WO2004038465A1 - A light transfer component - Google Patents
A light transfer component Download PDFInfo
- Publication number
- WO2004038465A1 WO2004038465A1 PCT/AU2003/001415 AU0301415W WO2004038465A1 WO 2004038465 A1 WO2004038465 A1 WO 2004038465A1 AU 0301415 W AU0301415 W AU 0301415W WO 2004038465 A1 WO2004038465 A1 WO 2004038465A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- transfer component
- light transfer
- cross
- guided
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0096—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the lights guides being of the hollow type
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0003—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being doped with fluorescent agents
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0005—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
- G02B6/0006—Coupling light into the fibre
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
Definitions
- the present invention broadly relates to a light transfer component for use in a daylight collection and transfer system. '
- US Patent 6059438 discloses a sunlight collecting and transmitting system.
- the disclosed system comprises three flat collector sheets.
- the three sheets are stacked on top of each other and are composed of a polymeric material that is doped with fluorescent dye molecules.
- the dye molecules absorb sunlight of a particular wavelength and subsequently emit fluorescent light having a slightly longer wavelength.
- a first sheet is doped with blue dye molecules, a second sheet is doped with green dye molecules and a third sheet is doped with red dye molecules.
- the generated fluorescent light is guided by internal reflection within the collector sheets and white light can be generated by combining the blue, green and red fluorescent light.
- One of the advantages of this sunlight collecting and transmitting system is that both the absorption of the incoming light and the emission of the fluorescent light do not occur in any preferred directions.
- the efficiency of such a system therefore is largely independent of the direction of the incoming sunlight .
- the generated light needs to be guided from the collector sheets into buildings to illuminate the interior of the buildings.
- light transference losses occur if geometrical constraints are not satisfied which is a problem for the transfer of sunlight in a convenient and efficient manner. For example, it would be useful to transfer light by cable-like conductors.
- the present invention provides in a first aspect a light transfer component formed from a material that is transparent for light of a predetermined range of wavelengths, the light transfer component comprising: a first substantially flat portion, a second rounded portion, and an intermediate portion disposed between the first and the second portion, the light transfer component being arranged for guiding light from the first portion through the intermediate portion to the second portion in a manner such that the light will not experience a reduction in cross-sectional area of more than 20% of the material through which it is guided.
- the light collector component is arranged so that light guided from the first portion to the second portion will not experience a reduction in cross-sectional area of more than 10% of the material through which it is guided.
- rounded is used for any shape that is non-angular. For example, this may include oval shapes or generally curved shapes.
- cross-sectional area is used for a cross- sectional area measured transversely to the mean direction of light propagation.
- the present invention provides in a second aspect a light transfer component formed from a material that is transparent for light of a predetermined range of wavelengths, the light transfer component comprising: a first substantially flat portion, a second rounded portion, and an intermediate portion disposed between the first and the second portion, the light transfer component being arranged for guiding light from the first portion through the intermediate portion to the second portion in a manner such that the light will not experience a reduction in cross-sectional area of the material through which it is guided.
- collectors for sunlight preferably should be of a form that substantially flat.
- the light is most conveniently guided in an optical cable having a generally cylindrical form such as a flexible, solid and round polymeric cable which, for example, may have a diameter of 25 mm or less.
- the optical cable may have a single core or may comprise a bundle of optical fibres.
- the above-defined light transfer component provides a link between such a light collector sheet (or a stack of such sheets) and the optical cable and enables the efficient transfer of light through the link.
- the light transfer component may also include at least one light collector sheet and the optical cable.
- the light collector component may include a stack of light collector sheets.
- cross-sectional area is substantially constant throughout the light transfer component and the solid angle of the propagating light may also be substantially constant throughout the light transfer component. Further, the refractive index may be constant throughout the light transfer component.
- the light transfer component may be arranged such that light directed from the first portion to the second portion will experience an increase in cross-sectional area of the material through which, in use, light is guided.
- this may be the case if the second portion is coupled to, or comprises, a light guide that has a cladded core region and the cladding has a refractive index greater than air.
- the light transfer component may be arranged so that the product of cross- sectional area and solid angle changes by less than 20% for light directed from the first component to the second component and in a specific embodiment is substantially constant.
- the second rounded portion of the light transfer component may be cladded with a material of low refractive index. Further, the intermediate portion may be cladded with the material of low refractive index.
