WO2004064737A2 - Therapeutics compositions - Google Patents

Therapeutics compositions Download PDF

Info

Publication number
WO2004064737A2
WO2004064737A2 PCT/US2004/001193 US2004001193W WO2004064737A2 WO 2004064737 A2 WO2004064737 A2 WO 2004064737A2 US 2004001193 W US2004001193 W US 2004001193W WO 2004064737 A2 WO2004064737 A2 WO 2004064737A2
Authority
WO
WIPO (PCT)
Prior art keywords
irna agent
agent
irna
rna
pharmaceutical composition
Prior art date
Application number
PCT/US2004/001193
Other languages
French (fr)
Other versions
WO2004064737A3 (en
Inventor
Christoph Westphal
Robert Langer
Original Assignee
Alnylam Pharmaceuticals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alnylam Pharmaceuticals filed Critical Alnylam Pharmaceuticals
Publication of WO2004064737A2 publication Critical patent/WO2004064737A2/en
Publication of WO2004064737A3 publication Critical patent/WO2004064737A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/50Methods for regulating/modulating their activity
    • C12N2320/51Methods for regulating/modulating their activity modulating the chemical stability, e.g. nuclease-resistance

Definitions

  • RNAi and related methods e.g., methods of making and using sRNA agents.
  • RNA interference or "RNAi” is a term initially coined by Fire and co-workers to describe the observation that double-stranded RNA (dsRNA) can block gene expression when it is introduced into worms (Fire et al., Nature 391:806-811, 1998). Short dsRNA directs gene-specific, post-transcriptional silencing in many organisms, including vertebrates, and has provided a new tool for studying gene function. RNAi may involve mRNA degradation.
  • the present invention relates to isolated iRNA agents, e.g., RNA molecules, (double-stranded; single-stranded) that mediate RNAi.
  • isolated iRNA agents e.g., RNA molecules, (double-stranded; single-stranded) that mediate RNAi.
  • the iRNA agents preferably mediate RNAi with respect to an endogenous gene of a subject or to a gene of a pathogen.
  • RNA agent is an unmodified RNA, modified RNA, or nucleoside surrogate, all of which are defined herein, see the section herein entitled RNA Agents. While numerous modified RNAs and nucleoside surrogates are described herein, preferred examples include those which have greater resistance to nuclease degradation than do unmodified RNAs. Preferred examples include those which have a 2' sugar modification, a modification in a single strand overhang, preferably a 3' single strand overhang, or, particularly if single stranded, a 5' modification which includes one or more phosphate groups or one or more analogs of a phosphate group.
  • RNA agent is an RNA agent which can, or which can be cleaved into an RNA agent which can, down regulate the expression of a target gene, preferably an endogenous or pathogen target RNA. While not wishing to be bound by theory, an iRNA agent may act by one or more of a number of mechanisms, including post-transcriptional cleavage of a target mRNA sometimes referred to in the art as RNAi, or pre-transcriptional or pre-translational mechanisms.
  • An iRNA agent can include a single strand or can include more than one strands, e.g., it can be a double stranded iRNA agent.
  • the iRNA agent is a single strand it is particularly preferred that it include a 5' modification which includes one or more phosphate groups or one or more analogs of a phosphate group.
  • the iRNA agent should include a region of sufficient homology to the target gene, and be of sufficient length in terms of nucleotides, such that the iRNA agent, or a fragment thereof, can mediate down regulation of the target gene. (For ease of exposition the term nucleotide or ribonucleotide is sometimes used herein in reference to one or more monomeric subunits of an RNA agent.
  • ribonucleotide or “nucleotide”, herein can, in the case of a modified RNA or nucleotide surrogate, also refer to a modified nucleotide, or surrogate replacement moiety at one or more positions.
  • the iRNA agent is or includes a region which is at least partially, and in some embodiments fully, complementary to the target RNA.
  • RNAi cleavage product thereof e.g., mRNA.
  • Complementarity, or degree of homology with the target strand is most critical in the antisense strand. While perfect complementarity, particularly in the antisense strand, is often desired some embodiments can include, particularly in the antisense strand, one or more but preferably 6, 5, 4, 3, 2, or fewer mismatches (with respect to the target RNA).
  • the mismatches are most tolerated in the terminal regions and if present are preferably in a terminal region or regions, e.g., within 6, 5, 4, or 3 nucleotides of the 5' and/or 3' terminus.
  • the sense strand need only be sufficiently complementary with the antisense strand to maintain the over all double strand character of the molecule.
  • an iRNA agent will often be modified or include nucleoside surrogates.
  • Single stranded regions of an iRNA agent will often be modified or include nucleoside surrogates, e.g., the unpaired region or regions of a hairpin structure, e.g., a region which links two complementary regions, can have modifications or nucleoside surrogates.
  • Modification to stabilize one or more 3'- or 5'- terminus of an iRNA agent, e.g., against exonucleases, or to favor the antisense sRNA agent to enter into RISC are also favored.
  • Modifications can include C3 (or C6, C7, C12) amino linkers, thiol linkers, carboxyl linkers, non-nucleotidic spacers (C3, C6, C9, C12, abasic, triethylene glycol, hexaethylene glycol), special biotin or fluorescein reagents that come as phosphoramidites and that have another DMT-protected hydroxyl group, allowing multiple couplings during RNA synthesis.
  • iRNA agents include: molecules that are long enough to trigger the interferon response (which can be cleaved by Dicer (Bernstein et al., Nature, 409:363-366, 2001) and enter a RISC (RNAi-induced silencing complex)); and, molecules which are sufficiently short that they do not trigger the interferon response (which molecules can also be cleaved by Dicer and/or enter a RISC), e.g., molecules which are of a size which allows entry into a RISC, e.g., molecules which resemble Dicer-cleavage products. Molecules that are short enough that they do not trigger an interferon response are termed sRNA agents or shorter iRNA agents herein.
  • sRNA agent or shorter iRNA agent refers to an iRNA agent, e.g., a double stranded RNA agent or single strand agent, that is sufficiently short that it does not induce a deleterious interferon response in a human cell, e.g., it has a duplexed region of less than 60 but preferably less than 50, 40, or 30 nucleotide pairs.
  • the sRNA agent, or a cleavage product thereof can down regulate a target gene, e.g., by inducing RNAi with respect to a target RNA, preferably an endogenous or pathogen target RNA.
  • Each strand of an sRNA agent can be equal to or less than 30, 25, 24, 23, 22, 21, or 20 nucleotides in length.
  • the strand is preferably at least 19 nucleotides in length.
  • each strand can be between 21 and 25 nucleotides in length.
  • Preferred sRNA agents have a duplex region of 17, 18, 19, 29, 21, 22, 23, 24, or 25 nucleotide pairs, and one or more overhangs, preferably one or two 3' overhangs, of 2- 3 nucleotides.
  • an iRNA agent will preferably have one or more of the following properties:
  • RNA-like properties i.e., it will possess the overall structural, chemical and physical properties of an RNA molecule, even though not exclusively, or even partly, of ribonucleotide-based content.
  • an iRNA agent can contain, e.g., a sense and/or an antisense strand in which all of the nucleotide sugars contain e.g., 2 5 fluoro in place of 2 5 hydroxyl. This deoxyribonucleotide- containing agent can still be expected to exhibit RNA-like properties.
  • the electronegative fluorine prefers an axial orientation when attached to the C2' position of ribose. This spatial preference of fluorine can, in turn, force the sugars to adopt a C -endo pucker. This is the same puckering mode as observed in RNA molecules and gives rise to the RNA-characteristic A-family-type helix. Further, since fluorine is a good hydrogen bond acceptor, it can participate in the same hydrogen bonding interactions with water molecules that are known to stabilize RNA structures.
  • a modified moiety at the 2' sugar position will be able to enter into H bonding which is more characteristic of the OH moiety of a ribonucleotide than the H moiety of a deoxyribonucleotide.
  • a preferred iRNA agent will: exhibit a Cy-endo pucker in all, or at least 50, 75,80, 85, 90, or 95 % of its sugars; exhibit a Cy-endo pucker in a sufficient amount of its sugars that it can give rise to a the RNA-characteristic A-family-type helix; will have no more than 20, 10, 5, 4, 3, 2, orl sugar which is not a Cy-endo pucker structure.
  • RNA agent can contain deoxynucleotides or modified deoxynucleotides, particularly in overhang or other single strand regions, it is preferred that DNA molecules, or any molecule in which more than 50, 60, or 70 % of the nucleotides in the molecule, or more than 50, 60, or 70 % of the nucleotides in a duplexed region are deoxyribonucleotides, or modified deoxyribonucleotides which are deoxy at the 2' , position, are excluded from the definition of RNA agent.
  • a "single strand iRNA agent” as used herein, is an iRNA agent which is made up of a single molecule. It may include a duplexed region, formed by intra-strand pairing, e.g., it may be, or include, a hairpin or pan-handle structure.
  • Single strand iRNA agents are preferably antisense with regard to the target molecule.
  • single strand iRNA agents are 5' phosphorylated or include a phosphoryl analog at the 5' prime terminus. 5'-phosphate modifications include those which are compatible with RISC mediated gene silencing.
  • Suitable modifications include: 5'- monophosphate ((HO)2(O)P-O-5'); 5'-di ⁇ hosphate ((HO)2(O)P-O-P(HO)(O)-O-5 ? ); 5'- triphosphate ((HO)2(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5'); 5'-guanosine cap (7- methylated or non-methylated) (7m-G-O-5'-(HO)(O)P-O-(HO)(O)P-O-P(HO)(O)-O- 5'); 5'-adenosine cap (Appp), and any modified or unmodified nucleotide cap structure (N-O-5'-(HO)(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5 , ); 5'-monothiophosphate (phosphorothioate; (HO)2(S)
  • a single strand iRNA agent should be sufficiently long that it can enter the RISC and participate in RISC mediated cleavage of a target mRNA.
  • a single strand iRNA agent is at least 14, and more preferably at least 15, 20, 25, 29, 35, 40, or 50nucleotides in length. It is preferably less than 200, 100, or 60 nucleotides in length.
  • Hairpin iRNA agents will have a duplex region equal to or at least 17, 18, 19,
  • the duplex region will preferably be equal to or less than 200, 100, or 50, in length. Preferred ranges for the duplex region are 15-30, 17 to 23, 19 to 23, and 19 to 21 nucleotides pairs in length.
  • the hairpin will preferably have a single strand overhang or terminal unpaired region, preferably the 3', and preferably of the antisense side of the hairpin. Preferred overhangs are 2-3 nucleotides in length.
  • a “double stranded (ds) iRNA agent” as used herein, is an iRNA agent which includes more than one, and preferably two, strands in which interchain hybridization can form a region of duplex structure.
  • the antisense strand of a double stranded iRNA agent should be equal to or at least, 14, 15, 16 17, 18, 19, 25, 29, 40, or 60 nucleotides in length. It should be equal to or less than 200, 100, or 50, nucleotides in length. Preferred ranges are 17 to 25, /l 9 to 23, and 19 to21 nucleotides in length.
  • the sense strand of a double stranded iRNA agent should be equal to or at least 14, 15, 16 17, 18, 19, 25, 29, 40, or 60 nucleotides in length. It should be equal to or less than 200, 100, or 50, nucleotides in length. Preferred ranges are 17 to 25, 19 to 23, and 19 to21 nucleotides in length.
  • the double strand portion of a double stranded iRNA agent should be equal to or at least, 14, 15, 16 17, 18, 19, 20, 21, 22, 23, 24, 25, 29, 40, or 60 nucleotide pairs in length. It should be equal to or less than 200, 100, or 50, nucleotides pairs in length. Preferred ranges are 15-30, 17 to 23, 19 to 23, and 19 to 21 nucleotides pairs in length.
  • the ds iRNA agent is sufficiently large that it can be cleaved by an endogenous molecule, e.g., by Dicer, to produce smaller ds iRNA agents, e.g., sR As agents
  • the sense and antisense strand will have different modifications, e.g., in some cases it is desirable to modify only the sense strand. It may be desirable to modify only the sense strand, e.g., to inactivate it, e.g., the sense strand can be modified in order to inactivate the sense strand and prevent o formation of an active sRNA/protein or RISC.
  • Other modifications which prevent phosphorylation can also be used, e.g., simply substituting the 5'-OH by H rather than O-Me.
  • a large bulky 5 group may be added to the 5 '-phosphate turning it into a phosphodiester linkage, though this may be less desirable as phosphodiesterases can cleave such a linkage and release a functional sRNA 5 '-end.
  • Antisense strand modifications include 5' phosphorylation as well as any of the other 5' modifications discussed herein, particularly the 5' modifications discussed above in the section on single stranded iRNA molecules.
  • the sense and antisense strands be chosen such that the ds iRNA agent includes a single strand or unpaired region at one or both ends of the molecule.
  • a ds iRNA agent contains sense and antisense strands, preferable paired to contain an overhang, e.g., one or two 5' or 3' overhangs but preferably a 3' overhang of 2-3 nucleotides. Most embodiments will have a 3 5 overhang.
  • Preferred 5 sRNA agents will have single-stranded overhangs, preferably 3 ' overhangs, of 1 or preferably 2 or 3 nucleotides in length at each end.
  • the overhangs can be the result of one strand being longer than the other, or the result of two strands of the same length being staggered.
  • 5' ends are preferably phosphorylated.
  • Preferred lengths for the duplexed region is between 15 and 30, most preferably 0 18, 19, 20, 21, 22, and 23 nucleotides in length, e.g., in the sRNA agent range discussed above.
  • sRNA agents can resemble in length and structure the natural Dicer processed products from long dsRNAs.
  • Embodiments in which the two strands of the sRNA agent are linked, e.g., covalently linked are also included. Hairpin, or other single strand structures which provide the required double stranded region, and preferably a 3' overhang are also within the invention.
  • the isolated iRNA agents described herein, including ds iRNA agents and sRNA agents can mediate silencing of a target RNA, e.g., mRNA, e.g., a transcript of a 5 gene that encodes a protein.
  • a target RNA e.g., mRNA, e.g., a transcript of a 5 gene that encodes a protein.
  • mRNA e.g., a transcript of a 5 gene that encodes a protein.
  • mRNA e.g., a transcript of a 5 gene that encodes a protein.
  • mRNA e.g., a transcript of a 5 gene that encodes a protein.
  • mRNA e.g., a transcript of a 5 gene that encodes a protein.
  • mRNA e.g., a transcript of a 5 gene that encodes a protein.
  • mRNA e.g., a transcript of a 5
  • RNAi refers to the ability to silence, in a o sequence specific manner, a target RNA. While not wishing to be bound by theory, it is believed that silencing uses the RNAi machinery or process and a guide RNA, e.g., an sRNA agent of 21 to 23 nucleotides.
  • the present invention also relates to methods of producing iRNA agents, e.g., sRNA agents , e.g. an sRNA agent described herein, having the ability to mediate 5 RNAi.
  • iRNA agents can be formulated for administration to a subject.
  • the invention features a method of administering an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, to a subject (e.g., a human subject).
  • the method includes administering a unit dose of the iRNA agent, e.g., a sRNA agent, e.g., double stranded sRNA agent that (a) the double-stranded part is 19- 0 25 nucleotides (nt) long, preferably 21-23 nt, (b) is complementary to a target RNA (e.g., an endogenous or pathogen target RNA), and, optionally, (c) includes at least one 3' overhang 1-5 nucleotide long.
  • a sRNA agent e.g., double stranded sRNA agent that (a) the double-stranded part is 19- 0 25 nucleotides (nt) long, preferably 21-23 nt
  • a target RNA e.g., an endogenous or pathogen target RNA
  • c includes at least one 3' overhang 1-5 nucleotide long.
  • the unit dose is less than 1.4 mg per kg of bodyweight, or less than 10, 5, 2, 1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005 or 0.00001 mg per kg of bodyweight, and less than 200 nmole of RNA 5 agent (e.g. about 4.4 x 10 16 copies) per kg of bodyweight, or less than 1500, 750, 300, 150, 75, 15, 7.5, 1.5, 0.75, 0.15, 0.075, 0.015, 0.0075, 0.0015, 0.00075, 0.00015 nmole of RNA agent per kg of bodyweight.
  • RNA 5 agent e.g. about 4.4 x 10 16 copies
  • the defined amount can be an amount effective to treat or prevent a disease or disorder, e.g., a disease or disorder associated with the target RNA.
  • the unit dose for 0 example, can be administered by injection (e.g., intravenous or intramuscular), an inhaled dose, or a topical application. Particularly preferred dosages are less than 2, 1, or 0.1 mg/kg of body weight. In a preferred embodiment, the unit dose is administered less frequently than once a day, e.g., less than every 2, 4, 8 or 30 days. In another embodiment, the unit dose is not administered with a frequency (e.g., not a regular frequency). For example, the unit dose may be administered a single time. In one embodiment, the effective dose is administered with other traditional therapeutic modalities.
  • the subject has a viral infection and the modality is an antiviral agent other than an iRNA agent, e.g., other than a double- stranded iRNA agent, or sRNA agent,.
  • the subject has atherosclerosis and the effective dose of an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, is administered in combination with, e.g., after surgical intervention, e.g., angioplasty.
  • a subject is administered an initial dose and one or more maintenance doses of an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof).
  • the maintenance dose or doses are generally lower than the initial dose, e.g., one-half less of the initial dose.
  • a maintenance regimen can include treating the subject with a dose or doses ranging from 0.01 ⁇ g to 1.4 mg/kg of body weight per day, e.g., 10, 1, 0.1, 0.01, 0.001, or 0.00001 mg per kg of bodyweight per day.
  • the maintenance doses are preferably administered no more than once every 5, 10, or 30 days.
  • the iRNA agent pharmaceutical composition includes a plurality of iRNA agent species.
  • the iRNA agent species has sequences that are non-overlapping and non-adjacent to another species with respect to a naturally occurring target sequence.
  • the plurality of iRNA agent species is specific for different naturally occurring target genes.
  • the iRNA agent is allele specific.
  • iRNA agents described herein can be administered to mammals, particularly large mammals such as nonhuman primates or humans in a number of ways.
  • the administration of the iRNA agent e.g., a double- stranded iRNA agent, or sRNA agent, composition is parenteral, e.g. intravenous (e.g., as a bolus or as a diffusible infusion), intradermal, intraperitoneal, intramuscular, intrathecal, intraventricular, intracranial, subcutaneous, transmucosal, buccal, sublingual, endoscopic, rectal, oral, vaginal, topical, pulmonary, intranasal, urethral or ocular.
  • Administration can be provided by the subject or by another person, e.g., a health care provider.
  • the medication can be provided in measured doses or in a dispenser which delivers a metered dose. Selected modes of delivery are discussed in more detail below.
  • the invention provides methods, compositions, and kits, for rectal administration or delivery of iRNA agents described herein.
  • an iRNA agent e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent , or a DNA which encodes a an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) described herein, e.g., a therapeutically effective amount of an iRNA agent described herein, e.g., an iRNA agent having a double stranded region of less than 40, and preferably less than 30 nucleotides and having one or two 1-3 nucleotide single strand 3' overhangs can be administered rectally, e.g., introduced through the rectum into the lower or upper colon.
  • This approach is particularly useful in the treatment of, inflammatory disorders, disorders characterized by unwanted cell proliferation, e.g., polyps, or colon cancer
  • the medication is delivered to a site in the colon by introducing a dispensing device, e.g., a flexible, camera-guided device similar to that used for inspection of the colon or removal of polyps, which includes means for delivery of the medication.
  • a dispensing device e.g., a flexible, camera-guided device similar to that used for inspection of the colon or removal of polyps, which includes means for delivery of the medication.
  • the rectal administration of the iRNA agent is by means of an enema.
  • the iRNA agent of the enema can be dissolved in a saline or buffered solution.
  • the rectal administration is by means of a suppository.
  • the suppository can include other ingredients, e.g., an excipient, e.g., cocoa butter or hydropropylmethylcellulose.
  • the invention also provides methods, compositions, and kits for oral delivery of iRNA agents described herein.
  • an iRNA agent e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) described herein, e.g., a therapeutically effective amount of an iRNA described herein, e.g., an iRNA agent having a double stranded region of less than 40 and preferably less than 30 nucleotides and having one or two 1-3 nucleotide single strand 3' overhangs can be administered orally.
  • Oral administration can be in the form of tablets, capsules, gel capsules, lozenges, troches or liquid syrups.
  • the composition is applied topically to a surface of the oral cavity.
  • an iRNA agent e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) described herein, e.g., a therapeutically effective amount of iRNA agent having a double stranded region of less than 40 and preferably less than 30 nucleotides and having one or two 1-3 nucleotide single strand 3' overhangs can be administered to the buccal cavity.
  • the medication can be sprayed into the buccal cavity or applied directly, e.g., in a liquid, solid, or gel form to a surface in the buccal cavity.
  • This administration is particularly desirable for the treatment of inflammations of the buccal cavity, e.g., the gums or tongue, e.g., in one embodiment, the buccal administration is by spraying into the cavity, e.g., without inhalation, from a dispenser, e.g., a metered dose spray dispenser that dispenses the pharmaceutical composition and a propellant.
  • an iRNA agent e.g., a double-stranded iRNA agent, or sR A agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) described herein, e.g., a therapeutically effective amount of an iRNA agent described herein, e.g., a sRNA agent having a double stranded region of less than 40 and preferably less than 30 nucleotides and having one or two 1-3 nucleotide single strand 3' overhangs can be administered to ocular tissue.
  • a iRNA agent e.g., a double-stranded iRNA agent, or sR A agent
  • a precursor e.g., a larger iRNA agent which can be processed into a
  • the medications can be applied to the surface of the eye or nearby tissue, e.g., the inside of the eyelid. It can be applied topically, e.g., by spraying, in drops, as an eyewash, or an ointment. Administration can be provided by the subject or by another person, e.g., a health care provider.
  • the medication can be provided in measured doses or in a dispenser which delivers a metered dose.
  • the medication can also be administered to the interior of the eye, and can be 5 introduced by a needle or other delivery device which can introduce it to a selected area or structure.
  • Ocular treatment is particularly desirable for treating inflammation of the eye or nearby tissue.
  • the invention also provides methods, compositions, and kits for delivery of o iRNA agents described herein to or through the skin.
  • an iRNA agent e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) described herein, e.g., a therapeutically effective 5 amount of an iRNA agent described herein, e.g., a sRNA agent having a double stranded region of less than 40 and preferably less than 30 nucleotides and. one or two 1-3 nucleotide single strand 3' overhangs can be administered directly to the skin.
  • a iRNA agent e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be
  • the medication can be applied topically or delivered in a layer of the skin, e.g., by the use of a microneedle or a battery of microneedles which penetrate into the skin, 0 but preferably not into the underlying muscle tissue.
  • the administration of the iRNA agent composition is topical.
  • topical administration delivers the composition to the dermis or epidermis of a subject.
  • the topical administration is in the form of transdermal patches, ointments, lotions, creams, gels, drops, suppositories, 5 sprays, liquids or powders.
  • a composition for topical administration can be formulated as a liposome, micelle, emulsion, or other lipophilic molecular assembly.
  • the transdermal administration is applied with at least one penetration enhancer.
  • the penetration can be enhanced with iontophoresis, phonophoresis, and sonophoresis.
  • the invention 0 provides methods, compositions, devices, and kits for pulmonary delivery of iRNA agents described herein.
  • an iRNA agent e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) described herein, e.g., a therapeutically effective amount of iRNA agent, e.g., a sRNA agent having a double stranded region of less than 40, preferably less than 30 nucleotides and having one or two 1-3 nucleotide single strand 3' overhangs can be administered to the pulmonary system.
  • Pulmonary administration can be achieved by inhalation or by the introduction of a delivery device into the pulmonary system, e.g., by introducing a delivery device which can dispense the medication.
  • the preferred method of pulmonary delivery is by inhalation.
  • the medication can be provided in a dispenser which delivers the medication, e.g., wet or dry, in a form sufficiently small such that it can be inhaled.
  • the device can deliver a metered dose of medication.
  • the subject, or another person, can administer the medication.
  • iRNA agents can be formulated as a liquid or nonliquid, e.g., a powder, crystal, or aerosol for pulmonary delivery.
  • an iRNA agent e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) described herein, e.g., a therapeutically effective amount of iRNA agent, e.g., a sRNA agent having a double stranded region of less than 40 and preferably less than 30 nucleotides and having one or two 1-3 nucleotide single strand 3' overhangs can be administered nasally.
  • Nasal administration can be achie ed by introduction of a delivery device into the nose, e.g., by introducing a delivery
  • the preferred method of nasal delivery is by spray, aerosol, liquid, e.g., by drops, of by topical administration to a surface of the nasal cavity.
  • the medication can be provided in a dispenser which delivery of the medication, e.g., wet or dry, in a form sufficiently small such that it can be inhaled.
  • the device can deliver a metered dose of medication.
  • the subject, or another person, can administer the medication.
  • Nasal delivery is effective not only for disorders which directly affect nasal tissue, but also for disorders which affect other tissue iRNA agents can be formulated as a liquid or nonliquid, e.g., a powder, crystal, or for nasal delivery.
  • the iRNA agent is packaged in a viral natural capsid or in a chemically or enzymatically produced artificial capsid or structure derived therefrom.
  • the dosage of a pharmaceutical composition including an iRNA agent is administered in order to alleviate the symptoms of a disease state, e.g., cancer or a cardiovascular disease.
  • gene expression in a subject is modulated by administering a pharmaceutical composition including an iRNA agent.
  • a subject is treated with the pharmaceutical composition by any of the methods mentioned above.
  • the subject has cancer.
  • the composition can be prepared by a method that includes: (1) contacting an iRNA agent with an amphipathic cationic lipid conjugate in the presence of a detergent; and (2) removing the detergent to form an iRNA agent and cationic lipid complex.
  • the detergent is cholate, deoxycholate, lauryl sarcosine, octanoyl sucrose, CHAPS (3-[(3-cholamidopropyl)-di-methylamine]-2-hydroxyl- 1 -propane), novel- ⁇ -D-glucopyranoside, lauryl dimethylamine oxide, or octylglucoside.
  • the iRNA agent can be an sRNA agent.
  • the method can include preparing a composition that includes a plurality of iRNA agents, e.g., specific for one or more different endogenous target RNAs. The method can include other features described herein.
  • a subject is treated by administering a defined amount of an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent) composition that is in a powdered form.
  • an iRNA agent e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent) composition that is in a powdered form.
  • the powder is a collection of microparticles.
  • the powder is a collection of crystalline particles.
  • the composition can include a plurality of iRNA agents, e.g., specific for one or more different endogenous target RNAs.
  • the method can include other features described herein.
  • a subject is treated by administering a defined amount of an iRNA agent composition that is prepared by a method that includes spray-drying, i.e. atomizing a liquid solution, emulsion, or suspension, immediately exposing the droplets to a drying gas, and collecting the resulting porous powder particles.
  • the composition can include a plurality of iRNA agents, e.g., specific for one or more different endogenous target RNAs.
  • the method can include other features described herein.
  • the iRNA agent e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof), is provided in a powdered, crystallized or other finely divided form, with or without a carrier, e.g., a micro- or nano-particle suitable for inhalation or other pulmonary delivery.
  • this includes providing an aerosol preparation, e.g., an aerosolized spray-dried composition.
  • the aerosol composition can be provided in and/or dispensed by a metered dose delivery device.
  • a subject is treated for a condition treatable by inhalation.
  • this method includes aerosolizing a spray-dried iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) composition and inhaling the aerosolized composition.
  • the iRNA agent can be an sRNA.
  • the composition can include a plurality of iRNA agents, e.g., specific for one or more different endogenous target RNAs.
  • the method can include other features described herein.
  • the invention features a method of treating a subject that includes: administering a composition including an effective/defined amount of an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof), wherein the composition is prepared by a method that includes spray-drying, lyophilization, vacuum drying, evaporation, fluid bed drying, or a combination of these techniques
  • the invention features a method that includes: evaluating a parameter related to the abundance of a transcript in a cell of a subject; comparing the evaluated parameter to a reference value; and if the evaluated parameter has a preselected relationship to the reference value (e.g., it is greater), administering an 5
  • the iRNA agent includes a sequence that is complementary to the evaluated transcript.
  • the parameter can be a direct measure of transcript levels, a measure of a protein level, a disease or disorder o symptom or characterization (e.g., rate of cell proliferation and/or tumor mass, viral load).
  • the invention features a method that includes: administering a first amount of a composition that comprises an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be 5 processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double- stranded iRNA agent, or sRNA agent, or precursor thereof) to a subject, wherein the iRNA agent includes a strand substantially complementary to a target nucleic acid; evaluating an activity associated with a protein encoded by the target nucleic acid; wherein the evaluation is used to determine if a second amount should be administered.
  • the method includes administering a second amount of the composition, wherein the timing of administration or dosage of the second amount is a function of the evaluating.
  • the method can include other features described herein.
  • the invention features a method of administering a source of a double-stranded iRNA agent (ds iRNA agent) to a subject.
  • the method includes 5 administering or implanting a source of a ds iRNA agent, e.g., a sRNA agent, that (a) includes a double-stranded region that is 19-25 nucleotides long, preferably 21-23 nucleotides, (b) is complementary to a target RNA (e.g., an endogenous RNA or a pathogen RNA), and, optionally, (c) includes at least one 3' overhang 1-5 nt long.
  • the source releases ds iRNA agent over time, e.g.
  • the source is a 0 controlled or a slow release source, e.g., a microparticle that gradually releases the ds iRNA agent.
  • the source is a pump, e.g., a pump that includes a sensor or a pump that can release one or more unit doses.
  • the invention features a pharmaceutical composition that includes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) including a nucleotide sequence complementary to a target RNA, e.g., substantially and/or exactly complementary.
  • the target RNA can be a transcript of an endogenous human gene.
  • the iRNA agent (a) is 19-25 nucleotides long, preferably 21-23 nucleotides, (b) is complementary to an endogenous target RNA, and, optionally, (c) includes at least one 3' overhang 1-5 nt long.
  • the pharmaceutical composition can be an emulsion, microemulsion, cream, jelly, or liposome.
  • the pharmaceutical composition includes an iRNA agent mixed with a topical delivery agent.
  • the topical delivery agent can be a plurality of microscopic vesicles.
  • the microscopic vesicles can be liposomes.
  • the liposomes are cationic liposomes.
  • the pharmaceutical composition includes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) admixed with a topical penetration enhancer.
  • the topical penetration enhancer is a fatty acid.
  • the fatty acid can be arachidonic acid, oleic acid, lauric acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monolein, dilaurin, glyceryl 1-monocaprate, l-dodecylazacycloheptan-2-one, an acylcarnitine, an acylcholine, or a C ⁇ - ⁇ o alkyl ester, monoglyceride, diglyceride or pharmaceutically acceptable salt thereof.
  • the topical penetration enhancer is a bile salt.
  • the bile salt can be cholic acid, dehydrocholic acid, deoxycholic acid, glucholic acid, glycholic acid, glycodeoxycholic acid, taurocholic acid, taurodeoxycholic acid, chenodeoxycholic acid, ursodeoxycholic acid, sodium tauro-24,25-dihydro-fusidate, sodium glycodihydrofusidate, polyoxyethylene-9-lauryl ether or a pharmaceutically acceptable salt thereof.
  • the penetration enhancer is a chelating agent.
  • the chelating agent can be EDTA, citric acid, a salicyclate, a N-acyl derivative of collagen, laureth-9, an N-amino acyl derivative of a beta-diketone or a mixture thereof.
  • the penetration enhancer is a surfactant, e.g., an ionic or nonionic surfactant.
  • the surfactant can be sodium lauryl sulfate, polyoxyethylene-9- lauryl ether, polyoxyethylene-20-cetyl ether, a perfluorchemical emulsion or mixture thereof.
  • the penetration enhancer can be selected from a group consisting of unsaturated cyclic ureas, 1 -alkyl- alkones, 1-alkenylazacyclo-alakanones, steroidal anti-inflammatory agents and mixtures thereof.
  • the penetration enhancer can be a glycol, a pyrrol, an azone, or a terpenes.
  • the invention features a pharmaceutical composition including an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) in a form suitable for oral delivery.
  • oral delivery can be used to deliver an iRNA agent composition to a cell or a region of the gastro-intestinal tract, e.g., small intestine, colon (e.g., to treat a colon cancer), and so forth.
  • the oral delivery form can be tablets, capsules or gel capsules.
  • the iRNA agent of the pharmaceutical composition modulates expression of a cellular adhesion protein, modulates a rate of cellular proliferation, or has biological activity against eukaryotic pathogens or retroviruses.
  • the pharmaceutical composition includes an enteric material that substantially prevents dissolution of the tablets, capsules or gel capsules in a mammalian stomach.
  • the enteric material is a coating.
  • the coating can be acetate phthalate, propylene glycol, sorbitan monoleate, cellulose acetate trimellitate, hydroxy propyl methylcellulose phthalate or cellulose acetate phthalate.
  • the oral dosage form of the pharmaceutical composition includes a penetration enhancer.
  • the penetration enhancer can be a bile salt or a fatty acid.
  • the bile salt can be ursodeoxycholic acid, chenodeoxycholic acid, and salts thereof.
  • the fatty acid can be capric acid, lauric acid, and salts thereof.
  • the oral dosage form of the pharmaceutical composition includes an excipient.
  • the excipient is polyethyleneglycol.
  • the excipient is precirol.
  • the oral dosage form of the pharmaceutical composition includes a plasticizer.
  • the plasticizer can be diethyl phthalate, triacetin dibutyl sebacate, dibutyl phthalate or triethyl citrate.
  • the invention features a pharmaceutical composition including an iRNA agent and a delivery vehicle.
  • the iRNA agent is (a) is 19-25 nucleotides long, preferably 21-23 nucleotides, (b) is complementary to an endogenous target RNA, and, optionally, (c) includes at least one 3' overhang 1-5 nucleotides long.
  • the delivery vehicle can deliver an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) to a cell by a topical route of administration.
  • the delivery vehicle can be microscopic vesicles.
  • the microscopic vesicles are liposomes..
  • the liposomes are cationic liposomes.
  • the microscopic vesicles are micelles.
  • the invention features a method for making a pharmaceutical composition, the method including: (1) contacting an iRNA agent, e.g., a double- stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent) with a amphipathic cationic lipid conjugate in the presence of a detergent; and (2) removing the detergent to form an iRNA agent and cationic lipid complex.
  • an iRNA agent e.g., a double- stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent)
  • a amphipathic cationic lipid conjugate in the presence of a detergent
  • removing the detergent to form an iRNA agent and cationic lipid complex.
  • the invention features a pharmaceutical composition produced by a method including: (1) contacting an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent) with a amphipathic cationic lipid conjugate in the presence of a detergent; and (2) removing the detergent to form an iRNA agent and cationic lipid complex.
  • an iRNA agent e.g., a double-stranded iRNA agent, or sRNA agent
  • a precursor e.g., a larger iRNA agent which can be processed into a sRNA agent
  • the detergent is cholate, deoxycholate, lauryl sarcosine, octanoyl sucrose, CHAPS (3-[(3-cholamidopropyl)-di-methylamine]- 2-hydroxyl-l -propane), novel- ⁇ -D-glucopyranoside, lauryl dimethylamine oxide, or octylglucoside.
  • the amphipathic cationic lipid conjugate is biodegradable.
  • the pharmaceutical composition includes a targeting ligand.
  • the invention features a pharmaceutical composition including an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) in an injectable dosage form.
  • the injectable dosage form of the pharmaceutical composition includes sterile aqueous solutions or dispersions and sterile powders.
  • the sterile solution can include a diluent such as water; saline solution; fixed oils, polyethylene glycols, glycerin, or propylene glycol.
  • the invention features a pharmaceutical composition including an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) in oral dosage form.
  • the oral dosage form is selected from the group consisting of tablets, capsules and gel capsules.
  • the pharmaceutical composition includes an enteric material that substantially prevents dissolution of the tablets, capsules or gel capsules in a mammalian stomach.
  • the enteric material is a coating.
  • the coating can be acetate phthalate, propylene glycol, sorbitan monoleate, cellulose acetate trimellitate, hydroxy propyl methyl cellulose phthalate or cellulose acetate phthalate.
  • the oral dosage form of the pharmaceutical composition includes a penetration enhancer, e.g., a penetration enhancer described herein.
  • the oral dosage form of the pharmaceutical composition includes an excipient. hi one example the excipient is polyethyleneglycol. hi another example the excipient is precirol.
  • the oral dosage form of the pharmaceutical composition includes a plasticizer.
  • the plasticizer can be diethyl phthalate, triacetin dibutyl sebacate, dibutyl phthalate or triethyl citrate.
  • the invention features a pharmaceutical composition including an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) in a rectal dosage form.
  • the rectal dosage form is an enema.
  • the rectal dosage form is a suppository.
  • the invention features a pharmaceutical composition including an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) in a vaginal dosage form.
  • the vaginal dosage form is a suppository.
  • the vaginal dosage form is a foam, cream, or gel.
  • the invention features a pharmaceutical composition including an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) in a pulmonary or nasal dosage form.
  • the iRNA agent is incorporated into a particle, e.g., a macrop article, e.g., a microsphere.
  • the particle can be produced by spray drying, lyophilization, evaporation, fluid bed drying, vacuum drying, or a combination thereof.
  • the microsphere can be formulated as a suspension, a powder, or an implantable solid.
  • the invention features a spray-dried iRNA agent, e.g., a double- stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) composition suitable for inhalation by a subject, including: (a) a therapeutically effective amount of an iRNA agent suitable for treating a condition in the subject by inhalation; (b) a pharmaceutically acceptable excipient selected from the group consisting of carbohydrates and amino acids; and (c) optionally, a dispersibility-enhancing amount of
  • the excipient is a carbohydrate.
  • the carbohydrate can be selected from the group consisting of monosaccharides, disaccharides, trisaccharides, and polysaccharides.
  • the carbohydrate is a monosaccharide selected from the group consisting of dextrose, galactose, mannitol, D-mannose, sorbitol, and sorbose.
  • the carbohydrate is a disaccharide selected from the group consisting of lactose, maltose, sucrose, and trehalose.
  • the excipient is an amino acid.
  • the amino acid is a hydrophobic amino acid.
  • the hydrophobic amino acid is selected from the group consisting of alanine, isoleucine, leucine, methionine, phenylalanine, proline, tryptophan, and valine.
  • the amino acid is a polar amino acid.
  • the amino acid is selected from the group consisting of arginine, histidine, lysine, cysteine, glycine, glutamine, serine, threonine, tyrosine, aspartic acid and glutamic acid.
  • the dispersibility-enhancing polypeptide is selected from the group consisting of human serum albumin, ⁇ -lactalbumin, trypsinogen, and polyalanine.
  • the spray-dried iRNA agent composition includes particles having a mass median diameter (MMD) of less than 10 microns. In another embodiment, the spray-dried iRNA agent composition includes particles having a mass median diameter of less than 5 microns. In yet another embodiment the spray-dried iRNA agent composition includes particles having a mass median aerodynamic diameter (MMAD) of less than 5 microns.
  • MMD mass median diameter
  • MMAD mass median aerodynamic diameter
  • kits that include a suitable container containing a pharmaceutical formulation of an iRNA agent, e.g., a double- stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof), i certain embodiments the individual components of the pharmaceutical formulation maybe provided in one container.
  • the components of the pharmaceutical formulation may be packaged in two or more containers, e.g., one container for an iRNA agent preparation, and at least another for a carrier compound.
  • the kit may be packaged in a number of different configurations such as one or more containers in a single box.
  • the different components can be combined, e.g., according to instructions provided with the kit.
  • the components can be combined according to a method described herein, e.g., to prepare and administer a pharmaceutical composition.
  • the kit can also include a delivery device.
  • the invention features a device, e.g., an implantable device, wherein the device can dispense or administer a composition that includes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof), e.g., an iRNA agent that silences an endogenous transcript.
  • the device is coated with the composition, hi another embodiment the iRNA agent is disposed within the device.
  • the device includes a mechanism to dispense a unit dose of the composition, h other embodiments the device releases the composition continuously, e.g., by diffusion.
  • exemplary devices include stents, catheters, pumps, artificial organs or organ components (e.g., artificial heart, a heart valve, etc.), and sutures.
  • crystalline describes a solid having the structure or characteristics of a crystal, i.e., particles of three-dimensional structure in which the plane faces intersect at definite angles and in which there is a regular internal structure.
  • the compositions of the invention may have different crystalline forms. Crystalline forms can be prepared by a variety of methods, including, for example, spray drying.
  • telomere binding requires a sufficient degree of complementarity to avoid non-specific binding of the oligomeric compound to non-target sequences under conditions in which specific binding is desired, i.e., under physiological conditions in the case of in vivo assays or therapeutic treatment, or in the case of in vitro assays, under conditions in which the assays are performed.
  • the non-target sequences typically differ by at least 5 nucleotides.
  • an iRNA agent is "sufficiently complementary" to a target RNA, e.g., a target mRNA, such that the iRNA agent silences production of protein encoded by the target mRNA.
  • the iRNA agent is "exactly complementary" to a target RNA, e.g., the target RNA and the iRNA agent anneal, preferably to form a hybrid made exclusively of Watson-Crick basepairs in the region of exact complementarity.
  • a "sufficiently complementary" target RNA can include an internal region (e.g., of at least 10 nucleotides) that is exactly complementary to a target RNA.
  • the iRNA agent specifically discriminates a single-nucleotide difference.
  • the iRNA agent only mediates RNAi if exact complementary is found in the region (e.g., within 7 nucleotides of) the single- nucleotide difference.
  • oligonucleotide refers to a nucleic acid molecule
  • RNA or DNA preferably of length less than 100, 200, 300, or 400 nucleotides.
  • FIG. 1A is a graph depicting the results of quantitative RT-PCR experiments.
  • Class I iRNAs were injected into mice, and then liver and kidney ApoM RNA levels were measured by quantitative RT-PCR.
  • “Cl” and “C2” represents ApoM RNA levels in control mice.
  • FIG. IB shows gels denoting the results of quantitative RT-PCR experiments.
  • Class I iRNAs were injected into mice, and then liver and kidney ApoM RNA levels were measured by quantitative RT-PCR.
  • "Cl” and “C2” represents ApoM RNA levels in control mice.
  • FIG. 2 is a graph showing the results of quantitative RT-PCR experiments that measured ApoM RNA levels in HepG2 tissue culture cells following cotransfection with a plasmid expressing exogenous ApoM RNA under a CMV promoter and a class I iRNA. "C” represents a ApoM RNA levels in control HepG2 tissue culture cells.
  • FIG. 3 A is a graph depicting the results of quantitative RT-PCR experiments.
  • Class II iRNAs (11, 13, 15, and 17) were injected separately into mice. Liver and kidney ApoM RNA levels were then measured by quantitative RT-PCR. "C” represents ApoM RNA levels in control mice (mice not injected with class II iRNAs).
  • FIG. 3B shows gels denoting the results of quantitative RT-PCR experiments. Class II iRNAs were injected into mice, and then liver and kidney ApoM RNA levels were measured by quantitative RT-PCR. RT-PCR of Hprt and apoC2 RNA was used as control experiments. "C” represents ApoM RNA levels in control mice (mice not injected with class II iRNAs).
  • FIG. 4A is a graph showing the levels of serum ApoM levels in mice following injection with class II RNAi containing phosphorothioates. "C” represents serum ApoM levels in control mice (mice not injected with class II iRNAs).
  • FIG. 4B is a Western blot showing the levels of serum ApoM levels in mice following injection with class II RNAi containing phosphorothioates.
  • C represents serum ApoM levels in control mice (mice not injected with class II iRNAs).
  • FIG. 5 A is a graph showing the levels of serum ApoM levels in mice following injection with Class III RNAi molecules.
  • C represents serum ApoM levels in control mice (mice not injected with class III iRNAs).
  • FIG. 5B is a Western blot showing the levels of serum ApoM levels in mice following injection with Class III RNAi molecules.
  • C represents serum ApoM levels in control mice (mice not injected with class III iRNAs).
  • FIG. 6 A is a graph showing the levels of serum ApoM levels in mice following injections with varying concentrations (" ⁇ g") of RNAi. The effect of preincubating the RNAi with lipofectarnine (“Lipo”) was also tested in these experiments.
  • FIG. 6B is a Western blot showing the levels of serum ApoM levels in mice following injections with varying concentrations (" ⁇ .g") of RNAi. The effect of preincubating the RNAi with lipofectarnine (“Lipo”) was also tested in these experiments.
  • Double-stranded directs the sequence-specific silencing of mRNA through a process known as RNA interference (RNAi).
  • RNAi RNA interference
  • the process occurs in a wide variety of organisms, including mammals and other vertebrates.
  • 21-23 nt fragments of dsRNA are sequence- specific mediators of RNA silencing, e.g., by causing RNA degradation. While not wishing to be bound by theory, it may be that a molecular signal, which may be merely the specific length of the fragments, present in these 21-23 nt fragments recruits cellular factors that mediate RNAi. Described herein are methods for preparing and administering these 21-23 nt fragments, and other iRNAs agents, and their use for specifically inactivating gene function.
  • iRNAs agents or recombinantly produced or chemically synthesized oligonucleotides of the same or similar nature
  • oligonucleotides of the same or similar nature
  • longer dsRNA agent fragments can also be used, e.g., as described below.
