WO2004038465A1 - A light transfer component - Google Patents

A light transfer component Download PDF

Info

Publication number
WO2004038465A1
WO2004038465A1 PCT/AU2003/001415 AU0301415W WO2004038465A1 WO 2004038465 A1 WO2004038465 A1 WO 2004038465A1 AU 0301415 W AU0301415 W AU 0301415W WO 2004038465 A1 WO2004038465 A1 WO 2004038465A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
transfer component
light transfer
cross
guided
Prior art date
Application number
PCT/AU2003/001415
Other languages
French (fr)
Inventor
James Bruce Franklin
Geoffrey Burton Smith
Original Assignee
Fluorosolar Systems Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fluorosolar Systems Limited filed Critical Fluorosolar Systems Limited
Priority to EP03757542A priority Critical patent/EP1565770A4/en
Priority to US10/531,759 priority patent/US20060127002A1/en
Priority to NZ539717A priority patent/NZ539717A/en
Priority to JP2004545613A priority patent/JP4351164B2/en
Priority to AU2003273627A priority patent/AU2003273627B2/en
Priority to CA002502500A priority patent/CA2502500A1/en
Publication of WO2004038465A1 publication Critical patent/WO2004038465A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0096Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the lights guides being of the hollow type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0003Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being doped with fluorescent agents
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/0006Coupling light into the fibre
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form

