WO2004057196A1 - A pumping system - Google Patents
A pumping system Download PDFInfo
- Publication number
- WO2004057196A1 WO2004057196A1 PCT/GB2003/005552 GB0305552W WO2004057196A1 WO 2004057196 A1 WO2004057196 A1 WO 2004057196A1 GB 0305552 W GB0305552 W GB 0305552W WO 2004057196 A1 WO2004057196 A1 WO 2004057196A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluid
- pump
- pressure
- pumping
- pressure relief
- Prior art date
Links
- 238000005086 pumping Methods 0.000 title claims abstract description 37
- 239000000203 mixtures Substances 0.000 claims description 10
- 230000001419 dependent Effects 0.000 claims description 9
- 239000007788 liquids Substances 0.000 claims description 8
- 230000000694 effects Effects 0.000 claims description 4
- 230000000051 modifying Effects 0.000 claims description 4
- 239000007787 solids Substances 0.000 claims description 4
- 238000009833 condensation Methods 0.000 claims description 3
- 230000005494 condensation Effects 0.000 claims description 3
- 230000035939 shock Effects 0.000 claims description 3
- 239000011901 water Substances 0.000 claims description 3
- 239000003085 diluting agents Substances 0.000 claims description 2
- 239000002270 dispersing agents Substances 0.000 claims description 2
- 238000002347 injection Methods 0.000 claims 1
- 239000007924 injections Substances 0.000 claims 1
- 238000010586 diagrams Methods 0.000 description 9
- 230000000977 initiatory Effects 0.000 description 5
- 239000000463 materials Substances 0.000 description 3
- 230000002708 enhancing Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000006011 modification reactions Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 239000007789 gases Substances 0.000 description 1
- 238000000034 methods Methods 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04F—PUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
- F04F5/00—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
- F04F5/54—Installations characterised by use of jet pumps, e.g. combinations of two or more jet pumps of different type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04F—PUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
- F04F5/00—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
- F04F5/14—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
- F04F5/24—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing liquids, e.g. containing solids, or liquids and elastic fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04F—PUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
- F04F5/00—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
- F04F5/44—Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
- F04F5/48—Control
Abstract
Description
A PUMPING SYSTEM
[0001] This invention concerns improvements in or relating to pumping systems and in particular has reference to pumping systems having essentially no moving parts.
[0002] In our co-pending UK International Patent Application No PCT/GB2003/004400 wherein there is described a pump in which the motive force is provided by the use of a condensable fluid, e.g. steam, introduced into a through-housing open at each end, the fluid to be pumped being induced through the housing by the condensable fluid which possesses such properties that a supersonic shock wave is created and upon condensation of the steam an implosive force is generated giving rise to momentum transfer and therefore impulsive thrust to the working fluid to be pumped. Since no moving parts are involved in the pump per se its operation is not adversely affected by extraneous influences or contaminatory material which would cause damage in conventional pumping mechanisms. However, since there are no moving parts it is necessary to provide an easy way of initiating operation of the pump.
[0003] An object of the present invention is to provide an improved pumping system whereby the start-up of the system is facilitated.
[0004] According to a first aspect of the invention, there is provided a pumping system comprising a fluid flow line including a pump having a hollow body provided with a straight-through passage of substantially constant cross section, an inlet at one end of the passage and an outlet at the other end of the passage for the entry and discharge respectively of a working fluid, a nozzle substantially circumscribing and opening into said passage intermediate the inlet and outlet ends thereof, an inlet communicating with the nozzle for the introduction of a condensable transport fluid, a mixing chamber being formed within the passage downstream of the nozzle, the nozzle being so disposed and configured that in use a supersonic shock wave is created within the mixing chamber by the introduction of the transport fluid, and pressure relief means associated with the fluid flow line actuable for the purpose of system start-up whereby pressure is modulated so as to provide a desired pressure gradient across the pump.
[0005] According to a second aspect of the present invention a method of start-up for a pumping system according to the first aspect includes the steps of introducing the transport fluid to the nozzle to effect energy transfer to the working fluid, actuating pressure relief means to reduce pressure across the pump thereby to facilitate start-up by modulating the pressure prevailing within the fluid flow line whereby flow of the working fluid is induced through the passage, and deactivating the pressure relief means upon attainment of a desired pressure gradient across the pump.
[0006] The pressure relief means is conveniently provided to reduce the pressure head in the fluid flow line of the pumping system whether it operates on negative upstream pressure, positive downstream pressure or equalised pressure.
[0007] The pressure relief means may be in the form of a uni- directional valve disposed upstream of the inlet to the passage which in practice by dint of its function enables the attainment of the desired pressure gradient across the pump.
