WO2004068131A1 - Ionizer and fine area analyzer - Google Patents

Ionizer and fine area analyzer Download PDF

Info

Publication number
WO2004068131A1
WO2004068131A1 PCT/JP2004/000843 JP2004000843W WO2004068131A1 WO 2004068131 A1 WO2004068131 A1 WO 2004068131A1 JP 2004000843 W JP2004000843 W JP 2004000843W WO 2004068131 A1 WO2004068131 A1 WO 2004068131A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
field light
probe
matrix
sample
Prior art date
Application number
PCT/JP2004/000843
Other languages
French (fr)
Japanese (ja)
Inventor
Katsutoshi Takahashi
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Publication of WO2004068131A1 publication Critical patent/WO2004068131A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/161Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission using photoionisation, e.g. by laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0004Imaging particle spectrometry

Definitions

  • the present invention relates to an apparatus and a method capable of performing analysis with high resolution in a minute area. More specifically, the present invention relates to an ionization apparatus and an ionization method for ionizing a sample by irradiating a sample-mixed matrix with near-field light or laser using a probe, and to a mass spectrometer and a micro-area analyzer equipped with the ionization apparatus .
  • Matrix-assisted laser desorption / ionization (MALD I) mass spectrometers are highly useful in that they can mass-analyze molecules that are difficult to ionize, such as proteins. Mass spectrometers are usually used for the purpose of detecting a very small amount of sample with high sensitivity, but are not commonly used for observing microscopic areas like a microscope. As an example of observation of a micro area using a MALD I mass spectrometer, an example of imaging a brain cell section is known (see Non-Patent Documents 1 to 4). On the other hand, the technology using near-field light has been applied to a scanning near-field optical microscope (SNOM), and has realized an optical microscope with high resolution exceeding the diffraction limit of light.
  • SNOM scanning near-field optical microscope
  • an ultraviolet laser is incident on a near-field light probe and irradiated with the generated near-field light to decompose the triazane compound.
  • mass spectrometry see Non-Patent Document 5.
  • Non-Patent Document 1 Caprio1i, R.M.eta1., Ana1.Chem., 1997, 69, 4751-4760
  • Non-Patent Document 2 Stoeckli, M. etal., J. Am. Soc. Mass Spectrom, 1999, 10, 67—71.
  • Non-Patent Document 3 Caur and, P. eta 1., An a 1. Chem., 1999, 71, 5263—5270
  • Non-Patent Document 4 Stoeclkli, M.eta 1., NATURE MED I CINE, 2001, 7, 493
  • Non-Patent Document 5 Stoec1e, R.eta1., Anal.Chem., 2001, Vol. 73, pl999—1402
  • the laser is focused by a lens and irradiates the matrix, so the diameter of the laser that can be focused is limited to 12 of the wavelength of one laser by the diffraction limit of light.
  • the resolution was as low as about 25 m.
  • Non-Patent Document 5 cannot be directly used for mass analysis of proteins and the like because the analyte is a synthetic compound and decomposes the analyte into nitrogen molecules. .
  • An object of the present invention is to provide an apparatus and a method for performing analysis in a minute area with high resolution without excessively damaging a sample using a mass spectrometer.
  • the present inventors have studied to solve the above problems, and as a result, have found that the above problems can be solved by applying laser irradiation using near-field light or a probe to MAL DI, thereby completing the present invention. Reached.
  • the present invention includes a laser emitting unit, and a near-field light generating unit that receives a laser emitted from the laser emitting unit and generates near-field light when the laser is emitted from the near-field light generating unit.
  • the present invention relates to an ionization apparatus that irradiates a sample mixed with Matritas by irradiating a near-field light to a matrix.
  • the present invention provides a laser emitting means, an optical fiber for guiding a laser emitted from the laser emitting means, and a laser irradiation probe connected to a tip of the optical fiber.
  • the present invention relates to an ionization apparatus for irradiating a matrix with a laser emitted from the laser irradiation probe to ionize a sample mixed with the matrix.
  • the present invention relates to an ionization apparatus and an ionization method for irradiating a sample mixed with a matrix by irradiating the matrix with near-field light.
  • the present invention relates to a mass spectrometer provided with the above-mentioned ionization device.
  • the present invention provides the above ionization apparatus, information input means for inputting information on an area to be analyzed to be scanned,
  • Drive mechanism control means for controlling a drive mechanism based on the area information
  • Analysis result analysis means for analyzing the result obtained from the mass analysis means
  • Storage means for storing position information transmitted from the drive mechanism control means and analysis results obtained from the analysis result analysis means
  • Image means for performing imaging from the position information and the analysis result stored in the storage means
  • the present invention relates to a micro-area analysis device provided with:
  • the present invention provides a method for ionizing a sample using the above-mentioned ionization apparatus,
  • region can be performed with high resolution using a mass spectrometer, without excessively damaging a sample.
  • FIG. 1 is an enlarged view near the near-field optical probe of the ionization apparatus of the present invention.
  • FIG. 2 is a schematic configuration diagram of the ionization device and the mass spectrometer of the present invention.
  • FIG. 3 is an enlarged view near the near-field optical probe of the ionization apparatus of the present invention.
  • FIG. 4 is an enlarged view near the near-field optical probe of the ionization device of the present invention.
  • FIG. 5 is a schematic configuration diagram of the micro region analysis device of the present invention.
  • FIG. 6 is a view showing a laser irradiation probe used in the present invention.
  • near-field light is light that is generated near the surface of an irradiation target when the irradiation target is irradiated with light and propagates only along the surface, and critical light from a medium having a high refractive index to a medium having a low refractive index. It includes both non-propagating light (so-called evanescent light) that penetrates into the low-refractive-index medium when light is introduced at an angle above the angle.
  • the minute region means a region having a diameter of 15 m or less.
  • the ionizer has an ultraviolet laser oscillator 1, an optical fiber 13 connected to the ultraviolet laser oscillator 1, and a near-field optical probe 5 connected to the other end of the optical fiber 1.3. Further, a suction tube 12 is arranged near the near-field optical probe 5. The suction tube 12 is connected to a suction controller 30, and the suction controller 30 is connected to a mass spectrometer 50. The near-field optical probe 5 Below the sample, a protein sample 8 mixed with a matrix 9 is arranged.
  • the ultraviolet laser oscillator 1, the near-field light probe 5, and the suction tube 12 constitute the laser emitting means, the near-field light generating means, and the sample transferring means of the present invention, respectively.
  • the first embodiment of the present invention is configured as described above, and its operation will be described below.
  • the laser light emitted from the ultraviolet laser oscillator 1 enters the near-field optical probe 5 through the optical fiber 3.
  • near-field light 7 is generated near the tip of the near-field optical probe 5.
  • the generated near-field light 7 irradiates the matrix 9 mixed with the protein sample 8.
  • the matrix 9 irradiated with the near-field light 7 evaporates together with the protein sample 8, the protein sample 8 is ionized, and protein ions 10 are generated.
  • the generated protein ions 10 are sucked into the suction tube 12 through the suction port 11.
  • the protein ions 10 sucked into the suction tube 12 pass through the suction control section 30 and are sent to the mass spectrometry section 50.
  • the mass spectrometer 50 performs mass spectrometry of the protein ions 10. As a result, it is possible to irradiate near-field light only to a small region smaller than the wavelength width of the ultraviolet laser, and mass spectrometry can be performed with high resolution.
  • FIG. 3 shows a second embodiment of the ionization device of the present invention.
  • an ultraviolet laser oscillator is provided, whereas in the present embodiment, an infrared laser oscillator (not shown) is provided.
  • the ionizer has a hollow optical fiber 130 connected to an infrared laser oscillator (not shown), and a near-field optical probe 5 connected to the other end of the hollow optical fiber 130.
  • a suction tube 12 is disposed near the near-field optical probe 5.
  • the suction tube 12 is connected to a mass spectrometer (not shown).
  • a cell section 100 is arranged below the near-field optical probe 5, and the cell section 100 is fixed to a sample stage 150.
  • the sample stage 150 is connected to a stage drive mechanism (not shown), and the stage drive mechanism is connected to a drive mechanism controller.
  • the infrared laser oscillator, near-field light probe 5, suction tube 12, and cell section 100 constitute the laser emitting means, near-field light generating means, sample transfer means, and analysis object of the present invention, respectively. I do.
  • the second embodiment of the present invention is configured as described above, and its operation will be described below.
  • Laser light emitted from the infrared laser oscillator passes through the hollow optical fiber 130 and enters the near-field optical probe 5. When the laser light is incident, near-field light 7 is generated near the tip of the near-field light probe 5. The generated near-field light 7 is applied to a matrix existing in the cell section 100.
  • the matrix is mixed with a protein sample present in the cell section 100, and when the matrix is irradiated with near-field light 7 and vaporized together with the protein sample, the protein sample is ionized and the protein ion 1 0 is generated.
  • the generated protein ions 10 are sucked into the suction tube 12 through the suction port 11.
  • the protein ions 10 sucked into the suction tube 12 are sent to the mass spectrometer.
  • the mass spectrometer performs mass spectrometry of protein ions 10.
  • the cell section 100 is fixed to a sample stage 150, and the sample stage 150 can be slid in a horizontal direction by a stage driving mechanism.
  • the stage and the drive mechanism are controlled by the drive mechanism control unit, and slide the sample stage 150 back and forth, left and right.
  • the near-field light probe 5 can scan the surface of the cell slice 100. Then, the mass spectrometry of the protein sample existing at each position of the cell section can be performed, and it is possible to examine what portion of the cell section contains what kind of protein.
  • FIG. 4 shows a third embodiment of the ionization device of the present invention.
  • an infrared laser oscillator is also provided in this embodiment.
  • the ionizer is provided with a mirror 210 for receiving a laser from an infrared laser oscillator and an atomic force microscope (AFM) probe 230.
  • the AFM probe 230 has a pinhole 235 open.
  • a skimmer 250 is arranged above the AFM probe 230, and a mass analyzer (not shown) is arranged ahead of the skimmer 250.
  • a cell sample 280 is arranged below the pinhole 235, and the cell sample 280 is fixed to a sample stage 270.
