2014
- 2014-12-29 US US14/584,834 patent/US9540402B2/en not_active Expired - Lifetime
-
2016
- 2016-12-12 US US15/376,139 patent/US10240184B2/en not_active Expired - Lifetime
-
2019
- 2019-03-20 US US16/359,581 patent/US11028424B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001053303A1 (en) | 2000-01-20 | 2001-07-26 | Centre National De La Recherche Scientifique (Cnrs) | Organosilicon compounds, preparation method and uses thereof |
WO2001060415A1 (en) | 2000-02-18 | 2001-08-23 | The Immune Response Corporation | Methods and compositions for gene delivery |
Non-Patent Citations (11)
Title |
---|
BARNETT ET AL., TETRAHEDRON, vol. 58, 2002, pages 3785 - 3792 |
CHEN ET AL., PROTEIN ENGINEERING, vol. 12, 1999, pages 573 - 579 |
CHEUK ET AL., POLYMERIC MATERIALS SCIENCE AND ENGINEERING, vol. 82, 2000, pages 56 - 57 |
HYNKOVA ET AL., FEBS LETTERS, vol. 446, 1999, pages 177 - 181 |
ICHIYAMA ET AL., THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 275, no. 52, 2000, pages 40804 - 40809 |
KEPPLER ET AL., NATURE BIOTECHNOLOGY, vol. 21, 2003, pages 86 - 89 |
KULAKOVA ET AL., MICROBIOLOGY, vol. 143, 1997, pages 109 - 115 |
KURIHARA ET AL., JOURNAL OF BIOCHEMISTRY, vol. 117, 1995, pages 1317 - 1322 |
PRIES ET AL., FEBS LETTERS, vol. 358, 1995, pages 171 - 174 |
PRIES ET AL., THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 270, no. 18, 1995, pages 10405 - 10411 |
YANG ET AL., BIOCHEMISTRY, vol. 35, 1996, pages 10879 - 10885 |
Cited By (77)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9540402B2 (en) | 2003-01-31 | 2017-01-10 | Promega Corporation | Covalent tethering of functional groups to proteins |
US8779221B2 (en) | 2003-01-31 | 2014-07-15 | Promega Corporation | Method of immobilizing a protein or molecule via a mutant dehalogenase that is bound to an immobilized dehalogenase substrate and linked directly or indirectly to the protein or molecule |
US7238842B2 (en) | 2003-01-31 | 2007-07-03 | Promega Corporation | Covalent tethering of functional groups to proteins |
US11028424B2 (en) | 2003-01-31 | 2021-06-08 | Promega Corporation | Covalent tethering of functional groups to proteins |
US8895787B2 (en) | 2003-01-31 | 2014-11-25 | Promega Corporation | Compositions comprising a dehalogenase substrate and a radionuclide and methods of use |
US8257939B2 (en) | 2003-01-31 | 2012-09-04 | Promega Corporation | Compositions comprising a dehalogenase substrate and a fluorescent label and methods of use |
US7429472B2 (en) | 2003-01-31 | 2008-09-30 | Promega Corporation | Method of immobilizing a protein or molecule via a mutant dehalogenase that is bound to an immobilized dehalogenase substrate and linked directly or indirectly to the protein or molecule |
US10604745B2 (en) | 2003-01-31 | 2020-03-31 | Promega Corporation | Method of immobilizing a protein or molecule via a mutant dehalogenase that is bound to an immobilized dehalogenase substrate and linked directly or indirectly to the protein or molecule |
US10240184B2 (en) | 2003-01-31 | 2019-03-26 | Promega Corporation | Covalent tethering of functional groups to proteins |
US8921620B2 (en) | 2003-01-31 | 2014-12-30 | Promega Corporation | Compositions comprising a dehalogenase substrate and a contrast agent and methods of use |
US8202700B2 (en) | 2003-01-31 | 2012-06-19 | Promega Corporation | Method of immobilizing a protein or molecule via a mutant dehalogenase that is bound to an immobilized dehalogenase substrate and linked directly or indirectly to the protein or molecule |