- the material of low refractive index may be a polymeric material.
- the first portion may be bent or profiled in any way and may be corrugated.
- the first portion may have two substantially parallel surfaces and in a specific embodiment is of a substantially rectangular cross- sectional shape.
- the first portion is arranged for connection with a light collector sheet and has a cross-sectional profile that matches that of the light collector sheet.
- the first portion may comprise a rectangular sheet, the substantially parallel surfaces being the top and the bottom of the sheet .
- the transfer component may be arranged such that, in use, light guided from the first portion to the second portion will experience a gradual transition in the cross- sectional and longitudinal profiles of the light transfer component.
- the changes in the profile are sufficiently gradual such that there are negligible bending losses of the light when the light is guided in the component .
- the second portion may be of a hollow ring-like cross-sectional shape.
- the second portion may be solid.
- the light transfer component may be arranged for connection to an optical light guiding device such as an optical cable or to a light converting device such as a device that converts light into electrical energy.
- the light transfer component may be arranged for face-to-face connection with the optical cable and the second portion may be of a rounded cross-sectional shape that is solid.
- the light transfer component may also comprise a further intermediate portion that is hollow and that is arranged for connection to the optical cable.
- the light transfer component may be arranged for connection to a coupler.
- the second portion may be of a hollow ring-like shape and the coupler may be arranged to provide a connection to the optical cable.
- the coupler may be a round hollow-to-solid coupler.
- the first portion may be arranged for direct connection to at least one light collector sheet and may be arranged for face-to-face connection with the or each light collector sheet.
- the light collector sheet and the light transfer component may include elements that assist their assembly into an integrated optical system.
- the light collector sheet and the light transfer component may be arranged for male-to- female connection and may comprise features that allow a tongue-and-groove-type connection.
- the first portion may also comprise at least one light collector sheet doped with dye molecules and arranged for absorption of sunlight and emission of fluorescent radiation.
- the light collector sheet or at least one of the light collector sheets and the light transfer component may be integrally formed.
- the light transfer component preferably may be formed from a transparent material with a refractive index that approximates that of the or each light collector sheet.
- the material is a polymeric material such as poly methyl methacrylate (P MA) .
- Figure 1 shows a perspective representation of a light transfer component according to an embodiment
- Figure 2 shows a perspective exploded view of a light collector component according to another embodiment and Figure 3 shows a ray-tracing diagram of the light transfer component.
- the light transfer component 10 has a rectangular portion 12 and a hollow, ring-like portion 14 between and an intermediate portion 15 is disposed between portion 12 and portion 14.
- the rectangular portion 12 is shaped such that it may be joined face-to-face with a light collector sheet 16.
- the surfaces of all components are optically smooth; that is they have a roughness smaller than the wavelength of the light guided in them.
- the rectangular portion 12 has an end-face 17 that has the same cross-sectional shape as light collector sheet 16.
- the end-face 17 is joined with the light collector sheet 16 using a suitable optical joint. This may be achieved by optically transmissive adhesive, optical welding, refractive index matching gel or other suitable means .
- the light collector sheet 16 is replaced by a stack of light collector sheets which are, in use, joined with end face 17.
- the hollow, ring-like portion 14 is arranged to be connected to a further light transfer component such as a hollow-to-solid coupler 18 which is connected to an optical cable (not shown) .
- a further light transfer component such as a hollow-to-solid coupler 18 which is connected to an optical cable (not shown) .
- the rectangular portion 12 is a part of the light collector sheet 16 and may be integrally formed with the light collector sheet 16.
- the light collector sheet 16 may be replaced by a stack of light collector sheets.
- US Patent 6,272,265 discloses ways in which the output of a fluorescent sunlight collector and transmission system can be substantially increased provided that the system is constructed so that it is optically continuous i.e. without air gaps along the optical path.
- Fluorescence light that is generated in the light collector sheet 16 is guided into the light transfer component 10.
- the light transfer component 10 is shaped such that light guided from the substantially rectangular portion 12 through the intermediate portion 15 to the ring-like portion 14 will experience a gradual transition and will not experience a reduction in the cross-sectional area. The transition occurs over a distance corresponding to several times the width of the sheet from which the light transfer component is formed.
- the light transfer component 10 is shaped such that minimal bending loses occur when light is guided through the light transfer component 10.