  • the sample stage 270 is connected to a stage drive mechanism (not shown), and the stage drive mechanism is connected to a drive mechanism control unit.
  • the infrared laser oscillator, the AFM probe 230, the skimmer 250, and the cell sample 280 correspond to the laser emitting means of the present invention.
  • the means for generating the in-field light, the means for transferring the sample, and the object to be analyzed are configured.
  • the third embodiment of the present invention is configured as described above, and its operation will be described below.
  • the laser light emitted from the infrared laser oscillator is reflected by the mirror 210 and enters the AFM probe 230.
  • Near-field light 7 is generated from the pinhole 2 35 of the AFM probe 230 into which the laser beam has entered.
  • the generated proximity light 7 is applied to the matrix existing inside or on the surface of the cell membrane 290 of the cell sample 280.
  • the matrix is mixed with the membrane protein sample 300, and when the near-field light 7 is applied to the matrix and evaporates together with the membrane protein sample 300, the membrane protein sample 300 is ionized and the membrane is sampled. Protein ions 310 are produced.
  • the generated membrane protein ion 310 is sucked by the skimmer 250, and the membrane protein ion 310 sucked by the skimmer 250 is sent to the mass spectrometer.
  • mass spectrometry section mass spectrometry of the membrane protein ion 310 is performed.
  • the cell sample 280 is fixed to a sample stage 270, and the sample stage 270 can be slid in a horizontal direction by a stage driving mechanism.
  • the stage driving mechanism is controlled by a driving mechanism control unit, and slides the sample stage 270 forward and backward and left and right.
  • the AFM probe 230 can scan the surface of the cell membrane 290.
  • mass spectrometry of the membrane protein sample present at each position of the cell membrane can be performed, and it is possible to examine what part of the cell membrane contains what kind of membrane protein.
  • FIG. 5 is a diagram showing an embodiment of the micro region analysis device of the present invention.
  • the control unit 500 is configured by a computer including a drive mechanism control unit 520, an analysis result analysis unit 540, an imaging unit 550, and a storage unit 560.
  • the control section 500 is connected to the drive mechanism 510 via the drive mechanism control section 5200, and the drive mechanism 5100 is connected to the sample stage 150. Further, the control section 500 is connected to the mass analysis section 50 via the analysis result analysis section 540. Further, the control unit 500 is connected to the keyboard 530 via the drive mechanism control unit and to the display 570 via the imaging unit 550, respectively.
  • Other configurations are the same as in FIG.
  • the keyboard 530, drive mechanism controller 520, mass spectrometer 50, analysis result analyzer 540, storage 560, imager 550, and display 570 Departure
  • the information input means, the drive mechanism control means, the mass analysis means, the analysis result analysis means, the storage means, the imaging means, and the display means are constituted respectively.
  • the microregion analyzer of the present invention is configured as described above, and its operation will be described below.
  • the area information of the cell section 100 to be scanned is input to the keyboard 5300, and the input area information is transmitted to the drive mechanism control section 5200.
  • the region means a scanning range of the cell section 100, and the region is specified by, for example, the coordinates of the sample stage 150 on which the cell section 100 is fixed.
  • the drive mechanism control section 520 slides the sample stage 150 forward, backward, left, and right by the drive mechanism 510 based on the input area information.
  • the position information of the sample stage 150 that is, the position information indicating which part of the cell slice 100 is irradiated with the near-field light 7 is stored from the drive mechanism control unit 520. Transmitted to part 560.
  • the 40 analyzes the result obtained from the mass spectrometry unit 50 and transmits the analysis result to the storage unit 560.
  • the storage unit 560 stores an analysis result corresponding to the position information.
  • the imaging unit 550 uses the position information and the analysis result stored in the storage unit 560 to determine which substance is present at which position in the cell slice 100, for example, for each substance. Create an image as a color-coded plot. The imaged result is displayed on the display
  • the near-field light generating means used in the present invention is not particularly limited as long as it can generate near-field light.
  • a near-field light probe for SNOM, an AFM probe, or the like can be used.
  • the material of the probe include a material in which glass or a transparent plastic is coated in a single layer or a multilayer with aluminum, magnesium fluoride, silver, or the like.
  • a probe for SNOM can be a cantilever type, a straight fiber type, or a small scatterer type.
  • the wavelength of the incident laser is 0.1 to 15 m, it exceeds the diffraction limit of the laser beam and is close to the minute area of about 0.01 to L wm on the analysis target.
  • Field light can be applied.
  • the irradiation distance of near-field light in the case of the SNOM probe is about 1/2 of the wavelength of the laser, and the distance between the SNOM probe and the analysis target is small. The distance is also within this irradiation distance.
  • a pinhole is formed as shown in FIG. 4, and the diameter of the pinhole can be, for example, about 0.1 ⁇ m.
  • the near-field light exceeds the diffraction limit of the laser beam and reaches a minute area with a diameter of about 0.1 to 1111 on the analysis target. Can be irradiated.
  • a hollow fiber can be used as shown in FIGS. 3 and 5, in addition to the solid optical fiber and the fiber probe. As a result, laser scattering in the fiber is suppressed, and the sample can be efficiently irradiated with near-field light with little energy.
  • FIG. 6 is a diagram showing an example of the structure of the laser irradiation probe 700 used in the present invention.
  • the distal end portion 705 of the laser irradiation probe 700 is thinner and open than the main body portion 702.
  • the diameter of the opening 707 is not particularly limited, and can be appropriately determined according to the area of the region to be irradiated with the laser beam. From the viewpoint of irradiating the laser beam to the minute region, the diameter of the opening 707 is preferably 15 m or less, more preferably 5 or less, further preferably l ⁇ m or less, and most preferably 0.1 m or less. There is no particular lower limit on the diameter of the opening 707, but it is preferably at least 0.01 m from the viewpoint of ease of processing. Further, from another viewpoint, it is preferable that the diameter of the opening is smaller than the wavelength of the laser incident on the probe.
  • FIGS. 1 to 3 and 5 another embodiment of the present invention is shown by using a laser irradiation probe 700 instead of the near-field light probe 5.
  • the laser can be applied to a minute area of 0.1 to 15 m.
  • the irradiation distance can be increased and the energy of the laser to be irradiated can be increased as compared with the case where the near-field optical probe 5 is used. It becomes possible.
  • the subject to be scanned in the present invention is not particularly limited.
  • a cell membrane is a preferred example.
  • scanning can be performed by sliding the sample stage on which the object to be analyzed is fixed and scanning, or by using a near-field optical probe or the like with the sample stage fixed. It is also possible to scan by moving the field light generating means or the laser irradiation probe. Further, both the sample stage, the near-field light generating means, or the laser irradiation probe may be moved. There is no particular limitation on the sample stage as long as it can fix the analysis target.However, when scanning cell sections or cell membranes, from the viewpoint of maintaining the shape of cells at a very low temperature, for example, 4 Those that can maintain the temperature around K are preferred.
  • the method of controlling the distance between the near-field light generating means or the laser irradiation probe used in the present invention and the object to be analyzed There are no particular restrictions on the method of controlling the distance between the near-field light generating means or the laser irradiation probe and the object to be analyzed, and any method can be used as long as it can be placed within the distance that the near-field light or laser is irradiated. Is also good.
  • the thickness of the object to be analyzed is measured in advance, and the near-field light generating means or the laser irradiation probe is fixed within the range where the near-field light or the laser is irradiated according to the thickness, and the predetermined distance is set.
  • a method of keeping the distance between the object and the analysis target may be used. That is, by applying the principle of the atomic force microscope (AFM), the near-field light generating means or the laser By detecting the distance between the irradiation probe and the object to be analyzed, the distance can be set to a predetermined value.
  • AFM atomic force microscope
  • the near-field light generating means or the laser irradiation probe is once brought into contact with the object to be analyzed, and the near-field light generating means or the laser irradiation probe is separated from the contacted state by a predetermined distance, so that the near-field light can be obtained.
  • the generating means or the laser or laser irradiation probe and the object to be analyzed can be placed at a predetermined distance.
  • the deflection of the near-field light generating means or the laser irradiation probe is detected using an optical lever, or a near-field light generating means or a pressure sensor such as a tuning fork attached to the laser irradiation probe is used.
  • a near-field light generating means or a pressure sensor such as a tuning fork attached to the laser irradiation probe is used.
  • the laser emitting means is not particularly limited as long as it can emit a laser.
  • an infrared laser is preferred from the viewpoint of not damaging protein samples.
  • the matrix used in the present invention is not particularly limited as long as it can be vaporized together with the sample by near-field light or laser to ionize the sample.
  • glycerol derivatives such as those used in ordinary MAL DI, such as cinnamic acid derivatives, can be used.
  • glycerol is used because it is difficult to alter cells. Is preferably used.
  • the sample transfer means used in the present invention is not particularly limited as long as the sample can be sent to the mass spectrometry means.
  • a suction suction means is used. Examples include tubing and electrically skimmed skimmers.
  • the sample may be directly introduced into the mass spectrometer without using the sample moving means.
  • the atmospheric pressure for ionization in the present invention is not particularly limited, and it can be performed under vacuum, as in ordinary MALDI, or under normal pressure or low pressure.
  • the low pressure is not particularly limited as long as it is a pressure at which a sample such as a cell is not easily damaged, and examples thereof include a pressure of 0.1 to 100 Pa.
  • the mass spectrometer used in the present invention is not particularly limited as long as it can perform mass spectrometry, and examples thereof include a time-of-flight mass spectrometer, a quadrupole mass spectrometer, and a tandem mass spectrometer. It can be appropriately selected and used depending on the purpose.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

