WO2004031466A1 - Aramid paper laminate - Google Patents

Aramid paper laminate Download PDF

Info

Publication number
WO2004031466A1
WO2004031466A1 PCT/US2003/031683 US0331683W WO2004031466A1 WO 2004031466 A1 WO2004031466 A1 WO 2004031466A1 US 0331683 W US0331683 W US 0331683W WO 2004031466 A1 WO2004031466 A1 WO 2004031466A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminate
aramid
rolls
mils
paper
Prior art date
Application number
PCT/US2003/031683
Other languages
French (fr)
Inventor
Dariusz Wlodzimierz Kawka
David Wayne Anderson
Original Assignee
E.I. Du Pont De Nemours And Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E.I. Du Pont De Nemours And Company filed Critical E.I. Du Pont De Nemours And Company
Priority to JP2005500376A priority Critical patent/JP2006501091A/en
Priority to MXPA05003383A priority patent/MXPA05003383A/en
Priority to CA002500525A priority patent/CA2500525A1/en
Priority to BR0314492-5A priority patent/BR0314492A/en
Priority to AU2003277302A priority patent/AU2003277302A1/en
Priority to EP03799409A priority patent/EP1546446A1/en
Publication of WO2004031466A1 publication Critical patent/WO2004031466A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/10Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • B32B37/153Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state at least one layer is extruded and immediately laminated while in semi-molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/4334Polyamides
    • D04H1/4342Aromatic polyamides
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/56Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/732Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by fluid current, e.g. air-lay
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/20Organic non-cellulose fibres from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H13/26Polyamides; Polyimides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/421Polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/48Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances fibrous materials
    • H01B3/52Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances fibrous materials wood; paper; press board
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/582Tearability
    • B32B2307/5825Tear resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2377/00Polyamides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/254Polymeric or resinous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31938Polymer of monoethylenically unsaturated hydrocarbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/659Including an additional nonwoven fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/674Nonwoven fabric with a preformed polymeric film or sheet

Definitions

  • the present invention is directed to a improved laminate of aramid paper and a polyester polymer layer, preferably a laminate of two aramid papers separated by a polyester polymer layer.
  • Japanese Patent Publication 8-99389 discloses formation of a laminate sheet of m-aramid paper and a polyester film employing calendering and rapid cooling of the formed laminate.
  • British Patent 1 ,486,372 discloses a metallic layer adhered to a nonwoven web of a blend of different staple fibers which have been compacted and held together with a matrix of film-forming high molecular polymeric binder material.
  • Hendren et al. USP 5,320,892 discloses a laminate for honeycomb structures formed from a core containing poly (m-phenylene isophthalamide) fibrids and outside layers of a floe and fibrids of poly (m- phenylene isophthalamide).
  • Ootuka et al. USP 5,948,543 discloses formation of a laminate base material of aromatic polyamide fiber non-woven fabric formed from fibers of para-aramid and meta-aramid bonded with a resin binder.
  • Laminates made from aramid sheet(s) or paper(s) and polyester polymer layer(s) are useful in transformers wherein the laminate serves as dielectric insulation material. Any improvement in the internal adhesion of the laminate or the tear or elongation at break properties of such laminates is desirable.
  • the present invention is directed to a laminate of nonwoven aramid sheet and polyester resin having an overall thickness of 5 to 25 mils (0.13 to 0.64 mm), preferably 5 to 20 mils (0.13 to 0.51 mm) and having an elongation at break of at least 40% in both the cross and machine direction and an average tear load in excess of 1.5 pounds-force (6.7 newtons) in both the cross and machine directions.
  • the thickness of the resin layer in the laminate is preferably greater than the thickness of any individual nonwoven sheet in the laminate.
  • the nonwoven aramid sheet be a paper and that the paper include the aramid, poly(metaphenylene isophthalamide).
  • the preferred polyester resin used in the laminate is poly(ethylene terephthalate) and may contain other comonomers or branching agents.
  • Figure 1 is a simplified representation of an extrusion lamination process useful in making the laminates of this invention.
  • Figure 2 is a representation of the improvement in initial tear resistance of the extrusion laminates of this invention over prior art adhesion laminates.
  • Laminates made from aramid sheets or papers and polyester resin films have been used in transformers wherein the laminate serves as dielectric insulation material. It is desired that such insulative laminates have a combination of physical properties which are especially suited for the needs of transformer manufacturers. These properties include in addition to insulative properties, other mechanical properties which include initial tear resistance (as measured by elongation at break) and high resistance to tear propagation (as measured by average tear load). These properties are especially useful in evaluating insulative laminates because in the manufacture of transformers there is the likelihood the insulative laminate will be damaged during assembly.
  • aramid insulative laminates can be improved by replacing the form of the polyester that is used in the laminates.
  • a laminate made with a molten polyester resin has improved elongation and tear properties over laminates made with films.
  • laminates used in the prior art for electrical insulation have utilized polyester film. Since polyester film by itself does not have good adhesion to aramid paper because of the smooth surface of the aramid paper, adhesives have been used to attach the films to the aramid paper. The films were attached to the aramid paper by first coating an adhesive onto the film and then laminating the coated film onto the aramid paper at high temperature.
  • polyester in film form in the laminate limits the elongation and tear properties of the final laminate, in that typical processes for forming a solid film impart a degree of crystallinity and dimensional stability into the polyester layer. This is believed to reduce the flexibility of the final laminate.
  • the laminates of this invention preferably utilize aramid paper.
  • the term paper is employed in its normal meaning and it can be prepared using conventional paper-making processes and equipment and processes.
  • Aramid fibrous material such as fibrids and short fibers can be slurried together to from a mix which is converted to paper such as on a Fourdrinier machine or by hand on a handsheet mold containing a forming screen.
  • aramid paper is calendered between two heated calendering rolls with the high temperature and pressure from the rolls increasing the bond strength of the paper. Calendering aramid paper in this manner also decreases the porosity of the of the paper and it is believed this results in poorer adhesion of the paper to polymer layers in laminates.
  • the thickness of the aramid paper is not critical and is dependent upon the end use of the laminate as well as the number of aramid layers employed in the final laminate.
  • the present invention may employ two layers, i.e. one aramid layer and one polymer layer, and preferably employs a three layers, i.e. two aramid paper layers and one polymer layer, it is understood that there is no upper limit in the number of layers or other materials which can be present in the final article. However, an overall upper limit thickness of the laminate will be present as previously set forth.
  • aramid means polyamide wherein at least 85% of the amide (-CONH-) linkages are attached directly to two aromatic rings.
  • Additives can be used with the aramid and, up to as much as 10 percent, by weight, of other polymeric material can be blended with the aramid or that copolymers can be used having as much as 10 percent of other diamine substituted for the diamine of the aramid or as much as 10 percent of other diacid chloride substituted for the diacid chloride of the aramid.
  • the aramids most often used are: poly(paraphenylene terephthalamide) and poly(metaphenylene isophthalamide) with poly(metaphenylene isophthalamide) being the preferred aramid.
  • the preferred polyester resin, i.e. polymer applied to the aramid paper in this invention is polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the PET used may include a variety of comonomers, including diethylene glycol, cyclohexanedimethanol, poly(ethylene glycol), glutaric acid, azelaic acid, sebacic acid, isophthalic acid, and the like.
  • branching agents like trimesic acid, pyromellitic acid, trimethylolpropane and trimethyloloethane, and pentaerythritol may be used.
  • the PET may be obtained by known polymerization techniques from either terephthalic acid or its lower alkyl esters (e.g.
  • PEN polyethylene napthalate
  • PEN may be obtained by known polymerization techniques from 2,6-napthalene dicarboxylic acid and ethylene glycol.
  • the preferred calendered aramid paper used in this invention has been made by differential calendering.
  • Such papers are made by calendering the papers in a single calendering step between heated rolls having different temperatures, or the papers may be made by first calendering one surface of the sheet at one temperature and then the opposing surface with a second temperature.
  • This difference in temperature directly results in a difference in the porosity of opposite surfaces of the aramid paper, which translates to improved adhesion of the molten resin to the aramid paper.
  • a temperature difference of at least 20 degrees centigrade is necessary to obtain the advantages of the differential calendaring process, with temperature differences of at least 50 to 100 degrees centigrade, or more, being preferred.
  • the temperature in the heated rolls may be below the glass transition temperature of the aramid components in the paper. However, in a preferred mode at least one of the heated rolls will be at or above the glass transition temperature of the aramid.
  • one method of making the laminates of this invention is by extruding molten polymer between two calendered aramid papers followed by pressing and quenching to form the laminate.
  • the molten resin can be extruded onto the aramid sheets in any number of ways.
  • the resin may be extruded onto one calendered aramid sheet and then covered with a second aramid sheet and then laminated using a press or laminating rolls.
  • the molten resin is supplied to a slotted die 1 from an extruder.
  • the slotted die is oriented so that a sheet of molten resin is extruded in a downward fashion to a set of horizontal laminating rolls 2.
  • Two supply rolls of aramid paper 3 provide two separate webs 4 of aramid paper to the laminating rolls and both webs and the sheet of molten resin all meet in the nip of the laminating rolls with the resin positioned between the two webs.
  • the rolls consolidate the webs and resin together; the consolidated laminate is then quenched using a set of cooled rolls 5.
  • the horizontal laminating rolls 2 may be cooled to both consolidate and quench the laminate.
  • the laminate may then be cut to appropriate size as needed for the application.
  • the combination of molten polymers may extruded in a manner which layers the different polymers between the two aramid papers.
  • the polymer layer could consist of three layers such as, in order, a layer of PET polymer having a first intrinsic viscosity, a layer of PET polymer having a second intrinsic viscosity, and a third layer of PET polymer having the same intrinsic viscosity as the first layer.
  • a PET polymer having more affinity to aramid sheets can be employed to incorporate a PET polymer having less affinity to aramid sheets into the laminate.
  • the laminates of this invention have a thickness of from 5 to 25 mils, such as 5 to 20 mils, and have an elongation at break of at least 40% in both the cross- and machine-direction. Further, these laminates have an average tear load in excess of 1.5 pounds-force in both the cross and machine directions. It is preferred such laminates have resin thickness greater than any one nonwoven sheet in the laminate.
  • This example illustrates the properties of the laminates of this invention made by extrusion lamination, versus laminates made by adhesive lamination.
  • the extrusion laminates were made as follows. Aramid paper comprised of 45% poly (m-phenylene isopthalamide) floe and 55% poly (m-phenylene isopthalamide) fibrids was made using conventional Fourdrinier paper making processes and equipment. The paper was then calendered at 800 pli (1400 n/cm) between two rolls operating at different surface temperatures, specifically 360 degree centigrade and 250 degrees centigrade, to make differential calendered papers for lamination.
  • Polymer was applied to the more porous surfaces of the aramid sheets by extrusion lamination of poly (ethylene terephthalate) (PET) polyester polymer between the two papers. These extrusion laminates were compared to commercially available adhesive laminates used in electrical insulation containing a polyester film adhesively laminated between two Nomex® Type 416 aramid papers.
  • PET poly (ethylene terephthalate)
  • laminates of this invention made by extrusion lamination had both improved initial tear resistance, as measured by having an elongation to break of greater than 40% in both directions, along with improved tear propagation resistance, as measured by having an average tear load of greater than 1.5 lb-force (6.7 newtons).
  • EL stands for extrusion lamination
  • AL stands for adhesive lamination
  • MD stands for machine direction
  • XD stands for the cross or traverse direction.
  • Figure 2 illustrates the improvement in elongation to break for these laminates, with the lines 10 and 15 representing the MD and XD values for the extrusion laminates and lines 20 and 25 representing the MD and XD values for adhesive laminates.
  • MD is machine direction
  • XD is cross direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)

Abstract

A laminate of aramid nonwoven sheet and polyester resin having an overall thickness of 5 to 25 mils (0.13 to 6.4 mm) and having an elongation at break of at least 40% in both the cross and machine direction and an average tear load in excess of 1.5 pounds-force (6.7 newtons) in both the cross and machine directions.

Description

TITLE OF INVENTION
ARAMID PAPER LAMINATE
RELATED APPLICATION The present patent application is a continuation-in-part of Serial No.
10/261 ,850 filed October 1 , 2002.
BACKGROUND OF THE INVENTION The present invention is directed to a improved laminate of aramid paper and a polyester polymer layer, preferably a laminate of two aramid papers separated by a polyester polymer layer.
Japanese Patent Publication 8-99389 discloses formation of a laminate sheet of m-aramid paper and a polyester film employing calendering and rapid cooling of the formed laminate.
British Patent 1 ,486,372 discloses a metallic layer adhered to a nonwoven web of a blend of different staple fibers which have been compacted and held together with a matrix of film-forming high molecular polymeric binder material.
Hendren et al. USP 5,320,892 discloses a laminate for honeycomb structures formed from a core containing poly (m-phenylene isophthalamide) fibrids and outside layers of a floe and fibrids of poly (m- phenylene isophthalamide).
Ootuka et al. USP 5,948,543 discloses formation of a laminate base material of aromatic polyamide fiber non-woven fabric formed from fibers of para-aramid and meta-aramid bonded with a resin binder. Laminates made from aramid sheet(s) or paper(s) and polyester polymer layer(s) are useful in transformers wherein the laminate serves as dielectric insulation material. Any improvement in the internal adhesion of the laminate or the tear or elongation at break properties of such laminates is desirable.
SUMMARY OF THE INVENTION
The present invention is directed to a laminate of nonwoven aramid sheet and polyester resin having an overall thickness of 5 to 25 mils (0.13 to 0.64 mm), preferably 5 to 20 mils (0.13 to 0.51 mm) and having an elongation at break of at least 40% in both the cross and machine direction and an average tear load in excess of 1.5 pounds-force (6.7 newtons) in both the cross and machine directions. The thickness of the resin layer in the laminate is preferably greater than the thickness of any individual nonwoven sheet in the laminate. It is preferred the nonwoven aramid sheet be a paper and that the paper include the aramid, poly(metaphenylene isophthalamide). The preferred polyester resin used in the laminate is poly(ethylene terephthalate) and may contain other comonomers or branching agents.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a simplified representation of an extrusion lamination process useful in making the laminates of this invention. Figure 2 is a representation of the improvement in initial tear resistance of the extrusion laminates of this invention over prior art adhesion laminates.
DETAILED DESCRIPTION OF THE INVENTION Laminates made from aramid sheets or papers and polyester resin films have been used in transformers wherein the laminate serves as dielectric insulation material. It is desired that such insulative laminates have a combination of physical properties which are especially suited for the needs of transformer manufacturers. These properties include in addition to insulative properties, other mechanical properties which include initial tear resistance (as measured by elongation at break) and high resistance to tear propagation (as measured by average tear load). These properties are especially useful in evaluating insulative laminates because in the manufacture of transformers there is the likelihood the insulative laminate will be damaged during assembly.
It has been found that the elongation and tear properties of aramid insulative laminates can be improved by replacing the form of the polyester that is used in the laminates. In particular, it has been found that a laminate made with a molten polyester resin has improved elongation and tear properties over laminates made with films. Typically, laminates used in the prior art for electrical insulation have utilized polyester film. Since polyester film by itself does not have good adhesion to aramid paper because of the smooth surface of the aramid paper, adhesives have been used to attach the films to the aramid paper. The films were attached to the aramid paper by first coating an adhesive onto the film and then laminating the coated film onto the aramid paper at high temperature. It is believed that the use of polyester in film form in the laminate limits the elongation and tear properties of the final laminate, in that typical processes for forming a solid film impart a degree of crystallinity and dimensional stability into the polyester layer. This is believed to reduce the flexibility of the final laminate.
The laminates of this invention preferably utilize aramid paper. As employed herein the term paper is employed in its normal meaning and it can be prepared using conventional paper-making processes and equipment and processes. Aramid fibrous material such as fibrids and short fibers can be slurried together to from a mix which is converted to paper such as on a Fourdrinier machine or by hand on a handsheet mold containing a forming screen. Reference may be made to Gross USP 3,756,908 and Hesler et al. USP 5,026, 456 for processes of forming aramid fibers into papers. Generally, once aramid paper is formed it is calendered between two heated calendering rolls with the high temperature and pressure from the rolls increasing the bond strength of the paper. Calendering aramid paper in this manner also decreases the porosity of the of the paper and it is believed this results in poorer adhesion of the paper to polymer layers in laminates.
The thickness of the aramid paper is not critical and is dependent upon the end use of the laminate as well as the number of aramid layers employed in the final laminate. Although the present invention may employ two layers, i.e. one aramid layer and one polymer layer, and preferably employs a three layers, i.e. two aramid paper layers and one polymer layer, it is understood that there is no upper limit in the number of layers or other materials which can be present in the final article. However, an overall upper limit thickness of the laminate will be present as previously set forth. As employed herein the term aramid means polyamide wherein at least 85% of the amide (-CONH-) linkages are attached directly to two aromatic rings. Additives can be used with the aramid and, up to as much as 10 percent, by weight, of other polymeric material can be blended with the aramid or that copolymers can be used having as much as 10 percent of other diamine substituted for the diamine of the aramid or as much as 10 percent of other diacid chloride substituted for the diacid chloride of the aramid. In the practice of this invention, the aramids most often used are: poly(paraphenylene terephthalamide) and poly(metaphenylene isophthalamide) with poly(metaphenylene isophthalamide) being the preferred aramid.
The preferred polyester resin, i.e. polymer applied to the aramid paper in this invention is polyethylene terephthalate (PET). The PET used may include a variety of comonomers, including diethylene glycol, cyclohexanedimethanol, poly(ethylene glycol), glutaric acid, azelaic acid, sebacic acid, isophthalic acid, and the like. In addition to these comonomers, branching agents like trimesic acid, pyromellitic acid, trimethylolpropane and trimethyloloethane, and pentaerythritol may be used. The PET may be obtained by known polymerization techniques from either terephthalic acid or its lower alkyl esters (e.g. dimethyl terephthalate) and ethylene glycol or blends or mixtures of these. Another polyester resin useful in this invention is polyethylene napthalate (PEN). PEN may be obtained by known polymerization techniques from 2,6-napthalene dicarboxylic acid and ethylene glycol.
The preferred calendered aramid paper used in this invention has been made by differential calendering. Such papers are made by calendering the papers in a single calendering step between heated rolls having different temperatures, or the papers may be made by first calendering one surface of the sheet at one temperature and then the opposing surface with a second temperature. This difference in temperature directly results in a difference in the porosity of opposite surfaces of the aramid paper, which translates to improved adhesion of the molten resin to the aramid paper. A temperature difference of at least 20 degrees centigrade is necessary to obtain the advantages of the differential calendaring process, with temperature differences of at least 50 to 100 degrees centigrade, or more, being preferred. It is understood that the temperature in the heated rolls may be below the glass transition temperature of the aramid components in the paper. However, in a preferred mode at least one of the heated rolls will be at or above the glass transition temperature of the aramid.
While not intended to be limiting, one method of making the laminates of this invention is by extruding molten polymer between two calendered aramid papers followed by pressing and quenching to form the laminate. The molten resin can be extruded onto the aramid sheets in any number of ways. For example, the resin may be extruded onto one calendered aramid sheet and then covered with a second aramid sheet and then laminated using a press or laminating rolls. Referring to Figure 1 , in a preferred method, the molten resin is supplied to a slotted die 1 from an extruder. The slotted die is oriented so that a sheet of molten resin is extruded in a downward fashion to a set of horizontal laminating rolls 2. Two supply rolls of aramid paper 3 provide two separate webs 4 of aramid paper to the laminating rolls and both webs and the sheet of molten resin all meet in the nip of the laminating rolls with the resin positioned between the two webs. The rolls consolidate the webs and resin together; the consolidated laminate is then quenched using a set of cooled rolls 5. Alternatively, the horizontal laminating rolls 2 may be cooled to both consolidate and quench the laminate. The laminate may then be cut to appropriate size as needed for the application.
In another embodiment of this invention, the combination of molten polymers may extruded in a manner which layers the different polymers between the two aramid papers. For example, the polymer layer could consist of three layers such as, in order, a layer of PET polymer having a first intrinsic viscosity, a layer of PET polymer having a second intrinsic viscosity, and a third layer of PET polymer having the same intrinsic viscosity as the first layer. In this manner a PET polymer having more affinity to aramid sheets can be employed to incorporate a PET polymer having less affinity to aramid sheets into the laminate. The laminates of this invention have a thickness of from 5 to 25 mils, such as 5 to 20 mils, and have an elongation at break of at least 40% in both the cross- and machine-direction. Further, these laminates have an average tear load in excess of 1.5 pounds-force in both the cross and machine directions. It is preferred such laminates have resin thickness greater than any one nonwoven sheet in the laminate.
In the following examples all parts and percentages are by weight unless otherwise indicated. Initial tear resistance was measured via elongation at break per ASTM D1004. Tear propagation resistance was measured via average tear load by ASTM D1938.
EXAMPLE
This example illustrates the properties of the laminates of this invention made by extrusion lamination, versus laminates made by adhesive lamination. The extrusion laminates were made as follows. Aramid paper comprised of 45% poly (m-phenylene isopthalamide) floe and 55% poly (m-phenylene isopthalamide) fibrids was made using conventional Fourdrinier paper making processes and equipment. The paper was then calendered at 800 pli (1400 n/cm) between two rolls operating at different surface temperatures, specifically 360 degree centigrade and 250 degrees centigrade, to make differential calendered papers for lamination. Polymer was applied to the more porous surfaces of the aramid sheets by extrusion lamination of poly (ethylene terephthalate) (PET) polyester polymer between the two papers. These extrusion laminates were compared to commercially available adhesive laminates used in electrical insulation containing a polyester film adhesively laminated between two Nomex® Type 416 aramid papers.
The resulting data illustrated that laminates of this invention made by extrusion lamination had both improved initial tear resistance, as measured by having an elongation to break of greater than 40% in both directions, along with improved tear propagation resistance, as measured by having an average tear load of greater than 1.5 lb-force (6.7 newtons). As used below, EL stands for extrusion lamination, AL stands for adhesive lamination, MD stands for machine direction, and XD stands for the cross or traverse direction. Figure 2 illustrates the improvement in elongation to break for these laminates, with the lines 10 and 15 representing the MD and XD values for the extrusion laminates and lines 20 and 25 representing the MD and XD values for adhesive laminates.
Type of Laminate AL EL AL EL AL EL
Aramid Sheet Thickness(mils) 3 3 3 3 3 3
(mm) 0.076 0.076 0.076 0.076 0.076 0.076
Polymer Thickness(mils) 5 5 7.5 7.5 10 10
(mm) 0.127 0.127 0.191 0.191 0.254 0.254
MD Elongation at Break (%) 25 50 28 52 31 55
XD Elongation at Break (%) 26 52 27 54 29 58
MD Average Tear Load (Ib-f) 1.1 1.9 1.2 2.2 1.9 3.5
(N) 4.9 8.5 5.3 9.8 8.5 15.6
XD Average Tear Load (Ib-f) 1.4 3.0 1.7 3.3 2.0 4.8
(N) 6.2 13.4 7.6 14.7 8.9 21.4
MD is machine direction XD is cross direction

Claims

What is Claimed Is:
1. A laminate comprising aramid nonwoven sheet and polyester resin having an overall thickness in a range from of 5 to 25 mils (0.13 to 0.61 mm) and having an elongation at break of at least 40% in both cross and machine directions and an average tear load in excess of 1.5 pounds-force (6.7 newtons) in both the cross and machine directions.
2. The laminate of Claim 1 wherein the thickness is in a range from 5 to 20 mils (0.13 to 0.51 mm).
3. The laminate of Claim 1 with more than one aramid nonwoven sheet.
4. The laminate of Claim 3 wherein the thickness of the polyester resin in the laminate is greater than the thickness of any individual nonwoven sheet in the laminate.
5. The laminate of Claim 1 wherein the nonwoven aramid sheet comprises paper.
6. The laminate of Claim 5 wherein the aramid nonwoven sheet is an aramid paper comprising aramid fiber and fibrids.
7. The laminate of Claim 5 wherein the aramid paper includes metaphenylene isophthalamide floe.
8. The laminate of Claim 1 wherein the polyester resin is poly(ethylene terephthalate).
9. The laminate of Claim 8 wherein the poly(ethylene terephthalate) includes a comonomer selected from the group of diethylene glycol, cyclohexanedimethanol, poly(ethylene glycol), glutarie acid, azelaic acid, sebacic acid, and isophthalic acid.
10. The laminate of Claim 8 wherein the poly(ethylene terephthalate includes a branching agent selected from the group of trimesic acid, pyromellitic acid, trimethylolpropane, trimethylolethane, and pentaerythritol.
11. The laminate of Claim 1 wherein the polyester resin is sandwiched between two nonwoven sheets of aramid paper.
12. The laminate of Claim 11 wherein the polyester resin sandwiched between two nonwoven sheets of aramid paper includes a layer of resins.
13. A method of making a laminate useful in electrical insulation, comprising: a) providing two aramid nonwoven sheets to the nip between a pair of rolls, b) extruding a molten polyester polymer between the two aramid sheets prior to or into the nip between the pair of rolls, c) consolidating the aramid sheets and molten polymer between the rolls to form an unquenched laminate, and d) cooling the unquenched laminate.
14. The method of Claim 13 wherein the laminate is consolidated and quenched to an overall thickness in a range from 5 to 25 mils (0.13 to 0.64 mm).
15. The method of Claim 13 wherein the molten polyester polymer is extruded through a slot die.
16. A method of making a laminate useful in electrical insulation, comprising: a) providing two aramid sheets to the nip between a pair of rolls, b) extruding a molten polyester polymer between the two aramid sheets prior to or into the nip between the pair of rolls, c) consolidating and quenching the aramid webs and molten polymer between the rolls to form the laminate.
17. The method of Claim 16 wherein the laminate is consolidated and quenched to an overall thickness in a range from 5 to 25 mils (0.13 to 0.64 mm).
18. The method of Claim 16 wherein the molten polyester polymer is extruded through a slot die.
19. A transformer containing a dielectric insulation laminate comprising aramid nonwoven sheet and polyester resin having an overall thickness in a range of 5 to 25 mils (0.13 to 0.64 mm) and having an elongation at break of at least 40% in both cross and machine directions , and an average tear load in excess of 1.5 pounds-force (6.7 newtons) in both cross and machine directions.
20. The transformer of Claim 19 wherein the thickness is in a range from 5 to 20 mils (0.13 to 0.51 mm).
PCT/US2003/031683 2002-10-01 2003-10-01 Aramid paper laminate WO2004031466A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005500376A JP2006501091A (en) 2002-10-01 2003-10-01 Aramid paper laminate
MXPA05003383A MXPA05003383A (en) 2002-10-01 2003-10-01 Aramid paper laminate.
CA002500525A CA2500525A1 (en) 2002-10-01 2003-10-01 Aramid paper laminate
BR0314492-5A BR0314492A (en) 2002-10-01 2003-10-01 Laminate, methods for producing a laminate and transformer
AU2003277302A AU2003277302A1 (en) 2002-10-01 2003-10-01 Aramid paper laminate
EP03799409A EP1546446A1 (en) 2002-10-01 2003-10-01 Aramid paper laminate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US10/261,850 2002-10-01
US10/261,850 US20040071952A1 (en) 2002-10-01 2002-10-01 Aramid paper laminate
US10/460,435 US20040072000A1 (en) 2002-10-01 2003-06-10 Aramid paper laminate
US10/460,435 2003-06-10

Publications (1)

Publication Number Publication Date
WO2004031466A1 true WO2004031466A1 (en) 2004-04-15

Family

ID=32068227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/031683 WO2004031466A1 (en) 2002-10-01 2003-10-01 Aramid paper laminate

Country Status (10)

Country Link
US (3) US20040071952A1 (en)
EP (1) EP1546446A1 (en)
JP (1) JP2006501091A (en)
KR (1) KR20050055738A (en)
CN (1) CN100557109C (en)
AU (1) AU2003277302A1 (en)
BR (1) BR0314492A (en)
CA (1) CA2500525A1 (en)
MX (1) MXPA05003383A (en)
WO (1) WO2004031466A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006039433A1 (en) * 2004-09-30 2006-04-13 E.I. Dupont De Nemours And Company Electrical insulation laminates and electrical devices containing such laminates
JP2006262687A (en) * 2005-02-17 2006-09-28 Nitto Shinko Kk Insulating paper for oil immersed motor
WO2006123715A1 (en) * 2005-05-20 2006-11-23 Nitto Shinko Corporation Multilayer sheet
EP1958766A1 (en) * 2007-01-31 2008-08-20 Hitachi Engineering & Services Co., Ltd. Adhesive-free aramid-polyester laminate, method of manufacturing the same and apparatus for manufacturing the same
WO2011107510A1 (en) * 2010-03-02 2011-09-09 Plasmatreat Gmbh Method for producing a packaging
FR2957609A1 (en) * 2010-03-11 2011-09-23 Dounor Fabricating elastic nonwoven fabric that is useful to manufacture diaper, by forming web of melt blown fibers from extrudable mixture including thermoplastic elastomer on receiving support, and expelling fabric to scrolling direction
WO2012093048A1 (en) 2011-01-04 2012-07-12 Teijin Aramid B.V. Electrical insulating paper
WO2013187956A1 (en) * 2012-06-15 2013-12-19 3M Innovative Properties Company Electrical insulation material
US8709193B2 (en) 2008-07-30 2014-04-29 Hitachi Engineering & Services Co., Ltd. Method of manufacturing adhesive-free laminate of aramid paper and polyphenylene sulfide film, and insulation material and insulation structure for rotating electric machinery
US9437348B2 (en) 2010-12-17 2016-09-06 3M Innovative Properties Company Electrical insulation material

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050230072A1 (en) * 2004-04-16 2005-10-20 Levit Mikhail R Aramid paper blend
US8118975B2 (en) * 2007-12-21 2012-02-21 E. I. Du Pont De Nemours And Company Papers containing fibrids derived from diamino diphenyl sulfone
US8114251B2 (en) * 2007-12-21 2012-02-14 E.I. Du Pont De Nemours And Company Papers containing fibrids derived from diamino diphenyl sulfone
EP2469543A4 (en) 2009-08-20 2015-09-09 Toyo Boseki Electrically insulating sheet and method for producing same
JP5964627B2 (en) * 2011-04-18 2016-08-03 日東シンコー株式会社 Three-dimensional object for electric insulation and electric insulating sheet material
JP5994972B2 (en) 2012-04-20 2016-09-21 デュポン帝人アドバンスドペーパー株式会社 Aramid-resin film laminate and method for producing the same
US10282369B2 (en) * 2017-03-08 2019-05-07 Centri Technology, Inc. Fast indexing and searching of encoded documents

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4698267A (en) * 1985-09-17 1987-10-06 E. I. Du Pont De Nemours And Company High density para-aramid papers
US4897301A (en) * 1985-01-23 1990-01-30 Toyo Boseki Kabushiki Kaisha Flexible sheet reinforced with poly(aromatic amide) non-woven fabric and use thereof
EP0865905A2 (en) * 1997-03-19 1998-09-23 Sumitomo Chemical Company, Limited Laminate of liquid crystal polyester resin composition
US5904954A (en) * 1994-04-19 1999-05-18 Kermel Snc., Composite article and method for making same

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3201364A (en) * 1960-08-26 1965-08-17 Monsanto Co Polypropylene plasticized with mineral oil
US3318835A (en) * 1961-11-15 1967-05-09 Eastman Kodak Co Compositions containing polypropylene and an ester plasticizer
US3439088A (en) * 1964-06-16 1969-04-15 Exxon Research Engineering Co Cosmetic preparations-wax rouge and foundation make-up
US3415925A (en) * 1967-08-01 1968-12-10 Grace W R & Co Process for preparing permeable polyethylene film
US3849174A (en) * 1969-07-07 1974-11-19 Union Carbide Corp Calendering of laminated polymeric materials
US3756908A (en) * 1971-02-26 1973-09-04 Du Pont Synthetic paper structures of aromatic polyamides
US3818105A (en) * 1971-08-23 1974-06-18 Exxon Research Engineering Co Composition and process for lubricating the skin
US4132698A (en) * 1974-03-20 1979-01-02 Exxon Research & Engineering Co. Elastomeric thermoplastics
JPS5423378B2 (en) * 1975-01-31 1979-08-13
US4110185A (en) * 1976-11-10 1978-08-29 Becton, Dickinson And Company Irradiation sterilization of semi-crystalline polymers
US4210570A (en) * 1978-01-06 1980-07-01 Eastman Kodak Company Blends of substantially amorphous olefin copolymers, compatible tackifying resins and plasticizing oils useful as hot melt, pressure-sensitive adhesives
US4500603A (en) * 1979-08-02 1985-02-19 Celanese Corporation Electrical grade extruded filled thermoplastic sheet material and process for the manufacture thereof
JPS599576B2 (en) * 1981-01-06 1984-03-03 チッソ株式会社 Polyolefin resin composition
US4774277A (en) * 1982-03-26 1988-09-27 Exxon Research & Engineering Co. Blends of polyolefin plastics with elastomeric plasticizers
US4460729A (en) * 1982-05-13 1984-07-17 Ethyl Corporation Polyester composition
US4536537A (en) * 1984-06-21 1985-08-20 Shell Oil Company Rubberless high impact polypropylene
US4960820A (en) * 1988-05-24 1990-10-02 Shell Oil Company Compositions and articles using high melt flow poly-1-butene and polypropylene blends
US5025456A (en) * 1989-02-02 1991-06-18 At&T Bell Laboratories Burst mode digital data receiver
US5028300A (en) * 1989-08-31 1991-07-02 E. I. Du Pont De Nemours And Company Aromatic polyamide paper with thickened edge areas and process for making same
US5026456A (en) * 1990-06-14 1991-06-25 E. I. Du Pont De Nemours And Company Aramid papers containing aramid paper pulp
US5171908A (en) * 1991-11-18 1992-12-15 Mobil Oil Corporation Synthetic polyolefin lubricant oil
US5320892A (en) * 1993-02-22 1994-06-14 E. I. Du Pont De Nemours And Company Tough layered papers with improved surface adhesion
US6197859B1 (en) * 1993-06-14 2001-03-06 The Bergquist Company Thermally conductive interface pads for electronic devices
US5624386A (en) * 1994-02-15 1997-04-29 Bay Mills Limited Thermoplastic orthopedic brace and method of manufacturing same
US5595819A (en) * 1995-04-21 1997-01-21 E. I. Du Pont De Nemours And Company Thin polyester film containing cubic calcium carbonate particles suitable for capacitor, digital stencil and thermal transfer media
US5869555A (en) * 1995-11-16 1999-02-09 H. B. Fuller Licensing & Financing Inc. Polymeric composition in pellet form
JPH10131017A (en) * 1996-02-21 1998-05-19 Shin Kobe Electric Mach Co Ltd Substrate for laminated board, its production, prepreg and laminated board
US6855404B2 (en) * 2003-03-13 2005-02-15 E. I. Du Pont De Nemours And Company Inorganic sheet laminate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4897301A (en) * 1985-01-23 1990-01-30 Toyo Boseki Kabushiki Kaisha Flexible sheet reinforced with poly(aromatic amide) non-woven fabric and use thereof
US4698267A (en) * 1985-09-17 1987-10-06 E. I. Du Pont De Nemours And Company High density para-aramid papers
US5904954A (en) * 1994-04-19 1999-05-18 Kermel Snc., Composite article and method for making same
EP0865905A2 (en) * 1997-03-19 1998-09-23 Sumitomo Chemical Company, Limited Laminate of liquid crystal polyester resin composition

