WO2004033528A1 - 高分子量脂肪族ポリエステル及びその製造方法 - Google Patents

高分子量脂肪族ポリエステル及びその製造方法 Download PDF

Info

Publication number
WO2004033528A1
WO2004033528A1 PCT/JP2003/012882 JP0312882W WO2004033528A1 WO 2004033528 A1 WO2004033528 A1 WO 2004033528A1 JP 0312882 W JP0312882 W JP 0312882W WO 2004033528 A1 WO2004033528 A1 WO 2004033528A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular weight
ring
polymer
weight
chain extension
Prior art date
Application number
PCT/JP2003/012882
Other languages
English (en)
French (fr)
Inventor
Kazuyuki Yamane
Ryo Kato
Toshihiko Ono
Original Assignee
Kureha Chemical Industry Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Chemical Industry Company, Limited filed Critical Kureha Chemical Industry Company, Limited
Priority to US10/529,449 priority Critical patent/US20060047088A1/en
Priority to AU2003271127A priority patent/AU2003271127A1/en
Priority to JP2004542843A priority patent/JP4476808B2/ja
Publication of WO2004033528A1 publication Critical patent/WO2004033528A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/912Polymers modified by chemical after-treatment derived from hydroxycarboxylic acids

Definitions

  • the present invention relates to a high molecular weight aliphatic polyester obtained by converting a ring-opening (co) polymer of at least one cyclic ester selected from the group consisting of glycolide and lactide into a high molecular weight by reaction with a chain extender, and a method for producing the same.
  • the high molecular weight aliphatic polyester of the present invention has a high molecular weight and excellent heat resistance, and can be used for extruded products such as sheets, films and fibers, compression molded products, injection molded products, blow molded products, composite materials (multilayer films, It can be used in a wide range of fields as multi-layer containers and other molded articles.
  • Aliphatic polyesters such as polyglycolic acid and polylactic acid
  • these aliphatic polyesters have biodegradability and absorbability and biocompatibility, they are useful as medical polymer materials such as surgical sutures and artificial skin (for example, U.S. Pat. No. 3,297,033).
  • polydalicholic acid has remarkably excellent gas barrier properties, and is being developed for new uses as sheets, films, containers and the like (see, for example, Japanese Patent Application Laid-Open No. H10-016136).
  • Publication Japanese Patent Application Laid-Open No. 10-89090, Japanese Patent Application Laid-Open No. 10-37837, Japanese Patent Application Publication No. 10-337772).
  • Polyglycolic acid can be produced by dehydration polycondensation of glycolic acid, dealcoholization polycondensation of alkyl glycolate, desalting polycondensation of glycolate, and the like. It is difficult to obtain polyglycolic acid.
  • bimolecular cyclic esters of glycolic acid (“Ring )
  • Ring-opened polymers of glycolide are sometimes referred to as polyglycolides.
  • polylactic acid is usually synthesized by ring-opening polymerization of lactide (L-lactide and Z or D-lactide), which is a bimolecular cyclic ester of lactic acid.
  • lactide L-lactide and Z or D-lactide
  • the ring-opened polymer of lactide is sometimes called polylactide. Ring-opening copolymerization of glycolide and lactide can also be carried out.
  • Ring-opening (co) polymerization of cyclic ester of glycolide-lactide can produce relatively high-molecular-weight aliphatic polyesters compared to polycondensation of glycolic acid and lactic acid. At first glance, it is not enough, and there are still issues to be solved in increasing the molecular weight.
  • high-purity monomers must be used to synthesize high-molecular-weight aliphatic polyesters by ring-opening (co) polymerization of cyclic esters.
  • glycolide perlactide in addition to its high production cost, is difficult to purify to a high degree, and the purification process requires additional costs. Therefore, it has been extremely difficult to industrially supply high-molecular-weight aliphatic polyesters in large quantities at low cost in a production method that requires the use of high-purity monomers.
  • the molecular weight of aliphatic polyesters tends to fluctuate greatly due to slight changes in polymerization conditions such as polymerization temperature, polymerization time, polymerization pressure, and types and amounts of catalysts and additives, in addition to monomer purity. . Therefore, it has been difficult to stably produce a high molecular weight aliphatic polyester.
  • the level of the molecular weight is not necessarily sufficient.
  • the weight average molecular weight (Mw) of polydalicholic acid obtained by ring-opening polymerization of glycolide is about 100,000. In order to produce molded articles having high physical properties, it is necessary to further increase the molecular weight of the aliphatic polyester.
  • Another object of the present invention is to improve the heat resistance and moldability by easily increasing the molecular weight to a desired molecular weight without necessarily using high-purity glycolide lactide as a starting material. It is another object of the present invention to provide a method for producing a high molecular weight aliphatic polyester.
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, have conducted a chain extension reaction of a ring-opening (co) polymer of at least one cyclic ester selected from the group consisting of glycolide and lactide with an oxazoline compound.
  • a chain extension reaction of a ring-opening (co) polymer of at least one cyclic ester selected from the group consisting of glycolide and lactide with an oxazoline compound.
  • a high-molecular-weight aliphatic polyester can be produced even when an oxazoline compound is used alone as a chain extender.
  • the high molecular weight aliphatic polyester obtained by the production method of the present invention has a high thermogravimetric reduction start temperature, and has remarkably improved heat resistance. Since the high molecular weight aliphatic polyester of the present invention has a moderately broad molecular weight distribution, the moldability is improved.
  • the oxazoline compound functions as a chain extender, and does not serve merely as a terminal blocking agent. The present invention has been completed based on these findings.
  • the ring opening (co) of at least one kind of cyclic ester selected from the group consisting of glycolide and lactide is carried out by a chain extension reaction with an oxazoline compound, whereby the ring opening (co) )
  • the weight-average molecular weight of the polymer (the ratio of the weight-average molecular weight (Mw 2 ) of the ring-opened (co) polymer after chain extension to Mw J (the molecular weight increase represented by A high molecular weight aliphatic polyester having a high molecular weight is provided.
  • a ring-opening (co) polymer of at least one cyclic ester selected from the group consisting of glycolide and lactide is subjected to a chain extension reaction with an oxazoline compound, and the ring opening before the chain extension ( co) the weight average molecular weight of the polymer (M W l) for Kusarinobe Chogo ring-opening (co) weight average molecular weight of the polymer (Mw 2) a ratio (Mw 2 ZM W l) a molecular weight increasing rate being the table
  • a method for producing a high-molecular-weight aliphatic polyester which has a high-molecular weight until it reaches 1.1 or more.
  • Ring-opening (co) polymer of cyclic ester is glycolide, lactide, or Dalicoll Can be obtained by ring-opening (co) polymerizing a mixture of lactide and lactide.
  • Dalicollide is a bimolecular cyclic ester of glycolic acid, and can be preferably produced by, for example, depolymerization of glycolic acid oligomer.
  • Lactide is a bimolecular cyclic ester of lactic acid, and may be any of L-form, D-form, racemate, and a mixture thereof.
  • glycolide is suitable as a starting material because it is difficult to obtain high-purity glycolide in large quantities at low cost.
  • high-molecular-weight polydalicholate polyglycolide
  • glycolide is used when high molecular weight aliphatic polyesters are used in applications such as sheets, films, containers, and composite materials that require high gas barrier properties. It is desirable to use a monomer as a main component.
  • the proportion of glycolide is preferably 55% by weight or more, more preferably 70% by weight or more, and particularly preferably 90% by weight or more.
  • glycolide can be used alone.
  • glycolide, lactide, or a mixture thereof is used as a monomer, and as other comonomers, ratatatones (for example,) 3-proviolatatone, J3-butyrolactone, pivalolactone, / _butyrolataton, ⁇ -valetone Cyclic monomers such as ratatone, ⁇ -methyi / ray ⁇ -valerolatatatone, ⁇ -force prolactone, etc.), trimethylene carbonate, and 1,3-dioxane can be used in combination.
  • comonomers are usually used in a proportion of 45% by weight or less, preferably 30% by weight or less, more preferably 10% by weight or less.
  • the ring-opening (co) polymerization of the cyclic ester is preferably carried out in the presence of a small amount of a catalyst.
  • a catalyst include, but are not limited to, tin halides (eg, tin dichloride, tin tetrachloride, etc.), and organic tin carboxylate (eg, tin octanoate such as tin 2-ethylhexanoate).
  • the amount of the catalyst to be used is preferably about 1 to 100 ppm, more preferably about 3 to 300 ppm, by weight, relative to the cyclic ester.
  • the ring-opening (co) polymerization of the cyclic ester may be a bulk polymerization or a solution polymerization, which is optional. In many cases, the bulk polymerization is employed. For controlling the molecular weight, higher alcohols such as lauryl alcohol and water can be used as molecular weight regulators. Further, a polyhydric alcohol such as glycerin may be added for improving the physical properties.
  • polymerization equipment for bulk polymerization, such as an extruder type, a vertical type with paddle blades, a vertical type with helical ribbon blades, an extruder type or kneader horizontal type, ampule type, plate type, and tubular type. It can be appropriately selected from the devices.
  • Various reaction vessels can be used for solution polymerization.
  • the polymerization temperature can be appropriately set according to the purpose within a range from 120 ° C. to 300 ° C. which is a substantial polymerization initiation temperature.
  • the polymerization temperature is preferably from 130 to 250 ° C (:, more preferably from 140 to 230 ° C, and particularly preferably from 150 to 225 ° C. If the polymerization time is too long, the formed polymer is susceptible to thermal decomposition, and the polymerization time is in the range of 3 minutes to 20 hours, preferably 5 minutes to 18 hours. If it does not proceed sufficiently, and if it is too long, the produced polymer tends to be colored.
  • the molecular weight of the ring-opening (co) polymer of the cyclic ester is not particularly limited. Even a relatively low molecular weight ring-opening (co) polymer can be made high molecular weight by a chain extension reaction with an oxazoline compound. By reaction with oxazoline compounds, In order to efficiently obtain a high-molecular-weight aliphatic polyester by high-molecular-weight polymerization, the weight-average molecular weight (Mw) of the ring-opened (co) polymer should be 30,000 or more, preferably 30,000 to It is about 500,000, more preferably about 30,000 to 110,000.
  • the oxazoline compound used in the present invention includes, for example, 2-oxazoline, 2-methynole-12-oxazoline, 2-isopropyl-12-oxazoline, 2-butynole 2-oxazoline, 2-phenyl-2-oxazoline and the like.
  • 2,2-oxazoline compounds 2,2'-bis- (2-oxazoline), 2,2'-methylene-bis- (2-oxazoline), 2,2'-ethylene-bis- (2-oxazoline), 2, 2'-trimethylene-bis- (2-oxazoline), 2,2'-tetramethylene-bis- (2-oxazoline), 2,2'-1- ⁇ -xamethylene-bis- (2-oxazoline), 2,2'-otatamethylene 1,1-bis (2-oxazoline), 2,2'-ethylene-bis- (4, A'-dimethyl-2-oxazoline), 2,2'_p-phenylene-bis- (2-oxazoline), 2, 2 '—m— Conversion of 2,2'-bis- (2-oxazoline) such as phenylene-bis- (2-oxazoline) and 2,2'-m-phenylene-bis-bis (4,4'-dimethyl-2-oxazoline) Compound: bis- (2-oxazolinylcyclohex
