WO2004038882A1 - Sicherheitsschaltung für analoge sensoren - Google Patents

Sicherheitsschaltung für analoge sensoren Download PDF

Info

Publication number
WO2004038882A1
WO2004038882A1 PCT/EP2003/011742 EP0311742W WO2004038882A1 WO 2004038882 A1 WO2004038882 A1 WO 2004038882A1 EP 0311742 W EP0311742 W EP 0311742W WO 2004038882 A1 WO2004038882 A1 WO 2004038882A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
ground
supply voltage
sensor
transistors
Prior art date
Application number
PCT/EP2003/011742
Other languages
English (en)
French (fr)
Inventor
Alexander Fink
Original Assignee
Knorr-Bremse Systeme für Nutzfahrzeuge GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Knorr-Bremse Systeme für Nutzfahrzeuge GmbH filed Critical Knorr-Bremse Systeme für Nutzfahrzeuge GmbH
Priority to AU2003278128A priority Critical patent/AU2003278128A1/en
Priority to US10/532,589 priority patent/US7265955B2/en
Priority to JP2004545954A priority patent/JP4149440B2/ja
Publication of WO2004038882A1 publication Critical patent/WO2004038882A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H5/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
    • H02H5/10Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to mechanical injury, e.g. rupture of line, breakage of earth connection
    • H02H5/105Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to mechanical injury, e.g. rupture of line, breakage of earth connection responsive to deterioration or interruption of earth connection

Definitions

  • the invention relates to a safety circuit for analog sensors, which have a supply voltage connection, a ground connection and a sensor output connection.
  • sensors are generally known and are used, for example, as pressure sensors in motor vehicles.
  • vibrations or similar interferences can cause one of the lines to the sensor to be interrupted, be it through a line break, loosening a plug connection or the like.
  • An interruption of the ground line is particularly critical, since supply voltage is still present on the supply voltage line and a faulty signal can occur at the sensor output, which cannot be distinguished from valid measured values.
  • the currently known analog sensors therefore supply a measurement signal to the control device which is different from zero when the ground line to the sensor is interrupted.
  • the signal voltage detected in the control unit depends heavily on the load resistance in the event of a fault.
  • the object of the invention is therefore to provide a safety circuit for analog sensors of the type described in the introduction, which supplies a signal which can be clearly distinguished from a useful signal when the line is interrupted, in particular when the ground line is interrupted. This object is achieved by the features specified in claim 1.
  • Advantageous refinements and developments of the invention can be found in the subclaims.
  • the basic principle of the invention is to interpose a transistor in the sensor in the ground line and the supply voltage line, the control connection of which is connected to voltage dividers which lie between the supply line and the ground line, both transistors being switched through in normal operation and being switched off at least when the ground line is interrupted ,
  • the sensor output line is loaded / terminated in the control unit via a pull-down resistor and pulls the signal to a safe state in the event of a fault (GND potential).
  • Fig. 1 is a circuit diagram of an embodiment of the monitoring circuit according to the invention.
