WO2004069463A1 - Verfahren zum laserstrahlschweissen - Google Patents

Verfahren zum laserstrahlschweissen Download PDF

Info

Publication number
WO2004069463A1
WO2004069463A1 PCT/EP2004/000805 EP2004000805W WO2004069463A1 WO 2004069463 A1 WO2004069463 A1 WO 2004069463A1 EP 2004000805 W EP2004000805 W EP 2004000805W WO 2004069463 A1 WO2004069463 A1 WO 2004069463A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
vol
helium
gases
welding
Prior art date
Application number
PCT/EP2004/000805
Other languages
English (en)
French (fr)
Inventor
Wolfgang Danzer
Original Assignee
Linde Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32695195&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2004069463(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Linde Aktiengesellschaft filed Critical Linde Aktiengesellschaft
Priority to DE502004008688T priority Critical patent/DE502004008688D1/de
Priority to US10/544,383 priority patent/US20060231533A1/en
Priority to EP04706177A priority patent/EP1601491B2/de
Publication of WO2004069463A1 publication Critical patent/WO2004069463A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/123Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/123Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases
    • B23K26/125Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases of mixed gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/38Selection of media, e.g. special atmospheres for surrounding the working area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/38Selection of media, e.g. special atmospheres for surrounding the working area
    • B23K35/383Selection of media, e.g. special atmospheres for surrounding the working area mainly containing noble gases or nitrogen