[0008] Advantageously the transport fluid may be a condensable fluid such as steam which condenses during contact with the working fluid being pumped through the system and implodes causing low pressure conditions which enhance the suction effect and thus thrust of working fluid through and from the pump. In this connection the contents of our co-pending PCT Application hereinbefore mentioned are imported into this specification as appropriate whereby the explanation of the pump configuration and its mode of operation is set out in detail.
[0009] The provision of the uni-directional or one-way valve upstream as defined lies in its function during start-up in that the initial introduction of the transport fluid can give rise to a back- flow thereof towards the inlet of the pump. The action of the uni-directional valve is to prevent such back-flow and to allow the build up of the pressure flow of the transport fluid in the pumping direction. Once the parametric conditions have reached an appropriate level the uni-directional valve automatically opens and the working fluid is drawn therethrough.
[0010] In a modification of the invention there is provided a further pressure relief means, e.g. in the form of a second unidirectional valve, located downstream of the nozzle adapted to allow flow in the downstream direction only. In the case where the transport fluid is a condensable fluid this second valve performs a dual function in that during start-up it permits condensation of the condensable fluid thereby generating a vacuum condition causing the upstream uni-directional valve to open thus initiating flow through the pump and also prevents any flow back of fluid extraneous to the pump.
[0011] In a further modification of the pumping system of the present invention the pressure relief means is provided in the form of a by-pass for the fluid flow line and arranged as between downstream and upstream sides of the pump in the circumstance of an expected large back-pressure on the pump or large inertial losses in the pressure head pipework to overcome, to enable the initiation of flow through the pump during start-up. The bypass may be constituted by suitable piping and provided with a valve for the control of flow therethrough. Any transport and working fluid mixture passing through the by-pass may be exhausted to atmosphere or fed to the upstream or suction side of the pump.
[0012] In a still further embodiment pressure relief means in the form of a bleed or suction pipe is provided for a priming fluid to prime the pump on the suction side during start-up or indeed continuously in the event that the working fluid burden on the pump is significant. For example the working fluid may be a fluid with high viscosity or it may be a mixture of gas, e.g. air, and a liquid and in these instances the provision of a priming fluid during start-up would prove advantageous in initiating flow through the pump. A continual or continuous bleed of such priming fluid may also be contemplated in the event that maintenance of the pumping rate becomes difficult by virtue of the working fluid properties. The priming fluid may be of any suitable type and from a convenient source, preferably in liquid form. The priming fluid may be water or any other liquid compatible with the pumping system of the invention and environmental regulations. The priming fluid may be a treatment fluid, for example a dispersant or a diluent. The priming fluid may the same type of fluid as the working fluid.
[0013] In another embodiment of the present invention the pressure relief means may be constituted by a header tank and priming fluid may be provided from the header tank which may be automatically controlled to provide priming fluid over a set time thereafter to be discontinued. In the alternative or in addition another header tank may be provided with an outflow controllable at a rate determined by an operator or by prevailing conditions within the system.
[0014] By way of example only, a number of embodiments of a pumping system according to the invention is described below with reference to the accompanying drawings in which:
[0015] Figure 1 is a diagram of a fluid mover in the form of a pump;
[0016] Figure 2 is a diagram of a first embodiment;
[0017] Figure 3 is a diagram of a second embodiment;
[0018] Figure 4 is a diagram of a third embodiment;
[0019] Figure 5 is a diagram of a fourth embodiment;
[0020] Figure 6 is a diagram of a fifth embodiment;
[0021] Figure 7 is a diagram of a sixth embodiment; [0022] Figure 8 is a diagram of a seventh embodiment; and
[0023] Figure 9 is a diagram of an eighth embodiment.
[0024] In the drawing of Figure 1 there is shown a pump 2 of the kind described in our co-pending International Patent Application No PCT/GB2003/004400 in which a nozzle 4 is provided circumscribing and opening into a passage 6 having an upstream inlet 8 and a downstream outlet 10 leading to a discharge pipe
11 , shown in Figure 2. In operation a working fluid is pumped through the pump 2 with a transport fluid, for example steam, being introduced through the nozzle 4 into the passage 6 to generate a Shockwave. The steam condenses and implodes causing a region of low pressure that enhances flow and increases the thrust in the fluid.
[0025] Referring now to Figure 2 a first embodiment of the system of the present invention is illustrated and includes pressure relief means in the form of a one-way valve 12 in modular form upstream of the inlet 8 and in the fluid flow line of the pumping system 1. With this valve 12 included in the fluid flow line, part of which is shown at 42, during start-up of the system the valve is closed thereby preventing the back-flow of the transport fluid issuing from the nozzle 4 through the passage 6. Once the forward flow of transport fluid has been established, the suction would actuate the valve 12 and enable full fluid flow through pipe 42. Equally upon shut-down, the cessation of transport fluid flow would occasion a loss of suction and the valve would shut thus preventing any backflow along the passage 6 into pipe
42. [0026] In Figure 3 a second one-way valve 14 in modular form is provided downstream of the pump 2 with a pipe section 15 connected to the outlet of the pump and as part of the fluid flow line, and may be operable in unison with the valve 12 during the start-up procedure of the system 1. In this instance backflow into the pump 2 is prevented prior to the establishment of proper flow conditions within the system. As the required pumping pressure is being attained the valve 14 gradually opens and is fully open upon establishment of the designed pressure. This valve, as with the valve 12, could be used to give a throttling effect and thus provides a further control in the flow through the system 1 in addition to that provided by the transport fluid issuing from the nozzle 4.
[0027] In one mode of operation of the start-up of the pumping system of the invention in which the two one-way valves are provided, the flow of transport fluid, in this example steam, is introduced to the nozzle 4 and its pressure would ensure the closure of the one-way valve 12 whilst the steam pressure opens the other one-way valve 14 to fill the intervening passage and pipework with steam. Upon rapidly stopping the steam supply flowing through the nozzle 4 the steam condenses within the pump 2 and the pipe 15 and in so doing causes a vacuum which effectively pulls the valve 12 open, thus initiating flow therethrough and into the pump. If then the steam supply is reestablished at this stage the pump would then be primed with fluid having some velocity and operation of the pump 2 could then proceed in normal manner with the pull in one direction only from inlet to outlet. [0028] A further possible inclusion in the fluid flow line of the pumping system 1 of the invention is a modular header tank 20 as shown in Figure 4 provided with a ball cock 22 for the supply thereto of a priming fluid. The tank 20 has an outlet controllable by a valve 24 leading to a Tee-piece 26 attachable to the inlet or suction side of the pump 2. The purpose of the header tank 20 would be to provide a renewable supply of a priming fluid during start-up principally or also during the operation of the system dependent upon requirements. The fluid would be induced through the pump and provide an initial priming thereof. Once proper flow of the working fluid had been established by virtue of the issuance of the transport fluid from the nozzle 4, the flow of priming fluid would be discontinued unless a bleed of priming fluid into the system proved to be beneficial. In this event, the valve 24 would be used to control the seeding of the working fluid.
[0029] An alternative form of modular header tank is shown at 30 in Figure 5 which in operation is charged with a predetermined volume of priming fluid and is provided with an automatic shut- off that may be in the form of a plug 32. Once the contents of the tank 30 have been discharged the plug 32 blocks the outlet 34 thereof. It is to be understood that any alternative control other than the plug may be deployed for this purpose.
[0030] A fifth embodiment of pumping system according to the invention is shown in Figure 6 in which a bleed pipe 40 is provided as an element in the pumping system 1 and may communicate with a suitable source of priming fluid diagrammatically shown at 44, the function being to provide priming fluid during start-up. The source of the priming fluid may be a distinct reservoir provided for that purpose or may be the body of working fluid or may be a convenient local supply of fluid.
[0031] A suction pipe 42 is conveniently provided and is attachable to the pump 2 as an inlet conduit and as part of the fluid flow line. It may in certain applications constitute an inlet nozzle for engaging in the fluid material to be transported which may be lying on a surface, for example a solid or liquid surface, or indeed below water level, e.g the sea bed. Essentially the pipe is a pick-up for the material to be transported wherever it may be lying.
[0032] A sixth embodiment of the present invention is shown in Figure 7 and essentially comprises a combination of the second embodiment with the third, the fourth or the fifth embodiment such that in the event a priming fluid is employed, the one-way valve 12 is deployed upstream of the pump 2. The adoption of any one of the combinations indicated will be dictated by the particular requirements of the pumping system and the fluids passing therethrough. For example in the event that a header tank or bleed pipe is included in the pumping system of the invention, it may be convenient to employ a one-way valve between the header tank and the pump. During the start-up mode the one-way valve takes on a dual function in terms of stopping flowback of fluid upstream and also for the purpose described in relation to the first embodiment.
[0033] As shown in Figure 8 for start-up the system in a further arrangement includes a by-pass 46 connected via a valve 48 and a
Tee-piece 49 into the downstream side of the pump 2. The by- pass 46 may be connected into the upstream side of the pump 2 via a conduit 45 or may discharge to atmosphere through a conduit 47 into a suitable reservoir. The use of this arrangement is intended when a large back-pressure or large inertial losses within the downstream or pressure head side of the pump are likely to be encountered, the by-pass providing a time delay to enable the pump to generate and establish sufficient pressure to overcome the back-pressure or the pressure head losses in the downstream pipework.
[0034] Referring now to Figure 9 there is illustrated a combination of the embodiments shown in Figures 4, 5, 6 and 7 to give comprehensive start-up capabilities dependent upon the specific requirements of the pumping system particularly with regard to expected parametric conditions and the characteristics of the fluid being pumped, be they liquids or liquids with solids. For example the valve 14 and the header or the bleed may be used in combination with the valve 48 whereby once flow is established through the pump 2, the valve 48 may be progressively closed. Such gradual closure may be controlled to coincide with the release of fluid from the header or the bleed, thereby ensuring even greater positive priming of the pump. A circuit of this character would be used for pumping particularly difficult fluids or fluids/solids mixtures or in a system in which high downstream pressure is likely to be encountered
[0035] All the features of the pumping system of the present invention are of modular form and may be included or withdrawn dependent upon the prevailing conditions with regard inter alia to the properties of the working fluid. Accordingly the system of the invention may include a combination of one or more of the elements described together with the one-way valve 12 upstream of the pump 2 to facilitate start-up as shown in Figure 9. Different fluid circuits and modes of operation will be adopted to match requirements.
36] It will be understood that the priming fluid may be of any suitable type and may be the working fluid or a fluid drawn from an extraneous source.
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0229604A GB0229604D0 (en) | 2002-12-19 | 2002-12-19 | Improvements in or relating to pumping systems |
GB0229604.4 | 2002-12-19 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2003292440A AU2003292440A1 (en) | 2002-12-19 | 2003-12-18 | A pumping system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004057196A1 true WO2004057196A1 (en) | 2004-07-08 |
Family
ID=9950001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2003/005552 WO2004057196A1 (en) | 2002-12-19 | 2003-12-18 | A pumping system |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU2003292440A1 (en) |
GB (1) | GB0229604D0 (en) |
WO (1) | WO2004057196A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6323012B1 (en) | 1996-05-08 | 2001-11-27 | New York Blood Center, Inc. | Method for treating viral infections |
US20110240524A1 (en) * | 2008-10-08 | 2011-10-06 | Marcus Brian Mayhall Fenton | method and apparatus for breaking an emulsion |
US9004375B2 (en) | 2004-02-26 | 2015-04-14 | Tyco Fire & Security Gmbh | Method and apparatus for generating a mist |
US9010663B2 (en) | 2004-02-26 | 2015-04-21 | Tyco Fire & Security Gmbh | Method and apparatus for generating a mist |
US9239063B2 (en) | 2004-07-29 | 2016-01-19 | Pursuit Marine Drive Limited | Jet pump |
US9833561B2 (en) | 2012-12-31 | 2017-12-05 | Gambro Lundia Ab | Occlusion detection in delivery of fluids |
US9931648B2 (en) | 2006-09-15 | 2018-04-03 | Tyco Fire & Security Gmbh | Mist generating apparatus and method |
US10507480B2 (en) | 2004-02-26 | 2019-12-17 | Tyco Fire Products Lp | Method and apparatus for generating a mist |
US10589016B2 (en) | 2015-04-15 | 2020-03-17 | Gambro Lundia Ab | Treatment system with infusion apparatus pressure priming |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1415406A (en) * | 1917-06-01 | 1922-05-09 | British Westinghouse Electric | Elastic-fluid-operated ejector |
US3664768A (en) * | 1970-03-10 | 1972-05-23 | William T Mays | Fluid transformer |
US4569635A (en) * | 1983-07-27 | 1986-02-11 | Helios Research Corp. | Hydrokinetic amplifier |
US4725201A (en) * | 1987-02-02 | 1988-02-16 | Helios Research Corp. | Automatic starting system for hydrokinetic amplifier |