USRE42931E1 (en) | 2003-01-31 | 2011-11-15 | Promega Corporation | Covalent tethering of functional groups to proteins |
US7867726B2 (en) | 2003-01-31 | 2011-01-11 | Promega Corporation | Compositions comprising a dehalogenase substrate and a fluorescent label and methods of use |
US7888086B2 (en) | 2003-01-31 | 2011-02-15 | Promega Corporation | Method of immobilizing a protein or molecule via a mutant dehalogenase that is bound to an immobilized dehalogenase substrate and linked directly or indirectly to the protein or molecule |
US9416353B2 (en) | 2004-07-30 | 2016-08-16 | Promega Corporation | Covalent tethering of functional groups to proteins and substrates therefor |
WO2006093529A3 (en) * | 2004-07-30 | 2007-03-22 | Promega Corp | Covalent tethering of functional groups to proteins and substrates therefor |
US8466269B2 (en) | 2004-07-30 | 2013-06-18 | Promega Corporation | Covalent tethering of functional groups to proteins and substrates therefor |
EP3179252A1 (en) * | 2004-07-30 | 2017-06-14 | Promega Corporation | Covalent tethering of functional groups to proteins and substrates therefor |
US8168405B2 (en) | 2004-07-30 | 2012-05-01 | Promega Corporation | Covalent tethering of functional groups to proteins and substrates therefor |
US8742086B2 (en) | 2004-07-30 | 2014-06-03 | Promega Corporation | Polynucleotide encoding a mutant dehalogenase to allow tethering to functional groups and substrates |
US10101332B2 (en) | 2004-07-30 | 2018-10-16 | Promega Corporation | Covalent tethering of functional groups to proteins and substrates therefor |
US7935803B2 (en) | 2004-07-30 | 2011-05-03 | Promega Corporation | Polynucleotides encoding proteins for covalent tethering to functional groups and substrates |
EP2395078A3 (en) * | 2004-07-30 | 2012-10-24 | Promega Corporation | Covalent tethering of functional groups to proteins and substrates therefor |
US7425436B2 (en) | 2004-07-30 | 2008-09-16 | Promega Corporation | Covalent tethering of functional groups to proteins and substrates therefor |
EP2395358A3 (en) * | 2004-07-30 | 2012-10-24 | Promega Corporation | Covalent tethering of functional groups to proteins and substrates therefor |
WO2006132607A1 (en) * | 2005-06-10 | 2006-12-14 | National University Of Singapore | Mutant allergen(s) |
US8470523B2 (en) | 2005-09-05 | 2013-06-25 | Cis Bio International | Method for detecting intracellular interaction between biomolecules |
US8263417B2 (en) | 2006-01-04 | 2012-09-11 | The Board Of Trustees Of The Leland Stanford Junior University | Self-illuminating dot systems and methods of use thereof |
EP1969374A2 (en) * | 2006-01-04 | 2008-09-17 | Stanford University | Self-illuminating quantum dot systems and methods of use thereof |
EP1969374A4 (en) * | 2006-01-04 | 2010-04-14 | Univ Stanford | Self-illuminating quantum dot systems and methods of use thereof |
US8518713B2 (en) | 2006-01-04 | 2013-08-27 | The Board Of Trustees Of The Leland Stanford Junior University | Self-illuminating dot systems and methods of use thereof |
JP2013013412A (en) * | 2006-05-25 | 2013-01-24 | Inst For Advanced Study | Method for identifying sequence motif, and application thereof |
US8748148B2 (en) | 2006-10-30 | 2014-06-10 | Promega Corporation | Polynucleotides encoding mutant hydrolase proteins with enhanced kinetics and functional expression |
EP2374875A2 (en) * | 2006-10-30 | 2011-10-12 | Promega Corporation | Mutant hydrolase proteins with enhanced kinetics and funcitional expression |
WO2008054821A2 (en) * | 2006-10-30 | 2008-05-08 | Promega Corporation | Mutant hydrolase proteins with enhanced kinetics and functional expression |