Definitions

  • the present invention broadly relates to a light transfer component for use in a daylight collection and transfer system. '
  • US Patent 6059438 discloses a sunlight collecting and transmitting system.
  • the disclosed system comprises three flat collector sheets.
  • the three sheets are stacked on top of each other and are composed of a polymeric material that is doped with fluorescent dye molecules.
  • the dye molecules absorb sunlight of a particular wavelength and subsequently emit fluorescent light having a slightly longer wavelength.
  • a first sheet is doped with blue dye molecules, a second sheet is doped with green dye molecules and a third sheet is doped with red dye molecules.
  • the generated fluorescent light is guided by internal reflection within the collector sheets and white light can be generated by combining the blue, green and red fluorescent light.
  • One of the advantages of this sunlight collecting and transmitting system is that both the absorption of the incoming light and the emission of the fluorescent light do not occur in any preferred directions.
  • the efficiency of such a system therefore is largely independent of the direction of the incoming sunlight .
  • the generated light needs to be guided from the collector sheets into buildings to illuminate the interior of the buildings.
  • light transference losses occur if geometrical constraints are not satisfied which is a problem for the transfer of sunlight in a convenient and efficient manner. For example, it would be useful to transfer light by cable-like conductors.
  • the present invention provides in a first aspect a light transfer component formed from a material that is transparent for light of a predetermined range of wavelengths, the light transfer component comprising: a first substantially flat portion, a second rounded portion, and an intermediate portion disposed between the first and the second portion, the light transfer component being arranged for guiding light from the first portion through the intermediate portion to the second portion in a manner such that the light will not experience a reduction in cross-sectional area of more than 20% of the material through which it is guided.
  • the light collector component is arranged so that light guided from the first portion to the second portion will not experience a reduction in cross-sectional area of more than 10% of the material through which it is guided.
  • rounded is used for any shape that is non-angular. For example, this may include oval shapes or generally curved shapes.
  • cross-sectional area is used for a cross- sectional area measured transversely to the mean direction of light propagation.
  • the present invention provides in a second aspect a light transfer component formed from a material that is transparent for light of a predetermined range of wavelengths, the light transfer component comprising: a first substantially flat portion, a second rounded portion, and an intermediate portion disposed between the first and the second portion, the light transfer component being arranged for guiding light from the first portion through the intermediate portion to the second portion in a manner such that the light will not experience a reduction in cross-sectional area of the material through which it is guided.
  • collectors for sunlight preferably should be of a form that substantially flat.
  • the light is most conveniently guided in an optical cable having a generally cylindrical form such as a flexible, solid and round polymeric cable which, for example, may have a diameter of 25 mm or less.
  • the optical cable may have a single core or may comprise a bundle of optical fibres.
  • the above-defined light transfer component provides a link between such a light collector sheet (or a stack of such sheets) and the optical cable and enables the efficient transfer of light through the link.
  • the light transfer component may also include at least one light collector sheet and the optical cable.
  • the light collector component may include a stack of light collector sheets.
  • cross-sectional area is substantially constant throughout the light transfer component and the solid angle of the propagating light may also be substantially constant throughout the light transfer component. Further, the refractive index may be constant throughout the light transfer component.
  • the light transfer component may be arranged such that light directed from the first portion to the second portion will experience an increase in cross-sectional area of the material through which, in use, light is guided.
  • this may be the case if the second portion is coupled to, or comprises, a light guide that has a cladded core region and the cladding has a refractive index greater than air.
  • the light transfer component may be arranged so that the product of cross- sectional area and solid angle changes by less than 20% for light directed from the first component to the second component and in a specific embodiment is substantially constant.
  • the second rounded portion of the light transfer component may be cladded with a material of low refractive index. Further, the intermediate portion may be cladded with the material of low refractive index.
  • the material of low refractive index may be a polymeric material.
  • the first portion may be bent or profiled in any way and may be corrugated.
  • the first portion may have two substantially parallel surfaces and in a specific embodiment is of a substantially rectangular cross- sectional shape.
  • the first portion is arranged for connection with a light collector sheet and has a cross-sectional profile that matches that of the light collector sheet.
  • the first portion may comprise a rectangular sheet, the substantially parallel surfaces being the top and the bottom of the sheet .
  • the transfer component may be arranged such that, in use, light guided from the first portion to the second portion will experience a gradual transition in the cross- sectional and longitudinal profiles of the light transfer component.
  • the changes in the profile are sufficiently gradual such that there are negligible bending losses of the light when the light is guided in the component .
  • the second portion may be of a hollow ring-like cross-sectional shape.
  • the second portion may be solid.
  • the light transfer component may be arranged for connection to an optical light guiding device such as an optical cable or to a light converting device such as a device that converts light into electrical energy.
  • the light transfer component may be arranged for face-to-face connection with the optical cable and the second portion may be of a rounded cross-sectional shape that is solid.
  • the light transfer component may also comprise a further intermediate portion that is hollow and that is arranged for connection to the optical cable.
  • the light transfer component may be arranged for connection to a coupler.