(Issue): An ionizer, an ionizing method, a mass analyzer and a fine area analyzer for carrying out analysis in a fine area with a high resolution by using a mass analyzer. (Solutions): An ionizer, which is provided with a laser emitting means and a near-field light generating means for generating a near-field light on receiving a laser emitted from the laser emitting means, and which ionizes a sample mixed with a matrix by irradiating the matrix with a near-field light generated form the near-field light generating means, is used. Or, an ionizer, which is provided with a laser emitting means, an optical fiber for guiding a laser emitted from the laser emitting means, and a laser irradiating probe connected with the tip end of the optical fiber, and which ionizes a sample mixed with a matrix by irradiating the matrix with a laser emitted from laser irradiating probe, is used. In addition, a fine area analyzer is obtained by combining this ionizer with a mass analyzer.

Description

明細 : イオン化装置および微小領域分析装置 技術分野 Description : Ionization device and micro area analyzer
本発明は、 微小領域において高い分解能で分析ができる装置および方法に関す る。 さらに詳しくは、 試料を混合したマトリクスへの近接場光若しくはプローブ を用いたレーザーの照射により試料をイオン化するイオン化装置およびイオン化 方法、 並びにこのイオン化装置を備えた質量分析装置および微小領域分析装置に 関する。 背景技術  The present invention relates to an apparatus and a method capable of performing analysis with high resolution in a minute area. More specifically, the present invention relates to an ionization apparatus and an ionization method for ionizing a sample by irradiating a sample-mixed matrix with near-field light or laser using a probe, and to a mass spectrometer and a micro-area analyzer equipped with the ionization apparatus . Background art
マトリクス支援レーザー脱離イオン化 (MALD I) 質量分析装置は、 タンパ ク質などのイオン化しにくい分子をイオン化して質量分析ができる点で、 有用性 が高いものである。 質量分析装置は、 通常微量の試料を感度よく検出する目的で 用いられるが、 顕微鏡のように微小領域の観察に用いられることは一般的ではな い。 MALD I質量分析装置を利用して微小領域を観察したものとしては、 脳細 胞切片のイメージングを行った例が知られている (非特許文献 1〜4参照) 。 一方、 近接場光を用いた技術は、 走査型近接場光学顕微鏡 (SNOM) に応用 されており、 光の回折限界を超える高い分解能を有する光学顕微鏡を実現してい る。  Matrix-assisted laser desorption / ionization (MALD I) mass spectrometers are highly useful in that they can mass-analyze molecules that are difficult to ionize, such as proteins. Mass spectrometers are usually used for the purpose of detecting a very small amount of sample with high sensitivity, but are not commonly used for observing microscopic areas like a microscope. As an example of observation of a micro area using a MALD I mass spectrometer, an example of imaging a brain cell section is known (see Non-Patent Documents 1 to 4). On the other hand, the technology using near-field light has been applied to a scanning near-field optical microscope (SNOM), and has realized an optical microscope with high resolution exceeding the diffraction limit of light.
そして、 近接場光を質量分析に応用した例としては、 紫外線レーザーを近接場 光プロ一ブに入射して発生した近接場光を照射してトリァザン化合物を分解し、 その分解物である窒素分子を質量分析により測定した例が知られている (非特許 文献 5参照) 。  As an example of applying near-field light to mass spectrometry, an ultraviolet laser is incident on a near-field light probe and irradiated with the generated near-field light to decompose the triazane compound. Is known by mass spectrometry (see Non-Patent Document 5).
(非特許文献 1) Cap r i o 1 i, R. M. e t a 1. , An a 1. Ch em. 、 1997、 69、 4751-4760  (Non-Patent Document 1) Caprio1i, R.M.eta1., Ana1.Chem., 1997, 69, 4751-4760
(非特許文献 2) S t oe c k l i, M. e t a l. , J. Am. S o c. Ma s s S p e c t r om, 1999, 10, 67— 71 (非特許文献 3) C au r and, P. e t a 1. , An a 1. C hem. , 1999, 71, 5263— 5270 (Non-Patent Document 2) Stoeckli, M. etal., J. Am. Soc. Mass Spectrom, 1999, 10, 67—71. (Non-Patent Document 3) Caur and, P. eta 1., An a 1. Chem., 1999, 71, 5263—5270
(非特許文献 4) S t o e c k l i, M. e t a 1. , NATURE M ED I C I NE, 2001、 7、 493  (Non-Patent Document 4) Stoeclkli, M.eta 1., NATURE MED I CINE, 2001, 7, 493
(非特許文献 5) S t o e c 1 e, R. e t a 1. , Ana l . Ch e m. 、 2001年、 73卷、 p l 999— 1402  (Non-Patent Document 5) Stoec1e, R.eta1., Anal.Chem., 2001, Vol. 73, pl999—1402
しかし、 通常の MALD Iでは、 レーザーをレンズによって集光してマトリク スに照射しているため、 集光できるレーザーの直径は、 光の回折限界によってレ 一ザ一の波長の 1 2に制限されてしまう。 このため、 波長と同程度または波長 の 1 2以下の領域にレーザーを照射して試料をイオン化することはできなかつ た。 そして、 非特許文献 1〜4に記載された測定方法では、 その分解能が 25 m程度と低いものであった。  However, in ordinary MALD I, the laser is focused by a lens and irradiates the matrix, so the diameter of the laser that can be focused is limited to 12 of the wavelength of one laser by the diffraction limit of light. Would. For this reason, it has not been possible to irradiate a laser to a region having a wavelength approximately equal to or less than 12 wavelengths to ionize the sample. In the measuring methods described in Non-Patent Documents 1 to 4, the resolution was as low as about 25 m.
これらの分解能を向上させる方法としては、 照射するレーザ一の波長を短くす ることが考えられるが、 通常の MALD Iでは紫外線レーザーを用いており、 波 長を短くするには限界があった。 また、 紫外線レーザーは、 エネルギーが高いた め、 タンパク質等の試料を損傷するという問題もあった。  As a method for improving these resolutions, it is conceivable to shorten the wavelength of the laser to be irradiated. However, ordinary MALD I uses an ultraviolet laser, and there is a limit to shortening the wavelength. In addition, ultraviolet lasers have a problem that they damage proteins and other samples due to their high energy.
一方、 SNOMを用いた場合には、 光学顕微鏡から得られる情報のみでは、 分 析対象の微小領域にどのような物質が存在するのかを測定することは事実上不可 能であった。  On the other hand, when SNOM was used, it was practically impossible to measure what kind of substance was present in the micro area to be analyzed using only information obtained from an optical microscope.
また、 非特許文献 5に記載されたものは、 分析対象物が合成化合物であり、 し かも分析対象を窒素分子にまで分解するものであるため、 タンパク質等の質量分 析にそのまま用いることができない。  In addition, the substance described in Non-Patent Document 5 cannot be directly used for mass analysis of proteins and the like because the analyte is a synthetic compound and decomposes the analyte into nitrogen molecules. .
従って、 微小領域において試料を過度に損傷することなく、 高い分解能で質量 分析を行う技術が求められていた。 発明の開示  Therefore, there has been a demand for a technique for performing mass spectrometry with high resolution without excessively damaging the sample in a minute area. Disclosure of the invention
本発明の目的は、 質量分析装置を用いて、 試料を過度に損傷することなく微小 領域における分析を高い分解能で行うための装置および方法を提供することであ る。 本発明者らは、 上記課題を解決すべく検討した結果、 近接場光若しくはプロ一 ブを用いたレーザー照射を MAL D Iに応用することにより上記課題を解決する ことを見出し、 本発明を完成するに至った。 An object of the present invention is to provide an apparatus and a method for performing analysis in a minute area with high resolution without excessively damaging a sample using a mass spectrometer. The present inventors have studied to solve the above problems, and as a result, have found that the above problems can be solved by applying laser irradiation using near-field light or a probe to MAL DI, thereby completing the present invention. Reached.
すなわち、 本発明は、 レーザー放射手段と、 前記レーザー放射手段から放射さ れたレーザーが入射されて近接場光を発生させる近接場光発生手段とを備え、 前 記近接場光発生手段から発生した近接場光をマトリクスに照射することにより、 マトリタスと混合された試料をイオン化するイオン化装置に関する。  That is, the present invention includes a laser emitting unit, and a near-field light generating unit that receives a laser emitted from the laser emitting unit and generates near-field light when the laser is emitted from the near-field light generating unit. The present invention relates to an ionization apparatus that irradiates a sample mixed with Matritas by irradiating a near-field light to a matrix.
また、 本発明は、 レーザー放射手段と、 前記レーザ一放射手段から放射された レ—ザ一を誘導する光ファイバ一と、 前記光ファイバ一の先端に接続されたレー ザ一照射プロ一ブとを備え、 前記レーザー照射プローブから放射されたレーザー をマトリクスに照射することにより、 マトリクスと混合された試料をイオン化す るイオン化装置に関する。  Further, the present invention provides a laser emitting means, an optical fiber for guiding a laser emitted from the laser emitting means, and a laser irradiation probe connected to a tip of the optical fiber. The present invention relates to an ionization apparatus for irradiating a matrix with a laser emitted from the laser irradiation probe to ionize a sample mixed with the matrix.
また、 本発明は、 マトリクスに近接場光を照射することによりマトリクスと混 合された試料をイオン化するイオン化装置およびイオン化方法に関する。  Further, the present invention relates to an ionization apparatus and an ionization method for irradiating a sample mixed with a matrix by irradiating the matrix with near-field light.
さらに、 本発明は、 上記イオン化装置を備えた質量分析装置に関する。  Furthermore, the present invention relates to a mass spectrometer provided with the above-mentioned ionization device.
また、 本発明は、 上記イオン化装置と、 走査する分析対象の領域情報を入力す る情報入力手段と、  Further, the present invention provides the above ionization apparatus, information input means for inputting information on an area to be analyzed to be scanned,
前記領域情報に基づき駆動機構を制御する駆動機構制御手段と、 Drive mechanism control means for controlling a drive mechanism based on the area information;
質量分析手段と、 Mass spectrometry means;
前記質量分析手段から得られた結果を解析する分析結果解析手段と、 Analysis result analysis means for analyzing the result obtained from the mass analysis means,
前記駆動機構制御手段から伝達される位置情報および前記分析結果解析手段から 得られる解析結果を記憶する記憶手段と、 Storage means for storing position information transmitted from the drive mechanism control means and analysis results obtained from the analysis result analysis means;
前記記憶手段に記憶された前記位置情報および前記解析結果からィメ一ジングを 行うイメージィヒ手段と、 Image means for performing imaging from the position information and the analysis result stored in the storage means,
イメージ化した結果を表示する表示手段と、 Display means for displaying the imaged result;
を備えた微小領域分析装置に関する。 The present invention relates to a micro-area analysis device provided with:
さらに、 本発明は、 上記イオン化装置を用いて試料をイオン化する方法におい て、  Further, the present invention provides a method for ionizing a sample using the above-mentioned ionization apparatus,
近接場光発生手段若しくはレーザー照射プロ一ブと分析対象とを所定の距離に置 く工程、 および Place the near-field light generating means or laser irradiation probe at a predetermined distance from the object to be analyzed. Process, and
近接場光、 若しくはレ一ザ一照射プローブから放射されたレーザー、 を分析対象 に照射する工程、 Irradiating the target with near-field light or laser emitted from a laser irradiation probe,