Definitions

  • the invention relates to a method for laser beam welding with a fiber laser, wherein a laser steel produced by the fiber laser is focused on a processing point or in the vicinity of the processing point.
  • the properties of laser radiation have led to lasers being used in many areas of material processing today.
  • the laser processing systems are known per se. As a rule, they have a laser processing head, optionally with a nozzle arranged coaxially with the laser beam. Laser processing systems are often used in conjunction with a CNC control. Lasers are also being used more and more in welding, since compared to conventional welding processes (MAG, TIG), laser welding offers more targeted heat input, less warpage and higher welding speeds. A large part of the laser welding works without additional material. However, this may be necessary for reasons of gap bridging or metallurgy. Almost all materials, such as steels, light metals and thermoplastics, can be laser welded.
  • a focused laser beam is understood to mean a laser beam that is essentially focused on the workpiece surface.
  • the invention can also be applied to the rarely used variant with radiation that is not exactly focused on the workpiece surface.
  • the fiber lasers are a completely new generation of lasers.
  • the properties of the fiber lasers differ fundamentally from the CO 2 lasers used to date, the Nd: YAG lasers and the diode lasers.
  • the highest laser powers are achieved with CO 2 lasers.
  • the laser power of the fiber laser is comparable to the laser powers of the CO 2 laser and the Nd: YAG laser (the diode laser is characterized by a significantly lower one Laser power and therefore behaves significantly differently from laser welding than high-performance lasers) and is currently a few hundred watts.
  • the wavelength of the fiber laser is in the range from 1060 to 1080 nm, since rare earths, such as ytterbium, are used as the active medium and is therefore comparable to the wavelength of the Nd: YAG laser.
  • the decisive difference lies in the divergence of the laser beam, the focus diameter, the focus length and the beam parameter product.
  • the beam parameter product is the one that is determined by the laser and decisively determines the property of the laser beam.
  • the beam parameter product is a constant variable, which depends on the design of the laser and cannot be changed by optical components (lenses or mirrors).
  • the beam parameter product is defined as the product of the beam parameters beam radius in the beam waist and half the divergence angle (far field opening angle) and is specified in the unit mm * mrad. Consequently, the beam parameter product is a measure of the focusability of a laser beam.
  • Beam parameter products for high-power lasers are typically 3 to 30 mm * mrad. With the newly developed fiber lasers, beam parameter products of less than 1.6 mm * mrad and even less than 1.4 mm * mrad can now be achieved.
  • a beam parameter product of less than 1.6 mm * mrad means a divergence of less than 40 mrad.
  • the power of the fiber laser is now 700 W, for example, a power density of more than 50 MW / cm 2 is achieved at the processing point.
  • the focus on the processing red in this example is approx. 40 ⁇ m.
  • the focus length of the fiber laser is approximately 150 mm. This means that the high power density is maintained over a path length of 150 mm and consequently can not only be reached on the surface of the workpiece but can also be found in the workpiece or across the workpiece (for workpieces with thicknesses less than or equal to 1.5 cm).
  • the reason for the high power density at the processing location is therefore the excellent focusability of the fiber laser, which is specified by means of the beam parameter product.
  • the power density at the processing location for the previously common high-power lasers is in the range of a few MW / cm and the focus is in the range of mm.
  • the power density at the processing location has multiplied through the introduction of the fiber laser.
  • the company IPG Photonics offers fiber lasers with laser powers of 300 to 700 W and beam parameter products of less than 1.4 to 0.7 mrr mrad. have a focus diameter of less than 30 to 50 ⁇ m and a focus length of 150 mm.
  • the fiber lasers can either be pulsed or operated continuously.
  • the laser radiation can no longer reach the workpiece and the welding process becomes ineffective or even breaks down.
  • the absorption of the laser radiation takes place mainly by thermally ionized plasma. Plasma binding is therefore particularly problematic at high laser energies and leads to the breakdown of the welding process. For this reason, a process gas is usually used at high laser energies. If the necessary energy density is missing, only the metal vapor absorbs. The laser power lost in this way can reduce the welding speed by a few 10%, but as a rule does not lead to an interruption of the welding process. Since the laser power of Nd.YAG lasers is generally lower than the laser power of the CO 2 laser, there is often no need for a process gas when welding with Nd.YAG lasers.
  • the fiber laser now shows a different behavior with regard to the steam capillary. Due to the high power density at the processing location and the very small focus diameter, a very fine vapor capillary is created from vaporized material and plasma. Since the focus length is very long, the diameter of the steam capillaries is unchanged over a wide range. Furthermore, since the diameter of the vapor capillary is proportional to the focus diameter, the diameter of a vapor capillary produced by a fiber laser is many times smaller than the diameter of a vapor capillary produced with a conventional high-power laser. This creates a very narrow capillary. Steam can escape from this very fine and long capillary and plasma escape very poorly.
  • Difficulties differ significantly from the difficulties that arise when using conventional high-power lasers.
  • the problems are due to the high power density at the processing point combined with the long focus length of the fiber laser.
  • the present invention is therefore based on the object of specifying a method which enables high-quality laser beam welding with a fiber laser.
  • the object is achieved in that a process gas which contains an active gas is passed to the processing point. Since the process gas encompasses the welding point, it is protected from the environment.
  • a major disadvantage of the ambient air, in addition to the aggressive components, is the moisture contained in the air, since this favors the formation of pores that reduce quality. It is therefore important that the process gas is free of contaminants. This is why process gases for laser welding mostly contain inert gases.
  • Pores and other irregularities can very easily arise in the narrow capillary if the process gas or the ambient air is only insufficiently distributed in the narrow capillary.
  • active gases supports an even distribution of the process gases and consequently prevents the formation of pores.
  • an energy transport takes place in the case of active gases the steam capillary instead. In doing so, they dissociate (if they are molecular gases) and ionize the gases under the influence of laser radiation when they enter the vapor capillary. When the gases recombine, which takes place when the energy density decreases, the ionization and dissociation energy is released again.
  • Carbon dioxide, oxygen, hydrogen, nitrogen or a mixture of these gases is advantageously contained as the active gas.
  • These gases are characterized by the fact that chemical and physical reactions with the base material can be particularly advantageous.
  • These molecular gases also ensure effective energy transport into the vapor capillary. This prevents the pore formation with these gases and also significantly increases the welding speed.
  • improvements in the seam appearance can be seen with certain materials, such as aluminum and aluminum alloys, although negative effects that can occur with sensitive materials do not play a role.
  • energy transport also plays a role.
  • the upper limit mostly results from the negative effects of the active gases on the quality of the welded joint.
  • the Helium content can not be further reduced without reducing the welding process or the quality.
  • Helium and / or argon is advantageously contained in the process gas. Since helium and argon are inert gases, the processing site is protected from the environment by them. Helium has the ability to control and limit plasma formation and is a very small and light gas that evaporates very easily. The property of the plasma control is based on the difficult ionization of the helium and the increase in the transparency of the plasma and the vapor for the laser beam and the energy of the laser beam thus reaches the bottom of the capillary where material is evaporated. Due to the slight volatility of the helium, a process gas containing helium really gets deep into the very narrow vapor capillary.
  • the vapor capillary produced by the fiber laser has both a very small diameter, which is due to the small focus diameter of the fiber laser, and almost maintains this small diameter over the entire depth, which is due to the low divergence of the fiber laser beam declining.
  • Helium with its slight volatility now easily penetrates this capillary and spreads evenly in it without tending to accumulate in certain places or in direct contact with material.
  • the helium in the process gas ensures an even distribution of the active gases in the very fine capillary. This is extremely important so that the reactions of the active gases with the surface and the material take place uniformly at all points and that there are no quality-reducing irregularities and pore formation in the weld seam.
  • the uniform distribution of the active gases is also essential for the effective energy transport based on recombination.
  • Argon does not control the plasma in the steam capillary but behaves inertly and thus prevents harmful influences from the environment.
  • this gas is significantly cheaper, it is often advantageous to replace part of the helium with argon. Often it is possible to get the benefits that can be attributed to the helium content.
  • the advantages according to the invention result from the active gases, it is also possible to add the active gases to pure argon, even if the advantages of plasma control are then also eliminated.
  • other inert gases such as noble gases, or mixtures of inert gases can also be used as part of the process gas.
  • Binary mixtures of active gases and helium and active are advantageous Gas and argon.
  • Tenary mixtures of active gas, helium and argon can also be used with advantage. In some cases it is advantageous to use a mixture of different active gases instead of one active gas.
  • helium Contains 10 vol .-% to 90 vol .-% helium, preferably 20 vol .-% to 70 vol .-% helium, particularly preferably 30 vol .-% to 50 vol .-% helium.
  • the advantages of the plasma control attributable to the helium are evident in these volume ranges.
  • the proportion of helium to be selected depends on the quality to be achieved, the welding speed, the material and economic considerations.
  • the method according to the invention shows its advantages in almost all materials. It is suitable for welding steels (unalloyed, low-alloyed and high-alloyed), corrosion-resistant steels, stainless steels, aluminum, aluminum alloys, copper-based and nickel-based materials.

Abstract

Die Erfindung beinhaltet ein Verfahren zum Laserstrahlschweissen mit einem Faserlaser, wobei an die Bearbeitungsstelle ein Prozessgas geleitet wird, welches ein aktives Gas enthält. Als aktive Gase eignen sich insbesondere Kohlendioxid, Sauerstoff, Wasserstoff, Stickstoff oder eine Mischung aus diesen Gasen. Vorteilhafterweise ist im Prozessgas weiterhin Helium und/oder Argon enthalten.

Description

Beschreibung
Verfahren zum Laserstrahlschweißen
Die Erfindung betrifft ein Verfahren zum Laserstrahlschweißen mit einem Faserlaser, wobei ein- von dem Faserlaser erzeugter Laserstahl auf eine Bearbeitungsstelle oder in die Nähe der Bearbeitungsstelle fokussiert wird.
Die Eigenschaften der Laserstrahlung, insbesondere die Intensität und gute Fokussier- barkeit, haben dazu geführt, dass Laser heute in vielen Gebieten der Materialbearbeitung zum Einsatz kommen. Die Laserbearbeitungsanlagen sind an sich bekannt. In der Regel weisen sie einen Laserbearbeitungskopf, gegebenenfalls mit einer zum Laserstrahl koaxial angeordneten Düse auf. Oftmals werden Laserbearbeitungsanlagen in Verbindung mit einer CNC-Steuerung eingesetzt. Auch beim Schweißen werden Laser immer umfangreicher eingesetzt, da das Laserschweißen im Vergleich zu konventionellen Schweißverfahren (MAG, WIG) eine gezieltere Värmeeinbringung, einen geringeren Verzug und höhere Schweißgeschwindigkeit bietet. Ein Großteil der Laser- schweißungen kommt ohne Zusatzmaterial aus. Dieses kann jedoch aus Gründen der Spaltüberbrückbarkeit oder der Metallurgie notwendig werden. Laserschweißen lassen sich nahezu alle Materialien, wie beispielsweise Stähle, Leichtmetalle und thermoplastische Kunststoffe.
Unter einem fokussierten Laserstrahl wird im Rahmen der Erfindung ein im wesentlichen auf die Werkstückoberfläche fokussierter Laserstrahl verstanden. Außer bei der überwiegend eingesetzten Methode mit auf die Werkstückoberfläche fokussierter Laserstrahlung kann die Erfindung auch bei der selten benutzten Variante mit nicht exakt auf die Werkstückoberfläche fokussierter Strahlung angewandt werden.
Neuste Entwicklungen in der Lasertechnik eröffneten die Möglichkeit der Verwendung von Faserlasern beim Laserschweißen. Bei den Faserlasern handelt sich um eine völlig neue Lasergeneration. Die Faserlaser unterscheiden sich in ihren Eigenschaften grundlegend von den bisher eingesetzten CO2-Lasem, den Nd:YAG-Lasem und den Diodenlasern. Die höchste Laserleistungen werden mit CO2-Lasem erreicht. Die Laserleistung des Faserlasers ist vergleichbar mit den Laserleistungen des CO2-Lasers und des Nd:YAG-Lasers (der Diodenlaser zeichnet sich durch eine deutlich geringere Laserleistung aus und verhält sich deshalb beim Laserschweißen deutlich anders als die Hochleistungslaser) und liegt derzeit bei einigen hundert Watt. Die Wellenlänge des Faserlasers liegt, da als aktives Medium Seltene Erden, wie beispielsweise Ytterbium verwendet werden, im Bereich von 1060 bis 1080 nm und ist damit mit der Wellenlän- ge des Nd:YAG-Lasers vergleichbar. Der entscheidende Unterschied liegt jedoch in der Divergenz des Laserstrahls, des Fokusdurchmessers, der Fokuslänge und des Strahlparameterprodukts. Von diesen Größen ist das Strahlparameterprodukt diejenige, die durch den Laser festgelegt ist und die Eigenschaft des Laserstrahls entscheidend bestimmt. Das Strahlparameterprodukt ist eine konstante Größe, die von der Bauart des Lasers abhängt.Sie kann nicht durch optische Bauteile (Linsen oder Spiegel) verändert werden. Definiert ist das Strahlparameterprodukt als das Produkt aus den Strahlparametern Strahlradius in der Strahltaille und halber Divergenzwinkel (Fernfeldöffnungswinkel) und wird in der Einheit mm*mrad angegeben. Folglich ist das Strahlparameterprodukt ein Maß für die Fokussierbarkeit eines Laserstrahls. Je kleiner das Strahlparameterprodukt eines Lasers ist, desto kleiner ist die Fläche, auf die ein Laserstrahl fokussiert werden kann. Strahlparameterprodukte für Hochleistungslaser liegen typischerweise bei 3 bis 30 mm*mrad. Mit den neu entwickelten Faserlasern werden nun Strahlparameterprodukte von weniger als 1 ,6 mm*mrad, ja sogar von weniger als 1 ,4 mm*mrad erreicht. Bei einem Stahldurchmesser von 80 μm bedeute ein Strahlparameterprodukt von weniger als 1 ,6 mm*mrad eine Divergenz von weniger als 40 mrad. Liegt die Leistung des Faserlasers nun beispielsweise bei 700 W wird an der Bearbeitungsstelle eine Leistungsdichte von mehr als 50 MW/cm2 erreicht. Der Fokus am Bearbeitungsrot liegt in diesem Beispiel bei ca. 40 μm. Die Fokuslänge des Faserlasers liegt in etwa bei 150 mm. Dies bedeutet, dass die hohe Leistungsdichte über eine Weglänge von 150 mm erhalten bleibt und folglich nicht nur auf der Oberfläche des Werkstücks erreicht sondern auch im Werkstück beziehungsweise über das Werkstück hinweg (bei Werkstücken mit Dicken kleiner gleich 1,5 cm) vorgefunden werden kann. Der Grund für die hohe Leistungsdichte am Bearbeitungsort liegt somit in der exzellenten Fokussierbarkeit des Faserlasers, welche mittels des Strahlparameter- produkts spezifiziert ist. Im Vergleich dazu liegt die Leistungsdichte am Bearbeitungsort für die bisher üblichen Hochleistungslaser im Bereich weniger MW/cm und der Fokus liegt im Bereich von mm. Die Leistungsdichte am Bearbeitungsort hat sich durch die Einführung des Faserlasers vervielfacht. Von der Firma IPG Photonics werden beispielsweise Faserlaser mit Laserleistungen von 300 bis 700 W und Strahlparameter- produkte von weniger als 1,4 bis 0,7 mrr mrad angeboten, die an der Bearbeitungs- stelle einen Fokusdurchmesser von weniger als 30 bis 50 μm aufweisen und über eine Fokuslänge von 150 mm verfügen. Die Faserlaser können entweder gepulst oder kontinuierlich betrieben werden.
Beim Laserstrahlschweißen mit Hochleistungslasern wird von der Laserstrahlung an der Bearbeitungsstelle Material verdampft bzw. ionisiert, welches sich. vom Werkstück weg in Richtung Laser bewegt. An der Bearbeitungsstelle wird im Material eine Dampfkapillare erzeugt. Über diese Dampfkapillare gelangt die Laserenergie in die Tiefe des Materials. Dadurch können wesentlich schneller schlankere Schweißnähte erzeugt werden, als dies über eine Wärmeleitung des festen Materials von der Oberfläche in die Tiefe möglich wäre. Bei der Erzeugung dieser Dampfkapillare, welche auch Keyhole genannt wird, strömt sehr heißer, verdampfter, ja bei höheren Laserenergien sogar ionisierter Werkstoff dem Laserstrahl entgegen. Das plasmaförmige Material tritt in Wechselwirkung mit dem Laserstrahl und beeinflusst diesen. Wird die optische Dichte des Metalldampfes oder Metallplasmas zu hoch, kann die Laserstrahlung nicht mehr zum Werkstück gelängen und der Schweißprozess wird ineffektiv oder bricht sogar zusammen. Die Absorption der Laserstrahlung findet dabei hauptsächlich durch thermisch ionisiertes Plasma statt. Die Plasmabiidung ist deshalb bei hohen Laserenergien besonders problematisch und führt zum Zusammenbruch des Schweißprozεsses. Deshalb wird bei hohen Laserenergien meist ein Prozessgas benutzt. Fehlt die nötige Energiedichte so absorbiert nur der Metalldampf. Die hierdurch verlorene Laserleistüng kann zwar die Schweißgeschwindigkeit um einige 10% reduzieren, führt aber in der Regel zu keinem Abbruch des Schweißprozesses. Da die Laserleistung von Nd.YAG- Lasern i.a. geringer ist als die Laserleistung des CO2-Lasers kann beim Schweißen mit Nd.YAG-Lasem oftmals auf ein Prozessgas verzichtet werden.
Beim Faserlaser zeigt sich nun ein anderes Verhalten bezüglich der Dampfkapillare. Aufgrund der hohe Leistungsdichte am Bearbeitungsort und dem sehr kleinen Fokusdurchmesser entsteht eine sehr feine Dampfkapillare aus verdampftem Material und Plasma. Da die Fokuslänge sehr groß ist, ist der Durchmesser der Dampfkapillars über einen weiten Bereich unverändert. Da weiterhin der Durchmesser der Dampfkapillare proportional zum Fokusdurchmesser ist, ist der Durchmesser einer von einem Faserlaser erzeugten Dampfkapillare um ein vielfaches kleiner als der Durchmesser einer mit einem herkömmlichen Hochleistungslaser erzeugten Dampfkapillare. Folglich entsteht eine sehr schmale Kapillare. Aus dieser sehr feinen und langen Kapillare kann Dampf und Plasma nun sehr schlecht entweichen. Folglich entsteht in der Kapillare ein sehr dichtes Plasma, das von der Laserstrahlung nur sehr schwer durchdrungen werden kann. Aufgrund der Enge in der doch sehr langen Kapillare unterscheidet sich das Verhalten des Plasmas und des Dampfs deutlich von dem Verhalten eines Plasmas, das bei Verwendung der bisher üblichen Hochleistungslasern entsteht. Jedoch muss bei der Verwendung eines Faserlasers, damit qualitativ hochwertige Laserschweißverbindungen entstehen, das Plasma und der Dampf beherrschbar sein.
Beim Laserschweißen mit Faseriasem treten eine Vielzahl von Probleme auf und es ist äußert schwierig qualitativ hochwertige Schweißverbindungen herzustellen. Die
Schwierigkeiten unterscheiden sich deutlich von den Schwierigkeiten, die bei der Verwendung von bisher üblichen Hochleistungslaser auftreten. Zurückzuführen sind die Probleme auf die hohe Leistungsdichte an der Bearbeitungsstelle verbunden mit der großen Fokuslänge der Faserlaser.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren anzugeben, welches ein qualitativ hochwertiges Laserstrahlschweißen mit einem Faserlaser ermöglicht.
Die Aufgabe wird erfindungsgemäß dadurch gelöst, dass auf die Bearbeitungsstelle ein Prozessgas geleitet wird, welches ein aktives Gas enthält. Da das Prozessgas die Schweißstelle umfasst, ist diese vor der Umgebung geschützt. Ein wesentlicher Nachteil der Umgebungsluft ist neben den aggressiven Bestandteilen die in der Luft enthaltene Feuchtigkeit, da diese die Bildung von qualitätsmindemden Poren begünstigt. Wichtig ist deshalb, dass das Prozessgas entsprechend frei von Verunreinigungen ist. Deshalb enthalten Prozessgase zum Laserschweißen meist inerte Gase. Durch die Zugabe von aktiven Gasen in das Prozessgas werden die Eigenschaften der Naht und des Materials des Werkstücks in unmittelbarer Nähe der Naht beeinflusst. Durch die aktiven Gase lässt sich das Gefüge des Werkstoffs in der Umgebung der Naht gezielt beeinflussen und auch an der Oberfläche finden chemische und physikalische Reaktionen statt. In der schmalen Kapillare können sehr leicht Poren und andere Unregelmäßigkeiten entstehen, wenn sich das Prozessgas bzw. die Umgebungsluft in der schmalen Kapillare nur unzureichend verteilt. Durch die Zugabe von aktiven Gase wird eine gleichmäßige Verteilung der Prozessgase unterstützt, und folglich das Entstehen von Poren unterbunden. Des Weiteren findet bei aktiven Gasen ein Energietransport in die Dampfkapillare hinein statt. Dabei dissoziieren (falls es sich um molekulare Gase handelt) und ionisieren die Gase unter dem Einfluss der Laserstrahlung beim Eintritt in die Dampfkapillare. Bei der Rekombination der Gase, die bei nachlassender Energiedichte stattfindet, wird die lonisations- und die Dissoziationsenergie wieder frei. Da das Prozessgas in die Dampfkapillare strömt und die Laserenergie am Grund der Kapillare abnimmt, findet die Rekombination am Grund der Dampfkapiilare statt. Die Rekombinationenergie wird somit an der Stelle frei, wo Material verdampft werden muss. Der Energietransport ist nun insbesondere bei den sehr schmalen Kapillaren von entscheidender Bedeutung. Durch ihn ist gewährleistet, dass am Grund der Kapillare Material verdampft wird und nicht etwa das Material über Wärmeleitung aufgeschmolzen wird. Bei einer Änderung des Entstehungsmechanismus der Schweißnaht während des Schweißvorgangs verändert sich das Verhalten des verdampften Materials und des Prozessgases, so dass in der Schweißnaht Poren entstehen. Ein auch mikroskopisch kontinuierlich verlaufender Schweißvorgang ist für qualitativ hochwertige Schweißpro- zesse absolut notwendig und wird mit dem erfindungsgemäßen Verfahren erreicht. Weiterhin sind hohe Schweißgeschwindigkeiten zu erreichen, da für den Schweißvorgang die im Verhältnis langsam ablaufende Wärmeleitung keine Rolle spielt.
Vorteilhafterweise ist als aktives Gas Kohlendioxid, Sauerstoff, Wasserstoff, Stickstoff oder eine Mischung aus diesen Gasen enthalten. Diese Gase zeichnen sich dadurch aus, dass durch chemische und physikalische Reaktionen mit dem Grundwerkstoff dieser besonders vorteilhaft beeinflusst werden kann. Ferner sorgen diese molekularen Gase für einen effektiven Energietransport in die Dampfkapillare. Damit wird mit diesen Gasen die Porenbiidung unterbunden und auch die Schweißgeschwindigkeit wird merklich gesteigert.