  • the length of the iRNA agent strands in an sRNA agent can be less than 31, 30, 28, 25, or 23 nt, e.g., sufficiently short to avoid inducing a deleterious interferon response.
  • a composition of sRNA agent e.g., formulated as described herein
  • use of a discrete species of iRNA agent can be used to selectively target one allele of a target gene, e.g., in a subject heterozygous for the allele.
  • a mammalian cell is treated with an iRNA agent 5 that disrupts a component of the interferon response, e.g., double stranded RNA
  • dsRNA dsRNA-activated protein kinase PKR.
  • a cell can be treated with a second iRNA agent that includes a sequence complementary to a target RNA and that has a length that might otherwise trigger the interferon response.
  • the subject is a mammal such as a cow, horse, mouse, 0 rat, dog, pig, goat, or a primate.
  • the subject can be a dairy mammal (e.g., a cow, or goat) or other farmed animal (e.g., a chicken, turkey, sheep, pig, fish, shrimp).
  • the subject is a human, e.g., a normal individual or an individual that has, is diagnosed with, or is predicted to have a disease or disorder.
  • iRNA agent mediated silencing persists for several days after 5 administering the iRNA agent composition, in many instances, it is possible to administer the composition with a frequency of less than once per day, or, for some instances, only once for the entire therapeutic regimen.
  • treatment of some cancer cells may be mediated by a single bolus administration, whereas a chronic viral infection may require regular administration, e.g., once per week or once per 0 month.
  • iRNA agent can be formulated according to an exemplary method described herein.
  • iRNA Production An iRNA can be produced, e.g., in bulk, by a variety of methods. Exemplary methods include: organic synthesis and RNA cleavage, e.g., in vitro cleavage.
  • iRNA can be made by separately synthesizing each respective strand of a double-stranded RNA molecule. The component strands can then be annealed.
  • a large bioreactor e.g., the OligoPilot II from Pharmacia Biotec AB (Uppsala Sweden), can be used to produce a large amount of a particular RNA strand for a given iRNA.
  • the OligoPilotll reactor can efficiently couple a nucleotide using only a 1.5 molar excess of a phosphoramidite nucleotide.
  • ribonucleotides amidites are used. Standard cycles of monomer addition can be used to synthesize the 21 to 23 nucleotide strand for the iRNA.
  • the two complementary strands are produced separately and then annealed, e.g., after release from the solid support and deprotection.
  • Organic synthesis can be used to produce a discrete iRNA species.
  • the complementary of the species to a particular target gene can be precisely specified.
  • the species may be complementary to a region that includes a polymorphism, e.g., a single nucleotide polymorphism.
  • the location of the polymorphism can be precisely defined.
  • the polymorphism is located in an internal region, e.g., at least 4, 5, 7, or 9 nucleotides from one or both of the termini.
  • dsRNA Cleavage iRNAs can also be made by cleaving a larger ds iRNA.
  • the cleavage can be mediated in vitro or in vivo.
  • the following method can be used:
  • dsRNA is produced by transcribing a nucleic acid (DNA) segment in both directions.
  • DNA nucleic acid
  • HiScribeTM RNAi transcription kit New England Biolabs
  • the HiScribeTM RNAi transcription kit provides a vector and a method for producing a dsRNA for a nucleic acid segment that is cloned into the vector at a position flanked on either side by a T7 promoter.
  • Separate templates are generated for T7 transcription of the two complementary strands for the dsRNA.
  • the templates are transcribed in vitro by addition of T7 RNA polymerase and dsRNA is produced. Similar methods using PCR and/or other RNA polymerases (e.g., T3 or SP6 polymerase) can also be used.
  • RNA generated by this method is carefully purified to remove endotoxins that may contaminate preparations of the recombinant enzymes.
  • dsRNA is cleaved in vitro into iRNAs, for example, using a Dicer or comparable RNAse Ill-based activity.
  • the dsRNA can be incubated in an in vitro extract from Drosophila or using purified components, e.g. a purified RNAse or RISC complex (RNA-induced silencing complex ). See, e.g., Ketting et al, Genes Dev. 15:2654-9, 2001, and Hammond, Science 293:1146-50, 2001.
  • dsRNA cleavage generally produces a plurality of iRNA species, each being a particular 21 to 23 nt fragment of a source dsRNA molecule.
  • iRNAs that include sequences complementary to overlapping regions and adjacent regions of a source dsRNA molecule may be present.
  • the iRNA preparation can be prepared in a solution (e.g., an aqueous and/or organic solution) that is appropriate for formulation.
  • a solution e.g., an aqueous and/or organic solution
  • the iRNA preparation can be precipitated and redissolved in pure double- distilled water, and lyophilized. The dried iRNA can then be resuspended in a solution appropriate for the intended formulation process.
  • iRNA compositions can assume a variety of states.
  • the composition is at least partially crystalline, uniformly crystalline, and/or anhydrous (e.g., less than 80, 50, 30, 20, or 10% water), hi another example, the iRNA is in an aqueous phase, e.g., in a solution that includes water.
  • the aqueous phase or the crystalline compositions can, e.g., be incorporated into a delivery vehicle, e.g., a liposome (particularly for the aqueous phase) or a particle (e.g., a microparticle as can be appropriate for a crystalline composition).
  • a delivery vehicle e.g., a liposome (particularly for the aqueous phase) or a particle (e.g., a microparticle as can be appropriate for a crystalline composition).
  • the iRNA composition is formulated in a manner that is compatible with the intended method of administration (see, below).
  • the composition is prepared by at least one of the following methods: spray drying, lyophilization, vacuum drying, evaporation, fluid bed drying, or a combination of these techniques; or sonication with a lipid, freeze-drying, condensation and other self-assembly.
  • An iRNA preparation can be formulated in combination with another agent, e.g., another therapeutic agent or an agent that stabilizes an iRNA, e.g., a protein that complexes with iRNA to form an iRNP.
  • another agent e.g., another therapeutic agent or an agent that stabilizes an iRNA, e.g., a protein that complexes with iRNA to form an iRNP.
  • agents include chelators, e.g., EDTA (e.g., to remove divalent cations such as Mg 2+ ), salts, RNAse inhibitors (e.g., a broad specificity RNAse inhibitor such as RNAsin) and so forth.
  • the iRNA preparation includes another iRNA agent, e.g., a second iRNA that can mediated RNAi with respect to a second gene, or with respect to the same gene. Still other preparation can include at least 3, 5, ten, twenty, fifty, or a hundred or more different iRNA species. Such iRNAs can mediated RNAi with respect to a similar number of different genes.
  • the iRNA preparation includes at least a second therapeutic agent (e.g., an agent other than an RNA or a DNA).
  • a second therapeutic agent e.g., an agent other than an RNA or a DNA.
  • an iRNA composition for the treatment of a viral disease e.g. HIV
  • a known antiviral agent e.g., a protease inhibitor or reverse transcriptase inhibitor
  • an iRNA composition for the treatment of a cancer might further comprise a chemotherapeutic agent.
  • Liposomes For ease of exposition the formulations, compositions and methods in this section are discussed largely with regard to unmodified iRNA agents. It should be understood, however, that these formulations, compositions and methods can be practiced with other iRNA agents, e.g., modified iRNA s agents, and such practice is within the invention.
  • An iRNA agent e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) preparation can be formulated for delivery in a membranous molecular assembly, e.g., a liposome or a micelle.
  • a membranous molecular assembly e.g., a liposome or a micelle.
  • liposome refers to a vesicle composed of amphiphilic lipids arranged in at least one bilayer, e.g., one bilayer or a plurality of bilayers. Liposomes include unilamellar and multilamellar vesicles that have a membrane formed from a lipophilic material and an aqueous interior. The aqueous portion contains the iRNA composition. The lipophilic material isolates the aqueous interior from an aqueous exterior, which typically does not include the iRNA composition, although in some examples, it may. Liposomes are useful for the transfer and delivery of active ingredients to the site of action.
  • the liposomal membrane is structurally similar to biological membranes, when liposomes are applied to a tissue, the liposomal bilayer fuses with bilayer of the cellular membranes.
  • the internal aqueous contents that include the iRNA are delivered into the cell where the iRNA can specifically bind to a target RNA and can mediate RNAi.
  • the liposomes are also specifically targeted, e.g., to direct the iRNA to particular cell types.
  • a liposome containing an iRNA can be prepared by a variety of methods.
  • the lipid component of a liposome is dissolved in a detergent so that micelles are formed with the lipid component.
  • the lipid component can be an amphipathic cationic lipid or lipid conjugate.
  • the detergent can have a high critical micelle concentration and may be nonionic. Exemplary detergents include cholate, CHAPS, octylglucoside, deoxycholate, and lauroyl sarcosine.
  • the iRNA preparation is then added to the micelles that include the lipid component.
  • the cationic groups on the lipid interact with the iRNA and condense around the iRNA to form a liposome. After condensation, the detergent is removed, e.g.
  • a carrier compound that assists in condensation can be added during the condensation reaction, e.g., by controlled addition.
  • the carrier compound can be a polymer other than a nucleic acid (e.g., spermine or spermidine). pH can also adjusted to favor condensation.
  • Liposome formation can also include one or more aspects of exemplary methods described in Feigner, P. L. et al., Proc. Natl. Acad. Sci., USA 8:7413-7417, 1987; U.S. Pat. No. 4,897,355; U.S. Pat. No. 5,171,678; Bangham, et al. M. Mol. Biol. 23:238, 1965; Olson, et al. Biochim. Biophys.
  • Microfluidization can be used when consistently small (50 to 200 nm) and relatively uniform aggregates are desired (Mayhew, et al. Biochim. Biophys. Ada 775:169, 1984). These methods are readily adapted to packaging iRNA preparations into liposomes.
  • Liposomes that are pH-sensitive or negatively-charged entrap nucleic acid molecules rather than complex with them. Since both the nucleic acid molecules and the lipid are similarly charged, repulsion rather than complex formation occurs. Nevertheless, some nucleic acid molecules are entrapped within the aqueous interior of these liposomes. pH-sensitive liposomes have been used to deliver DNA encoding the thymidine kinase gene to cell monolayers in culture. Expression of the exogenous gene was detected in the target cells (Zhou et al., Journal of Controlled Release 19:269-274, 1992).
  • liposomal composition includes phospholipids other than naturally-derived phosphatidylchohne.
  • Neutral liposome compositions can be fo ⁇ ned from dimyristoyl phosphatidylchohne (DMPC) or dipalmitoyl phosphatidylchohne (DPPC).
  • Anionic liposome compositions generally are formed from dimyristoyl phosphatidylglycerol, while anionic fusogenic liposomes are formed primarily from dioleoyl phosphatidylethanolamine (DOPE).
  • Another type of liposomal composition is formed from phosphatidylchohne (PC) such as, for example, soybean PC, and egg PC.
  • PC phosphatidylchohne
  • Another type is formed from mixtures of phospholipid and/or phosphatidylchohne and/or cholesterol.
  • Examples of other methods to introduce liposomes into cells in vitro and in vivo include U.S. Pat. No. 5,283,185; U.S. Pat. No. 5,171,678; WO 94/00569; WO 93/24640; WO 91/16024; Feigner, J. Biol. Chem. 269:2550, 1994; Nabel, Proc. Natl. Acad. Sci. 90:11307, 1993; Nabel, Human Gene Ther. 3:649, 1992; Gershon, Biochem. 32:7143, 1993; and Strauss EMBO J. 11:417, 1992.
  • cationic liposomes are used.
  • Non-cationic liposomes possess the advantage of being able to fuse to the cell membrane.
  • Non-cationic liposomes although not able to fuse as efficiently with the plasma membrane, are taken up by macrophages in vivo and can be used to deliver iRNAs to macrophages.
  • Further advantages of liposomes include: liposomes obtained from natural phospholipids are biocompatible and biodegradable; liposomes can incorporate a wide range of water and lipid soluble drugs; liposomes can protect encapsulated iRNAs in their internal compartments from metabolism and degradation (Rosoff, in "Pharmaceutical Dosage Forms," Lieberman, Rieger and Banker (Eds.), 1988, volume 1, p. 245).
  • Important considerations in the preparation of liposome formulations are the lipid surface charge, vesicle size and the aqueous volume of the liposomes.
  • a positively charged synthetic cationic lipid, N-[l-(2,3-dioleyloxy)propyl]- N,N,N-trimethylammonium chloride can be used to form small liposomes that interact spontaneously with nucleic acid to form lipid-nucleic acid complexes which are capable of fusing with the negatively charged lipids of the cell membranes of tissue culture cells, resulting in delivery of iRNA (see, e.g., Feigner et al., Proc. Natl. Acad. Sci. USA 8:7413-7417, 1987 and U.S. Pat. No. 4,897,355 for a description of DOTMA and its use with DNA).
  • DOTMA N-[l-(2,3-dioleyloxy)propyl]- N,N,N-trimethylammonium chloride
  • a DOTMA analogue, l,2-bis(oleoyloxy)-3-(trimethylammonia)propane (DOTAP) can be used in combination with a phospho lipid to form DNA-complexing vesicles.
  • LipofectinTM Bethesda Research Laboratories, Gaithersburg, Md. is an effective agent for the delivery of highly anionic nucleic acids into living tissue culture cells that comprise positively charged DOTMA liposomes which interact spontaneously with negatively charged polynucleo tides to form complexes. When enough positively charged liposomes are used, the net charge on the resulting complexes is also positive.
  • DOTAP cationic lipid, l,2-bis(oleoyloxy)-3,3- (trimethylammonia)propane
  • cationic lipid compounds include those that have been conjugated to a variety of moieties including, for example, carboxyspermine which has been conjugated to one of two types of lipids and includes compounds such as 5- carboxyspermylglycine dioctaoleoylamide (“DOGS”) (TransfectamTM, Promega, Madison, Wisconsin) and dipalmitoylphosphatidylethanolamine 5-carboxyspermyl- amide (“DPPES”) (see, e.g., U.S. Pat. No. 5,171,678).
  • DOGS 5- carboxyspermylglycine dioctaoleoylamide
  • DPES dipalmitoylphosphatidylethanolamine 5-carboxyspermyl- amide
  • Another cationic lipid conjugate includes derivatization of the lipid with cholesterol ("DC-Choi") which has been formulated into liposomes in combination with DOPE (See, Gao, X. and Huang, L., Biochim. Biophys. Res. Commun. 179:280, 1991). Lipopolylysme, made by conjugating polylysine to DOPE, has been reported to be effective for transfection in the presence of serum (Zhou et al., Biochim. Biophys. Ada 1065:8, 1991). For certain cell lines, these liposomes containing conjugated cationic lipids, are said to exhibit lower toxicity and provide more efficient transfection than the DOTMA-containing compositions.
  • DC-Choi lipid with cholesterol
  • cationic lipids suitable for the delivery of oligonucleotides are described in WO 98/39359 and WO 96/37194.
  • liposomes are particularly suited for topical administration, liposomes present several advantages over other formulations. Such advantages include reduced side effects related to high systemic absorption of the administered drug, increased accumulation of the administered drug at the desired target, and the ability to administer iRNA, into the skin.
  • liposomes are used for delivering iRNA to epidermal cells and also to enhance the penetration of iRNA into dermal tissues, e.g., into skin.
  • the liposomes can be applied topically.
  • Topical delivery of drugs formulated as liposomes to the skin has been documented (see, e.g., Weiner et al., Journal of Drug Targeting 2:405-410, 1992, and du Plessis et al., Antiviral Research 18:259-265, 1992; Mannino and Fould-Fogerite, Biotechniques 6:682-690, 1988; Itani, et al. Gene 56:267-276, 1987; Nicolau et al., Meth. Enz. 149:157-176, 1987; Straubinger and Papahadjopoulos, Meth. Enz. 101:512- 527, 1983; Wang and Huang, Proc. Natl. Acad. Sci. USA 84:7851-7855, 1987).
  • Non-ionic liposomal systems have also been examined to determine their utility in the delivery of drugs to the skin, in particular systems comprising non-ionic surfactant and cholesterol.
  • Non-ionic liposomal formulations comprising Novasome I (glyceryl dilaurate/cholesterol/polyoxyethylene-10-stearyl ether) and Novasome II (glyceryl distearate/ cholesterol/polyoxyethylene-10-stearyl ether) were used to deliver a drug into the dermis of mouse skin.
  • Such formulations with iRNA are useful for treating a dermatological disorder.
  • Liposomes that include iRNA can be made highly deformable. Such deformability can enable the liposomes to penetrate through pore that are smaller than the average radius of the liposome.
  • transfersomes are a type of deformable liposomes. Transferosomes can be made by adding surface edge activators, usually surfactants, to a standard liposomal composition. Transfersomes that include iRNA can be delivered, for example, subcutaneously by infection in order to deliver iRNA to keratinocytes in the skin. In order to cross intact mammalian skin, lipid vesicles must pass through a series of fine pores, each with a diameter less than 50 nm, under the influence of a suitable transdermal gradient. In addition, due to the lipid properties, these transferosomes can be self-optimizing (adaptive to the shape of pores, e.g., in the skin), self-repairing, and can frequently reach their targets without fragmenting, and often self-loading.
  • iRNA emulsions (including microemulsions) and liposomes (see above).
  • iRNA or a precursor, e.g., a larger dsRNA which can be processed into an iRNA, or a DNA which encodes an iRNA or precursor
  • compositions can include a surfactant.
  • the iRNA is formulated as an emulsion that includes a surfactant.
  • a surfactant The most common way of classifying and ranking the properties of the many different types of surfactants, both natural and synthetic, is by the use of the hydrophile/lipophile balance (HLB).
  • HLB hydrophile/lipophile balance
  • the nature of the hydrophilic group provides the most useful means for categorizing the different surfactants used in formulations (Rieger, in
  • Nonionic surfactants find wide application in pharmaceutical products and are usable over a wide range of pH values. In general their HLB values range from 2 to about 18 depending on their structure.
  • Nonionic surfactants include nonionic esters such as ethylene glycol esters, propylene glycol esters, glyceryl esters, polyglyceryl esters, sorbitan esters, sucrose esters, and ethoxylated esters.
  • Nonionic alkanolamides and ethers such as fatty alcohol ethoxylates, propoxylated alcohols, and ethoxylated/propoxylated block polymers are also included in this class.
  • the polyoxyethylene surfactants are the most popular members of the nonionic surfactant class.
  • Anionic surfactants include carboxylates such as soaps, acyl lactylates, acyl amides of amino acids, esters of sulfuric acid such as alkyl sulfates and ethoxylated alkyl sulfates, sulfonates such as alkyl benzene sulfonates, acyl isethionates, acyl taurates and sulfosuccinates, and phosphates.
  • the most important members of the anionic surfactant class are the alkyl sulfates and the soaps.
  • the surfactant molecule If the surfactant molecule carries a positive charge when it is dissolved or dispersed in water, the surfactant is classified as cationic.
  • Cationic surfactants include quaternary ammonium salts and ethoxylated amines. The quaternary ammonium salts are the most used members of this class. If the surfactant molecule has the ability to carry either a positive or negative charge, the surfactant is classified as amphoteric.
  • Amphoteric surfactants include acrylic acid derivatives, substituted alkylamides, N-alkylbetaines and phosphatides.
  • mice and other Membranous Formulations For ease of exposition the micelles and other formulations, compositions and methods in this section are discussed largely with regard to unmodified iRNA agents. It should be understood, however, that these micelles and other formulations, compositions and methods can be practiced with other iRNA agents, e.g., modified iRNA agents, and such practice is within the invention.
  • the iRNA agent e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof)
  • composition can be provided as a micellar formulation.
  • micellar formulation e.g., a particular type of molecular assembly in which amphipathic molecules are arranged in a spherical structure such that all the hydrophobic portions of the molecules are directed inward, leaving the hydrophilic portions in contact with the surrounding aqueous phase. The converse arrangement exists if the environment is hydrophobic.
  • a mixed micellar formulation suitable for delivery through transdermal membranes may be prepared by mixing an aqueous solution of the iRNA composition, an alkali metal C 8 to C 22 alkyl sulphate, and a micelle forming compounds.
  • Exemplary micelle fonning compounds include lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic acid, linoleic acid, linolenic acid, monoolein, monooleates, monolaurates, borage oil, evening of primrose oil, menthol, trihydroxy oxo cholanyl glycine and pharmaceutically acceptable salts thereof, glycerin, polyglycerin, lysine, polylysine, triolein, polyoxyethylene ethers and analogues thereof, polidocanol alkyl ethers and analogues thereof, chenodeoxycholate, de
  • a first micellar composition which contains the iRNA composition and at least the alkali metal alkyl sulphate.
  • the first micellar composition is then mixed with at least three micelle fonning compounds to form a mixed micellar composition.
  • the micellar composition is prepared by mixing the iRNA composition, the alkali metal alkyl sulphate and at least one of the micelle forming compounds, followed by addition of the remaining micelle forming compounds, with vigorous mixing.
  • Phenol and/or m-cresol may be added to the mixed micellar composition to stabilize the formulation and protect against bacterial growth.
  • phenol and/or m-cresol may be added with the micelle forming ingredients.
  • An isotonic agent such as glycerin may also be added after formation of the mixed micellar composition.
  • the formulation can be put into an aerosol dispenser and the dispenser is charged with a propellant.
  • the propellant which is under pressure, is in liquid form in the dispenser.
  • the ratios of the ingredients are adjusted so that the aqueous and propellant phases become one, i.e. there is one phase. If there are two phases, it is necessary to shake the dispenser prior to dispensing a portion of the contents, e.g. through a metered valve.
  • the dispensed dose of pharmaceutical agent is propelled from the metered valve in a fine spray.
  • the preferred propellants are hydrogen-containing chlorofluorocarbons, hydrogen-containing fluorocarbons, dimethyl ether and diethyl ether. Even more preferred is HF A 134a ( 1 , 1,1,2 tetrafhioroethane) .
  • the specific concentrations of the essential ingredients can be determined by relatively straightforward experimentation.
  • an iRNA agent e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) preparations may be incorporated into a particle, e.g., a microparticle.
  • Microparticles can be produced by spray-drying, but may also be produced by other methods including lyophilization, evaporation, fluid bed drying, vacuum
  • iRNA agent e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double- stranded iRNA agent, or sRNA agent, or precursor thereof) described herein can be formulated for controlled, e.g., slow release. Controlled release can be achieved by disposing the iRNA within a structure or substance that impedes its release. E.g., iRNA can be disposed within a porous matrix or in an erodable matrix, either of which allow release of the iRNA over a period of time.
  • Polymeric particles e.g., polymeric in microparticles can be used as a sustained-release reservoir of iRNA that is taken up by cells only released from the microparticle through biodegradation.
  • the polymeric particles in this embodiment should therefore be large enough to preclude phagocytosis (e.g., larger than 10 ⁇ m and preferably larger than 20 ⁇ m).
  • Such particles can be produced by the same methods to make smaller particles, but with less vigorous mixing of the first and second emulsions. That is to say, a lower homogenization speed, vortex mixing speed, or sonication setting can be used to obtain particles having a diameter around 100 ⁇ m rather than 10 ⁇ m.
  • the time of mixing also can be altered.
  • microparticles can be formulated as a suspension, a powder, or an implantable solid, to be delivered by intramuscular, subcutaneous, intradermal, intravenous, or intraperitoneal injection; via inhalation (intranasal or intrapulmonary); orally; or by implantation. These particles are useful for delivery of any iRNA when slow release over a relatively long term is desired. The rate of degradation, and consequently of release, varies with the polymeric formulation.
  • Microparticles preferably include pores, voids, hollows, defects or other interstitial spaces that allow the fluid suspension medium to freely permeate or perfuse the particulate boundary.
  • the perforated microstructures can be used to form hollow, porous spray dried microspheres.
  • Polymeric particles containing iRNA can be made using a double emulsion technique, for instance.
  • the polymer is dissolved in an organic solvent.
  • a preferred polymer is polylactic-co-glycolic acid (PLGA), with a lactic/glycolic acid weight ratio of 65:35, 50:50, or 75:25.
  • PLGA polylactic-co-glycolic acid
  • a sample of nucleic acid suspended in aqueous solution is added to the polymer solution and the two solutions are mixed to form a first emulsion.
  • the solutions can be mixed by vortexing or shaking, and in a preferred method, the mixture can be sonicated.
  • nucleic acid receives the least amount of damage in the form of nicking, shearing, or degradation, while still allowing the formation of an appropriate emulsion.
  • acceptable results can be obtained with a Vibra-cell model VC-250 sonicator with a 1/8" microtip probe, at setting #3.
  • An iRNA agent e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof)
  • a precursor e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof
  • Spray dried iRNA 5 can be administered to a subject or be subjected to further formulation.
  • a pharmaceutical composition of iRNA can be prepared by spray drying a homogeneous aqueous mixture that includes an iRNA under conditions sufficient to provide a dispersible powdered composition, e.g., a pharmaceutical composition.
  • the material for spray drying can also include one or more of: a pharmaceutically acceptable o excipient, or a dispersibility-enhancing amount of a physiologically acceptable, water- soluble protein.
  • the spray-dried product can be a dispersible powder that includes the iRNA.
  • Spray drying is a process that converts a liquid or slurry material to a dried particulate form. Spray drying can be used to provide powdered material for various 5 administrative routes including inhalation. See, for example, Sacchetti and Nan Oort in: Inhalation Aerosols: Physical and Biological Basis for Therapy, A. J. Hickey, ed. Marcel Dekkar, New York, 1996.
  • Spray drying can include atomizing a solution, emulsion, or suspension to form a fine mist of droplets and drying the droplets.
  • the mist can be projected into a drying 0 chamber (e.g., a vessel, tank, tubing, or coil) where it contacts a drying gas.
  • the mist can include solid or liquid pore forming agents.
  • the solvent and pore forming agents evaporate from the droplets into the drying gas to solidify the droplets, simultaneously forming pores throughout the solid.
  • the solid typically in a powder, particulate form
  • Spray drying includes bringing together a highly dispersed liquid, and a sufficient volume of air (e.g., hot air) to produce evaporation and drying of the liquid droplets.
  • the preparation to be spray dried can be any solution, course suspension, slurry, colloidal dispersion, or paste that may be atomized using the selected spray drying apparatus.
  • the feed is sprayed into a current of warm filtered air that 0 evaporates the solvent and conveys the dried product to a collector.
  • the spent air is then exhausted with the solvent.
  • Several different types of apparatus may be used to provide the desired product.
  • commercial spray dryers manufactured by Buchi Ltd. or Niro Corp. can effectively produce particles of desired size.
  • Spray-dried powdered particles can be approximately spherical in shape, nearly uniform in size and frequently hollow. There may be some degree of irregularity in shape depending upon the incorporated medicament and the spray drying conditions. In many instances the dispersion stability of spray-dried microspheres appears to be more effective if an inflating agent (or blowing agent) is used in their production.
  • Particularly preferred embodiments may comprise an emulsion with an inflating agent as the disperse or continuous phase (the other phase being aqueous in nature).
  • An inflating agent is preferably dispersed with a surfactant solution, using, for instance, a commercially available microfluidizer at a pressure of about 5000 to 15,000 psi. This process forms an emulsion, preferably stabilized by an incorporated surfactant, typically comprising submicron droplets of water immiscible blowing agent dispersed in an aqueous continuous phase.
  • the blowing agent is preferably a f xorinated compound (e.g.
  • perfluorohexane perfluorooctyl bromide, perfluorodecalin, perfluorobutyl ethane
  • suitable blowing agents include chloroform, freons, and hydrocarbons. Nitrogen gas and carbon dioxide are also contemplated as a suitable blowing agent.
  • the perforated microstructures are preferably formed using a blowing agent as described above, it will be appreciated that, in some instances, no blowing agent is required and an aqueous dispersion of the medicament and surfactant(s) are spray dried directly.
  • the formulation may be amenable to process conditions (e.g., elevated temperatures) that generally lead to the formation of hollow, relatively porous microparticles.
  • the medicament may possess special physicochemical properties (e.g., high crystallinity, elevated melting temperature, surface activity, etc.) that make it particularly suitable for use in such techniques.
  • the perforated microstructures may optionally be associated with, or comprise, one or more surfactants.
  • miscible surfactants may optionally be combined with the suspension medium liquid phase. It will be appreciated by those skilled in the art that the use of surfactants may further increase dispersion stability, simplify formulation procedures or increase bioavailability upon administration.
  • combinations of surfactants, including the use of one or more in the liquid phase and one or more associated with the perforated microstructures are contemplated as being within the scope of the invention.
  • associated with or comprise it is meant that the structural matrix or perforated microstructure may incorporate, adsorb, absorb, be coated with or be formed by the surfactant.
  • Surfactants suitable for use include any compound or composition that aids in the formation and maintenance of the stabilized respiratory dispersions by forming a layer at the interface between the structural matrix and the suspension medium.
  • the surfactant may comprise a single compound or any combination of compounds, such as in the case of co-surfactants.
  • Particularly preferred surfactants are substantially insoluble in the propellant, nonf torinated, and selected from the group consisting of saturated and unsaturated lipids, nonionic detergents, nonionic block copolymers, ionic surfactants, and combinations of such agents.
  • suitable (i.e. biocompatible) fhxorinated surfactants are compatible with the teachings herein and may be used to provide the desired stabilized preparations.
  • Lipids including phospholipids, from both natural and synthetic sources may be used in varying concentrations to form a structural matrix.
  • compatible lipids comprise those that have a gel to liquid crystal phase transition greater than about 40° C.
  • the incorporated lipids are relatively long chain (i.e. C 6 -C 22 ) saturated lipids and more preferably comprise phospholipids.
  • Exemplary phospholipids useful in the disclosed stabilized preparations comprise egg phosphatidylchohne, dilauroylphosphatidylcholine, dioleylphosphatidylcholine, dipalmitoylphosphatidyl- choline, disteroylphosphatidylcholine, short-chain phosphatidylcholines, phosphatidylethanolamine, dioleylphosphatidylethanolamine, phosphatidylserine, phosphatidylglycerol, phosphatidylinositol, glycolipids, ganglioside GM1, sphingomyelin, phosphatidic acid, cardiolipin; lipids bearing polymer chains such as, polyethylene glycol, chitin, hyaluronic acid, or polyvinylpyrrolidone; lipids bearing sulfonated mono-, di-, and polysaccharides; fatty acids such as palmitic acid, stearic acid,
  • Compatible nonionic detergents comprise: sorbitan esters including sorbitan trioleate (SpansTM 85), sorbitan sesquioleate, sorbitan monooleate, sorbitan monolaurate, polyoxyethylene (20) sorbitan monolaurate, and polyoxyethylene (20) sorbitan monooleate, oleyl polyoxyethylene (2) ether, stearyl polyoxyethylene (2) ether, lauryl polyoxyethylene (4) ether, glycerol esters, and sucrose esters.
  • sorbitan esters including sorbitan trioleate (SpansTM 85), sorbitan sesquioleate, sorbitan monooleate, sorbitan monolaurate, polyoxyethylene (20) sorbitan monolaurate, and polyoxyethylene (20) sorbitan monooleate, oleyl polyoxyethylene (2) ether, stearyl polyoxyethylene (2) ether, lauryl polyoxyethylene (4) ether, glycerol esters, and suc
  • Preferred block copolymers include diblock and triblock copolymers of polyoxyethylene and polyoxypropylene, including poloxamer 188 (Pluronic.RTM. F68), poloxamer 407 (Pluronic.RTM. F-127), and poloxamer 338.
  • Ionic surfactants such as sodium sulfosuccinate, and fatty acid soaps may also be utilized.
  • the microstructures may comprise oleic acid or its alkali salt.
  • cationic surfactants or lipids are preferred especially in the case of delivery of an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double- stranded iRNA agent, or sRNA agent, or precursor thereof).
  • an iRNA agent e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double- stranded iRNA agent, or sRNA agent, or precursor thereof).
  • Suitable cationic lipids include: DOTMA, N-[-(2,3-dioleyloxy)propyl]-N,N,N- trimethylammonium-chloride; DOTAP, 1 ,2-dioleyloxy-3 -(trimethylammonio)propane; and DOTB, l,2-dioleyl-3-(4'-trimethylammonio)butanoyl-sn-glycerol.
  • Polycationic amino acids such as polylysine, and polyarginine are also contemplated.
  • spraying methods as rotary atomization, pressure atomization and two-fluid atomization can be used.
  • devices used in these processes include "Parubisu [phonetic rendering] Mini-Spray GA-32” and “Parubisu Spray Drier DL-41", manufactured by Yamato Chemical Co., or "Spray Drier CL-8,” “Spray Drier L-8,” “Spray Drier FL-12,” “Spray Drier FL-16” or “Spray Drier FL-20,” manufactured by Okawara Kakoki Co., can be used for the method of spraying using rotary-disk atomizer.
  • the temperature of the inlet of the gas used to dry the sprayed materials such that it does not cause heat deactivation of the sprayed material.
  • the range of temperatures may vary between about 50°C to about 200°C, preferably between about 50°C and 100°C.
  • the temperature of the outlet gas used to dry the sprayed material may vary between about 0°C and about 150°C, preferably between 0°C and 90°C, and even more preferably between 0°C and 60°C.
  • the spray drying is done under conditions that result in substantially amorphous powder of homogeneous constitution having a particle size that is respirable, a low moisture content and flow characteristics that allow for ready aerosolization.
  • the particle size of the resulting powder is such that more than about 98% of the mass is in particles having a diameter of about 10 ⁇ m or less with about 90% of the mass being in particles having a diameter less than 5 ⁇ m.
  • about 95% of the mass will have particles with a diameter of less than 10 ⁇ m with about 80% of the mass of the particles having a diameter of less than 5 ⁇ m.
  • the dispersible pharmaceutical-based dry powders that include the iRNA preparation may optionally be combined with pharmaceutical carriers or excipients which are suitable for respiratory and pulmonary administration.
  • Such carriers may serve simply as bulking agents when it is desired to reduce the iRNA concentration in the powder which is being delivered to a patient, but may also serve to enhance the stability of the iRNA compositions and to improve the dispersibility of the powder within a powder dispersion device in order to provide more efficient and reproducible delivery of the iRNA and to improve handling characteristics of the iRNA such as flowability and consistency to facilitate manufacturing and powder filling.
  • Such carrier materials may be combined with the drug prior to spray drying, i.e., by adding the carrier material to the purified bulk solution. In that way, the carrier particles will be formed simultaneously with the drug particles to produce a homogeneous powder.
  • the carriers may be separately prepared in a dry powder form and combined with the dry powder drug by blending.
  • the powder carriers will usually be crystalline (to avoid water absorption), but might in some cases be amorphous or mixtures of crystalline and amorphous.
  • the size of the carrier particles may be selected to improve the flowability of the drug powder, typically being in the range from 25 ⁇ m to 100 ⁇ m.
  • a preferred carrier material is crystalline lactose having a size in the above-stated range.
  • Powders prepared by any of the above methods will be collected from the spray dryer in a conventional manner for subsequent use.
  • the dry powder formulations will usually be measured into a single dose, and the single dose sealed into a package. Such packages are particularly useful for dispersion in dry powder inhalers, as described in detail below.
  • the powders may be packaged in multiple-dose containers.
  • iRNA agent e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) preparation can be made by lyophilization. Lyophilization is a freeze-drying process in which water is sublimed from the composition after it is frozen.
  • the particular advantage associated with the lyophilization process is that biologicals and pharmaceuticals that are relatively unstable in an aqueous solution can be dried without elevated temperatures (thereby eliminating the adverse thermal effects), and then stored in a dry state where there are few stability problems. With respect to the instant invention such techniques are particularly compatible with the incorporation of nucleic acids in perforated microstructures without compromising physiological activity. Methods for providing lyophilized particulates are known to those of skill in the art and it would clearly not require undue experimentation to provide dispersion compatible microstructures in accordance with the teachings herein. Accordingly, to the extent that lyophilization processes may be used to provide microstructures having the desired porosity and size, they are conformance with the teachings herein and are expressly contemplated as being within the scope of the instant invention.
  • An iRNA agent e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof)
  • a double-stranded iRNA agent e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof
  • the coat protein can be derived from polyomavinxs, and can contain the polyomavirus protein 1 (NPl) and/or virus protein 2 (NP2).
  • capsid or capsid-type structure is formed from the coat protein, one side preferably faces the interior of the capsid or capsid-type structure. This structure is particularly stable.
  • compositions and methods in this section are discussed largely with regard to unmodified iRNAs. It should be understood, however, that these formulations, compositions and methods can be practiced with other iRNA agents, e.g., modified iRNA agents, and such practice is within the invention.
  • an iRNA agent e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) is targeted to a particular cell.
  • a liposome or particle or other structure that includes an iRNA can also include a targeting moiety that recognizes a specific molecule on a target cell.
  • the targeting moiety can be a molecule with a specific affinity for a target cell.
  • Targeting moieties can include antibodies directed against a protein found on the surface of a target cell, or the ligand or a receptor-binding portion of a ligand for a molecule found on the surface of a target cell.
  • the targeting moiety can recognize a cancer-specific antigen (e.g., CA15-3, CA19-9, CEA, or HER2/neu.) or a viral antigen, thus delivering the iRNA to a cancer cell or a virus-infected cell.
  • Exemplary targeting moieties include antibodies (such as IgM, IgG, IgA, IgD, and the like, or a functional portions thereof), ligands for cell surface receptors (e.g., ectodomains thereof).
  • Table 1 provides a number of antigens which can be used to target selected cells.
  • CEA carcinoembryonic antigen
  • PSA prostate specific antigen
  • HER2/neu breast cancer ⁇ -feto protein testicular cancer HER2/neu breast cancer ⁇ -feto protein testicular cancer, hepatic cancer ⁇ -HCG (human chorionic gonadotropin) testicular cancer, choriocarcinoma
  • Progesterone receptor breast cancer Progesterone receptor breast cancer, uterine cancer
  • EGFr epidermal growth factor receptor
  • the targeting moiety is attached to a liposome.
  • US 6,245,427 describes a method for targeting a liposome using a protein or peptide.
  • a cationic lipid component of the liposome is derivatized with a targeting moiety.
  • WO 96/37194 describes converting N- glutaryldioleoylphosphatidyl efhanolamine to a N-hydroxysuccinimide activated ester. The product was then coupled to an RGD peptide.
  • compositions and methods in this section are discussed largely with regard to unmodified iRNA agents. It should be understood, however, that these formulations, compositions and methods can be practiced with other iRNA agents, e.g., modified iRNA agents, and such practice is within the invention.
  • a composition that includes an iRNA can be delivered to a subject by a variety of routes. Exemplary routes include: intravenous, topical, rectal, anal, vaginal, nasal, pulmonary, ocular.
  • compositions suitable for administration can be incorporated into pharmaceutical compositions suitable for administration.
  • Such compositions typically include one or more species of iRNA and a pharmaceutically acceptable carrier.
  • pharmaceutically acceptable carrier is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration.
  • the use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.
  • compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic, vaginal, rectal, intranasal, transdermal), oral or parenteral. Parenteral administration includes intravenous drip, subcutaneous, intraperitoneal or intramuscular injection, or intrathecal or intraventricular administration.
  • the route and site of administration may be chosen to enhance targeting.
  • intramuscular injection into the muscles of interest would be a logical choice.
  • Lung cells might be targeted by administering the iRNA in aerosol form.
  • the vascular endothelial cells could be targeted by coating a balloon catheter with the iRNA and mechanically introducing the DNA.
  • Formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders.
  • Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable.
  • Coated condoms, gloves and the like may also be useful.
  • compositions for oral administration include powders or granules, suspensions or solutions in water, syrups, elixirs or non-aqueous media, tablets, capsules, lozenges, or troches.
  • carriers that can be used include lactose, sodium citrate and salts of phosphoric acid.
  • Various disintegrants such as starch, and lubricating agents such as magnesium stearate, sodium lauryl sulfate and talc, are commonly used in tablets.
  • useful diluents are lactose and high molecular weight polyethylene glycols.
  • the nucleic acid compositions can be combined with emulsifying and suspending agents. If desired, certain sweetening and/or flavoring agents can be added.
  • compositions for intrathecal or intraventricular administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives.
  • Formulations for parenteral administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives.
  • Intraventricular injection may be facilitated by an intraventricular catheter, for example, attached to a reservoir.
  • the total concentration of solutes should be controlled to render the preparation isotonic.
  • ointments or droppable liquids may be delivered by ocular delivery systems known to the art such as applicators or eye droppers.
  • Such compositions can include lmicomimetics such as hyaluronic acid, chondroitin sulfate, hydroxypropyl methylcellulose or poly( vinyl alcohol), preservatives such as sorbic acid, EDT A or benzylchronium chloride, and the usual quantities of diluents and/or carriers.
  • an iRNA agent e.g., a double- stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) is delivered to a subject via topical administration.
  • Topical administration refers to the delivery to a subject by contacting the formulation directly to a surface of the subject.
  • the most common form of topical delivery is to the skin, but a composition disclosed herein can also be directly applied to other surfaces of the body, e.g., to the eye, a mucous membrane, to surfaces of a body cavity or to an internal surface.
  • the most common topical delivery is to the skin.
  • the term encompasses several routes of administration including, but not limited to, topical and transdermal. These modes of administration typically include penetration of the skin's permeability barrier and efficient delivery to the target tissue or stratum.
  • Topical administration can be used as a means to penetrate the epidermis and dermis and ultimately achieve systemic delivery of the composition. Topical administration can also be used as a means to selectively deliver oligonucleotides to the epidermis or dermis of a subject, or to specific strata thereof, or to an underlying tissue.
  • skin refers to the epidermis and/or dermis of an animal. Mammalian skin consists of two major, distinct layers. The outer layer of the skin is called the epidermis. The epidermis is comprised of the stratum corneum, the stratum granulosum, the stratum spinosum, and the stratum basale, with the stratum corneum being at the surface of the skin and the stratum basale being the deepest portion of the epidermis. The epidermis is between 50 ⁇ m and 0.2 mm thick, depending on its location on the body.
  • Beneath the epidermis is the dermis, which is significantly thicker than the epidermis.
  • the dermis is primarily composed of collagen in the form of fibrous bundles.
  • the coUagenous bundles provide support for, mter alia, blood vessels, lymph capillaries, glands, nerve endings and immunologically active cells.
  • stratum corneum which is formed from many layers of cells in various states of differentiation.
  • the spaces between cells in the stratum corneum is filled with different lipids arranged in lattice-like formations that provide seals to further enhance the skins permeability barrier.
  • the permeability barrier provided by the skin is such that it is largely impermeable to molecules having molecular weight greater than about 750 Da.
  • mechanisms other than normal osmosis must be used.
  • permeability of the skin to administered agents determines the permeability of the skin to administered agents. These factors include the characteristics of the treated skin, the characteristics of the delivery agent, interactions between both the drug and delivery agent and the drug and skin, the dosage of the drug applied, the form of treatment, and the post treatment regimen.
  • To selectively target the epidermis and dermis it is sometimes possible to formulate a composition that comprises one or more penetration enhancers that will enable penetration of the drug to a preselected stratum.
  • Transdermal delivery is a valuable route for the administration of lipid soluble therapeutics.
  • the dermis is more permeable than the epidermis and therefore absorption is much more rapid through abraded, burned or denuded skin.
  • Inflammation and other physiologic conditions that increase blood flow to the skin also enhance transdermal adsorption. Absorption via this route may be enhanced by the use of an oily vehicle (inunction) or through the use of one or more penetration enhancers.
  • Other effective ways to deliver a composition disclosed herein via the transdermal route include hydration of the skin and the use of controlled release topical patches.
  • the transdermal route provides a potentially effective means to deliver a composition disclosed herein for systemic and/or local therapy.
  • iontophoresis transfer of ionic solutes through biological membranes under the influence of an electric field
  • phonophoresis or sonophoresis use of ultrasound to enhance the absorption of various therapeutic agents across biological membranes, notably the skin and the cornea
  • optimization of vehicle characteristics relative to dose position and retention at the site of administration may be useful methods for enhancing the transport of topically applied compositions across skin and mucosal sites.
  • compositions and methods provided may also be used to examine the function of various proteins and genes in vitro in cultured or preserved dermal tissues and in animals.
  • the invention can be thus applied to examine the function of any gene.
  • the methods of the invention can also be used therapeutically or prophylactically.
  • diseases such as psoriasis, lichen planus, toxic epidermal necrolysis, ertythema multiforme, basal cell carcinoma, squamous cell carcinoma, malignant melanoma, Paget's disease, Kaposi's sarcoma, pulmonary fibrosis, Lyme disease and viral, fungal and bacterial infections of the skin.
  • a composition that includes an iRNA agent, e.g., a double- stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) can be administered to a subject by pulmonary delivery.
  • Pulmonary delivery compositions can be delivered by inhalation by the patient of a dispersion so that the composition, preferably iRNA, within the dispersion can reach the lung where it can be readily absorbed through the alveolar region directly into blood circulation. Pulmonary delivery can be effective both for systemic delivery and for localized delivery to treat diseases of the lungs.