  • oxazoline compound a compound having at least two oxazoline ring structures in the molecule is preferable for efficient chain extension reaction.
  • oxazoline compounds the following formula (1) Compounds having two oxazoline ring structures in the molecule represented by are more preferred.
  • A is a single bond or a divalent organic group.
  • divalent organic group As a divalent organic group,
  • n is an integer of 1 or more, preferably 1 to 20
  • a phenylene group are preferred.
  • ! ⁇ ! ⁇ Is independently an alkyl group (1 to 10 carbon atoms), a cycloalkyl group, a phenyl group, or the like, and is preferably an alkyl group having 1 to 5 carbon atoms.
  • 2,2'-m-phenylene-bis- (2-oxazoline) represented by is particularly preferred because it is easily available and has excellent reactivity.
  • the amount of the oxazoline compound used is preferably 0.001 to 10 parts by weight, more preferably 0.05 to 7 parts by weight, and particularly preferably 100 to 100 parts by weight of the ring-opening (co) polymer of the cyclic ester. Is 0.1 to 5 parts by weight. If the amount of the oxazoline compound is too small, it becomes difficult to sufficiently reduce the molecular weight of the ring-opened (co) polymer, and if it is too large, the chain elongation effect tends to be saturated and is not economical. By adjusting the amount of the oxazoline compound used, a high molecular weight aliphatic polyester having a desired molecular weight can be obtained.
  • the oxazoline compound can be added to the reaction system during or after the ring-opening (co) polymerization of the cyclic ester.
  • the oxazoline compound may be added all at once, or may be added in two or more portions.
  • the reaction temperature between the ring-opening (co) polymer and the oxazoline compound is preferably in the range of 100 to 300 ° C, more preferably in the range of 150 to 280 ° C.
  • the reaction temperature is It is particularly preferable that the temperature is not less than the melting temperature of the ring-opening (co) polymer and not more than 300 ° C, more preferably not less than the melting temperature and not more than 280 ° C.
  • the reaction time depends on the reaction temperature, but is preferably
  • the present inventors think as follows. It is known that oxazoline compounds such as 2-oxazoline exhibit living polymerization behavior by opening the ring if conditions are selected.
  • the ring-opening (co) polymer of glycolide-lactide has a carboxyl group at least at one end. Due to the interaction between the carboxyl group and the oxazoline ring, the bond between the carbon atom at the 5-position of the oxazoline ring and the oxygen atom (0-C) is broken, the oxazoline ring is opened, and the oxygen atom of the carboxyl group is opened.
  • One COO is attached to the 5-position carbon atom of the oxazoline ring. It can be considered that the oxazoline compound acts as a chain extender by a reaction mechanism including such a reaction.
  • the chain extension reaction using the oxazoline conjugate is more efficiently performed by using a compound having two or more oxazoline rings in the molecule.
  • the reaction with such an oxazoline compound is a chain extension reaction in which a significant increase in the molecular weight of the ring-opened (co) polymer is observed, unlike the simple end blocking reaction with an oxazoline compound. 4. High molecular weight aliphatic polyester
  • the molecular weight of the high molecular weight aliphatic polyester varies depending on the molecular weight of the ring-opening (co) polymer used, the amount of the oxazoline compound added, the reaction conditions, and the like, and is not particularly limited.
  • the weight average molecular weight (Mw) is preferably not less than 120,000, more preferably not less than 130,000, particularly preferably not less than 150,000.
  • a high molecular weight aliphatic polyester can be obtained.
  • weight average molecular weight (Mw) There is no upper limit, but it is usually 1,000,000, and in many cases about 500,000.
  • Ring-opening polymerization of glycolide often results in ring-opened polymers having a weight average molecular weight (Mw) of up to about 100,000 or about 110,000.
  • Mw weight average molecular weight
  • an oxazoline-conjugated product for example, a high-molecular-weight aliphatic polyester having a high molecular weight of about 150,000 to 250,000 in a weight average molecular weight (Mw) is obtained.
  • Mw weight average molecular weight
  • the molecular weight can be further increased by adjusting the reaction conditions of the chain extension reaction such as the amount of the oxazoline compound used.
  • the rate of increase in molecular weight due to the chain extension reaction between the ring-opening (co) polymer and the oxazoline compound is determined by the weight-average molecular weight of the ring-opening (co) polymer before chain extension (the ring-opening (co) polymer after chain extension relative to MwJ) (Ie, high molecular weight aliphatic polyester) weight average molecular weight
  • the molecular weight increase rate can be represented by the ratio (Mws / MWJ of (Mw 2), the molecular weight increase rate of preferably 1.10 or more, more preferably 1.20 or more, particularly good Mashiku 1.
  • the molecular weight of the ring-opened (co) polymer can be increased up to 35 or more.
  • the molecular weight increase rate (MwsZMwJ has no particular upper limit, but is usually 10.00, preferably 5.00, more preferably 3 50.
  • a high molecular weight aliphatic polyester having a relatively broad molecular weight distribution as compared with the ring-opened (co) polymer before chain extension can be obtained.
  • Molecular weight expressed by the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of a ring-opened (co) polymer (ie, high molecular weight aliphatic polyester) that has been made high molecular weight by a chain extension reaction.
  • the distribution (Mw / Mn) is preferably 1.90 or more, more preferably 2.00 or more, and particularly preferably 2.10 or more. There is no upper limit for this molecular weight distribution (Mw / Mn), but it is usually 5.50, and in many cases about 4.50. If the molecular weight distribution is too large, the integral properties of the polymer may be impaired.
  • the high molecular weight aliphatic polyester obtained by the method of the present invention is The heat resistance is remarkably improved compared to the ring-opened (co) polymer before reacting with the compound.
  • the onset temperature of 1% thermogravimetric loss of the polymer can be used.
  • the 1% thermal weight loss onset temperature of the ring-opening (co) polymer before chain extension is 1 ⁇
  • the high molecular weight aliphatic polyester obtained by the chain extension reaction of the ring-opening (co) polymer and the oxazoline compound is when 1% -weight loss starting temperature was T 2, ⁇ 2 - 1 properly like the ⁇ is 3 ° C or more, and more preferably be at least 5 ° C.
  • the T 2 — 1 ⁇ is more than 15 ° C, It can be up to 0 ° C or more.
  • the effect of improving heat resistance showed some saturation tendency with increasing weight average molecular weight that by the chain extension reaction (Mw), Ding 2 - 1 upper limit of ⁇ usually 3 0 ° C, in many cases 2 About 5 ° C.
  • the high molecular weight aliphatic polyester of the present invention may contain, if desired, additives such as inorganic fillers, lubricants, plasticizers, coloring agents (dyes and pigments), heat stabilizers, and conductive fillers; and other thermoplastic resins. Can be contained. These additive components can be added before, during, or after the addition of the oxazoline compound as long as they do not inhibit the chain extension reaction between the ring-opening (co) polymer and the oxazoline compound. Further, these additive components can be added to the resulting high molecular weight aliphatic polyester after the chain extension reaction between the ring-opening (co) polymer and the oxazoline compound.
  • additives such as inorganic fillers, lubricants, plasticizers, coloring agents (dyes and pigments), heat stabilizers, and conductive fillers; and other thermoplastic resins. Can be contained. These additive components can be added before, during, or after the addition of the oxazoline compound as long as they do not
  • the weight average molecular weight (Mw) and the molecular weight distribution (Mw / Mn) were measured using a gel permeation chromatography (GPC) analyzer under the following conditions. Hexafluoroisopropanol (used after distilling the product of Central Glass Co., Ltd.) is added with sodium trifluoroacetate (Kanto Chemical) and dissolved. Make 5 mM trifluoroacetic acid sodium salt solvent (A).
  • the solvent (A) is passed through a column (HF IP—LG + HF IP — 806MX2: SHODEX) at a flow rate of 40 ° (lm 1 min.), And the molecular weight is 82.7,000, 101,000, and 34,000. , 100,000 and 0.20, 5 mg of each of polymethyl methacrylate (POLYMER LABORATOR IES Ltd.) of known molecular weight (10 mg) and the solvent (A) as a 10 ml solution. Pass 100 ⁇ l of the solution through the column to determine the peak time of detection by refraction index (RI) detection. Next, 10 mg of the sample was added with the solvent (A), and the mixture was made into a 10-ml vigorous night. 100 ⁇ l of the mixture was passed through the column.
  • the molecular weight distribution (Mw / Mn) was calculated using the C-R4 AGPC program Ver1.2 manufactured by Shimadzu Corporation.
  • Nitrogen is flowed at a flow rate of 1 Oml / min using a TG 50 made of a melane earth thermogravimetric analyzer, and the aliphatic polyester is heated under a nitrogen atmosphere at a heating rate of 50 ° C to 2 ° C / min to reduce the weight. The rate was measured. Weight of the aliphatic polyester at 50 ° C (W 5.) In hand, read accurately the temperature at which the weight has decreased 1%, the temperature of 1% 'Netsukasane loss initiation temperature.
  • the ring-opened (co) polymer and the oxazoline compound were melt-kneaded using Labo Plastmill manufactured by Toyo Seiki Seisaku-sho, and the maximum torque at that time was measured.
  • Glycolic acid oligomer 1.2 kg is charged into a 10-liter flask, and benzyl butyl phthalate (5 kg, manufactured by Junsei Chemical Co., Ltd.) as a solvent and polypropylene glycol (Junsei Chemical Co., Ltd., # 400) as a solubilizing agent.
  • Co-distilled with zirbutyl phthalate Co-distilled with zirbutyl phthalate.
  • the glycolide lOOg obtained in Synthesis Example 1 and 5 mg of tin tetrachloride were charged into a glass test tube, and polymerized at 200 ° C for 3 hours. After polymerization, extension polymerization was performed at 160 ° C for 12 hours. After the polymerization, the polymer was taken out after cooling, pulverized, and washed with acetone. Thereafter, vacuum drying was performed at 30 ° C. to obtain a polymer. By repeating the above operation, the required amount of polyglycolic acid (polyglycolide) was produced.
  • Example 1 The same operation as in Example 1 was carried out except that the amount of added 0.28 g of 2,2′-1 m-phenylene-bis-bis (2-oxazoline) was changed to 0.20 g. Table 1 shows the results. Shown in
  • Example 1 The same operation as in Example 1 was carried out, except that the addition amount of 2,2'-1 m-phenylene-bis- (2-oxazoline) was changed from 0.28 g to 1.20 g. The results are shown in Table 1.
  • a ring-opening (co) polymer of a cyclic ester such as glycolide lactide which has a high molecular weight by a chain extension reaction and has improved heat resistance and moldability.
  • a polyester is provided.
  • a method for producing a high-molecular-weight aliphatic polyester that can be easily converted to a desired molecular weight and has improved heat resistance and moldability has been developed. Provided.
  • the high molecular weight aliphatic polyester of the present invention has a high molecular weight and excellent heat resistance, and has a moderately broad molecular weight distribution, so that extruded products such as sheets, films and fibers, and compression molded products It can be used in a wide range of fields such as injection molding, blow molding, composite material (multi-layer film, multi-layer container) and other moldings.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