を含む、 試料をイオン化する方法に関する。 And a method for ionizing a sample.
本発明によれば、 質量分析装置を用いて、 試料を過度に損傷することなく微小 領域における分析を高い分解能で行えるようになる。 図面の簡単な説明  ADVANTAGE OF THE INVENTION According to this invention, the analysis in a micro area | region can be performed with high resolution using a mass spectrometer, without excessively damaging a sample. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明のイオン化装置の近接場光プローブ付近の拡大図である。 FIG. 1 is an enlarged view near the near-field optical probe of the ionization apparatus of the present invention.
図 2は、 本発明のイオン化装置および質量分析装置の概略構成図である。 FIG. 2 is a schematic configuration diagram of the ionization device and the mass spectrometer of the present invention.
図 3は、 本発明のイオン化装置の近接場光プローブ付近の拡大図である。 FIG. 3 is an enlarged view near the near-field optical probe of the ionization apparatus of the present invention.
図 4は、 本発明のイオン化装置の近接場光プローブ付近の拡大図である。 FIG. 4 is an enlarged view near the near-field optical probe of the ionization device of the present invention.
図 5は、 本発明の微小領域分析装置の概略構成図である。 FIG. 5 is a schematic configuration diagram of the micro region analysis device of the present invention.
図 6は、 本発明に用いるレーザ一照射プロ一ブを示す図である。 発明を実施するための最良の形態 FIG. 6 is a view showing a laser irradiation probe used in the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明において、 近接場光とは、 照射対象に光を照射したときに照射対象表面 付近に発生し、 その表面に沿ってのみ伝播する光、 および、 屈折率の高い媒質か ら低い媒質に臨界角位上の角度で光を導入したときに、 低屈折率の媒質側に浸透 する非伝播性の光 (いわゆるエバネッセント光) 、 のいずれをも含むものである。 また、 本発明において、 微小領域とは、 直径 1 5 m以下の領域を意味する。 以下、 図面を参照して本発明をさらに詳しく説明するが、 本発明は、 これらの 図面に限定されるものではない。  In the present invention, near-field light is light that is generated near the surface of an irradiation target when the irradiation target is irradiated with light and propagates only along the surface, and critical light from a medium having a high refractive index to a medium having a low refractive index. It includes both non-propagating light (so-called evanescent light) that penetrates into the low-refractive-index medium when light is introduced at an angle above the angle. Further, in the present invention, the minute region means a region having a diameter of 15 m or less. Hereinafter, the present invention will be described in more detail with reference to the drawings, but the present invention is not limited to these drawings.
図 1、 図 2は、 本発明のイオン化装置の第 1の実施形態を示すものである。 図 1、 図 2において、 イオン化装置は、 紫外線レーザー発振器 1、 紫外線レーザー 発振器 1に接続された光ファイバ一 3、 光ファイバ一 ·3の他端に接続された近接 場光プローブ 5を有し、 さらに近接場光プローブ 5の近傍にサクションチューブ 1 2が配置されている。 サクシヨンチューブ 1 2は吸引制御部 3 0に接続され、 吸引制御部 3 0は質量分析部 5 0に接続されている。 また、 近接場光プローブ 5 の下方に、 マトリクス 9と混合したタンパク質試料 8が配置されている。 なお、 紫外線レーザー発振器 1、 近接場光プローブ 5、 サクシヨンチューブ 1 2は、 本 発明のレーザー放射手段、 近接場光発生手段、 試料移送手段をそれぞれ構成する。 本発明の第 1の実施形態は、 上記のように構成されており、 以下その作用につ いて説明する。 紫外線レーザー発振器 1から放射されたレーザー光は、 光フアイ バー 3を通つて近接場光プローブ 5に入射する。 近接場光プローブ 5にレーザー 光が入射すると、 近接場光プローブ 5の先端付近では近接場光 7が発生する。 発 生した近接場光 7は、 タンパク質試料 8と混合されたマトリクス 9に照射される。 近接場光 7を照射されたマトリクス 9が夕ンパク質試料 8とともに気化する際に、 タンパク質試料 8がイオン化され、 タンパク質イオン 1 0が生成される。 生成さ れたタンパク質イオン 1 0は、 吸引口 1 1を通りサクシヨンチューブ 1 2に吸引 される。 サクシヨンチューブ 1 2に吸引されたタンパク質イオン 1 0は、 吸引制 御部 3 0を通り、 質量分析部 5 0に送られる。 質量分析部 5 0では、 タンパク質 イオン 1 0の質量分析が行われる。 これにより、 紫外線レーザーの波長の幅より も小さい微小領域のみに近接場光を照射することができ、 高い分解能で質量分析 を行うことができる。 1 and 2 show a first embodiment of the ionization apparatus of the present invention. 1 and 2, the ionizer has an ultraviolet laser oscillator 1, an optical fiber 13 connected to the ultraviolet laser oscillator 1, and a near-field optical probe 5 connected to the other end of the optical fiber 1.3. Further, a suction tube 12 is arranged near the near-field optical probe 5. The suction tube 12 is connected to a suction controller 30, and the suction controller 30 is connected to a mass spectrometer 50. The near-field optical probe 5 Below the sample, a protein sample 8 mixed with a matrix 9 is arranged. The ultraviolet laser oscillator 1, the near-field light probe 5, and the suction tube 12 constitute the laser emitting means, the near-field light generating means, and the sample transferring means of the present invention, respectively. The first embodiment of the present invention is configured as described above, and its operation will be described below. The laser light emitted from the ultraviolet laser oscillator 1 enters the near-field optical probe 5 through the optical fiber 3. When laser light is incident on the near-field optical probe 5, near-field light 7 is generated near the tip of the near-field optical probe 5. The generated near-field light 7 irradiates the matrix 9 mixed with the protein sample 8. When the matrix 9 irradiated with the near-field light 7 evaporates together with the protein sample 8, the protein sample 8 is ionized, and protein ions 10 are generated. The generated protein ions 10 are sucked into the suction tube 12 through the suction port 11. The protein ions 10 sucked into the suction tube 12 pass through the suction control section 30 and are sent to the mass spectrometry section 50. The mass spectrometer 50 performs mass spectrometry of the protein ions 10. As a result, it is possible to irradiate near-field light only to a small region smaller than the wavelength width of the ultraviolet laser, and mass spectrometry can be performed with high resolution.
図 3は、 本発明のイオン化装置の第 2の実施形態を示すものである。 図 1およ び図 2の実施の形態では紫外線レーザー発振器が設けられていたのに対して、 本 実施の形態では赤外線レーザー発振器 (図示は省略) が設けられている。 図 3に おいて、 イオン化装置は、 図示されていない赤外線レーザー発振器に接続された 中空光ファイバ一 1 3 0、 中空光ファイバ一 1 3 0の他端に接続された近接場光 プローブ 5を有し、 さらに近接場光プローブ 5の近傍にサクシヨンチューブ 1 2 が配置されている。 サクシヨンチューブ 1 2は、 図示されていない質量分析部に 接続されている。 また、 近接場光プローブ 5の下方には、 細胞切片 1 0 0が配置 され、 細胞切片 1 0 0は試料ステージ 1 5 0に固定されている。 試料ステージ 1 5 0は、 図示されていないステージ駆動機構に接続され、 ステージ駆動機構は、 駆動機構制御部に接続されている。 なお、 赤外線レーザー発振器、 近接場光プロ ーブ 5、 サクシヨンチューブ 1 2、 細胞切片 1 0 0は、 本発明のレーザー放射手 段、 近接場光発生手段、 試料移送手段、 分析対象をそれぞれ構成する。 本発明の第 2の実施形態は、 上記のように構成されており、 以下その作用につ いて説明する。 赤外線レーザー発振器から放射されたレーザー光は、 中空光ファ ィパー 1 3 0を通って近接場光プローブ 5に入射する。 レーザー光が入射すると、 近接場光プローブ 5の先端付近では近接場光 7が発生する。 発生した近接場光 7 は、 細胞切片 1 0 0に存在するマトリクスに照射される。 マトリクスは、 細胞切 片 1 0 0に存在するタンパク質試料と混合されており、 マトリクスに近接場光 7 が照射されてタンパク質試料とともに気化する際に、 夕ンパク質試料がィォン化 され、 タンパク質イオン 1 0が生成される。 生成されたタンパク質イオン 1 0は、 吸引口 1 1を通りサクシヨンチューブ 1 2に吸引される。 サクシヨンチューブ 1 2に吸引されたタンパク質イオン 1 0は、 質量分析部に送られる。 質量分析部で は、 タンパク質イオン 1 0の質量分析が行われる。 また、 細胞切片 1 0 0は、 試 料ステージ 1 5 0に固定されており、 試料ステージ 1 5 0は、 ステージ駆動機構 により水平方向にスライドできるようになつている。 ステージ,駆動機構は、 駆動 機構制御部により制御され、 試料ステージ 1 5 0を前後、 左右にスライドさせる。 これにより、 近接場光プローブ 5が、 細胞切片 1 0 0の表面を走査することがで きる。 そして、 細胞切片の各位置に存在するタンパク質試料の質量分析を行うこ とができ、 細胞切片のどの部分にどのようなタンパク質が存在するのかを調べる ことができる。 FIG. 3 shows a second embodiment of the ionization device of the present invention. In the embodiment of FIGS. 1 and 2, an ultraviolet laser oscillator is provided, whereas in the present embodiment, an infrared laser oscillator (not shown) is provided. In FIG. 3, the ionizer has a hollow optical fiber 130 connected to an infrared laser oscillator (not shown), and a near-field optical probe 5 connected to the other end of the hollow optical fiber 130. Further, a suction tube 12 is disposed near the near-field optical probe 5. The suction tube 12 is connected to a mass spectrometer (not shown). A cell section 100 is arranged below the near-field optical probe 5, and the cell section 100 is fixed to a sample stage 150. The sample stage 150 is connected to a stage drive mechanism (not shown), and the stage drive mechanism is connected to a drive mechanism controller. The infrared laser oscillator, near-field light probe 5, suction tube 12, and cell section 100 constitute the laser emitting means, near-field light generating means, sample transfer means, and analysis object of the present invention, respectively. I do. The second embodiment of the present invention is configured as described above, and its operation will be described below. Laser light emitted from the infrared laser oscillator passes through the hollow optical fiber 130 and enters the near-field optical probe 5. When the laser light is incident, near-field light 7 is generated near the tip of the near-field light probe 5. The generated near-field light 7 is applied to a matrix existing in the cell section 100. The matrix is mixed with a protein sample present in the cell section 100, and when the matrix is irradiated with near-field light 7 and vaporized together with the protein sample, the protein sample is ionized and the protein ion 1 0 is generated. The generated protein ions 10 are sucked into the suction tube 12 through the suction port 11. The protein ions 10 sucked into the suction tube 12 are sent to the mass spectrometer. The mass spectrometer performs mass spectrometry of protein ions 10. Further, the cell section 100 is fixed to a sample stage 150, and the sample stage 150 can be slid in a horizontal direction by a stage driving mechanism. The stage and the drive mechanism are controlled by the drive mechanism control unit, and slide the sample stage 150 back and forth, left and right. As a result, the near-field light probe 5 can scan the surface of the cell slice 100. Then, the mass spectrometry of the protein sample existing at each position of the cell section can be performed, and it is possible to examine what portion of the cell section contains what kind of protein.