  • Pulmonary delivery can be achieved by different approaches, including the use of nebulized, aerosolized, micellular and dry powder-based formulations. Delivery can be achieved with liquid nebulizers, aerosol-based inhalers, and dry powder dispersion devices. Metered-dose devices are preferred. One of the benefits of using an atomizer or inhaler is that the potential for contamination is minimized because the devices are self contained. Dry powder dispersion devices, for example, deliver drugs that may be readily formulated as dry powders. An iRNA composition may be stably stored as lyophilized or spray-dried powders by itself or in combination with suitable powder carriers.
  • a dosing timing element which can include a timer, a dose counter, time measuring device, or a time indicator which when incorporated into the device enables dose tracking, compliance monitoring, and/or dose triggering to a patient during administration of the aerosol medicament.
  • a dosing timing element which can include a timer, a dose counter, time measuring device, or a time indicator which when incorporated into the device enables dose tracking, compliance monitoring, and/or dose triggering to a patient during administration of the aerosol medicament.
  • the term “powder” means a composition that consists of finely dispersed solid particles that are free flowing and capable of being readily dispersed in an inhalation device and subsequently inhaled by a subject so that the particles reach the lungs to permit penetration into the alveoli.
  • the powder is said to be “respirable.”
  • the average particle size is less than about 10 ⁇ m in diameter preferably with a relatively uniform spheroidal shape distribution.
  • the diameter is less than about 7.5 ⁇ m and most preferably less than about 5.0 ⁇ m.
  • the particle size distribution is between about 0.1 ⁇ m and about 5 ⁇ m in diameter, particularly about 0.3 ⁇ m to about 5 ⁇ m.
  • dry means that the composition has a moisture content below about 10% by weight (% w) water, usually below about 5% w and preferably less it than about 3% w.
  • a dry composition can be such that the particles are readily dispersible in an inhalation device to form an aerosol.
  • the term "therapeutically effective amount” is the amount present in the composition that is needed to provide the desired level of drug in the subject to be treated to give the anticipated physiological response.
  • physiologically effective amount is that amount delivered to a subject to give the desired palliative or curative effect.
  • pharmaceutically acceptable carrier means that the carrier can be taken into the lungs with no significant adverse toxicological effects on the lungs.
  • the types of pharmaceutical excipients that are useful as carrier include stabilizers such as human serum albumin (HSA), bulking agents such as carbohydrates, amino acids and polypeptides; pH adjusters or buffers; salts such as sodium chloride; and the like. These carriers may be in a crystalline or amorphous form or may be a mixture of the two.
  • HSA human serum albumin
  • bulking agents such as carbohydrates, amino acids and polypeptides
  • pH adjusters or buffers such as sodium chloride
  • salts such as sodium chloride
  • Suitable carbohydrates include monosaccharides such as galactose, D-mannose, sorbose, and the like; disaccharides, such as lactose, trehalose, and the like; cyclodextrins, such as 2 -hydroxypropyl- .beta.- cyclodextrin; and polysaccharides, such as raffinose, maltodextrins, dextrans, and the like; alditols, such as mannitol, xylitol, and the like.
  • a preferred group of carbohydrates includes lactose, threhalose, raffinose maltodextrins, and mannitol.
  • Suitable polypeptides include aspartame.
  • Amino acids include alanine and glycine, with glycine being preferred.
  • Additives which are minor components of the composition of this invention, may be included for eonformational stability during spray drying and for improving dispersibility of the powder.
  • additives include hydrophobic amino acids such as tryptophan, tyrosine, leucine, phenylalanine, and the like.
  • pH adjusters or buffers include organic salts prepared from organic acids and bases, such as sodium citrate, sodium ascorbate, and the like; sodium citrate is preferred.
  • Pulmonary administration of a micellar iRNA formulation may be achieved through metered dose spray devices with propellants such as tetrafluoroethane, heptafluoroethane, dimethylfluoropropane, tetrafluoropropane, butane, isobutane, dimethyl ether and other non-CFC and CFC propellants.
  • propellants such as tetrafluoroethane, heptafluoroethane, dimethylfluoropropane, tetrafluoropropane, butane, isobutane, dimethyl ether and other non-CFC and CFC propellants.
  • iRNA agents e.g., modified iRNA agents
  • Both the oral and nasal membranes offer advantages over other routes of administration.
  • drugs administered through these membranes have a rapid onset of action, provide therapeutic plasma levels, avoid first pass effect of hepatic metabolism, and avoid exposure of the drug to the hostile gastrointestinal (GI) environment. Additional advantages include easy access to the membrane sites so that the drug can be applied, localized and removed easily.
  • GI hostile gastrointestinal
  • compositions can be targeted to a surface of the oral cavity, e.g., to sublingual mucosa which includes the membrane of ventral surface of the tongue and the floor of the mouth or the buccal mucosa which constitutes the lining of the cheek.
  • the sublingual mucosa is relatively permeable thus giving rapid absorption and acceptable bioavailability of many drugs. Further, the sublingual mucosa is convenient, acceptable and easily accessible.
  • the ability of molecules to permeate through the oral mucosa appears to be related to molecular size, lipid solubility and peptide protein ionization. Small molecules, less than 1000 daltons appear to cross mucosa rapidly. As molecular size increases, the permeability decreases rapidly. Lipid soluble compounds are more permeable than non-lipid soluble molecules. Maximum absorption occurs when molecules are un-ionized or neutral in electrical charges. Therefore charged molecules present the biggest challenges to absorption through the oral mucosae.
  • a pha ⁇ naceutical composition of iRNA may also be administered to the buccal cavity of a human being by spraying into the cavity, without inhalation, from a metered dose spray dispenser, a mixed micellar pharmaceutical formulation as described above and a propellant.
  • the dispenser is first shaken prior to spraying the pharmaceutical formulation and propellant into the buccal cavity.
  • An iRNA agent e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double- stranded iRNA agent, or sRNA agent, or precursor thereof) can be disposed on or in a device, e.g., a device which implanted or otherwise placed in a subject.
  • a device e.g., a device which implanted or otherwise placed in a subject.
  • Exemplary devices include devices which are introduced into the vasculature, e.g., devices inserted into the lumen of a vascular tissue, or which devices themselves form a part of the vasculature, including stents, catheters, heart valves, and other vascular devices. These devices, e.g., catheters or stents, can be placed in the vasculature of the lung, heart, or leg.
  • Non-vascular devices e.g., devices implanted in the peritoneum, or in organ or glandular tissue, e.g., artificial organs.
  • the device can release a therapeutic substance in addition to an iRNA, e.g., a device can release insulin.
  • Other devices include artificial joints, e.g., hip joints, and other orthopedic implants.
  • unit doses or measured doses of a composition that includes iRNA are dispensed by an implanted device.
  • the device can include a sensor that monitors a parameter within a subject.
  • the device can include pump, e.g., and, optionally, associated electronics.
  • Tissue e.g., cells or organs can be treated with An iRNA agent, e.g., a double- stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) ex vivo and then administered or implanted in a subject.
  • the tissue can be autologous, allogeneic, or xenogeneic tissue. E.g., tissue can be treated to reduce graft v. host disease.
  • the tissue is allogeneic and the tissue is treated to treat a disorder characterized by unwanted gene expression in that tissue.
  • tissue e.g., hematopoietic cells, e.g., bone marrow hematopoietic cells
  • introduction of treated tissue can be combined with other therapies.
  • the iRNA treated cells are insulated from other cells, e.g., by a semi-permeable porous barrier that prevents the cells from leaving the implant, but enables molecules from the body to reach the cells and molecules produced by the cells to enter the body.
  • the porous barrier is formed from alginate.
  • a contraceptive device is coated with or contains an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof).
  • exemplary devices include condoms, diaphragms, IUD (implantable uterine devices, sponges, vaginal sheaths, and birth control devices, hi one embodiment, the iRNA is chosen to inactive sperm or egg. In another embodiment, the iRNA is chosen to be complementary to a viral or pathogen RNA, e.g., an RNA of an STD. In some instances, the iRNA composition can include a spermicide.
  • the present invention encompasses polynucleotide agents, e.g., iRNA agents, that modulate gene expression or activity, hi general, for therapeutics, a patient in need of such therapy is administered a compound in accordance with the invention, commonly in a pharmaceutically acceptable carrier, in doses ranging from, e.g., 0.01 ⁇ g to 100 ⁇ g per kg of body weight (e.g., less than 5 mg, 2 mg, 1 mg, 100 ⁇ g, 50 ⁇ g, 10 ⁇ g, 5 ⁇ g, 1 ⁇ g, 0.1 ⁇ g, 0.01 ⁇ g, or 0.001 ⁇ g, and, optionally, at least 0.001 ⁇ g, 0.01 ⁇ g, 0.1 ⁇ g, or 1 ⁇ g ) per kg of body weight.
  • iRNA agents that modulate gene expression or activity, hi general, for therapeutics, a patient in need of such therapy is administered a compound in accordance with the invention, commonly in a pharmaceutically acceptable carrier, in doses ranging
  • the dosage can also depend on the age of the subject and the severity of the disease state being treated. Particularly preferred dosages are less than 2, 1, or 0.1 mg/kg of body weight. Further, the treatment regimen may last for a period of time which will vary depending upon the nature of the particular disease, its severity and the overall condition of the patient. In preferred embodiments the dosage may be delivered no more than once per day, e.g., no more than once per 24, 36, 48, or more hours, e.g., no more than once for every 5 or 8 days. Following treatment, the patient can be monitored for changes in his condition and for alleviation of the symptoms of the disease state.
  • the dosage of the compound may either be increased in the event the patient does not respond significantly to current dosage levels, or the dose may be decreased if an alleviation of the symptoms of the disease state is observed, if the disease state has been ablated, or if undesired side-effects are observed.
  • the effective dose can be administered in a single dose or in two or more doses, as desired or considered appropriate under the specific circumstances. If desired to facilitate repeated or frequent infusions, implantation of a delivery device, e.g., a pump, semi-permanent stent (e.g., intravenous, intraperitoneal, intracisternal or intracapsular), or reservoir may be advisable.
  • a delivery device e.g., a pump, semi-permanent stent (e.g., intravenous, intraperitoneal, intracisternal or intracapsular), or reservoir may be advisable.
  • a patient is treated with an iRNA agent in conjunction with other therapeutic modalities.
  • a patient being treated for a viral disease e.g. an HIV associated disease (e.g., AIDS)
  • an iRNA agent specific for a target gene essential to the virus in conjunction with a known antiviral agent e.g., a protease inhibitor or reverse transcriptase inhibitor.
  • a patient being treated for cancer may be administered an iRNA agent specific for a target essential for tumor cell proliferation in conjunction with a chemotherapy.
  • the patient undergo maintenance therapy to prevent the recurrence of the disease state, wherein the compound of the invention is administered in maintenance doses, ranging from 0.01 ⁇ g to 100 g per kg of body weight (see US 6,107,094).
  • the concentration of the iRNA agent composition is an amount sufficient to be effective in treating or preventing a disorder or to regulate a physiological condition in humans.
  • concentration or amount of iRNA agent administered will depend on the parameters determined for the agent and the method of administration, e.g. nasal, buccal, pulmonary.
  • nasal formulations tend to require much lower concentrations of some ingredients in order to avoid irritation or burning of the nasal passages. It is sometimes desirable to dilute an oral formulation up to 10-100 times in order to provide a suitable nasal formulation.
  • an iRNA agent e.g., a double-stranded iRNA agent, or sRNA agent
  • a therapeutically effective amount of an iRNA agent e.g., a double-stranded iRNA agent, or sRNA agent
  • a precursor e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof
  • an iRNA agent e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof
  • an iRNA agent such as a sRNA agent used for treatment
  • an iRNA agent such as a sRNA agent used for treatment
  • Changes in dosage may result and become apparent from the results of diagnostic assays as described herein.
  • the subject can be monitored after administering an iRNA agent composition. Based on information from the monitoring, an additional amount of the iRNA agent composition can be administered.
  • Dosing is dependent on severity and responsiveness of the disease condition to be treated, with the course of treatment lasting from several days to several months, or until a cure is effected or a diminution of disease state is achieved.
  • Optimal dosing schedules can be calculated from measurements of drug accumulation in the body of the patient. Persons of ordinary skill can easily determine optimum dosages, dosing methodologies and repetition rates. Optimum dosages may vary depending on the relative potency of individual compounds, and can generally be estimated based on EC 50 s found to be effective in in vitro and in vivo animal models.
  • the animal models include transgenic animals that express a human gene, e.g. a gene that produces a target RNA.
  • the transgenic animal can be deficient for the corresponding endogenous RNA.
  • the composition for testing includes an iRNA agent that is complementary, at least in an internal region, to a sequence that is conserved between the target RNA in the animal model and the target RNA in a human.
  • RNA AGENTS RNA agents discussed herein include unmodified RNA as well as RNA which have been modified, e.g., to improve efficacy, and polymers of nucleoside surrogates.
  • Unmodified RNA refers to a molecule in which the components of the nucleic acid, namely sugars, bases, and phosphate moieties, are the same or essentially the same as that which occur in nature, preferably as occur naturally in the human body.
  • the art has often referred to rare or unusual, but naturally occurring, RNAs as modified RNAs, see, e.g., Limbach et al. (Nucleic Acids Res. 22: 2183-2196, 1994; Summary: the modified nucleosides of RNA).
  • modified RNA refers to a molecule in which one or more of the components of the nucleic acid, namely sugars, bases, and phosphate moieties, are different from that which occur in nature, preferably different from that which occurs in the human body. While they are referred to as modified "RNAs", they will of course, because of the modification, include molecules which are not RNAs.
  • Nucleoside surrogates are molecules in which the ribophosphate backbone is replaced with a non-ribophosphate construct that allows the bases to the presented in the correct spatial relationship such that hybridization is substantially similar to what is seen with a ribophosphate backbone, e.g., non-charged mimics of the ribophosphate backbone. Examples of all of the above are discussed herein.
  • double stranded iRNA agent e.g., a partially double stranded iRNA agent
  • double stranded structures e.g. where two separate molecules are contacted to form the double stranded region or where the double stranded region is formed by intramolecular pairing (e.g., a hairpin structure)
  • intramolecular pairing e.g., a hairpin structure
  • nucleic acids are polymers of subunits
  • many of the modifications described below occur at a position which is repeated within a nucleic acid, e.g., a modification of a base, or a phosphate moiety, or the a non-linking O of a phosphate moiety, hi some cases the modification will occur at all of the subject positions in the nucleic acid but in many cases it will not.
  • a modification may only occur at a 3' or 5' terminal position, may only occur in a terminal regions, e.g. at a position on a terminal nucleotide or in the last 2, 3, 4, 5, or 10 nucleotides of a strand.
  • a modification may occur in a double strand region, a single strand region, or in both.
  • a modification may occur only in the double strand region of an RNA or may only occur in a single strand region of an RNA.
  • a phosphorothioate modification at a non-linking O position 5 may only occur at one or both termini, may only occur in a terminal regions, e.g., at a position on a terminal nucleotide or in the last 2, 3, 4, 5, or 10 nucleotides of a strand, or may occur in double strand and single strand regions, particularly at te ⁇ nini.
  • the 5' end or ends can be phosphorylated.
  • all or some of the bases in a 3' or 5' overhang will be modified, e.g., with a modification described herein.
  • Modifications can include, e.g., the use of modifications at the 2 5 OH 5 group of the ribose sugar, e.g., the use of deoxyribonucleotides, e.g., deoxythymidine, instead of ribonucleotides, and modifications in the phosphate group, e.g., phosphothioate modifications. Overhangs need not be homologous with the target sequence.
  • the scaffold presented above in Formula 1 represents a portion of a ribonucleic acid.
  • the basic components are the ribose sugar, the base, the terminal phosphates, and phosphate internucleotide linkers.
  • the bases are naturally occurring bases, e.g., adenine, uracil, guanine or cytosine
  • the sugars are the unmodified 2' hydroxyl ribose sugar (as depicted) and W, X, Y, and Z are all O
  • Formula 1 represents a naturally occurring unmodified oligoribonucleotide.
  • Unmodified oligoribonucleotides may be less than optimal in some applications, e.g., unmodified oligoribonucleotides can be prone to degradation by e.g., cellular nucleases. Nucleases can hydrolyze nucleic acid phosphodiester bonds. However, chemical modifications to one or more of the above RNA components can confer improved properties, and, e.g., can render oligoribonucleotides more stable to nucleases.
  • Modified nucleic acids and nucleotide surrogates can include one or more of: (i) alteration, e.g., replacement, of one or both of the non-linking (X and Y) phosphate oxygens and/or of one or more of the linking (W and Z) phosphate oxygens (When the phosphate is in the terminal position, one of the positions W or Z will not link the phosphate to an additional element in a naturally occurring ribonucleic acid. However, for simplicity of terminology, except where otherwise noted, the W position at the 5 ' end of a nucleic acid and the terminal Z position at the 3 ' end of a nucleic acid, are within the term "linking phosphate oxygens" as used herein.);
  • RNA replacement or modification of the ribose-phosphate backbone (bracket II); (vi) modification of the 3' end or 5' end of the RNA, e.g., removal, modification or replacement of a terminal phosphate group or conjugation of a moiety, e.g. a fluorescently labeled moiety, to either the 3' or 5' end of RNA.
  • the terms replacement, modification, alteration, and the like, as used in this context, do not imply any process limitation, e.g., modification does not mean that one • ⁇ must start with a reference or naturally occurring ribonucleic acid and modify it to produce a modified ribonucleic acid bur rather modified simply indicates a difference from a naturally occurring molecule.
  • the phosphate group is a negatively charged species.
  • the charge is distributed equally over the two non-linking oxygen atoms (i.e., X and Y in Formula 1 above).
  • the phosphate group can be modified by replacing one of the oxygens with a different substituent.
  • One result of this modification to RNA phosphate backbones can be increased resistance of the oligoribonucleotide to nucleolytic- breakdown.
  • modified phosphate groups include phosphorothioate, phosphoroselenates, borano phosphates, borano phosphate esters, hydrogen phosphonates, phosphoroamidates, alkyl or aryl phosphonates and phosphotriesters.
  • Phosphorodithioates have both non-linking oxygens replaced by sulfur. Unlike the situation where only one of X or Y is altered, the phosphorus center in the phosphorodithioates is achiral which precludes the formation of oligoribonucleotides diastereomers.' Diastereomer formation can result in a preparation in which the individual diastereomers exhibit varying resistance to nucleases.
  • RNA containing chiral phosphate groups can be lower relative to the corresponding unmodified RNA species.
  • modifications to both X and Y which eliminate the chiral center, e.g., phosphorodithioate formation may be desirable in that they cannot produce diastereomer mixtures.
  • X can be any one of S, Se, B, C, H, N, or OR (R is alkyl or aryl).
  • Y can be any one of S, Se, B, C, H, N, or OR (R is alkyl or aryl).
  • Replacement of X and/or Y with sulfur is preferred.
  • the phosphate linker can also be modified by replacement of a linking oxygen
  • a modified RNA can include modification of all or some of the sugar groups of the ribonucleic acid.
  • the 2' hydroxyl group (OH) can be modified or replaced with a number of different "oxy" or "deoxy” substituents. While not being bound by theory, enhanced stability is expected since the hydroxyl can no longer be deprotonated to form a 2' alkoxide ion.
  • the 2' alkoxide can catalyze degradation by intramolecular nucleophilic attack on the linker phosphorus atom.
  • it can be desirable to some embodiments to introduce alterations in which alkoxide formation at the 2' position is not possible. Examples of "oxy"-2' hydroxyl group modifications include alkoxy or aryloxy
  • R H, alkyl, cycloalkyl, aryl, aralkyl, heteroaryl or sugar
  • polyethyleneglycols PEG
  • LNA locked nucleic acids
  • O- AMINE NH 2 ; alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, or diheteroaryl amino, ethylene diamine, polyamino
  • AMINE NH 2 ; alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, or diheteroaryl amino, ethylene diamine, polyamino
  • AMINE NH 2 ; alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, or diheteroaryl amino, ethylene diamine, polyamino
  • AMINE NH 2 ; alkylamino, dialkylamino, heterocyclyl,
  • MOE methoxyethyl group
  • RNA can include nucleotides containing e.g., arabinose, as the sugar.
  • Modified RNA's can also include "abasic" sugars, which lack a nucleobase at C-l'. These abasic sugars can also be further contain modifications at one or more of the constituent sugar atoms.
  • the 2' modifications can be used in combination with one or more phosphate linker modifications (e.g., phosphorothioate).
  • phosphate linker modifications e.g., phosphorothioate
  • chimeric oligonucleotides are those that contain two or more different modifications.
  • the phosphate group can be replaced by non-phosphorus containing connectors (cf. Bracket I in Formula 1 above). While not wishing to be bound by theory, it is believed that since the charged phosphodiester group is the reaction center in nucleolytic degradation, its replacement with neutral structural mimics should impart enhanced nuclease stability. Again, while not wishing to be bound by theory, it can be desirable, in some embodiment, to introduce alterations in which the charged phosphate group is replaced by a neutral moiety.
  • moieties which can replace the phosphate group include siloxane, carbonate, carboxymethyl, carbamate, amide, thioether, ethylene oxide linker, sulfonate, sulfonamide, thioformacetal, formacetal, oxime, methyleneimino, methylenemethylimino, methylenehydrazo, methylenedimethylhydrazo and methyleneoxymethylimino.
  • Preferred replacements include the methylenecarbonylamino and methylenemethylimino groups.
  • Oligonucleotide- mimicking scaffolds can also be constructed wherein the phosphate linker and ribose sugar are replaced by nuclease resistant nucleoside or nucleotide surrogates (see Bracket II of Formula 1 above). While not wishing to be bound by theory, it is believed that the absence of a repetitively charged backbone diminishes binding to proteins that recognize polyanions (e.g. nucleases). Again, while not wishing to be bound by theory, it can be desirable in some embodiment, to introduce alterations in which the bases are tethered by a neutral surrogate backbone.
  • Examples include the mophilino, cyclobutyl, pyrrolidine and peptide nucleic acid (PNA) nucleoside surrogates.
  • a preferred surrogate is a PNA surrogate.
  • the 3' and 5' ends of an oligonucleotide can be modified. Such modifications can be at the 3' end, 5' end or both ends of the molecule. They can include modification or replacement of an entire terminal phosphate or of one or more of the atoms of the phosphate group. E.g., the 3' and 5' ends of an oligonucleotide can be conjugated to other functional molecular entities such as labeling moieties, e.g., fluorophores (e.g., pyrene, TAMRA, fluorescent, Cy3 or Cy5 dyes) or protecting groups (based e.g., on sulfur, silicon, boron or ester).
  • labeling moieties e.g., fluorophores (e.g., pyrene, TAMRA, fluorescent, Cy3 or Cy5 dyes) or protecting groups (based e.g., on sulfur, silicon, boron or ester).
  • the functional molecular entities can be attached to the sugar through a phosphate group and/or a spacer.
  • the terminal atom of the spacer can connect to or replace the linking atom of the phosphate group or the C-3' or C-5' O, N, S or C group of the sugar.
  • the spacer can connect to or replace the terminal atom of a nucleotide surrogate (e.g., PNAs).
  • abasic sugars amide, carboxy, amine, oxyamine, oxyimine, thioether, disulfide, thiourea, sulfonamide, or morpholino, or biotin and fluorescein reagents.
  • this array can substitute for a hairpin RNA loop in a hairpin-type RNA agent.
  • the 3 ' end can be an -OH group.
  • conjugation of certain moieties can improve transport, hybridization, and specificity properties.
  • terminal modifications include dyes, intercalating agents (e.g. acridines), cross-linkers (e.g.
  • psoralene mitomycin C
  • porphyrins TPPC4, texaphyrin, Sapphyrin
  • polycyclic aromatic hydrocarbons e.g., phenazine, dihydrophenazine
  • artificial endonucleases e.g.
  • lipophilic carriers e.g., cholesterol, cholic acid, adamantane acetic acid, 1 -pyrene butyric acid, dihydrotestosterone, 1, 3 -Bis-O(hexadecyl) glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid,O3-(oleoyl)lithocholic acid, 03- (oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine)and peptide conjugates (e.g., antennapedia peptide, Tat peptide), alkylating agents, phosphate, amino, mercapto, PEG (e.g., PEG-40K), MPEG, [MPEG] 2 , polyamino, alkylating agents
  • biotin e.g., aspirin, vitamin E, folic acid
  • transport/absorption facilitators e.g., aspirin, vitamin E, folic acid
  • synthetic ribonucleases e.g., imidazole, bisimidazole, histamine, imidazole clusters, acridine-imidazole conjugates, Eu3+ complexes of tetraazamacrocycles.
  • Te ⁇ ninal modifications can be added for a number of reasons, including as discussed elsewhere herein to modulate activity or to modulate resistance to degradation.
  • Terminal modifications useful for modulating activity include modification of the 5' end with phosphate or phosphate analogs.
  • iRNA agents, especially antisense strands are 5' phosphorylated or include a phosphoryl analog at the 5' prime terminus.
  • 5 '.-phosphate modifications include those which are compatible with RISC mediated gene silencing.
  • Suitable modifications include: 5 '-monophosphate ((HO)2(O)P-O-5'); 5'-diphosphate ((HO)2(O)P-O-P(HO)(O)-O-5'); 5'-triphosphate ((HO)2(O)P-O-(HO)(O)P-.O- P(HO)(O)-O-5'); 5'-guanosine cap (7-methylated or non-methylated) (7m-G-O-5'-
  • HO (O)P-O-(HO)(O)P-O-P(HO)(O)-O-5'); 5'-adenosine cap (Appp), and any modified or unmodified nucleotide cap structure (N-O-5'-(HO)(O)P-O-(HO)(O)P-O-P(HO)(O)- O-5'); 5'-monothiophosphate (phosphorothioate; (HO)2(S)P-O-5'); 5'- monodithiophosphate (phosphoroditbioate; (HO)(HS)(S)P-O-5'), 5'-phosphorothiolate ((HO)2(O)P-S-5 T ); any additional combination of oxgen/sulfur replaced monophosphate, diphosphate and triphosphates (e.g.
  • Terminal modifications useful for increasing resistance to degradation include Terminal modifications can also be useful for monitoring distribution, and in such cases the preferred groups to be added include fluorophores, e.g., fluorescein or an Alexa dye, e.g., Alexa 488. . Terminal modifications can also be useful for enhancing uptake, useful modifications for this include cholesterol. Terminal modifications can also be useful for cross-linking an RNA agent to another moiety; modifications useful for this include mitomycin C.
  • Adenine, guanine, cytosine and uracil are the most common bases found in RNA. These bases can be modified or replaced to provide RNA's having improved properties.
  • nuclease resistant oligoribonucleotides can be prepared with these bases or with synthetic and natural nucleobases (e.g., inosine, thymine, xanthine, hypoxanthine, mibularine, isoguanisine, or tubercidine) and any one of the above modifications.
  • substituted or modified analogs of any of the above bases and "universal bases" can be employed.
  • Examples include 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6- azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 5-halouracil, 5- (2-aminopropyl)uracil, 5-amino allyl uracil, 8-halo, amino, thiol, thioalkyl, hydroxyl and other 8-substituted adenines and guanines, 5-trifluoromethyl and other 5- substituted uracils and cytosines, 7-methylguanine, 5-substituted pyrimidines, 6- azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2- amino
  • base changes are less preferred for promoting stability, but they can be useful for other reasons, e.g., some, e.g., 2,6-diaminopurine and 2 amino purine, are fluorescent. Modified bases can reduce target specificity. This should be taken into consideration in the design of iRNA agents.
  • RNA agent e.g., a modified RNA
  • a candidate RNA agent for a selected property by exposing the agent or modified molecule and a control molecule to the appropriate conditions and evaluating for the presence of the selected property.
  • resistance to a degradent can be evaluated as follows.
  • a candidate modified RNA (and preferably a control molecule, usually the unmodified form) can be exposed to degradative conditions, e.g., exposed to a milieu, which includes a degradative agent, e.g., a nuclease.
  • a biological sample e.g., one that is similar to a milieu, which might be encountered, in therapeutic use, e.g., blood or a cellular fraction, e.g., a cell-free homogenate or disrupted cells.
  • the candidate and control could then be evaluated for resistance to degradation by any of a number of approaches.
  • the candidate and control could be labeled, preferably prior to exposure, with, e.g., a radioactive or enzymatic label, or a fluorescent label, such as Cy3 or Cy5.
  • Control and modified RNA's can be incubated with the degradative agent, and optionally a control, e.g., an inactivated, e.g., heat inactivated, degradative agent.
  • a physical parameter, e.g., size, of the modified and control molecules are then determined. They can be determined by a physical method, e.g., by polyacrylamide gel electrophoresis or a sizing column, to assess whether the molecule has maintained its original length, or assessed functionally. Alternatively, Northern blot analysis can be used to assay the length of an unlabeled modified molecule. A functional assay can also be used to evaluate the candidate agent.
  • a functional assay can be applied initially or after an earlier non-functional assay, (e.g., assay for resistance to degradation) to determine if the modification alters the ability of the molecule to silence gene expression.
  • a cell e.g., a mammalian cell, such as a mouse or human cell
  • a plasmid expressing a fluorescent protein e.g., GFP
  • a candidate RNA agent homologous to the transcript encoding the fluorescent protein see, e.g., WO 00/44914.
  • a modified dsRNA homologous to the GFP mRNA can be assayed for the ability to inhibit GFP expression by monitoring for a decrease in cell fluorescence, as compared to a control cell, in which the transfection did not include the candidate dsRNA, e.g., controls with no agent added and/or controls with a non-modified RNA added.
  • Efficacy of the candidate agent on gene expression can be assessed by comparing cell fluorescence in the presence of the modified and unmodified dsRNA agents.
  • a candidate dsRNA agent homologous to an endogenous mouse gene preferably a maternally expressed gene, such as c-mos, can.
  • a phenotype of the oocyte e.g., the ability to maintain arrest in metaphase II, can be monitored as an indicator that the agent is inhibiting expression. For example, cleavage of c-mos mRNA by a dsRNA agent would cause the oocyte to exit metaphase arrest and initiate parthenogenetic development (Colledge et ⁇ l., Nature 370: 65-68, 1994; Hashimoto et al, Nature 370:68-71, 1994).
  • the effect of the modified agent on target RNA levels can be verified by Northern blot to assay for a decrease in the level of target mRNA, or by Western blot to assay for a decrease in the level of target protein, as compared to a negative control.
  • Controls can include cells in which with no agent is added and/or cells in which a non-modified RNA is added.
  • oligoribonucleotides and oligoribonucleosides used in accordance with this invention may be with solid phase synthesis, see for example
  • Phosphorothioate oligonucleotides Chapter 5, Synthesis of oligonucleotide phosphorodithioates, Chapter 6, Synthesis of oligo-2'-deoxyribonucleoside methylphosphonates, and. Chapter 7, Oligodeoxynucleotides containing modified bases.
  • Other particularly useful synthetic procedures, reagents, blocking groups and reaction conditions are described in Martin, Helv. Chun. Ada 78:486-504, 1995; Beaucage and Iyer, Tetrahedron 48:2223-2311, 1992, and Beaucage and Iyer, Tetrahedron 49;6123-6194, 1993, or references referred to therein.
  • phosphinate oligoribonucleotides The preparation of phosphinate oligoribonucleotides is described in U.S. Pat. No. 5,508,270. The preparation of alkyl phosphonate oligoribonucleotides is described in U.S. Pat. No. 4,469,863. The preparation of phosphoramidite oligoribonucleotides is described in U.S. Pat. No. 5,256,775 or U.S. Pat. No. 5,366,878. The preparation of phosphotriester oligoribonucleotides is described in U.S. Pat. No. 5,023,243. The preparation of borano phosphate oligoribonucleotide is described in U.S. Pat. Nos. 5,130,302 and 5,177,198.
  • MMI linked oligoribonucleosides also identified herein as MMI linked oligoribonucleosides, methylenedimethylhydrazo linked oligoribonucleosides, also identified herein as MDH linked oligoribonucleosides, and methylenecarbonylamino linked oligonucleosides, also identified herein as amide-3 linked oligoribonucleosides, and methyleneaminocarbonyl linked oligonucleosides, also identified herein as amide-4 linked oligoribonucleosides as well as mixed backbone compounds having, as for instance, alternating MMI and PO or PS linkages can be prepared as is described in U.S.
  • Carbonate replacements are described in Tittensor, Chem. Soc. C:1933, 1971. Carboxymethyl replacements are described in Edge et al, J. Chem. Soc. Perkin Trans. 1 1972, 1991. Carbamate replacements are described in Stirchak, Nucleic Acids Res. 17:6129, 1989.
  • Cyclobutyl sugar surrogate compounds can be prepared as is described in U.S. Pat. No. 5,359,044. Pyrrolidine sugar surrogate can be prepared as is described in U.S. Pat. No. 5,519,134. Morpholino sugar surrogates can be prepared as is described in U.S. Pat. Nos. 5,142,047 and 5,235,033, and other related patent disclosures.
  • Peptide Nucleic Acids (PNAs) are known per se and can be prepared in accordance with any of the various procedures referred to in Peptide Nucleic Acids (PNA): Synthesis, Properties and Potential Applications, Bioorganic & Medicinal Chemistry, 1996, 4, 5- 23. They may also be prepared in accordance with U.S. Pat. No. 5,539,083.
  • N-2 substituted purine nucleoside amidites can be prepared as is described in U.S. Pat. No. 5,459,255.
  • 3-Deaza purine nucleoside amidites can be prepared as is described in U.S. Pat. No. 5,457,191.
  • 5,6-Substituted pyrimidine nucleoside amidites can be prepared as is described in U.S. Pat. No. 5,614,617.
  • 5-Propynyl pyrimidine nucleoside amidites can be prepared as is described in U.S. Pat. No. 5,484,908. Additional references can be disclosed in the above section on base modifications.
  • RNA agents have the following structure (Fonnula 2):
  • R 1 , R 2 , and R 3 are independently H, (i.e. abasic nucleotides), adenine, guanine, cytosine and uracil, inosine, thymine, xanthine, hypoxanthine, nubularine, tubercidine, isoguanisine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 5-halouracil, 5-(2-aminopropyl)uracil, 5-amino allyl uracil, 8-halo, amino, thiol, thioalkyl,
  • R 4 , R 5 , and R 6 are independently OR 8 , O(CH2CH 2 O) m CH2CH 2 OR 8 ; O(CH 2 ) n R 9 ; O(CH 2 ) n OR 9 , H; halo; NH 2 ; NHR 8 ; N(R 8 ) 2 ; NH(CH2CH2NH) m CH 2 CH 2 HR 9 ;
  • a 1 is:
  • a preferred Al is chosen from 5'- monophosphate ((HO) 2 (O)P-O-5'), 5 '-diphosphate ((HO) 2 (O)P-O-P(HO)(O)-O-5'), 5'- triphosphate ((HO) 2 (O)P-O-(HO)(O)P-O-P(HO)(O)-O-5'), 5'-guanosine cap (7- methylated or non-methylated) (7m-G-O-5'-(HO)(O)P-O-(HO)(O)P-O-P(HO)(O)-O- 5'), 5'-adenosine cap (Appp), and any modified or unmodified nucleotide cap structure (N-O-5'-(HO)(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5'), 5'-monothiophosphate (phosphorothio
  • a J is:
  • a 4 is:
  • W 1 is OH, (CH 2 ) n R 10 , (CH 2 )nNHR 10 , (CH 2 ) n OR 10 , (CH 2 ) n SR 10 ; O(CH 2 ) n R 10 ; O(CH 2 ) n OR 10 , O(CH 2 ) n NR 10 , O(CH 2 ) n SR 10 ; O(CH 2 ) n SS(CH 2 ) n OR 10 , O(CH 2 ) n C(O)OR 10 , NH(CH 2 ) n R 10 ; NH(CH 2 ) n NR 10 ;NH(CH 2 ) n OR 10 , NH(CH 2 ) n SR 10 ; S(CH 2 ) n R 10 , S(CH 2 ) n NR 10 , S(CH 2 ) n OR 10 , S(CH 2 ) n SR 10 O(CH 2 CH 2 O) m CH 2 CH 2 OR
  • W 4 is O, CH 2 , NH, or S
  • X , X', X v3 , and X are each independently O or S;
  • Y 1 , Y 2 , Y 3 , and Y 4 are each independently OH, O " , OR 8 , S, Se, BH 3 " , H, NHR 9 , N(R 9 ) 2 alkyl, cycloalkyl, aralkyl, aryl, or heteroaryl, each of which may be optionally substituted;
  • Z 1 , Z 2 , and Z 3 are each independently O, CH 2 , NH, or S;
  • Z 4 is OH, (CH 2 ) n R 10 , (CH 2 ) n NHR 10 , (CH 2 ) n OR 10 , (CH 2 ) n SR 10 ; O(CH 2 ) n R 10 ; O(CH 2 ) n OR 10 , O(CH 2 ) n NR 10 , O(CH 2 ) n SR 10 , O(CH 2 ) n SS(CH 2 ) n OR 10 , O(CH 2 ) n
  • x is 5-100, chosen to comply with a length for an RNA agent described herein;
  • R 7 is H; or is together combined with R 4 , R 5 , or R 6 to form an [-O-CH2-] covalqntly bound bridge between the sugar 2' and 4' carbons;
  • R 8 is alkyl, cycloalkyl, aryl, aralkyl, heterocyclyl, heteroaryl, amino acid, or sugar;
  • R 9 is NH 2 , alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, diheteroaryl amino, or amino acid;
  • R 10 is H; fluorophore (pyrene, TAMRA, fluorescein, Cy3 or Cy5 dyes); sulfur, silicon, boron or ester protecting group; intercalating agents (e.g. acridines), cross-linkers (e.g. psoralene, mitomycin C), porphyrins (TPPC4,texaphyrin, Sapphyrin), polycyclic aromatic hydrocarbons (e.g., phenazine, dihydrophenazine), artificial endonucleases (e.g.
  • EDTA lipophilic carriers
  • cholesterol cholic acid, adamantane acetic acid, 1- pyrene butyric acid, dihydrotestosterone, 1, 3 -Bis-O(hexadecyl) glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid,O3-(oleoyl)lithocholic acid, O3- (oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine)and peptide conjugates (e.g., antennapedia peptide, Tat peptide), alkylating agents, phosphate, amino, mereapto, PEG (e.g., PEG-40K), MPEG, [MPEG] 2 , polyamino; alkyl,
  • biotin e.g., aspirin, vitamin E, folic acid
  • synthetic ribonucleases e.g., imidazole, bisimidazole, histamine, imidazole clusters, acridine-imidazole conjugates, Eu3+ complexes of tetraazamacrocycles
  • RNA agent e.g., m is 0-1,000,000;
  • n 0-20.
  • Q is a spacer selected from the group consisting of abasic sugar, amide, carboxy, oxyamine, oxyimine, thioether, disulfide, thiourea, sulfonamide, or morpholino, biotin or fluorescein reagents.
  • RNA agents in which the entire phosphate group has been replaced have the following structure (Formula 3):
  • a 10 - A 40 is L-G-L; A 10 and/or A 40 may be absent, wherein
  • L is a linker, wherein one or both L may be present or absent and is selected from the group consisting of CH 2 (CH 2 ) g ; N(CH 2 ) g ; O(CH 2 ) g ; S(CH 2 ) g ;
  • G is a functional group selected from the group consisting of siloxane, carbonate, carboxymethyl, carbamate, amide, thioether, ethylene oxide linker, sulfonate, sulfonamide, thioformacetal, formacetal, oxime, methyleneimino, methylenemethylimino, methylenehydrazo, methylenedimethylhydrazo and methyleneoxymethylimino ;
  • R 10 , R 20 , and R 30 are independently H, (i.e. abasic nucleotides), adenine, guanine, cytosine and uracil, inosine, thymine, xanthine, hypoxanthine, nubularine, tubercidine, isoguanisine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymme, 5-uracil (pseudouracil), 4-thiouracil, 5-halouracil, 5-(2-aminopropyl)uracil, 5-amino allyl uracil, 8-halo, amino, thiol, thioalkyl
  • R 40 , R 50 , and R 60 are independently OR 8 , O(CH2CH 2 O) m CH2CH 2 OR 8 ; O(CH 2 ) n R 9 ; O(CH 2 ) crampOR 9 , H; halo; NH 2 ; NHR 8 ; N(R 8 ) 2 ; NH(CH2CH 2 NH) m CH 2 CH2R 9 ; NHC(O)R 8 ;; cyano; mercapto, SR 7 ; alkyl-thio-alkyl; alkyl, aralkyl, cycloalkyl, aryl, heteroaryl, alkenyl, alkynyl, each of which may be optionally substituted with halo, hydroxy, oxo, nitro, haloalkyl, alkyl, alkaryl, aryl, aralkyl, alkoxy, aryloxy, amino, alkylamino, dialkylamino, heterocyclyl, ary
  • x is 5-100 or chosen to comply with a length for an RNA agent described herein;
  • R 70 is H; or is together combined with R 40 , R 50 , or R 60 to form an [-O-CH 2 -] covalently bound bridge between the sugar 2' and 4' carbons;
  • R 8 is alkyl, cycloalkyl, aryl, aralkyl, heterocyclyl, heteroaryl, amino acid, or sugar;
  • R 9 is NH 2 , alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, diheteroaryl amino, or amino acid;
  • m 0-1,000,000
  • n 0-20;
  • g is 0-2.
  • Prefened nucleoside sunogates have the following structure (Formula 4):
  • S is a nucleoside sunogate selected from the group consisting of mophilino, cyclobutyl, pynolidine and peptide nucleic acid;
  • L is a linker and is selected from the group consisting of CH 2 (CH 2 ) g ; N(CH 2 ) g ; O(CH 2 ) g ; S(CH 2 ) g ; -C(O)(CH 2 ) n -or may be absent;
  • M is an amide bond; sulfonamide; sulfinate; phosphate group; modified phosphate group as described herein; or may be absent;
  • R 100 , R 200 , and R 300 are independently H (i.e., abasic nucleotides), adenine, guanine, cytosine and uracil, inosine, thymine, xanthine, hypoxanthine, nubularine, tubercidine, isoguanisine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 5- halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 5-halouracil, 5-(2-aminopropyl)uracil, 5- amino allyl uracil, 8-halo, amino, thiol, thioalkyl,
  • g is 0-2.
  • halo refers to any radical of fluorine, chlorine, bromine or iodine.
  • alkyl refers to saturated and unsaturated non-aromatic hydrocarbon chains that may be a straight chain or branched chain, containing the indicated number of carbon atoms (these include without limitation propyl, allyl, or propargyl), which may be optionally inserted with N, O, or S. For example, C ⁇ -C ⁇ 0 indicates that the group may have from 1 to 10 (inclusive) carbon atoms in it.
  • alkoxy refers to an - O-alkyl radical.
  • alkyl ene refers to a divalent alkyl (i.e., -R-).
  • alkyl enedioxo refers to a divalent species of the structure -O-R-O-, in which R represents an alkylene.
  • aminoalkyl refers to an alkyl substituted with an amino.
  • mercapto refers to an -SH radical.
  • thioalkoxy refers to an -S-alkyl radical.
  • aryl refers to a 6-carbon monocyclic or 10-carbon bicyclic aromatic ring system wherein 0, 1, 2, 3, or 4 atoms of each ring may be substituted by a substituent. Examples of aryl groups include phenyl, naphthyl and the like.
  • arylalkyl or the term “aralkyl” refers to alkyl substituted with an aryl.
  • arylalkoxy refers to an alkoxy substituted with aryl.
  • cycloalkyl as employed herein includes saturated and partially unsaturated cyclic hydrocarbon groups having 3 to 12 carbons, preferably 3 to 8 carbons, and more preferably 3 to 6 carbons, wherein the cycloalkyl group additionally may be optionally substituted.
  • Prefened cycloalkyl groups include, without limitation, cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptyl, and cyclooctyl.
  • heteroaryl refers to an aromatic 5-8 membered monocyclic, 8-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms selected from O, N, or S (e.g., carbon atoms and 1-3, 1-6, or 1-9 heteroatoms of N, O, or S if monocyclic, bicyclic, or tricyclic, respectively), wherein 0, 1, 2, 3, or 4 atoms of each ring may be substituted by a substituent.
  • heteroaryl groups include pyridyl, furyl or furanyl, imidazolyl, benzimidazolyl, pyrimidinyl, thiophenyl or thienyl, quinolinyl, indolyl, thiazolyl, and the like.
  • heteroarylalkyl or the term “heteroaralkyl” refers to an alkyl substituted with a heteroaryl.
  • heteroarylalkoxy refers to an alkoxy substituted with heteroaryl.
  • heterocyclyl refers to a nonaromatic 5-8 membered monocyclic, 8- 12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms selected from O, N, or S (e.g., carbon atoms and 1-3, 1-6, or 1-9 heteroatoms of N, O, or S if monocyclic, bicyclic, or tricyclic, respectively), wherein 0, 1, 2 or 3 atoms of each ring maybe substituted by a substituent.
  • heterocyclyl groups include piperazinyl, pynolidinyl, dioxanyl, morpholinyl, tetrahydrofuranyl, and the like.
  • oxo refers to an oxygen atom, which forms a carbonyl when attached to carbon, an N-oxide when attached to nitrogen, and a sulfoxide or sulfone when attached to sulfur.
  • acyl refers to an alkylcarbonyl, cycloalkylcarbonyl, arylcarbonyl, heterocyclylcarbonyl, or heteroarylcarbonyl substituent, any of which may be further substituted by substituents.
  • substituted refers to a group “substituted” on an alkyl, cycloalkyl, aryl, heterocyclyl, or heteroaryl group at any atom of that group.
  • Suitable substituents include, without limitation, halo, hydroxy, oxo, nitro, haloalkyl, alkyl, alkaryl, aryl, aralkyl, alkoxy, aryloxy, amino, acylamino, alkylcarbamoyl, arylcarbamoyl, aminoalkyl, alkoxycarbonyl, carboxy, hydroxyalkyl, alkanesulfonyl, arenesulfonyl, alkanesulfonamido, arenesulfonamido, aralkylsulfonamido, alkylcarbonyl, acyloxy, cyano, and ureido groups.
  • iRNAs agents are produced in a cell in vivo, e.g., from exogenous DNA templates that are delivered into the cell.
  • the DNA templates can be inserted into vectors and used as gene therapy vectors.
  • Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (U.S. Pat. No. 5,328,470), or by stereotactic injection (see, e.g., Chen et produces a transcript that includes the bottom strand of an iRNA agent.
  • the iRNA agent is produced, and processed into sRNA agent fragments that mediate gene silencing.
  • Apolipoprotein M is a human apolipoprotein predominantly present in high-density lipoprotein (HDL) in plasma. ApoM is reported to be expressed exclusively in liver and in kidney (Xu et al, Biochem. J. Biol. Chem. 274:31286-90, 1999).
  • Mouse ApoM is a 21kD membrane associated protein, and, in serum, the protein is associated with HDL particles. ApoM gene expression is regulated by the transcription factor hepatocyte nuclear factor 1 alpha (Hnf-l ⁇ ), as Hnf-lof " mice are ApoM deficient, hi humans, mutations in the HNF-1 alpha gene represent a common cause of maturity-onset diabetes of the young (MODY).
  • Hnf-l ⁇ transcription factor hepatocyte nuclear factor 1 alpha
  • Class I dsRNAs consisted of 21 nucleotide paired sense and antisense strands. The sense and antisense strands were each phosphorylated at their 5' ends. The double stranded region was 19 nucleotides long and consisted of ribonucleotides. The 3' end of each strand created a two nucleotide overhang consisting of two deoxyribonucleotide thymidines. See constructs #1-4 in Table 2.
  • Class II dsRNAs were also 21 nucleotides long, with a 19 nucleotide double strand region.
  • the sense and antisense strands were each phosphorylated at their 5 ' ends.
  • the three 3' terminal nucleotides of the sense and antisense strands were phosphorothioate deoxyribonucleotides, and the two terminal phosphorothioate thymidines were unpaired, creating a 3 ' overhang region at each end of the iRNA molecule. See contracts 11, 13, 15, and 17 in Table 2.
  • Class III dsRNAs included a 23 ribonucleotide antisense strand and a 21 ribonucleotide sense strand, to form a construct having a blunt 5 'and a 3' overhang region. See constructs 19, 21, 23, and 25 in Table 2. Within each of the three classes of iRNAs, the four dsRNA molecules were designed to target four different regions of the ApoM transcript. dsRNAs 1, 11, and 19 targeted the 5' end of the open reading frame (ORF).
  • dsRNAs 2, 13, and 21, and 3, 15, and 23 targeted two internal regions (one 5 'proximal and one 3 'proximal) of the ORF, and the 4, 17, and 25 iRNA constructs targeted to a region of the 3 ' untranslated sequence (3 ' UTS) of the ApoM mRNA. This is summarized in Table 3. Table 3. iRNA molecules targeted to mouse ApoM
  • CD1 mice (6-8 weeks old, ⁇ 35g) were administered one of the test iRNAs in PBS solution. Two hundred micrograms of iRNA in a volume of solution equal to 10% body weight ( ⁇ 5.7mg iRNA/kg mouse) was administered by the method of high pressure tail vein injection, over a 10-20 sec. time interval. After a 24 h recovery period, a second injection was performed using the same dose and mode of administration as the first injection, and following another 24 h, a third and final injection was administered, also using the same dose and mode of administration.
  • Class II iRNAs reduced liver and kidney ApoM mRNA levels by -30-85% (FIG. 3).
  • the iRNA molecule "13" elicited the most dramatic reduction in mRNA levels; quantitative RT-PCR indicated a decrease of about 85% in liver tissue.
  • Serum ApoM protein levels were also reduced as was evidenced by Western blot analysis
  • FIG. 4 The iRNAs 11, 13 and 15, reduced protein levels by about 50%, while iRNA 17 had the mildest effect, reducing levels only by ⁇ 15-20%.
  • Class III iRNAs (constructs 19, 21, and 23) reduced serum ApoM levels by -40-50% (FIG. 5).
  • iRNAs were precomplexed with lipofectarnine prior to tail vein injections.
  • Figure 6 illustrates that ApoM protein levels were about 50% of wildtype levels in mice injected with iRNA "11" when the molecules were preincubated with lipofectarnine; ApoM levels were also about 50% of wildtype when mice were injected with iRNA "11” that was not precomplexed with lipofectarnine.