グリコリド及びラクチドからなる群より選ばれる少なくとも一種の環状エステルの開環(共)重合体がオキサゾリン化合物との鎖延長反応により高分子量化された高分子量脂肪族ポリエステルとその製造方法である。高分子量脂肪族ポリエステルは、鎖延長前の開環(共)重合体の重量平均分子量(Mw1)に対する鎖延長後の開環(共)重合体の重量平均分子量(Mw2)の比(Mw2/Mw1)で表される分子量増大率が1.10以上になるまで高分子量化されている。

Description

高分子量脂肪族ポリエステル及ぴその製造方法
技術分野
本発明は、 グリコリド及ぴラクチドからなる群より選ばれる少なくとも一種の 環状エステルの開環 (共) 重合体を鎖延長剤との反応により高分子量化してなる 高分子量脂肪族ポリエステルとその製造方法に関する。 本発明の高分子量脂肪族 ポリエステルは、 高分子量で耐熱性に優れており、 シート、 フィルム、 繊維など の押出成形品、 圧縮成形品、 射出成形品、 ブロー成形品、 複合材料 (多層フィル ム、 多層容器)、 その他の成形品として広範な分野で使用することができる。
背景技術
ポリグリコール酸ゃポリ乳酸などの脂肪族ポリエステルは、 分子鎖中に脂肪族 エステル結合を含んでいるため、 土壌や海中などの自然界に存在する微生物また は酵素によって分解される生分解性樹脂である。 また、 これらの脂肪族ポリエス テルは、 生体内分解吸収性と生体適合性とを有しているため、 例えば、 手術用縫 合糸、 人工皮膚などの医療用高分子材料として有用である (例えば、 米国特許第 3 , 2 9 7 , 0 3 3号明細書)。
脂肪族ポリエステルの中でも、 ポリダリコール酸は、 ガスバリヤ一性が著しく 優れているため、 シート、 フィルム、 容器などとして、 新たな用途展開が図られ ている (例えば、 特開平 1 0— 6 0 1 3 6号公報、 特開平 1 0— 8 0 9 9 0号公 報、 特開平 1 0— 1 3 8 3 7 1号公報、 特開平 1 0— 3 3 7 7 7 2号公報)。 ポリグリコール酸は、 グリコール酸の脱水重縮合、 グリコール酸アルキルエス テルの脱アルコール重縮合、 グリコール酸塩の脱塩重縮合などによって製造する ことができるが、 これらの重縮合反応では、 高分子量のポリグリコール酸を得る ことが困難である。 これに対して、 グリコール酸の二分子間環状エステル (「環 状二量体」 ともいう) であるグリコリ ドを開環重合させると、 比較的高分子量の ポリグリコール酸を得ることができる。 グリコリ ドの開環重合体は、 ポリグリコ リ ドと呼ばれることがある。
ポリ ¾酸も、 乳酸、 乳酸エステル、 または乳酸塩の重縮合反応では、 高分子量 の重合体を得ることが困難である。 そのため、 ポリ乳酸は、 通常、 乳酸の二分子 間環状エステルであるラクチド (L—ラクチド及ぴ Zまたは D—ラクチド) の開 環重合により合成されている。 ラクチドの開環重合体は、 ボリラクチドと呼ばれ ることがある。 グリコリ ドとラクチドを開環共重合させることもできる。
環状エステルの開環 (共) 重合体に関する技術開発が進められ、 新たな用途展 開が図られるにつれて、 開環 (共) 重合体の機械的強度や耐熱性、 成形加工性な どの改善が求められるようになってきている。 特に、 開環 (共) 重合体の機械的 強度などの物性は、 主として分子量に依存するため、 その高分子量化が強く望ま れている。
グリコリドゃラクチドの環状エステルの開環 (共) 重合によれば、 グリコール 酸や乳酸などの重縮合に比べて、 比較的高分子量の脂肪族ポリエステルを得るこ とができるものの、 近年の要求水準から見ると未だ十分ではなく、 高分子量化に は解決すベき課題が残されている。
第一に、 環状エステルの開環 (共) 重合により高分子量の脂肪族ポリエステル を合成するには、 高純度のモノマーを使用する必要がある。 しかし、 グリコリド ゃラクチドは、 それ自体の製造コストが高いことに加えて、 高度に精製すること が困難であり、 精製処理には更なるコストが必要となる。 そのため、 高純度モノ マーを使用しなければならない製造方法では、 高分子量脂肪族ポリエステルをェ 業的に大量かつ安価に供給することが極めて困難であった。
第二に、 脂肪族ポリエステルは、 モノマーの純度に加えて、 重合温度、 重合時 間、 重合圧力、 触媒や添加剤の種類と量などの重合条件の僅かの変化によって、 分子量が大きく変動しやすい。 そのため、 高分子量脂肪族ポリエステルを安定し て製造することが困難であった。 第三に、 モノマーの純度や重合条件を厳密に制御して高分子量脂肪族ポリエス テルを合成しても、 その分子量の水準は必ずしも十分とはいえない。 例えば、 グ リコリ ドの開環重合により得られるポリダリコール酸の重量平均分子量 (Mw) は、 約 1 0 0, 0 0 0である。 高度の物性を有する成形品を製造するには、 脂肪 族ポリエステルの更なる高分子量化が必要である。
上述のように、 脂肪族ポリエステルの機械的強度などの物性は、 主として分子 量に依存するため、 簡単かつ安価な方法により脂肪族ポリエステルを高分子量化 する方法の開発が求められている。 また、 従来の脂肪族ポリエステルは、 耐熱性 が十分ではなく、 溶融加工時などに高温条件下に曝されると熱分解を起こしゃす いという問題があった。 さらに、 成形加工性の観点からは、 分子量分布が比較的 ブロードであることが望ましいが、 従来の製造方法では、 高分子量でかつ分子量 分布がブロードな脂肪族ポリエステルを製造することは困難であった。 発明の開示
本発明の目的は、 グリコリ ドゃラクチドなどの環状エステルの開環 (共) 重合 体であって、 高分子量化されると共に、 耐熱性や成形加工性が改善された高分子 量脂肪族ポリエステルを提供することにある。
また、 本発明の目的は、 必ずしも高純度のグリコリ ドゃラクチドを出発原料と して用いなくても、 所望の分子量に容易に高分子量化することが可能で、 耐熱性 や成形加工性も改善された高分子量脂肪族ポリエステルの製造方法を提供するこ とにある。
本発明者らは、 前記目的を達成するために鋭意研究した結果、 グリコリ ド及ぴ ラクチドからなる群より選ばれる少なくとも一種の環状エステルの開環 (共) 重 合体をォキサゾリン化合物と鎖延長反応させることにより、 該開環 (共) 重合体 が鎖延長されて高分子量化することを見出した。 ォキサゾリン化合物の使用量、 反応温度、 反応時間などの鎖延長反応の反応条件を制御することにより、 分子量 や分子量分布を制御することができ、 さらには、 従来法では得ることができなか つた程度にまで高分子量化された脂肪族ポリエステルを得ることができる。
本発明の方法によれば、 鎖延長剤としてォキサゾリン化合物を単独で使用して も、 高分子量の脂肪族ポリエステルを製造することができる。 しかも、 本発明の 製造方法により得られた高分子量脂肪族ポリエステルは、 熱重量減少開始温度が 高くなり、 耐熱性が顕著に改善されている。 本発明の高分子量脂肪族ポリエステ ルは、 分子量分布が適度にブロードであるため、 成形加工性が改善されている。 本発明においては、 ォキサゾリン化合物は鎖延長剤として働き、 単なる末端封鎖 剤としての作用を担うものではなレ、。 本発明は、 これらの知見に基づいて完成す るに至ったものである。 本発明によれば、 グリコリ ド及ぴラクチドからなる群より選ばれる少なくとも —種の環状エステルの開環 (共) 重合体がォキサゾリン化合物との鎖延長反応に より、 鎖延長前の開環 (共) 重合体の重量平均分子量 (Mw J に対する鎖延長 後の開環 (共) 重合体の重量平均分子量 (Mw 2) の比 (Mw sZMw J で表さ れる分子量増大率が 1 . 1 0以上になるまで高分子量化されている高分子量脂肪 族ポリエステルが提供される。
また、 本発明によれば、 グリコリド及ぴラクチドからなる群より選ばれる少な くとも一種の環状エステルの開環 (共) 重合体をォキサゾリン化合物と鎖延長反 応させ、 鎖延長前の開環 (共) 重合体の重量平均分子量 (MW l) に対する鎖延 長後の開環 (共) 重合体の重量平均分子量 (Mw 2) の比 (Mw 2ZMW l) で表 される分子量増大率が 1 . 1 0以上になるまで高分子量化する高分子量脂肪族ポ リエステルの製造方法が提供される。 発明を実施するための最良の形態
1 . 開環 (共) 重合体 .
環状エステルの開環 (共) 重合体は、 グリコリド、 ラクチド、 またはダリコリ ドとラクチドの混合物を開環 (共) 重合することにより得ることができる。 ダリ コリ ドは、 グリコール酸の二分子間環状エステルであって、 例えば、 グリコール 酸ォリゴマーの解重合により好適に製造することができる。 ラクチドは、 乳酸の 二分子間環状エステルであり、 L体、 D体、 ラセミ体、 これらの混合物のいずれ であってもよい。
これらの中でも、 グリコリ ドは、 高純度のものを大量かつ安価に入手すること が困難であるため、 出発原料としては好適である。 その理由は、 本発明の方法に よれば、 必ずしも高純度のグリコリ ドを使用しなくても、 最終的には、 高分子量 ポリダリコール酸 (ポリグリコリ ド) を得ることができるからである。
ポリダリコール酸は、 ガスバリヤー性に優れているため、 高分子量脂肪族ポリ エステルを高度のガスバリヤ一性が要求されるシート、 フィルム、 容器、 複合材 料などの用途に使用する場合には、 グリコリドを主成分とするモノマーを使用す ることが望ましい。 グリコリ ドを主成分とするモノマーにおいて、 グリコリ ドの 割合は、 好ましくは 5 5重量%以上、 より好ましくは 7 0重量%以上、 特に好ま しくは 9 0重量%以上である。 もちろん、 グリコリドは、 単独で使用することが できる。
本発明では、 グリコリ ド、 ラクチド、 またはこれらの混合物をモノマーとして 使用するが、 その他のコモノマーとして、 ラタトン類 (例えば、 )3—プロビオラ タトン、 J3—プチロラクトン、 ピバロラクトン、 / _ブチロラタトン、 δ—バレ 口ラタトン、 βーメチ /レー δ一バレロラタトン、 ε—力プロラクトン等)、 トリ メチレンカーボネート、 1 , 3—ジォキサンなどの環状モノマーを併用すること ができる。 これらのコモノマーは、 通常 4 5重量%以下、 好ましくは 3 0重量% 以下、 より好ましくは 1 0重量%以下の割合で用いられる。 これらのコモノマー の使用割合が大きすぎると、 例えば、 グリコリ ドと併用した場合に、 精製する開 環共重合体の結晶性が損なわれて、 耐熱性、 ガスバリヤ一性、 機械的強度などが 低下する。
環状エステルの開環 (共) 重合は、 好ましくは、 少量の触媒の存在下に行われ る。 触媒としては、 特に限定されないが、 例えば、 ハロゲン化スズ (例えば、 二 塩化スズ、 四塩化スズなど)、 有機カルボン酸スズ (例えば、 2—ェチルへキサ ン酸スズなどのオクタン酸スズ) などのスズ系化合物;アルコキシチタネートな どのチタン系化合物;アルコキシアルミニウムなどのアルミニウム系化合物;ジ ルコユウムァセチルァセトンなどのジルコニウム系化合物;ハロゲン化アンチモ ン、 酸化アンチモンなどのアンチモン系化合物;などを挙げることができる。 触 媒の使用量は、 環状エステルに対して、 重量比で、 好ましくは l〜 1 0 0 0 p p m、 より好ましくは 3〜 3 0 0 p p m程度である。
環状エステルの開環 (共) 重合は、 塊状重合でも、 溶液重合でもよく、 任意で あるが、 多くの場合、 塊状重合が採用される。 分子量調節のために、 ラウリルァ ルコールなどの高級アルコールや水などを分子量調節剤として使用することがで きる。 また、 物性改良のために、 グリセリンなどの多価アルコールを添加しても よい。
塊状重合の重合装置としては、 押出機型、 パドル翼を持った縦型、 ヘリカルリ ボン翼を持った縦型、 押出機型やニーダー型の横型、 アンプル型、 板状型、 管状 型など様々な装置の中から、 適宜選択することができる。 溶液重合には、 各種反 応槽を用いることができる。
重合温度は、 実質的な重合開始温度である 1 2 0 °Cから 3 0 0 °Cまでの範囲内 で目的に応じて適宜設定することができる。 重合温度は、 好ましくは 1 3 0〜 2 5 0 ° (:、 より好ましくは 1 4 0〜 2 3 0 °C、 特に好ましくは 1 5 0〜 2 2 5 °Cで ある。 重合温度が高くなりすぎると、 生成したポリマーが熱分解を受けやすくな る。 重合時間は、 3分間〜 2 0時間、 好ましくは 5分間〜 1 8時間の範囲内であ る。 重合時間が短すぎると、 重合が充分に進行し難く、 長すぎると、 生成したポ リマーが着色しやすくなる。
環状エステルの開環 (共) 重合体の分子量は、 特に限定されない。 比較的低分 子量の開環 (共) 重合体であっても、 ォキサゾリン化合物と鎖延長反応させるこ とにより、 高分子量化することができる。 ォキサゾリン化合物との反応により、 効率的に高分子量ィヒさせて、 十分に高分子量の脂肪族ポリエステルを得るには、 開環 (共) 重合体の重量平均分子量 (Mw) は、 30, 000以上、 好ましくは 30, 000〜 500, 000、 より好ましくは 30, 000〜 110, 000 程度である。
2. ォキサゾリン化合物
本発明で使用するォキサゾリン化合物としては、 例えば、 2—ォキサゾリン、 2—メチノレ一 2—ォキサゾリン、 2—イソプロピル一 2—ォキサゾリン、 2—ブ チノレー 2—ォキサゾリン、 2—フエ二ルー 2—ォキサゾリンなどの 2—ォキサゾ リン化合物; 2, 2' 一ビス一 (2—ォキサゾリン)、 2, 2' ーメチレン一ビ スー (2—ォキサゾリン)、 2, 2' —エチレン一ビス一 (2—ォキサゾリン)、 2, 2' ートリメチレン一ビス一 (2—ォキサゾリン)、 2, 2' ーテトラメチ レン一ビス一 (2—ォキサゾリン)、 2, 2' 一^ -キサメチレン一ビス一 (2 - ォキサゾリン)、 2, 2' 一オタタメチレン一ビス一 (2—ォキサゾリン)、 2, 2' 一エチレン一ビス一 (4, A' —ジメチルー 2—ォキサゾリン)、 2, 2' _p—フエ二レン一ビス一 (2—ォキサゾリン)、 2, 2' —m—フエ二レン一 ビス一 (2—ォキサゾリン)、 2, 2' —m—フエ二レン一ビス一 (4, 4' 一 ジメチルー 2ーォキサゾリン) などの 2, 2' 一ビス一 (2—ォキサゾリン) 化 合物;ビス一 (2—ォキサゾリ二ルシク口へキサン) スルフイド、 ビス一 (2— ォキサゾリエルノルポルナン) スルフイド、 分子鎖末端または側鎖に 2個以上の ォキサゾリン環構造が導入された高分子化合物などが挙げられる。
ォキサゾリン化合物としては、 分子内に少なくとも 2個のォキサゾリン環構造 を有する化合物であることが、 効率的に鎖延長反応を行う上で好ましい。
ォキサゾリン化合物の中でも、 下式 (1)
Figure imgf000008_0001
で表される分子内に 2個のォキサゾリン環構造を有する化合物がより好ましい。 上記式中、 Aは、 単結合または二価の有機基である。 二価の有機基としては、
― (CH2) n— (nは、 1以上の整数、 好ましくは 1〜20)、 及ぴフエ二レン 基が好ましい。 !^及ぴ!^は、 それぞれ独立して、 アルキル基 (炭素数 = 1〜1 0)、 シクロアルキル基、 フエニル基などであり、 炭素数 1〜5のアルキル基で あることが好ましい。
分子内に 2個のォキサゾリン環構造を有する化合物の中でも、 下式 (2) ― 八
ΙΤΤθΓ~ίί I (2)
1 N Ν 1
で表される 2, 2' —m—フエ二レン一ビス一 (2—ォキサゾリン) は、 入手が 容易であり、 反応性にも優れているため、 特に好ましい。
ォキサゾリン化合物の使用量は、 環状エステルの開環 (共) 重合体 1 00重量 部に対して、 好ましくは 0. 001〜1 0重量部、 より好ましくは 0. 0 5〜7 重量部、 特に好ましくは 0. 1〜5重量部である。 ォキサゾリン化合物の使用量 が少なすぎると、 開環 (共) 重合体を十分に高分子量ィ匕することが困難になり、 多すぎても、 鎖延長効果が飽和傾向を示し経済的ではない。 ォキサゾリン化合物 の使用量を調節することにより、 所望の分子量を有する高分子量脂肪族ポリエス テルを得ることができる。
3. 高分子量脂肪族ポリエステルの製造方法
ォキサゾリン化合物は、 環状エステルの開環 (共) 重合の反応中または反応後 に反応系に添加することができるが、 所望の分子量を有する高分子量脂肪族ポリ エステルを安定的に得るには、 重合反応終了後、 得られた開環 (共) 重合体に添 加することが望ましい。 ォキサゾリン化合物は、 一括して添加してもよく、 2回 以上に分割して添加してもよい。
開環 (共) 重合体とォキサゾリン化合物との反応温度は、 好ましくは 100〜 300°C、 より好ましくは 1 50〜280°Cの範囲内である。 この反応温度は、 開環 (共) 重合体の溶融温度以上 3 0 0 °C以下、 さらには溶融温度以上 2 8 0 °C 以下であることが特に好ましい。 反応時間は、 反応温度にもよるが、 好ましくは
3 0秒間から 1 0 0分間、 より好ましくは 1〜6 0分間、 さらに好ましくは 5〜
4 0分間、 特に好ましくは 1 0〜 3 0分間程度である。
開環 (共) 重合体とォキサゾリン化合物との反応機構の詳細は、 現段階では明 らかではないが、 本発明者らは、 次のように考えている。 2—ォキサゾリンなど のォキサゾリン化合物は、 条件を選べば、 開環してリビング重合の挙動を示すこ とが知られている。 他方、 グリコリドゃラクチドの開環 (共) 重合体は、 少なく とも一方の末端にカルボキシル基を有している。 このカルボキシル基とォキサゾ リン環との相互作用により、 ォキサゾリン環の 5—位炭素原子と酸素原子との間 (0 - C) の結合が切断されてォキサゾリン環が開環し、 カルボキシル基の酸素 原子 (一 C O O) がォキサゾリン環の 5—位炭素原子と結合する。 このような反 応を含む反応機構により、 ォキサゾリン化合物が鎖延長剤として作用するものと 考えることができる。 ォキサゾリンィ匕合物による鎖延長反応は、 分子内に 2個以 上のォキサゾリン環を有する化合物を使用することにより、 より効率的に行われ る。 このようなォキサゾリン化合物による反応は、 ォキサゾリン化合物による単 なる末端封鎖反応とは異なり、 開環 (共) 重合体の有意な高分子量化が観察され る鎖延長反応である。 4. 高分子量脂肪族ポリエステル
環状エステルの開環 (共) 重合体とォキサゾリン化合物との反応により、 該開 環 (共) 重合体が鎖延長されて高分子量脂肪族ポリエステルとなる。 高分子量脂 肪族ポリエステルの分子量は、 使用する開環 (共) 重合体の分子量やォキサゾリ ン化合物の添加量、 反応条件などによって変動するため、 特に限定されない。 本発明の方法によれば、 重量平均分子量 (Mw) が好ましくは 1 2 0, 0 0 0 以上、 より好ましくは 1 3 0 , 0 0 0以上、 特に好ましくは 1 5 0, 0 0 0以上 の高分子量脂肪族ポリエステルを得ることができる。 重量平均分子量 (Mw) の 上限は、 特にないが、 通常 1, 000, 000、 多くの場合 500, 000程度 である。
グリコリドを開環重合すると、 多くの場合、 約 100, 000または約 1 10, 000までの重量平均分子量 (Mw) を有する開環重合体が得られる。 このよう な開環重合体と少量のォキサゾリンィ匕合物とを反応させることにより、 例えば、 重量平均分子量 (Mw) が 150, 000〜 250, 000程度にまで高分子量 化された高分子量脂肪族ポリエステルを容易に得ることができる。 ォキサゾリン 化合物の使用量などの鎖延長反応の反応条件を調節することにより、 さらなる高 分子量化を行うことができる。
開環 (共) 重合体とォキサゾリン化合物との鎖延長反応による分子量増大率は、 鎖延長前の開環 (共) 重合体の重量平均分子量 (MwJ に対する鎖延長後の開 環 (共) 重合体 (すなわち、 高分子量脂肪族ポリエステル) の重量平均分子量
(Mw2) の比 (Mws/MwJ で表すことができる。 本発明の方法によれば、 分子量増大率が好ましくは 1. 10以上、 より好ましくは 1. 20以上、 特に好 ましくは 1. 35以上となるまで開環 (共) 重合体の分子量を増大させることが できる。 この分子量増大率 (MwsZMwJ の上限は、 特にないが、 通常 10. 00、 好ましくは 5. 00、 より好ましくは 3. 50である。
本発明の方法によれば、 鎖延長前の開環 (共) 重合体に比べて分子量分布が比 較的ブロードな高分子量脂肪族ポリエステルを得ることができる。 鎖延長反応に より高分子量化された開環 (共) 重合体 (すなわち、 高分子量脂肪族ポリエステ ル) の数平均分子量 (Mn) に対する重量平均分子量 (Mw) の比で表される分 子量分布 (Mw/Mn) は、 好ましくは 1. 90以上、 より好ましくは 2. 00 以上、 特に好ましくは 2. 10以上である。 この分子量分布 (Mw/Mn) の上 限は、 特にないが、 通常 5. 50、 多くの場合 4. 50程度である。 分子量分布 が過度に大きくなると、 ポリマーとしての一体的な特性が損なわれるおそれがあ る。