図 4は、 本発明のイオン化装置の第 3の実施形態を示すものである。 本実施形 態でも図示は省略するが赤外線レーザー発振器が設けられている。 図 4において、 イオン化装置は、 赤外線レーザー発振器からレーザーを受けるミラー 2 1 0およ び原子間力顕微鏡 (A F M) プローブ 2 3 0が配置されている。 A F Mプロ一ブ 2 3 0には、 ピンホ一ル 2 3 5が開けられている。 A FMプローブ 2 3 0の上方 にスキマー 2 5 0が配置され、 スキマー 2 5 0の先に、 図示されていない質量分 析部が配置されている。 また、 ピンホール 2 3 5の下方には細胞試料 2 8 0が配 置され、 細胞試料 2 8 0は試料ステージ 2 7 0に固定されている。 試料ステージ 2 7 0は、 図示されていないステージ駆動機構に接続され、 ステージ駆動機構は、 駆動機構制御部に接続されている。 なお、 赤外線レーザー発振器、 A FMプロ一 ブ 2 3 0、 スキマー 2 5 0、 細胞試料 2 8 0は、 本発明のレーザー放射手段、 近 接場光発生手段、 試料移送手段、 分析対象をそれぞれ構成する。 FIG. 4 shows a third embodiment of the ionization device of the present invention. Although not shown, an infrared laser oscillator is also provided in this embodiment. In FIG. 4, the ionizer is provided with a mirror 210 for receiving a laser from an infrared laser oscillator and an atomic force microscope (AFM) probe 230. The AFM probe 230 has a pinhole 235 open. A skimmer 250 is arranged above the AFM probe 230, and a mass analyzer (not shown) is arranged ahead of the skimmer 250. A cell sample 280 is arranged below the pinhole 235, and the cell sample 280 is fixed to a sample stage 270. The sample stage 270 is connected to a stage drive mechanism (not shown), and the stage drive mechanism is connected to a drive mechanism control unit. The infrared laser oscillator, the AFM probe 230, the skimmer 250, and the cell sample 280 correspond to the laser emitting means of the present invention. The means for generating the in-field light, the means for transferring the sample, and the object to be analyzed are configured.
本発明の第 3の実施形態は、 上記のように構成されており、 以下その作用につ いて説明する。 赤外線レーザー発振器から放射されたレーザー光は、 ミラー 2 1 0で反射され、 A F Mプローブ 2 3 0に入射する。 レーザー光が入射した A F M プローブ 2 3 0のピンホール 2 3 5から近接場光 7が発生する。 発生した近接楊 光 7は、 細胞試料 2 8 0の細胞膜 2 9 0の内部若しくはその表面に存在するマト リクスに照射される。 マトリクスは、 膜タンパク質試料 3 0 0と混合されており、 近接場光 7がマトリクスに照射されて、 膜タンパク質試料 3 0 0とともに気化す る際に、 膜タンパク質試料 3 0 0がイオン化され、 膜タンパク質イオン 3 1 0が 生成される。 生成された膜タンパク質イオン 3 1 0は、 スキマー 2 5 0に吸引さ れ、 スキマー 2 5 0に吸引された膜タンパク質イオン 3 1 0は、 質量分析部に送 られる。 質量分析部では、 膜タンパク質イオン 3 1 0の質量分析が行われる。 ま た、 細胞試料 2 8 0は、 試料ステージ 2 7 0に固定されており、 試料ステージ 2 7 0は、 ステージ駆動機構により水平方向にスライドできるようになつている。 ステージ駆動機構は、 駆動機構制御部により制御され、 試料ステージ 2 7 0を前 後、 左右にスライドさせる。 これにより、 A F Mプローブ 2 3 0が細胞膜 2 9 0 の表面を走査することができる。 そして、 細胞膜の各位置に存在する膜タンパク 質試料の質量分析を行うことができ、 細胞膜のどの部分にどのような膜タンパク 質が存在するのかを調べることができる。  The third embodiment of the present invention is configured as described above, and its operation will be described below. The laser light emitted from the infrared laser oscillator is reflected by the mirror 210 and enters the AFM probe 230. Near-field light 7 is generated from the pinhole 2 35 of the AFM probe 230 into which the laser beam has entered. The generated proximity light 7 is applied to the matrix existing inside or on the surface of the cell membrane 290 of the cell sample 280. The matrix is mixed with the membrane protein sample 300, and when the near-field light 7 is applied to the matrix and evaporates together with the membrane protein sample 300, the membrane protein sample 300 is ionized and the membrane is sampled. Protein ions 310 are produced. The generated membrane protein ion 310 is sucked by the skimmer 250, and the membrane protein ion 310 sucked by the skimmer 250 is sent to the mass spectrometer. In the mass spectrometry section, mass spectrometry of the membrane protein ion 310 is performed. In addition, the cell sample 280 is fixed to a sample stage 270, and the sample stage 270 can be slid in a horizontal direction by a stage driving mechanism. The stage driving mechanism is controlled by a driving mechanism control unit, and slides the sample stage 270 forward and backward and left and right. Thus, the AFM probe 230 can scan the surface of the cell membrane 290. Then, mass spectrometry of the membrane protein sample present at each position of the cell membrane can be performed, and it is possible to examine what part of the cell membrane contains what kind of membrane protein.
図 5は、 本発明の微小領域分析装置の実施形態を示す図である。 図 5において、 制御部 5 0 0は、 駆動機構制御部 5 2 0、 分析結果解析部 5 4 0、 イメージ化部 5 5 0、 記憶部 5 6 0を含むコンピュータにより構成されている。 制御部 5 0 0 は、 駆動機構制御部 5 2 0を介して駆動機構 5 1 0に接続され、 駆動機構 5 1 0 は試料ステージ 1 5 0に接続されている。 また、 制御部 5 0 0は、 分析結果解析 部 5 4 0を介して質量分析部 5 0に接続されている。 さらに、 制御部 5 0 0は、 駆動機構制御部を介してキーポード 5 3 0に、 イメージ化部 5 5 0を介してディ スプレイ 5 7 0にそれぞれ接続されている。 その他の構成は、 図 3と同様である。 なお、 キーボード 5 3 0、 駆動機構制御部 5 2 0、 質量分析部 5 0、 分析結果解 析部 5 4 0、 記憶部 5 6 0、 イメージ化部 5 5 0、 ディスプレイ 5 7 0は、 本発 明の情報入力手段、 駆動機構制御手段、 質量分析手段、 分析結果解析手段、 記憶 手段、 イメージ化手段、 表示手段をそれぞれ構成する。 FIG. 5 is a diagram showing an embodiment of the micro region analysis device of the present invention. In FIG. 5, the control unit 500 is configured by a computer including a drive mechanism control unit 520, an analysis result analysis unit 540, an imaging unit 550, and a storage unit 560. The control section 500 is connected to the drive mechanism 510 via the drive mechanism control section 5200, and the drive mechanism 5100 is connected to the sample stage 150. Further, the control section 500 is connected to the mass analysis section 50 via the analysis result analysis section 540. Further, the control unit 500 is connected to the keyboard 530 via the drive mechanism control unit and to the display 570 via the imaging unit 550, respectively. Other configurations are the same as in FIG. The keyboard 530, drive mechanism controller 520, mass spectrometer 50, analysis result analyzer 540, storage 560, imager 550, and display 570 Departure The information input means, the drive mechanism control means, the mass analysis means, the analysis result analysis means, the storage means, the imaging means, and the display means are constituted respectively.
本発明の微小領域分析装置は上記のように構成されており、 以下その作用につ いて説明する。 キーポード 5 3 0に走査する細胞切片 1 0 0の領域情報が入力さ れ、 入力された領域情報が駆動機構制御部 5 2 0に伝達される。 ここで、 領域と は、 細胞切片 1 0 0の走査する範囲を意味し、 領域は、 例えば細胞切片 1 0 0が 固定された試料ステージ 1 5 0の座標により特定される。 駆動機構制御部 5 2 0 は、 入力された領域情報に基づき、 駆動機構 5 1 0により試料ステージ 1 5 0を 前後左右にスライドさせる。 これと同時に、 駆動機構制御部 5 2 0から、 試料ス テージ 1 5 0の位置情報、 即ち、 細胞切片 1 0 0のどの部分に近接場光 7が照射 されているかを示す位置情報が、 記憶部 5 6 0に伝達される。 分析結果解析部 5 The microregion analyzer of the present invention is configured as described above, and its operation will be described below. The area information of the cell section 100 to be scanned is input to the keyboard 5300, and the input area information is transmitted to the drive mechanism control section 5200. Here, the region means a scanning range of the cell section 100, and the region is specified by, for example, the coordinates of the sample stage 150 on which the cell section 100 is fixed. The drive mechanism control section 520 slides the sample stage 150 forward, backward, left, and right by the drive mechanism 510 based on the input area information. At the same time, the position information of the sample stage 150, that is, the position information indicating which part of the cell slice 100 is irradiated with the near-field light 7 is stored from the drive mechanism control unit 520. Transmitted to part 560. Analysis result analysis unit 5
4 0は、 質量分析部 5 0から得られた結果を解析して、 その解析結果を記憶部 5 6 0に伝達する。 記憶部 5 6 0は、 位置情報に対応した解析結果を記憶する。 ィ メージ化部 5 5 0では、 記憶部 5 6 0に記憶された位置情報および解析結果から、 細胞切片 1 0 0のどの位置にどのような物質が存在するのかを、 例えば、 物質ご とに色分けしたプロットとして、 画像化する。 画像化した結果は、 ディスプレイ40 analyzes the result obtained from the mass spectrometry unit 50 and transmits the analysis result to the storage unit 560. The storage unit 560 stores an analysis result corresponding to the position information. The imaging unit 550 uses the position information and the analysis result stored in the storage unit 560 to determine which substance is present at which position in the cell slice 100, for example, for each substance. Create an image as a color-coded plot. The imaged result is displayed on the display
5 7 0に表示される。 これにより、 細胞切片のような微小領域において、 どの位 置にどのような物質が存在するのかを容易に把握することが可能となる。 Displayed at 570. As a result, it becomes possible to easily understand what kind of substance is present at which position in a minute area such as a cell slice.
本発明に用いられる近接場光発生手段としては、 近接場光を発生できるもので あれば特に制限はなく、 例えば、 S NOM用の近接場光プローブ、 A FMプロ一 ブ等を用いることができる。 プローブの材質としては、 ガラスまたは透過性ブラ スチックをアルミ、 フッ化マグネシウムまたは銀等で単層または多層に被覆した もの等をあげることができる。  The near-field light generating means used in the present invention is not particularly limited as long as it can generate near-field light. For example, a near-field light probe for SNOM, an AFM probe, or the like can be used. . Examples of the material of the probe include a material in which glass or a transparent plastic is coated in a single layer or a multilayer with aluminum, magnesium fluoride, silver, or the like.
プローブの構造としては、 例えば S NOM用のプローブであれば、 カンチレバ —型、 ストレ一トフアイパー型、 または微小散乱体型等をあげることができる。 これにより、 例えば、 入射するレーザーの波長が 0. l〜1 5 mであっても、 レーザー光の回折限界を超えて分析対象上の直径約 0. 0 1〜: L w mの微小領域 に近接場光を照射できる。 また、 S NOM用プローブの場合の近接場光の照射距 離は、 レーザーの波長の 1 / 2付近となり、 S NOM用プローブと分析対象との 距離も、 この照射距離内とすることとなる。 As the structure of the probe, for example, a probe for SNOM can be a cantilever type, a straight fiber type, or a small scatterer type. Thus, for example, even if the wavelength of the incident laser is 0.1 to 15 m, it exceeds the diffraction limit of the laser beam and is close to the minute area of about 0.01 to L wm on the analysis target. Field light can be applied. The irradiation distance of near-field light in the case of the SNOM probe is about 1/2 of the wavelength of the laser, and the distance between the SNOM probe and the analysis target is small. The distance is also within this irradiation distance.
また、 AFMプローブの場合は、 図 4に示したようにピンホールを開けたもの となるが、 そのピンホ一ルの直径として、 例えば 0. l m付近のものをあげる ことができる。 これにより、 例えば、 入射するレーザ一の波長が 3〜: L 0 mで あっても、 レーザー光の回折限界を超えて分析対象上の直径約 0. 1〜1 111の 微小領域に近接場光を照射できる。  In the case of an AFM probe, a pinhole is formed as shown in FIG. 4, and the diameter of the pinhole can be, for example, about 0.1 μm. Thus, for example, even if the wavelength of the incident laser beam is 3 to L0 m, the near-field light exceeds the diffraction limit of the laser beam and reaches a minute area with a diameter of about 0.1 to 1111 on the analysis target. Can be irradiated.
また、 レーザーとして赤外線レーザーを用いる場合は、 中空でない光ファイバ 一およびファイバープローブの他に、 図 3、 図 5で示されるように、 中空のもの を用いることもできる。 これにより、 ファイバー内でのレ一ザ一の散乱が抑えら れ、 少ないエネルギーにより効率的に試料に近接場光を照射することができるよ うになる。  When an infrared laser is used as the laser, a hollow fiber can be used as shown in FIGS. 3 and 5, in addition to the solid optical fiber and the fiber probe. As a result, laser scattering in the fiber is suppressed, and the sample can be efficiently irradiated with near-field light with little energy.