Abstract

Therapeutic siRNA agents and methods of making and using are enclosed.

Description

THERAPEUTIC COMPOSITIONS
RELATED APPLICATIONS
The present application claims the benefit of U.S.S.N. 60/440,696, which was filed January 17, 2003, and U.S.S.N 60/465,483, which was filed April 25, 2003. The contents of these provisional applications are hereby incorporated by reference in their entireties.
TECHNICAL FIELD The invention relates to RNAi and related methods, e.g., methods of making and using sRNA agents.
BACKGROUND
RNA interference or "RNAi" is a term initially coined by Fire and co-workers to describe the observation that double-stranded RNA (dsRNA) can block gene expression when it is introduced into worms (Fire et al., Nature 391:806-811, 1998). Short dsRNA directs gene-specific, post-transcriptional silencing in many organisms, including vertebrates, and has provided a new tool for studying gene function. RNAi may involve mRNA degradation.
Work in this field is typified by comparatively cumbersome approaches to delivery of dsRNA to live mammals. E.g., McCaffrey et al. (Nature 418:38-39, 2002) demonstrated the use of dsRNA to inhibit the expression of a luciferase reporter gene in mice. The dsRNAs were administered by the method of hydrodynamic tail vein injections (in addition, inhibition appeared to depend on the injection of greater than 2 mg/kg dsRNA). The inventors have discovered, inter alia, that the unwieldy methods typical of some reported work are not needed to provide effective amounts of dsRNA to mammals and in particular not needed to provide therapeutic amounts of dsRNA to human subjects. The advantages of the current invention include practical, uncomplicated methods of administration and therapeutic applications, e.g., at dosages of less than 2 mg/kg. SUMMARY
The present invention relates to isolated iRNA agents, e.g., RNA molecules, (double-stranded; single-stranded) that mediate RNAi. The iRNA agents preferably mediate RNAi with respect to an endogenous gene of a subject or to a gene of a pathogen.
An "RNA agent" as used herein, is an unmodified RNA, modified RNA, or nucleoside surrogate, all of which are defined herein, see the section herein entitled RNA Agents. While numerous modified RNAs and nucleoside surrogates are described herein, preferred examples include those which have greater resistance to nuclease degradation than do unmodified RNAs. Preferred examples include those which have a 2' sugar modification, a modification in a single strand overhang, preferably a 3' single strand overhang, or, particularly if single stranded, a 5' modification which includes one or more phosphate groups or one or more analogs of a phosphate group. An "iRNA agent" as used herein, is an RNA agent which can, or which can be cleaved into an RNA agent which can, down regulate the expression of a target gene, preferably an endogenous or pathogen target RNA. While not wishing to be bound by theory, an iRNA agent may act by one or more of a number of mechanisms, including post-transcriptional cleavage of a target mRNA sometimes referred to in the art as RNAi, or pre-transcriptional or pre-translational mechanisms. An iRNA agent can include a single strand or can include more than one strands, e.g., it can be a double stranded iRNA agent. If the iRNA agent is a single strand it is particularly preferred that it include a 5' modification which includes one or more phosphate groups or one or more analogs of a phosphate group. The iRNA agent should include a region of sufficient homology to the target gene, and be of sufficient length in terms of nucleotides, such that the iRNA agent, or a fragment thereof, can mediate down regulation of the target gene. (For ease of exposition the term nucleotide or ribonucleotide is sometimes used herein in reference to one or more monomeric subunits of an RNA agent. It will be understood herein that the usage of the term "ribonucleotide" or "nucleotide", herein can, in the case of a modified RNA or nucleotide surrogate, also refer to a modified nucleotide, or surrogate replacement moiety at one or more positions.) Thus, the iRNA agent is or includes a region which is at least partially, and in some embodiments fully, complementary to the target RNA. It is not necessary that there be perfect complementarity between the iRNA agent and the target, but the correspondence must be sufficient to enable the iRNA agent, or a cleavage product thereof, to direct sequence specific silencing, e.g., by RNAi cleavage of the target RNA, e.g., mRNA. Complementarity, or degree of homology with the target strand, is most critical in the antisense strand. While perfect complementarity, particularly in the antisense strand, is often desired some embodiments can include, particularly in the antisense strand, one or more but preferably 6, 5, 4, 3, 2, or fewer mismatches (with respect to the target RNA). The mismatches, particularly in the antisense strand, are most tolerated in the terminal regions and if present are preferably in a terminal region or regions, e.g., within 6, 5, 4, or 3 nucleotides of the 5' and/or 3' terminus. The sense strand need only be sufficiently complementary with the antisense strand to maintain the over all double strand character of the molecule.
As discussed elsewhere herein, an iRNA agent will often be modified or include nucleoside surrogates. Single stranded regions of an iRNA agent will often be modified or include nucleoside surrogates, e.g., the unpaired region or regions of a hairpin structure, e.g., a region which links two complementary regions, can have modifications or nucleoside surrogates. Modification to stabilize one or more 3'- or 5'- terminus of an iRNA agent, e.g., against exonucleases, or to favor the antisense sRNA agent to enter into RISC are also favored. Modifications can include C3 (or C6, C7, C12) amino linkers, thiol linkers, carboxyl linkers, non-nucleotidic spacers (C3, C6, C9, C12, abasic, triethylene glycol, hexaethylene glycol), special biotin or fluorescein reagents that come as phosphoramidites and that have another DMT-protected hydroxyl group, allowing multiple couplings during RNA synthesis. iRNA agents include: molecules that are long enough to trigger the interferon response (which can be cleaved by Dicer (Bernstein et al., Nature, 409:363-366, 2001) and enter a RISC (RNAi-induced silencing complex)); and, molecules which are sufficiently short that they do not trigger the interferon response (which molecules can also be cleaved by Dicer and/or enter a RISC), e.g., molecules which are of a size which allows entry into a RISC, e.g., molecules which resemble Dicer-cleavage products. Molecules that are short enough that they do not trigger an interferon response are termed sRNA agents or shorter iRNA agents herein. "sRNA agent or shorter iRNA agent" as used herein, refers to an iRNA agent, e.g., a double stranded RNA agent or single strand agent, that is sufficiently short that it does not induce a deleterious interferon response in a human cell, e.g., it has a duplexed region of less than 60 but preferably less than 50, 40, or 30 nucleotide pairs. The sRNA agent, or a cleavage product thereof, can down regulate a target gene, e.g., by inducing RNAi with respect to a target RNA, preferably an endogenous or pathogen target RNA.
Each strand of an sRNA agent can be equal to or less than 30, 25, 24, 23, 22, 21, or 20 nucleotides in length. The strand is preferably at least 19 nucleotides in length. For example, each strand can be between 21 and 25 nucleotides in length. Preferred sRNA agents have a duplex region of 17, 18, 19, 29, 21, 22, 23, 24, or 25 nucleotide pairs, and one or more overhangs, preferably one or two 3' overhangs, of 2- 3 nucleotides.
In addition to homology to target RNA and the ability to down regulate a target gene, an iRNA agent will preferably have one or more of the following properties:
(1) it will be of the Formula 1, 2, 3, or 4 set out in the RNA Agent section below;
(2) if single stranded it will have a 5' modification which includes one or more phosphate groups or one or more analogs of a phosphate group;
(3) it will, despite modifications, even to a very large number, or all of the nucleosides, have an antisense strand that can present bases (or modified bases) in the proper three dimensional framework so as to be able to form correct base pairing and form a duplex structure with a homologous target RNA which is sufficient to allow down regulation of the target, e.g., by cleavage of the target RNA;
(4) it will, despite modifications, even to a very large number, or all of the nucleosides, still have "RNA-like" properties, i.e., it will possess the overall structural, chemical and physical properties of an RNA molecule, even though not exclusively, or even partly, of ribonucleotide-based content. For example, an iRNA agent can contain, e.g., a sense and/or an antisense strand in which all of the nucleotide sugars contain e.g., 25 fluoro in place of 25 hydroxyl. This deoxyribonucleotide- containing agent can still be expected to exhibit RNA-like properties. While not wishing to be bound by theory, the electronegative fluorine prefers an axial orientation when attached to the C2' position of ribose. This spatial preference of fluorine can, in turn, force the sugars to adopt a C -endo pucker. This is the same puckering mode as observed in RNA molecules and gives rise to the RNA-characteristic A-family-type helix. Further, since fluorine is a good hydrogen bond acceptor, it can participate in the same hydrogen bonding interactions with water molecules that are known to stabilize RNA structures. (Generally, it is preferred that a modified moiety at the 2' sugar position will be able to enter into H bonding which is more characteristic of the OH moiety of a ribonucleotide than the H moiety of a deoxyribonucleotide. A preferred iRNA agent will: exhibit a Cy-endo pucker in all, or at least 50, 75,80, 85, 90, or 95 % of its sugars; exhibit a Cy-endo pucker in a sufficient amount of its sugars that it can give rise to a the RNA-characteristic A-family-type helix; will have no more than 20, 10, 5, 4, 3, 2, orl sugar which is not a Cy-endo pucker structure. These limitations are particularly preferably in the antisense strand;
(5) regardless of the nature of the modification, and even though the RNA agent can contain deoxynucleotides or modified deoxynucleotides, particularly in overhang or other single strand regions, it is preferred that DNA molecules, or any molecule in which more than 50, 60, or 70 % of the nucleotides in the molecule, or more than 50, 60, or 70 % of the nucleotides in a duplexed region are deoxyribonucleotides, or modified deoxyribonucleotides which are deoxy at the 2' , position, are excluded from the definition of RNA agent.
A "single strand iRNA agent" as used herein, is an iRNA agent which is made up of a single molecule. It may include a duplexed region, formed by intra-strand pairing, e.g., it may be, or include, a hairpin or pan-handle structure. Single strand iRNA agents are preferably antisense with regard to the target molecule. In preferred embodiments single strand iRNA agents are 5' phosphorylated or include a phosphoryl analog at the 5' prime terminus. 5'-phosphate modifications include those which are compatible with RISC mediated gene silencing. Suitable modifications include: 5'- monophosphate ((HO)2(O)P-O-5'); 5'-diρhosphate ((HO)2(O)P-O-P(HO)(O)-O-5?); 5'- triphosphate ((HO)2(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5'); 5'-guanosine cap (7- methylated or non-methylated) (7m-G-O-5'-(HO)(O)P-O-(HO)(O)P-O-P(HO)(O)-O- 5'); 5'-adenosine cap (Appp), and any modified or unmodified nucleotide cap structure (N-O-5'-(HO)(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5,); 5'-monothiophosphate (phosphorothioate; (HO)2(S)P-O-5'); 5'-monodithiophosphate (phosphoroditbioate; (HO)(HS)(S)P-O-5')5 5'-phosphorothiolate ((HO)2(O)P-S-5'); any additional combination of oxygen sulfur replaced monophosphate, diphosphate and triphosphates (e.g. 5'-alpha-thiotriphosphate, 5'-gamma-thiotriphosphate, etc.), 5'-phosphoramidates ((HO)2(O)P-NH-5', (HO)(NH2)(O)P-O-5'), 5'-alkylphosphonates (R=alkyl=methyl, ethyl, isopropyl, propyl, etc., e.g. RP(OH)(O)-O-5'-, (OH)2(O)P-5'-CH2-), 5'- alkyletherphosphonates (R=alkylether=methoxymethyl (MeOCH2-), ethoxymethyl, etc., e.g. RP(OH)(O)-O-5'-) (these modifications can also be used with the antisense strand of a double stranded iRNA).
A single strand iRNA agent should be sufficiently long that it can enter the RISC and participate in RISC mediated cleavage of a target mRNA. A single strand iRNA agent is at least 14, and more preferably at least 15, 20, 25, 29, 35, 40, or 50nucleotides in length. It is preferably less than 200, 100, or 60 nucleotides in length. Hairpin iRNA agents will have a duplex region equal to or at least 17, 18, 19,
29, 21, 22, 23, 24, or 25 nucleotide pairs. The duplex region will preferably be equal to or less than 200, 100, or 50, in length. Preferred ranges for the duplex region are 15-30, 17 to 23, 19 to 23, and 19 to 21 nucleotides pairs in length. The hairpin will preferably have a single strand overhang or terminal unpaired region, preferably the 3', and preferably of the antisense side of the hairpin. Preferred overhangs are 2-3 nucleotides in length.
A "double stranded (ds) iRNA agent" as used herein, is an iRNA agent which includes more than one, and preferably two, strands in which interchain hybridization can form a region of duplex structure. The antisense strand of a double stranded iRNA agent should be equal to or at least, 14, 15, 16 17, 18, 19, 25, 29, 40, or 60 nucleotides in length. It should be equal to or less than 200, 100, or 50, nucleotides in length. Preferred ranges are 17 to 25, /l 9 to 23, and 19 to21 nucleotides in length.
The sense strand of a double stranded iRNA agent should be equal to or at least 14, 15, 16 17, 18, 19, 25, 29, 40, or 60 nucleotides in length. It should be equal to or less than 200, 100, or 50, nucleotides in length. Preferred ranges are 17 to 25, 19 to 23, and 19 to21 nucleotides in length.
The double strand portion of a double stranded iRNA agent should be equal to or at least, 14, 15, 16 17, 18, 19, 20, 21, 22, 23, 24, 25, 29, 40, or 60 nucleotide pairs in length. It should be equal to or less than 200, 100, or 50, nucleotides pairs in length. Preferred ranges are 15-30, 17 to 23, 19 to 23, and 19 to 21 nucleotides pairs in length. In many embodiments, the ds iRNA agent is sufficiently large that it can be cleaved by an endogenous molecule, e.g., by Dicer, to produce smaller ds iRNA agents, e.g., sR As agents
It may be desirable to modify one or both of the antisense and sense strands of a
5 double strand iRNA agent. In some cases they will have the same modification or the same class of modification but in other cases the sense and antisense strand will have different modifications, e.g., in some cases it is desirable to modify only the sense strand. It may be desirable to modify only the sense strand, e.g., to inactivate it, e.g., the sense strand can be modified in order to inactivate the sense strand and prevent o formation of an active sRNA/protein or RISC. This can be accomplished by a modification which prevents 5'-phosphorylation of the sense strand, e.g., by modification with a 5'-O-methyl ribonucleotide (see Nykanen et al., Cell 107:309-321, 2001) Other modifications which prevent phosphorylation can also be used, e.g., simply substituting the 5'-OH by H rather than O-Me. Alternatively, a large bulky 5 group may be added to the 5 '-phosphate turning it into a phosphodiester linkage, though this may be less desirable as phosphodiesterases can cleave such a linkage and release a functional sRNA 5 '-end. Antisense strand modifications include 5' phosphorylation as well as any of the other 5' modifications discussed herein, particularly the 5' modifications discussed above in the section on single stranded iRNA molecules. 0 It is preferred that the sense and antisense strands be chosen such that the ds iRNA agent includes a single strand or unpaired region at one or both ends of the molecule. Thus, a ds iRNA agent contains sense and antisense strands, preferable paired to contain an overhang, e.g., one or two 5' or 3' overhangs but preferably a 3' overhang of 2-3 nucleotides. Most embodiments will have a 35 overhang. Preferred 5 sRNA agents will have single-stranded overhangs, preferably 3 ' overhangs, of 1 or preferably 2 or 3 nucleotides in length at each end. The overhangs can be the result of one strand being longer than the other, or the result of two strands of the same length being staggered. 5' ends are preferably phosphorylated.
Preferred lengths for the duplexed region is between 15 and 30, most preferably 0 18, 19, 20, 21, 22, and 23 nucleotides in length, e.g., in the sRNA agent range discussed above. sRNA agents can resemble in length and structure the natural Dicer processed products from long dsRNAs. Embodiments in which the two strands of the sRNA agent are linked, e.g., covalently linked are also included. Hairpin, or other single strand structures which provide the required double stranded region, and preferably a 3' overhang are also within the invention.
The isolated iRNA agents described herein, including ds iRNA agents and sRNA agents can mediate silencing of a target RNA, e.g., mRNA, e.g., a transcript of a 5 gene that encodes a protein. For convenience, such mRNA is also referred to herein as mRNA to be silenced. Such a gene is also referred to as a target gene, r general, the RNA to be silenced is an endogenous gene or a pathogen gene. In addition, RNAs other than mRNA, e.g., tRNAs, and viral RNAs, can also be targeted.
As used herein, the phrase "mediates RNAi" refers to the ability to silence, in a o sequence specific manner, a target RNA. While not wishing to be bound by theory, it is believed that silencing uses the RNAi machinery or process and a guide RNA, e.g., an sRNA agent of 21 to 23 nucleotides.
The present invention also relates to methods of producing iRNA agents, e.g., sRNA agents , e.g. an sRNA agent described herein, having the ability to mediate 5 RNAi. These iRNA agents can be formulated for administration to a subject. hi one aspect, the invention features a method of administering an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, to a subject (e.g., a human subject). The method includes administering a unit dose of the iRNA agent, e.g., a sRNA agent, e.g., double stranded sRNA agent that (a) the double-stranded part is 19- 0 25 nucleotides (nt) long, preferably 21-23 nt, (b) is complementary to a target RNA (e.g., an endogenous or pathogen target RNA), and, optionally, (c) includes at least one 3' overhang 1-5 nucleotide long. In one embodiment, the unit dose is less than 1.4 mg per kg of bodyweight, or less than 10, 5, 2, 1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005 or 0.00001 mg per kg of bodyweight, and less than 200 nmole of RNA 5 agent (e.g. about 4.4 x 1016 copies) per kg of bodyweight, or less than 1500, 750, 300, 150, 75, 15, 7.5, 1.5, 0.75, 0.15, 0.075, 0.015, 0.0075, 0.0015, 0.00075, 0.00015 nmole of RNA agent per kg of bodyweight.
The defined amount can be an amount effective to treat or prevent a disease or disorder, e.g., a disease or disorder associated with the target RNA. The unit dose, for 0 example, can be administered by injection (e.g., intravenous or intramuscular), an inhaled dose, or a topical application. Particularly preferred dosages are less than 2, 1, or 0.1 mg/kg of body weight. In a preferred embodiment, the unit dose is administered less frequently than once a day, e.g., less than every 2, 4, 8 or 30 days. In another embodiment, the unit dose is not administered with a frequency (e.g., not a regular frequency). For example, the unit dose may be administered a single time. In one embodiment, the effective dose is administered with other traditional therapeutic modalities. In one embodiment, the subject has a viral infection and the modality is an antiviral agent other than an iRNA agent, e.g., other than a double- stranded iRNA agent, or sRNA agent,. In another embodiment, the subject has atherosclerosis and the effective dose of an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, is administered in combination with, e.g., after surgical intervention, e.g., angioplasty. hi one embodiment, a subject is administered an initial dose and one or more maintenance doses of an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof). The maintenance dose or doses are generally lower than the initial dose, e.g., one-half less of the initial dose. A maintenance regimen can include treating the subject with a dose or doses ranging from 0.01 μg to 1.4 mg/kg of body weight per day, e.g., 10, 1, 0.1, 0.01, 0.001, or 0.00001 mg per kg of bodyweight per day. The maintenance doses are preferably administered no more than once every 5, 10, or 30 days.
In one embodiment, the iRNA agent pharmaceutical composition includes a plurality of iRNA agent species. In another embodiment, the iRNA agent species has sequences that are non-overlapping and non-adjacent to another species with respect to a naturally occurring target sequence. In another embodiment, the plurality of iRNA agent species is specific for different naturally occurring target genes. In another embodiment, the iRNA agent is allele specific.
The inventors have discovered that iRNA agents described herein can be administered to mammals, particularly large mammals such as nonhuman primates or humans in a number of ways.
In one embodiment, the administration of the iRNA agent, e.g., a double- stranded iRNA agent, or sRNA agent, composition is parenteral, e.g. intravenous (e.g., as a bolus or as a diffusible infusion), intradermal, intraperitoneal, intramuscular, intrathecal, intraventricular, intracranial, subcutaneous, transmucosal, buccal, sublingual, endoscopic, rectal, oral, vaginal, topical, pulmonary, intranasal, urethral or ocular. Administration can be provided by the subject or by another person, e.g., a health care provider. The medication can be provided in measured doses or in a dispenser which delivers a metered dose. Selected modes of delivery are discussed in more detail below.
The invention provides methods, compositions, and kits, for rectal administration or delivery of iRNA agents described herein.
Accordingly, an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent , or a DNA which encodes a an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) described herein, e.g., a therapeutically effective amount of an iRNA agent described herein, e.g., an iRNA agent having a double stranded region of less than 40, and preferably less than 30 nucleotides and having one or two 1-3 nucleotide single strand 3' overhangs can be administered rectally, e.g., introduced through the rectum into the lower or upper colon. This approach is particularly useful in the treatment of, inflammatory disorders, disorders characterized by unwanted cell proliferation, e.g., polyps, or colon cancer.
In some embodiments the medication is delivered to a site in the colon by introducing a dispensing device, e.g., a flexible, camera-guided device similar to that used for inspection of the colon or removal of polyps, which includes means for delivery of the medication.
In one embodiment, the rectal administration of the iRNA agent is by means of an enema. The iRNA agent of the enema can be dissolved in a saline or buffered solution.
In another embodiment, the rectal administration is by means of a suppository. The suppository can include other ingredients, e.g., an excipient, e.g., cocoa butter or hydropropylmethylcellulose.
The invention also provides methods, compositions, and kits for oral delivery of iRNA agents described herein.
Accordingly, an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) described herein, e.g., a therapeutically effective amount of an iRNA described herein, e.g., an iRNA agent having a double stranded region of less than 40 and preferably less than 30 nucleotides and having one or two 1-3 nucleotide single strand 3' overhangs can be administered orally. Oral administration can be in the form of tablets, capsules, gel capsules, lozenges, troches or liquid syrups. In a preferred embodiment the composition is applied topically to a surface of the oral cavity.
The invention also provides methods, compositions, and kits for buccal delivery of iRNA agents described herein. Accordingly, an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) described herein, e.g., a therapeutically effective amount of iRNA agent having a double stranded region of less than 40 and preferably less than 30 nucleotides and having one or two 1-3 nucleotide single strand 3' overhangs can be administered to the buccal cavity. The medication can be sprayed into the buccal cavity or applied directly, e.g., in a liquid, solid, or gel form to a surface in the buccal cavity. This administration is particularly desirable for the treatment of inflammations of the buccal cavity, e.g., the gums or tongue, e.g., in one embodiment, the buccal administration is by spraying into the cavity, e.g., without inhalation, from a dispenser, e.g., a metered dose spray dispenser that dispenses the pharmaceutical composition and a propellant.
The invention also provides methods, compositions, and kits for ocular delivery of iRNA agents described herein. Accordingly, an iRNA agent, e.g., a double-stranded iRNA agent, or sR A agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) described herein, e.g., a therapeutically effective amount of an iRNA agent described herein, e.g., a sRNA agent having a double stranded region of less than 40 and preferably less than 30 nucleotides and having one or two 1-3 nucleotide single strand 3' overhangs can be administered to ocular tissue. The medications can be applied to the surface of the eye or nearby tissue, e.g., the inside of the eyelid. It can be applied topically, e.g., by spraying, in drops, as an eyewash, or an ointment. Administration can be provided by the subject or by another person, e.g., a health care provider. The medication can be provided in measured doses or in a dispenser which delivers a metered dose.
The medication can also be administered to the interior of the eye, and can be 5 introduced by a needle or other delivery device which can introduce it to a selected area or structure.
Ocular treatment is particularly desirable for treating inflammation of the eye or nearby tissue.
The invention also provides methods, compositions, and kits for delivery of o iRNA agents described herein to or through the skin.
Accordingly, an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) described herein, e.g., a therapeutically effective 5 amount of an iRNA agent described herein, e.g., a sRNA agent having a double stranded region of less than 40 and preferably less than 30 nucleotides and. one or two 1-3 nucleotide single strand 3' overhangs can be administered directly to the skin.
The medication can be applied topically or delivered in a layer of the skin, e.g., by the use of a microneedle or a battery of microneedles which penetrate into the skin, 0 but preferably not into the underlying muscle tissue.
In one embodiment, the administration of the iRNA agent composition is topical. In another embodiment, topical administration delivers the composition to the dermis or epidermis of a subject. In other embodiments the topical administration is in the form of transdermal patches, ointments, lotions, creams, gels, drops, suppositories, 5 sprays, liquids or powders. A composition for topical administration can be formulated as a liposome, micelle, emulsion, or other lipophilic molecular assembly.
In another embodiment, the transdermal administration is applied with at least one penetration enhancer. In other embodiments, the penetration can be enhanced with iontophoresis, phonophoresis, and sonophoresis. In another aspect, the invention 0 provides methods, compositions, devices, and kits for pulmonary delivery of iRNA agents described herein.
Accordingly, an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) described herein, e.g., a therapeutically effective amount of iRNA agent, e.g., a sRNA agent having a double stranded region of less than 40, preferably less than 30 nucleotides and having one or two 1-3 nucleotide single strand 3' overhangs can be administered to the pulmonary system. Pulmonary administration can be achieved by inhalation or by the introduction of a delivery device into the pulmonary system, e.g., by introducing a delivery device which can dispense the medication.
The preferred method of pulmonary delivery is by inhalation. The medication can be provided in a dispenser which delivers the medication, e.g., wet or dry, in a form sufficiently small such that it can be inhaled. The device can deliver a metered dose of medication. The subject, or another person, can administer the medication.
Pulmonary delivery is effective not only for disorders which directly affect pulmonary tissue, but also for disorders which affect other tissue. iRNA agents can be formulated as a liquid or nonliquid, e.g., a powder, crystal, or aerosol for pulmonary delivery.
In another aspect, the invention provides methods, compositions, devices, and kits for nasal delivery of iRNA agents described herein. Accordingly, an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) described herein, e.g., a therapeutically effective amount of iRNA agent, e.g., a sRNA agent having a double stranded region of less than 40 and preferably less than 30 nucleotides and having one or two 1-3 nucleotide single strand 3' overhangs can be administered nasally. Nasal administration can be achie ed by introduction of a delivery device into the nose, e.g., by introducing a delivery device which can dispense the medication.
The preferred method of nasal delivery is by spray, aerosol, liquid, e.g., by drops, of by topical administration to a surface of the nasal cavity. The medication can be provided in a dispenser which delivery of the medication, e.g., wet or dry, in a form sufficiently small such that it can be inhaled. The device can deliver a metered dose of medication. The subject, or another person, can administer the medication. Nasal delivery is effective not only for disorders which directly affect nasal tissue, but also for disorders which affect other tissue iRNA agents can be formulated as a liquid or nonliquid, e.g., a powder, crystal, or for nasal delivery. In another embodiment, the iRNA agent is packaged in a viral natural capsid or in a chemically or enzymatically produced artificial capsid or structure derived therefrom.
In one aspect, of the invention, the dosage of a pharmaceutical composition including an iRNA agent is administered in order to alleviate the symptoms of a disease state, e.g., cancer or a cardiovascular disease.
In one aspect, gene expression in a subject is modulated by administering a pharmaceutical composition including an iRNA agent. In other embodiments, a subject is treated with the pharmaceutical composition by any of the methods mentioned above. In another embodiment, the subject has cancer. An iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) composition can be administered as a liposome. For example, the composition can be prepared by a method that includes: (1) contacting an iRNA agent with an amphipathic cationic lipid conjugate in the presence of a detergent; and (2) removing the detergent to form an iRNA agent and cationic lipid complex. In one embodiment, the detergent is cholate, deoxycholate, lauryl sarcosine, octanoyl sucrose, CHAPS (3-[(3-cholamidopropyl)-di-methylamine]-2-hydroxyl- 1 -propane), novel- β-D-glucopyranoside, lauryl dimethylamine oxide, or octylglucoside. The iRNA agent can be an sRNA agent. The method can include preparing a composition that includes a plurality of iRNA agents, e.g., specific for one or more different endogenous target RNAs. The method can include other features described herein.
In another aspect, a subject is treated by administering a defined amount of an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent) composition that is in a powdered form. In one embodiment, the powder is a collection of microparticles. In one embodiment, the powder is a collection of crystalline particles. The composition can include a plurality of iRNA agents, e.g., specific for one or more different endogenous target RNAs. The method can include other features described herein.
In one aspect, a subject is treated by administering a defined amount of an iRNA agent composition that is prepared by a method that includes spray-drying, i.e. atomizing a liquid solution, emulsion, or suspension, immediately exposing the droplets to a drying gas, and collecting the resulting porous powder particles. The composition can include a plurality of iRNA agents, e.g., specific for one or more different endogenous target RNAs. The method can include other features described herein. In one aspect, the iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof), is provided in a powdered, crystallized or other finely divided form, with or without a carrier, e.g., a micro- or nano-particle suitable for inhalation or other pulmonary delivery. In one embodiment, this includes providing an aerosol preparation, e.g., an aerosolized spray-dried composition. The aerosol composition can be provided in and/or dispensed by a metered dose delivery device.
In another aspect, a subject is treated for a condition treatable by inhalation. In one embodiment, this method includes aerosolizing a spray-dried iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) composition and inhaling the aerosolized composition. The iRNA agent can be an sRNA. The composition can include a plurality of iRNA agents, e.g., specific for one or more different endogenous target RNAs. The method can include other features described herein.
In another aspect, the invention features a method of treating a subject that includes: administering a composition including an effective/defined amount of an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof), wherein the composition is prepared by a method that includes spray-drying, lyophilization, vacuum drying, evaporation, fluid bed drying, or a combination of these techniques In another aspect, the invention features a method that includes: evaluating a parameter related to the abundance of a transcript in a cell of a subject; comparing the evaluated parameter to a reference value; and if the evaluated parameter has a preselected relationship to the reference value (e.g., it is greater), administering an 5 iRNA agent (or a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent or precursor thereof) to the subject. In one embodiment, the iRNA agent includes a sequence that is complementary to the evaluated transcript. For example, the parameter can be a direct measure of transcript levels, a measure of a protein level, a disease or disorder o symptom or characterization (e.g., rate of cell proliferation and/or tumor mass, viral load).
In another aspect, the invention features a method that includes: administering a first amount of a composition that comprises an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be 5 processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double- stranded iRNA agent, or sRNA agent, or precursor thereof) to a subject, wherein the iRNA agent includes a strand substantially complementary to a target nucleic acid; evaluating an activity associated with a protein encoded by the target nucleic acid; wherein the evaluation is used to determine if a second amount should be administered. 0 In a preferred embodiment the method includes administering a second amount of the composition, wherein the timing of administration or dosage of the second amount is a function of the evaluating. The method can include other features described herein.
In another aspect, the invention features a method of administering a source of a double-stranded iRNA agent (ds iRNA agent) to a subject. The method includes 5 administering or implanting a source of a ds iRNA agent, e.g., a sRNA agent, that (a) includes a double-stranded region that is 19-25 nucleotides long, preferably 21-23 nucleotides, (b) is complementary to a target RNA (e.g., an endogenous RNA or a pathogen RNA), and, optionally, (c) includes at least one 3' overhang 1-5 nt long. In one embodiment, the source releases ds iRNA agent over time, e.g. the source is a 0 controlled or a slow release source, e.g., a microparticle that gradually releases the ds iRNA agent. In another embodiment, the source is a pump, e.g., a pump that includes a sensor or a pump that can release one or more unit doses. In one aspect, the invention features a pharmaceutical composition that includes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) including a nucleotide sequence complementary to a target RNA, e.g., substantially and/or exactly complementary. The target RNA can be a transcript of an endogenous human gene. In one embodiment, the iRNA agent (a) is 19-25 nucleotides long, preferably 21-23 nucleotides, (b) is complementary to an endogenous target RNA, and, optionally, (c) includes at least one 3' overhang 1-5 nt long. In one embodiment, the pharmaceutical composition can be an emulsion, microemulsion, cream, jelly, or liposome.
In one example the pharmaceutical composition includes an iRNA agent mixed with a topical delivery agent. The topical delivery agent can be a plurality of microscopic vesicles. The microscopic vesicles can be liposomes. In a preferred embodiment the liposomes are cationic liposomes.
In another aspect, the pharmaceutical composition includes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) admixed with a topical penetration enhancer. In one embodiment, the topical penetration enhancer is a fatty acid. The fatty acid can be arachidonic acid, oleic acid, lauric acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monolein, dilaurin, glyceryl 1-monocaprate, l-dodecylazacycloheptan-2-one, an acylcarnitine, an acylcholine, or a Cι-ιo alkyl ester, monoglyceride, diglyceride or pharmaceutically acceptable salt thereof.
In another embodiment, the topical penetration enhancer is a bile salt. The bile salt can be cholic acid, dehydrocholic acid, deoxycholic acid, glucholic acid, glycholic acid, glycodeoxycholic acid, taurocholic acid, taurodeoxycholic acid, chenodeoxycholic acid, ursodeoxycholic acid, sodium tauro-24,25-dihydro-fusidate, sodium glycodihydrofusidate, polyoxyethylene-9-lauryl ether or a pharmaceutically acceptable salt thereof. In another embodiment, the penetration enhancer is a chelating agent. The chelating agent can be EDTA, citric acid, a salicyclate, a N-acyl derivative of collagen, laureth-9, an N-amino acyl derivative of a beta-diketone or a mixture thereof.
In another embodiment, the penetration enhancer is a surfactant, e.g., an ionic or nonionic surfactant. The surfactant can be sodium lauryl sulfate, polyoxyethylene-9- lauryl ether, polyoxyethylene-20-cetyl ether, a perfluorchemical emulsion or mixture thereof.
In another embodiment, the penetration enhancer can be selected from a group consisting of unsaturated cyclic ureas, 1 -alkyl- alkones, 1-alkenylazacyclo-alakanones, steroidal anti-inflammatory agents and mixtures thereof. In yet another embodiment the penetration enhancer can be a glycol, a pyrrol, an azone, or a terpenes.
In one aspect, the invention features a pharmaceutical composition including an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) in a form suitable for oral delivery. In one embodiment, oral delivery can be used to deliver an iRNA agent composition to a cell or a region of the gastro-intestinal tract, e.g., small intestine, colon (e.g., to treat a colon cancer), and so forth. The oral delivery form can be tablets, capsules or gel capsules. In one embodiment, the iRNA agent of the pharmaceutical composition modulates expression of a cellular adhesion protein, modulates a rate of cellular proliferation, or has biological activity against eukaryotic pathogens or retroviruses. In another embodiment, the pharmaceutical composition includes an enteric material that substantially prevents dissolution of the tablets, capsules or gel capsules in a mammalian stomach. In a preferred embodiment the enteric material is a coating. The coating can be acetate phthalate, propylene glycol, sorbitan monoleate, cellulose acetate trimellitate, hydroxy propyl methylcellulose phthalate or cellulose acetate phthalate.
In another embodiment, the oral dosage form of the pharmaceutical composition includes a penetration enhancer. The penetration enhancer can be a bile salt or a fatty acid. The bile salt can be ursodeoxycholic acid, chenodeoxycholic acid, and salts thereof. The fatty acid can be capric acid, lauric acid, and salts thereof. In another embodiment, the oral dosage form of the pharmaceutical composition includes an excipient. In one example the excipient is polyethyleneglycol. In another example the excipient is precirol.
In another embodiment, the oral dosage form of the pharmaceutical composition includes a plasticizer. The plasticizer can be diethyl phthalate, triacetin dibutyl sebacate, dibutyl phthalate or triethyl citrate.
In one aspect, the invention features a pharmaceutical composition including an iRNA agent and a delivery vehicle. In one embodiment, the iRNA agent is (a) is 19-25 nucleotides long, preferably 21-23 nucleotides, (b) is complementary to an endogenous target RNA, and, optionally, (c) includes at least one 3' overhang 1-5 nucleotides long. In one embodiment, the delivery vehicle can deliver an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) to a cell by a topical route of administration. The delivery vehicle can be microscopic vesicles. In one example the microscopic vesicles are liposomes.. In a preferred embodiment the liposomes are cationic liposomes. hi another example the microscopic vesicles are micelles. hi one aspect, the invention features a method for making a pharmaceutical composition, the method including: (1) contacting an iRNA agent, e.g., a double- stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent) with a amphipathic cationic lipid conjugate in the presence of a detergent; and (2) removing the detergent to form an iRNA agent and cationic lipid complex. In another aspect, the invention features a pharmaceutical composition produced by a method including: (1) contacting an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent) with a amphipathic cationic lipid conjugate in the presence of a detergent; and (2) removing the detergent to form an iRNA agent and cationic lipid complex. In one embodiment, the detergent is cholate, deoxycholate, lauryl sarcosine, octanoyl sucrose, CHAPS (3-[(3-cholamidopropyl)-di-methylamine]- 2-hydroxyl-l -propane), novel- β-D-glucopyranoside, lauryl dimethylamine oxide, or octylglucoside. In another embodiment, the amphipathic cationic lipid conjugate is biodegradable. In yet another embodiment the pharmaceutical composition includes a targeting ligand. ι
In one aspect, the invention features a pharmaceutical composition including an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) in an injectable dosage form. In one embodiment, the injectable dosage form of the pharmaceutical composition includes sterile aqueous solutions or dispersions and sterile powders. In a preferred embodiment the sterile solution can include a diluent such as water; saline solution; fixed oils, polyethylene glycols, glycerin, or propylene glycol.
In one aspect, the invention features a pharmaceutical composition including an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) in oral dosage form. In one embodiment, the oral dosage form is selected from the group consisting of tablets, capsules and gel capsules. In another embodiment, the pharmaceutical composition includes an enteric material that substantially prevents dissolution of the tablets, capsules or gel capsules in a mammalian stomach. In a preferred embodiment the enteric material is a coating. The coating can be acetate phthalate, propylene glycol, sorbitan monoleate, cellulose acetate trimellitate, hydroxy propyl methyl cellulose phthalate or cellulose acetate phthalate. In one embodiment, the oral dosage form of the pharmaceutical composition includes a penetration enhancer, e.g., a penetration enhancer described herein. hi another embodiment, the oral dosage form of the pharmaceutical composition includes an excipient. hi one example the excipient is polyethyleneglycol. hi another example the excipient is precirol.
In another embodiment, the oral dosage form of the pharmaceutical composition includes a plasticizer. The plasticizer can be diethyl phthalate, triacetin dibutyl sebacate, dibutyl phthalate or triethyl citrate.
In one aspect, the invention features a pharmaceutical composition including an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) in a rectal dosage form. In one embodiment, the rectal dosage form is an enema. In another embodiment, the rectal dosage form is a suppository.
In one aspect, the invention features a pharmaceutical composition including an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) in a vaginal dosage form. In one embodiment, the vaginal dosage form is a suppository. In another embodiment, the vaginal dosage form is a foam, cream, or gel.