本発明の方法により得られた高分子量脂肪族ポリエステルは、 ォキサゾリン化 合物と反応させる前の開環 (共) 重合体に比べて、 耐熱性が顕著に改善されてい る。 耐熱性の指標として、 ポリマーの 1 %熱重量減少開始温度を使用することが できる。 鎖延長前の開環 (共) 重合体の 1 %熱重量減少開始温度を 1\とし、 該 開環 (共) 重合体とォキサゾリン化合物との鎖延長反応により得られた高分子量 脂肪族ポリエステルの 1 %熱重量減少開始温度を T 2とした時、 Τ 2— 1\を好ま しくは 3 °C以上、 より好ましくは 5 °C以上にすることができる。 ォキサゾリン化 合物との反応により高分子量化を進めるほど、 得られる高分子量脂肪族ポリエス テルの而す熱性は増大傾向を示し、 例えば、 T 2— 1\を 1 5 °C以上、 さらには 2 0 °C以上にまですることができる。 ただし、 耐熱性の向上効果は、 鎖延長反応によ る重量平均分子量 (Mw) の増大と共にある程度飽和傾向を示し、 丁2— 1\の上 限は、 通常 3 0 °C、 多くの場合 2 5 °C程度である。
本発明の高分子量脂肪族ポリエステルは、 所望により、 無機充填剤、 滑剤、 可 塑剤、 着色剤 (染料、 顔料)、 熱安定剤、 導電性フィラーなどの添加剤;他の熱 可塑性樹脂などを含有することができる。 これらの添加剤成分は、 開環 (共) 重 合体とォキサゾリン化合物との鎖延長反応を阻害しないものであれば、 ォキサゾ リン化合物の添加前、 添加時、 または添加後に加えることができる。 また、 これ らの添加剤成分は、 開環 (共) 重合体とォキサゾリン化合物との鎖延長反応後に、 生成した高分子量脂肪族ポリエステルに添加することができる。 実施例
以下に、 合成例、 実施例、 及び比較例を挙げて、 本発明についてより具体的に 説明する。 物'性の測定法は、 次の通りである。
( 1 ) 重量平均分子量及び分子量分布:
重量平均分子量 (Mw) 及ぴ分子量分布 (Mw/Mn ) は、 ゲルパーミエーシ ヨンクロマトグラフィー (G P C) 分析装置を用いて、 以下の条件で測定した。 へキサフルォロイソプロパノール (セントラル硝子株式会社製の製品を蒸留して から使用) に、 トリフルォロ酢酸ナトリウム塩 (関東化学製) を加えて溶解し、 5 mMトリフルォロ酢酸ナトリウム塩溶媒 (A) を作成する。
溶媒 (A) を 40° (、 lm 1 分の流速でカラム (HF I P— LG + HF I P — 806MX 2 : SHODEX製) 中に流し、 分子量 82. 7万、 10. 1万、 3. 4万、 1. 0万、 及ぴ 0. 2万の 5つの分子量既知のポリメタクリル酸メチ ル (POLYMER LABORATOR I ES L t d . 製) の各 10 m gと 溶媒 (A) とで 10m 1の溶液とし、 そのうちの 100 μ 1をカラム中に通し、 屈折率 (R I) 検出による検出ピーク時間を求める。 5つの標準試料の検出ピー ク時間と分子量とをプロットすることにより、 分子量の検量線を作成する。 次に、 試料 10m gに溶媒 (A) を加えて 10mlの激夜として、 そのうちの 100 μ 1をカラム中に通し、 その溶出曲線から重量平均分子量 (Mw:)、 数平 均分子量 (Mn)、 及び分子量分布 (Mw/Mn) を求める。 計算には、 島津製 作所製 C— R4 AGPCプログラム V e r 1. 2を用いた。
(2) 1 %熱重量減少開始温度:
メトラーネ土製熱重量分析器 TG 50を用い、 流速 1 Oml/分で窒素を流し、 この窒素雰囲気下、 脂肪族ポリエステルを 50°Cから 2°C/分の昇温速度で加熱 して、 重量減少率を測定した。 50°Cでの脂肪族ポリエステルの重量 (W5。) に 対し、 該重量が 1 %減少したときの温度を正確に読み取り、 その温度を 1 % '熱重 量減少開始温度とする。
(3) 溶融混練時のトルク :
開環 (共) 重合体とォキサゾリン化合物とを東洋精機製作所製ラボプラストミ ルを用いて溶融混練し、 その際の最高トルクを測定した。
[合成例 1 ]
10リツトルオートクレープに、 ダリコール酸 〔和光純薬 (株) 製〕 5 k gを 仕込み、 撹拌しながら、 170°Cから 200°Cまで約 2時間かけて昇 熱し、 生成水を溜出させながら、 縮合させた。 次いで、 20 kPa (20 Omb a r) に減圧し 2時間保持して、 低沸分を溜出させ、 グリコール酸オリゴマーを調製し た。 グリコール酸オリゴマーの融点 Tmは、 205°Cであった。
グリコール酸オリゴマー 1. 2 k gを 10リットルのフラスコに仕込み、 溶媒 としてべンジルブチルフタレート 5 k g 〔純正化学 (株) 製〕 及び可溶化剤とし てポリプロピレングリコール 〔純正化学 (株) 製、 #400〕 150 gをカロえ、 窒素ガス雰囲気中、 5 kPa (5 Omb a r ) の減圧下、 約 270°Cに加熱し、 グリコール酸オリゴマーの 「溶液相解重合」 を行い、 生成したグリコリ ドをペン ジルブチルフタレートと共溜出させた。 得られた共溜出物に約 2倍容量のシク口 へキサンを加えて、 グリコリ ドをべンジルブチルフタレートから析出させ、 濾別 した。 これを、 酢酸ェチルを用いて再結晶し、 減圧乾燥し精製グリコリ ドを得た。
[合成例 2]
合成例 1で得られたグリコリド l O O g及ぴ四塩化スズ 5 m gをガラス製試験 管に投入し、 200°Cで 3時間重合を行った。 重合後、 160°Cで 12時間延長 重合を行った。 重合後、 冷却してからポリマーを取り出し、 粉碎し、 アセトンで 洗浄した。 しかる後、 30°Cで真空乾燥してポリマーを得た。 上記操作を繰り返 して、 必要量のポリグリコール酸 (ポリグリコリ ド) を製造した。
[実施例 1 ]
合成例 2で得られたポリダリコール酸 40 gを東洋精機製作所製ラボプラスト ミルに加え、 次いで、 2, 2' 一 m—フエエレン一ビス一 (2—ォキサゾリン)
(関東化学製) 0. 28 gを加えて、 240°Cで 20分間溶融混鍊した。 混練終 了後、 反応生成物である溶融物を取り出して、 物性を測定した。 その結果を表 1 に示す。
[実施例 2]
2, 2' 一 m—フエ二レン一ビス一 (2—ォキサゾリン) の添カ卩量 0. 28 g を 0. 40 gに変えたこと以外は、 実施例 1と同様に操作した。 その結果を表 1 に示す。
[実施例 3 ]
2, 2 ' 一 m—フエ-レン一ビス一 (2—ォキサゾリン) の添加量 0 . 2 8 g を 1 . 2 0 gに変えたこと以外は、 実施例 1と同様に操作した。 その結果を表 1 に示す。
[比較例 1 ] ·
合成例 2で得られたポリグリコ一ル酸を単独で使用したこと以外は、 実施例 1 と同様に操作した。 その結果を表 1に示す。 表 1
Figure imgf000015_0001
産業上の利用可能性
本発明によれば、 グリコリ ドゃラクチドなどの環状エステルの開環 (共) 重合 体であって、 鎖延長反応により高分子量化されると共に、 耐熱性や成形加工性が 改善された高分子量脂肪族ポリエステルが提供される。 また、 本発明によれば、 必ずしも高純度のグリコリドゃラクチドを出発原料として用いなくても、 所望の 分子量に容易に高分子量化することが可能で、 耐熱性や成形加工性も改善された 高分子量脂肪族ポリエステルの製造方法が提供される。
本発明の高分子量脂肪族ポリエステルは、 高分子量で耐熱性に優れており、 か つ、 適度にブロードな分子量分布を有しているため、 シート、 フィルム、 繊維な どの押出成形品、 圧縮成形品、 射出成形品、 ブロー成形品、 複合材料 (多層フィ ルム、 多層容器)、 その他の成形品として広範な分野で使用することができる。