  • a sensor 2 and the monitoring circuit described below are arranged in a sensor housing 1.
  • the sensor is an analog sensor, the output of which is loaded in the control unit by the pull-down load resistor, as is shown schematically in FIG. 1 by resistor R5.
  • There are three inputs on the sensor housing namely an input 3 for supply voltage (VCC), a connection 4 for a sensor output signal (OUT) and a connection 5 for ground (GND), which are connected to assigned connections of a control device 10, which is via Lines 11, 12 and 13 are follows.
  • the three connections 3, 4 and 5 are connected to the sensor 2 via lines 6, 7 and 8, respectively.
  • a transistor T1 which is a p-type MOSFET transistor, is connected in the voltage supply line 6.
  • a second transistor T2 is connected in the ground line 8, which is a n-type MOSFET transistor, the latter being operated inversely.
  • a voltage divider consisting of a series connection of a first resistor R1, a diode D connected in the forward direction and a second resistor R2.
  • the connection point between the first resistor R1 and the diode D is connected to the GATE electrode of the first transistor T1.
  • a voltage divider of a series circuit comprising a third resistor R3 and a fourth resistor R4, the connection point between the resistors R3 and R4 being connected to the GATE electrode of the second transistor T2.
  • the resistor pairs R1 / R2 or R3 / R4 act as voltage dividers which, in the normal state of the GATE electrode of the transistors T1 or T2, supply a voltage which leads to the transistors being switched on. In normal operation, the transistor T2 is operated inversely. The parasitic diode between the DRAIN and SOURCE connection ensures that a current can flow when switched on. The transistor is then switched to low resistance via the GATE voltage.
  • the ground potential in the sensor is raised via R1, D and R2.
  • the transistors T1 and T2 then switch off.
  • R1 and R2 must be dimensioned with a relatively low resistance in order to be able to raise the GND potential against the resistance of the pull-down resistor R5 in the event of a fault until T1 switches off.
  • the transistor T2 fulfills the task of preventing current flow from the supply voltage (VCC) via R1, D, R2 and the sensor 2 to the output terminal 4.
  • the pull-down resistor R5 assigned to the sensor thus pulls the output terminal 4 of the Sensors to ground potential.
  • This pull-down resistor R5 is connected to the ground potential of the voltage supply in the control unit 10 independently of the ground connection 8.
  • a break in the supply voltage line 6 is not critical, since there is then no risk that an incorrect signal will reach the output terminal 4 via the sensor. Otherwise, if the supply voltage line breaks, the two transistors T1 and T2 would also switch off, so that the pull-down resistor R5 also pulls the output terminal 4 of the sensor 2 to ground potential.
  • a break in the sensor output line 12 (or 7) is also not critical, since the pull-down resistor R5 then pulls the potential to GND. Since the sensor voltage is always measured via R5, it is expedient to accommodate this pull-down resistor in control unit 10. However, it would also be possible to accommodate it in the sensor housing 1 on the line 7. In this case, however, the other connection of the resistor R5 would have to be connected to the GND potential of the control device 10 in such a way that even if the ground line 13 breaks, the GND potential is present there, which would require a further line, which is why the above described Arrangement in the control unit 10 is preferred.