In one aspect, the invention features a pharmaceutical composition including an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) in a pulmonary or nasal dosage form. In one embodiment, the iRNA agent is incorporated into a particle, e.g., a macrop article, e.g., a microsphere. The particle can be produced by spray drying, lyophilization, evaporation, fluid bed drying, vacuum drying, or a combination thereof. The microsphere can be formulated as a suspension, a powder, or an implantable solid. In one aspect, the invention features a spray-dried iRNA agent, e.g., a double- stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) composition suitable for inhalation by a subject, including: (a) a therapeutically effective amount of an iRNA agent suitable for treating a condition in the subject by inhalation; (b) a pharmaceutically acceptable excipient selected from the group consisting of carbohydrates and amino acids; and (c) optionally, a dispersibility-enhancing amount of a physiologically-acceptable, water-soluble polypeptide. hi one embodiment, the excipient is a carbohydrate. The carbohydrate can be selected from the group consisting of monosaccharides, disaccharides, trisaccharides, and polysaccharides. hi a preferred embodiment the carbohydrate is a monosaccharide selected from the group consisting of dextrose, galactose, mannitol, D-mannose, sorbitol, and sorbose. In another preferred embodiment the carbohydrate is a disaccharide selected from the group consisting of lactose, maltose, sucrose, and trehalose.
In another embodiment, the excipient is an amino acid. In one embodiment, the amino acid is a hydrophobic amino acid. In a preferred embodiment the hydrophobic amino acid is selected from the group consisting of alanine, isoleucine, leucine, methionine, phenylalanine, proline, tryptophan, and valine. In yet another embodiment the amino acid is a polar amino acid. In a preferred embodiment the amino acid is selected from the group consisting of arginine, histidine, lysine, cysteine, glycine, glutamine, serine, threonine, tyrosine, aspartic acid and glutamic acid. In one embodiment, the dispersibility-enhancing polypeptide is selected from the group consisting of human serum albumin, α-lactalbumin, trypsinogen, and polyalanine.
In one embodiment, the spray-dried iRNA agent composition includes particles having a mass median diameter (MMD) of less than 10 microns. In another embodiment, the spray-dried iRNA agent composition includes particles having a mass median diameter of less than 5 microns. In yet another embodiment the spray-dried iRNA agent composition includes particles having a mass median aerodynamic diameter (MMAD) of less than 5 microns.
In certain other aspects, the invention provides kits that include a suitable container containing a pharmaceutical formulation of an iRNA agent, e.g., a double- stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof), i certain embodiments the individual components of the pharmaceutical formulation maybe provided in one container. Alternatively, it may be desirable to provide the components of the pharmaceutical formulation separately in two or more containers, e.g., one container for an iRNA agent preparation, and at least another for a carrier compound. The kit may be packaged in a number of different configurations such as one or more containers in a single box. The different components can be combined, e.g., according to instructions provided with the kit. The components can be combined according to a method described herein, e.g., to prepare and administer a pharmaceutical composition. The kit can also include a delivery device. In another aspect, the invention features a device, e.g., an implantable device, wherein the device can dispense or administer a composition that includes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof), e.g., an iRNA agent that silences an endogenous transcript. In one embodiment, the device is coated with the composition, hi another embodiment the iRNA agent is disposed within the device. In another embodiment, the device includes a mechanism to dispense a unit dose of the composition, h other embodiments the device releases the composition continuously, e.g., by diffusion. Exemplary devices include stents, catheters, pumps, artificial organs or organ components (e.g., artificial heart, a heart valve, etc.), and sutures.
As used herein, the term "crystalline" describes a solid having the structure or characteristics of a crystal, i.e., particles of three-dimensional structure in which the plane faces intersect at definite angles and in which there is a regular internal structure. The compositions of the invention may have different crystalline forms. Crystalline forms can be prepared by a variety of methods, including, for example, spray drying.
As used herein, "specifically hybridizable" and "complementary" are terms which are used to indicate a sufficient degree of complementarity such that stable and specific binding occurs between a compound of the invention and a target RNA molecule. Specific binding requires a sufficient degree of complementarity to avoid non-specific binding of the oligomeric compound to non-target sequences under conditions in which specific binding is desired, i.e., under physiological conditions in the case of in vivo assays or therapeutic treatment, or in the case of in vitro assays, under conditions in which the assays are performed. The non-target sequences typically differ by at least 5 nucleotides.
In one embodiment, an iRNA agent is "sufficiently complementary" to a target RNA, e.g., a target mRNA, such that the iRNA agent silences production of protein encoded by the target mRNA. hi another embodiment, the iRNA agent is "exactly complementary" to a target RNA, e.g., the target RNA and the iRNA agent anneal, preferably to form a hybrid made exclusively of Watson-Crick basepairs in the region of exact complementarity. A "sufficiently complementary" target RNA can include an internal region (e.g., of at least 10 nucleotides) that is exactly complementary to a target RNA. Moreover, in some embodiments, the iRNA agent specifically discriminates a single-nucleotide difference. In this case, the iRNA agent only mediates RNAi if exact complementary is found in the region (e.g., within 7 nucleotides of) the single- nucleotide difference. As used herein, the term "oligonucleotide" refers to a nucleic acid molecule
(RNA or DNA) preferably of length less than 100, 200, 300, or 400 nucleotides.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from this description, and from the claims. This application incorporates all cited references, patents, and patent applications by references in their entirety for all purposes.
DESCRIPTION OF DRAWINGS FIG. 1A is a graph depicting the results of quantitative RT-PCR experiments. Class I iRNAs were injected into mice, and then liver and kidney ApoM RNA levels were measured by quantitative RT-PCR. "Cl" and "C2" represents ApoM RNA levels in control mice.
FIG. IB shows gels denoting the results of quantitative RT-PCR experiments. Class I iRNAs were injected into mice, and then liver and kidney ApoM RNA levels were measured by quantitative RT-PCR. "Cl" and "C2" represents ApoM RNA levels in control mice.
FIG. 2 is a graph showing the results of quantitative RT-PCR experiments that measured ApoM RNA levels in HepG2 tissue culture cells following cotransfection with a plasmid expressing exogenous ApoM RNA under a CMV promoter and a class I iRNA. "C" represents a ApoM RNA levels in control HepG2 tissue culture cells. FIG. 3 A is a graph depicting the results of quantitative RT-PCR experiments.
Class II iRNAs (11, 13, 15, and 17) were injected separately into mice. Liver and kidney ApoM RNA levels were then measured by quantitative RT-PCR. "C" represents ApoM RNA levels in control mice (mice not injected with class II iRNAs). FIG. 3B shows gels denoting the results of quantitative RT-PCR experiments. Class II iRNAs were injected into mice, and then liver and kidney ApoM RNA levels were measured by quantitative RT-PCR. RT-PCR of Hprt and apoC2 RNA was used as control experiments. "C" represents ApoM RNA levels in control mice (mice not injected with class II iRNAs).
FIG. 4A is a graph showing the levels of serum ApoM levels in mice following injection with class II RNAi containing phosphorothioates. "C" represents serum ApoM levels in control mice (mice not injected with class II iRNAs).
FIG. 4B is a Western blot showing the levels of serum ApoM levels in mice following injection with class II RNAi containing phosphorothioates. "C" represents serum ApoM levels in control mice (mice not injected with class II iRNAs).
FIG. 5 A is a graph showing the levels of serum ApoM levels in mice following injection with Class III RNAi molecules. "C" represents serum ApoM levels in control mice (mice not injected with class III iRNAs).
FIG. 5B is a Western blot showing the levels of serum ApoM levels in mice following injection with Class III RNAi molecules. "C" represents serum ApoM levels in control mice (mice not injected with class III iRNAs). FIG. 6 A is a graph showing the levels of serum ApoM levels in mice following injections with varying concentrations ("μg") of RNAi. The effect of preincubating the RNAi with lipofectarnine ("Lipo") was also tested in these experiments.
FIG. 6B is a Western blot showing the levels of serum ApoM levels in mice following injections with varying concentrations ("μ.g") of RNAi. The effect of preincubating the RNAi with lipofectarnine ("Lipo") was also tested in these experiments.
DETAILED DESCRIPTION Double-stranded (dsRNA) directs the sequence-specific silencing of mRNA through a process known as RNA interference (RNAi). The process occurs in a wide variety of organisms, including mammals and other vertebrates.
It has been demonstrated that 21-23 nt fragments of dsRNA are sequence- specific mediators of RNA silencing, e.g., by causing RNA degradation. While not wishing to be bound by theory, it may be that a molecular signal, which may be merely the specific length of the fragments, present in these 21-23 nt fragments recruits cellular factors that mediate RNAi. Described herein are methods for preparing and administering these 21-23 nt fragments, and other iRNAs agents, and their use for specifically inactivating gene function. The use of iRNAs agents (or recombinantly produced or chemically synthesized oligonucleotides of the same or similar nature) enables the targeting of specific mRNAs for silencing in mammalian cells. In addition, longer dsRNA agent fragments can also be used, e.g., as described below.
Although, in mammalian cells, long dsRNAs can induce the interferon response 5 which is frequently deleterious, sRNAs do not trigger the interferon response, at least not to an extent that is deleterious to the cell and host. In particular, the length of the iRNA agent strands in an sRNA agent can be less than 31, 30, 28, 25, or 23 nt, e.g., sufficiently short to avoid inducing a deleterious interferon response. Thus, the administration of a composition of sRNA agent (e.g., formulated as described herein) to o a mammalian cell can be used to silence expression of a target gene while circumventing the interferon response. Further, use of a discrete species of iRNA agent can be used to selectively target one allele of a target gene, e.g., in a subject heterozygous for the allele.
Moreover, in one embodiment, a mammalian cell is treated with an iRNA agent 5 that disrupts a component of the interferon response, e.g., double stranded RNA
(dsRNA)-activated protein kinase PKR. Such a cell can be treated with a second iRNA agent that includes a sequence complementary to a target RNA and that has a length that might otherwise trigger the interferon response.
In a typical embodiment, the subject is a mammal such as a cow, horse, mouse, 0 rat, dog, pig, goat, or a primate. The subject can be a dairy mammal (e.g., a cow, or goat) or other farmed animal (e.g., a chicken, turkey, sheep, pig, fish, shrimp). In a much preferred embodiment, the subject is a human, e.g., a normal individual or an individual that has, is diagnosed with, or is predicted to have a disease or disorder.
Further, because iRNA agent mediated silencing persists for several days after 5 administering the iRNA agent composition, in many instances, it is possible to administer the composition with a frequency of less than once per day, or, for some instances, only once for the entire therapeutic regimen. For example, treatment of some cancer cells may be mediated by a single bolus administration, whereas a chronic viral infection may require regular administration, e.g., once per week or once per 0 month.
A number of exemplary routes of delivery are described that can be used to administer an iRNA agent to a subject. In addition, the iRNA agent can be formulated according to an exemplary method described herein. iRNA Production An iRNA can be produced, e.g., in bulk, by a variety of methods. Exemplary methods include: organic synthesis and RNA cleavage, e.g., in vitro cleavage.
Organic Synthesis An iRNA can be made by separately synthesizing each respective strand of a double-stranded RNA molecule. The component strands can then be annealed.
A large bioreactor, e.g., the OligoPilot II from Pharmacia Biotec AB (Uppsala Sweden), can be used to produce a large amount of a particular RNA strand for a given iRNA. The OligoPilotll reactor can efficiently couple a nucleotide using only a 1.5 molar excess of a phosphoramidite nucleotide. To make an RNA strand, ribonucleotides amidites are used. Standard cycles of monomer addition can be used to synthesize the 21 to 23 nucleotide strand for the iRNA. Typically, the two complementary strands are produced separately and then annealed, e.g., after release from the solid support and deprotection. Organic synthesis can be used to produce a discrete iRNA species. The complementary of the species to a particular target gene can be precisely specified. For example, the species may be complementary to a region that includes a polymorphism, e.g., a single nucleotide polymorphism. Further the location of the polymorphism can be precisely defined. In some embodiments, the polymorphism is located in an internal region, e.g., at least 4, 5, 7, or 9 nucleotides from one or both of the termini.
dsRNA Cleavage iRNAs can also be made by cleaving a larger ds iRNA. The cleavage can be mediated in vitro or in vivo. For example, to produce iRNAs by cleavage in vitro, the following method can be used:
In vitro transcription. dsRNA is produced by transcribing a nucleic acid (DNA) segment in both directions. For example, the HiScribe™ RNAi transcription kit (New England Biolabs) provides a vector and a method for producing a dsRNA for a nucleic acid segment that is cloned into the vector at a position flanked on either side by a T7 promoter. Separate templates are generated for T7 transcription of the two complementary strands for the dsRNA. The templates are transcribed in vitro by addition of T7 RNA polymerase and dsRNA is produced. Similar methods using PCR and/or other RNA polymerases (e.g., T3 or SP6 polymerase) can also be used. In one embodiment, RNA generated by this method is carefully purified to remove endotoxins that may contaminate preparations of the recombinant enzymes.
In vitro cleavage. dsRNA is cleaved in vitro into iRNAs, for example, using a Dicer or comparable RNAse Ill-based activity. For example, the dsRNA can be incubated in an in vitro extract from Drosophila or using purified components, e.g. a purified RNAse or RISC complex (RNA-induced silencing complex ). See, e.g., Ketting et al, Genes Dev. 15:2654-9, 2001, and Hammond, Science 293:1146-50, 2001. dsRNA cleavage generally produces a plurality of iRNA species, each being a particular 21 to 23 nt fragment of a source dsRNA molecule. For example, iRNAs that include sequences complementary to overlapping regions and adjacent regions of a source dsRNA molecule may be present.
Regardless of the method of synthesis, the iRNA preparation can be prepared in a solution (e.g., an aqueous and/or organic solution) that is appropriate for formulation. For example, the iRNA preparation can be precipitated and redissolved in pure double- distilled water, and lyophilized. The dried iRNA can then be resuspended in a solution appropriate for the intended formulation process.
Synthesis of modified and nucleotide surrogate iRNA agents is discussed below.
FORMULATION For ease of exposition the formulations, compositions and methods in this section are discussed largely with regard to unmodified iRNA agents. It should be understood, however, that these formulations, compositions and methods can be practiced with other iRNA agents, e.g., modified iRNA agents, and such practice is within the invention. A formulated iRNA composition can assume a variety of states. In some examples, the composition is at least partially crystalline, uniformly crystalline, and/or anhydrous (e.g., less than 80, 50, 30, 20, or 10% water), hi another example, the iRNA is in an aqueous phase, e.g., in a solution that includes water.
The aqueous phase or the crystalline compositions can, e.g., be incorporated into a delivery vehicle, e.g., a liposome (particularly for the aqueous phase) or a particle (e.g., a microparticle as can be appropriate for a crystalline composition). Generally, the iRNA composition is formulated in a manner that is compatible with the intended method of administration (see, below).
In particular embodiments, the composition is prepared by at least one of the following methods: spray drying, lyophilization, vacuum drying, evaporation, fluid bed drying, or a combination of these techniques; or sonication with a lipid, freeze-drying, condensation and other self-assembly.
An iRNA preparation can be formulated in combination with another agent, e.g., another therapeutic agent or an agent that stabilizes an iRNA, e.g., a protein that complexes with iRNA to form an iRNP. Still other agents include chelators, e.g., EDTA (e.g., to remove divalent cations such as Mg2+), salts, RNAse inhibitors (e.g., a broad specificity RNAse inhibitor such as RNAsin) and so forth.
In one embodiment, the iRNA preparation includes another iRNA agent, e.g., a second iRNA that can mediated RNAi with respect to a second gene, or with respect to the same gene. Still other preparation can include at least 3, 5, ten, twenty, fifty, or a hundred or more different iRNA species. Such iRNAs can mediated RNAi with respect to a similar number of different genes.
In one embodiment, the iRNA preparation includes at least a second therapeutic agent (e.g., an agent other than an RNA or a DNA). For example, an iRNA composition for the treatment of a viral disease, e.g. HIV, might include a known antiviral agent (e.g., a protease inhibitor or reverse transcriptase inhibitor), hi another example, an iRNA composition for the treatment of a cancer might further comprise a chemotherapeutic agent.
Exemplary formulations are discussed below.
Liposomes For ease of exposition the formulations, compositions and methods in this section are discussed largely with regard to unmodified iRNA agents. It should be understood, however, that these formulations, compositions and methods can be practiced with other iRNA agents, e.g., modified iRNA s agents, and such practice is within the invention. An iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) preparation can be formulated for delivery in a membranous molecular assembly, e.g., a liposome or a micelle. As used herein, the term "liposome" refers to a vesicle composed of amphiphilic lipids arranged in at least one bilayer, e.g., one bilayer or a plurality of bilayers. Liposomes include unilamellar and multilamellar vesicles that have a membrane formed from a lipophilic material and an aqueous interior. The aqueous portion contains the iRNA composition. The lipophilic material isolates the aqueous interior from an aqueous exterior, which typically does not include the iRNA composition, although in some examples, it may. Liposomes are useful for the transfer and delivery of active ingredients to the site of action. Because the liposomal membrane is structurally similar to biological membranes, when liposomes are applied to a tissue, the liposomal bilayer fuses with bilayer of the cellular membranes. As the merging of the liposome and cell progresses, the internal aqueous contents that include the iRNA are delivered into the cell where the iRNA can specifically bind to a target RNA and can mediate RNAi. In some cases the liposomes are also specifically targeted, e.g., to direct the iRNA to particular cell types. A liposome containing an iRNA can be prepared by a variety of methods.
In one example, the lipid component of a liposome is dissolved in a detergent so that micelles are formed with the lipid component. For example, the lipid component can be an amphipathic cationic lipid or lipid conjugate. The detergent can have a high critical micelle concentration and may be nonionic. Exemplary detergents include cholate, CHAPS, octylglucoside, deoxycholate, and lauroyl sarcosine. The iRNA preparation is then added to the micelles that include the lipid component. The cationic groups on the lipid interact with the iRNA and condense around the iRNA to form a liposome. After condensation, the detergent is removed, e.g. , by dialysis, to yield a liposomal preparation of iRNA. If necessary a carrier compound that assists in condensation can be added during the condensation reaction, e.g., by controlled addition. For example, the carrier compound can be a polymer other than a nucleic acid (e.g., spermine or spermidine). pH can also adjusted to favor condensation.
Further description of methods for producing stable polynucleotide delivery vehicles, which incorporate a polynucleotide/cationic lipid complex as structural components of the delivery vehicle, are described in, e.g., WO 96/37194. Liposome formation can also include one or more aspects of exemplary methods described in Feigner, P. L. et al., Proc. Natl. Acad. Sci., USA 8:7413-7417, 1987; U.S. Pat. No. 4,897,355; U.S. Pat. No. 5,171,678; Bangham, et al. M. Mol. Biol. 23:238, 1965; Olson, et al. Biochim. Biophys. Ada 557:9, 1979; Szoka, et al. Proc. Natl. Acad. Sci. 75: 4194, 1978; Mayhew, et al. Biochim. Biophys. Ada 775:169, 1984; Kim, et al. Biochim. Biophys. Ada 728:339, 1983; and Fukunaga, et al. Endocrinol. 115:757, 1984. Commonly used techniques for preparing lipid aggregates of appropriate size for use as delivery vehicles include sonication and freeze-thaw plus extrusion (see, e.g., Mayer, et al. Biochim. Biophys. Ada 858:161, 1986). Microfluidization can be used when consistently small (50 to 200 nm) and relatively uniform aggregates are desired (Mayhew, et al. Biochim. Biophys. Ada 775:169, 1984). These methods are readily adapted to packaging iRNA preparations into liposomes.
Liposomes that are pH-sensitive or negatively-charged, entrap nucleic acid molecules rather than complex with them. Since both the nucleic acid molecules and the lipid are similarly charged, repulsion rather than complex formation occurs. Nevertheless, some nucleic acid molecules are entrapped within the aqueous interior of these liposomes. pH-sensitive liposomes have been used to deliver DNA encoding the thymidine kinase gene to cell monolayers in culture. Expression of the exogenous gene was detected in the target cells (Zhou et al., Journal of Controlled Release 19:269-274, 1992).
One major type of liposomal composition includes phospholipids other than naturally-derived phosphatidylchohne. Neutral liposome compositions, for example, can be foπned from dimyristoyl phosphatidylchohne (DMPC) or dipalmitoyl phosphatidylchohne (DPPC). Anionic liposome compositions generally are formed from dimyristoyl phosphatidylglycerol, while anionic fusogenic liposomes are formed primarily from dioleoyl phosphatidylethanolamine (DOPE). Another type of liposomal composition is formed from phosphatidylchohne (PC) such as, for example, soybean PC, and egg PC. Another type is formed from mixtures of phospholipid and/or phosphatidylchohne and/or cholesterol.
Examples of other methods to introduce liposomes into cells in vitro and in vivo include U.S. Pat. No. 5,283,185; U.S. Pat. No. 5,171,678; WO 94/00569; WO 93/24640; WO 91/16024; Feigner, J. Biol. Chem. 269:2550, 1994; Nabel, Proc. Natl. Acad. Sci. 90:11307, 1993; Nabel, Human Gene Ther. 3:649, 1992; Gershon, Biochem. 32:7143, 1993; and Strauss EMBO J. 11:417, 1992. In one embodiment, cationic liposomes are used. Cationic liposomes possess the advantage of being able to fuse to the cell membrane. Non-cationic liposomes, although not able to fuse as efficiently with the plasma membrane, are taken up by macrophages in vivo and can be used to deliver iRNAs to macrophages. Further advantages of liposomes include: liposomes obtained from natural phospholipids are biocompatible and biodegradable; liposomes can incorporate a wide range of water and lipid soluble drugs; liposomes can protect encapsulated iRNAs in their internal compartments from metabolism and degradation (Rosoff, in "Pharmaceutical Dosage Forms," Lieberman, Rieger and Banker (Eds.), 1988, volume 1, p. 245). Important considerations in the preparation of liposome formulations are the lipid surface charge, vesicle size and the aqueous volume of the liposomes.
A positively charged synthetic cationic lipid, N-[l-(2,3-dioleyloxy)propyl]- N,N,N-trimethylammonium chloride (DOTMA) can be used to form small liposomes that interact spontaneously with nucleic acid to form lipid-nucleic acid complexes which are capable of fusing with the negatively charged lipids of the cell membranes of tissue culture cells, resulting in delivery of iRNA (see, e.g., Feigner et al., Proc. Natl. Acad. Sci. USA 8:7413-7417, 1987 and U.S. Pat. No. 4,897,355 for a description of DOTMA and its use with DNA).
A DOTMA analogue, l,2-bis(oleoyloxy)-3-(trimethylammonia)propane (DOTAP) can be used in combination with a phospho lipid to form DNA-complexing vesicles. Lipofectin™ Bethesda Research Laboratories, Gaithersburg, Md.) is an effective agent for the delivery of highly anionic nucleic acids into living tissue culture cells that comprise positively charged DOTMA liposomes which interact spontaneously with negatively charged polynucleo tides to form complexes. When enough positively charged liposomes are used, the net charge on the resulting complexes is also positive. Positively charged complexes prepared in this way spontaneously attach to negatively charged cell surfaces, fuse with the plasma membrane, and efficiently deliver functional nucleic acids into, for example, tissue culture cells. Another commercially available cationic lipid, l,2-bis(oleoyloxy)-3,3- (trimethylammonia)propane ("DOTAP") (Boehringer Mannheim, Indianapolis, Indiana) differs from DOTMA in that the oleoyl moieties are linked by ester, rather than ether linkages. Other reported cationic lipid compounds include those that have been conjugated to a variety of moieties including, for example, carboxyspermine which has been conjugated to one of two types of lipids and includes compounds such as 5- carboxyspermylglycine dioctaoleoylamide ("DOGS") (Transfectam™, Promega, Madison, Wisconsin) and dipalmitoylphosphatidylethanolamine 5-carboxyspermyl- amide ("DPPES") (see, e.g., U.S. Pat. No. 5,171,678).
Another cationic lipid conjugate includes derivatization of the lipid with cholesterol ("DC-Choi") which has been formulated into liposomes in combination with DOPE (See, Gao, X. and Huang, L., Biochim. Biophys. Res. Commun. 179:280, 1991). Lipopolylysme, made by conjugating polylysine to DOPE, has been reported to be effective for transfection in the presence of serum (Zhou et al., Biochim. Biophys. Ada 1065:8, 1991). For certain cell lines, these liposomes containing conjugated cationic lipids, are said to exhibit lower toxicity and provide more efficient transfection than the DOTMA-containing compositions. Other commercially available cationic lipid products include DMRTE and DMRIE-HP (Vical, La Jolla, California) and Lipofectarnine (DOSPA) (Life Technology, Inc., Gaithersburg, Maryland). Other cationic lipids suitable for the delivery of oligonucleotides are described in WO 98/39359 and WO 96/37194.
Liposomal formulations are particularly suited for topical administration, liposomes present several advantages over other formulations. Such advantages include reduced side effects related to high systemic absorption of the administered drug, increased accumulation of the administered drug at the desired target, and the ability to administer iRNA, into the skin. In some implementations, liposomes are used for delivering iRNA to epidermal cells and also to enhance the penetration of iRNA into dermal tissues, e.g., into skin. For example, the liposomes can be applied topically. Topical delivery of drugs formulated as liposomes to the skin has been documented (see, e.g., Weiner et al., Journal of Drug Targeting 2:405-410, 1992, and du Plessis et al., Antiviral Research 18:259-265, 1992; Mannino and Fould-Fogerite, Biotechniques 6:682-690, 1988; Itani, et al. Gene 56:267-276, 1987; Nicolau et al., Meth. Enz. 149:157-176, 1987; Straubinger and Papahadjopoulos, Meth. Enz. 101:512- 527, 1983; Wang and Huang, Proc. Natl. Acad. Sci. USA 84:7851-7855, 1987).
Non-ionic liposomal systems have also been examined to determine their utility in the delivery of drugs to the skin, in particular systems comprising non-ionic surfactant and cholesterol. Non-ionic liposomal formulations comprising Novasome I (glyceryl dilaurate/cholesterol/polyoxyethylene-10-stearyl ether) and Novasome II (glyceryl distearate/ cholesterol/polyoxyethylene-10-stearyl ether) were used to deliver a drug into the dermis of mouse skin. Such formulations with iRNA are useful for treating a dermatological disorder.
Liposomes that include iRNA can be made highly deformable. Such deformability can enable the liposomes to penetrate through pore that are smaller than the average radius of the liposome. For example, transfersomes are a type of deformable liposomes. Transferosomes can be made by adding surface edge activators, usually surfactants, to a standard liposomal composition. Transfersomes that include iRNA can be delivered, for example, subcutaneously by infection in order to deliver iRNA to keratinocytes in the skin. In order to cross intact mammalian skin, lipid vesicles must pass through a series of fine pores, each with a diameter less than 50 nm, under the influence of a suitable transdermal gradient. In addition, due to the lipid properties, these transferosomes can be self-optimizing (adaptive to the shape of pores, e.g., in the skin), self-repairing, and can frequently reach their targets without fragmenting, and often self-loading.
Surfactants For ease of exposition the formulations, compositions and methods in this section are discussed largely with regard to unmodified iRNA agents. It should be understood, however, that these formulations, compositions and methods can be practiced with other iRNA agents, e.g., modified iRNA agents, and such practice is within the invention. Surfactants find wide application in formulations such as emulsions (including microemulsions) and liposomes (see above). iRNA (or a precursor, e.g., a larger dsRNA which can be processed into an iRNA, or a DNA which encodes an iRNA or precursor) compositions can include a surfactant. In one embodiment, the iRNA is formulated as an emulsion that includes a surfactant. The most common way of classifying and ranking the properties of the many different types of surfactants, both natural and synthetic, is by the use of the hydrophile/lipophile balance (HLB). The nature of the hydrophilic group provides the most useful means for categorizing the different surfactants used in formulations (Rieger, in
Phannaceutical Dosage Forms, Marcel Dekker, Inc., New York, NY, 1988, p. 285).
If the surfactant molecule is not ionized, it is classified as a nonionic surfactant. Nonionic surfactants find wide application in pharmaceutical products and are usable over a wide range of pH values. In general their HLB values range from 2 to about 18 depending on their structure. Nonionic surfactants include nonionic esters such as ethylene glycol esters, propylene glycol esters, glyceryl esters, polyglyceryl esters, sorbitan esters, sucrose esters, and ethoxylated esters. Nonionic alkanolamides and ethers such as fatty alcohol ethoxylates, propoxylated alcohols, and ethoxylated/propoxylated block polymers are also included in this class. The polyoxyethylene surfactants are the most popular members of the nonionic surfactant class.
If the surfactant molecule carries a negative charge when it is dissolved or dispersed in water, the surfactant is classified as anionic. Anionic surfactants include carboxylates such as soaps, acyl lactylates, acyl amides of amino acids, esters of sulfuric acid such as alkyl sulfates and ethoxylated alkyl sulfates, sulfonates such as alkyl benzene sulfonates, acyl isethionates, acyl taurates and sulfosuccinates, and phosphates. The most important members of the anionic surfactant class are the alkyl sulfates and the soaps.
If the surfactant molecule carries a positive charge when it is dissolved or dispersed in water, the surfactant is classified as cationic. Cationic surfactants include quaternary ammonium salts and ethoxylated amines. The quaternary ammonium salts are the most used members of this class. If the surfactant molecule has the ability to carry either a positive or negative charge, the surfactant is classified as amphoteric. Amphoteric surfactants include acrylic acid derivatives, substituted alkylamides, N-alkylbetaines and phosphatides.
The use of surfactants in drug products, formulations and in emulsions has been reviewed (Rieger, in "Pharmaceutical Dosage Forms," Marcel Dekker, Inc., New York, NY, 1988, p. 285).
Micelles and other Membranous Formulations For ease of exposition the micelles and other formulations, compositions and methods in this section are discussed largely with regard to unmodified iRNA agents. It should be understood, however, that these micelles and other formulations, compositions and methods can be practiced with other iRNA agents, e.g., modified iRNA agents, and such practice is within the invention. The iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof)) composition can be provided as a micellar formulation. "Micelles" are defined herein as a particular type of molecular assembly in which amphipathic molecules are arranged in a spherical structure such that all the hydrophobic portions of the molecules are directed inward, leaving the hydrophilic portions in contact with the surrounding aqueous phase. The converse arrangement exists if the environment is hydrophobic.
A mixed micellar formulation suitable for delivery through transdermal membranes may be prepared by mixing an aqueous solution of the iRNA composition, an alkali metal C8 to C22 alkyl sulphate, and a micelle forming compounds. Exemplary micelle fonning compounds include lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic acid, linoleic acid, linolenic acid, monoolein, monooleates, monolaurates, borage oil, evening of primrose oil, menthol, trihydroxy oxo cholanyl glycine and pharmaceutically acceptable salts thereof, glycerin, polyglycerin, lysine, polylysine, triolein, polyoxyethylene ethers and analogues thereof, polidocanol alkyl ethers and analogues thereof, chenodeoxycholate, deoxycholate, and mixtures thereof. The micelle forming compounds may be added at the same time or after addition of the alkali metal alkyl sulphate. Mixed micelles will form with substantially any kind of mixing of the ingredients but vigorous mixing is preferred in order to provide smaller size micelles.
In one method a first micellar composition is prepared which contains the iRNA composition and at least the alkali metal alkyl sulphate. The first micellar composition is then mixed with at least three micelle fonning compounds to form a mixed micellar composition. In another method, the micellar composition is prepared by mixing the iRNA composition, the alkali metal alkyl sulphate and at least one of the micelle forming compounds, followed by addition of the remaining micelle forming compounds, with vigorous mixing.
Phenol and/or m-cresol may be added to the mixed micellar composition to stabilize the formulation and protect against bacterial growth. Alternatively, phenol and/or m-cresol may be added with the micelle forming ingredients. An isotonic agent such as glycerin may also be added after formation of the mixed micellar composition. For delivery of the micellar formulation as a spray, the formulation can be put into an aerosol dispenser and the dispenser is charged with a propellant. The propellant, which is under pressure, is in liquid form in the dispenser. The ratios of the ingredients are adjusted so that the aqueous and propellant phases become one, i.e. there is one phase. If there are two phases, it is necessary to shake the dispenser prior to dispensing a portion of the contents, e.g. through a metered valve. The dispensed dose of pharmaceutical agent is propelled from the metered valve in a fine spray.
The preferred propellants are hydrogen-containing chlorofluorocarbons, hydrogen-containing fluorocarbons, dimethyl ether and diethyl ether. Even more preferred is HF A 134a ( 1 , 1,1,2 tetrafhioroethane) .
The specific concentrations of the essential ingredients can be determined by relatively straightforward experimentation. For absorption through the oral cavities, it is often desirable to increase, e.g. at least double or triple, the dosage for through injection or administration through the gastrointestinal tract.
Particles For ease of exposition the particles, formulations, compositions and methods in this section are discussed largely with regard to unmodified iRNA agents. It should be understood, however, that these particles, formulations, compositions and methods can be practiced with other iRNA agents, e.g., modified iRNA agents, and such practice is within the invention, hi another embodiment, an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) preparations may be incorporated into a particle, e.g., a microparticle. Microparticles can be produced by spray-drying, but may also be produced by other methods including lyophilization, evaporation, fluid bed drying, vacuum drying, or a combination of these techniques. See below for further description.
Sustained -Release Formulations An iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double- stranded iRNA agent, or sRNA agent, or precursor thereof) described herein can be formulated for controlled, e.g., slow release. Controlled release can be achieved by disposing the iRNA within a structure or substance that impedes its release. E.g., iRNA can be disposed within a porous matrix or in an erodable matrix, either of which allow release of the iRNA over a period of time.
Polymeric particles, e.g., polymeric in microparticles can be used as a sustained-release reservoir of iRNA that is taken up by cells only released from the microparticle through biodegradation. The polymeric particles in this embodiment should therefore be large enough to preclude phagocytosis (e.g., larger than 10 μm and preferably larger than 20 μm). Such particles can be produced by the same methods to make smaller particles, but with less vigorous mixing of the first and second emulsions. That is to say, a lower homogenization speed, vortex mixing speed, or sonication setting can be used to obtain particles having a diameter around 100 μm rather than 10 μm. The time of mixing also can be altered.
Larger microparticles can be formulated as a suspension, a powder, or an implantable solid, to be delivered by intramuscular, subcutaneous, intradermal, intravenous, or intraperitoneal injection; via inhalation (intranasal or intrapulmonary); orally; or by implantation. These particles are useful for delivery of any iRNA when slow release over a relatively long term is desired. The rate of degradation, and consequently of release, varies with the polymeric formulation.
Microparticles preferably include pores, voids, hollows, defects or other interstitial spaces that allow the fluid suspension medium to freely permeate or perfuse the particulate boundary. For example, the perforated microstructures can be used to form hollow, porous spray dried microspheres.
Polymeric particles containing iRNA (e.g., a sRNA) can be made using a double emulsion technique, for instance. First, the polymer is dissolved in an organic solvent. A preferred polymer is polylactic-co-glycolic acid (PLGA), with a lactic/glycolic acid weight ratio of 65:35, 50:50, or 75:25. Next, a sample of nucleic acid suspended in aqueous solution is added to the polymer solution and the two solutions are mixed to form a first emulsion. The solutions can be mixed by vortexing or shaking, and in a preferred method, the mixture can be sonicated. Most preferable is any method by which the nucleic acid receives the least amount of damage in the form of nicking, shearing, or degradation, while still allowing the formation of an appropriate emulsion. For example, acceptable results can be obtained with a Vibra-cell model VC-250 sonicator with a 1/8" microtip probe, at setting #3. Spray-Drying An iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof)) can be prepared by spray drying. Spray dried iRNA 5 can be administered to a subject or be subjected to further formulation. A pharmaceutical composition of iRNA can be prepared by spray drying a homogeneous aqueous mixture that includes an iRNA under conditions sufficient to provide a dispersible powdered composition, e.g., a pharmaceutical composition. The material for spray drying can also include one or more of: a pharmaceutically acceptable o excipient, or a dispersibility-enhancing amount of a physiologically acceptable, water- soluble protein. The spray-dried product can be a dispersible powder that includes the iRNA.
Spray drying is a process that converts a liquid or slurry material to a dried particulate form. Spray drying can be used to provide powdered material for various 5 administrative routes including inhalation. See, for example, Sacchetti and Nan Oort in: Inhalation Aerosols: Physical and Biological Basis for Therapy, A. J. Hickey, ed. Marcel Dekkar, New York, 1996.
Spray drying can include atomizing a solution, emulsion, or suspension to form a fine mist of droplets and drying the droplets. The mist can be projected into a drying 0 chamber (e.g., a vessel, tank, tubing, or coil) where it contacts a drying gas. The mist can include solid or liquid pore forming agents. The solvent and pore forming agents evaporate from the droplets into the drying gas to solidify the droplets, simultaneously forming pores throughout the solid. The solid (typically in a powder, particulate form) then is separated from the drying gas and collected. 5 Spray drying includes bringing together a highly dispersed liquid, and a sufficient volume of air (e.g., hot air) to produce evaporation and drying of the liquid droplets. The preparation to be spray dried can be any solution, course suspension, slurry, colloidal dispersion, or paste that may be atomized using the selected spray drying apparatus. Typically, the feed is sprayed into a current of warm filtered air that 0 evaporates the solvent and conveys the dried product to a collector. The spent air is then exhausted with the solvent. Several different types of apparatus may be used to provide the desired product. For example, commercial spray dryers manufactured by Buchi Ltd. or Niro Corp. can effectively produce particles of desired size. Spray-dried powdered particles can be approximately spherical in shape, nearly uniform in size and frequently hollow. There may be some degree of irregularity in shape depending upon the incorporated medicament and the spray drying conditions. In many instances the dispersion stability of spray-dried microspheres appears to be more effective if an inflating agent (or blowing agent) is used in their production.
Particularly preferred embodiments may comprise an emulsion with an inflating agent as the disperse or continuous phase (the other phase being aqueous in nature). An inflating agent is preferably dispersed with a surfactant solution, using, for instance, a commercially available microfluidizer at a pressure of about 5000 to 15,000 psi. This process forms an emulsion, preferably stabilized by an incorporated surfactant, typically comprising submicron droplets of water immiscible blowing agent dispersed in an aqueous continuous phase. The formation of such dispersions using this and other techniques are common and well known to those in the art. The blowing agent is preferably a f xorinated compound (e.g. perfluorohexane, perfluorooctyl bromide, perfluorodecalin, perfluorobutyl ethane) which vaporizes during the spray-drying process, leaving behind generally hollow, porous aerodynamically light microspheres. As will be discussed in more detail below, other suitable blowing agents include chloroform, freons, and hydrocarbons. Nitrogen gas and carbon dioxide are also contemplated as a suitable blowing agent. Although the perforated microstructures are preferably formed using a blowing agent as described above, it will be appreciated that, in some instances, no blowing agent is required and an aqueous dispersion of the medicament and surfactant(s) are spray dried directly. In such cases, the formulation may be amenable to process conditions (e.g., elevated temperatures) that generally lead to the formation of hollow, relatively porous microparticles. Moreover, the medicament may possess special physicochemical properties (e.g., high crystallinity, elevated melting temperature, surface activity, etc.) that make it particularly suitable for use in such techniques.