図 6は、 本発明に用いるレーザー照射プローブ 7 0 0の構造の 1例を示す図で ある。 図 6において、 レーザー照射プローブ 7 0 0の先端部 7 0 5は、 本体部 7 0 2に比べて細くなつており、 かつ、 開口している。 開口部 7 0 7の直径は、 特 に制限はなく、 レーザ一を照射する領域の面積に応じ適宜決定することができる。 微小領域にレーザーを照射するという観点からは、 開口部 7 0 7の直径は 1 5 m以下が好ましく、 5 以下がより好ましく、 l ^m以下がさらに好ましく、 0 . 1 m以下が最も好ましい。 開口部 7 0 7の直径の下限は特にないが、 加工 のしやすさという観点からは、 0. 0 1 m以上であることが好ましい。 また他 の観点から、 開口部の直径は、 プロープに入射するレーザーの波長よりも小さい ことが好ましい。  FIG. 6 is a diagram showing an example of the structure of the laser irradiation probe 700 used in the present invention. In FIG. 6, the distal end portion 705 of the laser irradiation probe 700 is thinner and open than the main body portion 702. The diameter of the opening 707 is not particularly limited, and can be appropriately determined according to the area of the region to be irradiated with the laser beam. From the viewpoint of irradiating the laser beam to the minute region, the diameter of the opening 707 is preferably 15 m or less, more preferably 5 or less, further preferably l ^ m or less, and most preferably 0.1 m or less. There is no particular lower limit on the diameter of the opening 707, but it is preferably at least 0.01 m from the viewpoint of ease of processing. Further, from another viewpoint, it is preferable that the diameter of the opening is smaller than the wavelength of the laser incident on the probe.
そして、 図 1〜3、 図 5において、 近接場光プローブ 5に代えてレーザー照射 プローブ 7 0 0を用いることにより、 本発明の他の実施形態を示すものとなる。 この場合、 例えば、 入射するレーザーの波長が 0. 1〜 1 5 mであれば、 0. 1〜1 5 mの微小領域にレーザーを照射できる。 そして、 レーザー照射プロ一 ブ 7 0 0を用いることにより、 上記の近接場光プローブ 5を用いた場合に比べ、 照射距離を長くすることができ、 また、 照射するレーザーのエネルギーを大きく することが可能となる。  In FIGS. 1 to 3 and 5, another embodiment of the present invention is shown by using a laser irradiation probe 700 instead of the near-field light probe 5. In this case, for example, if the wavelength of the incident laser is 0.1 to 15 m, the laser can be applied to a minute area of 0.1 to 15 m. By using the laser irradiation probe 700, the irradiation distance can be increased and the energy of the laser to be irradiated can be increased as compared with the case where the near-field optical probe 5 is used. It becomes possible.
なお、 本発明で走査する分析対象としては、 特に制限はないが、 細胞切片や細 胞膜が好適な例としてあげることができる。 走査の方法としては、 上記の図 3〜 図 5に示したように、 分析対象を固定した試料ステージをスライドさせて走査す ることのほか、 試料ステージを固定して近接場光プローブなどの近接場光発生手 段若しくはレーザー照射プローブを移動させて走査することも可能である。 また、 試料ステージ、 近接場光発生手段若しくはレーザー照射プローブの双方を移動さ せてもよい。 試料ステージとしては、 分析対象を固定できるものであれば特に制 限はないが、 細胞切片や細胞膜を走査する場合には、 細胞の形状を一定に保つと レ う観点から、 極低温、 例えば 4 K付近の温度に保つことができるものが好まし い。 The subject to be scanned in the present invention is not particularly limited. A cell membrane is a preferred example. As shown in Figs. 3 to 5 above, scanning can be performed by sliding the sample stage on which the object to be analyzed is fixed and scanning, or by using a near-field optical probe or the like with the sample stage fixed. It is also possible to scan by moving the field light generating means or the laser irradiation probe. Further, both the sample stage, the near-field light generating means, or the laser irradiation probe may be moved. There is no particular limitation on the sample stage as long as it can fix the analysis target.However, when scanning cell sections or cell membranes, from the viewpoint of maintaining the shape of cells at a very low temperature, for example, 4 Those that can maintain the temperature around K are preferred.
次に、 本発明に用いる近接場光発生手段若しくはレーザー照射プローブと分析 対象との距離を制御する方法について説明する。 近接場光発生手段若しくはレー ザ一照射プローブと分析対象との距離を制御する方法としては、 特に制限はなぐ 近接場光若しくはレーザーが照射される距離以内に置くことができればいずれの 方法を用いてもよい。 例えば、 分析対象の厚みをあらかじめ測定しておいて、 そ の厚みに応じて近接場光発生手段若しくはレーザー照射プローブを近接場光若し くはレーザーが照射される距離以内に固定して所定の距離に置くことができる。 また、 近接場光発生手段若しくはレーザー照射プローブと分析対象との間に働く 原子間力を検出し、 この原子間力が所定の値となるように近接場光発生手段若し くはレーザー照射プローブと分析対象との距離を置く方法を用いてもよい。 即ち、 原子間力顕微鏡 (A FM) の原理を応用し、 光てこやチューニングフォークを用 いて近接場光発生手段若しくはレーザー照射プローブを分析対象に接触させるこ となく、 近接場光発生手段若しくはレーザー照射プローブと分析対象との距離を 検知し、 その距離を所定の値に置くことができる。 さらに、 近接場光発生手段若 しくはレーザー照射プローブと分析対象とを一旦接触させ、 その接触した状態か ら近接場光発生手段若しくはレーザー照射プローブを所定の距離だけ離すことに より、 近接場光発生手段若しくはレー,ザ一照射プローブと分析対象とを所定の距 離に置くことができる。 この場合、 例えば、 近接場光発生手段若しくはレーザー 照射プローブのたわみを光てこを用いて検出すること、 または、 近接場光発生手 段若しくはレーザー照射プローブに取り付けたチューニングフォーク等の圧力セ ンサ一により接触の有無を検出すること等により、 近接場光発生手段若しくはレ 一ザ一照射プローブと分析対象が接触したことを検出することができる。 Next, a method for controlling the distance between the near-field light generating means or the laser irradiation probe used in the present invention and the object to be analyzed will be described. There are no particular restrictions on the method of controlling the distance between the near-field light generating means or the laser irradiation probe and the object to be analyzed, and any method can be used as long as it can be placed within the distance that the near-field light or laser is irradiated. Is also good. For example, the thickness of the object to be analyzed is measured in advance, and the near-field light generating means or the laser irradiation probe is fixed within the range where the near-field light or the laser is irradiated according to the thickness, and the predetermined distance is set. Can be placed at a distance. Further, an atomic force acting between the near-field light generating means or the laser irradiation probe and the object to be analyzed is detected, and the near-field light generating means or the laser irradiation probe is set so that the atomic force becomes a predetermined value. A method of keeping the distance between the object and the analysis target may be used. That is, by applying the principle of the atomic force microscope (AFM), the near-field light generating means or the laser By detecting the distance between the irradiation probe and the object to be analyzed, the distance can be set to a predetermined value. Furthermore, the near-field light generating means or the laser irradiation probe is once brought into contact with the object to be analyzed, and the near-field light generating means or the laser irradiation probe is separated from the contacted state by a predetermined distance, so that the near-field light can be obtained. The generating means or the laser or laser irradiation probe and the object to be analyzed can be placed at a predetermined distance. In this case, for example, the deflection of the near-field light generating means or the laser irradiation probe is detected using an optical lever, or a near-field light generating means or a pressure sensor such as a tuning fork attached to the laser irradiation probe is used. By detecting the presence or absence of contact with a sensor, it is possible to detect that the object to be analyzed has come into contact with the near-field light generating means or the laser irradiation probe.
本発明のいずれの実施態様においても、 レーザー放射手段としては、 レーザー を放射できるものであれば特に制限はない。 例えば、 細胞切片や細胞膜のタンパ ク質を分析する場合には、 タンパク質試料を損傷させにくいという観点から、 赤 外線レーザーが好ましい。  In any of the embodiments of the present invention, the laser emitting means is not particularly limited as long as it can emit a laser. For example, when analyzing proteins from cell sections or cell membranes, an infrared laser is preferred from the viewpoint of not damaging protein samples.
また、 本発明に用いられるマトリクスとしては、 近接場光若しくはレーザーに より試料とともに気化して試料をイオン化できるものであれば特に制限はない。 例えば、 桂皮酸誘導体等通常の MAL D Iに用いられるものと同様のものを用い ることができ、 また、 細胞切片や細胞膜のタンパク質を分析する場合には、 細胞 を変質させにくいという観点から、 グリセロールが好ましく用いられる。  The matrix used in the present invention is not particularly limited as long as it can be vaporized together with the sample by near-field light or laser to ionize the sample. For example, glycerol derivatives such as those used in ordinary MAL DI, such as cinnamic acid derivatives, can be used.In addition, when analyzing proteins from cell sections or cell membranes, glycerol is used because it is difficult to alter cells. Is preferably used.
本発明に用いられる試料移送手段としては、 試料を質量分析手段に送ることが できるものであれば特に制限はないが、 例えば、 上記の実施の形態で示したよう に引圧により吸引するサクシヨンチューブや、 電気的に吸引するスキマーなどを あげることができる。 なお、 試料移動手段を用いずに、 試料を直接質量分析手段 に導入しても差し支えない。  The sample transfer means used in the present invention is not particularly limited as long as the sample can be sent to the mass spectrometry means. For example, as shown in the above-described embodiment, a suction suction means is used. Examples include tubing and electrically skimmed skimmers. The sample may be directly introduced into the mass spectrometer without using the sample moving means.
本発明におけるイオン化の気圧は、 特に制限はなく、 通常の MAL D Iと同様 に真空下で行うこともでき、 また常圧下若しくは低圧下で行うこともできる。 細 胞切片や細胞膜を分析する場合には、 細胞やタンパク質の損傷が少なく、 また、 生成したイオンが壊れにくいという観点から、 常圧下若しくは低圧下で行うこと が好ましい。 なお、 ここで低圧下とは、 細胞等の試料が損傷しにくい圧力であれ ば特に制限はないが、 例えば 0 . 1〜 1 0 0 P aの圧力を挙げることができる。 本発明に用いられる質量分析部としては、 質量分析ができるものであれば特に 制限はないが、 例えば、 飛行時間型質量分析計、 四重極形質量分析計、 タンデム マス分析計などがあげられ、 その目的に応じて適宜選択して用いることができる。  The atmospheric pressure for ionization in the present invention is not particularly limited, and it can be performed under vacuum, as in ordinary MALDI, or under normal pressure or low pressure. When analyzing cell sections or cell membranes, it is preferable to perform the analysis under normal pressure or low pressure, from the viewpoint that damage to cells and proteins is small and generated ions are not easily broken. Note that the low pressure is not particularly limited as long as it is a pressure at which a sample such as a cell is not easily damaged, and examples thereof include a pressure of 0.1 to 100 Pa. The mass spectrometer used in the present invention is not particularly limited as long as it can perform mass spectrometry, and examples thereof include a time-of-flight mass spectrometer, a quadrupole mass spectrometer, and a tandem mass spectrometer. It can be appropriately selected and used depending on the purpose.