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measuring Fluid Pressure (AREA)
  • Protection Of Static Devices (AREA)

Abstract

Die Sicherheitsschaltung für analoge Sensoren hat in einer Versorgungsspannungsleitung (6) und einer Masseleitung (8) je einen Transistor (T1, T2) geschaltet, deren Steuerelektrode je über einen Spannungsteiler (R1, R2; R3, R4) zwischen Versorgungsspannung und Masse liegt. Die Sensorausgangsleitung (7) ist über einen Pull-down-Widerstand (R5) mit dem Massepotential des Steuergerätes verbunden. Im Normalbetrieb sind beide Transistoren (T1, T2) durchgeschaltet. Bei Trennung der Masseleitung (14) schalten beide Transistoren ab. Dadurch wird verhindert, dass über die Versorgungsspannungsleitung (11), die Spannungsteiler oder den Sensor ein Strom zur Sensorausgangsleitung fliessen kann. Durch den Pull-down-Widerstand (R5) wird die Sensorausgangsleitung vielmehr auf Massepotential gezogen. Dadurch wird ein fehlerhaftes Signal, das ein Nutzsignal vortäuschen könnte, verhindert.

Description

Sicherheitsschaltung für analoge Sensoren
Beschreibung
Die Erfindung bezieht sich auf eine Sicherheitsschaltung für analoge Sensoren, die einen Versorgungsspannungsanschluß, einen Masseanschluß und einen Sensorausgangsanschluß haben. Solche Sensoren sind allgemein bekannt und werden bei- spielsweise als Drucksensoren in Kraftfahrzeugen eingesetzt. Gerade in Kraftfahrzeugen kann es durch Erschütterungen oder ähnliche Störeinflüsse vorkommen, dass eine der Leitungen zu dem Sensor unterbrochen wird, sei es durch Leitungsbruch, Lösen einer Steckverbindung oder ähnliches. Kritisch ist besonders eine Unterbrechung der Masseleitung, da an der Versorgungsspannungsleitung weiter Ver- sorgungsspannung anliegt und am Sensorausgang dadurch ein fehlerhaftes Signal auftreten kann, das nicht von gültigen Meßwerten zu unterscheiden ist. Dies kann dann beispielsweise dazu führen, dass bei unterbrochener Masseleitung im Steuergerät eines Kraftfahrzeuges ein normaler Betriebszustand (z. B. ausreichender Betriebsdruck der Bremsanlage bei Nutzfahrzeugen) angezeigt wird, obwohl dieser gar nicht vorhanden ist. Dies stellt ein erhebliches Sicherheitsrisiko dar.
Die derzeit bekannten analogen Sensoren liefern also bei Unterbrechung der Masseleitung zum Sensor ein Meßsignal an das Steuergerät, das von Null verschieden ist. Die im Steuergerät erkannte Signalspannung hängt im Fehlerfall stark vom Last- widerstand ab. Aufgabe der Erfindung ist es daher, eine Sicherheitsschaltung für analoge Sensoren der eingangs beschriebenen Art zu schaffen, die bei Leitungsunterbrechung, insbesondere bei Unterbrechung der Masseleitung ein klar von einem Nutzsignal unterscheidbares Signal liefert. Diese Aufgabe wird durch die im Patentanspruch 1 angegebenen Merkmale gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind den Unteransprüchen zu entnehmen.
Das Grundprinzip der Erfindung besteht darin, im Sensor in die Masseleitung und die Versorgungsspannungsleitung je einen Transistor zwischenzuschalten, deren Steueranschluß an Spannungsteiler, die zwischen Versorgungsleitung und Masseleitung liegen, angeschlossen ist, wobei beide Transistoren im Normalbetrieb durchgeschaltet sind und zumindest bei Unterbrechung der Masseleitung abgeschaltet sind. Die Sensorausgangsleitung ist im Steuergerät über einen Pull-down-Widerstand belastet/abgeschlossen und zieht das Signal im Fehlerfall in einen sicheren Zustand (GND-Potential).
Hierdurch wird erreicht, dass im Fall der Unterbrechung einer der Anschlußleitungen des analogen Sensors sichergestellt ist, dass die (z.B. in einem Steuergerät) gemessene Signalspannung, also die Spannung an der Sensorausgangsleitung exakt zu Null wird, womit sich leicht eine Fehlfunktion des Sensors erkennen läßt.
Im folgenden wird die Erfindung anhand eines Ausführungsbeispieles im Zusam- menhang mit der Zeichnung ausführlicher erläutert. Es zeigt:
Fig. 1 ein Schaltbild eines Ausführungsbeispieles der Überwachungsschaltung nach der Erfindung.
In einem Sensorgehäuse 1 sind ein Sensor 2 und die nachfolgend beschriebene Überwachungsschaltung ange-ordnet. Der Sensor ist im dargestellten Ausführungsbeispiel ein analoger Sensor, dessen Ausgang im Steuergerät durch den Pull-down- Lastwiderstand belastet wird, wie in Fig. 1 schematisch durch den Widerstand R5 dargestellt ist. Am Sensorgehäuse sind drei Eingänge vorhanden, nämlich ein Ein- gang 3 für Versorgungsspannung (VCC), ein Anschluß 4 für ein Sensorausgangssignal (OUT) und ein Anschluß 5 für Masse (GND), die mit zugeordneten Anschlüssen eines Steuergerätes 10 verbunden sind, was über Leitunqen 11 , 12 und 13 er- folgt. Die drei Anschlüsse 3, 4 und 5 sind über Leitungen 6, 7 bzw. 8 mit dem Sensor 2 verbunden. In der Spannungsversorgungsleitung 6 ist ein Transistor T1 geschaltet, der ein MOSFET-Transistor des p-Typs ist. In entsprechender Weise ist in die Masseleitung 8 ein zweiter Transistor T2 geschaltet, der ein MOSFET-Transistor des n-Typs ist, wobei letzterer invers betrieben wird.
Zwischen der Versorgungsspannungsleitung 6 und der Masseleitung 8 liegt ein Spannungsteiler aus einer Reihenschaltung eines ersten Widerstandes R1 , einer in Durchlaßrichtung geschalteten Diode D und eines zweiten Widerstandes R2. Der Verbindungspunkt zwischen dem ersten Widerstand R1 und der Diode D ist mit der GATE-Elektrode des ersten Transistors T1 verbunden.
Weiter liegt zwischen der Versorgungsspannungsleitung 6 und der Masseleitung 8 ein Spannungsteiler einer Reihenschaltung aus einem dritten Widerstand R3 und einem vierten Widerstand R4, wobei der Verbindungspunkt zwischen den Widerständen R3 und R4 mit der GATE-Elektrode des zweiten Transistors T2 verbunden ist.
Die Widerstandspaare R1/R2 bzw. R3/R4 wirken als Spannungsteiler, die im Normalzustand der GATE-Elektrode der Transistoren T1 bzw. T2 eine Spannung zufüh- ren, die zum Durchschalten der Transistoren führt. Im Normalbetrieb wird der Transistor T2 invers betrieben. Die parasitäre Diode zwischen DRAIN- und SOURCE- Anschluß sorgt dafür, dass im Einschaltmoment ein Strom fließen kann. Anschließend wird der Transistor über die GATE-Spannung niederohmig geschaltet.
Im Falle einer Unterbrechung 14 der Masseleitung 13 zum Sensor 2 wird das Massepotential im Sensor über R1 , D und R2 angehoben. Darauf schalten die Transistoren T1 und T2 ab. R1 und R2 müssen dabei relativ niederohmig dimensioniert sein, um im Fehlerfall das GND-Potential gegen den Widerstand des Pull-down- Widerstandes R5 so stark anheben zu können, bis T1 abschaltet. Der Transistor T2 erfüllt dabei die Aufgabe, einen Stromfluß von Versorgungsspannung (VCC) über R1 , D, R2 und den Sensor 2 zum Ausgangsanschluß 4 zu verhindern. Damit zieht der dem Sensor zugeordnete Pull-down-Widerstand R5 den Ausgangsanschluß 4 des Sensors auf Massepotential. Dieser Pull-down-Widerstand R5 ist unabhängig vom Masseanschluß 8 mit dem Massepotential der Spannungsversorgung im Steuergerät 10 verbunden.
Ein Bruch der Versorgungsspannungsleitung 6 ist unkritisch, da dann ohnehin keine Gefahr besteht, dass über den Sensor ein falsches Signal zum Ausgangsanschluß 4 gelangt. Im übrigen würden bei Bruch der Versorgungsspannungsleitung die beiden Transistoren T1 und T2 ebenfalls abschalten, so dass der Pull-down-Widerstand R5 den Ausgangsanschluß 4 des Sensors 2 ebenfalls auf Massepotential zieht.
Ein Bruch der Sensorausgangsleitung 12 (bzw. 7) ist ebenfalls unkritisch, da der Pull-down-Widerstand R5 dann das Potential auf GND zieht. Da die Sensorspannung immer über R5 gemessen wird, ist es zweckmäßig, diesen Pull-down-Widerstand im Steuergerät 10 unterzubringen. Es wäre allerdings auch möglich, ihn im Sensor- gehäuse 1 an der Leitung 7 unterzubringen. In diesem Falle müßte aber der andere Anschluß des Widerstands R5 mit dem GND-Potential des Steuergerätes 10 verbunden sein und zwar derart, dass auch bei Bruch der Masseleitung 13 das GND- Potential dort anliegt, was eine weitere Leitung erfordern würde, weshalb die oben beschriebene Anordnung im Steuergerät 10 bevorzugt ist.