WO2008054821A3 (en) * | 2006-10-30 | 2008-12-24 | Promega Corp | Mutant hydrolase proteins with enhanced kinetics and functional expression |
US10246690B2 (en) | 2006-10-30 | 2019-04-02 | Promega Corporation | Mutant hydrolase proteins with enhanced kinetics and functional expression |
JP2010508023A (en) * | 2006-10-30 | 2010-03-18 | プロメガ コーポレイション | Mutant hydrolase protein with enhanced kinetics and functional expression |
EP2502990A3 (en) * | 2006-10-30 | 2013-04-17 | Promega Corporation | Mutant hydrolase proteins with enhanced kinetics and functional expression |
US8420367B2 (en) | 2006-10-30 | 2013-04-16 | Promega Corporation | Polynucleotides encoding mutant hydrolase proteins with enhanced kinetics and functional expression |
US9873866B2 (en) | 2006-10-30 | 2018-01-23 | Promega Corporation | Mutant dehalogenase proteins |
US9593316B2 (en) | 2006-10-30 | 2017-03-14 | Promega Corporation | Polynucleotides encoding mutant hydrolase proteins with enhanced kinetics and functional expression |
EP2374875A3 (en) * | 2006-10-30 | 2012-10-10 | Promega Corporation | Mutant hydrolase proteins with enhanced kinetics and funcitional expression |
EP2492342A1 (en) * | 2006-10-30 | 2012-08-29 | Promega Corporation | Mutant hydrolase proteins with enhanced kinetics and functional expression |
JP2013078329A (en) * | 2006-10-30 | 2013-05-02 | Promega Corp | Mutant hydrolase protein with enhanced kinetics and functional expression |
US8999653B2 (en) | 2008-07-31 | 2015-04-07 | Cis-Bio International | Method for detecting membrane protein internalization |
WO2010012962A2 (en) | 2008-07-31 | 2010-02-04 | Cis-Bio International | Method for detecting membrane protein internalization |
WO2010125314A1 (en) | 2009-04-30 | 2010-11-04 | Cis-Bio International | Method for detecting compounds modulating dimers of vft domain membrane proteins |
US8697380B2 (en) | 2009-04-30 | 2014-04-15 | Cis Bio International | Method for detecting compounds modulating dimers of VFT domain membrane proteins |
WO2011018586A2 (en) | 2009-08-13 | 2011-02-17 | Cis Bio International | Method for predetermining the binding of a given compound to a membrane receptor |
US8697372B2 (en) | 2009-08-13 | 2014-04-15 | Cis Bio International | Method for determining the binding of a given compound to a membrane receptor |
US9938564B2 (en) | 2010-11-02 | 2018-04-10 | Promega Corporation | Substituted imidazo[1,2-a]pyrazines for use in bioluminogenic methods |
US10774364B2 (en) | 2010-11-02 | 2020-09-15 | Promega Corporation | Oplophorus-derived luciferases, novel coelenterazine substrates, and methods of use |
US9840730B2 (en) | 2010-11-02 | 2017-12-12 | Promega Corporation | Oplophorus-derived luciferases, novel coelenterazine substrates, and methods of use |
US9951373B2 (en) | 2010-11-02 | 2018-04-24 | Promega Corporation | Oplophorus-derived luciferases, novel coelenterazine substrates, and methods of use |
US11661623B2 (en) | 2010-11-02 | 2023-05-30 | Promega Corporation | Oplophorus-derived luciferases, novel coelenterazine substrates, and methods of use |
WO2013038113A1 (en) | 2011-09-16 | 2013-03-21 | Cisbio Bioassays | Method for determining the glycosylation of an antibody |
US9880176B2 (en) | 2011-09-16 | 2018-01-30 | Cisbio Bioassays | Method for determining the glycosylation of an antibody |
US9200260B2 (en) | 2012-03-15 | 2015-12-01 | New England Biolabs, Inc. | Compositions and methods for the transfer of a hexosamine to a modified nucleotide in a nucleic acid |