In vorteilhafter Ausgestaltung der Erfindung sind im Prozessgas 0,01 Vol.-% bis 50 Vol.-%, vorzugsweise 1 Vol.-% bis 30 Vol.-%, besonders bevorzugt 5 Vol.-% bis 20 Vol.-% aktives Gas enthalten. Bereits bei sehr geringen Mengen im vpm-Bereich zeigen sich bei bestimmten Materialien, wie beispielsweise Aluminium und Aiuminium- legierungen, Verbesserungen im Nahtaussehen, wobei jedoch negative Auswirkungen, die sich bei empfindlichen Materialien auftreten können, keine Rolle spielen. Bei größeren Volumenanteilen spielt auch der Energietransport eine Rolle. Die obere Grenze ergibt sich meistens aufgrund der negative Auswirkungen der aktiven Gase auf die Qualität der Schweißverbindung. Ausschlaggebend kann jedoch auch sein, dass der Heliumanteil nicht weiter erniedrigt werden kann ohne den Schweißvorgang oder die Qualität zu vermindern.
Vorteilhafterweise ist im Prozessgas Helium und/oder Argon enthalten. Da Helium und Argon inerte Gase sind, wird die Bearbeitungsstelle von diesen gegenüber der Umgebung geschützt. Helium hat die Fähigkeit die Plasmabildung zu kontrollieren und einzuschränken und ist ein sehr kleines und leichtes Gas, welches sich sehr leicht verflüchtigt. Die Eigenschaft der Plasmakontrolle beruht auf der schweren lonisierbarkeit des Heliums und der Erhöhung der Transparenz des Plasmas und des Dampfes für den Laserstrahl und die Energie des Laserstrahls gelangt somit bis auf den Grund der Kapillare, wo Material verdampft wird. Aufgrund der leichten Flüchtigkeit des Heliums gelangt ein heliumhaltiges Prozessgas auch wirklich tief in die sehr schmale Dampfkapillare. Dies ist von entscheidender Bedeutung, da die von dem Faserlaser erzeugte Dampfkapillare sowohl über einen sehr kleinen Durchmesser verfügt, welcher auf den kleinen Fokusdurchmesser des Faserlasers zurückzuführen ist, als auch diesen kleinen Durchmesser über die gesamte Tiefe nahezu beibehält, was auf die geringe Divergenz des Faserlaserstrahls zurückgeht. Helium mit seiner leichten Flüchtigkeit dringt nun problemlos in diese Kapillare ein und breitet sich gleichmäßig in dieser ohne ohne dazu zu neigen, sich an bestimmten Stellen oder bei direktem Materialkontakt anzusammeln. Dadurch sorgt das Helium im Prozessgas für eine gleichmäßige Ver- • teilung der aktiven Gase in der sehr feinen Kapillare. Dies ist äußert wichtig, damit die- stattfindenden Reaktionen der aktiven Gase mit der Oberfläche und dem Werkstoff an allen Stellen gleichmäßig stattfinden und keine qualitätsmildernden Unregelmäßigkeiten und Porenbildung in der Schweißnaht auftreten. Des Weitern ist die gleichmäßige Verteilung der aktiven Gase auch für den effektiven, auf der Rekombination basierenden Energietransport unabdingbar. Argon bewirkt keine Plasmakontrolle in der Dampf- kapillare sondern verhält sich inert und unterbindet damit schädliche Einflüsse aus der Umgebung. Da dieses Gas jedoch deutlich preiswerter ist, ist es oft von Vorteil ein Teil des Heliums durch Argon zu ersetzen. Oft es dabei möglich, die Vorteile, die auf den Heliumanteil zurückzuführen sind, zu erhalten. Da sich die erfindungsgemäßen Vorteile jedoch aufgrund der aktiven Gase ergeben, ist es auch möglich, die aktiven Gase reinem Argon zuzugeben, wenn auch dann die Vorteile der Plasmakontrolle entfallen. Anstelle des Argons können auch andere inerte Gase, wie beispielsweise Edelgase, oder Mischungen aus inerten Gasen als Bestandteil des Prozessgas verwendet wer- den. Vorteilhaft sind binäre Mischungen aus aktiven Gasen und Helium sowie aktiven Gas und Argon. Auch tenäre Mischungen aus aktivem Gas, Helium und Argon sind mit Vorteil einsetzbar. In manchen Fällen ist es von Vorteil anstelle eines aktiven Gases eine Mischung aus verschieden aktiven Gasen zu verwenden.
In einer vorteilhaften Ausgestaltung der Erfindung wird ein Prozessgas, welches
10 Vol.-% bis 90 Vol.-% Helium, vorzugsweise 20 Vol.-% bis 70 Vol.-% Helium, besonders bevorzugt 30 Vol.-% bis 50 Vol.-% Helium enthält, verwendet. In diesen Volumenbereichen zeigen sich die Vorteile der auf das Helium zurückzuführenden Plasmakontrolle. Der zu wählende Anteil des Heliums hängt von der zu erzielenden Qualität, der Schweißgeschwindigkeit, vom Material und von wirtschaftlichen Überlegungen ab.
Das erfindungsgemäße Verfahren zeigt seine Vorteile bei nahezu allen Werkstoffen. Es eignet sich zum Schweißen von Stählen (un-, niedrig- und hochlegiert), korrosionsbeständigen Stählen, Edelstahlen, Aluminium, Aluminiumlegierungen, Kupferbasis- und Nickelbasiswerkstoffen.