EP0326901A1 (en) * | 1988-02-04 | 1989-08-09 | INTERATOM Gesellschaft mit beschränkter Haftung | Pulsation steam jet pump with a non-return valve |
US4951713A (en) * | 1988-09-02 | 1990-08-28 | Jordan Foster A | Overflow check system having automatic start-up |
JPH04184000A (en) * | 1990-11-15 | 1992-06-30 | Mitsui Eng & Shipbuild Co Ltd | Ejector for compressive fluid |
-
2002
- 2002-12-19 GB GB0229604A patent/GB0229604D0/en not_active Ceased
-
2003
- 2003-12-18 AU AU2003292440A patent/AU2003292440A1/en not_active Abandoned
- 2003-12-18 WO PCT/GB2003/005552 patent/WO2004057196A1/en not_active Application Discontinuation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1415406A (en) * | 1917-06-01 | 1922-05-09 | British Westinghouse Electric | Elastic-fluid-operated ejector |
US3664768A (en) * | 1970-03-10 | 1972-05-23 | William T Mays | Fluid transformer |
US4569635A (en) * | 1983-07-27 | 1986-02-11 | Helios Research Corp. | Hydrokinetic amplifier |
US4725201A (en) * | 1987-02-02 | 1988-02-16 | Helios Research Corp. | Automatic starting system for hydrokinetic amplifier |
EP0326901A1 (en) * | 1988-02-04 | 1989-08-09 | INTERATOM Gesellschaft mit beschränkter Haftung | Pulsation steam jet pump with a non-return valve |
US4951713A (en) * | 1988-09-02 | 1990-08-28 | Jordan Foster A | Overflow check system having automatic start-up |
JPH04184000A (en) * | 1990-11-15 | 1992-06-30 | Mitsui Eng & Shipbuild Co Ltd | Ejector for compressive fluid |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 0164, no. 98 (M - 1325) 15 October 1992 (1992-10-15) * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6323012B1 (en) | 1996-05-08 | 2001-11-27 | New York Blood Center, Inc. | Method for treating viral infections |
US10507480B2 (en) | 2004-02-26 | 2019-12-17 | Tyco Fire Products Lp | Method and apparatus for generating a mist |
US9004375B2 (en) | 2004-02-26 | 2015-04-14 | Tyco Fire & Security Gmbh | Method and apparatus for generating a mist |
US9010663B2 (en) | 2004-02-26 | 2015-04-21 | Tyco Fire & Security Gmbh | Method and apparatus for generating a mist |
US9239063B2 (en) | 2004-07-29 | 2016-01-19 | Pursuit Marine Drive Limited | Jet pump |
US9931648B2 (en) | 2006-09-15 | 2018-04-03 | Tyco Fire & Security Gmbh | Mist generating apparatus and method |
US20110240524A1 (en) * | 2008-10-08 | 2011-10-06 | Marcus Brian Mayhall Fenton | method and apparatus for breaking an emulsion |
US9833561B2 (en) | 2012-12-31 | 2017-12-05 | Gambro Lundia Ab | Occlusion detection in delivery of fluids |
US10589016B2 (en) | 2015-04-15 | 2020-03-17 | Gambro Lundia Ab | Treatment system with infusion apparatus pressure priming |
Also Published As
Publication number | Publication date |
---|---|
AU2003292440A1 (en) | 2004-07-14 |
GB0229604D0 (en) | 2003-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60314434T2 (en) | Jet pump | |
US3633372A (en) | Transfer of cryogenic liquids | |
US7063161B2 (en) | Artificial lift with additional gas assist | |
EP0703830B1 (en) | Apparatus for downhole cyclone separation | |
EP1606492B1 (en) | A system and process for pumping multiphase fluids | |
US8512576B2 (en) | System and method for the production or handling of heavy oil | |
US6186657B1 (en) | Apparatus and method for mixing particulate solids or gels in a liquid | |
US6152689A (en) | Self-priming type cetrifugal pump | |
SU955873A3 (en) | Liquid separator | |
US4730634A (en) | Method and apparatus for controlling production of fluids from a well | |
US6629821B1 (en) | Pump apparatus | |
JP5638486B2 (en) | Bubble lift system and bubble lift method | |
US5114280A (en) | Vacuum type sewage collecting system and vacuum valve controller for the same | |
US4067663A (en) | Sewage pump priming system | |
JP2004278871A (en) | Condensate re-evaporation device | |
EP2223594B1 (en) | Agricultural sprayer | |
US20070113893A1 (en) | Pressurizing liquid delivery device | |
US5431545A (en) | Pumper system for in-situ pigging applications | |
JPH01143602A (en) | Reverse osmosis system and automatic cycling booster pump therefor | |
US3486297A (en) | Liquid and gas pumping unit | |
JPH09512881A (en) | Automatic pneumatic pump | |
US8393875B2 (en) | Pressure-controlled liquid supply system and pump control device for use therein | |
US8740576B2 (en) | Pumping system for pumping liquid from a lower level to an operatively higher level | |
JPH05317847A (en) | Water purifying device and oily water separating device | |
RU2477387C2 (en) | Pump system to transfer first fluid be second fluid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase in: |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |