明細 : Details :
技術分野 Technical field
本発明は、 圧縮機、 放熱器、 絞り装置、 蒸発器を環状に接続して構成するヒー 卜ポンプ装置を備えた乾燥装置に関する。 背景技術 The present invention relates to a drying device provided with a heat pump device configured by connecting a compressor, a radiator, a throttle device, and an evaporator in a ring shape. Background art
一般家庭にて使用される電気式の衣類乾燥機は、 乾燥に必要な熱量は電気ヒー タで電気エネルギーから変換されたちのであり、 家庭用のコンセントの電流容量 からその熱量には限界があり、 衣類乾燥時間短縮の障害となっていた。 まだ、 衣 類乾燥に使用され 熱は再利用されることなく外部へ排出されていたので、 エネ ルギ一的に無駄 あつた。 Electric clothes dryers used in ordinary households use a heater to convert the amount of heat required for drying from electric energy, and the amount of heat is limited by the current capacity of household outlets. This was an obstacle to shortening the clothes drying time. Since it was still used for drying clothes and the heat was discharged to the outside without being reused, it was wasted energy.
従来の衣類乾燥機としては、 ヒー卜ポンプ装置を衣類乾燥の熱源として用いる とともに、 乾燥用空気の一部を本体の外へ排出することで、 低電力でかつ高除湿 率の衣類乾燥機が提案されている (例えば特開平了一 1 了 8 2 8 9号公報 (第 4 —5頁、 図 1 ) 参照) 。 図 1 3は、 特開平 7—1 7 8 2 8 9号公報に記載された 従来の乾燥装置である。 As a conventional clothes dryer, a clothes dryer with low power and high dehumidification rate is proposed by using a heat pump device as a heat source for drying clothes and discharging a part of the drying air out of the main body. (See, for example, Japanese Unexamined Patent Publication No. Hei 8-18289 (pages 4-5, FIG. 1)). FIG. 13 shows a conventional drying apparatus described in Japanese Patent Application Laid-Open No. 7-178289.
図に示す乾燥装置おいて、 回転ドラ厶 1 2 2は、 乾燥装置の本体 1 2 1 内にて 回転自在に設けられて内部の衣類 1 3 6を乾燥するための乾燥室であり、 モータ 1 2 7によってドラムベルト 1 3 5を介して駆動される。 送風機 1 2 3は、 矢印 Mで示される流れ方向に、 乾燥用空気を回転ドラム 1 2 2からフィルタ 1 2 4及 び回転ドラム側吸気ロ 1 2 5を通って循環ダクト 1 2 6へ送るためのものであり 、 モータ 1 2 7によってファンベル卜 1 2 8を介して駆動される。 In the drying device shown in the figure, a rotating drum 1 2 2 is a drying chamber that is rotatably provided in the main body 1 2 1 of the drying device and dries clothes 1 3 6 therein. Driven by 2 7 via drum belt 1 3 5. The blower 1 2 3 sends drying air from the rotating drum 1 2 2 to the circulation duct 1 2 6 through the filter 1 2 4 and the rotating drum side intake air 1 2 5 in the flow direction indicated by the arrow M. It is driven by a motor 127 through a fan belt 128.
また、 循環ダクト 1 2 6内に置かれた蒸発器 1 2 9は、 冷媒を蒸発させること によって乾燥用空気を冷却除湿し、 凝縮器 1 3 0は、 泠媒を凝縮させることによ つて循環ダク卜 1 2 6内を流れる乾燥用空気を加熱する。 この加熱され 乾燥用 空気は、 循環ダク卜 1 2 6に導かれて再び乾燥室に戻る。 また乾燥用空気の一部 は、 排気口 1 3 4から本体 1 2 1外へ排出される。 圧縮機 1 3 1は、 冷媒に圧力
差を生じさせ、 キヤビラリチューブ等からなる膨張機構 1 3 2は、 冷媒の圧力差 を維持する。 そして、 これらの蒸発器 1 2 9、 凝縮器 1 3 0、 圧縮機 1 3 1、 及 び膨張機構 1 3 2を配管 1 3 3で接続し、 その配管 1 3 3に冷媒を流してヒート ポンプ装置を構成している。 In addition, the evaporator 1 29 placed in the circulation duct 1 26 cools and dehumidifies the drying air by evaporating the refrigerant, and the condenser 130 circulates by condensing the solvent. The drying air flowing through duct 1 2 6 is heated. The heated drying air is guided to the circulation duct 126 to return to the drying chamber again. A part of the drying air is discharged from the exhaust port 1 34 to the outside of the main body 121. Compressor 1 3 1 pressurizes refrigerant A difference is generated, and the expansion mechanism 13 2 including a capillary tube or the like maintains the pressure difference of the refrigerant. Then, these evaporator 12 9, condenser 13 0, compressor 13 1, and expansion mechanism 13 2 are connected by piping 13 3, and refrigerant is passed through the piping 13 3 to heat pump Make up the device.
一方、 上記ヒー卜ポンプ装置の冷媒として、 H C F C冷媒 (分子中に塩素、 水 素、 フッ素、 炭素の各原子を含 冷媒) ゆ、 H F C冷媒 (分子中に水素、 フッ素 、 炭素の各原子を含 冷媒) が従来使われてきたが、 オゾン層破壊あるいは地球 温暖化に直接的に影響するので、 これらの代替冷媒として、 自然界に存在する炭 化水素ゆ二酸化炭素 (以下 C〇2と記す) などの自然冷媒への転換が提案されて し、る。 On the other hand, as a refrigerant for the heat pump device, HCFC refrigerant (a refrigerant containing each atom of chlorine, hydrogen, fluorine, and carbon in a molecule) and HFC refrigerant (a hydrogen atom containing each atom of hydrogen, fluorine, and carbon in a molecule) are used. While refrigerant) has been used conventionally, since directly affect the ozone layer destruction or global warming, as these alternative refrigerants, referred to coal hydrogen boiled carbon dioxide (hereinafter C_〇 2 existing in nature) such as Conversion to natural refrigerant has been proposed.
しかしながら、 上記従来の乾燥装置では、 電気ヒータによる加熱をヒー卜ポン プによる加熱に代替することで、 必要な電気エネルギーを削減できるが、 少なく とも冷凍サイクルを構成する圧縮機、 凝縮器、 膨張機構、 蒸発器を設けることが 必須要件であり、 電気ヒータを用い 乾燥装置に比べて構成要素が多く、 装置が 大型化するので、 小型化しなければならないという課題があった。 However, in the above-mentioned conventional drying apparatus, the required electric energy can be reduced by replacing the heating by the electric heater with the heating by the heat pump, but at least the compressor, the condenser and the expansion mechanism constituting the refrigeration cycle are required. However, the provision of an evaporator is an essential requirement, and there are many components compared to a drying device using an electric heater.
特に、 ヒートポンプ装置の冷凍サイクルを考えると、 凝縮器から乾燥用空気へ 放出する熱量は、 蒸発器にて乾燥用空気から吸い上げる熱量に、 圧縮機の消費電 気エネルギーに相当する熱量を加えた熱量であるため、 一般的に凝縮器の大きさ を蒸発器よりも著しく大きくする必要があり、 ヒー卜ポンプを用いた乾燥装置の 大きさが増大する要因になっていた。 In particular, considering the refrigeration cycle of a heat pump device, the amount of heat released from the condenser to the drying air is the amount of heat absorbed by the evaporator from the drying air plus the amount of heat equivalent to the energy consumed by the compressor. Therefore, the size of the condenser generally needs to be significantly larger than that of the evaporator, which has been a factor of increasing the size of the drying apparatus using the heat pump.
一方、 オゾン層破壊あるいは地球温暖化に直接的に影響しない C O 2などの自 然冷媒を用いて、 さらに地球温暖化への間接的な影響を小さくするための省エネ ルギー化を実現しなければならないという課題があった。 On the other hand, natural refrigerants such as CO 2 that do not directly affect ozone depletion or global warming must be used to achieve energy savings that further reduce the indirect impact on global warming. There was a problem.
本発明は、 上記従来の問題点に鑑みて成されたちのであり、 冷媒として c o 2 等の冷凍サイクルの放熱側で超臨界状態となりうる冷媒を用いた揚合にち、 装置 の大型化を抑制し、 さらなる高効率化を実現するヒー卜ポンプ方式の乾燥装置を 提供することを目的とする。 発明の開示
本発明の第 1の実施の形態による乾燥装置は、 冷媒が、 圧縮機、 放熱器、 絞り 装置、 蒸発器の順に循環するヒー卜ポンプ装置を備え、 放熱器で加熱され^空気 を乾燥室に導き、 乾燥室から出 空気を蒸発器にて除湿し、 蒸発器で除湿した空 気を再び放熱器にて加熱する乾燥装置であって、 放熱器に水を滴下あるいは嗔霧 する撒水機構を備えたことを特徴とする。 The present invention is the a Chino been made in consideration of the conventional problems, Agego date with refrigerant can be brought into a supercritical state on the heat radiation side of the refrigeration cycle of co 2 such as a refrigerant, suppressing an increase in the size of the device In addition, it is an object of the present invention to provide a heat pump type drying device that achieves higher efficiency. Disclosure of the invention The drying device according to the first embodiment of the present invention includes a heat pump device in which a refrigerant circulates in the order of a compressor, a radiator, a throttling device, and an evaporator. A drying device that guides and dehumidifies the air exiting the drying chamber with an evaporator, and heats the air dehumidified with the evaporator again with a radiator, equipped with a water spray mechanism that drops water or sprays the radiator. It is characterized by having.
本発明の第 2の実施の形態は、 第 1 の実施の形態による乾燥装置において、 撒 水機構は、 蒸発器で空気が除湿されて発生するドレン水を、 滴下あるいは噴霧す ることを特徴とする。 According to a second embodiment of the present invention, in the drying device according to the first embodiment, the water spraying mechanism is characterized by dropping or spraying drain water generated by dehumidifying air in an evaporator. I do.
本発明の第 3の実施の形態は、 第 1 の実施の形態による乾燥装置において、 蒸 発器と放熱器の間の空気に含まれる水分を回収する回収機構を備え ことを特徴 とする。 The third embodiment of the present invention is characterized in that the drying device according to the first embodiment is provided with a collecting mechanism for collecting moisture contained in air between the evaporator and the radiator.
本発明の第 4の実施の形態は、 第 1 の実施の形態による乾燥装置において、 蒸 発器および放熱器は伝熱管とフィンから構成され、 蒸発器で乾燥用空気が除湿さ れて発生するドレン水を、 ポンプで汲み上げ放熱器に噴霧する機構を備え こと を特徴とする。 According to a fourth embodiment of the present invention, in the drying device according to the first embodiment, the evaporator and the radiator are constituted by heat transfer tubes and fins, and are generated by dehumidifying the drying air in the evaporator. It has a mechanism to pump drain water and spray it to a radiator.