Claims

Patentansprüche
1. Verfahren zum Laserstrahlschweißen mit einem Faserlaser, wobei ein von dem Faserlaser erzeugter Laserstahl auf eine Bearbeitungsstelle oder in die Nähe der Bearbeitungsstelle fokussiert wird, dadurch gekennzeichnet, dass auf die Bear- beitungsstelle ein Prozessgas geleitet wird, welches ein aktives Gas enthält.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, als aktives Gas Kohlendioxid, Sauerstoff, Wasserstoff, Stickstoff oder eine Mischung aus diesen Gasen enthalten ist.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass im Prozessgas 0,01 Vol.-% bis 50 Vol.-%, vorzugsweise 1 Vol.-% bis 30 Vol.-%, besonders bevorzugt 5 Vol.-% bis 20 Vol.-% aktives Gas enthalten sind.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass im Prozessgas Helium und/oder Argon enthalten ist.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass ein Prozessgas, welches 10 Vol.-% bis 90 Vol.-% Helium, vorzugsweise 20 Vol.-% bis 70 Vol.-% Heli- um, besonders bevorzugt 30 Vol.-% bis 50 Vol.-% Helium enthält, verwendet wird.
PCT/EP2004/000805 2003-02-04 2004-01-29 Verfahren zum laserstrahlschweissen WO2004069463A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE502004008688T DE502004008688D1 (de) 2003-02-04 2004-01-29 Verfahren zum laserstrahlschweissen
US10/544,383 US20060231533A1 (en) 2003-02-04 2004-01-29 Laser beam welding method
EP04706177A EP1601491B2 (de) 2003-02-04 2004-01-29 Verfahren zum laserstrahlschweissen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10304474A DE10304474A1 (de) 2003-02-04 2003-02-04 Verfahren zum Laserstrahlschweißen
DE10304474.4 2003-02-04

Publications (1)

Publication Number Publication Date
WO2004069463A1 true WO2004069463A1 (de) 2004-08-19

Family

ID=32695195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/000805 WO2004069463A1 (de) 2003-02-04 2004-01-29 Verfahren zum laserstrahlschweissen

Country Status (5)

Country Link
US (1) US20060231533A1 (de)
EP (1) EP1601491B2 (de)
AT (1) ATE417693T1 (de)
DE (2) DE10304474A1 (de)
WO (1) WO2004069463A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7057134B2 (en) * 2003-03-18 2006-06-06 Loma Linda University Medical Center Laser manipulation system for controllably moving a laser head for irradiation and removal of material from a surface of a structure
US7379483B2 (en) * 2003-03-18 2008-05-27 Loma Linda University Medical Center Method and apparatus for material processing
US7038166B2 (en) * 2003-03-18 2006-05-02 Loma Linda University Medical Center Containment plenum for laser irradiation and removal of material from a surface of a structure
US7060932B2 (en) * 2003-03-18 2006-06-13 Loma Linda University Medical Center Method and apparatus for material processing
DE102009048957C5 (de) * 2009-10-10 2014-01-09 Mtu Aero Engines Gmbh Verfahren zum Schmelzschweißen eines einkristallinen Werkstücks mit einem polykristallinen Werkstück und Rotor
CN102510788B (zh) * 2010-06-14 2014-12-24 三菱电机株式会社 激光加工装置以及激光加工方法
US20120261459A1 (en) * 2011-04-12 2012-10-18 Bruck Gerald J Laser metalworking using reactive gas
MX346947B (es) 2012-04-06 2017-04-06 3M Innovative Properties Co Herramientas para elaborar articulos retrorreflectivos.
DE102016008344A1 (de) * 2016-04-18 2017-10-19 Schmöle GmbH Verfahren zur Herstellung eines Rippenrohres und Rippenrohr

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19840926A1 (de) * 1998-09-08 2000-05-04 Heidelberger Druckmasch Ag Verfahren und Anordnung zur Materialbearbeitung mittels Laserstrahlen
EP1146669A2 (de) * 2000-03-24 2001-10-17 BRITISH TELECOMMUNICATIONS public limited company Optisches Übertragungssystem und Verfahren zum Schützen einer optischen Strecke

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3939323A (en) 1972-09-14 1976-02-17 Union Carbide Corporation Shielding gas for laser welding
FR2660825B1 (fr) * 1990-04-04 1996-07-19 Air Liquide Gaz plasmagene et application de ce gaz a la projection plasma d'oxyde metallique.
FR2809648B1 (fr) * 2000-05-31 2002-08-30 Air Liquide Procede et installation de soudage hybride par laser et arc electrique, notamment de pieces automobiles ou de tubes
US6963046B2 (en) 2000-11-30 2005-11-08 Linde Aktiengesellschaft Process gas and method for laser welding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19840926A1 (de) * 1998-09-08 2000-05-04 Heidelberger Druckmasch Ag Verfahren und Anordnung zur Materialbearbeitung mittels Laserstrahlen
EP1146669A2 (de) * 2000-03-24 2001-10-17 BRITISH TELECOMMUNICATIONS public limited company Optisches Übertragungssystem und Verfahren zum Schützen einer optischen Strecke

Also Published As

Publication number Publication date
DE10304474A1 (de) 2004-08-12
EP1601491A1 (de) 2005-12-07
EP1601491B2 (de) 2013-03-27
DE502004008688D1 (de) 2009-01-29
ATE417693T1 (de) 2009-01-15
EP1601491B1 (de) 2008-12-17
US20060231533A1 (en) 2006-10-19

Similar Documents

Publication Publication Date Title
EP0655021B1 (de) Verfahren zum laserstrahlschneiden von band- oder plattenförmigen werkstücken, insbesondere von elektroblech
EP0946331B1 (de) Verfahren und prozessgas zum laserschweissen von metallischen werkstücken
EP1601491B1 (de) Verfahren zum laserstrahlschweissen
EP1590123A1 (de) Verfahren zum laserstrahlschweissen
DE102013022056A1 (de) Verfahren und Vorrichtung zur Konditionierung eines Schweiß- oder Schneidprozesses
EP3034231A1 (de) GASGEMISCH UND VERFAHREN ZUM LICHTBOGENFÜGEN ODER ZUR MATERIALBEARBEITUNG MIT REDUZIERTEM SCHADSTOFFAUSSTOß
DE602004012468T3 (de) Wig-schweissverfahren
EP1339525B1 (de) Verwendung eines Prozessgases zum Laserschweissen
EP1022087B1 (de) Laserschweissen mit Prozessgas
EP1022086B1 (de) Laserschweissen mit Prozessgas
DE19650258A1 (de) Verfahren zum Laserlegieren von Metallteilen mit Zuführung der Legierungskomponenten
DE3702451C2 (de)
DE19616844B4 (de) Verfahren zum Laserbeschichten sowie zum Laserschweißen von metallischen Werkstücken
EP1084788B1 (de) Verwendung eines Prozessgasgemisches zum Laserstrahlschweissen
DE3121555A1 (de) Verfahren zur kontrollierten formaenderung eines erwaermten teils aus stahl mittels laserstrahlung
DE10135878A1 (de) Prozessgas und Verfahren zur Laser-Materialbearbeitung
DE10063165A1 (de) Prozessgas und Verfahren zum Laserschweißen
WO2002076670A1 (de) Verwendung eines prozessgasgemisches und verfahren zum laserstrahlschweissen
WO2019011480A1 (de) Laserschweissen bei reduziertem umgebungsdruck
EP2929976B1 (de) Verfahren zum co2-laser-schweissen von hochlegierten stählen
WO2002043917A1 (de) Schniedgas und verfahren zum laserstrahlbrennschneiden
DE10063166A1 (de) Prozessgas und Verfahren zum Laserschweißen
EP2929977A1 (de) Verfahren zum co2-laser-schweissen von niedrig legierten stählen
DE102008024977A1 (de) Verfahren zum Lichtbogenfügen
DE102007035404A1 (de) Verfahren zum Laserfügen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2004706177

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004706177

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006231533

Country of ref document: US

Ref document number: 10544383

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10544383

Country of ref document: US