The perforated microstructures may optionally be associated with, or comprise, one or more surfactants. Moreover, miscible surfactants may optionally be combined with the suspension medium liquid phase. It will be appreciated by those skilled in the art that the use of surfactants may further increase dispersion stability, simplify formulation procedures or increase bioavailability upon administration. Of course combinations of surfactants, including the use of one or more in the liquid phase and one or more associated with the perforated microstructures are contemplated as being within the scope of the invention. By "associated with or comprise" it is meant that the structural matrix or perforated microstructure may incorporate, adsorb, absorb, be coated with or be formed by the surfactant. Surfactants suitable for use include any compound or composition that aids in the formation and maintenance of the stabilized respiratory dispersions by forming a layer at the interface between the structural matrix and the suspension medium. The surfactant may comprise a single compound or any combination of compounds, such as in the case of co-surfactants. Particularly preferred surfactants are substantially insoluble in the propellant, nonf torinated, and selected from the group consisting of saturated and unsaturated lipids, nonionic detergents, nonionic block copolymers, ionic surfactants, and combinations of such agents. It should be emphasized that, in addition to the aforementioned surfactants, suitable (i.e. biocompatible) fhxorinated surfactants are compatible with the teachings herein and may be used to provide the desired stabilized preparations.
Lipids, including phospholipids, from both natural and synthetic sources may be used in varying concentrations to form a structural matrix. Generally, compatible lipids comprise those that have a gel to liquid crystal phase transition greater than about 40° C. Preferably, the incorporated lipids are relatively long chain (i.e. C6 -C22) saturated lipids and more preferably comprise phospholipids. Exemplary phospholipids useful in the disclosed stabilized preparations comprise egg phosphatidylchohne, dilauroylphosphatidylcholine, dioleylphosphatidylcholine, dipalmitoylphosphatidyl- choline, disteroylphosphatidylcholine, short-chain phosphatidylcholines, phosphatidylethanolamine, dioleylphosphatidylethanolamine, phosphatidylserine, phosphatidylglycerol, phosphatidylinositol, glycolipids, ganglioside GM1, sphingomyelin, phosphatidic acid, cardiolipin; lipids bearing polymer chains such as, polyethylene glycol, chitin, hyaluronic acid, or polyvinylpyrrolidone; lipids bearing sulfonated mono-, di-, and polysaccharides; fatty acids such as palmitic acid, stearic acid, and oleic acid; cholesterol, cholesterol esters, and cholesterol hemisuccinate. Due to their excellent biocompatibihty characteristics, phospholipids and combinations of phospholipids and poloxamers are particularly suitable for use in the stabilized dispersions disclosed herein. Compatible nonionic detergents comprise: sorbitan esters including sorbitan trioleate (Spans™ 85), sorbitan sesquioleate, sorbitan monooleate, sorbitan monolaurate, polyoxyethylene (20) sorbitan monolaurate, and polyoxyethylene (20) sorbitan monooleate, oleyl polyoxyethylene (2) ether, stearyl polyoxyethylene (2) ether, lauryl polyoxyethylene (4) ether, glycerol esters, and sucrose esters. Other suitable nonionic detergents can be easily identified using McCutcheon's Emulsifiers and Detergents (McPublishing Co., Glen Rock, N. J.). Preferred block copolymers include diblock and triblock copolymers of polyoxyethylene and polyoxypropylene, including poloxamer 188 (Pluronic.RTM. F68), poloxamer 407 (Pluronic.RTM. F-127), and poloxamer 338. Ionic surfactants such as sodium sulfosuccinate, and fatty acid soaps may also be utilized. In preferred embodiments, the microstructures may comprise oleic acid or its alkali salt.
In addition to the aforementioned surfactants, cationic surfactants or lipids are preferred especially in the case of delivery of an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double- stranded iRNA agent, or sRNA agent, or precursor thereof). Examples of suitable cationic lipids include: DOTMA, N-[-(2,3-dioleyloxy)propyl]-N,N,N- trimethylammonium-chloride; DOTAP, 1 ,2-dioleyloxy-3 -(trimethylammonio)propane; and DOTB, l,2-dioleyl-3-(4'-trimethylammonio)butanoyl-sn-glycerol. Polycationic amino acids such as polylysine, and polyarginine are also contemplated.
For the spraying process, such spraying methods as rotary atomization, pressure atomization and two-fluid atomization can be used. Examples of the devices used in these processes include "Parubisu [phonetic rendering] Mini-Spray GA-32" and "Parubisu Spray Drier DL-41", manufactured by Yamato Chemical Co., or "Spray Drier CL-8," "Spray Drier L-8," "Spray Drier FL-12," "Spray Drier FL-16" or "Spray Drier FL-20," manufactured by Okawara Kakoki Co., can be used for the method of spraying using rotary-disk atomizer.
While no particular restrictions are placed on the gas used to dry the sprayed material, it is recommended to use air, nitrogen gas or an inert gas. The temperature of the inlet of the gas used to dry the sprayed materials such that it does not cause heat deactivation of the sprayed material. The range of temperatures may vary between about 50°C to about 200°C, preferably between about 50°C and 100°C. The temperature of the outlet gas used to dry the sprayed material, may vary between about 0°C and about 150°C, preferably between 0°C and 90°C, and even more preferably between 0°C and 60°C.
The spray drying is done under conditions that result in substantially amorphous powder of homogeneous constitution having a particle size that is respirable, a low moisture content and flow characteristics that allow for ready aerosolization. Preferably the particle size of the resulting powder is such that more than about 98% of the mass is in particles having a diameter of about 10 μm or less with about 90% of the mass being in particles having a diameter less than 5 μm. Alternatively, about 95% of the mass will have particles with a diameter of less than 10 μm with about 80% of the mass of the particles having a diameter of less than 5 μm.
The dispersible pharmaceutical-based dry powders that include the iRNA preparation may optionally be combined with pharmaceutical carriers or excipients which are suitable for respiratory and pulmonary administration. Such carriers may serve simply as bulking agents when it is desired to reduce the iRNA concentration in the powder which is being delivered to a patient, but may also serve to enhance the stability of the iRNA compositions and to improve the dispersibility of the powder within a powder dispersion device in order to provide more efficient and reproducible delivery of the iRNA and to improve handling characteristics of the iRNA such as flowability and consistency to facilitate manufacturing and powder filling.
Such carrier materials may be combined with the drug prior to spray drying, i.e., by adding the carrier material to the purified bulk solution. In that way, the carrier particles will be formed simultaneously with the drug particles to produce a homogeneous powder. Alternatively, the carriers may be separately prepared in a dry powder form and combined with the dry powder drug by blending. The powder carriers will usually be crystalline (to avoid water absorption), but might in some cases be amorphous or mixtures of crystalline and amorphous. The size of the carrier particles may be selected to improve the flowability of the drug powder, typically being in the range from 25 μm to 100 μm. A preferred carrier material is crystalline lactose having a size in the above-stated range.
Powders prepared by any of the above methods will be collected from the spray dryer in a conventional manner for subsequent use. For use as pharmaceuticals and other purposes, it will frequently be desirable to disrupt any agglomerates which may have formed by screening or other conventional techniques. For pharmaceutical uses, the dry powder formulations will usually be measured into a single dose, and the single dose sealed into a package. Such packages are particularly useful for dispersion in dry powder inhalers, as described in detail below. Alternatively, the powders may be packaged in multiple-dose containers.
Methods for spray drying hydrophobic and other drugs and components are described in U.S. Pat. Nos. 5,000,888; 5,026,550; 4,670,419, 4,540,602; and 4,486,435. Bloch and Speison (Pharm. Ada Helv 58:14-22, 1983) teaches spray drying of hydrochlorothiazide and chlorthalidone (lipophilic drugs) and a hydrophilic adjuvant (pentaerythritol) in azeotropic solvents of dioxane-water and 2-ethoxyethanol-water. A number of Japanese Patent application Abstracts relate to spray drying of hydrophilic- hydrophobic product combinations, including JP 806766; JP 7242568; JP 7101884; JP 7101883; JP 71018982; JP 7101881; and JP 4036233. Other foreign patent publications relevant to spray drying hydrophilic-hydrophobic product combinations include FR 2594693; DE 2209477; and WO 88/07870.
Lyophilization An iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) preparation can be made by lyophilization. Lyophilization is a freeze-drying process in which water is sublimed from the composition after it is frozen. The particular advantage associated with the lyophilization process is that biologicals and pharmaceuticals that are relatively unstable in an aqueous solution can be dried without elevated temperatures (thereby eliminating the adverse thermal effects), and then stored in a dry state where there are few stability problems. With respect to the instant invention such techniques are particularly compatible with the incorporation of nucleic acids in perforated microstructures without compromising physiological activity. Methods for providing lyophilized particulates are known to those of skill in the art and it would clearly not require undue experimentation to provide dispersion compatible microstructures in accordance with the teachings herein. Accordingly, to the extent that lyophilization processes may be used to provide microstructures having the desired porosity and size, they are conformance with the teachings herein and are expressly contemplated as being within the scope of the instant invention.
Viral Encapsulation An iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) ) can be bound to, associated with or surrounded by, at least one viral coat protein which originates from a virus, is derived therefrom or has been prepared synthetically. The coat protein can be derived from polyomavinxs, and can contain the polyomavirus protein 1 (NPl) and/or virus protein 2 (NP2). The use of such coat proteins is referenced in DE 19618797 Al, for instance. When a capsid or capsid-type structure is formed from the coat protein, one side preferably faces the interior of the capsid or capsid-type structure. This structure is particularly stable.
TARGETING
For ease of exposition the formulations, compositions and methods in this section are discussed largely with regard to unmodified iRNAs. It should be understood, however, that these formulations, compositions and methods can be practiced with other iRNA agents, e.g., modified iRNA agents, and such practice is within the invention.
In some embodiments, an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) is targeted to a particular cell. For example, a liposome or particle or other structure that includes an iRNA can also include a targeting moiety that recognizes a specific molecule on a target cell. The targeting moiety can be a molecule with a specific affinity for a target cell. Targeting moieties can include antibodies directed against a protein found on the surface of a target cell, or the ligand or a receptor-binding portion of a ligand for a molecule found on the surface of a target cell. For example, the targeting moiety can recognize a cancer-specific antigen (e.g., CA15-3, CA19-9, CEA, or HER2/neu.) or a viral antigen, thus delivering the iRNA to a cancer cell or a virus-infected cell. Exemplary targeting moieties include antibodies (such as IgM, IgG, IgA, IgD, and the like, or a functional portions thereof), ligands for cell surface receptors (e.g., ectodomains thereof).
Table 1 provides a number of antigens which can be used to target selected cells.
Table 1.
ANTIGEN Exemplary tumor tissue
CEA (carcinoembryonic antigen) colon, breast, lung
PSA (prostate specific antigen) prostate cancer
CA-125 ovarian cancer
CA 15-3 breast cancer
CA 19-9 breast cancer
HER2/neu breast cancer α-feto protein testicular cancer, hepatic cancer β-HCG (human chorionic gonadotropin) testicular cancer, choriocarcinoma
MUC-1 breast cancer
Estrogen receptor breast cancer, uterine cancer
Progesterone receptor breast cancer, uterine cancer
EGFr (epidermal growth factor receptor) bladder cancer
In one embodiment, the targeting moiety is attached to a liposome. For example, US 6,245,427 describes a method for targeting a liposome using a protein or peptide. In another example, a cationic lipid component of the liposome is derivatized with a targeting moiety. For example, WO 96/37194 describes converting N- glutaryldioleoylphosphatidyl efhanolamine to a N-hydroxysuccinimide activated ester. The product was then coupled to an RGD peptide.
ROUTE OF DELIVERY
For ease of exposition the formulations, compositions and methods in this section are discussed largely with regard to unmodified iRNA agents. It should be understood, however, that these formulations, compositions and methods can be practiced with other iRNA agents, e.g., modified iRNA agents, and such practice is within the invention. A composition that includes an iRNA can be delivered to a subject by a variety of routes. Exemplary routes include: intravenous, topical, rectal, anal, vaginal, nasal, pulmonary, ocular.
The iRNA molecules of the invention can be incorporated into pharmaceutical compositions suitable for administration. Such compositions typically include one or more species of iRNA and a pharmaceutically acceptable carrier. As used herein the language "pharmaceutically acceptable carrier" is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions. The pharmaceutical compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic, vaginal, rectal, intranasal, transdermal), oral or parenteral. Parenteral administration includes intravenous drip, subcutaneous, intraperitoneal or intramuscular injection, or intrathecal or intraventricular administration.
The route and site of administration may be chosen to enhance targeting. For example, to target muscle cells, intramuscular injection into the muscles of interest would be a logical choice. Lung cells might be targeted by administering the iRNA in aerosol form. The vascular endothelial cells could be targeted by coating a balloon catheter with the iRNA and mechanically introducing the DNA.
Formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Coated condoms, gloves and the like may also be useful.
Compositions for oral administration include powders or granules, suspensions or solutions in water, syrups, elixirs or non-aqueous media, tablets, capsules, lozenges, or troches. In the case of tablets, carriers that can be used include lactose, sodium citrate and salts of phosphoric acid. Various disintegrants such as starch, and lubricating agents such as magnesium stearate, sodium lauryl sulfate and talc, are commonly used in tablets. For oral administration in capsule form, useful diluents are lactose and high molecular weight polyethylene glycols. When aqueous suspensions are required for oral use, the nucleic acid compositions can be combined with emulsifying and suspending agents. If desired, certain sweetening and/or flavoring agents can be added.
Compositions for intrathecal or intraventricular administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives.
Formulations for parenteral administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives. Intraventricular injection may be facilitated by an intraventricular catheter, for example, attached to a reservoir. For intravenous use, the total concentration of solutes should be controlled to render the preparation isotonic.
For ocular administration, ointments or droppable liquids may be delivered by ocular delivery systems known to the art such as applicators or eye droppers. Such compositions can include lmicomimetics such as hyaluronic acid, chondroitin sulfate, hydroxypropyl methylcellulose or poly( vinyl alcohol), preservatives such as sorbic acid, EDT A or benzylchronium chloride, and the usual quantities of diluents and/or carriers.
Topical Delivery For ease of exposition the formulations, compositions and methods in this section are discussed largely with regard to unmodified iRNA agents. It should be understood, however, that these formulations, compositions and methods can be practiced with other iRNA agents, e.g., modified iRNA agents, and such practice is within the invention, hi a preferred embodiment, an iRNA agent, e.g., a double- stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) is delivered to a subject via topical administration. "Topical administration" refers to the delivery to a subject by contacting the formulation directly to a surface of the subject. The most common form of topical delivery is to the skin, but a composition disclosed herein can also be directly applied to other surfaces of the body, e.g., to the eye, a mucous membrane, to surfaces of a body cavity or to an internal surface. As mentioned above, the most common topical delivery is to the skin. The term encompasses several routes of administration including, but not limited to, topical and transdermal. These modes of administration typically include penetration of the skin's permeability barrier and efficient delivery to the target tissue or stratum. Topical administration can be used as a means to penetrate the epidermis and dermis and ultimately achieve systemic delivery of the composition. Topical administration can also be used as a means to selectively deliver oligonucleotides to the epidermis or dermis of a subject, or to specific strata thereof, or to an underlying tissue.
The term "skin," as used herein, refers to the epidermis and/or dermis of an animal. Mammalian skin consists of two major, distinct layers. The outer layer of the skin is called the epidermis. The epidermis is comprised of the stratum corneum, the stratum granulosum, the stratum spinosum, and the stratum basale, with the stratum corneum being at the surface of the skin and the stratum basale being the deepest portion of the epidermis. The epidermis is between 50 μm and 0.2 mm thick, depending on its location on the body.
Beneath the epidermis is the dermis, which is significantly thicker than the epidermis. The dermis is primarily composed of collagen in the form of fibrous bundles. The coUagenous bundles provide support for, mter alia, blood vessels, lymph capillaries, glands, nerve endings and immunologically active cells.
One of the major functions of the skin as an organ is to regulate the entry of substances into the body. The principal permeability barrier of the skin is provided by the stratum corneum, which is formed from many layers of cells in various states of differentiation. The spaces between cells in the stratum corneum is filled with different lipids arranged in lattice-like formations that provide seals to further enhance the skins permeability barrier.
The permeability barrier provided by the skin is such that it is largely impermeable to molecules having molecular weight greater than about 750 Da. For larger molecules to cross the skin's permeability barrier, mechanisms other than normal osmosis must be used.
Several factors determine the permeability of the skin to administered agents. These factors include the characteristics of the treated skin, the characteristics of the delivery agent, interactions between both the drug and delivery agent and the drug and skin, the dosage of the drug applied, the form of treatment, and the post treatment regimen. To selectively target the epidermis and dermis, it is sometimes possible to formulate a composition that comprises one or more penetration enhancers that will enable penetration of the drug to a preselected stratum. Transdermal delivery is a valuable route for the administration of lipid soluble therapeutics. The dermis is more permeable than the epidermis and therefore absorption is much more rapid through abraded, burned or denuded skin. Inflammation and other physiologic conditions that increase blood flow to the skin also enhance transdermal adsorption. Absorption via this route may be enhanced by the use of an oily vehicle (inunction) or through the use of one or more penetration enhancers. Other effective ways to deliver a composition disclosed herein via the transdermal route include hydration of the skin and the use of controlled release topical patches. The transdermal route provides a potentially effective means to deliver a composition disclosed herein for systemic and/or local therapy.
In addition, iontophoresis (transfer of ionic solutes through biological membranes under the influence of an electric field) (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 163), phonophoresis or sonophoresis (use of ultrasound to enhance the absorption of various therapeutic agents across biological membranes, notably the skin and the cornea) (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 166), and optimization of vehicle characteristics relative to dose position and retention at the site of administration (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 168) may be useful methods for enhancing the transport of topically applied compositions across skin and mucosal sites.
The compositions and methods provided may also be used to examine the function of various proteins and genes in vitro in cultured or preserved dermal tissues and in animals. The invention can be thus applied to examine the function of any gene. The methods of the invention can also be used therapeutically or prophylactically. For example, for the treatment of animals that are known or suspected to suffer from diseases such as psoriasis, lichen planus, toxic epidermal necrolysis, ertythema multiforme, basal cell carcinoma, squamous cell carcinoma, malignant melanoma, Paget's disease, Kaposi's sarcoma, pulmonary fibrosis, Lyme disease and viral, fungal and bacterial infections of the skin.
Pulmonary Delivery For ease of exposition the formulations, compositions and methods in this section are discussed largely with regard to unmodified iRNA agents. It should be understood, however, that these formulations, compositions and methods can be practiced with other iRNA agents, e.g., modified iRNA agents, and such practice is within the invention. A composition that includes an iRNA agent, e.g., a double- stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) can be administered to a subject by pulmonary delivery. Pulmonary delivery compositions can be delivered by inhalation by the patient of a dispersion so that the composition, preferably iRNA, within the dispersion can reach the lung where it can be readily absorbed through the alveolar region directly into blood circulation. Pulmonary delivery can be effective both for systemic delivery and for localized delivery to treat diseases of the lungs.
Pulmonary delivery can be achieved by different approaches, including the use of nebulized, aerosolized, micellular and dry powder-based formulations. Delivery can be achieved with liquid nebulizers, aerosol-based inhalers, and dry powder dispersion devices. Metered-dose devices are preferred. One of the benefits of using an atomizer or inhaler is that the potential for contamination is minimized because the devices are self contained. Dry powder dispersion devices, for example, deliver drugs that may be readily formulated as dry powders. An iRNA composition may be stably stored as lyophilized or spray-dried powders by itself or in combination with suitable powder carriers. The delivery of a composition for inhalation can be mediated by a dosing timing element which can include a timer, a dose counter, time measuring device, or a time indicator which when incorporated into the device enables dose tracking, compliance monitoring, and/or dose triggering to a patient during administration of the aerosol medicament. The term "powder" means a composition that consists of finely dispersed solid particles that are free flowing and capable of being readily dispersed in an inhalation device and subsequently inhaled by a subject so that the particles reach the lungs to permit penetration into the alveoli. Thus, the powder is said to be "respirable." Preferably the average particle size is less than about 10 μm in diameter preferably with a relatively uniform spheroidal shape distribution. More preferably the diameter is less than about 7.5 μm and most preferably less than about 5.0 μm. Usually the particle size distribution is between about 0.1 μm and about 5 μm in diameter, particularly about 0.3 μm to about 5 μm. The term "dry" means that the composition has a moisture content below about 10% by weight (% w) water, usually below about 5% w and preferably less it than about 3% w. A dry composition can be such that the particles are readily dispersible in an inhalation device to form an aerosol. The term "therapeutically effective amount" is the amount present in the composition that is needed to provide the desired level of drug in the subject to be treated to give the anticipated physiological response.
The term "physiologically effective amount" is that amount delivered to a subject to give the desired palliative or curative effect. The term "pharmaceutically acceptable carrier" means that the carrier can be taken into the lungs with no significant adverse toxicological effects on the lungs.
The types of pharmaceutical excipients that are useful as carrier include stabilizers such as human serum albumin (HSA), bulking agents such as carbohydrates, amino acids and polypeptides; pH adjusters or buffers; salts such as sodium chloride; and the like. These carriers may be in a crystalline or amorphous form or may be a mixture of the two.
Bulking agents that are particularly valuable include compatible carbohydrates, polypeptides, amino acids or combinations thereof. Suitable carbohydrates include monosaccharides such as galactose, D-mannose, sorbose, and the like; disaccharides, such as lactose, trehalose, and the like; cyclodextrins, such as 2 -hydroxypropyl- .beta.- cyclodextrin; and polysaccharides, such as raffinose, maltodextrins, dextrans, and the like; alditols, such as mannitol, xylitol, and the like. A preferred group of carbohydrates includes lactose, threhalose, raffinose maltodextrins, and mannitol. Suitable polypeptides include aspartame. Amino acids include alanine and glycine, with glycine being preferred.
Additives, which are minor components of the composition of this invention, may be included for eonformational stability during spray drying and for improving dispersibility of the powder. These additives include hydrophobic amino acids such as tryptophan, tyrosine, leucine, phenylalanine, and the like. Suitable pH adjusters or buffers include organic salts prepared from organic acids and bases, such as sodium citrate, sodium ascorbate, and the like; sodium citrate is preferred. Pulmonary administration of a micellar iRNA formulation may be achieved through metered dose spray devices with propellants such as tetrafluoroethane, heptafluoroethane, dimethylfluoropropane, tetrafluoropropane, butane, isobutane, dimethyl ether and other non-CFC and CFC propellants.
Oral or Nasal Delivery For ease of exposition the formulations, compositions and methods in this section are discussed largely with regard to unmodified iRNA agents. It should be understood, however, that these formulations, compositions and methods can be practiced with other iRNA agents, e.g., modified iRNA agents, and such practice is within the invention. Both the oral and nasal membranes offer advantages over other routes of administration. For example, drugs administered through these membranes have a rapid onset of action, provide therapeutic plasma levels, avoid first pass effect of hepatic metabolism, and avoid exposure of the drug to the hostile gastrointestinal (GI) environment. Additional advantages include easy access to the membrane sites so that the drug can be applied, localized and removed easily.
In oral delivery, compositions can be targeted to a surface of the oral cavity, e.g., to sublingual mucosa which includes the membrane of ventral surface of the tongue and the floor of the mouth or the buccal mucosa which constitutes the lining of the cheek. The sublingual mucosa is relatively permeable thus giving rapid absorption and acceptable bioavailability of many drugs. Further, the sublingual mucosa is convenient, acceptable and easily accessible.
The ability of molecules to permeate through the oral mucosa appears to be related to molecular size, lipid solubility and peptide protein ionization. Small molecules, less than 1000 daltons appear to cross mucosa rapidly. As molecular size increases, the permeability decreases rapidly. Lipid soluble compounds are more permeable than non-lipid soluble molecules. Maximum absorption occurs when molecules are un-ionized or neutral in electrical charges. Therefore charged molecules present the biggest challenges to absorption through the oral mucosae.
A phaπnaceutical composition of iRNA may also be administered to the buccal cavity of a human being by spraying into the cavity, without inhalation, from a metered dose spray dispenser, a mixed micellar pharmaceutical formulation as described above and a propellant. In one embodiment, the dispenser is first shaken prior to spraying the pharmaceutical formulation and propellant into the buccal cavity.
Devices For ease of exposition the devices, formulations, compositions and methods in this section are discussed largely with regard to unmodified iRNA agents. It should be understood, however, that these devices, formulations, compositions and methods can be practiced with other iRNA agents, e.g., modified iRNA agents, and such practice is within the invention. An iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double- stranded iRNA agent, or sRNA agent, or precursor thereof) can be disposed on or in a device, e.g., a device which implanted or otherwise placed in a subject. Exemplary devices include devices which are introduced into the vasculature, e.g., devices inserted into the lumen of a vascular tissue, or which devices themselves form a part of the vasculature, including stents, catheters, heart valves, and other vascular devices. These devices, e.g., catheters or stents, can be placed in the vasculature of the lung, heart, or leg.
Other devices include non-vascular devices, e.g., devices implanted in the peritoneum, or in organ or glandular tissue, e.g., artificial organs. The device can release a therapeutic substance in addition to an iRNA, e.g., a device can release insulin.
Other devices include artificial joints, e.g., hip joints, and other orthopedic implants.
In one embodiment, unit doses or measured doses of a composition that includes iRNA are dispensed by an implanted device. The device can include a sensor that monitors a parameter within a subject. For example, the device can include pump, e.g., and, optionally, associated electronics.
Tissue, e.g., cells or organs can be treated with An iRNA agent, e.g., a double- stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) ex vivo and then administered or implanted in a subject. The tissue can be autologous, allogeneic, or xenogeneic tissue. E.g., tissue can be treated to reduce graft v. host disease. In other embodiments, the tissue is allogeneic and the tissue is treated to treat a disorder characterized by unwanted gene expression in that tissue. E.g., tissue, e.g., hematopoietic cells, e.g., bone marrow hematopoietic cells, can be treated to inhibit unwanted cell proliferation. introduction of treated tissue, whether autologous or transplant, can be combined with other therapies.
In some implementations, the iRNA treated cells are insulated from other cells, e.g., by a semi-permeable porous barrier that prevents the cells from leaving the implant, but enables molecules from the body to reach the cells and molecules produced by the cells to enter the body. In one embodiment, the porous barrier is formed from alginate.
In one embodiment, a contraceptive device is coated with or contains an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof). Exemplary devices include condoms, diaphragms, IUD (implantable uterine devices, sponges, vaginal sheaths, and birth control devices, hi one embodiment, the iRNA is chosen to inactive sperm or egg. In another embodiment, the iRNA is chosen to be complementary to a viral or pathogen RNA, e.g., an RNA of an STD. In some instances, the iRNA composition can include a spermicide.
DOSAGE
The present invention encompasses polynucleotide agents, e.g., iRNA agents, that modulate gene expression or activity, hi general, for therapeutics, a patient in need of such therapy is administered a compound in accordance with the invention, commonly in a pharmaceutically acceptable carrier, in doses ranging from, e.g., 0.01 μg to 100 μg per kg of body weight (e.g., less than 5 mg, 2 mg, 1 mg, 100 μg, 50 μg, 10 μg, 5 μg, 1 μg, 0.1 μg, 0.01 μg, or 0.001 μg, and, optionally, at least 0.001 μg, 0.01 μg, 0.1 μg, or 1 μg ) per kg of body weight. The dosage can also depend on the age of the subject and the severity of the disease state being treated. Particularly preferred dosages are less than 2, 1, or 0.1 mg/kg of body weight. Further, the treatment regimen may last for a period of time which will vary depending upon the nature of the particular disease, its severity and the overall condition of the patient. In preferred embodiments the dosage may be delivered no more than once per day, e.g., no more than once per 24, 36, 48, or more hours, e.g., no more than once for every 5 or 8 days. Following treatment, the patient can be monitored for changes in his condition and for alleviation of the symptoms of the disease state. The dosage of the compound may either be increased in the event the patient does not respond significantly to current dosage levels, or the dose may be decreased if an alleviation of the symptoms of the disease state is observed, if the disease state has been ablated, or if undesired side-effects are observed.
The effective dose can be administered in a single dose or in two or more doses, as desired or considered appropriate under the specific circumstances. If desired to facilitate repeated or frequent infusions, implantation of a delivery device, e.g., a pump, semi-permanent stent (e.g., intravenous, intraperitoneal, intracisternal or intracapsular), or reservoir may be advisable.
In some cases, a patient is treated with an iRNA agent in conjunction with other therapeutic modalities. For example, a patient being treated for a viral disease, e.g. an HIV associated disease (e.g., AIDS), maybe administered an iRNA agent specific for a target gene essential to the virus in conjunction with a known antiviral agent (e.g., a protease inhibitor or reverse transcriptase inhibitor). In another example, a patient being treated for cancer may be administered an iRNA agent specific for a target essential for tumor cell proliferation in conjunction with a chemotherapy.
Following successful treatment, it may be desirable to have the patient undergo maintenance therapy to prevent the recurrence of the disease state, wherein the compound of the invention is administered in maintenance doses, ranging from 0.01 μg to 100 g per kg of body weight (see US 6,107,094).
The concentration of the iRNA agent composition is an amount sufficient to be effective in treating or preventing a disorder or to regulate a physiological condition in humans. The concentration or amount of iRNA agent administered will depend on the parameters determined for the agent and the method of administration, e.g. nasal, buccal, pulmonary. For example, nasal formulations tend to require much lower concentrations of some ingredients in order to avoid irritation or burning of the nasal passages. It is sometimes desirable to dilute an oral formulation up to 10-100 times in order to provide a suitable nasal formulation.
Certain factors may influence the dosage required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present. Moreover, treatment of a subject with a therapeutically effective amount of an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) can include a single treatment or, preferably, can include a series of treatments. It will also be appreciated that the effective dosage of an iRNA agent such as a sRNA agent used for treatment may increase or decrease over the course of a particular treatment. Changes in dosage may result and become apparent from the results of diagnostic assays as described herein. For example, the subject can be monitored after administering an iRNA agent composition. Based on information from the monitoring, an additional amount of the iRNA agent composition can be administered.
Dosing is dependent on severity and responsiveness of the disease condition to be treated, with the course of treatment lasting from several days to several months, or until a cure is effected or a diminution of disease state is achieved. Optimal dosing schedules can be calculated from measurements of drug accumulation in the body of the patient. Persons of ordinary skill can easily determine optimum dosages, dosing methodologies and repetition rates. Optimum dosages may vary depending on the relative potency of individual compounds, and can generally be estimated based on EC50s found to be effective in in vitro and in vivo animal models. In some embodiments, the animal models include transgenic animals that express a human gene, e.g. a gene that produces a target RNA. The transgenic animal can be deficient for the corresponding endogenous RNA. h another embodiment, the composition for testing includes an iRNA agent that is complementary, at least in an internal region, to a sequence that is conserved between the target RNA in the animal model and the target RNA in a human.
RNA AGENTS RNA agents discussed herein include unmodified RNA as well as RNA which have been modified, e.g., to improve efficacy, and polymers of nucleoside surrogates. Unmodified RNA refers to a molecule in which the components of the nucleic acid, namely sugars, bases, and phosphate moieties, are the same or essentially the same as that which occur in nature, preferably as occur naturally in the human body. The art has often referred to rare or unusual, but naturally occurring, RNAs as modified RNAs, see, e.g., Limbach et al. (Nucleic Acids Res. 22: 2183-2196, 1994; Summary: the modified nucleosides of RNA). Such rare or unusual RNAs, often termed modified RNAs (apparently because the are typically the result of a post transcriptionally modification) are within the term unmodified RNA, as used herein. Modified RNA refers to a molecule in which one or more of the components of the nucleic acid, namely sugars, bases, and phosphate moieties, are different from that which occur in nature, preferably different from that which occurs in the human body. While they are referred to as modified "RNAs", they will of course, because of the modification, include molecules which are not RNAs. Nucleoside surrogates are molecules in which the ribophosphate backbone is replaced with a non-ribophosphate construct that allows the bases to the presented in the correct spatial relationship such that hybridization is substantially similar to what is seen with a ribophosphate backbone, e.g., non-charged mimics of the ribophosphate backbone. Examples of all of the above are discussed herein.
Much of the discussion below refers to single strand molecules. In many embodiments of the invention a double stranded iRNA agent, e.g., a partially double stranded iRNA agent, is required or preferred. Thus, it is understood that that double stranded structures (e.g. where two separate molecules are contacted to form the double stranded region or where the double stranded region is formed by intramolecular pairing (e.g., a hairpin structure)) made of the single stranded structures described below are within the invention. Preferred lengths are described elsewhere herein.
As nucleic acids are polymers of subunits, many of the modifications described below occur at a position which is repeated within a nucleic acid, e.g., a modification of a base, or a phosphate moiety, or the a non-linking O of a phosphate moiety, hi some cases the modification will occur at all of the subject positions in the nucleic acid but in many cases it will not. By way of example, a modification may only occur at a 3' or 5' terminal position, may only occur in a terminal regions, e.g. at a position on a terminal nucleotide or in the last 2, 3, 4, 5, or 10 nucleotides of a strand. A modification may occur in a double strand region, a single strand region, or in both. A modification may occur only in the double strand region of an RNA or may only occur in a single strand region of an RNA. E.g., a phosphorothioate modification at a non-linking O position 5 may only occur at one or both termini, may only occur in a terminal regions, e.g., at a position on a terminal nucleotide or in the last 2, 3, 4, 5, or 10 nucleotides of a strand, or may occur in double strand and single strand regions, particularly at teπnini. The 5' end or ends can be phosphorylated.
In some embodiments it is particularly preferred, e.g., to enhance stability, to o include particular bases in overhangs, or to include modified nucleotides or nucleotide surrogates, in single strand overhangs, e.g., in a 5' or 3' overhang, or in both. E.g., it can be desirable to include purine nucleotides in overhangs. In some embodiments all or some of the bases in a 3' or 5' overhang will be modified, e.g., with a modification described herein. Modifications can include, e.g., the use of modifications at the 25 OH 5 group of the ribose sugar, e.g., the use of deoxyribonucleotides, e.g., deoxythymidine, instead of ribonucleotides, and modifications in the phosphate group, e.g., phosphothioate modifications. Overhangs need not be homologous with the target sequence.
Modifications and nucleotide surrogates are discussed below. 0
Figure imgf000061_0001
FORMULA 1
The scaffold presented above in Formula 1 represents a portion of a ribonucleic acid. The basic components are the ribose sugar, the base, the terminal phosphates, and phosphate internucleotide linkers. Where the bases are naturally occurring bases, e.g., adenine, uracil, guanine or cytosine, the sugars are the unmodified 2' hydroxyl ribose sugar (as depicted) and W, X, Y, and Z are all O, Formula 1 represents a naturally occurring unmodified oligoribonucleotide. Unmodified oligoribonucleotides may be less than optimal in some applications, e.g., unmodified oligoribonucleotides can be prone to degradation by e.g., cellular nucleases. Nucleases can hydrolyze nucleic acid phosphodiester bonds. However, chemical modifications to one or more of the above RNA components can confer improved properties, and, e.g., can render oligoribonucleotides more stable to nucleases.
Modified nucleic acids and nucleotide surrogates can include one or more of: (i) alteration, e.g., replacement, of one or both of the non-linking (X and Y) phosphate oxygens and/or of one or more of the linking (W and Z) phosphate oxygens (When the phosphate is in the terminal position, one of the positions W or Z will not link the phosphate to an additional element in a naturally occurring ribonucleic acid. However, for simplicity of terminology, except where otherwise noted, the W position at the 5 ' end of a nucleic acid and the terminal Z position at the 3 ' end of a nucleic acid, are within the term "linking phosphate oxygens" as used herein.);
(ii) alteration, e.g., replacement, of a constituent of the ribose sugar, e.g., of the 2' hydroxyl on the ribose sugar;
(iii) wholesale replacement of the phosphate moiety (bracket I) with "dephospho" linkers; (iv) modification or replacement of a naturally occurring base;
(v) replacement or modification of the ribose-phosphate backbone (bracket II); (vi) modification of the 3' end or 5' end of the RNA, e.g., removal, modification or replacement of a terminal phosphate group or conjugation of a moiety, e.g. a fluorescently labeled moiety, to either the 3' or 5' end of RNA. The terms replacement, modification, alteration, and the like, as used in this context, do not imply any process limitation, e.g., modification does not mean that one ■ must start with a reference or naturally occurring ribonucleic acid and modify it to produce a modified ribonucleic acid bur rather modified simply indicates a difference from a naturally occurring molecule. It is understood that the actual electronic structure of some chemical entities cannot be adequately represented by only one canonical form (i.e. Lewis structure). While not wishing to be bound by theory, the actual structure can instead be some hybrid or weighted average of two or more canonical forms, known collectively as resonance forms or structures. Resonance structures are not discrete chemical entities and exist only on paper. They differ from one another only in the placement or
"localization" of the bonding and nonbonding electrons for a particular chemical entity. It can be possible for one resonance structure to contribute to a greater extent to the hybrid than the others. Thus, the written and graphical descriptions of the embodiments of the present invention are made in terms of what the art recognizes as the predominant resonance form for a particular species. For example, any phosphoroamidate (replacement of a nonlinking oxygen with nitrogen) would be represented by X = O and Y = N in the above figure.
Specific modifications are discussed in more detail below. The Phosphate Group