WO2013140074A1 (en) | 2012-03-19 | 2013-09-26 | Cisbio Bioassays | Method for determining the ability of an antibody to keep cells close to one another |
US9676787B2 (en) | 2012-08-28 | 2017-06-13 | Pierce Biotechnology, Inc. | Benzopyrylium compounds |
EP2850078A4 (en) * | 2012-08-28 | 2016-01-27 | Pierce Biotechnology Inc | Benzopyrylium compounds |
US10174045B2 (en) | 2012-08-28 | 2019-01-08 | Pierce Biotechnology, Inc. | Benzopyrylium compounds |
WO2014074445A1 (en) | 2012-11-06 | 2014-05-15 | New England Biolabs. Inc. | Compositions and methods for the transfer of a hexosamine to a modified nucleotide in a nucleic acid |
EP3312295A1 (en) | 2013-03-19 | 2018-04-25 | Directed Genomics, LLC | Enrichment of target sequences |
WO2014153408A1 (en) | 2013-03-19 | 2014-09-25 | Directed Genomics, Llc | Enrichment of target sequences |
US9927430B2 (en) | 2014-01-29 | 2018-03-27 | Promega Corporation | Pro-substrates for live cell applications |
US9790537B2 (en) | 2014-01-29 | 2017-10-17 | Promega Corporation | Quinone-masked probes as labeling reagents for cell uptake measurements |
WO2016093838A1 (en) | 2014-12-11 | 2016-06-16 | New England Biolabs, Inc. | Enrichment of target sequences |
US11034991B2 (en) | 2016-03-16 | 2021-06-15 | Oryzon Genomics S.A. | Methods to determine KDM1A target engagement and chemoprobes useful therefor |
US11209437B2 (en) | 2016-07-20 | 2021-12-28 | Fluorescence Diagnosis (Shanghai) Biotech Company | Fluorescent probe and preparation method and use thereof |
WO2019062876A1 (en) | 2017-09-29 | 2019-04-04 | 华东理工大学 | Fluorescent probe, preparation method therefor and use thereof |
WO2019218876A1 (en) | 2018-05-18 | 2019-11-21 | 华东理工大学 | Fluorescent probe and preparation method and use thereof |
WO2021183921A1 (en) | 2020-03-12 | 2021-09-16 | New England Biolabs, Inc. | A rapid diagnostic test for lamp |
WO2022040443A2 (en) | 2020-08-21 | 2022-02-24 | New England Biolabs, Inc. | A rapid diagnostic test for lamp |
US11453870B2 (en) | 2021-01-28 | 2022-09-27 | Genequantum Healthcare (Suzhou) Co. Ltd. | Ligase fusion proteins and application thereof |
US11834688B2 (en) | 2021-01-28 | 2023-12-05 | Genequantum Healthcare (Suzhou) Co., Ltd. | Ligase fusion proteins and application thereof |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11028424B2 (en) | Covalent tethering of functional groups to proteins | |
US10246690B2 (en) | Mutant hydrolase proteins with enhanced kinetics and functional expression | |
ZA200506120B (en) | Covalent tethering of functional groups to proteins |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
COP | Corrected version of pamphlet |
Free format text: PAGES 1/30-30/30, DRAWINGS, REPLACED BY NEW PAGES 1/20-20/20 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2514564 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200506120 Country of ref document: ZA Ref document number: 1020057014186 Country of ref document: KR Ref document number: 2006503174 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004211584 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2004211584 Country of ref document: AU Date of ref document: 20040130 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2004211584 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3867/DELNP/2005 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004707032 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20048081944 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 2004707032 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1020057014186 Country of ref document: KR |
|
DPEN | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101) |