- the light transfer component 10 is formed from PMMA.
- the light transfer component 10 may be prepared by injection moulding or by casting. All surfaces are optically smooth to reduce optical scattering losses. The edges are arranged that right angles are formed whereby loss of light transported by total internal reflection is reduced.
- the end-face of the ring-like portion 14 is joined directly with an end-face of an optical cable without a hollow-to-solid coupler.
- part 18 in Figure 1 represents an optical cable.
- the optical cable has a single core.
- the optical cable may comprise a bundle of optical fibres.
- the ring-like portion 14 has an outer diameter that matches the outer diameter of the light guiding portion of the optical cable.
- Figure 2 shows and exploded perspective view of another embodiment.
- the light transfer component 20 comprises portion 22 which has a hollow and ring-like end-face 23 and an opposing rectangular end-face 24.
- the ring-like end-face 23 is joined to a hollow-to- solid coupler 27 such that the light transfer component comprises a further intermediate portion that is hollow.
- the portion 22 and the hollow-to-solid coupler 27 may also be formed as one integral part.
- the hollow-to- solid coupler has a round end-face 26 that is solid and is arranged for coupling to a polymeric optical cable 28.
- the rectangular end-face of portion 24 of the portion 22 is arranged to be joined to a light collector sheet 29 (again, the light collector sheet 29 may be a stack of light collector sheets) .
- the light transfer component 20 may be fabricated from a flexible sheet that has two opposing end edge portions and two opposing side edge portions that connect the end edge portion.
- the opposing end edge portions have the same cross-sectional area.
- the flexible sheet may be folded so that the two side edge portions meet at a region near one of the end edge portion and are joined together at that region so that a substantially round portion is formed and the opposing end edge portion remains substantially flat.
- Figure 3 shows a ray-tracing diagram for the light transfer component 10 shown in Figure 1.
- the light transfer component 30 comprises dye molecules 32 that may emit fluorescence radiation in a variety of directions and the radiation is guided by total internal reflection towards the ring-like portion 34.
- the Figure shows an arbitrary selection of possible ray traces.
- the light transfer component may be used for transfer of light originating from any source. Further, it will be appreciated that the light transfer component may be arranged for transfer of light to any type of light guiding or light converting device either directly or via a coupler. It is to be understood that the references that are made to US Patents 6059438 and 6272265 do not constitute admissions that these documents form part of the common general knowledge in the art, in Australia or any other country.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Light Guides In General And Applications Therefor (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
- Optical Elements Other Than Lenses (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03757542A EP1565770A4 (en) | 2002-10-24 | 2003-10-24 | A light transfer component |
US10/531,759 US20060127002A1 (en) | 2002-10-24 | 2003-10-24 | Light transfer component |
NZ539717A NZ539717A (en) | 2002-10-24 | 2003-10-24 | A light transfer component |
JP2004545613A JP4351164B2 (en) | 2002-10-24 | 2003-10-24 | Optical transmission parts |
AU2003273627A AU2003273627B2 (en) | 2002-10-24 | 2003-10-24 | A light transfer component |
CA002502500A CA2502500A1 (en) | 2002-10-24 | 2003-10-24 | A light transfer component |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2002952276A AU2002952276A0 (en) | 2002-10-24 | 2002-10-24 | A light transfer component |
AU2002952276 | 2002-10-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004038465A1 true WO2004038465A1 (en) | 2004-05-06 |
Family
ID=28795670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AU2003/001415 WO2004038465A1 (en) | 2002-10-24 | 2003-10-24 | A light transfer component |
Country Status (10)
Country | Link |
---|---|
US (1) | US20060127002A1 (en) |
EP (1) | EP1565770A4 (en) |
JP (1) | JP4351164B2 (en) |