The phosphate group is a negatively charged species. The charge is distributed equally over the two non-linking oxygen atoms (i.e., X and Y in Formula 1 above). However, the phosphate group can be modified by replacing one of the oxygens with a different substituent. One result of this modification to RNA phosphate backbones can be increased resistance of the oligoribonucleotide to nucleolytic- breakdown. Thus while not wishing to be bound by theory, it can be desirable in some embodiments to introduce alterations which result in either an uncharged linker or a charged linker with unsymmetrical charge distribution. Examples of modified phosphate groups include phosphorothioate, phosphoroselenates, borano phosphates, borano phosphate esters, hydrogen phosphonates, phosphoroamidates, alkyl or aryl phosphonates and phosphotriesters. Phosphorodithioates have both non-linking oxygens replaced by sulfur. Unlike the situation where only one of X or Y is altered, the phosphorus center in the phosphorodithioates is achiral which precludes the formation of oligoribonucleotides diastereomers.' Diastereomer formation can result in a preparation in which the individual diastereomers exhibit varying resistance to nucleases. Further, the hybridization affinity of RNA containing chiral phosphate groups can be lower relative to the corresponding unmodified RNA species. Thus, while not wishing to be bound by theory, modifications to both X and Y which eliminate the chiral center, e.g., phosphorodithioate formation, may be desirable in that they cannot produce diastereomer mixtures. Thus, X can be any one of S, Se, B, C, H, N, or OR (R is alkyl or aryl). Thus Y can be any one of S, Se, B, C, H, N, or OR (R is alkyl or aryl). Replacement of X and/or Y with sulfur is preferred. The phosphate linker can also be modified by replacement of a linking oxygen
(i.e., W or Z in Formula 1) with nitrogen (bridged phosphoroamidates), sulfur (bridged phosphorothioates) and carbon (bridged methylenephosphonates). The replacement can occur at a terminal oxygen (position W (3') or position Z (5'). Replacement of W with carbon or Z with nitrogen is preferred. Candidate agents can be evaluated for suitability as described below. The Sugar Group
A modified RNA can include modification of all or some of the sugar groups of the ribonucleic acid. E.g., the 2' hydroxyl group (OH) can be modified or replaced with a number of different "oxy" or "deoxy" substituents. While not being bound by theory, enhanced stability is expected since the hydroxyl can no longer be deprotonated to form a 2' alkoxide ion. The 2' alkoxide can catalyze degradation by intramolecular nucleophilic attack on the linker phosphorus atom. Again, while not wishing to be bound by theory, it can be desirable to some embodiments to introduce alterations in which alkoxide formation at the 2' position is not possible. Examples of "oxy"-2' hydroxyl group modifications include alkoxy or aryloxy
(OR, e.g., R = H, alkyl, cycloalkyl, aryl, aralkyl, heteroaryl or sugar); polyethyleneglycols (PEG), O(CH2CH2O)nCH2CH2OR; "locked" nucleic acids (LNA) in which the 2' hydroxyl is connected, e.g., by a methylene bridge, to the 4' carbon of the same ribose sugar; O- AMINE (AMINE = NH2; alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, or diheteroaryl amino, ethylene diamine, polyamino) and aminoalkoxy, O(CH2)nAMLNE, (e.g., AMINE = NH2; alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, or diheteroaryl amino, ethylene diamine, polyamino). It is noteworthy that oligonucleotides containing only the methoxyethyl group (MOE), (OCH2CH2OCH3, a PEG derivative), exhibit nuclease stabilities comparable to those modified with the robust phosphorothioate modification.
"Deoxy" modifications include hydrogen (i.e. deoxyribose sugars, which are of particular relevance to the overhang portions of partially ds RNA); halo (e.g., fluoro); amino (e.g. NH2; alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, diheteroaryl amino, or amino acid); NH(CH2CH2NH)nCH2CH2- AMINE (AMINE = NH2; alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, or diheteroaryl amino), -NHC(O)R (R = alkyl, cycloalkyl, aryl, aralkyl, heteroaryl or sugar), cyano; mercapto; alkyl-thio-alkyl; thioalkoxy; and alkyl, cycloalkyl, aryl, alkenyl and alkynyl, which may be optionally substituted with e.g., an amino functionality. Preferred substitutes are 2'-methoxyethyl, 2'-OCH3, 2'-O- allyl, 2'-C- allyl, and 2'-fluoro. The sugar group can also contain one or more carbons that possess the opposite stereochemical configuration than that of the corresponding carbon in ribose. Thus, a modified RNA can include nucleotides containing e.g., arabinose, as the sugar.
Modified RNA's can also include "abasic" sugars, which lack a nucleobase at C-l'. These abasic sugars can also be further contain modifications at one or more of the constituent sugar atoms.
To maximize nuclease resistance, the 2' modifications can be used in combination with one or more phosphate linker modifications (e.g., phosphorothioate). The so-called "chimeric" oligonucleotides are those that contain two or more different modifications.
Candidate modifications can be evaluated as described below.
Replacement of the Phosphate Group
The phosphate group can be replaced by non-phosphorus containing connectors (cf. Bracket I in Formula 1 above). While not wishing to be bound by theory, it is believed that since the charged phosphodiester group is the reaction center in nucleolytic degradation, its replacement with neutral structural mimics should impart enhanced nuclease stability. Again, while not wishing to be bound by theory, it can be desirable, in some embodiment, to introduce alterations in which the charged phosphate group is replaced by a neutral moiety.
Examples of moieties which can replace the phosphate group include siloxane, carbonate, carboxymethyl, carbamate, amide, thioether, ethylene oxide linker, sulfonate, sulfonamide, thioformacetal, formacetal, oxime, methyleneimino, methylenemethylimino, methylenehydrazo, methylenedimethylhydrazo and methyleneoxymethylimino. Preferred replacements include the methylenecarbonylamino and methylenemethylimino groups.
Candidate modifications can be evaluated as described below.
Replacement of Ribophosphate Backbone
Oligonucleotide- mimicking scaffolds can also be constructed wherein the phosphate linker and ribose sugar are replaced by nuclease resistant nucleoside or nucleotide surrogates (see Bracket II of Formula 1 above). While not wishing to be bound by theory, it is believed that the absence of a repetitively charged backbone diminishes binding to proteins that recognize polyanions (e.g. nucleases). Again, while not wishing to be bound by theory, it can be desirable in some embodiment, to introduce alterations in which the bases are tethered by a neutral surrogate backbone.
Examples include the mophilino, cyclobutyl, pyrrolidine and peptide nucleic acid (PNA) nucleoside surrogates. A preferred surrogate is a PNA surrogate.
Candidate modifications can be evaluated as described below.
Terminal Modifications
The 3' and 5' ends of an oligonucleotide can be modified. Such modifications can be at the 3' end, 5' end or both ends of the molecule. They can include modification or replacement of an entire terminal phosphate or of one or more of the atoms of the phosphate group. E.g., the 3' and 5' ends of an oligonucleotide can be conjugated to other functional molecular entities such as labeling moieties, e.g., fluorophores (e.g., pyrene, TAMRA, fluorescent, Cy3 or Cy5 dyes) or protecting groups (based e.g., on sulfur, silicon, boron or ester). The functional molecular entities can be attached to the sugar through a phosphate group and/or a spacer. The terminal atom of the spacer can connect to or replace the linking atom of the phosphate group or the C-3' or C-5' O, N, S or C group of the sugar. Alternatively, the spacer can connect to or replace the terminal atom of a nucleotide surrogate (e.g., PNAs). These spacers or linkers can include e.g., -(CH2)n-, -(CH2)„N-, -(CH2)nO-, -(CH2)nS-, O(CH2CH2O)nCH2CH2OH (e.g., n = 3 or 6), abasic sugars, amide, carboxy, amine, oxyamine, oxyimine, thioether, disulfide, thiourea, sulfonamide, or morpholino, or biotin and fluorescein reagents. When a spacer/phosphate-functional molecular entity- spacer/phosphate array is interposed between two strands of iRNA agents, this array can substitute for a hairpin RNA loop in a hairpin-type RNA agent. The 3 ' end can be an -OH group. Wliile not wishing to be bound by theory, it is believed that conjugation of certain moieties can improve transport, hybridization, and specificity properties. Again, while not wishing to be bound by theory, it may be desirable to introduce terminal alterations that improve nuclease resistance. Other examples of terminal modifications include dyes, intercalating agents (e.g. acridines), cross-linkers (e.g. psoralene, mitomycin C), porphyrins (TPPC4, texaphyrin, Sapphyrin), polycyclic aromatic hydrocarbons (e.g., phenazine, dihydrophenazine), artificial endonucleases (e.g. ΕDTA), lipophilic carriers (e.g., cholesterol, cholic acid, adamantane acetic acid, 1 -pyrene butyric acid, dihydrotestosterone, 1, 3 -Bis-O(hexadecyl) glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid,O3-(oleoyl)lithocholic acid, 03- (oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine)and peptide conjugates (e.g., antennapedia peptide, Tat peptide), alkylating agents, phosphate, amino, mercapto, PEG (e.g., PEG-40K), MPEG, [MPEG]2, polyamino, alkyl, substituted alkyl, radiolabeled markers, enzymes, haptens (e.g. biotin), transport/absorption facilitators (e.g., aspirin, vitamin E, folic acid), synthetic ribonucleases (e.g., imidazole, bisimidazole, histamine, imidazole clusters, acridine-imidazole conjugates, Eu3+ complexes of tetraazamacrocycles).
Teπninal modifications can be added for a number of reasons, including as discussed elsewhere herein to modulate activity or to modulate resistance to degradation. Terminal modifications useful for modulating activity include modification of the 5' end with phosphate or phosphate analogs. E.g., in preferred embodiments iRNA agents, especially antisense strands, are 5' phosphorylated or include a phosphoryl analog at the 5' prime terminus. 5 '.-phosphate modifications include those which are compatible with RISC mediated gene silencing. Suitable modifications include: 5 '-monophosphate ((HO)2(O)P-O-5'); 5'-diphosphate ((HO)2(O)P-O-P(HO)(O)-O-5'); 5'-triphosphate ((HO)2(O)P-O-(HO)(O)P-.O- P(HO)(O)-O-5'); 5'-guanosine cap (7-methylated or non-methylated) (7m-G-O-5'-
(HO)(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5'); 5'-adenosine cap (Appp), and any modified or unmodified nucleotide cap structure (N-O-5'-(HO)(O)P-O-(HO)(O)P-O-P(HO)(O)- O-5'); 5'-monothiophosphate (phosphorothioate; (HO)2(S)P-O-5'); 5'- monodithiophosphate (phosphoroditbioate; (HO)(HS)(S)P-O-5'), 5'-phosphorothiolate ((HO)2(O)P-S-5T); any additional combination of oxgen/sulfur replaced monophosphate, diphosphate and triphosphates (e.g. 5'-alpha-thiotriphosphate, 5'- gamma-thiotriphosphate, etc.), 5 '-pliosphoramidat.es ((HO)2(O)P-NH-5', (HO)(NH2)(O)P-O-5'), 5'-alkylphosphonates (R-alkyl=methyl, ethyl, isopropyl, propyl, etc., e.g. RP(OH)(O)-O-5'-, (OH)2(O)P-5'-CH2-), 5'-alkyletherphosphonates (R=alkylether=methoxymethyl (MeOCH2-), ethoxymethyl, etc., e.g. RP(OH)(O)-O-5'-
)•
Terminal modifications useful for increasing resistance to degradation include Terminal modifications can also be useful for monitoring distribution, and in such cases the preferred groups to be added include fluorophores, e.g., fluorescein or an Alexa dye, e.g., Alexa 488. . Terminal modifications can also be useful for enhancing uptake, useful modifications for this include cholesterol. Terminal modifications can also be useful for cross-linking an RNA agent to another moiety; modifications useful for this include mitomycin C.
Candidate modifications can be evaluated as described below.
The Bases
Adenine, guanine, cytosine and uracil are the most common bases found in RNA. These bases can be modified or replaced to provide RNA's having improved properties. E.g., nuclease resistant oligoribonucleotides can be prepared with these bases or with synthetic and natural nucleobases (e.g., inosine, thymine, xanthine, hypoxanthine, mibularine, isoguanisine, or tubercidine) and any one of the above modifications. Alternatively, substituted or modified analogs of any of the above bases and "universal bases" can be employed. Examples include 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6- azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 5-halouracil, 5- (2-aminopropyl)uracil, 5-amino allyl uracil, 8-halo, amino, thiol, thioalkyl, hydroxyl and other 8-substituted adenines and guanines, 5-trifluoromethyl and other 5- substituted uracils and cytosines, 7-methylguanine, 5-substituted pyrimidines, 6- azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2- aminopropyladenine, 5-propynyluracil and 5-propynylcytosine, dihydrouracil, 3-deaza- 5-azacytosine, 2-aminopurine, 5-alkyluracil, 7-alkylguanine, 5 -alkyl cytosine,7- deazaadenine, N6, N6-dimethyladenine, 2,6-diaminopurine, 5-amino-allyl-uracil, N3- methyluracil, substituted 1,2,4-triazoles, 2-pyridinone, 5-nitroindole, 3-nitropyrrole, 5- methoxyuracil, uracil-5-oxyacetic acid, 5-methoxycarbonylmethyluracil, 5-mefhyl-2- thiouracil, 5-methoxycarbonyhnethyl-2-thiouracil, 5-methylaminomethyl-2-thiouracil, 3-(3-amino-3carboxypropyl)uracil, 3-methylcytosine, 5-methylcytosine, N4-acetyl cytosine, 2-thiocytosine, N6-methyladenine, N6-isopentyladenine, 2-methylthio-N6- isopentenyladenine, N-methylguanines, or O-alkylated bases. Further purines and pyrimidines include those disclosed in U.S. Pat. No. 3,687,808, those disclosed in the Concise Encyclopedia of Polymer Science And Engineering, pages 858-859, Kroschwitz, J. I., ed. John Wiley & Sons, 1990, and those disclosed by Englisch et al., Angewandte Chemie, International Edition, 1991, 30, 613.
Generally, base changes are less preferred for promoting stability, but they can be useful for other reasons, e.g., some, e.g., 2,6-diaminopurine and 2 amino purine, are fluorescent. Modified bases can reduce target specificity. This should be taken into consideration in the design of iRNA agents.
Candidate modifications can be evaluated as described below.
Evaluation of Candidate RNA 's
One can evaluate a candidate RNA agent, e.g., a modified RNA, for a selected property by exposing the agent or modified molecule and a control molecule to the appropriate conditions and evaluating for the presence of the selected property. For example, resistance to a degradent can be evaluated as follows. A candidate modified RNA (and preferably a control molecule, usually the unmodified form) can be exposed to degradative conditions, e.g., exposed to a milieu, which includes a degradative agent, e.g., a nuclease. E.g., one can use a biological sample, e.g., one that is similar to a milieu, which might be encountered, in therapeutic use, e.g., blood or a cellular fraction, e.g., a cell-free homogenate or disrupted cells. The candidate and control could then be evaluated for resistance to degradation by any of a number of approaches. For example, the candidate and control could be labeled, preferably prior to exposure, with, e.g., a radioactive or enzymatic label, or a fluorescent label, such as Cy3 or Cy5. Control and modified RNA's can be incubated with the degradative agent, and optionally a control, e.g., an inactivated, e.g., heat inactivated, degradative agent. A physical parameter, e.g., size, of the modified and control molecules are then determined. They can be determined by a physical method, e.g., by polyacrylamide gel electrophoresis or a sizing column, to assess whether the molecule has maintained its original length, or assessed functionally. Alternatively, Northern blot analysis can be used to assay the length of an unlabeled modified molecule. A functional assay can also be used to evaluate the candidate agent. A functional assay can be applied initially or after an earlier non-functional assay, (e.g., assay for resistance to degradation) to determine if the modification alters the ability of the molecule to silence gene expression. For example, a cell, e.g., a mammalian cell, such as a mouse or human cell, can be co-transfected with a plasmid expressing a fluorescent protein, e.g., GFP, and a candidate RNA agent homologous to the transcript encoding the fluorescent protein (see, e.g., WO 00/44914). For example, a modified dsRNA homologous to the GFP mRNA can be assayed for the ability to inhibit GFP expression by monitoring for a decrease in cell fluorescence, as compared to a control cell, in which the transfection did not include the candidate dsRNA, e.g., controls with no agent added and/or controls with a non-modified RNA added. Efficacy of the candidate agent on gene expression can be assessed by comparing cell fluorescence in the presence of the modified and unmodified dsRNA agents. In an alternative functional assay, a candidate dsRNA agent homologous to an endogenous mouse gene, preferably a maternally expressed gene, such as c-mos, can. be injected into an immature mouse oocyte to assess the ability of the agent to inhibit gene expression in vivo (see, e.g., WO 01/36646). A phenotype of the oocyte, e.g., the ability to maintain arrest in metaphase II, can be monitored as an indicator that the agent is inhibiting expression. For example, cleavage of c-mos mRNA by a dsRNA agent would cause the oocyte to exit metaphase arrest and initiate parthenogenetic development (Colledge et αl., Nature 370: 65-68, 1994; Hashimoto et al, Nature 370:68-71, 1994). The effect of the modified agent on target RNA levels can be verified by Northern blot to assay for a decrease in the level of target mRNA, or by Western blot to assay for a decrease in the level of target protein, as compared to a negative control. Controls can include cells in which with no agent is added and/or cells in which a non-modified RNA is added.
REFERENCES
General References The oligoribonucleotides and oligoribonucleosides used in accordance with this invention may be with solid phase synthesis, see for example
Oligonucleotide synthesis, a practical approach, Ed. M. J. Gait, LRL Press, 1984;
Oligonucleotides and Analogues, A Practical Approach, Ed. F. Eckstein, IRL Press,
1991 (especially Chapter 1, Modern machine-aided methods of oligodeoxyribonucleotide synthesis, Chapter 2, Oligoribonucleotide synthesis, Chapter 3, 2'-O— Methyloligoribonucleotide- s: synthesis and applications, Chapter 4,
Phosphorothioate oligonucleotides, Chapter 5, Synthesis of oligonucleotide phosphorodithioates, Chapter 6, Synthesis of oligo-2'-deoxyribonucleoside methylphosphonates, and. Chapter 7, Oligodeoxynucleotides containing modified bases. Other particularly useful synthetic procedures, reagents, blocking groups and reaction conditions are described in Martin, Helv. Chun. Ada 78:486-504, 1995; Beaucage and Iyer, Tetrahedron 48:2223-2311, 1992, and Beaucage and Iyer, Tetrahedron 49;6123-6194, 1993, or references referred to therein.
Modification described in WO 00/44895, WO01/75164, or WO02/44321 can be used herein.
The disclosure of all publications, patents, and published patent applications listed herein are hereby incorporated by reference.
Phosphate Group References
The preparation of phosphinate oligoribonucleotides is described in U.S. Pat. No. 5,508,270. The preparation of alkyl phosphonate oligoribonucleotides is described in U.S. Pat. No. 4,469,863. The preparation of phosphoramidite oligoribonucleotides is described in U.S. Pat. No. 5,256,775 or U.S. Pat. No. 5,366,878. The preparation of phosphotriester oligoribonucleotides is described in U.S. Pat. No. 5,023,243. The preparation of borano phosphate oligoribonucleotide is described in U.S. Pat. Nos. 5,130,302 and 5,177,198. The preparation of 3'-Deoxy-3'-amino phosphoramidate oligoribonucleotides is described in U.S. Pat. No. 5,476,925. 3'-Deoxy-3'- methylenephosphonate oligoribonucleotides is described in An, H, et al, J. Org. Chem. 66:2789-2801, 2001. Preparation of sulfur bridged nucleotides is described in Sproat et al, Nucleosides Nucleotides 7:651, 1988, and Crosstick et al, Tetrahedron Lett. 30:4693, 1989.
Sugar Group References Modifications to the 2' modifications can be found in Verma et al, Annu. Rev.
Biochem. 67:99-134, 1998. and all references therein. Specific modifications to the ribose can be found in the following references: 2'-fluoro (Kawasaki et al, J. Med. Chem. 36:831-841, 1993), 2'-MOE (Martin, Helv. Chim. Ada 79:1930-1938, 1996), "LNA" (Wengel, Ace. Chem. Res. 32:301-310, 1999).
Replacement of the Phosphate Group References Methylenemethylimino linked oligoribonucleosides, also identified herein as MMI linked oligoribonucleosides, methylenedimethylhydrazo linked oligoribonucleosides, also identified herein as MDH linked oligoribonucleosides, and methylenecarbonylamino linked oligonucleosides, also identified herein as amide-3 linked oligoribonucleosides, and methyleneaminocarbonyl linked oligonucleosides, also identified herein as amide-4 linked oligoribonucleosides as well as mixed backbone compounds having, as for instance, alternating MMI and PO or PS linkages can be prepared as is described in U.S. Pat. Nos. 5,378,825, 5,386,023, 5,489,677 and in published PCT applications PCT/US92/04294 and PCT/US92/04305 (published as WO 92/20822 WO and 92/20823, respectively). Formacetal and thioformacetal linked oligoribonucleosides can be prepared as is described in U.S. Pat. Nos. 5,264,562 and 5,264,564. Ethylene oxide linked oligoribonucleosides can be prepared as is described in U.S. Pat. No. 5,223,618. Siloxane replacements are described in Cormier et al, Nucleic Acids Res. 16:4583, 1988. Carbonate replacements are described in Tittensor, Chem. Soc. C:1933, 1971. Carboxymethyl replacements are described in Edge et al, J. Chem. Soc. Perkin Trans. 1 1972, 1991. Carbamate replacements are described in Stirchak, Nucleic Acids Res. 17:6129, 1989.
Replacement of the Phosphate-Ribose Backbone References
Cyclobutyl sugar surrogate compounds can be prepared as is described in U.S. Pat. No. 5,359,044. Pyrrolidine sugar surrogate can be prepared as is described in U.S. Pat. No. 5,519,134. Morpholino sugar surrogates can be prepared as is described in U.S. Pat. Nos. 5,142,047 and 5,235,033, and other related patent disclosures. Peptide Nucleic Acids (PNAs) are known per se and can be prepared in accordance with any of the various procedures referred to in Peptide Nucleic Acids (PNA): Synthesis, Properties and Potential Applications, Bioorganic & Medicinal Chemistry, 1996, 4, 5- 23. They may also be prepared in accordance with U.S. Pat. No. 5,539,083.
Terminal Modification References
Terminal modifications are described in Manoharan et al. (Antisense and Nucleic Acid Drug Development 12:103-128, 2002) and references therein. Bases References
N-2 substituted purine nucleoside amidites can be prepared as is described in U.S. Pat. No. 5,459,255. 3-Deaza purine nucleoside amidites can be prepared as is described in U.S. Pat. No. 5,457,191. 5,6-Substituted pyrimidine nucleoside amidites can be prepared as is described in U.S. Pat. No. 5,614,617. 5-Propynyl pyrimidine nucleoside amidites can be prepared as is described in U.S. Pat. No. 5,484,908. Additional references can be disclosed in the above section on base modifications.
PREFERRED RNA AGENTS Preferred RNA agents have the following structure (Fonnula 2):
Figure imgf000073_0001
FORMULA 2
wherein:
R1, R2, and R3 are independently H, (i.e. abasic nucleotides), adenine, guanine, cytosine and uracil, inosine, thymine, xanthine, hypoxanthine, nubularine, tubercidine, isoguanisine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 5-halouracil, 5-(2-aminopropyl)uracil, 5-amino allyl uracil, 8-halo, amino, thiol, thioalkyl, hydroxyl and other 8-substituted adenines and guanines, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine, 5- substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine, dihydrouracil, 3-deaza-5-azacytosine, 2-aminopurine, 5-alkyluracil, 7-alkylguanine, 5- alkyl cytosine,7-deazaadenine, 7-deazaguanine, N6, N6-dimethyladenine, 2,6- diaminopurine, 5-amino-allyl-uracil, N3-methyluracil, substituted 1,2,4-triazoles, 2- pyridinone, 5-nitroindole, 3-nitropyrrole, 5-methoxyuracil, uracil-5-oxyacetic acid, 5- methoxycarbonylmethyluracil, 5-methyl-2-thiouracil, 5-methoxycarbonylmethyl-2- thiouracil, 5-methylaminomethyl-2-thiouracil, 3-(3-amino-3carboxypropyl)uracil, 3- methylcytosine, 5-methylcytosine, N4-acetyl cytosine, 2-thiocytosine, N6- methyladenine, N6-isopentyladenine, 2-methylthio-N6-isopentenyladenine, N- methylguanines, or O-alkylated bases;
R4, R5, and R6 are independently OR8, O(CH2CH2O)mCH2CH2OR8; O(CH2)nR9; O(CH2)nOR9, H; halo; NH2; NHR8; N(R8)2; NH(CH2CH2NH)mCH2CH2 HR9;
NHC(0)R8; ; cyano; mercapto, SR8; alkyl-thio-alkyl; alkyl, aralkyl, cycloalkyl, aryl, heteroaryl, alkenyl, alkynyl, each of which may be optionally substituted with halo, hydroxy, oxo, nitro, haloalkyl, alkyl, alkaryl, aryl, aralkyl, alkoxy, aryloxy, amino, alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, diheteroaryl amino, acylamino, alkylcarbamoyl, arylcarbamoyl, aminoalkyl, alkoxycarbonyl, carboxy, hydroxyalkyl, alkanesulfonyl, alkanesulfonamido, arenesulfonamido, aralkylsulfonamido, alkylcarbonyl, acyloxy, cyano, or ureido; or R4, R5, or R6 together combine with R7 to form an [-O-CH2-] covalently bound bridge between the sugar 2' and 4' carbons;
A1 is:
Figure imgf000075_0001
; H; OH, OCH3, W1; an abasic nucleotide; or absent;
(a preferred Al , especially with regard to anti-sense strands, is chosen from 5'- monophosphate ((HO)2(O)P-O-5'), 5 '-diphosphate ((HO)2(O)P-O-P(HO)(O)-O-5'), 5'- triphosphate ((HO)2(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5'), 5'-guanosine cap (7- methylated or non-methylated) (7m-G-O-5'-(HO)(O)P-O-(HO)(O)P-O-P(HO)(O)-O- 5'), 5'-adenosine cap (Appp), and any modified or unmodified nucleotide cap structure (N-O-5'-(HO)(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5'), 5'-monothiophosphate (phosphorothioate; (HO)2(S)P-O-5'), 5'-monodithiophosphate (phosphorodithioate; (HO)(HS)(S)P-O-5'), 5'-phosphorothiolate ((HO)2(O)P-S-5'); any additional combination of oxgen/sulfur replaced monophosphate, diphosphate and triphosphates (e.g. 5'-alpha-thiotriphosphate, 5'-gamma-thiotriphosphate, etc.), 5'-phosphoramidates ((HO)2(O)P-NH-5', (HO)(NH2χθ)P-O-5'), 5'-alkylρhosphonates (R=alkyl=me hyl, ethyl, isopropyl, propyl, etc., e.g. RP(OH)(O)-O-5'-, (OH)2(O)P-5'-CH2-), 5'- alkyletherphosphonates (R=alkylether=methoxymethyl (MeOCH2-), ethoxymethyl, etc., e.g. RP(OH)(O)-O-5'-)); A2 is:
Figure imgf000076_0001
AJis:
Figure imgf000076_0002
A4 is:
Figure imgf000077_0001
; H; Z ; an inverted nucleotide; an abasic nucleotide; or absent;
W1 is OH, (CH2)nR10, (CH2)nNHR10, (CH2)n OR10, (CH2)n SR10; O(CH2)nR10; O(CH2)nOR10, O(CH2)nNR10, O(CH2)nSR10; O(CH2)nSS(CH2)nOR10, O(CH2)nC(O)OR10, NH(CH2)nR10; NH(CH2)nNR10 ;NH(CH2)nOR10, NH(CH2)nSR10; S(CH2)nR10, S(CH2)nNR10, S(CH2)nOR10, S(CH2)nSR10 O(CH2CH2O)mCH2CH2OR10; O(CH2CH2O)mCH2CH2NHR10 , NH(CH2CH2NH)mCH2CH2NHR10; Q-R10, O-Q-R10 N- Q-R10, S-Q-R10 or -O-;
W4 is O, CH2, NH, or S;
X , X', X v3 , and X are each independently O or S;
Y1, Y2, Y3, and Y4 are each independently OH, O", OR8, S, Se, BH3 ", H, NHR9, N(R9)2 alkyl, cycloalkyl, aralkyl, aryl, or heteroaryl, each of which may be optionally substituted; Z1, Z2, and Z3 are each independently O, CH2, NH, or S; Z4 is OH, (CH2)nR10, (CH2)nNHR10, (CH2)n OR10, (CH2)n SR10; O(CH2)nR10; O(CH2)nOR10, O(CH2)nNR10, O(CH2)nSR10, O(CH2)nSS(CH2)nOR10, O(CH2)nC(O)OR10; NH(CH2)nR10; NH(CH2)nNR10 ;NH(CH2)nOR10, NH(CH2)nSR10; S(CH2)nR10, S(CH2)nNR10, S(CH2)nOR10, S(CH2)nSR10 O(CH2CH2θ)rnCH2CH2θR1(), O(CH2CH2O)mCH2CH2NHR10 , NH(CH2CH2NH)mCH2CH2NHR10; Q-R10, O-Q-R10 N- Q-R10, S-Q-R10;
x is 5-100, chosen to comply with a length for an RNA agent described herein;
R7 is H; or is together combined with R4, R5, or R6 to form an [-O-CH2-] covalqntly bound bridge between the sugar 2' and 4' carbons;
R8 is alkyl, cycloalkyl, aryl, aralkyl, heterocyclyl, heteroaryl, amino acid, or sugar;
R9 is NH2, alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, diheteroaryl amino, or amino acid;
R10 is H; fluorophore (pyrene, TAMRA, fluorescein, Cy3 or Cy5 dyes); sulfur, silicon, boron or ester protecting group; intercalating agents (e.g. acridines), cross-linkers (e.g. psoralene, mitomycin C), porphyrins (TPPC4,texaphyrin, Sapphyrin), polycyclic aromatic hydrocarbons (e.g., phenazine, dihydrophenazine), artificial endonucleases (e.g. EDTA), lipophilic carriers (cholesterol, cholic acid, adamantane acetic acid, 1- pyrene butyric acid, dihydrotestosterone, 1, 3 -Bis-O(hexadecyl) glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid,O3-(oleoyl)lithocholic acid, O3- (oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine)and peptide conjugates (e.g., antennapedia peptide, Tat peptide), alkylating agents, phosphate, amino, mereapto, PEG (e.g., PEG-40K), MPEG, [MPEG]2, polyamino; alkyl, cycloalkyl, aryl, aralkyl, heteroaryl; radiolabelled markers, enzymes, haptens (e.g. biotin), transport/absorption facilitators (e.g., aspirin, vitamin E, folic acid), synthetic ribonucleases (e.g., imidazole, bisimidazole, histamine, imidazole clusters, acridine-imidazole conjugates, Eu3+ complexes of tetraazamacrocycles); or an RNA agent;; m is 0-1,000,000;
n is 0-20.
Q is a spacer selected from the group consisting of abasic sugar, amide, carboxy, oxyamine, oxyimine, thioether, disulfide, thiourea, sulfonamide, or morpholino, biotin or fluorescein reagents.
Prefened RNA agents in which the entire phosphate group has been replaced have the following structure (Formula 3):
Figure imgf000079_0001
FORMULA 3
wherein: A10- A40 is L-G-L; A10 and/or A40 may be absent, wherein
L is a linker, wherein one or both L may be present or absent and is selected from the group consisting of CH2(CH2)g; N(CH2)g; O(CH2)g; S(CH2)g;
G is a functional group selected from the group consisting of siloxane, carbonate, carboxymethyl, carbamate, amide, thioether, ethylene oxide linker, sulfonate, sulfonamide, thioformacetal, formacetal, oxime, methyleneimino, methylenemethylimino, methylenehydrazo, methylenedimethylhydrazo and methyleneoxymethylimino ;
R10, R20, and R30 are independently H, (i.e. abasic nucleotides), adenine, guanine, cytosine and uracil, inosine, thymine, xanthine, hypoxanthine, nubularine, tubercidine, isoguanisine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymme, 5-uracil (pseudouracil), 4-thiouracil, 5-halouracil, 5-(2-aminopropyl)uracil, 5-amino allyl uracil, 8-halo, amino, thiol, thioalkyl, hydroxyl and other 8-substituted adenines and guanines, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine, 5- substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine, dihydro uracil, 3-deaza-5-azacytosine, 2-aminopurine, 5-alkyluracil, 7-alkylguanine, 5- alkyl cytosine,7-deazaadenine5 7-deazaguanine, N6, N6-dimethyladenine, 2,6- diaminopurine, 5-amino-allyl-uracil, N3-methyluracil substituted 1,2,4-triazoles, 2- pyridinone, 5-nitroindole, 3-nitropynole, 5-methoxyuracil, uracil-5-oxyacetic acid, 5- methoxycarbonylmethyluracil, 5-methyl-2-thiouracil, 5-methoxycarbonylmethyl-2- tliiouracil, 5-methylaminomethyl-2-thiouracil, 3-(3-amino-3carboxypropyl)uracil, 3- methylcytosine, 5-methylcytosine, N4-acetyl cytosine, 2-thiocytosine, N6- methyladenine, N6-isopentyladenine, 2-methylthio-N6-isopentenyladenine, N- methylguanines, or O-alkylated bases;
R40, R50, and R60 are independently OR8, O(CH2CH2O)mCH2CH2OR8; O(CH2)nR9; O(CH2)„OR9, H; halo; NH2; NHR8; N(R8)2; NH(CH2CH2NH)mCH2CH2R9; NHC(O)R8;; cyano; mercapto, SR7; alkyl-thio-alkyl; alkyl, aralkyl, cycloalkyl, aryl, heteroaryl, alkenyl, alkynyl, each of which may be optionally substituted with halo, hydroxy, oxo, nitro, haloalkyl, alkyl, alkaryl, aryl, aralkyl, alkoxy, aryloxy, amino, alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, diheteroaryl amino, acylamino, alkylcarbamoyl, arylcarbamoyl, aminoalkyl, alkoxycarbonyl, carboxy, hydroxyalkyl, alkanesulfonyl, alkanesulfonamido, arenesulfonamido, aralkylsulfonamido, alkylcarbonyl, acyloxy, cyano, and ureido groups; or R40, R50, or R60 together combine with R70 to form an [-O-CH2-] covalently bound bridge between the sugar T and 4' carbons;
x is 5-100 or chosen to comply with a length for an RNA agent described herein;
R70 is H; or is together combined with R40, R50, or R60 to form an [-O-CH2-] covalently bound bridge between the sugar 2' and 4' carbons;
R8 is alkyl, cycloalkyl, aryl, aralkyl, heterocyclyl, heteroaryl, amino acid, or sugar;
R9 is NH2, alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, diheteroaryl amino, or amino acid;
m is 0-1,000,000;
n is 0-20;
g is 0-2.
Prefened nucleoside sunogates have the following structure (Formula 4):
SLR100-(M-SLR200)X-M-SLR300 FORMULA 4
wherein:
S is a nucleoside sunogate selected from the group consisting of mophilino, cyclobutyl, pynolidine and peptide nucleic acid;
L is a linker and is selected from the group consisting of CH2(CH2)g; N(CH2)g; O(CH2)g; S(CH2)g; -C(O)(CH2)n-or may be absent;
M is an amide bond; sulfonamide; sulfinate; phosphate group; modified phosphate group as described herein; or may be absent;
R100, R200, and R300 are independently H (i.e., abasic nucleotides), adenine, guanine, cytosine and uracil, inosine, thymine, xanthine, hypoxanthine, nubularine, tubercidine, isoguanisine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 5- halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 5-halouracil, 5-(2-aminopropyl)uracil, 5- amino allyl uracil, 8-halo, amino, thiol, thioalkyl, hydroxyl and other 8-substituted adenines and guanines, 5-trifluoromethyl and other 5 -substituted uracils and cytosines, 7-methylguanine, 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5- propynylcytosine, dihydrouracil, 3-deaza-5-azacytosine, 2-aminopurine, 5-alkyluracil, 7-alkylguanine, 5-alkyl cytosine,7-deazaadenine, 7-deazaguanine, N6, N6- dimethyladenine, 2,6-diaminopurine, 5-amino-allyl-uracil, N3-methyluracil substituted 1, 2, 4,-triazoles, 2-pyridinones, 5-nitroindole, 3-nitropynole, 5-methoxyuracil, uracil- 5-oxyacetic acid, 5-methoxycarbonylmethyluracil, 5-methyl-2-thiouracil, 5- methoxycarbonylmethyl-2-thiouracil, 5-methylaminomethyl-2-thioιrracil, 3-(3-amino- 3carboxypropyl)uracil, 3-methylcytosine, 5-methylcytosine, N4-acetyl cytosine, 2- thiocytosine, N6-methyladenine, N6-isopentyladenine, 2-methylthio-N6- isopentenyladenine, N-methylguanines, or O-alkylated bases. x is 5-100, or chosen to comply with a length for an RNA agent described herein;
g is 0-2.
DEFINITIONS
The term "halo" refers to any radical of fluorine, chlorine, bromine or iodine. The term "alkyl" refers to saturated and unsaturated non-aromatic hydrocarbon chains that may be a straight chain or branched chain, containing the indicated number of carbon atoms (these include without limitation propyl, allyl, or propargyl), which may be optionally inserted with N, O, or S. For example, Cι-Cι0 indicates that the group may have from 1 to 10 (inclusive) carbon atoms in it. The term "alkoxy" refers to an - O-alkyl radical. The term "alkyl ene" refers to a divalent alkyl (i.e., -R-). The term "alkyl enedioxo" refers to a divalent species of the structure -O-R-O-, in which R represents an alkylene. The term "aminoalkyl" refers to an alkyl substituted with an amino. The term "mercapto" refers to an -SH radical. The term "thioalkoxy" refers to an -S-alkyl radical.
The term "aryl" refers to a 6-carbon monocyclic or 10-carbon bicyclic aromatic ring system wherein 0, 1, 2, 3, or 4 atoms of each ring may be substituted by a substituent. Examples of aryl groups include phenyl, naphthyl and the like. The term "arylalkyl" or the term "aralkyl" refers to alkyl substituted with an aryl. The term "arylalkoxy" refers to an alkoxy substituted with aryl.
The term "cycloalkyl" as employed herein includes saturated and partially unsaturated cyclic hydrocarbon groups having 3 to 12 carbons, preferably 3 to 8 carbons, and more preferably 3 to 6 carbons, wherein the cycloalkyl group additionally may be optionally substituted. Prefened cycloalkyl groups include, without limitation, cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptyl, and cyclooctyl.
The term "heteroaryl" refers to an aromatic 5-8 membered monocyclic, 8-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms selected from O, N, or S (e.g., carbon atoms and 1-3, 1-6, or 1-9 heteroatoms of N, O, or S if monocyclic, bicyclic, or tricyclic, respectively), wherein 0, 1, 2, 3, or 4 atoms of each ring may be substituted by a substituent. Examples of heteroaryl groups include pyridyl, furyl or furanyl, imidazolyl, benzimidazolyl, pyrimidinyl, thiophenyl or thienyl, quinolinyl, indolyl, thiazolyl, and the like. The term "heteroarylalkyl" or the term "heteroaralkyl" refers to an alkyl substituted with a heteroaryl. The term "heteroarylalkoxy" refers to an alkoxy substituted with heteroaryl. The term "heterocyclyl" refers to a nonaromatic 5-8 membered monocyclic, 8- 12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms selected from O, N, or S (e.g., carbon atoms and 1-3, 1-6, or 1-9 heteroatoms of N, O, or S if monocyclic, bicyclic, or tricyclic, respectively), wherein 0, 1, 2 or 3 atoms of each ring maybe substituted by a substituent. Examples of heterocyclyl groups include piperazinyl, pynolidinyl, dioxanyl, morpholinyl, tetrahydrofuranyl, and the like.
The term "oxo" refers to an oxygen atom, which forms a carbonyl when attached to carbon, an N-oxide when attached to nitrogen, and a sulfoxide or sulfone when attached to sulfur.
The term "acyl" refers to an alkylcarbonyl, cycloalkylcarbonyl, arylcarbonyl, heterocyclylcarbonyl, or heteroarylcarbonyl substituent, any of which may be further substituted by substituents. The term "substituents" refers to a group "substituted" on an alkyl, cycloalkyl, aryl, heterocyclyl, or heteroaryl group at any atom of that group. Suitable substituents include, without limitation, halo, hydroxy, oxo, nitro, haloalkyl, alkyl, alkaryl, aryl, aralkyl, alkoxy, aryloxy, amino, acylamino, alkylcarbamoyl, arylcarbamoyl, aminoalkyl, alkoxycarbonyl, carboxy, hydroxyalkyl, alkanesulfonyl, arenesulfonyl, alkanesulfonamido, arenesulfonamido, aralkylsulfonamido, alkylcarbonyl, acyloxy, cyano, and ureido groups.
OTHER EMBODIMENTS
In yet another embodiment, iRNAs agents are produced in a cell in vivo, e.g., from exogenous DNA templates that are delivered into the cell. For example, the DNA templates can be inserted into vectors and used as gene therapy vectors. Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (U.S. Pat. No. 5,328,470), or by stereotactic injection (see, e.g., Chen et produces a transcript that includes the bottom strand of an iRNA agent. When the templates are transcribed, the iRNA agent is produced, and processed into sRNA agent fragments that mediate gene silencing.
EXAMPLES
Example 1: Inhibition of endogenous ApoM gene expression in mice
Apolipoprotein M (ApoM) is a human apolipoprotein predominantly present in high-density lipoprotein (HDL) in plasma. ApoM is reported to be expressed exclusively in liver and in kidney (Xu et al, Biochem. J. Biol. Chem. 274:31286-90, 1999). Mouse ApoM is a 21kD membrane associated protein, and, in serum, the protein is associated with HDL particles. ApoM gene expression is regulated by the transcription factor hepatocyte nuclear factor 1 alpha (Hnf-lα), as Hnf-lof " mice are ApoM deficient, hi humans, mutations in the HNF-1 alpha gene represent a common cause of maturity-onset diabetes of the young (MODY). A variety of test iRNAs were synthesized to target the mouse ApoM gene. This gene was chosen in part because of its high expression levels and exclusive activity in the liver and kidney.
Three different classes of dsRNA agents were synthesized, each class having different modifications and features at the 5' and 3' ends, see Table 2.
Table 2
Targeted O F's
5 The 23mer: AAGTTTGGGCAGCTCTGCTCT SEQ ID NO: 9
19 The 23mer: AAGTGGACATACCGATTGACT SEQ ID NO: 10
25 The 23mer: AACTCAGAACTGAAGGGCGCC SEQ ID MO: 7
27 The 23mer: AAGGGCGCCCAGACATGAAAA SEQ ID MO: 28
42: AAGATAGGAGCCCAGCTTCGA SEQ ID MO: 29 • Class I
21-nt iRNAs, t, deoxythymidine; p, phosphate
pGUUUGGGCAGCUCUGCUCUtt SEQ ID Nθ:l pAGAGCAGAGCUGCCCAAACtt SEQ ID NO: 5
pGUGGACAUACCGAUUGACUtt SEQ ID NO: 2 pAGUCAAUCGGUAUGUCCACtt SEQ ID NO: 6
pCUCAGAACUGAAGGGCGCCtt SEQ ID NO: 3 pGGCGCCCUUCAGUUCUGAGtt SEQ ID NO: 7
pGAUAGGAGCCCAGCUUCGAtt SEQ ID NO:4 pUCGAAGCUGGGCUCCUAUCtt SEQ ID NO: 8
Class II
21-nt iRNAs, t, deoxythymidine; p, phosphate; ps, thiophosphate
pGUϋUGGGCAGCUCUGCUCpsUpstpst SEQ ID NO: 11 pAGAGCAGAGCUGCCCAAApsCpstpst SEQ ID NO: 12
pGUGGACAUACCGAUUGACpsUpstpst SEQ ID NO: 13 pAGUCAAUCGGUAUGUCCApsCpstpst SEQ ID NO: 14
pCUCAGAACUGAAGGGCGCpsCpst st SEQ ID NO: 15 pGGCGCCCUUCAGXJUCUGApsGpstpst SEQ ID NO: 16
pGAUAGGAGCCCAGCUUCGpsApstpst SEQ ID MO: 17 pUCGAAGCUGGGCUCCUAUpsCpstpst SEQ ID NO: 18
Class III
23-nt antisense, 21-nt sense, blunt-ended 5'-as
GUUUGGGCAGCUCUGCUCUCU SEQ ID NO: 19 AGAGAGCAGAGCUGCCCAAACUU SEQ ID NO: 20
GUGGACAUACCGAUUGACUGA SEQ ID NO: 21
UCAGUCAAUCGGUAUGUCCACUU SEQ ID NO: 22
CUCAGAACUGAAGGGCGCCCA SEQ ID NO: 23
PUGGGCGCCCUUCAGUUCUGAGUU SEQ ID NO: 24
GAUAGGAGCCCAGCUUCGAGU SEQ ID NO:25
ACUCGAAGCUGGGCUCCUAUCUU SEQ ID MO: 26
Class I dsRNAs consisted of 21 nucleotide paired sense and antisense strands. The sense and antisense strands were each phosphorylated at their 5' ends. The double stranded region was 19 nucleotides long and consisted of ribonucleotides. The 3' end of each strand created a two nucleotide overhang consisting of two deoxyribonucleotide thymidines. See constructs #1-4 in Table 2.
Class II dsRNAs were also 21 nucleotides long, with a 19 nucleotide double strand region. The sense and antisense strands were each phosphorylated at their 5 ' ends. The three 3' terminal nucleotides of the sense and antisense strands were phosphorothioate deoxyribonucleotides, and the two terminal phosphorothioate thymidines were unpaired, creating a 3 ' overhang region at each end of the iRNA molecule. See contracts 11, 13, 15, and 17 in Table 2.
Class III dsRNAs included a 23 ribonucleotide antisense strand and a 21 ribonucleotide sense strand, to form a construct having a blunt 5 'and a 3' overhang region. See constructs 19, 21, 23, and 25 in Table 2. Within each of the three classes of iRNAs, the four dsRNA molecules were designed to target four different regions of the ApoM transcript. dsRNAs 1, 11, and 19 targeted the 5' end of the open reading frame (ORF). dsRNAs 2, 13, and 21, and 3, 15, and 23, targeted two internal regions (one 5 'proximal and one 3 'proximal) of the ORF, and the 4, 17, and 25 iRNA constructs targeted to a region of the 3 ' untranslated sequence (3 ' UTS) of the ApoM mRNA. This is summarized in Table 3. Table 3. iRNA molecules targeted to mouse ApoM
Figure imgf000088_0001
CD1 mice (6-8 weeks old, ~35g) were administered one of the test iRNAs in PBS solution. Two hundred micrograms of iRNA in a volume of solution equal to 10% body weight (~5.7mg iRNA/kg mouse) was administered by the method of high pressure tail vein injection, over a 10-20 sec. time interval. After a 24 h recovery period, a second injection was performed using the same dose and mode of administration as the first injection, and following another 24 h, a third and final injection was administered, also using the same dose and mode of administration.
After a final 24 h recovery, the mouse was sacrificed, serum was collected and the liver and kidney harvested to assay for an affect on ApoM gene expression. Expression was monitored by quantitative RT-PCR and Western blot analyses. This experiment was repeated for each of the iRNAs listed in Table 2. Class I iRNAs did not alter ApoM RNA levels in mice, as indicated by quantitative RT-PCR (FIG. 1). This is in contrast to the effect of these iRNAs in cultured HepG2 cells (FIG. 2). Cells cotransfected with a plasmid expressing exogenous ApoM RNA under a CMV promoter and a class I iRNA demonstrated a 25% or greater reduction in ApoM RNA concentrations as compared to control transfections. The iRNA molecules 1, 2 and 3 each caused a 75% decrease in exogenous ApoM mRNA levels (FIG. 2).
Class II iRNAs reduced liver and kidney ApoM mRNA levels by -30-85% (FIG. 3). The iRNA molecule "13" elicited the most dramatic reduction in mRNA levels; quantitative RT-PCR indicated a decrease of about 85% in liver tissue. Serum ApoM protein levels were also reduced as was evidenced by Western blot analysis
(FIG. 4). The iRNAs 11, 13 and 15, reduced protein levels by about 50%, while iRNA 17 had the mildest effect, reducing levels only by ~15-20%. Class III iRNAs (constructs 19, 21, and 23) reduced serum ApoM levels by -40-50% (FIG. 5).
To determine the effect of dosage on iRNA mediated ApoM inhibition, the experiment described above was repeated with three injections of 50μg iRNA "11" (~1.4mg iRNA/kg mouse). This lower dosage of iRNA resulted in a reduction of serum ApoM levels of about 50% (FIG. 6). This is compared with the reduction seen with the 200μg injections, which reduced serum levels by 25-45% (see FIG. 6). These results indicated the lower dosage amounts of iRNAs were effective.
In an effort to increase iRNA uptake by cells, iRNAs were precomplexed with lipofectarnine prior to tail vein injections. Figure 6 illustrates that ApoM protein levels were about 50% of wildtype levels in mice injected with iRNA "11" when the molecules were preincubated with lipofectarnine; ApoM levels were also about 50% of wildtype when mice were injected with iRNA "11" that was not precomplexed with lipofectarnine. These experiments revealed that modified iRNAs can greatly influence RNAi- mediated gene silencing. As demonstrated herein, modifications including phosphorothioate nucleotides are particularly effective at decreasing target protein levels.
While this invention has been particularly shown and described with reference to prefened embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
All references cited herein, and co-owned and copending provisional patent applications 60/396,235, filed July 16, 2002, 60/419,722, filed October 18, 2002, and 60/440,696, filed January 17, 2003, are incorporated by reference.