  • the second portion may be of a hollow ring-like shape and the coupler may be arranged to provide a connection to the optical cable.
  • the coupler may be a round hollow-to-solid coupler.
  • the first portion may be arranged for direct connection to at least one light collector sheet and may be arranged for face-to-face connection with the or each light collector sheet.
  • the light collector sheet and the light transfer component may include elements that assist their assembly into an integrated optical system.
  • the light collector sheet and the light transfer component may be arranged for male-to- female connection and may comprise features that allow a tongue-and-groove-type connection.
  • the first portion may also comprise at least one light collector sheet doped with dye molecules and arranged for absorption of sunlight and emission of fluorescent radiation.
  • the light collector sheet or at least one of the light collector sheets and the light transfer component may be integrally formed.
  • the light transfer component preferably may be formed from a transparent material with a refractive index that approximates that of the or each light collector sheet.
  • the material is a polymeric material such as poly methyl methacrylate (P MA) .
  • Figure 1 shows a perspective representation of a light transfer component according to an embodiment
  • Figure 2 shows a perspective exploded view of a light collector component according to another embodiment and Figure 3 shows a ray-tracing diagram of the light transfer component.
  • the light transfer component 10 has a rectangular portion 12 and a hollow, ring-like portion 14 between and an intermediate portion 15 is disposed between portion 12 and portion 14.
  • the rectangular portion 12 is shaped such that it may be joined face-to-face with a light collector sheet 16.
  • the surfaces of all components are optically smooth; that is they have a roughness smaller than the wavelength of the light guided in them.
  • the rectangular portion 12 has an end-face 17 that has the same cross-sectional shape as light collector sheet 16.
  • the end-face 17 is joined with the light collector sheet 16 using a suitable optical joint. This may be achieved by optically transmissive adhesive, optical welding, refractive index matching gel or other suitable means .
  • the light collector sheet 16 is replaced by a stack of light collector sheets which are, in use, joined with end face 17.
  • the hollow, ring-like portion 14 is arranged to be connected to a further light transfer component such as a hollow-to-solid coupler 18 which is connected to an optical cable (not shown) .
  • a further light transfer component such as a hollow-to-solid coupler 18 which is connected to an optical cable (not shown) .
  • the rectangular portion 12 is a part of the light collector sheet 16 and may be integrally formed with the light collector sheet 16.
  • the light collector sheet 16 may be replaced by a stack of light collector sheets.
  • US Patent 6,272,265 discloses ways in which the output of a fluorescent sunlight collector and transmission system can be substantially increased provided that the system is constructed so that it is optically continuous i.e. without air gaps along the optical path.
  • Fluorescence light that is generated in the light collector sheet 16 is guided into the light transfer component 10.
  • the light transfer component 10 is shaped such that light guided from the substantially rectangular portion 12 through the intermediate portion 15 to the ring-like portion 14 will experience a gradual transition and will not experience a reduction in the cross-sectional area. The transition occurs over a distance corresponding to several times the width of the sheet from which the light transfer component is formed.
  • the light transfer component 10 is shaped such that minimal bending loses occur when light is guided through the light transfer component 10.
  • the light transfer component 10 is formed from PMMA.
  • the light transfer component 10 may be prepared by injection moulding or by casting. All surfaces are optically smooth to reduce optical scattering losses. The edges are arranged that right angles are formed whereby loss of light transported by total internal reflection is reduced.
  • the end-face of the ring-like portion 14 is joined directly with an end-face of an optical cable without a hollow-to-solid coupler.
  • part 18 in Figure 1 represents an optical cable.
  • the optical cable has a single core.
  • the optical cable may comprise a bundle of optical fibres.
  • the ring-like portion 14 has an outer diameter that matches the outer diameter of the light guiding portion of the optical cable.
  • Figure 2 shows and exploded perspective view of another embodiment.
  • the light transfer component 20 comprises portion 22 which has a hollow and ring-like end-face 23 and an opposing rectangular end-face 24.
  • the ring-like end-face 23 is joined to a hollow-to- solid coupler 27 such that the light transfer component comprises a further intermediate portion that is hollow.
  • the portion 22 and the hollow-to-solid coupler 27 may also be formed as one integral part.
  • the hollow-to- solid coupler has a round end-face 26 that is solid and is arranged for coupling to a polymeric optical cable 28.
  • the rectangular end-face of portion 24 of the portion 22 is arranged to be joined to a light collector sheet 29 (again, the light collector sheet 29 may be a stack of light collector sheets) .
  • the light transfer component 20 may be fabricated from a flexible sheet that has two opposing end edge portions and two opposing side edge portions that connect the end edge portion.
  • the opposing end edge portions have the same cross-sectional area.
  • the flexible sheet may be folded so that the two side edge portions meet at a region near one of the end edge portion and are joined together at that region so that a substantially round portion is formed and the opposing end edge portion remains substantially flat.
  • Figure 3 shows a ray-tracing diagram for the light transfer component 10 shown in Figure 1.
  • the light transfer component 30 comprises dye molecules 32 that may emit fluorescence radiation in a variety of directions and the radiation is guided by total internal reflection towards the ring-like portion 34.
  • the Figure shows an arbitrary selection of possible ray traces.
  • the light transfer component may be used for transfer of light originating from any source. Further, it will be appreciated that the light transfer component may be arranged for transfer of light to any type of light guiding or light converting device either directly or via a coupler. It is to be understood that the references that are made to US Patents 6059438 and 6272265 do not constitute admissions that these documents form part of the common general knowledge in the art, in Australia or any other country.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