KR (1) | KR20050043995A (en) |
CN (1) | CN1934472A (en) |
AU (1) | AU2002952276A0 (en) |
CA (1) | CA2502500A1 (en) |
NZ (1) | NZ539717A (en) |
WO (1) | WO2004038465A1 (en) |
ZA (1) | ZA200502965B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016063047A1 (en) * | 2014-10-21 | 2016-04-28 | Imperial Innovations Limited | A light source |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1870744A1 (en) * | 2006-06-19 | 2007-12-26 | Barco N.V. | Light integrating system |
WO2010140103A1 (en) * | 2009-06-02 | 2010-12-09 | Koninklijke Philips Electronics N.V. | Apparatus and system for separating space |
CN102519007B (en) * | 2012-01-12 | 2013-12-25 | 孟忠阳 | Trackless solar energy condensation system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4612144A (en) * | 1983-04-18 | 1986-09-16 | Fuji Photo Film Co., Ltd. | Method of making light guide member |
US4650279A (en) * | 1984-08-15 | 1987-03-17 | The Charles Stark Draper Laboratory, Inc. | Fiber optic lens |
US4688884A (en) * | 1985-11-12 | 1987-08-25 | Spectra Diode Laboratories, Inc. | Fiberoptic coupling system for phased-array semiconductor lasers |
US4991918A (en) * | 1988-03-03 | 1991-02-12 | Eastman Kodak Company | Light collector for stimulable phosphor imaging apparatus |
US5832150A (en) * | 1996-07-08 | 1998-11-03 | Laser Power Corporation | Side injection fiber optic coupler |
US6272265B1 (en) * | 1996-06-17 | 2001-08-07 | Sky Solutions Limited | Lighting system for transmitting and releasing luminescent radiation |
US20020031300A1 (en) * | 1999-12-17 | 2002-03-14 | Xu Jie | Lensed optical fiber, process of production and apparatus for production of same, and laser diode module |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4143941A (en) * | 1977-12-01 | 1979-03-13 | Sperry Rand Corporation | Low loss optical data terminal device for multimode fiber guide optical communication systems |
EP0032521B1 (en) * | 1979-07-11 | 1984-05-30 | Fuji Photo Film Co., Ltd. | Gain setting device for radiation image read out system |
JPH0679094B2 (en) * | 1984-10-29 | 1994-10-05 | 株式会社日立製作所 | Light collector |
JPS63318503A (en) * | 1987-06-22 | 1988-12-27 | Sharp Corp | Light converging device |
US5195162A (en) * | 1987-12-16 | 1993-03-16 | General Motors Corporation | Planar polymer light guide methods and apparatus |
US6031892A (en) * | 1989-12-05 | 2000-02-29 | University Of Massachusetts Medical Center | System for quantitative radiographic imaging |
WO1993006413A1 (en) * | 1991-09-19 | 1993-04-01 | Skydome Industries Limited | Sunlight collecting and transmitting system |
US6059438A (en) * | 1991-09-19 | 2000-05-09 | Geoffrey Burton Smith | Sunlight collecting and transmitting system |
US5483081A (en) * | 1992-10-19 | 1996-01-09 | Fuji Photo Film Co., Ltd. | Method for detecting light emitted by two surfaces of a stimulable phosphor sheet |
JP3313237B2 (en) * | 1994-04-19 | 2002-08-12 | 富士写真フイルム株式会社 | Image reading device and image recording device |
US5709453A (en) * | 1994-08-16 | 1998-01-20 | Krent; Edward D. | Vehicle lighting having remote light source |
US6945710B2 (en) * | 2003-01-10 | 2005-09-20 | Wen-Tzung Chen | Optical sub-assembly module for suppressing optical back-reflection and effectively guiding light from light source to optical waveguide |
-
2002
- 2002-10-24 AU AU2002952276A patent/AU2002952276A0/en not_active Abandoned
-
2003
- 2003-10-24 US US10/531,759 patent/US20060127002A1/en not_active Abandoned
- 2003-10-24 CA CA002502500A patent/CA2502500A1/en not_active Abandoned
- 2003-10-24 EP EP03757542A patent/EP1565770A4/en not_active Withdrawn
- 2003-10-24 KR KR1020057007137A patent/KR20050043995A/en not_active Application Discontinuation
- 2003-10-24 WO PCT/AU2003/001415 patent/WO2004038465A1/en active IP Right Grant
- 2003-10-24 JP JP2004545613A patent/JP4351164B2/en not_active Expired - Fee Related
- 2003-10-24 NZ NZ539717A patent/NZ539717A/en unknown
- 2003-10-24 CN CNA2003801019895A patent/CN1934472A/en active Pending
-
2005
- 2005-04-13 ZA ZA200502965A patent/ZA200502965B/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4612144A (en) * | 1983-04-18 | 1986-09-16 | Fuji Photo Film Co., Ltd. | Method of making light guide member |
US4650279A (en) * | 1984-08-15 | 1987-03-17 | The Charles Stark Draper Laboratory, Inc. | Fiber optic lens |