Claims

WHAT IS CLAIMED IS:
1. A method of administering an iRNA agent to a subject, comprising administering to the subject a unit dose of a pharmaceutical composition comprising at least one duplex iRNA agent having a sense and an antisense strand and having one or
5 two 3' overhangs of 2- 3 nucleotides, each strand of said duplex being between 21 and 25 nucleotides in length, the antisense and sense strands being differentially modified, some or all of the bases in the overhang or overhangs including a modification of the 2 'OH of a ribose sugar, some or all of the bases in the overhang or overhangs including a phosphorathioate modification of a phosphate group, and wherein the unit dose is less o than 2 mg per kg of bodyweight.
2. The method of claim 1, wherein the composition is administered less than once per day.
5 3. The method of claim 1 , wherein an RNA targeted by the iRNA agent is endogenous to the subject.
4. The method of claim 1, wherein an RNA targeted by the iRNA agent is a pathogen RNA. 0
5. The method of claim 1, wherein the composition is at least partially crystalline.
6. The method of claim 1, wherein the composition is aqueous. 5
7. The method of claim 1, wherein the iRNA agent modulates activity of a cellular adhesion protein, modulates cellular proliferation, or has biological activity against a pathogen or virus.
0 8. The method of claim 1, wherein the iRNA agent can be incorporated into RISC.
9. The method of claim 1, wherein the iRNA agent includes a 5' phosphate.
10. The method of claim 1, wherein the iRNA agent is allele specific.
11. The method of claim 1 , wherein the administration is parenteral.
12. The method of claim 1, wherein the administration is intravenous, intradermal intraperitoneal, intramuscular, intrathecal, intraventricular, intracranial, subcutaneous, transmucosal, buccal, sublingual, endoscopic, rectal, oral, vaginal, topical, pulmonary, intranasal, urethral or ocular.
13. The method of claim 12, wherein the administration is intravenous.
14. The method of claim 13, wherein intravenous delivery is effected with a bolus dosage.
15. The method of claim 13, wherein intravenous delivery is effected by a diffusible infusion.
16. A pharmaceutical composition comprising a unit dose of the iRNA agent of claim 1 mixed with a topical delivery agent.
17. A pharmaceutical composition comprising a unit dose of the iRNA agent of claim 1 mixed with a plurality of microscopic vesicles.
18. The pharmaceutical composition of claim 17, wherein the microscopic vesicles are liposomes.
19. A pharmaceutical composition comprising a unit dose of the iRNA agent of claim 1 mixed with a topical penetration enhancer.
20. A pharmaceutical composition comprising a unit dose of the iRNA agent of claim 1 in a form suitable for oral delivery.
21. A pharmaceutical composition of claim 20, wherein the oral delivery is in a form suitable for delivery to a GI tract region beyond the stomach.
22. A pharmaceutical composition comprising a unit dose of the iRNA agent of claim 1 in a rectal dosage form.
23. A pharmaceutical composition comprising a unit dose of the iRNA agent of claim 1 in a vaginal dosage form.
24. A pharmaceutical composition comprising a unit dose of the iRNA agent of claim 1 suitable for injection.
25. A pharmaceutical composition comprising a unit dose of the iRNA agent of claim 1 suitable for intradermal or subcutaneous application.
26. A pharmaceutical composition comprising a unit dose of the iRNA agent of claim 1 suitable for pulmonary delivery.
27. A method of preparing a pharmaceutical composition comprising the iRNA agent of claim 1, the method comprising: providing an aqueous composition that includes said iRNA agent; and generating a dried composition from the aqueous composition.
28. The method of preparing a pharmaceutical composition of claim 27, wherein the dried composition is generated by a method selected from the group consisting of spray drying, lyophilization, vacuum drying, evaporation, fluid bed drying, and combinations thereof.
PCT/US2004/001193 2003-01-17 2004-01-16 Therapeutics compositions WO2004064737A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US44069603P 2003-01-17 2003-01-17
US60/440,696 2003-01-17
US46548303P 2003-04-25 2003-04-25
US60/465,483 2003-04-25

Publications (2)

Publication Number Publication Date
WO2004064737A2 true WO2004064737A2 (en) 2004-08-05
WO2004064737A3 WO2004064737A3 (en) 2005-12-15

Family

ID=32776027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/001193 WO2004064737A2 (en) 2003-01-17 2004-01-16 Therapeutics compositions

Country Status (1)

Country Link
WO (1) WO2004064737A2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1820804A1 (en) * 2006-02-20 2007-08-22 Humboldt-Universität zu Berlin Lipidated oligonucleotides
US7361752B2 (en) 2004-12-14 2008-04-22 Alnylam Pharmaceuticals, Inc. RNAi modulation of MLL-AF4 and uses thereof
US7507809B2 (en) 2005-01-07 2009-03-24 Alnylam Pharmaceuticals, Inc. RNAi modulation of RSV and therapeutic uses thereof
US7528118B2 (en) 2004-09-24 2009-05-05 Alnylam Pharmaceuticals, Inc. RNAi modulation of ApoB and uses thereof
US7592322B2 (en) 2004-10-22 2009-09-22 Alnylam Pharmaceuticals, Inc. RNAi modulation of RSV, PIV and other respiratory viruses and uses thereof
US7718629B2 (en) 2006-03-31 2010-05-18 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of Eg5 gene
US7737265B2 (en) 2005-06-27 2010-06-15 Alnylam Pharmaceuticals, Inc. RNAi modulation of HIF-1 and therapeutic uses thereof
US7772200B2 (en) 2005-07-21 2010-08-10 Alnylam Pharmaceuticals, Inc. iRNA agents targeted to the Rho-A gene
US7790878B2 (en) 2004-10-22 2010-09-07 Alnylam Pharmaceuticals, Inc. RNAi modulation of RSV, PIV and other respiratory viruses and uses thereof
US7846908B2 (en) 2006-03-16 2010-12-07 Alnylam Pharmaceuticals, Inc. RNAi modulation of TGF-beta and therapeutic uses thereof
US7919473B2 (en) 2004-03-12 2011-04-05 Alnylam Pharmaceuticals, Inc. IRNA agents targeting VEGF
US7994307B2 (en) 2004-11-24 2011-08-09 Alnylam Pharmaceuticals, Inc. RNAi modulation of the BCR-ABL fusion gene and uses thereof
US8227188B2 (en) 2005-11-01 2012-07-24 Alnylam Pharmaceuticals, Inc. Enhancement of influenza gene expression
US8304530B2 (en) 2003-06-02 2012-11-06 University Of Massachusetts Methods and compositions for enhancing the efficacy and specificity of RNA silencing
US8309704B2 (en) 2003-06-02 2012-11-13 University Of Massachusetts Methods and compositions for enhancing the efficacy and specificity of RNAi
US9200276B2 (en) 2009-06-01 2015-12-01 Halo-Bio Rnai Therapeutics, Inc. Polynucleotides for multivalent RNA interference, compositions and methods of use thereof
US9879253B2 (en) 2003-12-22 2018-01-30 University Of Massachusetts Methods and compositions for enhancing the efficacy and specificity of single and double blunt-ended siRNA
US10364429B2 (en) 2003-06-02 2019-07-30 University Of Massachusetts Methods and compositions for controlling efficacy of RNA silencing
US10731157B2 (en) 2015-08-24 2020-08-04 Halo-Bio Rnai Therapeutics, Inc. Polynucleotide nanoparticles for the modulation of gene expression and uses thereof
WO2022239001A1 (en) 2021-05-10 2022-11-17 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Pharmaceutical compositions for treating neurological conditions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8188060B2 (en) 2008-02-11 2012-05-29 Dharmacon, Inc. Duplex oligonucleotides with enhanced functionality in gene regulation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030143204A1 (en) * 2001-07-27 2003-07-31 Lewis David L. Inhibition of RNA function by delivery of inhibitors to animal cells
US20030175950A1 (en) * 2001-05-29 2003-09-18 Mcswiggen James A. RNA interference mediated inhibition of HIV gene expression using short interfering RNA
US6630169B1 (en) * 1999-03-31 2003-10-07 Nektar Therapeutics Particulate delivery systems and methods of use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6630169B1 (en) * 1999-03-31 2003-10-07 Nektar Therapeutics Particulate delivery systems and methods of use
US20030175950A1 (en) * 2001-05-29 2003-09-18 Mcswiggen James A. RNA interference mediated inhibition of HIV gene expression using short interfering RNA
US20030143204A1 (en) * 2001-07-27 2003-07-31 Lewis David L. Inhibition of RNA function by delivery of inhibitors to animal cells

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11459562B2 (en) 2003-06-02 2022-10-04 University Of Massachusetts Methods and compositions for controlling efficacy of RNA silencing
US8329892B2 (en) 2003-06-02 2012-12-11 University Of Massachusetts Methods and compositions for enhancing the efficacy and specificity of RNA silencing
US8309705B2 (en) 2003-06-02 2012-11-13 University Of Massachusetts Methods and compositions for enhancing the efficacy and specificity of RNA silencing
US8309704B2 (en) 2003-06-02 2012-11-13 University Of Massachusetts Methods and compositions for enhancing the efficacy and specificity of RNAi
US8304530B2 (en) 2003-06-02 2012-11-06 University Of Massachusetts Methods and compositions for enhancing the efficacy and specificity of RNA silencing
US9121018B2 (en) 2003-06-02 2015-09-01 University Of Massachusetts Methods and compositions for enhancing the efficacy and specificity of RNA silencing
US10604754B2 (en) 2003-06-02 2020-03-31 University Of Massachusetts Methods and compositions for enhancing the efficacy and specificity of RNA silencing
US10364429B2 (en) 2003-06-02 2019-07-30 University Of Massachusetts Methods and compositions for controlling efficacy of RNA silencing
US9879253B2 (en) 2003-12-22 2018-01-30 University Of Massachusetts Methods and compositions for enhancing the efficacy and specificity of single and double blunt-ended siRNA
US10385339B2 (en) 2003-12-22 2019-08-20 University Of Massachusetts Methods and compositions for enhancing the efficacy and specificity of single and double blunt-ended siRNA
US7947659B2 (en) 2004-03-12 2011-05-24 Alnylam Pharmaceuticals, Inc. iRNA agents targeting VEGF
US7919473B2 (en) 2004-03-12 2011-04-05 Alnylam Pharmaceuticals, Inc. IRNA agents targeting VEGF
US9187747B2 (en) 2004-09-24 2015-11-17 Alnylam Pharmaceuticals, Inc. RNAi modulation of ApoB and uses thereof
US8592571B2 (en) 2004-09-24 2013-11-26 Alnylam Pharmaceuticals, Inc. RNAi modulation of APOB and uses thereof
US7528118B2 (en) 2004-09-24 2009-05-05 Alnylam Pharmaceuticals, Inc. RNAi modulation of ApoB and uses thereof
US8598134B2 (en) 2004-10-22 2013-12-03 South Alabama Medical Science Foundation RNAi modulation of RSV, PIV and other respiratory viruses and uses thereof
US7592322B2 (en) 2004-10-22 2009-09-22 Alnylam Pharmaceuticals, Inc. RNAi modulation of RSV, PIV and other respiratory viruses and uses thereof
US7790878B2 (en) 2004-10-22 2010-09-07 Alnylam Pharmaceuticals, Inc. RNAi modulation of RSV, PIV and other respiratory viruses and uses thereof
US7994307B2 (en) 2004-11-24 2011-08-09 Alnylam Pharmaceuticals, Inc. RNAi modulation of the BCR-ABL fusion gene and uses thereof
US7361752B2 (en) 2004-12-14 2008-04-22 Alnylam Pharmaceuticals, Inc. RNAi modulation of MLL-AF4 and uses thereof
US7674779B2 (en) 2004-12-14 2010-03-09 Alnylam Pharmaceuticals, Inc. RNAi modulation of MLL-AF4 and uses thereof
US8263572B2 (en) 2005-01-07 2012-09-11 Alnylam Pharmaceuticals, Inc. RNAi modulation of RSV and therapeutic uses thereof
US7507809B2 (en) 2005-01-07 2009-03-24 Alnylam Pharmaceuticals, Inc. RNAi modulation of RSV and therapeutic uses thereof
US7517865B2 (en) 2005-01-07 2009-04-14 Alnylam Pharmaceuticals, Inc. RNAi modulation of RSV and therapeutic uses thereof
US8158773B2 (en) 2005-01-07 2012-04-17 Alnylam Pharmaceuticals, Inc. RNAi modulation of RSV and therapeutic uses thereof
US7981869B2 (en) 2005-01-07 2011-07-19 Alnylam Pharmaceuticals, Inc. RNAi modulation of RSV and therapeutic uses thereof
US7737265B2 (en) 2005-06-27 2010-06-15 Alnylam Pharmaceuticals, Inc. RNAi modulation of HIF-1 and therapeutic uses thereof
US7772200B2 (en) 2005-07-21 2010-08-10 Alnylam Pharmaceuticals, Inc. iRNA agents targeted to the Rho-A gene
US8227188B2 (en) 2005-11-01 2012-07-24 Alnylam Pharmaceuticals, Inc. Enhancement of influenza gene expression
EP1820804A1 (en) * 2006-02-20 2007-08-22 Humboldt-Universität zu Berlin Lipidated oligonucleotides
WO2007096134A1 (en) * 2006-02-20 2007-08-30 Humboldt-Universität Zu Berlin Lipidated oligonucleotides
US7846908B2 (en) 2006-03-16 2010-12-07 Alnylam Pharmaceuticals, Inc. RNAi modulation of TGF-beta and therapeutic uses thereof
US7718629B2 (en) 2006-03-31 2010-05-18 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of Eg5 gene
US9200276B2 (en) 2009-06-01 2015-12-01 Halo-Bio Rnai Therapeutics, Inc. Polynucleotides for multivalent RNA interference, compositions and methods of use thereof
US9957505B2 (en) 2009-06-01 2018-05-01 Halo-Bio Rnai Therapeutics, Inc. Polynucleotides for multivalent RNA interference, compositions and methods of use thereof
US10731157B2 (en) 2015-08-24 2020-08-04 Halo-Bio Rnai Therapeutics, Inc. Polynucleotide nanoparticles for the modulation of gene expression and uses thereof
WO2022239001A1 (en) 2021-05-10 2022-11-17 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Pharmaceutical compositions for treating neurological conditions

Also Published As

Publication number Publication date
WO2004064737A3 (en) 2005-12-15

Similar Documents

Publication Publication Date Title
JP6850827B2 (en) Glycoconjugate as a delivery agent for oligonucleotides
US11530408B2 (en) Therapeutic compositions
JP6476155B2 (en) Enhanced siRNA silencing activity using common bases or mismatches in the sense strand
US9895448B2 (en) Site-specific delivery of nucleic acids by combining targeting ligands with endosomolytic components
WO2004064737A2 (en) Therapeutics compositions
JP2011528910A5 (en)
AU2004227414A1 (en) iRNA conjugates
US20170304459A1 (en) Methods and compositions for inhalation delivery of conjugated oligonucleotide
WO2011109427A2 (en) Improving the biological activity of sirna through modulation of its thermodynamic profile
JP4912873B2 (en) iRNA complex
AU2019204150A1 (en) Site-specific delivery of nucleic acids by combining targeting ligands with endosomolytic components

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 69(1) EPC 230905

122 Ep: pct application non-entry in european phase