Claims

請求の範囲
1. グリコリ ド及びラタチドからなる群より選ばれる少なくとも一種の環状ェ ステルの開環 (共) 重合体がォキサゾリン化合物との鎖延長反応により、 鎖延長 前の開環 (共) 重合体の重量平均分子量 (MWl) に対する鎖延長後の開環
(共) 重合体の重量平均分子量 (Mw2) の比 (Mw2/MWl) で表される分子 量増大率が 1. 10以上になるまで高分子量ィヒされている高分子量脂肪族ポリエ ステル。
2. 分子量増大率が 1. 20以上になるまで高分子量化されている請求項 1記 載の高分子量脂肪族ポリエステル。
3. 分子量増大率が 1. 35以上になるまで高分子量化されている請求項 1記 載の高分子量脂肪族ポリエステル。
4. 鎖延長反応により高分子量化された開環 (共) 重合体の重量平均分子量 (Mw) が 120, 000以上である請求項 1記載の高分子量脂肪族ポリエステ ル。
5. 鎖延長反応により、 鎖延長前の重量平均分子量 110, 000以下の開環 (共) 重合体が、 鎖延長後に重量平均分子量 150, 000以上の開環 (共) 重 合体に高分子量化されている請求項 1記載の高分子量脂肪族ポリエステル。
6. 鎖延長後の開環 (共) 重合体の 1%熱重量減少開始温度 T2と鎖延長前の 開環 (共) 重合体の 1°/。熱重量減少開始温度 Τ\との差 Τ2— 1 が 3°C以上であ る請求項 1記載の高分子量脂肪族ポリエステル。
7. 鎖延長後の開環 (共) 重合体の 1 %熱重量減少開始温度 T 2が 233 °C以 上である請求項 6記載の高分子量脂肪族ポリエステル。
8. 鎖延長反応により高分子量化された開環 (共) 重合体の数平均分子量 (M n) に対する重量平均分子量 (Mw) の比 (Mw/Mn) で表わされる分子量分 布が 1. 90以上である請求項 1記載の高分子量脂肪族ポリエステル。
9. ォキサゾリン化合物が、 分子内に少なくとも 2個のォキサゾリン環構造を 有するォキサゾリン化合物である請求項 1記載の高分子量脂肪族ポリエステル。
10. 分子内に少なくとも 2個のォキサゾリン環構造を有するォキサゾリン化 合物が、 2, 2' —m—フエ-レン一ビス一 (2—ォキサゾリン) である請求項 9記載の高分子量脂肪族ポリエステル。
1 1. グリコリド及ぴラクチドからなる群より選ばれる少なくとも一種の環状 エステルの開環 (共) 重合体をォキサゾリン化合物と鎖延長反応させ、 鎖延長前 の開環 (共) 重合体の重量平均分子量 (MwJ に対する鎖延長後の開環 (共) 重合体の重量平均分子量 (Mw2) の比 (Mw2/MWl) で表される分子量増大 率が 1. 10以上になるまで高分子量化する高分子量脂肪族ポリエステルの製造 方法。
12. 分子量増大率が 1. 20以上になるまで高分子量化する請求項 11記載 の製造方法。
13. 分子量増大率が 1. 35以上になるまで高分子量化する請求項 11記載 の製造方法。
14. 開環 (共) 重合体とォキサゾリン化合物とを 100〜 300 °Cの範囲内 の温度で鎖延長反応させる請求項 11記載の製造方法。
15. 開環 (共) 重合体とォキサゾリン化合物とを該開環 (共) 重合体の溶融 温度以上 300 °C以下の反応温度と 5〜 40分間の反応時間の条件下で鎖延長反 応させる請求項 11記載の製造方法。
.
16. ォキサゾリン化合物が、 分子内に少なくとも 2個のォキサゾリン環構造 を有する化合物である請求項 11記載の製造方法。
17. 開環 (共) 重合体 100重量部に対して、 ォキサゾリン化合物を 0.0 05〜10重量部の範囲内の割合で鎖延長反応させる請求項 11記載の製造方法。
18. 鎖延長反応させて、 鎖延長前の重量平均分子量 110, 000以下の開 環 (共) 重合体を重量平均分子量 150, 000以上の開環 (共) 重合体に高分 子量化する請求項 11記載の製造方法。
19. 鎖延長反応させて、 鎖延長後の開環 (共) 重合体の 1 %熱重量減少開始 温度 T2と鎖延長前の開環 (共) 重合体の 1%熱重量減少開始温度 1\との差 Τ2 一 Τ を 3 °C以上とする請求項 11記載の製造方法。
20. 鎖延長反応させて、 高分子量化された開環 (共) 重合体の数平均分子量 (Mn) に対する重量平均分子量 (Mw) の比 (MwZMn) で表わされる分子 量分布を 1. 90以上とする請求項 11記載の製造方法。
PCT/JP2003/012882 2002-10-08 2003-10-08 高分子量脂肪族ポリエステル及びその製造方法 WO2004033528A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/529,449 US20060047088A1 (en) 2002-10-08 2003-10-08 High-molecular aliphatic polyester and process for producing the same
AU2003271127A AU2003271127A1 (en) 2002-10-08 2003-10-08 High-molecular aliphatic polyester and process for producing the same
JP2004542843A JP4476808B2 (ja) 2002-10-08 2003-10-08 高分子量脂肪族ポリエステル及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-295276 2002-10-08
JP2002295276 2002-10-08

Publications (1)

Publication Number Publication Date
WO2004033528A1 true WO2004033528A1 (ja) 2004-04-22

Family

ID=32089205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012882 WO2004033528A1 (ja) 2002-10-08 2003-10-08 高分子量脂肪族ポリエステル及びその製造方法

Country Status (4)

Country Link
US (1) US20060047088A1 (ja)
JP (1) JP4476808B2 (ja)
AU (1) AU2003271127A1 (ja)
WO (1) WO2004033528A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2944663A2 (en) 2014-05-13 2015-11-18 Ricoh Company, Ltd. Aliphatic polyester, method of preparing the same, and polymer organizer
WO2023223701A1 (ja) * 2022-05-16 2023-11-23 住友化学株式会社 組成物

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7902303B2 (en) * 2005-12-30 2011-03-08 Industrial Technology Research Institute Aliphatic polyester polymer compositions and preparation method thereof
DE602007014354D1 (de) * 2007-06-23 2011-06-16 Ind Tech Res Inst Aliphatische Polyester-Polymer-Zusammensetzungen und Herstellungsverfahren dafür
US8899317B2 (en) 2008-12-23 2014-12-02 W. Lynn Frazier Decomposable pumpdown ball for downhole plugs
US8079413B2 (en) 2008-12-23 2011-12-20 W. Lynn Frazier Bottom set downhole plug
US9062522B2 (en) 2009-04-21 2015-06-23 W. Lynn Frazier Configurable inserts for downhole plugs
US9127527B2 (en) 2009-04-21 2015-09-08 W. Lynn Frazier Decomposable impediments for downhole tools and methods for using same
US9109428B2 (en) 2009-04-21 2015-08-18 W. Lynn Frazier Configurable bridge plugs and methods for using same
US9163477B2 (en) 2009-04-21 2015-10-20 W. Lynn Frazier Configurable downhole tools and methods for using same
US9181772B2 (en) 2009-04-21 2015-11-10 W. Lynn Frazier Decomposable impediments for downhole plugs
US9562415B2 (en) 2009-04-21 2017-02-07 Magnum Oil Tools International, Ltd. Configurable inserts for downhole plugs
US8614190B2 (en) 2010-06-30 2013-12-24 Industrial Technology Research Institute Thermal responsive composition for treating bone diseases
AU2018448134A1 (en) * 2018-10-29 2021-05-27 Pujing Chemical Industry Co., Ltd Polyglycolide copolymer and preparation thereof
US11155677B2 (en) 2019-12-27 2021-10-26 Dak Americas Llc Process for making poly(glycolic acid) for containers and films with reduced gas permeability
US11548979B2 (en) 2019-12-27 2023-01-10 Dak Americas Llc Poly(glycolic acid) for containers and films with reduced gas permeability

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000007815A (ja) * 1998-06-19 2000-01-11 Mitsui Chemicals Inc 発泡体製造用組成物、発泡体の製造方法、及び、発泡体
JP2003128898A (ja) * 2001-10-23 2003-05-08 Nippon Shokubai Co Ltd ポリエステル樹脂組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3297033A (en) * 1963-10-31 1967-01-10 American Cyanamid Co Surgical sutures
US5247013A (en) * 1989-01-27 1993-09-21 Mitsui Toatsu Chemicals, Inc. Biocompatible polyester and production thereof
US5470944A (en) * 1992-02-13 1995-11-28 Arch Development Corporation Production of high molecular weight polylactic acid
US6153231A (en) * 1997-06-25 2000-11-28 Wm. Wrigley Jr. Company Environmentally friendly chewing gum bases

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000007815A (ja) * 1998-06-19 2000-01-11 Mitsui Chemicals Inc 発泡体製造用組成物、発泡体の製造方法、及び、発泡体
JP2003128898A (ja) * 2001-10-23 2003-05-08 Nippon Shokubai Co Ltd ポリエステル樹脂組成物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2944663A2 (en) 2014-05-13 2015-11-18 Ricoh Company, Ltd. Aliphatic polyester, method of preparing the same, and polymer organizer
WO2023223701A1 (ja) * 2022-05-16 2023-11-23 住友化学株式会社 組成物

Also Published As

Publication number Publication date
AU2003271127A1 (en) 2004-05-04
JP4476808B2 (ja) 2010-06-09
JPWO2004033528A1 (ja) 2006-02-09
US20060047088A1 (en) 2006-03-02

Similar Documents

Publication Publication Date Title
WO2004033528A1 (ja) 高分子量脂肪族ポリエステル及びその製造方法
KR100880140B1 (ko) 폴리히드록시카르복실산 및 이의 제조 방법
JP5222484B2 (ja) ポリ乳酸組成物
JP4672554B2 (ja) 脂肪族ポリエステルの製造方法
JP4580888B2 (ja) ポリ乳酸組成物
JP4997224B2 (ja) ポリ乳酸組成物
JPH1072529A (ja) ポリグリコール酸射出成形物及びその製造方法
US20030096940A1 (en) Copolymers of monocyclic esters and carbonates and methods for making same
KR101741697B1 (ko) 수지용 폴리에스테르계 가소제
JP2008174691A (ja) 芳香族ポリエステル系樹脂組成物およびその製造方法
JP4205404B2 (ja) ポリ乳酸系樹脂組成物、成形品及びポリエステル樹脂用可塑剤
JPH09124778A (ja) ポリ乳酸の製造法
JP2011052110A (ja) ポリグリコール酸系樹脂、その製造方法およびその用途
JPH0912688A (ja) ポリ乳酸系樹脂組成物
JP3517857B2 (ja) ポリ乳酸の製造法
JPH1135808A (ja) 乳酸系ポリマー組成物及びその成型品
JP3517856B2 (ja) ポリ乳酸の製造法
JP4766893B2 (ja) 重合体及びその製造方法
JP2006152196A (ja) 生分解性樹脂組成物
JP3732754B2 (ja) 生分解性共重合ポリエステルの製造方法
JPH0616790A (ja) 脂肪族ポリエステルおよびその製造方法
JP3546593B2 (ja) 生分解性乳酸系ポリマー組成物
JP3680233B2 (ja) 生分解性乳酸系コポリマー組成物
JP3732753B2 (ja) 生分解性共重合ポリエステル及びその製造方法
JPH1135663A (ja) 乳酸系ポリエステルの製造方法および乳酸系ポリエステル

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004542843

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006047088

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10529449

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10529449

Country of ref document: US