US4688884A (en) * | 1985-11-12 | 1987-08-25 | Spectra Diode Laboratories, Inc. | Fiberoptic coupling system for phased-array semiconductor lasers |
US4991918A (en) * | 1988-03-03 | 1991-02-12 | Eastman Kodak Company | Light collector for stimulable phosphor imaging apparatus |
US6272265B1 (en) * | 1996-06-17 | 2001-08-07 | Sky Solutions Limited | Lighting system for transmitting and releasing luminescent radiation |
US5832150A (en) * | 1996-07-08 | 1998-11-03 | Laser Power Corporation | Side injection fiber optic coupler |
US20020031300A1 (en) * | 1999-12-17 | 2002-03-14 | Xu Jie | Lensed optical fiber, process of production and apparatus for production of same, and laser diode module |
Non-Patent Citations (1)
Title |
---|
See also references of EP1565770A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016063047A1 (en) * | 2014-10-21 | 2016-04-28 | Imperial Innovations Limited | A light source |
US10502882B2 (en) | 2014-10-21 | 2019-12-10 | Imperial Innovations Limited | Light source |
Also Published As
Publication number | Publication date |
---|---|
JP2006504124A (en) | 2006-02-02 |
US20060127002A1 (en) | 2006-06-15 |
EP1565770A1 (en) | 2005-08-24 |
NZ539717A (en) | 2006-11-30 |
ZA200502965B (en) | 2006-02-22 |
KR20050043995A (en) | 2005-05-11 |
CA2502500A1 (en) | 2004-05-06 |
EP1565770A4 (en) | 2005-12-28 |
AU2002952276A0 (en) | 2002-11-07 |
CN1934472A (en) | 2007-03-21 |
JP4351164B2 (en) | 2009-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2405110A1 (en) | Optical system including coupler for transmitting light between a single fiber light guide and multiple single fiber light guides | |
US6059438A (en) | Sunlight collecting and transmitting system | |
US20030156327A1 (en) | Optical element and optical device using the same | |
WO1993006413A1 (en) | Sunlight collecting and transmitting system | |
US6467969B1 (en) | Article comprising a multimode optical fiber coupler | |
WO2004044481A1 (en) | A hybrid lighting system | |
US20060127002A1 (en) | Light transfer component | |
US6912345B2 (en) | Tapered optical fiber for coupling to diffused optical waveguides | |
AU4701097A (en) | Light-transmitting device | |
AU2003273627B2 (en) | A light transfer component | |
EP1227611A3 (en) | Wavelength multiplex optical communication module | |
WO2005031392A3 (en) | Integrated microlens reflector and light coupler | |
US20020154864A1 (en) | Optical element, and optical transceiver and other optical device using the same | |
CA2309029A1 (en) | Optical fiber | |
EP1544648A3 (en) | Mode converter using omnidirectional reflectors | |
EP0154332A2 (en) | A connecting structure for connecting optical conductor | |
EP1336883B1 (en) | Optical Coupling Element and Transceiver Using The Same | |
CN2462408Y (en) | Micro loss photo-coupler | |
JPS62266502A (en) | Light converging and transmitting equipment | |
JP3131044B2 (en) | Optical waveguide device | |
AU661716B2 (en) | Sunlight collecting and transmitting system | |
AU2003275796B2 (en) | A hybrid lighting system | |
SU1091731A1 (en) | Fibre-optic coupler | |
CA2594852A1 (en) | Optical waveguide modulator with output light monitor | |
JPS5856845B2 (en) | Optical conductor cable for optical energy transmission |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2005/02965 Country of ref document: ZA Ref document number: 200502965 Country of ref document: ZA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2502500 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003757542 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004545613 Country of ref document: JP Ref document number: 1020057007137 Country of ref document: KR Ref document number: 20038A19895 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003273627 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 539717 Country of ref document: NZ |
|
WWP | Wipo information: published in national office |
Ref document number: 1020057007137 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2003757542 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2006127002 Country of ref document: US Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10531759 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 10531759 Country of ref document: US |
|
WWG | Wipo information: grant in national office |
Ref document number: 2003273627 Country of ref document: AU |