The present invention provides a light transfer component formed from a material that is transparent for light of a predetermined range of wavelengths. The light transfer component comprises a first substantially flat portion, a second rounded portion, and an intermediate portion disposed between the first and the second portion. The light transfer component is arranged for guiding light from the first portion through the intermediate portion to the second portion in a manner such that the light will not experience a reduction in cross-sectional area of more than 20 % of the material through which it is guided.

Description

A LIGHT TRANSFER COMPONENT
Field of the Invention
The present invention broadly relates to a light transfer component for use in a daylight collection and transfer system.'
Background of the Invention
Electrical lighting systems are often very inefficient; usually more than 90% of the electrical energy is not converted into useful light. Sunlight, however, is freely available and attempts have been made to collect sunlight for illumination purposes.
US Patent 6059438 discloses a sunlight collecting and transmitting system. The disclosed system comprises three flat collector sheets. The three sheets are stacked on top of each other and are composed of a polymeric material that is doped with fluorescent dye molecules. The dye molecules absorb sunlight of a particular wavelength and subsequently emit fluorescent light having a slightly longer wavelength. A first sheet is doped with blue dye molecules, a second sheet is doped with green dye molecules and a third sheet is doped with red dye molecules. The generated fluorescent light is guided by internal reflection within the collector sheets and white light can be generated by combining the blue, green and red fluorescent light. One of the advantages of this sunlight collecting and transmitting system is that both the absorption of the incoming light and the emission of the fluorescent light do not occur in any preferred directions. The efficiency of such a system therefore is largely independent of the direction of the incoming sunlight . The generated light needs to be guided from the collector sheets into buildings to illuminate the interior of the buildings. However, as the light is guided by total internal reflection, light transference losses occur if geometrical constraints are not satisfied which is a problem for the transfer of sunlight in a convenient and efficient manner. For example, it would be useful to transfer light by cable-like conductors.
Summary of the Invention
The present invention provides in a first aspect a light transfer component formed from a material that is transparent for light of a predetermined range of wavelengths, the light transfer component comprising: a first substantially flat portion, a second rounded portion, and an intermediate portion disposed between the first and the second portion, the light transfer component being arranged for guiding light from the first portion through the intermediate portion to the second portion in a manner such that the light will not experience a reduction in cross-sectional area of more than 20% of the material through which it is guided.
In a specific embodiment the light collector component is arranged so that light guided from the first portion to the second portion will not experience a reduction in cross-sectional area of more than 10% of the material through which it is guided.
Throughout this specification the term "rounded" is used for any shape that is non-angular. For example, this may include oval shapes or generally curved shapes. Also, the term "cross-sectional area" is used for a cross- sectional area measured transversely to the mean direction of light propagation.
The present invention provides in a second aspect a light transfer component formed from a material that is transparent for light of a predetermined range of wavelengths, the light transfer component comprising: a first substantially flat portion, a second rounded portion, and an intermediate portion disposed between the first and the second portion, the light transfer component being arranged for guiding light from the first portion through the intermediate portion to the second portion in a manner such that the light will not experience a reduction in cross-sectional area of the material through which it is guided.
By "will not experience a reduction in cross- sectional area" will be understood that some reduction of the cross-sectional area may occur without significantly affecting light transmission, but this may be a limited amount. Some limited reduction may assist in connecting to light transmission elements. The inventors have determined that collectors for sunlight preferably should be of a form that substantially flat. However, the light is most conveniently guided in an optical cable having a generally cylindrical form such as a flexible, solid and round polymeric cable which, for example, may have a diameter of 25 mm or less. The optical cable may have a single core or may comprise a bundle of optical fibres. In one embodiment, the above-defined light transfer component provides a link between such a light collector sheet (or a stack of such sheets) and the optical cable and enables the efficient transfer of light through the link. The light transfer component may also include at least one light collector sheet and the optical cable. In this case, the light collector component may include a stack of light collector sheets.
In one specific embodiment the cross-sectional area is substantially constant throughout the light transfer component and the solid angle of the propagating light may also be substantially constant throughout the light transfer component. Further, the refractive index may be constant throughout the light transfer component.
Alternatively, the light transfer component may be arranged such that light directed from the first portion to the second portion will experience an increase in cross-sectional area of the material through which, in use, light is guided. For example, this may be the case if the second portion is coupled to, or comprises, a light guide that has a cladded core region and the cladding has a refractive index greater than air. The light transfer component may be arranged so that the product of cross- sectional area and solid angle changes by less than 20% for light directed from the first component to the second component and in a specific embodiment is substantially constant.
The second rounded portion of the light transfer component may be cladded with a material of low refractive index. Further, the intermediate portion may be cladded with the material of low refractive index. The material of low refractive index may be a polymeric material.
The first portion may be bent or profiled in any way and may be corrugated. The first portion may have two substantially parallel surfaces and in a specific embodiment is of a substantially rectangular cross- sectional shape. In a specific embodiment the first portion is arranged for connection with a light collector sheet and has a cross-sectional profile that matches that of the light collector sheet. For example, the first portion may comprise a rectangular sheet, the substantially parallel surfaces being the top and the bottom of the sheet .
The transfer component may be arranged such that, in use, light guided from the first portion to the second portion will experience a gradual transition in the cross- sectional and longitudinal profiles of the light transfer component. In a particular embodiment the changes in the profile are sufficiently gradual such that there are negligible bending losses of the light when the light is guided in the component .
The second portion may be of a hollow ring-like cross-sectional shape. Alternatively, the second portion may be solid. The light transfer component may be arranged for connection to an optical light guiding device such as an optical cable or to a light converting device such as a device that converts light into electrical energy. The light transfer component may be arranged for face-to-face connection with the optical cable and the second portion may be of a rounded cross-sectional shape that is solid. The light transfer component may also comprise a further intermediate portion that is hollow and that is arranged for connection to the optical cable. The light transfer component may be arranged for connection to a coupler. The second portion may be of a hollow ring-like shape and the coupler may be arranged to provide a connection to the optical cable. The coupler may be a round hollow-to-solid coupler.
The first portion may be arranged for direct connection to at least one light collector sheet and may be arranged for face-to-face connection with the or each light collector sheet. In this case the light collector sheet and the light transfer component may include elements that assist their assembly into an integrated optical system. For example, the light collector sheet and the light transfer component may be arranged for male-to- female connection and may comprise features that allow a tongue-and-groove-type connection. The first portion may also comprise at least one light collector sheet doped with dye molecules and arranged for absorption of sunlight and emission of fluorescent radiation. The light collector sheet or at least one of the light collector sheets and the light transfer component may be integrally formed.
The light transfer component preferably may be formed from a transparent material with a refractive index that approximates that of the or each light collector sheet. In a specific embodiment the material is a polymeric material such as poly methyl methacrylate (P MA) .
Specific embodiments will now be described, by way of example only, with reference to the accompanying drawings .
Brief Description of the Drawings
Figure 1 shows a perspective representation of a light transfer component according to an embodiment,
Figure 2 shows a perspective exploded view of a light collector component according to another embodiment and Figure 3 shows a ray-tracing diagram of the light transfer component.
Detailed Description of Specific Embodiments Referring to Figure 1, a light transfer component is now described. In this embodiment the light transfer component 10 has a rectangular portion 12 and a hollow, ring-like portion 14 between and an intermediate portion 15 is disposed between portion 12 and portion 14. The rectangular portion 12 is shaped such that it may be joined face-to-face with a light collector sheet 16. The surfaces of all components are optically smooth; that is they have a roughness smaller than the wavelength of the light guided in them.
In this embodiment the rectangular portion 12 has an end-face 17 that has the same cross-sectional shape as light collector sheet 16. In use, the end-face 17 is joined with the light collector sheet 16 using a suitable optical joint. This may be achieved by optically transmissive adhesive, optical welding, refractive index matching gel or other suitable means . In a variation of this embodiment, the light collector sheet 16 is replaced by a stack of light collector sheets which are, in use, joined with end face 17.
The hollow, ring-like portion 14 is arranged to be connected to a further light transfer component such as a hollow-to-solid coupler 18 which is connected to an optical cable (not shown) . In an alternative embodiment the rectangular portion 12 is a part of the light collector sheet 16 and may be integrally formed with the light collector sheet 16. In a variation of this embodiment the light collector sheet 16 may be replaced by a stack of light collector sheets. US Patent 6,272,265 discloses ways in which the output of a fluorescent sunlight collector and transmission system can be substantially increased provided that the system is constructed so that it is optically continuous i.e. without air gaps along the optical path.
Fluorescence light that is generated in the light collector sheet 16 is guided into the light transfer component 10. The light transfer component 10 is shaped such that light guided from the substantially rectangular portion 12 through the intermediate portion 15 to the ring-like portion 14 will experience a gradual transition and will not experience a reduction in the cross-sectional area. The transition occurs over a distance corresponding to several times the width of the sheet from which the light transfer component is formed. The light transfer component 10 is shaped such that minimal bending loses occur when light is guided through the light transfer component 10.
In this embodiment the light transfer component 10 is formed from PMMA. The light transfer component 10 may be prepared by injection moulding or by casting. All surfaces are optically smooth to reduce optical scattering losses. The edges are arranged that right angles are formed whereby loss of light transported by total internal reflection is reduced.
In a variation of this embodiment the end-face of the ring-like portion 14 is joined directly with an end-face of an optical cable without a hollow-to-solid coupler. In this case part 18 in Figure 1 represents an optical cable. In this embodiment the optical cable has a single core. However, it will be appreciated that in an alternative embodiment the optical cable may comprise a bundle of optical fibres. The ring-like portion 14 has an outer diameter that matches the outer diameter of the light guiding portion of the optical cable.
Figure 2 shows and exploded perspective view of another embodiment. In this embodiment the light transfer component 20 comprises portion 22 which has a hollow and ring-like end-face 23 and an opposing rectangular end-face 24. The ring-like end-face 23 is joined to a hollow-to- solid coupler 27 such that the light transfer component comprises a further intermediate portion that is hollow. It will be appreciated that in a variation of this embodiment the portion 22 and the hollow-to-solid coupler 27 may also be formed as one integral part. The hollow-to- solid coupler has a round end-face 26 that is solid and is arranged for coupling to a polymeric optical cable 28. The rectangular end-face of portion 24 of the portion 22 is arranged to be joined to a light collector sheet 29 (again, the light collector sheet 29 may be a stack of light collector sheets) .
For example, the light transfer component 20 may be fabricated from a flexible sheet that has two opposing end edge portions and two opposing side edge portions that connect the end edge portion. In this embodiment, the opposing end edge portions have the same cross-sectional area. The flexible sheet may be folded so that the two side edge portions meet at a region near one of the end edge portion and are joined together at that region so that a substantially round portion is formed and the opposing end edge portion remains substantially flat.
Figure 3 shows a ray-tracing diagram for the light transfer component 10 shown in Figure 1. The light transfer component 30 comprises dye molecules 32 that may emit fluorescence radiation in a variety of directions and the radiation is guided by total internal reflection towards the ring-like portion 34. The Figure shows an arbitrary selection of possible ray traces.
Even though this invention has been described in the context of a light collection and transfer system that absorbs sunlight and generates fluorescence radiation, it will be appreciated that the invention has broader applications. The light transfer component may be used for transfer of light originating from any source. Further, it will be appreciated that the light transfer component may be arranged for transfer of light to any type of light guiding or light converting device either directly or via a coupler. It is to be understood that the references that are made to US Patents 6059438 and 6272265 do not constitute admissions that these documents form part of the common general knowledge in the art, in Australia or any other country.

Claims

The Claims :
1. A light transfer component formed from a material that is transparent for light of a predetermined range of wavelengths, the light transfer component comprising: a first substantially flat portion, a second rounded portion, and an intermediate portion disposed between the first and the second portion, the light transfer component being arranged for guiding light from the first portion through the intermediate portion to the second portion in a manner such that the light will not experience a reduction in cross-sectional area of more than 20% of the material through which the light is guided.
2. The light transfer component as claimed in claim 1 being arranged so that light guided from the first portion to the second portion will not experience a reduction in cross-sectional area of more than 10% of the material through which the light is guided.
3. A light transfer component formed from a material that is transparent for light of a predetermined range of wavelengths, the light transfer component comprising: a first substantially flat portion, a second rounded portion, and an intermediate portion disposed between the first and the second portion, the light transfer component being arranged for guiding light from the first portion through the intermediate portion to the second portion in a manner such that the light will not experience a reduction in cross-sectional area of the material through which the light is guided.
4. The light transfer component as claimed in any one of the preceding claims wherein the cross-sectional area is substantially constant throughout the light transfer component .
5. The light transfer component as claimed in any one of the preceding claims wherein the solid angle of the propagating light is substantially constant throughout the light transfer component.
6. The light transfer component as claimed in any one of the preceding claims being arranged so light guided from the first portion to the second portion will experience light guiding condition in which the product of cross- sectional area and solid angle is substantially constant.
7. The light transfer component as claimed in any one of the preceding claims wherein refractive index is constant throughout the light transfer component.
8. The light transfer component as claimed in any one of the preceding claims having two substantially parallel surfaces .
9. The light transfer component wherein the first portion comprises a rectangular sheet.
10. The light transfer component as claimed in any one of claims 1 to 3 being arranged such that light directed from the first portion to the second portion will experience an increase in cross-sectional area of the material through which the light is guided.
11. The light transfer component as claimed in any one of the preceding claims being arranged so light guided from the first portion to the second portion will experience light guiding condition in which the product of cross- sectional area and solid angle will not change by more than 20%.
12. The light transfer component as claimed in any one of the preceding claims being arranged such that, in use, light guided from the first portion to the second portion will experience a gradual transition in the cross- sectional and longitudinal profiles of the light transfer component .
13. The light transfer component as claimed in claim 12 wherein the changes in profile are sufficiently gradual such that there are negligible bending losses of the light when the light is guided through the transfer component.
14. The light transfer component as claimed in any one of the preceding claims wherein the second portion is of a hollow ring-like cross-sectional shape.
15. The light transfer component as claimed in any one of claims 1 to 13 wherein the second portion is solid.
16. The light transfer component as claimed in any one of the preceding claims being arranged for connection to an optical cable.
17. The light transfer component as claimed in claim 16 being arranged for face-to-face connection to the optical cable.
18. The light transfer component as claimed in any one of the preceding claims wherein the second portion is of a rounded cross-sectional shape and the light transfer component comprises a further intermediate portion that is hollow and that is arranged for connection to an optical cable.
19. The light transfer component as claimed in any one of claims 1 to 16 being arranged for face-to-face connection to a light converting device.
20. The light transfer component as claimed in claim 16 wherein the second portion is of a rounded cross-sectional shape and the light transfer component comprises a further intermediate portion that is hollow and that is arranged for connection to the light converting device.
21. The light transfer component as claimed in any one of claims 1 to 15 being arranged for connection to a coupler.
22. The light transfer component as claimed in claim 21 wherein the coupler is arranged to provide a connection to the optical cable.
23. The light transfer component as claimed in claim 22 wherein the coupler is a round hollow-to-solid coupler.
24. The light transfer component as claimed in any one of the preceding claims being arranged for direct connection to at least one light collector sheet.
25. The light transfer component as claimed in claim 24 wherein the first portion is arranged for face-to-face connection with the or each light collector sheet .
26. The light transfer component as claimed in ant one of claims 1 to 23 wherein the first portion comprises at least one light collector sheet doped with dye molecules and arranged for absorption of sunlight and emission of fluorescent radiation.
27. The light transfer component as claimed in claim 24 wherein the light collector sheet or at least one of the light collector sheets and the light transfer component are integrally formed.
28. The light transfer component as claimed in any one of claims 22 to 25 being formed from a transparent material with a refractive index that approximates that of the or each collector sheet.
29. The light transfer component as claimed in claim 26 wherein the material is poly methyl methacrylate (PMMA) .
30. The light transfer component as claimed in claims 16 or 17 wherein the optical cable has a single core.
31. The light transfer component as claimed in claims 16 or 17 wherein the optical cable comprises a bundle of optical fibres.
32. The light transfer component as claimed in any one of the preceding claims wherein the second rounded portion of the light transfer component is cladded with a material of low refractive index.
33. The light transfer component as claimed in any one of the preceding claims wherein the intermediate portion of the light transfer component is cladded with the material of low refractive index.
PCT/AU2003/001415 2002-10-24 2003-10-24 A light transfer component WO2004038465A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP03757542A EP1565770A4 (en) 2002-10-24 2003-10-24 A light transfer component
US10/531,759 US20060127002A1 (en) 2002-10-24 2003-10-24 Light transfer component
NZ539717A NZ539717A (en) 2002-10-24 2003-10-24 A light transfer component
JP2004545613A JP4351164B2 (en) 2002-10-24 2003-10-24 Optical transmission parts
AU2003273627A AU2003273627B2 (en) 2002-10-24 2003-10-24 A light transfer component
CA002502500A CA2502500A1 (en) 2002-10-24 2003-10-24 A light transfer component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2002952276A AU2002952276A0 (en) 2002-10-24 2002-10-24 A light transfer component
AU2002952276 2002-10-24

Publications (1)

Publication Number Publication Date
WO2004038465A1 true WO2004038465A1 (en) 2004-05-06

Family

ID=28795670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU2003/001415 WO2004038465A1 (en) 2002-10-24 2003-10-24 A light transfer component

Country Status (10)

Country Link
US (1) US20060127002A1 (en)
EP (1) EP1565770A4 (en)
JP (1) JP4351164B2 (en)
KR (1) KR20050043995A (en)
CN (1) CN1934472A (en)
AU (1) AU2002952276A0 (en)
CA (1) CA2502500A1 (en)
NZ (1) NZ539717A (en)
WO (1) WO2004038465A1 (en)
ZA (1) ZA200502965B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063047A1 (en) * 2014-10-21 2016-04-28 Imperial Innovations Limited A light source

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1870744A1 (en) * 2006-06-19 2007-12-26 Barco N.V. Light integrating system
WO2010140103A1 (en) * 2009-06-02 2010-12-09 Koninklijke Philips Electronics N.V. Apparatus and system for separating space
CN102519007B (en) * 2012-01-12 2013-12-25 孟忠阳 Trackless solar energy condensation system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4612144A (en) * 1983-04-18 1986-09-16 Fuji Photo Film Co., Ltd. Method of making light guide member
US4650279A (en) * 1984-08-15 1987-03-17 The Charles Stark Draper Laboratory, Inc. Fiber optic lens
US4688884A (en) * 1985-11-12 1987-08-25 Spectra Diode Laboratories, Inc. Fiberoptic coupling system for phased-array semiconductor lasers
US4991918A (en) * 1988-03-03 1991-02-12 Eastman Kodak Company Light collector for stimulable phosphor imaging apparatus
US5832150A (en) * 1996-07-08 1998-11-03 Laser Power Corporation Side injection fiber optic coupler
US6272265B1 (en) * 1996-06-17 2001-08-07 Sky Solutions Limited Lighting system for transmitting and releasing luminescent radiation
US20020031300A1 (en) * 1999-12-17 2002-03-14 Xu Jie Lensed optical fiber, process of production and apparatus for production of same, and laser diode module

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4143941A (en) * 1977-12-01 1979-03-13 Sperry Rand Corporation Low loss optical data terminal device for multimode fiber guide optical communication systems
EP0032521B1 (en) * 1979-07-11 1984-05-30 Fuji Photo Film Co., Ltd. Gain setting device for radiation image read out system
JPH0679094B2 (en) * 1984-10-29 1994-10-05 株式会社日立製作所 Light collector
JPS63318503A (en) * 1987-06-22 1988-12-27 Sharp Corp Light converging device
US5195162A (en) * 1987-12-16 1993-03-16 General Motors Corporation Planar polymer light guide methods and apparatus
US6031892A (en) * 1989-12-05 2000-02-29 University Of Massachusetts Medical Center System for quantitative radiographic imaging
WO1993006413A1 (en) * 1991-09-19 1993-04-01 Skydome Industries Limited Sunlight collecting and transmitting system
US6059438A (en) * 1991-09-19 2000-05-09 Geoffrey Burton Smith Sunlight collecting and transmitting system
US5483081A (en) * 1992-10-19 1996-01-09 Fuji Photo Film Co., Ltd. Method for detecting light emitted by two surfaces of a stimulable phosphor sheet
JP3313237B2 (en) * 1994-04-19 2002-08-12 富士写真フイルム株式会社 Image reading device and image recording device
US5709453A (en) * 1994-08-16 1998-01-20 Krent; Edward D. Vehicle lighting having remote light source
US6945710B2 (en) * 2003-01-10 2005-09-20 Wen-Tzung Chen Optical sub-assembly module for suppressing optical back-reflection and effectively guiding light from light source to optical waveguide

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4612144A (en) * 1983-04-18 1986-09-16 Fuji Photo Film Co., Ltd. Method of making light guide member
US4650279A (en) * 1984-08-15 1987-03-17 The Charles Stark Draper Laboratory, Inc. Fiber optic lens
US4688884A (en) * 1985-11-12 1987-08-25 Spectra Diode Laboratories, Inc. Fiberoptic coupling system for phased-array semiconductor lasers
US4991918A (en) * 1988-03-03 1991-02-12 Eastman Kodak Company Light collector for stimulable phosphor imaging apparatus
US6272265B1 (en) * 1996-06-17 2001-08-07 Sky Solutions Limited Lighting system for transmitting and releasing luminescent radiation
US5832150A (en) * 1996-07-08 1998-11-03 Laser Power Corporation Side injection fiber optic coupler
US20020031300A1 (en) * 1999-12-17 2002-03-14 Xu Jie Lensed optical fiber, process of production and apparatus for production of same, and laser diode module

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1565770A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063047A1 (en) * 2014-10-21 2016-04-28 Imperial Innovations Limited A light source
US10502882B2 (en) 2014-10-21 2019-12-10 Imperial Innovations Limited Light source

Also Published As

Publication number Publication date
JP2006504124A (en) 2006-02-02
US20060127002A1 (en) 2006-06-15
EP1565770A1 (en) 2005-08-24
NZ539717A (en) 2006-11-30
ZA200502965B (en) 2006-02-22
KR20050043995A (en) 2005-05-11
CA2502500A1 (en) 2004-05-06
EP1565770A4 (en) 2005-12-28
AU2002952276A0 (en) 2002-11-07
CN1934472A (en) 2007-03-21
JP4351164B2 (en) 2009-10-28

Similar Documents

Publication Publication Date Title
CA2405110A1 (en) Optical system including coupler for transmitting light between a single fiber light guide and multiple single fiber light guides
US6059438A (en) Sunlight collecting and transmitting system
US20030156327A1 (en) Optical element and optical device using the same
WO1993006413A1 (en) Sunlight collecting and transmitting system
US6467969B1 (en) Article comprising a multimode optical fiber coupler
WO2004044481A1 (en) A hybrid lighting system
US20060127002A1 (en) Light transfer component
US6912345B2 (en) Tapered optical fiber for coupling to diffused optical waveguides
AU4701097A (en) Light-transmitting device
AU2003273627B2 (en) A light transfer component
EP1227611A3 (en) Wavelength multiplex optical communication module
WO2005031392A3 (en) Integrated microlens reflector and light coupler
US20020154864A1 (en) Optical element, and optical transceiver and other optical device using the same
CA2309029A1 (en) Optical fiber
EP1544648A3 (en) Mode converter using omnidirectional reflectors
EP0154332A2 (en) A connecting structure for connecting optical conductor
EP1336883B1 (en) Optical Coupling Element and Transceiver Using The Same
CN2462408Y (en) Micro loss photo-coupler
JPS62266502A (en) Light converging and transmitting equipment
JP3131044B2 (en) Optical waveguide device
AU661716B2 (en) Sunlight collecting and transmitting system
AU2003275796B2 (en) A hybrid lighting system
SU1091731A1 (en) Fibre-optic coupler
CA2594852A1 (en) Optical waveguide modulator with output light monitor
JPS5856845B2 (en) Optical conductor cable for optical energy transmission

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005/02965

Country of ref document: ZA

Ref document number: 200502965

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 2502500

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2003757542

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004545613

Country of ref document: JP

Ref document number: 1020057007137

Country of ref document: KR

Ref document number: 20038A19895

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003273627

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 539717

Country of ref document: NZ

WWP Wipo information: published in national office

Ref document number: 1020057007137

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003757542

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006127002

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10531759

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10531759

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2003273627

Country of ref document: AU