Claims

Patentansprüche
1 . Sicherheitsschaltung für analoge Sensoren, die mit einer Versorgungsspan- nungsleitung, einer Masseleitung und einer Sensorausgangsleitung verbunden sind, dadurch gekennzeichnet, dass in der Versorgungsspannungsleitung (6) und der Masseleitung (8) je ein Transistor (T1 bzw. T2) zwischengeschaltet ist, deren Steueranschluß je an einen zwischen der Versorgungsspannungsleitung (6) und der Masseleitung (8) liegenden Spannungsteiler (R1 , R2; R3, R4) ange- schlössen ist, wobei beide Transistoren (T1 , T2) im Normalbetrieb durchge- schaltet und zumindest bei Unterbrechung der Masseleitung (M8) abgeschaltet sind und dass die Sensorausgangsleitung (7) über einen Pull-down-Widerstand (R5) mit einem von der Masseleitung (8) unabhängigen Massepotential verbunden ist.
Sicherheitsschaltung nach Anspruch 1 , dadurch gekennzeichnet, dass der Pull- down-Widerstand (R5) in einem Steuergerät (10) außerhalb eines Gehäuses (1 ) des Sensors (2) angeordnet und zwischen einem Meßeingang und Massepotential des Steuergerätes angeordnet ist.
Sicherheitsschaltung nach Anspruch 1 , dadurch gekennzeichnet, dass beide Transistoren (T1 , T2) MOSFET-Transistoren sind.
4. Sicherheitsschaltung nach Anspruch 3, dadurch gekennzeichnet, dass der in die Masseleitung (8) zwischengeschaltete Transistor (T2) invers betrieben wird.
5. Sicherheitsschaltung nach Anspruch 1 , dadurch gekennzeichnet, dass in dem Spannungsteiler (R1 , R2), an den der Steueranschluß des in die Versorgungsspannungsleitung (6) geschalteten Transistors angeschlossen ist, noch zusätz- lieh eine von Versorgungsspannung zu Masse in Durchlaßrichtung geschaltete
Diode (D) eingeschaltet ist.
PCT/EP2003/011742 2002-10-24 2003-10-23 Sicherheitsschaltung für analoge sensoren WO2004038882A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2003278128A AU2003278128A1 (en) 2002-10-24 2003-10-23 Protective circuit for analog sensors
US10/532,589 US7265955B2 (en) 2002-10-24 2003-10-23 Protective circuit for analog sensors
JP2004545954A JP4149440B2 (ja) 2002-10-24 2003-10-23 アナログセンサのための保護回路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10249599.8 2002-10-24
DE10249599A DE10249599B4 (de) 2002-10-24 2002-10-24 Sicherheitsschaltung für analoge Sensoren

Publications (1)

Publication Number Publication Date
WO2004038882A1 true WO2004038882A1 (de) 2004-05-06

Family

ID=32102950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/011742 WO2004038882A1 (de) 2002-10-24 2003-10-23 Sicherheitsschaltung für analoge sensoren

Country Status (5)

Country Link
US (1) US7265955B2 (de)
JP (1) JP4149440B2 (de)
AU (1) AU2003278128A1 (de)
DE (1) DE10249599B4 (de)
WO (1) WO2004038882A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006008284B3 (de) * 2006-02-22 2007-10-25 Infineon Technologies Ag Schaltung mit einer Anordnung zur Detektion einer unterbrochenen Anschlussleitung

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10336055B4 (de) * 2003-08-01 2006-11-09 Msa Auer Gmbh Schaltungsanordnung mit einer Mehrdrahtleitung zur Stromversorgung und zur Ausgabe messwertproportionaler elektrischer Stromsignale eines Sensors
WO2006011500A1 (ja) * 2004-07-28 2006-02-02 Aisin Seiki Kabushiki Kaisha 通信異常検出装置及び乗員検出装置
US7739525B2 (en) * 2006-02-13 2010-06-15 Texas Instruments Incorporated Device and system for controlling parallel power sources coupled to a load
JP4883289B2 (ja) * 2006-08-25 2012-02-22 Tdk株式会社 電流センサの断線検知装置
US20080157313A1 (en) * 2006-12-29 2008-07-03 Sriram Dattaguru Array capacitor for decoupling multiple voltages
JP4761080B2 (ja) * 2008-02-01 2011-08-31 Tdk株式会社 電流センサと電子制御ユニットとの間の断線検知システム
WO2014108715A1 (en) * 2013-01-10 2014-07-17 Freescale Semiconductor, Inc. Ground-loss detection circuit
CN105375459A (zh) * 2015-11-11 2016-03-02 国网北京市电力公司 用于输电网的消弧系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5508872A (en) * 1994-01-24 1996-04-16 Ford Motor Company Circuit for ground fault detection and switching

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE788539A (fr) * 1971-09-10 1973-03-08 Westinghouse Electric Corp Systeme electrique a barriere d'energie
US4808839A (en) * 1988-04-04 1989-02-28 Motorola, Inc. Power field effect transistor driver circuit for protection from overvoltages
IT1249525B (it) * 1991-02-18 1995-02-23 Sgs Thomson Microelectronics Dispositivo di protezione della perdita della massa particolarmente per circuiti integrati mos
DE4118718A1 (de) * 1991-06-07 1992-12-10 Bosch Gmbh Robert Pruefschaltung fuer einen sensor
JP2596621Y2 (ja) 1992-05-18 1999-06-21 株式会社ユニシアジェックス 自動車用車輪速度検出装置
US5418673A (en) * 1992-12-14 1995-05-23 North American Philips Corporation Control electrode disable circuit for power transistor
US6560079B1 (en) * 1995-05-26 2003-05-06 X-L Synergy Ground loss detection for electrical appliances
US6246557B1 (en) * 1998-04-10 2001-06-12 Texas Instruments Incorporated Loss of ground protection for electronic relays

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5508872A (en) * 1994-01-24 1996-04-16 Ford Motor Company Circuit for ground fault detection and switching

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006008284B3 (de) * 2006-02-22 2007-10-25 Infineon Technologies Ag Schaltung mit einer Anordnung zur Detektion einer unterbrochenen Anschlussleitung
US7683626B2 (en) 2006-02-22 2010-03-23 Infineon Technologies Ag Circuit with an arrangement for the detection of an interrupted connecting line

Also Published As

Publication number Publication date
DE10249599B4 (de) 2007-12-27
JP2006515979A (ja) 2006-06-08
DE10249599A1 (de) 2004-05-13
JP4149440B2 (ja) 2008-09-10
AU2003278128A1 (en) 2004-05-13
US20060114626A1 (en) 2006-06-01
US7265955B2 (en) 2007-09-04

Similar Documents

Publication Publication Date Title
EP2649496B1 (de) Sicherheitsschaltgerät zum fehlersicheren abschalten eines elektrischen verbrauchers
DE19913131A1 (de) Stromversorgungssystem mit zwei Batterien unterschiedlicher Spannung
WO2007096219A1 (de) Schaltungsanordnung mit rückspeiseschutz zum schalten in leistungsanwendungen
DE102007053089B4 (de) Elektrisches und elektronisches System
DE102011088912A1 (de) Schaltungsanordnung zur Detektion eines Kurzschlusses bei einer Leistungsschalteranordnung
DE102013219950B4 (de) Elektronische Schaltungsanordnung
WO2004038882A1 (de) Sicherheitsschaltung für analoge sensoren
WO2018001665A1 (de) Mehrspannungs-steuervorrichtung für ein kraftfahrzeug, kraftfahrzeug und betriebsverfahren für die steuervorrichtung
EP3934942A1 (de) Kraftfahrzeugsteuergerät mit zu- und abschaltfunktion für mindestens einen von dem kraftfahrzeugsteuergerät anzusteuernden, elektrischen verbraucher
DE10232941B4 (de) KFZ-Bordnetz mit einer Sensor-Schutzschaltung
DE102005008905A1 (de) Ansteuerschaltung für eine durch zumindest einen Gleichspannungsimpuls auslösbare Zündeinheit einer Insassenschutzeinrichtung
EP0696849B1 (de) Steuergerät mit einer Schaltungsanordnung zum Schutz des Steuergerätes bei Unterbrechung der Steuergerätemasse
DE102018118647A1 (de) Einzelfehlersichere elektronische Sicherheitsschaltung
DE102007036680B4 (de) Schaltungsvorrichtung zur Erkennung einer unterbrochenen Masseleitung
DE69519195T2 (de) ytromversorgungsschutzschaltung zur Fehlervermeidung in einem Satellitenkommunikationsgerät verursacht durch fehlerhafte Verbindung
DE10211099B4 (de) Vorrichtung zur Ansteuerung einer elektrischen Last
DE102012007679B4 (de) Elektronische Steuereinheit zur Ansteuerung eines an einer Betriebsspannung betriebenen elektrischen Verbrauchers
EP1902517B1 (de) Schaltungsanordnung zur ansteuerung eines elektromotors in einem kraftfahrzeug
DE102008043835A1 (de) Elektrische Vollbrückenschaltungsanordnung
DE102017109530B4 (de) Steuergerät, insbesondere für ein Fahrzeug
DE10349629B4 (de) Elektronischer Schaltkreis
DE10349282A1 (de) Verpol- und Überspannungsschutz für 5V-Sensoren
DE19619904C2 (de) Elektronisches, vorzugsweise berührungslos arbeitendes Schaltgerät
DE102006028443A1 (de) Steuereinheit für einen Gleichstrommotor
DE19936857A1 (de) Schutzschaltung für ein elektrisches Schaltelement

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004545954

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006114626

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10532589

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10532589

Country of ref document: US