Claims

請求の範囲 The scope of the claims
1 . レ一ザ一放射手段と、 前記レーザー放射手段から放射されたレーザーが入射 されて近接場光を発生させる近接場光発生手段とを備え、 前記近接場光発生手段 から発生した近接場光をマトリクスに照射することにより、 マトリクスと混合さ れた試料をィォン化するィォン化装置。 1. Near-field light generated by the near-field light generating means, comprising: a laser-emitting means; and near-field light generating means for receiving a laser emitted from the laser-emitting means to generate near-field light. An ionization device that irradiates the matrix with ions to ionize the sample mixed with the matrix.
2 . 前記近接場光発生手段が近接場光プローブである請求の範囲第 1項に記載の イオン化装置。  2. The ionizer according to claim 1, wherein the near-field light generating means is a near-field light probe.
3 . 前記レーザ一が赤外線レーザーである請求の範囲第 1項または第 2項に記載 のイオン化装置。  3. The ionization device according to claim 1, wherein the laser is an infrared laser.
4. 前記近接場光に分析対象を走査させる走査手段をさらに含む請求の範囲第 1 項ないし第 3項のいずれかに記載のイオン化装置。  4. The ionization apparatus according to any one of claims 1 to 3, further comprising scanning means for causing the near-field light to scan an object to be analyzed.
5 . マトリクスに近接場光を照射することによりマトリクスと混合された試料を イオン化するイオン化装置。  5. An ionizer that irradiates the sample mixed with the matrix by irradiating the matrix with near-field light.
6 . 前記近接場光が近接場光プローブにより照射される請求の範囲第 5項に記載 のイオン化装置。 6. The ionization apparatus according to claim 5, wherein the near-field light is irradiated by a near-field light probe.
7 . 前記近接場光が赤外線レーザーを近接場光プローブに入射することにより得 られる近接場光である請求の範囲第 5項または第 6項に記載のイオン化装置。 7. The ionization apparatus according to claim 5, wherein the near-field light is near-field light obtained by causing an infrared laser to be incident on a near-field light probe.
8 . 前記近接場光に分析対象を走査させることを特徴とする請求の範囲第 5項な いし第 7項のいずれかに記載のイオン化装置。 8. The ionization apparatus according to any one of claims 5 to 7, wherein the near-field light scans an object to be analyzed.
9 . レーザー放射手段と、 前記レーザー放射手段から放射されたレーザーを誘導 する光ファイバ一と、 前記光ファイバ一の先端に接続されたレーザー照射プロ一 ブとを備え、 前記レーザー照射プロ一ブから放射されたレーザーをマトリクスに 照射することにより、 マトリクスと混合された試料をイオン化するイオン化装置。  9. A laser emitting means, an optical fiber for guiding a laser emitted from the laser emitting means, and a laser irradiation probe connected to a tip of the optical fiber. An ionizer that irradiates the matrix with the emitted laser to ionize the sample mixed with the matrix.
1 0 . 前記レーザー照射プローブが、 直径 0 1〜1 5 mの開口部を有する 請求の範囲第 9項に記載のイオン化装置。 10. The ionization apparatus according to claim 9, wherein the laser irradiation probe has an opening having a diameter of 0 to 15 m.
1 1 · 前記レーザー照射プローブが、 前記レーザーの波長よりも小さい直径の開 口部を有する請求の範囲第 9項または第 1 0項に記載のイオン化装置。  11. The ionization apparatus according to claim 9, wherein the laser irradiation probe has an opening having a diameter smaller than the wavelength of the laser.
1 2 . 前記レーザーが赤外線レーザーである請求の範囲第 9項ないし第 1 1項の いずれかに記載のィオン化装置。 12. The method according to claim 9, wherein the laser is an infrared laser. The ionization device according to any one of the above.
1 3 . 前記レーザー照射プローブに分析対象を走査させる走査手段をさらに含む 請求の範囲第 9項ないし第 1 2項のいずれかに記載のイオン化装置。  13. The ionization apparatus according to any one of claims 9 to 12, further comprising scanning means for causing the laser irradiation probe to scan an object to be analyzed.
1 4. 前記分析対象が細胞膜または細胞切片である請求の範囲第 4項、 第 8項ま たは第 1 3項のいずれかに記載のイオン化装置。  14. The ionization device according to claim 4, wherein the analysis target is a cell membrane or a cell slice.
1 5 . 前記イオン化が常圧下または低圧下においてされる請求の範囲第 1項ない し第 1 4項のいずれかに記載のイオン化装置。  15. The ionization device according to any one of claims 1 to 14, wherein the ionization is performed under normal pressure or low pressure.
1 6 . イオン化した試料を質量分析手段に送る試料移送手段をさらに備えた請求 の範囲第 1項ないし第 1 5項のいずれかに記載のイオン化装置。  16. The ionization apparatus according to any one of claims 1 to 15, further comprising a sample transfer unit that sends the ionized sample to the mass analysis unit.
1 7 . 請求の範囲第 1項ないし第 1 6項のいずれかに記載のイオン化装置を備え た質量分析装置。 17. A mass spectrometer comprising the ionization device according to any one of claims 1 to 16.
1 8 . 請求の範囲第 1項ないし第 1 6項のいずれかに記載のイオン化装置と、 走査する分析対象の領域情報を入力する情報入力手段と、  18. An ionization apparatus according to any one of claims 1 to 16, and information input means for inputting information on an area to be analyzed to be scanned.
前記領域情報に基づき駆動機構を制御する駆動機構制御手段と、 Drive mechanism control means for controlling a drive mechanism based on the area information;
質量分析手段と、 Mass spectrometry means;
前記質量分析手段から得られた結果を解析する分析結果解析手段と、 Analysis result analysis means for analyzing the result obtained from the mass analysis means,
前記駆動機構制御手段から伝達される位置情報および前記分析結果解析手段から 得られる解析結果を記憶する記憶手段と、 Storage means for storing position information transmitted from the drive mechanism control means and analysis results obtained from the analysis result analysis means;
前記記憶手段に記憶された前記位置情報および前記解析結果からイメージングを 行うイメージ化手段と、 Imaging means for performing imaging from the position information and the analysis result stored in the storage means,
イメージ化した結果を表示する表示手段と、 Display means for displaying the imaged result;
を備えた微小領域分析装置。 Micro-area analyzer equipped with
1 9 . 請求の範囲第 1項ないし第 1 6項のいずれかに記載のイオン化装置を用い て試料をイオン化する方法において、  19. A method for ionizing a sample using the ionization device according to any one of claims 1 to 16,
近接場光発生手段若しくはレーザー照射プローブと分析対象とを所定の距離に置 く工程、 および Placing the near-field light generating means or laser irradiation probe at a predetermined distance from the object to be analyzed, and
近接場光、 若しくはレーザー照射プローブから放射されたレーザー、 を分析対象 に照射する工程、 Irradiating the target with near-field light or laser emitted from a laser irradiation probe,
を含む、 試料をイオン化する方法。 A method for ionizing a sample, comprising:
2 0. 前記所定の距離に置く工程が、 20. The step of placing at the predetermined distance,
近接場光発生手段若しくはレ一ザ一照射プローブと分析対象との間に働く原子間 力を検出する工程、 および A step of detecting an atomic force acting between a near-field light generating means or a laser irradiation probe and an object to be analyzed, and
前記検出した原子間力が所定の値となるように近接場光発生手段若しくはレーザ 一照射プローブと分析対象との距離を置く工程、 A step of setting a distance between the near-field light generating means or the laser-irradiation probe and the analysis target so that the detected atomic force becomes a predetermined value,
を含む、 請求の範囲第 1 9項に記載の方法。 10. The method according to claim 19, comprising:
2 1 . 前記所定の距離に置く工程が、 2 1. The step of placing at the predetermined distance,
近接場光発生手段若しくはレーザー照射プローブと分析対象とを接触させる工程、 および Bringing the near-field light generating means or the laser irradiation probe into contact with the object to be analyzed, and
前記接触した状態から近接場光発生手段若しくはレーザー照射プローブと分析対 象とを所定の距離だけ離す工程、 A step of separating the near-field light generating means or the laser irradiation probe and the object to be analyzed from the contact state by a predetermined distance,
を含む、 請求の範囲第 1 9項に記載の方法。 10. The method according to claim 19, comprising:
2 2. マトリクスに近接場光を照射することによりマトリクスと混合された試料 をイオン化する方法。  2 2. A method in which the sample mixed with the matrix is ionized by irradiating the matrix with near-field light.
PCT/JP2004/000843 2003-01-31 2004-01-29 Ionizer and fine area analyzer WO2004068131A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-023548 2003-01-31
JP2003023548A JP2004264043A (en) 2003-01-31 2003-01-31 Ionizing device, and micro-area analyzer

Publications (1)

Publication Number Publication Date
WO2004068131A1 true WO2004068131A1 (en) 2004-08-12

Family

ID=32820730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000843 WO2004068131A1 (en) 2003-01-31 2004-01-29 Ionizer and fine area analyzer

Country Status (2)

Country Link
JP (1) JP2004264043A (en)
WO (1) WO2004068131A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006081240A1 (en) * 2005-01-27 2006-08-03 The George Washington University Protein microscope
US7928364B2 (en) 2006-10-13 2011-04-19 Ionsense, Inc. Sampling system for containment and transfer of ions into a spectroscopy system
US8026477B2 (en) 2006-03-03 2011-09-27 Ionsense, Inc. Sampling system for use with surface ionization spectroscopy
US8207497B2 (en) 2009-05-08 2012-06-26 Ionsense, Inc. Sampling of confined spaces
US8217341B2 (en) 2006-03-03 2012-07-10 Ionsense Sampling system for use with surface ionization spectroscopy
US8421005B2 (en) 2006-05-26 2013-04-16 Ionsense, Inc. Systems and methods for transfer of ions for analysis
US8440965B2 (en) 2006-10-13 2013-05-14 Ionsense, Inc. Sampling system for use with surface ionization spectroscopy
US8754365B2 (en) 2011-02-05 2014-06-17 Ionsense, Inc. Apparatus and method for thermal assisted desorption ionization systems
US8901488B1 (en) 2011-04-18 2014-12-02 Ionsense, Inc. Robust, rapid, secure sample manipulation before during and after ionization for a spectroscopy system
US9337007B2 (en) 2014-06-15 2016-05-10 Ionsense, Inc. Apparatus and method for generating chemical signatures using differential desorption
US10636640B2 (en) 2017-07-06 2020-04-28 Ionsense, Inc. Apparatus and method for chemical phase sampling analysis
US10825673B2 (en) 2018-06-01 2020-11-03 Ionsense Inc. Apparatus and method for reducing matrix effects
US11424116B2 (en) 2019-10-28 2022-08-23 Ionsense, Inc. Pulsatile flow atmospheric real time ionization
US11913861B2 (en) 2020-05-26 2024-02-27 Bruker Scientific Llc Electrostatic loading of powder samples for ionization
CZ310063B6 (en) * 2022-09-26 2024-07-03 Ústav Přístrojové Techniky Av Čr, V.V.I. An equipment for an image and chemical spectroscopic analysis

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU226837B1 (en) 2006-05-31 2009-12-28 Semmelweis Egyetem Desorption ionization method and device operated by liquid stream
JP4967830B2 (en) * 2007-06-08 2012-07-04 株式会社日立製作所 Sample analysis method and apparatus
JP2010117245A (en) * 2008-11-13 2010-05-27 Fujifilm Corp Mass spectrometry
JP2010271219A (en) * 2009-05-22 2010-12-02 Fujifilm Corp Mass spectrometry apparatus and mass spectrometry using the same
CN102483369B (en) * 2009-05-27 2015-11-25 英国质谱有限公司 For the identification of the system and method for biological tissue
GB201109414D0 (en) 2011-06-03 2011-07-20 Micromass Ltd Diathermy -ionisation technique
CN104254901B (en) 2011-12-28 2018-05-04 英国质谱有限公司 Collide ion generator and separator
CN104254772B (en) 2011-12-28 2018-11-16 英国质谱有限公司 The system and method that rapid evaporation for liquid phase sample ionizes
JP6061302B2 (en) * 2013-06-26 2017-01-18 国立大学法人浜松医科大学 Sample analyzer
JP6328003B2 (en) * 2014-08-13 2018-05-23 株式会社 イアス Laser ablation ICP analysis method and analyzer
CA2981085A1 (en) 2015-03-06 2016-09-15 Micromass Uk Limited Spectrometric analysis
JP6800875B2 (en) 2015-03-06 2020-12-16 マイクロマス ユーケー リミテッド Inflow instrument for ion analyzers connected to rapid evaporation ionized mass spectrometry (“REIMS”) equipment
CN107635478A (en) 2015-03-06 2018-01-26 英国质谱公司 The fabric analysis carried out by mass spectrum or ion mobility spectrometry
GB2553937B (en) 2015-03-06 2022-06-08 Micromass Ltd Improved ionisation of gaseous samples
CN110057901B (en) 2015-03-06 2022-07-01 英国质谱公司 Rapid evaporative ionization mass spectrometry and desorption electrospray ionization mass spectrometry analysis of swab and biopsy samples
CN107636794B (en) 2015-03-06 2020-02-28 英国质谱公司 Liquid trap or separator for electrosurgical applications
CA2977906A1 (en) 2015-03-06 2016-09-15 Micromass Uk Limited In vivo endoscopic tissue identification tool
US11037774B2 (en) 2015-03-06 2021-06-15 Micromass Uk Limited Physically guided rapid evaporative ionisation mass spectrometry (“REIMS”)
GB2554202B (en) 2015-03-06 2021-08-18 Micromass Ltd Imaging guided ambient ionisation mass spectrometry
CN112964625B (en) 2015-03-06 2024-06-07 英国质谱公司 Cell population analysis
CN107533032A (en) 2015-03-06 2018-01-02 英国质谱公司 MALDI-MS in situ for directly being mapped from massive texture determines imaging platform
CN107667288B (en) 2015-03-06 2022-02-01 英国质谱公司 Spectral analysis of microorganisms
CA2977900A1 (en) 2015-03-06 2016-09-15 Micromass Uk Limited Collision surface for improved ionisation
WO2016142679A1 (en) 2015-03-06 2016-09-15 Micromass Uk Limited Chemically guided ambient ionisation mass spectrometry
GB201517195D0 (en) 2015-09-29 2015-11-11 Micromass Ltd Capacitively coupled reims technique and optically transparent counter electrode
WO2017178833A1 (en) 2016-04-14 2017-10-19 Micromass Uk Limited Spectrometric analysis of plants
CN106338546A (en) * 2016-08-18 2017-01-18 东南大学 High-spatial-resolution imaging mass spectrometry device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0389160A (en) * 1989-08-22 1991-04-15 Finnigan Mat Gmbh Laser desorption method and apparatus for molecular ion of object to be analyzed, especially organ molecule
JPH0599641A (en) * 1991-10-03 1993-04-23 Seiko Instr Inc Observing device for fine surface
JP2000500915A (en) * 1996-09-19 2000-01-25 シークエノム・インコーポレーテツド Method and apparatus for MALDI analysis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0389160A (en) * 1989-08-22 1991-04-15 Finnigan Mat Gmbh Laser desorption method and apparatus for molecular ion of object to be analyzed, especially organ molecule
JPH0599641A (en) * 1991-10-03 1993-04-23 Seiko Instr Inc Observing device for fine surface
JP2000500915A (en) * 1996-09-19 2000-01-25 シークエノム・インコーポレーテツド Method and apparatus for MALDI analysis

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
STÖCKLE R. ET AL: "Nanoscale Atmospheric Pressure Laser Ablation-Mass Spectrometry", ANALYTICAL CHEMISTRY, vol. 73, no. 7, April 2001 (2001-04-01), pages 1399 - 1402, XP001030303 *
STOECKLI M. ET AL: "Imaging mass spectrometry: A new technology for the analysis of protein expression in mammalian tissues", NATURE MEDICINE, vol. 7, no. 4, April 2001 (2001-04-01), pages 493 - 496, XP002979722 *

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7735146B2 (en) 2005-01-27 2010-06-08 The George Washington University Protein microscope
WO2006081240A1 (en) * 2005-01-27 2006-08-03 The George Washington University Protein microscope
US8286260B2 (en) 2005-01-27 2012-10-09 The George Washington University Protein microscope
US8525109B2 (en) 2006-03-03 2013-09-03 Ionsense, Inc. Sampling system for use with surface ionization spectroscopy
US8026477B2 (en) 2006-03-03 2011-09-27 Ionsense, Inc. Sampling system for use with surface ionization spectroscopy
US8217341B2 (en) 2006-03-03 2012-07-10 Ionsense Sampling system for use with surface ionization spectroscopy
US8497474B2 (en) 2006-03-03 2013-07-30 Ionsense Inc. Sampling system for use with surface ionization spectroscopy
US8421005B2 (en) 2006-05-26 2013-04-16 Ionsense, Inc. Systems and methods for transfer of ions for analysis
US8481922B2 (en) 2006-05-26 2013-07-09 Ionsense, Inc. Membrane for holding samples for use with surface ionization technology
US7928364B2 (en) 2006-10-13 2011-04-19 Ionsense, Inc. Sampling system for containment and transfer of ions into a spectroscopy system
US8440965B2 (en) 2006-10-13 2013-05-14 Ionsense, Inc. Sampling system for use with surface ionization spectroscopy
US8207497B2 (en) 2009-05-08 2012-06-26 Ionsense, Inc. Sampling of confined spaces
US8563945B2 (en) 2009-05-08 2013-10-22 Ionsense, Inc. Sampling of confined spaces
US8729496B2 (en) 2009-05-08 2014-05-20 Ionsense, Inc. Sampling of confined spaces
US10643834B2 (en) 2009-05-08 2020-05-05 Ionsense, Inc. Apparatus and method for sampling
US10090142B2 (en) 2009-05-08 2018-10-02 Ionsense, Inc Apparatus and method for sampling of confined spaces
US8895916B2 (en) 2009-05-08 2014-11-25 Ionsense, Inc. Apparatus and method for sampling of confined spaces
US9633827B2 (en) 2009-05-08 2017-04-25 Ionsense, Inc. Apparatus and method for sampling of confined spaces
US9390899B2 (en) 2009-05-08 2016-07-12 Ionsense, Inc. Apparatus and method for sampling of confined spaces
US9224587B2 (en) 2011-02-05 2015-12-29 Ionsense, Inc. Apparatus and method for thermal assisted desorption ionization systems
US11742194B2 (en) 2011-02-05 2023-08-29 Bruker Scientific Llc Apparatus and method for thermal assisted desorption ionization systems
US8963101B2 (en) 2011-02-05 2015-02-24 Ionsense, Inc. Apparatus and method for thermal assisted desorption ionization systems
US9514923B2 (en) 2011-02-05 2016-12-06 Ionsense Inc. Apparatus and method for thermal assisted desorption ionization systems
US11049707B2 (en) 2011-02-05 2021-06-29 Ionsense, Inc. Apparatus and method for thermal assisted desorption ionization systems
US8754365B2 (en) 2011-02-05 2014-06-17 Ionsense, Inc. Apparatus and method for thermal assisted desorption ionization systems
US9960029B2 (en) 2011-02-05 2018-05-01 Ionsense, Inc. Apparatus and method for thermal assisted desorption ionization systems
US10643833B2 (en) 2011-02-05 2020-05-05 Ionsense, Inc. Apparatus and method for thermal assisted desorption ionization systems
US8822949B2 (en) 2011-02-05 2014-09-02 Ionsense Inc. Apparatus and method for thermal assisted desorption ionization systems
US9105435B1 (en) 2011-04-18 2015-08-11 Ionsense Inc. Robust, rapid, secure sample manipulation before during and after ionization for a spectroscopy system
US8901488B1 (en) 2011-04-18 2014-12-02 Ionsense, Inc. Robust, rapid, secure sample manipulation before during and after ionization for a spectroscopy system
US10283340B2 (en) 2014-06-15 2019-05-07 Ionsense, Inc. Apparatus and method for generating chemical signatures using differential desorption
US10553417B2 (en) 2014-06-15 2020-02-04 Ionsense, Inc. Apparatus and method for generating chemical signatures using differential desorption
US10056243B2 (en) 2014-06-15 2018-08-21 Ionsense, Inc. Apparatus and method for rapid chemical analysis using differential desorption
US9824875B2 (en) 2014-06-15 2017-11-21 Ionsense, Inc. Apparatus and method for generating chemical signatures using differential desorption
US10825675B2 (en) 2014-06-15 2020-11-03 Ionsense Inc. Apparatus and method for generating chemical signatures using differential desorption
US9558926B2 (en) 2014-06-15 2017-01-31 Ionsense, Inc. Apparatus and method for rapid chemical analysis using differential desorption
US11295943B2 (en) 2014-06-15 2022-04-05 Ionsense Inc. Apparatus and method for generating chemical signatures using differential desorption
US9337007B2 (en) 2014-06-15 2016-05-10 Ionsense, Inc. Apparatus and method for generating chemical signatures using differential desorption
US10636640B2 (en) 2017-07-06 2020-04-28 Ionsense, Inc. Apparatus and method for chemical phase sampling analysis
US10825673B2 (en) 2018-06-01 2020-11-03 Ionsense Inc. Apparatus and method for reducing matrix effects
US11424116B2 (en) 2019-10-28 2022-08-23 Ionsense, Inc. Pulsatile flow atmospheric real time ionization
US11913861B2 (en) 2020-05-26 2024-02-27 Bruker Scientific Llc Electrostatic loading of powder samples for ionization
CZ310063B6 (en) * 2022-09-26 2024-07-03 Ústav Přístrojové Techniky Av Čr, V.V.I. An equipment for an image and chemical spectroscopic analysis

Also Published As

Publication number Publication date
JP2004264043A (en) 2004-09-24

Similar Documents

Publication Publication Date Title
WO2004068131A1 (en) Ionizer and fine area analyzer
US7735146B2 (en) Protein microscope
EP2391877B1 (en) Soft ablative desorption method and system
US7180058B1 (en) LDI/MALDI source for enhanced spatial resolution
US7442922B2 (en) Method for locally highly resolved, mass-spectroscopic characterization of surfaces using scanning probe technology
CA2333031C (en) Atmospheric pressure matrix assisted laser desorption
US6643012B2 (en) Apertureless near-field scanning raman microscopy using reflection scattering geometry
CN107219214B (en) Quantitative analysis device for elements in unknown sample by spectrum combination with mass spectrum
JP6134975B2 (en) Measuring device, measuring apparatus and method
WO2007020862A1 (en) Mass analyzer
JP2005098909A (en) Ionizing device and mass spectrometer using the same
JP5875483B2 (en) Mass spectrometer
JPWO2007116509A1 (en) Mass spectrometer
JP4674875B2 (en) Mass spectrometry method
WO2009069816A1 (en) Ionization method, and mass-spectroscopic method and apparatus utilizing the ionization method
JP2012003898A (en) Apparatus and method for two-dimensional imaging
CN106338546A (en) High-spatial-resolution imaging mass spectrometry device
JP7429256B2 (en) Systems and methods for imaging and ablating samples
JP2004257973A (en) Method and apparatus for analyzing shape/structure of small object
JP2003004621A (en) Scanning probe microscope
US7095016B2 (en) Direct liquid injection inlet to a laser photoionization apparatus
Murray et al. Tip enhanced laser ablation sample transfer for mass spectrometry
JP2007298668A (en) Emitting optical system
JPH07198634A (en) Photoelectron spectroscopic device
JPH06213909A (en) Scanning type photon tunneling spectral analyzer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase