WO2004030239A1 - Antenne a microprocesseur et procede et dispositif de formation de faisceau pour cette antenne a microprocesseur - Google Patents

Antenne a microprocesseur et procede et dispositif de formation de faisceau pour cette antenne a microprocesseur Download PDF

Info

Publication number
WO2004030239A1
WO2004030239A1 PCT/CN2002/000946 CN0200946W WO2004030239A1 WO 2004030239 A1 WO2004030239 A1 WO 2004030239A1 CN 0200946 W CN0200946 W CN 0200946W WO 2004030239 A1 WO2004030239 A1 WO 2004030239A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
beamforming
delay
scanning
multipath
Prior art date
Application number
PCT/CN2002/000946
Other languages
English (en)
French (fr)
Inventor
Yanwen Wang
Lidong Chi
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to JP2004538647A priority Critical patent/JP4183134B2/ja
Priority to AU2002357571A priority patent/AU2002357571A1/en
Priority to EP02807856.6A priority patent/EP1545023B1/en
Publication of WO2004030239A1 publication Critical patent/WO2004030239A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0854Joint weighting using error minimizing algorithms, e.g. minimum mean squared error [MMSE], "cross-correlation" or matrix inversion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a beam forming technology of a smart antenna. Background technique
  • the first task of beamforming using space-time signals received by smart antennas is to estimate the delays of different paths. Without accurate delay parameters, adaptive beamforming will not be able to start. The delay is estimated before the beamforming, that is, when the delay is estimated, the beam cannot be used to suppress undesired users outside the beam. All the signals of the active users (a certain sector) will be received and interfere with each other. In a base station without a smart antenna, the maximum number of simultaneous users that can be accommodated is determined. Beyond this number, delay estimation will be difficult.
  • the delay estimation is no different from that of a base station without a smart antenna.
  • the maximum number of users that can be accommodated is the same as that of a base station without a smart antenna. This obviously does not play the role of smart antennas can expand the capacity of the base station. Therefore, other effective measures must be taken in delay estimation, so that when the number of activated users exceeds conventional base stations, the delay estimation can still be performed normally.
  • the currently used adaptive beam algorithm either assumes that the delay is known, or only inputs the information of a single antenna to the searcher, and finds the peak with a large correlation energy to determine the delay information. Because the airspace information of the antenna array is not used, it is difficult to guarantee the accuracy of the delay search.
  • the Chinese invention patent application with publication number CN1198045 proposes an improved method for the traditional adaptive beam antenna, the content of which is incorporated herein for reference. In addition to the equipment composition and operation steps required to maintain the traditional method, this patent application adds a set of equipment required for a second control signal for estimating the moving direction of a mobile user.
  • the solution of the present invention may improve the performance of the antenna, but has the following disadvantages: As the calculation of the weight coefficient in the traditional solution is followed, the high requirement for the calculation speed cannot be alleviated; additional equipment related to the second control signal is required, as in Base station Adding a moving direction estimator and a radiation pattern rotator, and adding a GPS receiver and other equipment to the mobile station increase the system cost and maintenance costs.
  • the Chinese invention patent application with publication number CN1235391 proposes an adaptive array antenna optimized in advance with a shaped beam, the content of which is incorporated herein by reference.
  • the calculation of the complex weights is decomposed into two parts, that is, the initial weight design and the operation weight processing.
  • the initial t is designed to be completed when the antenna system is constructed to realize the shaping and optimization of the adaptive antenna pattern; the antenna performs the calculation of the running weight phase during operation, and rotates the optimized main pattern lobe to the useful signal direction.
  • the interference falls into the low-level side lobe region, thereby suppressing the interference.
  • the antenna needs to be multiplied by the initial weight and the operating weight during the operation, which increases the amount of calculation and requires higher initial weight.
  • the error of the initial weight design will greatly affect the final result. . Summary of the Invention
  • a beam forming method for a smart antenna including: performing multi-path scanning on a received signal using a discrete beam to obtain multi-path delay information; and receiving the signal based on the multi-path delay information. Performing delay alignment; and adaptively forming a received signal after delay alignment.
  • a beam forming apparatus for a smart antenna including: a spatial-domain beam-forming sock for beam-forming a signal received by an antenna array; and a time-domain matching filtering module for The beamformed signal of the airspace beamforming module to obtain transmitted data; and a re-spreading and scrambling feedback module, configured to generate a reference signal based on the data information obtained by the time-domain matched filtering module, and feed it back to the airspace beam A forming module; wherein the airspace beamforming module has a multipath scanning delay alignment unit, configured to perform multipath scanning with discrete beams, obtain delay information, and delay align signals received by the antenna array.
  • a smart antenna device including: an antenna array composed of a plurality of array elements and the aforementioned beamforming device.
  • FIG. 1 is a flowchart illustrating a smart antenna beamforming process according to an embodiment of the present invention
  • FIG. 2 is a block diagram showing a configuration of a smart antenna device according to an embodiment of the present invention
  • FIG. 3 is a block diagram showing a configuration of a multipath scanning delay alignment unit according to an embodiment of the present invention
  • FIG. 4 illustrates a demodulation process of a received signal
  • FIG. 5 illustrates an example of the configuration of a delay searcher
  • FIG. 6 illustrates an example of the configuration of a code filter
  • FIG. 7 is a schematic diagram showing a smart antenna spatial layout according to an embodiment of the present invention.
  • FIG. 1 is a flowchart illustrating a smart antenna beam forming method according to an embodiment of the present invention.
  • the present invention uses a discrete beam for scanning. That is, in a given sector, the smart antenna It implements the function of adaptive beamforming to track the user, and on the other hand, scans back and forth with the beam to complete the user search task.
  • step 101 multi-path scanning is performed by using a discrete beam.
  • a single beam is used in a discrete manner at a predetermined interval angle to repeatedly scan in a given cell or sector; when a desired user is scanned at a certain position, a matched filter method is used to obtain Delay estimation is used as the basis for adaptive beamforming.
  • step 105 the delays of the received signals are aligned according to the delay information obtained by the multipath scanning, and the known dedicated control channel pilot symbols are used as reference signals to obtain the initial K value.
  • step 120 the signal-to-interference-and-noise ratio of the dedicated control channel is calculated, and it is determined whether the signal-to-interference and noise-to-noise ratio satisfies the requirements. This determination can be accomplished by comparing the obtained signal-to-interference-to-noise ratio with a predetermined threshold.
  • the predetermined threshold may be 4-7 dB or lower. If it is determined that the signal-to-interference-and-noise ratio is greater than the predetermined threshold, the process proceeds to step 125; otherwise, the processing returns to step 101 and multipath scanning is performed again.
  • the scrambling dedicated control channel information is re-spread as a reference signal, and an optimal weight is obtained.
  • 3 to 8 of the 10 symbol bits per time slot of the control part are known pilot symbols. Therefore, in an embodiment of the present invention, it is preferable to use the pilot signal within the pilot frequency band time. Frequency symbols replace the decision result symbols for re-spreading and scrambling, thereby overcoming the negative impact of the decision ⁇ : and bringing the weight closer to the optimal weight.
  • the optimized data weight is used to process the dedicated data channel by beam forming. Since the air propagation paths of the control part and the data part are the same, the weights obtained by the control part update are also applicable to the data part, so the corresponding data information is obtained based on the obtained optimized weights.
  • FIG. 2 is a block diagram showing a configuration of a smart antenna device according to an embodiment of the present invention.
  • the smart antenna according to this embodiment includes: an antenna array composed of multiple array elements (210.1-210.N), a spatial domain beamforming module 21, a time domain matching filtering module 22, and a re-expansion and feed module twenty three.
  • the antenna array elements (210.1-210.N) also include respective antenna front ends (not shown in the figure) for receiving radio frequency signals and converting them into received signals.
  • X [ Xl , x 2 ,--x N ), which is well known to those skilled in the art.
  • the air-domain beamforming module 21, the time-domain matched filtering module 22, and the re-spreading and scrambling feedback module 23 also form a beam-forming apparatus for a smart antenna according to an embodiment of the present invention.
  • the smart antenna and its beamforming device according to the embodiments of the present invention will be described in detail below with reference to the drawings.
  • the spatial beamforming module 21 includes: a multipath scanning delay alignment unit 211, a weight estimation unit 212, and a multiplier 213.1-213.N and adder 214.
  • the multi-path scanning delay alignment unit 211 is configured to perform multi-path scanning with discrete beams, obtain delay information, and delay-align the signals received by the antenna array.
  • the primary task when performing beamforming on the space-time signals received by the smart antenna base station of a code division multiple access system is to estimate the delays of different paths. Without accurate delay parameters, adaptive beamforming will not be able to start.
  • the delay is estimated before the beamforming, that is, when the delay is estimated, it is impossible to use the beam to suppress the undesired users outside the beam, and the signals of all activated users (a certain sector) will be received and interfere with each other.
  • the present invention uses discrete beam scanning, that is, in a given sector, the configured smart antenna on the one hand implements the function of adaptive beamforming to track the user, and on the other hand, it uses the signals received by the array. Beam scanning back and forth to complete the task of user search.
  • the multi-path scanning delay alignment unit 211 we will describe it in detail below in conjunction with other drawings.
  • the delay-aligned signals-[,, ⁇ ⁇ ⁇ J, are simultaneously transmitted to the corresponding multiple multipliers 213.11-213.N and the weight estimation unit 212.
  • weights Wl, W2, ..., 3 ⁇ 4 would be: calculating the correlation matrix of the received signal and the reference signal of the antenna array, the correlation matrix in accordance with a minimum mean square error of the approximate solution is obtained, as the weight value.
  • the multipliers 213.11-213.N perform their respective multiplication operations according to the corresponding weights w réellew 2 , ..., w N.
  • the results of the multiplication operations are summed in the adder 214 and used as beamforming The result is output to the time-domain matched filtering module 22.
  • the time-domain matched filtering module 22 includes: a descrambling unit 221, a despreading unit 222, a Rake combining unit 223, a data bit decision unit 224, and a signal-to-interference and noise ratio calculation decision unit 225.
  • the descrambling unit 221 and the despreading unit 222 are configured to descramble and despread the signals after the beamforming.
  • Rake merging unit which is used to rake combine signals from multiple paths.
  • a data bit decision unit is configured to output a transmitted data bit by deciding a signal after Rake combination.
  • the signal-to-interference-and-noise ratio calculation and decision unit 225 is configured to calculate the signal-to-interference-and-noise ratio of the determined data and the received signal, and compare the calculated signal-to-interference and noise ratio with a predetermined threshold value, so as to determine whether the requirements are met.
  • the re-spreading scrambling feedback module 23 includes: a spreading unit 231 and a scrambling unit 232.
  • the spreading unit 231 and the scrambling unit Element 232 performs spread spectrum and scrambling on the data obtained from the decision output by the time-domain matched filtering module 22, thereby generating a reference signal d (k).
  • the spreading unit 231 and the scrambling unit 232 perform spreading and Scrambled as the reference signal d (k) ;.
  • the following uses a mobile device user w as an example to describe the working situation of this embodiment.
  • each large-delay multipath component of user m is beamformed in the airspace beamforming module 21 respectively.
  • pilot symbols are used to obtain a simple average estimation method for data channel estimation of non-conducting frequency bands in the same time slot, and the channel estimation of the first multipath component of the user is performed. For:
  • phase Rake combining is performed according to the maximum ratio criterion, and then a decision is made in the data bit decision unit 224. Assuming "is a data bit, the output of user w can be obtained:
  • the signal-to-interference-and-noise ratio calculation and decision unit 225 performs a signal-to-interference-and-noise ratio threshold decision, and inputs data bits that meet the requirements of the decision threshold into the re-spreading and scrambling feedback module 23.
  • the weights obtained in this way are also applicable to the data part.
  • 3 to 8 are known pilot symbols in front, and pilot symbols can be used to replace the decision result symbols for re-spreading within the pilot band time, which can overcome the consequences of decision errors. Negative effects bring the weight closer to the optimal weight.
  • b ( «) is the output of the detector, then this user is in the time interval [(nl) Tb, nTb] ( Tb is the bit period, and n is a positive integer.
  • the signal waveform can be obtained by re-spreading the detected data bits with the user's control part spreading code.
  • the output 6 ( «) and the known pilot symbol (234) of the signal-to-interference and noise ratio calculation and decision unit 225 complete spreading and scrambling through the spreading unit 231 and the scrambling unit 232, respectively, and use this chip stream The weight of this user is adjusted for the new reference signal 233 for beamforming.
  • the respreading and scrambling feedback module 23 uses the known pilot symbol respreading and scrambling as a reference signal, and the weight estimation unit 212 calculates the reference
  • the correlation matrix between the signal and the pilot signal received by the antenna array is an approximate solution of the correlation matrix obtained according to the minimum mean square error criterion, and is used as the initial weight.
  • the respreading and scrambling feedback module 23 also uses known pilot symbol respreading and scrambling as a reference signal, and the weight estimation unit 212 recalculates the reference
  • the correlation matrix between the signal and the pilot signal received by the antenna array is an approximate solution of the correlation matrix obtained according to the minimum mean square error criterion, and is used as the initial weight.
  • FIG. 3 is a block diagram showing a configuration of a multi-path scanning delay alignment unit according to an embodiment of the present invention.
  • the delay scan alignment unit 211 includes: a scanning beam forming unit 2110.
  • a scanning beam forming unit 2110 is configured to form a scanning beam for a received signal.
  • the beam forming principle is the same as described above, except that the weights for each array element are calculated in advance according to requirements, that is, these calculations are good.
  • the weights just form a single beam discretely scanning at a predetermined interval angle in a given cell or sector.
  • the time delay searcher 2112 searches for a multi-path time delay on the beam forming signal of the scanning beam forming unit 2110.
  • the delay alignment unit 2114 aligns the multipath signal delays received by the antenna array according to the multipath delays searched by the delay searcher 2112, and outputs them to the corresponding multipliers 213.1-213.N.
  • FIG. 4 illustrates a demodulation process of a received signal. Let the mobile station transmit the signal as:
  • the radio frequency signal (t) is first beamformed by the scanning beamforming unit 2110, and then passes through i ⁇ downconversion and low-pass filtering. among them:
  • FIG. 5 illustrates an example of a configuration of a delay searcher
  • FIG. 6 illustrates an example of a configuration of a code filter
  • TC is the clock cycle
  • the code filter is based on the bit pulse, assuming that 8 times oversampling and scrambling in the dedicated data channel (DPDCH) can be used with long scrambling codes or short Scrambling code, select the register length as SF * 8 (SF is the spreading factor).
  • S represents the real part of the scrambling code
  • s Q represents the imaginary part of the scrambling code.
  • For long scrambling codes it is a non-periodic code filter
  • for short scrambling codes it is a periodic code filter.
  • the output of the code filter is only related to the control information, it is not related to the traffic channel information.
  • (Z12) 2 and (Z34) 2 are added respectively, the energy distribution of the user signal is obtained, and the delay r is estimated through peak detection.
  • the time delay of the path can be determined according to the position of the peak.
  • the channel response is:
  • ⁇ «,, ⁇ are the delay, attenuation factor, and phase of the user's / path respectively, and the delay search is to estimate. Since the multipath signal is a multi-path superposition process, without loss of generality, we only consider the derivation under the condition of single user single path without interference. According to equations (4) and (5), we can obtain that (0 and ⁇ (0, do the following:
  • (t) represents the imaginary part of the scrambling code
  • t ' represents the delay time (b) of the scrambling code
  • the peak gate Pgen uses a Z value greater than that of all the signals received before filtering.
  • the value of 4 times the average power is used as the peak threshold.
  • the slope on the left of the maximum value point is greater than 0, and the slope on the right is less than 0.
  • Peak threshold detection consists of the following main parts:
  • p is a set of possible peak points, and the unit is l / 8chip.
  • some points around the true peak may be included. They are not peak points, and further processing is needed.
  • the non-peak points are:
  • the various components of the beam forming device constituting the smart antenna according to the embodiment of the present invention may be hardware modules or software modules, and these modules may be implemented in a dedicated chip or FPGA, or a part of the modules may be implemented in The software is implemented in DSP.
  • FIG. 7 is a schematic diagram showing a spatial layout of a smart antenna according to an embodiment of the present invention.
  • a directional antenna is mostly used in a cell to divide a cell into three sectors.
  • the antenna array is composed of three sets of uniform line array units, namely the first set 3.101, 3.102, 3.103, 3.104, the second set 3.201, 3.202 3.203, 3.204, and the third set 3.301. , 3.302, 3.303, 3.304, each antenna scans a 120-degree spatial range. This scan won't be too It is time consuming, because a sector is 120 degrees, the number of antenna elements is 4, and the minimum width of the lobe is 25.25 degrees. If you select a discrete beam scanning angle interval of 25 degrees, only 5 beam angle transformations are required to complete a scan can.
  • FIG. 8 and 9 are graphs showing input-output signal-to-interference and noise ratios according to an embodiment of the present invention.
  • the simulation of the experiment is: 4-element uniform linear array, 20 users, each user has 4 equal intensity Jack fading multipaths.
  • FIG. 8 shows the output SINR of a data channel using a smart antenna according to an embodiment of the present invention in a macro cell, 20 users, a data length of 20 frames, a symbol rate of 60 kbit / s, and a mobile station speed of 30 km / h. .
  • the abscissa Eb / N0 represents the input signal-to-noise ratio, with a range of 4 to 12 dB and an interval of 2 dB.
  • FIG. 9 shows the output SINR of a data channel using a smart antenna according to an embodiment of the present invention in a macro cell, 20 users, a symbol rate of 60 kbit / s, and a mobile station speed of 240 km / h.
  • the abscissa Eb / ⁇ indicates the input signal-to-noise ratio, the range is 4 ⁇ 12dB, and the interval is 2dB.
  • the output signal-to-noise ratio of the present invention is close to 5,6dB, and the output signal-to-noise ratio without the beam scanning method is about 0.9dB, a difference of 4.7 dB; the input signal-to-noise ratio is 4, 6,
  • the results are similar at 10 and 12dB.
  • the output signal-to-noise ratio is improved after adopting the method of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)
  • Noise Elimination (AREA)