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006039433A1 (en) * 2004-09-30 2006-04-13 E.I. Dupont De Nemours And Company Electrical insulation laminates and electrical devices containing such laminates
JP2006262687A (en) * 2005-02-17 2006-09-28 Nitto Shinko Kk Insulating paper for oil immersed motor
US7713892B2 (en) 2005-05-20 2010-05-11 Nitto Shinko Corporation Laminate sheet
WO2006123715A1 (en) * 2005-05-20 2006-11-23 Nitto Shinko Corporation Multilayer sheet
JP2006321183A (en) * 2005-05-20 2006-11-30 Nitto Shinko Kk Laminate sheet
US7967941B2 (en) 2007-01-31 2011-06-28 Hitachi Engineering & Services Co., Ltd. Adhesive-free aramid-polyester laminate, method of manufacturing the same and apparatus for manufacturing the same
EP1958766A1 (en) * 2007-01-31 2008-08-20 Hitachi Engineering & Services Co., Ltd. Adhesive-free aramid-polyester laminate, method of manufacturing the same and apparatus for manufacturing the same
US8709193B2 (en) 2008-07-30 2014-04-29 Hitachi Engineering & Services Co., Ltd. Method of manufacturing adhesive-free laminate of aramid paper and polyphenylene sulfide film, and insulation material and insulation structure for rotating electric machinery
WO2011107510A1 (en) * 2010-03-02 2011-09-09 Plasmatreat Gmbh Method for producing a packaging
FR2957609A1 (en) * 2010-03-11 2011-09-23 Dounor Fabricating elastic nonwoven fabric that is useful to manufacture diaper, by forming web of melt blown fibers from extrudable mixture including thermoplastic elastomer on receiving support, and expelling fabric to scrolling direction
US9437348B2 (en) 2010-12-17 2016-09-06 3M Innovative Properties Company Electrical insulation material
WO2012093048A1 (en) 2011-01-04 2012-07-12 Teijin Aramid B.V. Electrical insulating paper
EP3360920A1 (en) 2011-01-04 2018-08-15 Teijin Aramid B.V. Electrical insulating paper
WO2013187956A1 (en) * 2012-06-15 2013-12-19 3M Innovative Properties Company Electrical insulation material
US9754701B2 (en) 2012-06-15 2017-09-05 3M Innovative Properties Company Electrical insulation material

Also Published As

Publication number Publication date
BR0314492A (en) 2005-08-02
CN100557109C (en) 2009-11-04
CA2500525A1 (en) 2004-04-15
US20040071952A1 (en) 2004-04-15
CN1694984A (en) 2005-11-09
US20060003659A1 (en) 2006-01-05
AU2003277302A1 (en) 2004-04-23
MXPA05003383A (en) 2005-06-22
EP1546446A1 (en) 2005-06-29
US20040072000A1 (en) 2004-04-15
JP2006501091A (en) 2006-01-12
KR20050055738A (en) 2005-06-13

Similar Documents

Publication Publication Date Title
US20060003659A1 (en) Aramid paper laminate
EP1549494B1 (en) Formation of aramid paper laminate
US10279561B2 (en) Laminated body and process for producing the same
US7335275B2 (en) Method of making an inorganic sheet laminate
KR20070067694A (en) Electrical insulation laminates and electrical devices containing such laminates
KR20180060276A (en) Laminated Aramid Paper with improved physical properties
KR20200114773A (en) Meta Aramid paper with Excellent Chemical Resistance
JPH07101569B2 (en) Method for manufacturing spacer for gas insulated transformer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005500376

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2500525

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/003383

Country of ref document: MX

Ref document number: 2003799409

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020057005576

Country of ref document: KR

Ref document number: 20038A08091

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057005576

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003799409

Country of ref document: EP