Description

智能天线及其波束形成方法和装置 技术领域
本发明涉及无线通信领域, 尤其涉及智能天线的波束形成技术。 背景技术
随着移动通信系统在全球范 内的¾1^, 作为第三代移动通讯系 统关键技术之一的智能天线技术也越来越多的得到了人们的重视。 通常情 况下, 利用智能天线所接收的空时信号进行波束形成的首要任务是估计不 同路径的时延, 如果没有准确的时延参数, 自适应波束形成将无从做起。 而时延的估计是在波束形成之前, 也就是说时延估计时, 无法利用波束抑 制波束外的非期望用户, 所有激活用户 (某扇区)的信号都将被接收并相 互干扰。 在无智能天线的基站中, 所能容纳的同时激活的最多用户数目是 确定的, 超过该数目, 时延估计将出现困难。 而配备有智能天线的基站, 在未形成波束前, 如果不采取其它措施, 时延估计与无智能天线的基站没 有什么差别。 也就是说, 所能容纳的最多用户数目与无智能天线的基站基 目同。 这显然没有发挥智能天线可以扩大基站容量的作用。 因此, 在时 延估计上必须采取其他有效措施, 使得在激活的用户数目超过常规基站 时, 时延估计仍能正常进行。
目前通常采用的自适应波束算法或者假设时延已知, 或者仅把单根天 线的信息输入到搜索器, 求出相关能量大的峰值, 以此来决定时延信息。 由于没有利用天线阵列的空域信息, 从而 4吏得时延搜索的精度难以保证。 公开号为 CN1198045 的中国发明专利申请提出了一种对传统的自适应波 束天线的改进方法, 其内容被包含于此以供参考。 该专利申请在保持传统 方法所需要的设备组成和运行步驟以外, 增加了一套用来估计移动用户移 动方向的第二控制信号所需的设备。 该发明方案可能改善天线的性能, 但 存在以下缺点: 因循了传统方案中对复»权系数的计算, 不能减轻对计 算速度的高要求; 需要额外增加与第二控制信号有关的设备, 如在基站中 增加移动方向估计器和辐射方向图旋转器、在移动台增加 GPS接收机等设 备, 增加了系统成本和维护费用。
另外公开号为 CN1235391 的中国发明专利申请提出了一种预先优化 成形波束的自适应阵列天线, 其内容被包含于此以供参考。 该专利申请的 技术方案, 在自适应处理时, 将复数权值的计算分解为两个部分, 即初始 权设计和运行权处理。 其中初始 t又设计在天线系统构成时完成, 实现对自 适应天线方向图的成形和优化; 天线在运行时进行运行权相位的计算, 将 优化后的方向图主瓣旋转至有用信号来向, 干扰落入低电平副瓣区, 从而 抑制干扰。 该发明方案天线在运行过程中需要将进行初始权与运行权的相 乘运算, 增加了计算量, 同时对初始权的要求较高, 初始权设计的误差对 最终结果会带来很大的影响。 发明内容
根据本发明的一个方面,提供了一种智能天线的波束形成方法, 包括: 用离散波束对接收信号进行多径扫描, 获得多径延时信息; 根据所述多径 延时信息, 对接收信号进行延时对齐; 以及, 对延时对齐后的接收信号进 行自适应形成波束。
根据本发明的另一个方面, 提供了一种智能天线的波束形成装置, 包 括: 空域波束形成襪块, 用于对天线阵列接收的信号进行波束形成; 时域 匹配滤波模块, 用于根据由所述空域波束形成模块波束形成的信号, 获得 传送的数据; 以及, 重扩加扰反馈模块, 用于根据由所述时域匹配滤波模 块获得的数据信息, 生成参考信号,反馈给所述空域波束形成模块; 其中, 所述空域波束形成模块具有多径扫描时延对齐单元, 用于以离散波束进行 多径扫描, 获得延时信息, 并且将天线阵列接收的信号延时对齐。
根据本发明的再另一个方面, 提供了一种智能天线装置, 包括: 由多 个阵元组成的天线阵列和前面所述的波束形成装置。 附图说明 相信通过下面结合附图对本发明优选实施例的描述, 可以使本发明的 以上和其他优点、 目的和特征变得明了。
图 1 是展示根据本发明的一个实施例智能天线波束形成过程的流程 图;
图 2是展示根据本发明的一个实施例智能天线装置的构成的方块图; 图 3是展示根据本发明的一个实施例的多径扫描时延对齐单元的构成 的方块图;
图 4图示了接收信号的解调处理;
图 5图示了延时搜索器的构成的一个例子;
图 6图示了码滤波器的构成的一个例子;
图 7是展示才艮据本发明的一个实施例智能天线空间布局的示意图; 以 及
图 8和 9 示根据本发明的实施例的输入 -输出信干噪比的曲线图。 具体实施方式
下面就结合附图对本发明的具体实施方式进行详细的说明。
图 1是图示了根据本发明的一个实施例智能天线波束形成方法的流程 图。 在自适应波束智能天线中, 为了避免同时激活用户数超过常规基站接 纳上限时, 无法估计时延这一现象, 本发明利用离散波束进行扫描, 即在 给定的扇区内, 智能天线一方面实现自适应波束形成跟踪用户的功能, 另 一方面用波束来回扫描完成用户搜索的任务。
如图 1所示, 首先在步骤 101, 利用离散波束进行多径扫描。 在该实 施例中, 优选地, 采用单波束以一预定间隔角度的离散方式, 在给定的小 区或扇区内反复扫描; 当在某位置扫描到期望用户时, 利用匹配滤波器方 法等获得时延估计并将其作为自适应波束形成的依据。
接着在步骤 105, 根据多径扫描获得的延时信息, 将接收信号的延时 对齐, 用已知的专用控制信道导频符号作为参考信号, 求初始 K值。 将导 频位扩频加扰之后的信号作为参考信号 , 求天线阵列接收的导频信号;^ 和参考信号 d的互相关矩阵 ^ = d';根据最小均方误差准则求出的近似 解作为自适应初始权值 = r,d。 在步驟 110, 根据上一步驟计算出的初始权值, 对阵列接收的信号进 行空域处理, 根据搜索得到的多径信息, 对用户的每一个大延时多径分量 分别进行波束形成, 对阵列接收的导频时间段信号做波束形成 yp = WHXP , 对阵列接收的非导频时间段信号做波束形成 。 然后在步驟 115, 对空域处理后的信号解扰解扩, 并判决获得专用控 制信道信息。 具体地, 对控制部分的导频段解扰 (it) = i w eA ( t) , 并对导 频段解扩 Z(/t) = ~∑Ps ii)ccch {i) , 式中 表示第几个信息符号, 为专用控 制信道的扩频因子, S )为扰码, 为专用控制信道的扩频码。 在专 用物理信道中, 控制部分和数据部分通过码分复用传输, 若不考虑专用物 理信道的多码传输时, 其中控制部分的扩频因子固定为 SF=256。 用导频段信息解扰解扩的结果估计 Rake合并的第 条多径的复增益 Gc (l) = -tz(k) , 式中 为导频位数; 进行信道补偿并对用户发送控制信息 q 1
进行判决^ = sign(imag(Yl)Gc*(l)), 式中 sign表示符号判决运算, imag表示取 虚部运算。
然后在步驟 120, 计算专用控制信道的信干噪比, 并且判断该信干噪 比是否满足要求。 该判断可以通过将获得的信干噪比与一个预定的门限进 行比较来完成。例如对于 WCDMA系统而言,这个预定门限可以是 4-7dB 或者更低。 如果判断信干噪比大于该预定门限, 则进行到步骤 125, 否则, 处理过程返回到步骤 101, 重新进行多径扫描。 进而在步骤 125, 重扩加扰专用控制信道信息, 作为参考信号, 求优 化权值。 例如在 WCDMA系统中, 控制部分每时隙 10个符号比特中前面 有 3至 8个是已知的导频符号, 因此在本发明的一个实施例中, 优选地, 在导频段时间内利用导频符号代替判决结果符号进行重扩加扰, 从而克服 判决^:带来的消极影响,使权值更接近于最佳权值。在非导频段时间内, 将判决出的非导频段信息扩频^ (t) = ^ (t)C(fcA (t), 再加扰 ds (t) = dd(0Sdp (t)。 然 后形成新的参考信号 =[ 】。 由于控制部分总是用 OVSF码 c„A = crf,256,。 扩频, 此扩频码序列的 256个数据全为 1, 这对降低解扩重扩算法的运算 复杂度是十分有利的。 最后, 利用新的参考信号和新的阵列接收信号
Figure imgf000007_0001
E[J¾*], 按照最小均方误差准则求得优 化权值 = 。
最后在步骤 130, 利用该优化权值, 波束形成来对专用数据信道进行 处理。 由于控制部分和数据部分的空中传播路径相同, 这样由控制部分更 新得到的权值对数据部分同样适用, 于是根据得到的优化权值求得相应数 据信息。
图 2是展示根据本发明的一个实施例智能天线装置的构成的方块图。 如图 2所示, 根据该实施例的智能天线包括: 由多个阵元(210.1-210.N ) 组成的天线阵列、 空域波束形成模块 21、 时域匹配滤波模块 22和重扩加 馈模块 23。 所述天线阵元 ( 210.1-210.N )还分别包括各自的天线前端 ( 图中未示出 ), 用于接收无线射频信号并且转换为接收信号
X = [Xl , x2 , - -xN ) , 这对于本领域技术人员是熟知的。
其中, 空域波束形成模块 21, 时域匹配滤波模块 22和重扩加扰反馈 模块 23同时又组成了才艮据本发明实施例的用于智能天线的波束形成装置。 下面就结合附图对根据本发明实施例的智能天线及其波束形成装置进行 详细描述。
空域波束形成模块 21 与天线阵列 ( 210.1-210.N ) 的每个阵元相连, 用于对天线阵列的接收信号 = [X, , χ2, ]进行波束形成。 空域波束形成模 块 21 包括: 多径扫描时延对齐单元 211、 权值估计单元 212、 乘法器 213.1-213.N和加法器 214。
多径扫描时延对齐单元 211, 用于以离散波束进行多径扫描, 获得延 时信息, 并且将天线阵列接收的信号延时对齐。 对于码分多址系统的智能 天线基站所接收的空时信号进行波束形成时的首要任务是估计不同路径 的时延, 没有准确的时延参数, 自适应波束形成将无从做起。 而时延的估 计是在波束形成之前, 也就是说时延估计时, 无法利用波束抑制波束外的 非期望用户, 所有激活用户 (某扇区)的信号都将被接收并相互干扰。 为 从根本上解决此问题,本发明利用离散波束进行扫描,即在给定的扇区内, 所配置智能天线一方面实现自适应波束形成跟踪用户的功能, 另一方面对 阵列接收的信号用波束来回扫描完成用户搜索的任务。 对于多径扫描时延 对齐单元 211, 我们将在下面结合其它附图进行详细的描述。
经过时延对齐的信号 ― [ , , · · · J, 同时被传递给相应的多个乘法器 213.1-213.N和权值估计单元 212。 权值估计单元 212, 用于根据由重扩加 扰反馈模块 23生成的参考信号和从天线阵列接收的信号 = [x1 5x2 , ...½ ],计 算出适当的用于波束形成的权值 Wl,W2,...,¾ , 具体做法是: 计算所述参考信 号和天线阵列的接收信号的相关矩阵, 按照最小均方误差准则求出的该相 关矩阵的近似解, 作为权值。 乘法器 213.1-213.N则分别根据相应的权值 w„w2 ,..., wN,进行各自的乘法运算。乘法运算的结果在加法器 214中被求和, 并作为波束形成的结果输出给时域匹配滤波模块 22。
时域匹配滤波模块 22包括: 解扰单元 221、解扩单元 222、 Rake合并 单元 223、数据比特判决单元 224和信干噪比计算判决单元 225。解扰单元 221和解扩单元 222, 用于对波束形成后的信号, 进行解扰和解扩。 Rake 合并单元, 用于将多个路径的信号进行 Rake合并。 数据比特判决单元, 用于将对 Rake合并后的信号判决输出所传送的数据比特。 信干噪比计算 判决单元 225, 用于计算判决出的数据与接收信号的信干噪比, 并且将计 算出的信干噪比与预定门限值进行比较, 从而判断是否满足要求。
重扩加扰反馈模块 23包括: 扩频单元 231和加扰单元 232。 当信干噪 比计算判决单元 225判断出信干噪比满足要求时, 扩频单元 231和加扰单 元 232对从时域匹配滤波模块 22输出的判决得到的数据,进行扩频和加扰, 从而生成参考信号 d(k)。 当信干噪比计算判决单元 225判断出信干噪比不 满足要求时, 或者当没有判决数据时, 扩频单元 231和加扰单元 232用已 知的专用控制信道导频位进行扩频和加扰, 作为参考信号 d(k);。
下面就以一个移动设备用户 w为例, 说明本实施例的工作情况。
首先对用户 m的每一个大延时多径分量分别在空域波束形成模块 21 进行波束形成, 设用户 m 的第 /条多径分量的接收权矢量为
W^ ^W^ ,...^† , 把输入分量; ^, ,...½与权值分量 W W ..., ^通过乘法器
213.1、 213.2、 ...213.N对应相乘, 并将各乘法器的输出输入到加法器 214 得到用户 m的第 条多径的波束形成器输出为:
N
将用户 的第 条多径经空域波束形成模块 21的输出,作为解扰单元 221、 解扩单元 222的输入, 进行解扰解扩:
^ n=(k-l) SF+l
将解扩单元 222的输出作为导频符号辅助 Rake合并单元 223的输入, 在导频符号辅助 Rake合并单元 223中利用导频信号估计每条多径的复振 幅, 假设一个时隙中含有 个导频符号, 这时期望用户的多径信号功率远 远大于干扰加噪声, 采用导频符号来获得同一时隙非导频段数据信道估计 的简单平均估计法, 用户 的第 条多径分量的信道估计为:
1 9
q i
然后根据各多径分量的信道估计按最大比准则进行相千 Rake合并, 接着在数据比特判决单元 224中进行判决, 假设"为数据比特位, 即可得 到用户 w的输出:
Figure imgf000010_0001
最后, 通过信干噪比计算判决单元 225进行信干噪比门限判决, 将满 足判决门限要求的数据比特输入到重扩加扰反馈模块 23中。
由于控制部分和数据部分的空中传播 J£| ^相同,这样更新得到的权值对 数据部分同样适用。控制部分每时隙 10个符号比特中前面有 3至 8个是已 知的导频符号, 在导频段时间内可以利用导频符号代替判决结果符号进行 重扩, 这样能克服判决错误带来的消极影响, 使权值更接近于最佳权值。 在非导频段时间内, 如果某个用户控制部分的笫 n个比特 bW被正确的检 测,这里 b(«)是检测器的输出,那么这个用户在时间区间 [(n-l)Tb,nTb] ( Tb 为比特周期, n 为正整数) 的信号波形可以通过用这个用户的控制部分扩 频码 重扩检测到的数据比特 )得到。 对信干噪比计算和判决单元 225的输出 6(«)及已知导频符号 (234)通过扩频单元 231和加扰单元 232分别 完成扩频和加扰, 并将此码片流做为新的参考信号 233来调整这个用户的 权值进行波束成形。
在刚开始接收用户发来的信号时, 没有判决输出 b(«), 重扩加扰反馈 模块 23将已知导频符号重扩加扰作为参考信号, 并且, 权值估计单元 212 计算该参考信号和天线阵列接收的导频信号的相关矩阵, 按照最小均方误 差准则求出的该相关矩阵的近似解, 作为所述初始权值。 另外, 当信干噪 比计算判决单元 225判断为不满足要求时,重扩加扰反馈模块 23也将已知 导频符号重扩加扰作为参考信号, 并且权值估计单元 212重新计算该参考 信号和天线阵列接收的导频信号的相关矩阵, 按照最小均方误差准则求出 的该相关矩阵的近似解, 作为所述初始权值。
图 3是展示根据本发明的一个实施例的多径扫描时延对齐单元的构成 的方块图。 如图 3所示, 时延扫描对齐单元 211包括: 扫描波束形成单元 2110、 时延搜索器 2112和时延对齐单元 2114。
来自天线阵列的接收信号被同时传递给时延对齐单元 2114和扫描波 束形成单元 2110。扫描波束形成单元 2110,用于对接收信号形成扫描波束, 其波束形成原理与前面描 目同, 不同之处在于, 针对各个阵元的权 值是事先根据要求计算好的, 即, 这些计算好的权值恰好形成单波束以一 预定间隔角度离散扫描在给定的小区或扇区。时延搜索器 2112则对扫描波 束形成单元 2110形成波束的信号, 搜索多径时延。 时延对齐单元 2114根 据时延搜索器 2112搜索到的多径时延,将天线阵列接收到的多径信号时延 对齐, 并分别输出给对应的乘法器 213.1-213.N。
下面结合图 4-6,说明时延搜索器 2112的组成和时延搜索的处理过程。 图 4图示了接收信号的解调处理。 设移动台发射信号为:
sT ( = I(t) cos(6 ci) + Q(t) s\n(fl)ct) (1)
其中 为载波频率, I为同相分量、 Q为正交分量。 设无线空间路径 的衰减因子为《, 时延为 相移 = 0^ , 则基站天线接收到的信号为: sR (t) = [I(t - τ) cos(«ct + φ) + Q(t一 τ) sin(6?ct + φ)] (2)
如图 4所示, 射频信号 (t)首先经扫描波束形成单元 2110波束形成, 再通 i±下变频和低通滤波。 其中:
Figure imgf000011_0001
a 、Γ ,η , (, a〜. 、Γ. ' ,η , , (3)
=—I(t - r)[cos(2iact + φ) + cos^] +—Q(t - 0[sin(2<¾ct + φ) + sin^]
2 2 经过低通滤波以后, 我们得到:
Χι (0 = - cos φ + Qit - τ) sin φ]
2 (4)
同理可得到:
X (t) = ^[-/(t - τ) sin φ + Qit - τ) cos φ] (5)
2
图 5图示了延时搜索器的构成的一个例子, 图 6图示了码滤波器的构 成的一个例子。 其中 TC为时钟周期。 码滤波器以 bit脉冲为基准, 假设 8 倍过采样以及在专用数据信道( DPDCH ) 中加扰时可用长扰码也可用短 扰码, 选取寄存器长度为 SF*8 (SF为扩频因子)。 S,表示扰码的实部, sQ 表示扰码的虚部。 对长扰码而言, 为非周期码滤波器, 对短扰码而言为周 期码滤波器。 由于码滤波器的输出只与控制信息有关, 而与业务信道信息 无关。 四路码滤波器输出经非相干处理后, 分别将 (Z12)2和 (Z34)2相加, 就会得到用户信号的能量分布, 经过峰值检测获得时延 r的估计。 对于不 同时延的多径信号可获得多个峰值, 值的高低代表该径信号的强弱 (即 用户信号能量的分布), 于是根据峰值所在的位置可确定该径的时延。
下面对搜索过程进行详细说明。
例如, 在一个 WCDMA无线多径信道, 用户有 条 , 则其信道 响应为:
Figure imgf000012_0001
式中, τ «,、 ^分别为用户的第 /条路径的时延、 衰减因子和相位, 时延搜索也就是对 进行估计。 由于多径信号是多个单径叠加过程, 不失 一般性, 我们仅考虑在单用户单径无干扰的条件下进行推导, 根据(4)和 (5)式, 我们可得到 ,(0和 ^(0, 进行以下处理:
X, (0 · SCQ (f) = /(t - T)SCQ ( COS + ^Qit- T)Scq (t')sin^
(7)
式中, (t)表示扰码的虚部, t'表示扰码的时延(卜 ), 7(
再经信道化码 cc(t)的过滤即可得到分离的控制信道, 又由于专用控制信道 ( DPCCH )的信道化码为全 1, 及信道化码的正交性, 所以:
XT (0 · SCQ ( = ~βΑ (t - r)SCQ (t― T)Scq (t') cos φ ^βΜ- it - )SCQ (f) sin φ 同理:
XQ t) · SCI ( =| (t - T)SCR (t― T)Sci (t')cos φ
a
+ - (t― T)Scq (t― T)Sci (t,) sin φ
2 (9) 如果码滤波器搜索到了路径,即 ^ - r时,且码滤波器长度为 G*8chip 时, 有 | ,(0 (0 = o, 所以根据式(8 )和(9 )就可进一步得到:
Figure imgf000013_0001
其中: r6为比特周期, 为 b的第 n个比特, G为扩频倍数。 将 Z1 Z2合并得 :
Z12 = Z2 -Z1 = aficbc n cos^ ( 12 )
同理:
Figure imgf000013_0002
Figure imgf000013_0003
Z34 = Z3 + Z4 = a cbc n sin^G ( 15 )
于是我们可分别将 (Z12)2和 (Z34)2相加, 就会得到用户信号的能量分 布, 经过峰值检测获得时延 r的估计。
在理想状态, 如果 卜 则码滤波所得 Z值将大于 0; 当 r时, 则码滤波所得 Z值应恒为 0, 在这种情况下, 只要搜索到不为 0的 Z值的 位置, 即可确定时延。 然而, 由于扰码的自相关性和互相关性还不理想, 再加之噪声的影响及过采样, 使得 Z值在 卜 r时, 也不排除会出现较大 的峰值(称伪峰), 这就为时延的估计带来了一定的问题和难度。 为了准 确估计时延, 这里要解决两个问题: 一是合理硝定峰值门限, 以剔除伪峰; 二是在超过峰值门限的众多 Z值中检测出真正的峰值位置, 以达准确估计 时延的目的。
本实施例中峰值门 P艮采用 Z值大于未进行滤波前所有接收到的信号的 平均功率的 4倍的值作为峰值门限 峰值检测中以极大值点左边的斜率 大于 0, 而右边的斜率小于 0。 峰值门限检测由以下几个主要部分组成:
(1) 峰值粗选
在 Z 值中选出大于峰高门限的点作为候选峰值点 ( keP ),
{P|z(p)≥ 。 p为可能峰值点的集合, 单位为 l/8chip, 在这些选出的候选 峰中, 可能包含一些真峰左右的点, 它们并不是峰值点, 还需对其做进一 步处理。
( 2 )选峰前的预处理
在选峰之前, 取左斜率的符号函数 A
D, (k) = sign[Z(k) -Z(k-l)] (16)
及右斜率的符号函数
Dr (k) = sign[Z(k) -Z(k + l)] ( 17)
(3)峰识别逻辑
根据峰的特性,在上述预处理的基础上, 不难得到峰识别 £辑。若 为 峰值点, 则有:
Dl(k) + Dr(k) = 2 ( 18)
而非峰值点处定有:
D,(k) + Dr(k)≤l (19)
检测出满足式(18)的点的集合, 再乘以 l/8chip 的持续时间即为要 求时延 (/ = 1,2,3,··., ), 为可检测出的路径数目。
以上所述的构成本发明实施例的智能天线的波束形成装置的各个组 成部分, 可以是硬件模块, 也可以是软件模块, 可以把这些模块做在专用 芯片或 FPGA中, 也可以把一部分模块在 DSP中用软件实现。
图 7是展示才艮据本发明的一个实施例智能天线空间布局的示意图。 目 前蜂窝小区内多采用定向天线, 将一个小区分为三个扇区。 在如图 7所示 的本发明实施例中, 天线阵列由三组均匀线阵单元组成, 即第一组 3.101、 3.102、 3.103、 3.104, 第二组 3.201、 3.202 3.203、 3.204和第三组 3.301、 3.302、 3.303、 3.304, 每组天线扫描 120度的空间范围。 这种扫描不会太 费时,因一个扇区 120度,天线阵元个数为 4个,此时波瓣最小宽度为 25.25 度,若选离散波束扫描角度间隔为 25度,完成一次扫描仅需 5次波束角度 变换即可。
图 8和 9 示根据本发明的实施例的输入-输出信干噪比的曲线图。 实验的仿真 为: 4阵元均匀线阵, 20个用户, 每个用户有 4条等强度 Jack衰落多径。 其中, 图 8显示的是使用本发明的实施例的智能天线在宏 小区、 20个用户、 20帧数据长度、符号速率 60 kbit/s、移动台速度 30km/h 环境下的数据信道的输出 SINR。 横坐标 Eb/ΝΟ表示输入信噪比, 变化范 围是 4 ~ 12dB, 间隔为 2dB。 从图中可以看出, 当输入信噪比为 8dB, 本 发明的输出信噪^为接近 8.7dB, 而没有波束扫描的方法输出信噪比大约 为 5.3dB,相差 3.5个 dB; 输入信噪比为 4、 6、 10和 12dB时, 结果类似。 可见, 采用本发明方法后输出信噪比得到提高。
图 9显示的是使用本发明的实施例的智能天线在宏小区、 20个用户、 符号速率 60 kbit/s、移动台速度 240km/h环境下的数据信道的输出 SINR。 横坐标 Eb/ Ο表示输入信噪比, 变化范围是 4 ~ 12dB, 间隔为 2dB。 当输 入信噪比为 8dB, 本发明的输出信噪比为接近 5,6dB, 而没有波束扫描的 方法输出信噪比大约为 0.9dB, 相差 4.7个 dB; 输入信噪比为 4、 6、 10 和 12dB时, 结果类似。 同样, 采用本发明方法后输出信噪比得到提高。
以上虽然通过本发明的一些示例性的实施例对本发明进行了详细的 描述, 但是以上这些实施例并不是穷举的, 本领域技术人员可以在本发明 的精神和范围内实现各种变化和修改。 例如, 以上所描述的实施例虽然是 针对 WCDMA 系统, 但是本领域技术人员应当可以理解, 对于其它基于 码分多址的系统, 也是适用的。 因此, 本发明并不限于这些实施例, 本发 明的范围仅由所附权利要求为准。

Claims

权利要求
1. 一种智能天线的波束形成方法, 包括:
用离散波束对接收信号进行多径扫描, 获得多径延时信息; 根据所述多径延时信息, 对接收信号进行延时对齐; 以及
对延时对齐后的接收信号进行自适应形成波束。
2. 根据权利要求 1所述的波束形成方法, 其特征在于, 所述多径扫描 步驟包括:
以预定的角度间隔、 预定宽度的离散波束扫描给定区域;
当在一个或多个扫描角度上发现期望用户时, 记录所述扫描角度; 以 及
计算对应所述扫描角度的多径的时延。
3. 根据权利要求 2所述的波束形成方法, 其特征在于, 所述扫描波束 的角度间隔小于最小波束宽度。
4. 根据权利要求 1所述的波束形成方法, 其特征在于, 所述自适应形 成波束的步驟包括:
用专用控制信道的导频信号作为参考信号求初始权值;
利用所述初始权值, 对阵列接收的信号进行空域处理;
根据上述空域处理后的信号, 获得专用控制信道信息的判决输出; 根据已知的和判决出的专用控制信道信息, 求优化权值; 以及 利用上述优化权值, 形成波束, 处理专用数据信道信息。
5. 根据权利要求 4所述的波束形成方法, 其特征在于, 在所述获得专 用控制信道信息的判决输出的步骤之后, 还包括:
估计判决输出的数据比特的信干噪比; 以及
如果所述信干噪比小于一个预定门限, 重复前面的步驟。
6. 根据权利要求 4所述的波束形成方法, 其特征在于, 在所述求初始 权值的步骤包括:
对已知的专用控制信道导频位进行扩频加扰; 计算所述扩频解扰得到的导频信号和阵列接收的导频信号的相关矩 阵; 以及
按照最小均方误差准则求出的该相关矩阵的近似解, 作为初始权值。
7. 根据权利要求 4所述的波束形成方法, 其特征在于, 所述对阵列接 收的信号进行空域处理的步驟包括: 根据搜索得到的多径信息, 利用所述 初始权值, 对用户的每一个大时延多径分量分别进行波束形成。
8. 根据权利要求 4所述的波束形成方法, 其特征在于, 所述获得专用 控制信道信息的判决输出的步驟包括:
对斤述导频时间段的波束形成信号进行解扩和解扰; 以及
使用该解扰解扩的结果估计复增益, 对控制部分非导频段信息进行判 决。
9. 根据权利要求 5所述的波束形成方法, 其特征在于, 所述求优化权 值的步骤包括:
将已知的导频符号和判决出的非导频信息扩频加扰, 作为新的参考信 号; 以及
计算该新的参考信号和新的接收信号的相关矩阵, 并按照最小均方误 差准则求出优化权值。
10. 一种智能天线的波束形成装置, 包括:
空域波束形成模块, 用于对天线阵列接收的信号进行波束形成, 所述 空域波束形成模块, 具有: 多径扫描时延对齐单元, 用于以离散波束进行 多径扫描, 获得延时信息, 并且将天线阵列接收的信号延时对齐;
时域匹配滹波模块, 用于根据由所述空域波束形成模块波束形成的信 号, 获得传送的数据; 以及
重扩加扰反馈模块, 用于根据由所述时域匹配滤波模块获得的数据信 息, 生成参考信号, 反馈给所述空域波束形成模块。
11. 根据权利要求 10所述的波束形成装置,其特征在于,所述多径扫描 时延对齐单元包括:
扫描波束形成单元, 用于以预定的角度间隔、 预定宽度的形成离散扫 时延搜索器, 用于对由所述扫描波束形成单元形成的扫描波束, 搜索 多径时延; 以及
时延对齐单元, 根据所述时延搜索器搜索到的多径时延, 将天线阵列 接收到的多径信号时^ r齐。
12. 根据权利要求 10所述的波束形成装置,其特征在于,所述空域波束 形成模块进一步包括:
权值估计单元, 用于根据重扩加扰反 ft模块反馈的参考信号, 计算用 于波束形成的多个权值;
多个乘法器, 分别用于将权值估计单元计算出来的相应权值与相应天 线阵列的阵元的接收信号相乘; 以及
加法器, 用于将多个乘法器的输出相加。
13. 根据权利要求 10所迷的波束形成装置,其特征在于,所述时域匹配 滤波模块包括:
解扰解扩单元, 用于对由所述空域波束形成模块波束形成的信号, 解 扰解扩;
Rake合并单元, 用于将多个路径的信号进行 Rake合并; 以及 数据比特判决单元, 用于将对 Rake合并后的信号判决输出所传送的 数据。
14. 根据权利要求 10所述的波束形成装置,其特征在于,所述重扩加扰 反馈模块包括:
重扩加扰羊元, 用于对由所述时域匹配滤波模块获得的传送数据, 重 扩加扰, 作为参考信号。
15. 根据权利要求 12所述的波束形成装置,其特征在于,所述权值估计 单元计算所述参考信号和天线阵列的接收信号的相关矩阵, 按照最小均方 误差准则求出的该相关矩阵的近似解, 作为所述权值。
16. 根据权利要求 15所述的波束形成装置,其特征在于,在没有获得传 送的数据的情况下, 重扩加扰反馈模块用已知的专用控制信道导频位进行 扩频加扰, 作为参考信号, 所述权值估计单元, 计算该参考信号和天线阵 列接收的导频信号的相关矩阵, 按照最小均方误差准则求出的该相关矩阵 的近似解, 作为所述权值。
17. 一种智能天线, 包括: 由多个阵元组成的天线阵列和权利要求 10 至 16所述的波束形成装置。
PCT/CN2002/000946 2002-09-24 2002-12-31 Antenne a microprocesseur et procede et dispositif de formation de faisceau pour cette antenne a microprocesseur WO2004030239A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004538647A JP4183134B2 (ja) 2002-09-24 2002-12-31 スマートアンテナ及びそのビーム形成方法と装置
AU2002357571A AU2002357571A1 (en) 2002-09-24 2002-12-31 A smart antenna and a method and a device for forming beam of the smart antenna
EP02807856.6A EP1545023B1 (en) 2002-09-24 2002-12-31 A smart antenna and a method and a device for forming beam of the smart antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNA021372381A CN1486106A (zh) 2002-09-24 2002-09-24 智能天线自适应波束形成装置和方法
CN02137238.1 2002-09-24

Publications (1)

Publication Number Publication Date
WO2004030239A1 true WO2004030239A1 (fr) 2004-04-08

Family

ID=32034731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2002/000946 WO2004030239A1 (fr) 2002-09-24 2002-12-31 Antenne a microprocesseur et procede et dispositif de formation de faisceau pour cette antenne a microprocesseur

Country Status (6)

Country Link
EP (1) EP1545023B1 (zh)
JP (1) JP4183134B2 (zh)
KR (1) KR100770498B1 (zh)
CN (1) CN1486106A (zh)
AU (1) AU2002357571A1 (zh)
WO (1) WO2004030239A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006092090A1 (en) 2005-03-02 2006-09-08 Zte Corporation A method and equipment for realizing smart antenna in wcdma system
CN105375963A (zh) * 2014-08-27 2016-03-02 上海贝尔股份有限公司 一种用于微小区基站的辐射图可配置的天线
CN113572523A (zh) * 2021-07-27 2021-10-29 华中科技大学 一种同源相干系统在线本征和信号相对传输时延估计方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059793A1 (fr) * 2002-12-31 2004-07-15 Zte Corporation Antenne intelligente et dispositif de formation de faisceau adaptatif
CN101084633B (zh) * 2004-12-17 2011-05-18 华为技术有限公司 多径搜索器、细化处理单元及进行波达方向估计的方法
US20090190544A1 (en) * 2008-01-25 2009-07-30 Qualcomm Incorporated Method and apparatus for channel identification in a wireless communication system
ATE474382T1 (de) * 2008-05-16 2010-07-15 Alcatel Lucent Halbstatisches strahlbildungsverfahren und vorrichtung
CN101515816B (zh) * 2009-04-02 2012-12-12 重庆航天火箭电子技术有限公司 最大化sjnr准则的自适应分群预编码方法
US7994982B2 (en) 2009-06-12 2011-08-09 Raytheon Company Method and apparatus for bounded time delay estimation
US9578644B2 (en) * 2014-09-26 2017-02-21 Mediatek Inc. Beam misalignment detection for wireless communication system with beamforming
CN113556752A (zh) * 2015-10-02 2021-10-26 瑞典爱立信有限公司 自适应波束成形扫描
CN105227227B (zh) * 2015-10-15 2018-10-12 宿州学院 一种基于小波的智能天线波束形成系统和方法
CN111694023A (zh) * 2020-06-08 2020-09-22 西安交通大学 一种基于解重扩的卫星导航抗干扰接收处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5714957A (en) * 1993-08-12 1998-02-03 Northern Telecom Limited Base station antenna arrangement
WO2000051364A2 (en) * 1999-02-26 2000-08-31 Telefonaktiebolaget Lm Ericsson (Publ) Method for antenna gain acquisition in a cellular system
US6177906B1 (en) 1999-04-01 2001-01-23 Arraycomm, Inc. Multimode iterative adaptive smart antenna processing method and apparatus
EP1093241A1 (en) 1998-06-30 2001-04-18 NEC Corporation Adaptive transmitter/receiver
EP1161001A2 (en) 2000-06-02 2001-12-05 Nec Corporation Multi-beam receiving apparatus
CN1357975A (zh) * 2000-12-14 2002-07-10 华为技术有限公司 用于无线通信系统上行接收自适应阵列的方法及其接收机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3328930B2 (ja) * 1998-02-13 2002-09-30 日本電気株式会社 適応受信装置
JP2002262328A (ja) * 2000-12-25 2002-09-13 Toshiba Corp 移動通信端末装置
JP3877522B2 (ja) * 2000-12-28 2007-02-07 日本無線株式会社 無線通信システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5714957A (en) * 1993-08-12 1998-02-03 Northern Telecom Limited Base station antenna arrangement
EP1093241A1 (en) 1998-06-30 2001-04-18 NEC Corporation Adaptive transmitter/receiver
WO2000051364A2 (en) * 1999-02-26 2000-08-31 Telefonaktiebolaget Lm Ericsson (Publ) Method for antenna gain acquisition in a cellular system
US6177906B1 (en) 1999-04-01 2001-01-23 Arraycomm, Inc. Multimode iterative adaptive smart antenna processing method and apparatus
EP1161001A2 (en) 2000-06-02 2001-12-05 Nec Corporation Multi-beam receiving apparatus
CN1357975A (zh) * 2000-12-14 2002-07-10 华为技术有限公司 用于无线通信系统上行接收自适应阵列的方法及其接收机

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MINAKO KITAHARA ET AL.: "VTC2000-Spring", IEEE 51ST VEHICULAR TECHNOLOGY CONFERENCE PROCEEDINGS, vol. 2, 2000, pages 710 - 715
See also references of EP1545023A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006092090A1 (en) 2005-03-02 2006-09-08 Zte Corporation A method and equipment for realizing smart antenna in wcdma system
CN105375963A (zh) * 2014-08-27 2016-03-02 上海贝尔股份有限公司 一种用于微小区基站的辐射图可配置的天线
CN113572523A (zh) * 2021-07-27 2021-10-29 华中科技大学 一种同源相干系统在线本征和信号相对传输时延估计方法

Also Published As

Publication number Publication date
KR20050057562A (ko) 2005-06-16
EP1545023A4 (en) 2009-07-15
AU2002357571A1 (en) 2004-04-19
JP2006500834A (ja) 2006-01-05
KR100770498B1 (ko) 2007-10-25
EP1545023B1 (en) 2016-09-07
EP1545023A1 (en) 2005-06-22
CN1486106A (zh) 2004-03-31
JP4183134B2 (ja) 2008-11-19

Similar Documents

Publication Publication Date Title
US6347234B1 (en) Practical space-time radio method for CDMA communication capacity enhancement
JP4421106B2 (ja) Cdma通信容量を改善するための実用的な空間−時間無線方法
JP4131702B2 (ja) 単純なアンテナアレイを使用した干渉の低減
KR100735813B1 (ko) 차세대 코드분할다중접속 무선 통신용 스마트안테나에서의 가중 벡터 생성 방법
CN100499398C (zh) 宽带码分多址系统智能天线的实现方法及装置
WO2000025439A1 (en) Method and apparatus for multipath demodulation in a code division multiple access communication system
Chen et al. Joint angle and delay estimation for DS-CDMA with application to reduced dimension space-time RAKE receivers
KR20030064878A (ko) 적응성 안테나 시스템을 위한 매개 변수 추정
US20070189362A1 (en) Method and system for channel estimation, related receiver and computer program product
WO2004030239A1 (fr) Antenne a microprocesseur et procede et dispositif de formation de faisceau pour cette antenne a microprocesseur
CN100429826C (zh) 智能天线及其自适应波束形成方法和装置
WO1998008319A1 (en) Rake receiver for spread spectrum signal demodulation
WO1998008319A9 (en) Rake receiver for spread spectrum signal demodulation
US20070189148A1 (en) Signal transmitting method (variants) and device for carrying out said method
KR100329110B1 (ko) 칩 레벨 및 시간 기준 빔 형성 알고리즘을 적용한공간-시간 배열 수신시스템
RU2262198C1 (ru) Способ передачи сигнала и устройство для его реализации
Zahid Space-time Processsing for the Wideband-CDMA System
Haddad et al. BER performance of smart antenna systems operating over Rayleigh fading channels
RU2289203C2 (ru) Способ передачи сигнала (варианты) и устройство для его реализации (варианты)
Katz et al. Recent advances in multi-antenna based code acquisition
Durrani et al. Performance analysis of beamforming in ricean fading channels for CDMA systems
Durrani et al. A simple model for performance evaluation of a smart antenna in a CDMA system
DURRANI et al. POS-A-20
Ghanem et al. A novel on off antenna-array algorithm for CDMA mobile communications systems
KR20040046499A (ko) 기지국 스마트 안테나의 개선된 빔형성 방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2002807856

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002807856

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020057005011

Country of ref document: KR

Ref document number: 2004538647

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 1020057005011

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2002807856

Country of ref document: EP