本発明の第 5の実施の形態による乾燥装置は、 冷媒が、 圧縮機、 放熱器、 絞り 装置、 蒸発器の順に循環するヒ一卜ポンプ装置を備え、 放熱器で加熱され 空気 を乾燥室に導き、 乾燥室から出 空気を蒸発器にて除湿し、 蒸発器で除湿した空 気を再び放熱器にて加熱する乾燥装置であって、 蒸発器を放熱器の上方に設置し 、 当該蒸発器による除湿で発生したドレン水を放熱器に滴下あるいは噴霧する撒 水機構を備え ことを特徴とする。 The drying device according to the fifth embodiment of the present invention includes a heat pump device in which a refrigerant circulates in the order of a compressor, a radiator, a throttling device, and an evaporator, and heats the air by the radiator into the drying chamber. A drying device for guiding and dehumidifying the air exiting from the drying chamber with an evaporator, and heating the air dehumidified by the evaporator again with a radiator, wherein the evaporator is installed above the radiator, and And a spraying mechanism for dropping or spraying drain water generated by dehumidification by the radiator.
本発明の第 6の実施の形態は、 第 5の実施の形態による乾燥装置において、 ド レン水を重力ま は風力により、 放熱器に滴下させることを特徴とする。 The sixth embodiment of the present invention is characterized in that, in the drying device according to the fifth embodiment, drain water is dropped on a radiator by gravity or wind power.
本発明の第了の実施の形態は、 第 6の実施の形態による乾燥装置において、 蒸 発器を構成するフィンの重力方向下端面に凹凸を設けたことを特徴とする。 The sixth embodiment of the present invention is characterized in that, in the drying device according to the sixth embodiment, unevenness is provided on a lower surface in a gravitational direction of a fin constituting an evaporator.
本発明の第 8の実施の形態は、 第 5の実施の形態による乾燥装置において、 蒸 発器を構成するフィンが、 フィン基材を折り曲げ コルゲ一卜伏フィンであるこ とを特徴とする。 An eighth embodiment of the present invention is characterized in that, in the drying device according to the fifth embodiment, the fin constituting the evaporator is a corrugated fin by bending a fin base material.
本発明の第 9の実施の形態は、 第 5の実施の形態による乾燥装置において、 蒸
発器および放熱器は伝熱管とフィンから構成され、 蒸発器で乾燥用空気が除湿さ れて発生するドレン水を、 ポンプで汲み上げ放熱器に噴霧する機構を備えたこと を特徴とする。 A ninth embodiment of the present invention is directed to a drying apparatus according to the fifth embodiment, The generator and radiator are composed of heat transfer tubes and fins, and have a mechanism to pump up the drain water generated by dehumidifying the drying air in the evaporator and spray it to the radiator.
本発明の第 1 〇の実施の形態は、 第 5の実施の形態による乾燥装置において、 蒸発器と放熱器の間の空気に含まれる水分を回収する回収機構を備えたことを特 徴とする。 The first embodiment of the present invention is characterized in that the drying device according to the fifth embodiment is provided with a collecting mechanism for collecting moisture contained in air between the evaporator and the radiator. .
本発明の第 1 1 の実施の形態による乾燥装置は、 冷媒が、 圧縮機、 放熱器、 絞 り装置、 第 1 の蒸発器、 第 2の蒸発器の順に循環するヒ一卜ポンプ装置を備え、 放熱器で加熱された空気を乾燥室に導き、 乾燥室から出た空気を第 1の蒸発器及 び第 2の蒸発器にて除湿し、 第 1 の蒸発器及び第 2の蒸発器で除湿した空気を再 び放熱器にて加熱する乾燥装置であって、 第 1 の蒸発器による除湿で発生したド レン水を排出する排水機構と、 第 2の蒸発器による除湿で発生したドレン水を放 熱器に滴下あるいは噴霧する撒水機構を備え ことを特徴とする。 The drying device according to the eleventh embodiment of the present invention includes a heat pump device in which a refrigerant circulates in the order of a compressor, a radiator, a throttling device, a first evaporator, and a second evaporator. The air heated by the radiator is led to the drying chamber, and the air exiting the drying chamber is dehumidified by the first evaporator and the second evaporator, and is dehumidified by the first evaporator and the second evaporator. A drying device that reheats the dehumidified air with a radiator, a drainage mechanism that discharges drain water generated by dehumidification by the first evaporator, and a drain water generated by dehumidification by the second evaporator. A spraying mechanism for dropping or spraying water onto the radiator.
本発明の第 1 2の実施の形態は、 第 1 1 の実施の形態による乾燥装置において 、 第 2の蒸発器と放熱器の間の空気に含まれる水分を回収する回収機構を備えた ことを特徴とする。 According to a 12th embodiment of the present invention, in the drying device according to the 11th embodiment, a recovery mechanism for recovering moisture contained in air between the second evaporator and the radiator is provided. Features.
本発明の第 1 3の実施の形態は、 第 1 1 の実施の形態による乾燥装置において 、 ヒー卜ポンプ装置は、 冷媒が第 2の蒸発器をバイパスするバイパス回路を有す ることを特徴とする。 According to a thirteenth embodiment of the present invention, in the drying device according to the eleventh embodiment, the heat pump device has a bypass circuit in which the refrigerant bypasses the second evaporator. I do.
本発明の第 1 4の実施の形態は、 第 1 から第 1 3の実施の形態による乾燥装置 において、 ヒートポンプ装置は、 放熱器に流す冷媒の温度を水の沸点以上の温度 とすることを特徴とする。 According to a fifteenth embodiment of the present invention, in the drying device according to the first to thirteenth embodiments, the heat pump device is characterized in that the temperature of the refrigerant flowing through the radiator is equal to or higher than the boiling point of water. And
本発明の第 1 5の実施の形態は、 第 1 から第 1 3の実施の形態による乾燥装置 において、 ヒー卜ポンプ装置は、 高圧側圧力が超臨界圧力となるように運転する ことを特徴とする。 According to a fifteenth embodiment of the present invention, in the drying device according to the first to thirteenth embodiments, the heat pump device is operated such that the high-pressure side pressure becomes a supercritical pressure. I do.
本発明の第 1 6の実施の形態は、 第 1 から第 1 3の乾燥装置において、 冷媒と して、 二酸化炭素を用いることを特徴とする。 図面の簡単な説明
図 1 は、 本発明の実施の形態 1の乾燥装置を示す構成図 The sixteenth embodiment of the present invention is characterized in that in the first to thirteenth drying apparatuses, carbon dioxide is used as a refrigerant. BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a configuration diagram showing a drying apparatus according to Embodiment 1 of the present invention.
図 2は、 本発明の実施の形態 2の乾燥装置を示す構成図 FIG. 2 is a configuration diagram showing a drying apparatus according to Embodiment 2 of the present invention.
図 3は、 本発明の実施の形態 2の乾燥装置における蒸発; を構成するフィンの 要部拡大図 FIG. 3 is an enlarged view of a main part of a fin constituting an evaporator in the drying device according to the second embodiment of the present invention.
図 4 ( a ) は、 本発明の実施の形態 2を示す乾燥装置の蒸発器を構成する他の フィンの要部断面図、 図 4 ( b ) は本発明の実施の形態 2を示す乾燥装置の蒸発 器を構成する他のフィンの要部拡大図 Fig. 4 (a) is a cross-sectional view of a main part of another fin constituting an evaporator of the drying device according to the second embodiment of the present invention, and Fig. 4 (b) is a drying device according to the second embodiment of the present invention. Enlarged view of main parts of other fins that make up the evaporator
図 5は、 本発明の実施の形態 2の乾燥装置を示す構成図 FIG. 5 is a configuration diagram showing a drying apparatus according to Embodiment 2 of the present invention.
図 6は、 本発明の実施の形態 4の乾燥装置を示す構成図 FIG. 6 is a configuration diagram showing a drying apparatus according to Embodiment 4 of the present invention.
図 7は、 本発明の実施の形態 5の乾燥装置を示す構成図 FIG. 7 is a configuration diagram showing a drying apparatus according to Embodiment 5 of the present invention.
図 8は、 本発明の実施の形態 6の乾燥装置を示す構成図 FIG. 8 is a configuration diagram showing a drying apparatus according to Embodiment 6 of the present invention.
図 9は、 本発明の実施の形態了の乾燥装置を示す構成図 FIG. 9 is a configuration diagram showing a drying apparatus according to the embodiment of the present invention.
図 1 0は、 本発明の実施の形態 8の乾燥装置を示す構成図 FIG. 10 is a configuration diagram showing a drying apparatus according to Embodiment 8 of the present invention.
図 1 1 は、 本発明の実施の形態 9の乾燥装置の放熱器における冷媒と : X の)皿 度変化を示す図 FIG. 11 is a diagram showing a change in the degree of flatness of refrigerant and: X in the radiator of the drying apparatus according to Embodiment 9 of the present invention.
図 1 2は、 フロン泠媒を用いた場合の乾燥装置の放熱器における冷媒と空気の 温度変化を示す図 Figure 12 shows the temperature change of refrigerant and air in the radiator of the drying device when using chlorofluorocarbon.
図 1 3は、 従来技術の乾燥装置を示す構成図 発明を実施するための最良の形態 FIG. 13 is a block diagram showing a conventional drying apparatus.
以下、 本発明の実施の形態について、 図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(実施の形態 1 ) (Embodiment 1)
図 1 は、 本発明の実施の形態 1である乾燥装置の構成図である。 図 1 において 、 3 1 は圧縮機、 3 2は放熱器、 3 3は膨張弁 (膨張機構) 、 3 4は蒸発器であ り、 これらを順に配管接続し、 冷媒を封入することにより、 ヒートポンプ装置を 構成し、 冷媒として放熱側 (圧縮機 3 1 吐出部〜放熱器 3 2〜減圧器 3 3入口部 ) で超臨界状態となり 5る冷媒、 例えば C 0 2冷媒が封入されている。 ま 、 3 6は乾燥対象 (例えば衣類、 浴室空間など) 、 3了は送風ファン、 3 8は乾燥用 空気の粗熱取り熱交換器、 3 9は粗熱取り熱交換器用の送風ファン、 4 0はドレ
ン水受けである。 そして、 蒸発器 3 4を放熱器 3 2の風上側で、 しかも重力方向 に上部に設置している。 図 1 中の実線矢印は冷媒の流れを、 白抜き矢印は乾燥用 空気の流れを、 また斜線矢印は外気の流れを表す。 FIG. 1 is a configuration diagram of a drying apparatus according to Embodiment 1 of the present invention. In FIG. 1, reference numeral 31 denotes a compressor, 32 denotes a radiator, 33 denotes an expansion valve (expansion mechanism), and 34 denotes an evaporator. the devices are configured radiation side (compressor 3 1 discharge unit-radiator 3 2 decompressor 3 3 inlet) in 5 Ru refrigerant brought into a supercritical state, for example, C 0 2 refrigerant is sealed as the refrigerant. In addition, 36 is a drying target (for example, clothes, bathroom space, etc.), 3 is a blower fan, 38 is a rough heat removal heat exchanger for drying air, 39 is a blower fan for a rough heat removal heat exchanger, 4 0 is dress It is a water receiver. And, the evaporator 34 is installed on the windward side of the radiator 32 and at the top in the direction of gravity. The solid arrows in Fig. 1 indicate the flow of the refrigerant, the white arrows indicate the flow of the drying air, and the diagonal arrows indicate the flow of the outside air.
次にその動作について説明する。 冷媒は圧縮機 3 1 で圧縮されて高温高圧の状 態となり、 放熱器 3 2で蒸発器 3 4を出た乾燥用空気と熱交換して、 乾燥用空気 を加熱することにより冷媒は冷却されて、 膨張機構 3で減圧されて、 低温低圧の 状態となり、 蒸発器 3 4で乾燥対象 3 6を経 乾燥用空気と熱交換して、 乾燥用 空気を冷却して乾燥用空気に含まれた水分を凝縮、 除湿することにより冷媒は加 熱されて、 再び圧縮機 3 1 に吸入される。 しだがつて、 乾燥用空気は蒸発器 3 4 で冷却除湿された後に放熱器 3 2で加熱されて高温低湿となり、 送風ファン 3 7 によって乾燥対象 3 6に強制的に接触させられ 7£際に、 乾燥対象 3 6から水分を 奪って多湿状態となり、 粗熱取り熱交換器 3 8で外気と熱交換して温度を低下さ せだ後、 さらに蒸発器 3 4で再び冷却除湿される。 Next, the operation will be described. The refrigerant is compressed by the compressor 31 into a state of high temperature and high pressure, and the radiator 32 exchanges heat with the drying air exiting the evaporator 34 to heat the drying air, thereby cooling the refrigerant. Then, the pressure is reduced by the expansion mechanism 3 to a low-temperature and low-pressure state.The heat is exchanged with the drying air through the drying target 36 in the evaporator 34, and the drying air is cooled and contained in the drying air. The refrigerant is heated by condensing and dehumidifying the water, and is sucked into the compressor 31 again. However, the drying air is cooled and dehumidified by the evaporator 3 4 and then heated by the radiator 32 to become high temperature and low humidity. However, moisture is removed from the object to be dried 36 to be in a humid state. After the heat is exchanged with the outside air in the crude heat removal heat exchanger 38 to lower the temperature, it is cooled and dehumidified again in the evaporator 34.
以上のような動作を繰り返すことに り、 乾燥対象 3 6から水分を奪う乾燥動 作を行うことができる。 By repeating the above operation, a drying operation for removing moisture from the drying target 36 can be performed.
本実施の形態では、 蒸発器 3 4で乾燥対象 3 6を経 多湿の乾燥用空気と熱交 換して、 乾燥用空気を冷却し、 乾燥用空気に含まれた水分を蒸発器 3 4のフィン 表面に凝縮させ、 その結果生じるドレン水を、 重力および送風によるせん断力を 利用して、 放熱器 3 2に滴下する構成とし ことにより、 放熱器 3 2では乾燥用 空気との顕熱交換およびドレン水との潜熱交換が行われることになり、 伝熱が促 進される。 その結果、 放熱器 3 2での熱交換量が増大し、 放熱器 3 2内を流れる 冷媒との熱伝達が促進されることから、 放熱器 3 2の大きさを蒸発器 3 4と同等 に小型化することが可能となる。 したがって、 ヒー卜ポンプ装置を小型化を図る ことがでさる。 In the present embodiment, the evaporator 34 exchanges heat with the humid drying air through the drying object 36 to cool the drying air, and removes the moisture contained in the drying air from the evaporator 34. Condensed on the fin surface, and the resulting drain water is dropped onto the radiator 32 using the shear force generated by gravity and blast, so that the radiator 32 can exchange sensible heat with drying air and Latent heat exchange with drain water is performed, and heat transfer is promoted. As a result, the amount of heat exchange in the radiator 32 increases, and heat transfer with the refrigerant flowing in the radiator 32 is promoted, so that the size of the radiator 32 is made equal to that of the evaporator 34. It is possible to reduce the size. Therefore, the size of the heat pump device can be reduced.
ま 、 放熱器 3 2での熱伝達が促進されることから、 放熱器 3 2出口での冷媒 温度が低下して蒸発器 3 4での冷却能力が増大し、 さらに省エネルギーとなる。 また、 冷媒として地球環境への悪影響が少ない自然冷媒の中から、 ヒー卜ポン プ装置の放熱側で超臨界伏態となる C O 2冷媒を用いた場合には、 遷臨界冷凍サ ィクルとなるため、 放熱器 3 2出口での冷媒温度が低下することにより、 冷凍サ
ィクル C O Pを大きく向上できる効果も生じ、 さらに省エネルギー化を図ること が可能となる。 In addition, since the heat transfer in the radiator 32 is promoted, the temperature of the refrigerant at the outlet of the radiator 32 decreases, the cooling capacity in the evaporator 34 increases, and the energy is further saved. Moreover, among the natural refrigerant is small adverse effect on the global environment as the refrigerant, in the case of using the CO 2 refrigerant in the heat radiation side of the heater Bok pump apparatus becomes supercritical Fukutai, since the transcritical refrigeration Sa Ikuru The temperature of the refrigerant at the outlet of the radiator 32 decreases, This also has the effect of greatly improving the vehicle COP, and it is possible to further save energy.
さらに、 C 0 2冷媒を用い 遷臨界冷凍サイクルとしたため、 従来の H F C冷 媒を用い 亜臨界冷凍サイクルの場合と比較して、 放熱器 3 2で高温の C O 2冷 媒と乾燥用空気が熱交換する熱交換効率を高くすることができ、 乾燥用空気を高 温に昇温することが可能となる。 し がって、 乾燥対象 3 6から水分を奪う能力 が増大し、 短時間で乾燥を行 ことが可能となる。 In addition, the transcritical refrigeration cycle using CO 2 refrigerant is used, so compared to the case of the subcritical refrigeration cycle using the conventional HFC refrigerant, the high-temperature CO 2 refrigerant and drying air are heated by the radiator 32. The heat exchange efficiency of the exchange can be increased, and the temperature of the drying air can be raised to a high temperature. Accordingly, the ability to remove moisture from the drying target 36 is increased, and drying can be performed in a short time.
なお、 本実施の形態では、 膨張弁を膨張機構に用いたが、 キヤビラリチューブ を用いても同様の効果が得られることは言うまでも無い。 In this embodiment, the expansion valve is used for the expansion mechanism. However, needless to say, the same effect can be obtained by using a capillary tube.
また、 本実施の形態では、 放熱側で超臨界状態となる C〇2冷媒を用いたが、 従来の H F C冷媒を用い 場合にち、 蒸発器で生じるドレン水を放熱器に滴下さ せることにより、 同様に放熱器での熱交換量が増大し、 放熱器の大きさを小型化 することが可能となり、 ヒー卜ポンプ装置の小型化を図ることができる。 Further, in the present embodiment uses the C_〇 2 refrigerant in the heat radiation side becomes supercritical state, date when using a conventional HFC refrigerants, by dropping the drain water generated by the evaporator to the radiator Similarly, the amount of heat exchange in the radiator increases, the size of the radiator can be reduced, and the size of the heat pump device can be reduced.
(実施の形態 2 ) (Embodiment 2)
以下、 本発明の実施の形態 2について、 図面を参照しながら説明する。 Hereinafter, a second embodiment of the present invention will be described with reference to the drawings.
図 2は、 本発明の実施の形態 2である乾燥装置の構成図、 図 3は本発明の実施 の形態 2であるヒー卜ポンプ式乾燥機の蒸発器を構成するフィンの要部拡大図で ある。 図 2において、 図 1 と共通の構成要素については同一の符号を付し、 説明 を省略する。 3 1 は圧縮機、 4 2は放熱器、 3 3は膨張弁 (膨張機構) 、 4 4は 蒸発器であり、 これらを順に配管接続し、 冷媒を封入することにより、 ヒ一卜ポ ンプ装置を構成し、 冷媒として放熱側で超臨界状態となりうる c o 2冷媒が封入 されている。 実施の形態 1 と異なるのは、 蒸発器 4 4および放熱器 4 2を傾斜し て設置し、 かつ蒸発器 4 4を構成するフィン 4 5の重力方向下端面に凹凸 4 6を 形成した点である。 蒸発器 4 4を放熱器 4 2の風上側で、 しかも重力方向に上部 に設置している点は同様である。 ま 、 図 2中の実線矢印は冷媒の流れを、 白抜 き矢印は乾燥用空気の流れを、 ま 斜線矢印は外気の流れを表す。 FIG. 2 is a configuration diagram of a drying apparatus according to Embodiment 2 of the present invention, and FIG. 3 is an enlarged view of a main part of a fin constituting an evaporator of a heat pump type dryer according to Embodiment 2 of the present invention. is there. In FIG. 2, the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted. 31 is a compressor, 42 is a radiator, 33 is an expansion valve (expansion mechanism), and 44 is an evaporator. These are connected in order by piping, and a refrigerant is sealed, so that a heat pump device is provided. And a co 2 refrigerant that can be in a supercritical state on the heat radiation side is enclosed as a refrigerant. The difference from the first embodiment is that the evaporator 44 and the radiator 42 are installed at an angle, and the fins 45 constituting the evaporator 44 have irregularities 46 formed on the lower end surface in the direction of gravity. is there. It is the same that the evaporator 44 is installed on the windward side of the radiator 42 and above the gravitational direction. The solid arrows in FIG. 2 indicate the flow of the refrigerant, the white arrows indicate the flow of the drying air, and the hatched arrows indicate the flow of the outside air.
次にその動作について説明する。 冷媒は圧縮機 3 1 で圧縮されて高温高圧の伏 態となり、 放熱器 4 2で蒸発器 4 4を出た乾燥用空気と熱交換して、 乾燥用空気 を加熱することにより冷媒は冷却されて、 膨張機構 3 3で減圧されて、 低温低圧
の状態となり、 蒸発器 4 4で乾燥対象 3 6を経た乾燥用空気と熱交換して、 乾燥 用空気を)令却して乾燥用空気に含まれた水分を凝縮、 除湿することにより冷媒は 加熱されて、 再び圧縮機 3 1 に吸入される。 したがって、 乾燥用空気は蒸発器 4 4で冷却除湿された後に放熱器 4 2で加熱されて高温低湿となり、 送風ファン 3 了によって乾燥対象 3 6に強制的に接触させられ 際に、 乾燥対象 3 6から水分 を奪って多湿状態となり、 粗熱取り熱交換器 3 8で外気と熱交換して温度を低下 させた後、 さらに蒸発器 4 4で再び冷却除湿される。 Next, the operation will be described. The refrigerant is compressed by the compressor 31 into a high-temperature, high-pressure state, and the radiator 42 exchanges heat with the drying air exiting the evaporator 44 to heat the drying air, thereby cooling the refrigerant. And decompressed by the expansion mechanism 3 3 The evaporator 4 4 exchanges heat with the drying air that has passed through the drying object 3 6, and rejects the drying air to condense and dehumidify the moisture contained in the drying air. It is heated and sucked into the compressor 31 again. Therefore, the drying air is cooled and dehumidified by the evaporator 44 and then heated by the radiator 42 to become high temperature and low humidity. When the drying air is forcibly brought into contact with the drying target 36 by the blower fan 3, the drying air 3 Moisture is taken from 6 to make it humid, and the temperature is reduced by heat exchange with the outside air in the crude heat exchanger 38, and then cooled and dehumidified again by the evaporator 44.
以上のよ oな動作を繰り返すことにより、 乾燥対象 3 6から水分を奪う乾燥動 作を行うことができる。 By repeating the above operations, a drying operation for removing moisture from the drying target 36 can be performed.
本実施の形態では、 蒸発器 4 4および放熱器 4 2を傾斜して設置しているため 、 熱交換器の設置スペースを削減し、 ヒ一卜ポンプ式乾燥機の小型化が可能とな る。 また、 フィン 4 5の重力方向下端面に凹凸 4 6 (凸部 4 6 a ) を形成してい るだめ、 蒸発器 3 4のフィン 4 5表面で乾燥用空気が除湿されて凝縮生成したド レン水が凸部 4 6 aに集約し、 液滴 4了を形成する。 その液滴 4了は成長して、 重力および送風によるせん断力を利用して、 放熱器 4 2に滴下する。 このように 、 ドレン水が凸部 4 6 aに集約し、 液滴を形成する め、 液滴 4了の形成場所の 不安定性がなくなる。 この液滴 4 7が形成される ΰ部 4 6 aを蒸発器 4 4全面に わたって均一に形成すれば、 液滴 4了は放熱器 4 2に均一に滴下するため、 放熱 器 4 2全面で均一にドレン水の液膜が形成される。 そして、 放熱器 4 2では乾燥 用空気との顕熱交換およびドレン水との潜熱交換が行われ伝熱が促進されること になる。 その結果、 放熱器 4 2での熱交換量が増大し、 放熱器 4 2内を流れる冷 媒との熱伝達が促進されることから、 放熱器 4 2の大きさを一層小型化すること が可能となる。 したがって、 ヒー卜ポンプ装置を小型化を図ることができる。 また、 放熱器 4 2での熱伝達が促進されることから、 放熱器 4 2出口での;令媒 温度が低下して 発器 4 4での冷却能力が増大し、 省エネルギーとなる。 さらに 、 放熱側が超臨界状態となる遷臨界冷凍サイクルとなる め、 放熱器 4 2出口で の冷媒温度が低下することから、 冷凍サイクル C O Pを大きく向上できる効果ち 生じ、 さらに省エネルギー化を図ることが可能となる。 In this embodiment, since the evaporator 44 and the radiator 42 are installed at an angle, the installation space for the heat exchanger can be reduced, and the heat pump dryer can be downsized. . In addition, the unevenness 46 (convex portion 46 a) is formed on the lower end surface of the fin 45 in the direction of gravity, and the drainage is formed by dehumidifying the drying air on the surface of the fin 45 of the evaporator 34. Water converges on the protrusions 46a to form droplets 4a. The droplet 4 grows and drops on the radiator 42 using the shear force generated by gravity and blowing. As described above, since the drain water condenses on the convex portion 46a and forms a droplet, the instability of the formation location of the droplet 4 is eliminated. If the liquid droplet 4 7 is formed uniformly over the entire surface of the evaporator 4 4, the liquid droplet 4 is uniformly dropped on the heat radiator 42, so that the entire surface of the heat radiator 4 2 Thus, a liquid film of the drain water is uniformly formed. In the radiator 42, sensible heat exchange with the drying air and latent heat exchange with the drain water are performed, thereby promoting heat transfer. As a result, the amount of heat exchange in the radiator 42 increases, and heat transfer with the cooling medium flowing in the radiator 42 is promoted. Therefore, the size of the radiator 42 can be further reduced. It becomes possible. Therefore, the size of the heat pump device can be reduced. Further, since the heat transfer in the radiator 42 is promoted, the temperature of the refrigerant at the outlet of the radiator 42 decreases, and the cooling capacity in the generator 44 increases, thereby conserving energy. Furthermore, the transcritical refrigeration cycle in which the heat radiation side is in a supercritical state causes the refrigerant temperature at the radiator 42 outlet to drop, resulting in the effect of greatly improving the refrigeration cycle COP, thereby achieving further energy savings. It becomes possible.
次に、 他の実施形態におけるヒートポンプ式乾燥機の蒸発器を構成するフィン
の断面図および平面図を図 4 ( a ) および図 4 ( b ) に示す。 図 4に示すように 、 蒸発器を構成するフィン 5 5に、 折り曲げ部 5 6を設け コルゲー卜状フィン を用いている。 折り曲げ部 5 6の稜線方向は、 概略重力方向である。 このように 、 フィン 5 5の重力方向に折り曲げ部 5 6を形成しているため、 蒸発器のフィン 5 5表面で乾燥用空気が除湿されて凝縮生成したドレン水が折り曲げ部 5 6の谷 部 5 7に集約し、 液滴を形成する。 その液滴は成長して、 重力および送風による せん断力を利用して、 放熱器 4 2に滴下する。 このように、 ドレン水が谷部 5了 に集約し液滴 4 7を形成するため、 液滴 4了の形成場所の不安定性がなくなる。 この液滴 4 7が形成される谷部 5 7を蒸発器全面にわたって均一に形成すれば、 液滴 4了は放熱器 4 2に均一に滴下する め、 放熱器 4 2全面で均一にドレン水 の液膜が形成される。 そして、 放熱器 3 2では乾燥用空気との顕熱交換およびド レン水との潜熱交換が行われ伝熱が促進されることになる。 その結果、 放熱器 4 2での熱交換量が増大し、 放熱器 4 2内を流れる冶媒との熱伝達が促進されるこ とから、 放熱器 4 2の大きさを一層小型化することが可能となる。 したがって、 ヒートポンプ装置を小型化を図ることができる。 Next, the fins constituting the evaporator of the heat pump dryer in another embodiment FIGS. 4 (a) and 4 (b) show a cross-sectional view and a plan view, respectively. As shown in FIG. 4, a bent portion 56 is provided on a fin 55 constituting an evaporator, and a corrugated fin is used. The direction of the ridge line of the bent portion 56 is substantially the direction of gravity. As described above, since the bent portion 56 is formed in the direction of gravity of the fin 55, the drain water generated by dehumidifying the drying air on the surface of the fin 55 of the evaporator and condensed and generated is formed in the valley portion of the bent portion 56. Combined into 5 and 7 to form droplets. The droplet grows and drops on the radiator 42 using the shear force caused by gravity and blowing. In this way, since the drain water is concentrated at the valley 5 and forms the droplet 47, the instability of the place where the droplet 4 is formed is eliminated. If the valleys 57 where the droplets 47 are formed are formed uniformly over the entire surface of the evaporator, the droplets 4 are uniformly dropped on the radiator 42, so that the drain water is uniformly distributed over the entire surface of the radiator 42. Is formed. In the radiator 32, sensible heat exchange with the drying air and latent heat exchange with the drain water are performed, and heat transfer is promoted. As a result, the amount of heat exchange in the radiator 42 is increased, and heat transfer with the medium flowing in the radiator 42 is promoted, so that the size of the radiator 42 is further reduced. Becomes possible. Therefore, the size of the heat pump device can be reduced.
ま 本実施の形態では、 フィンの重力方向下端面に凹凸を形成する場合に比べ て、 フィンの伝熱面積を著しく拡大することが可能であるため、 蒸発器の伝熱性 能を著しく向上させることが可能となる。 この結果、 乾燥用空気の除湿能力が向 上するとともに、 冷凍サイクル C O Pを大きく向上できる効果ち有しているので 、 さらに省エネルギー化を図ることが可能となる。 In this embodiment, the heat transfer area of the fin can be significantly increased as compared with the case where the fin has unevenness on the lower end surface in the direction of gravity, so that the heat transfer performance of the evaporator can be significantly improved. Becomes possible. As a result, the dehumidifying ability of the drying air is improved, and the refrigeration cycle COP is greatly improved, so that it is possible to further save energy.
(実施の形態 3 ) (Embodiment 3)
以下、 本発明の実施の形態 3について、 図面を参照しながら説明する。 Hereinafter, Embodiment 3 of the present invention will be described with reference to the drawings.
図 5は、 本発明の実施の形態 3であるヒー卜ポンプ式乾燥機の構成図である。 図 5において、 図 1 と共通の構成要素については同一の符号を付し、 説明を省略 する。 3 1 は圧縮機、 6 2は放熱器、 3 3は膨張弁 (膨張機構) 、 6 4は蒸発器 であり、 これらを順に配管接続し、 冷媒を封入することにより、 ヒートポンプ装 置を構成し、 冷媒として放熱側で超臨界状態となり οる C 0 2冷媒が封入されて いる。 実施の形態 1 と異なるのは、 蒸発器 6 4で乾燥用空気が除湿されて凝縮生 成し ドレン水をドレン水受け 6 5で受け、 ドレン水受け 6 5に貯められたドレ
ン水をポンプ 6 6で汲み上げ、 噴霧機構 6了を設けて放熱器 6 2にドレン水を噴 霧する点である。 FIG. 5 is a configuration diagram of a heat pump dryer according to Embodiment 3 of the present invention. In FIG. 5, the same reference numerals are given to the same components as those in FIG. 1, and description thereof will be omitted. Reference numeral 31 denotes a compressor, 62 denotes a radiator, 33 denotes an expansion valve (expansion mechanism), and 64 denotes an evaporator. These are connected in order by piping, and a refrigerant is sealed to constitute a heat pump device. , C 0 2 refrigerant Ru ο brought into a supercritical state is filled in the heat radiation side as a refrigerant. The difference from the first embodiment is that the drying air is dehumidified by the evaporator 64 and condensed and generated, and the drain water is received by the drain water receiver 65 and the drain water stored in the drain water receiver 65 is stored. This is the point where the pump water is pumped up by the pump 66 and the spray mechanism 6 is provided to spray the drain water to the radiator 62.
図 5中の実線矢印は冷媒の流れを、 白抜き矢印は乾燥用空気の流れを、 ま 7£斜 線矢印は外気の流れを表す。 乾燥用空気は、 乾燥対象 3 6の下方から蒸発器 6 4 、 放熱器 6 2の順に流れる構成とし 。 すなわち、 蒸発器 6 4を放熱器 6 2の風 上側で、 放熱器 6 2の下方に設置した。 The solid arrows in FIG. 5 indicate the flow of the refrigerant, the white arrows indicate the flow of the drying air, and the hatched arrows indicate the flow of the outside air. The drying air flows from below the drying target 36 in the order of the evaporator 64 and the radiator 62. That is, the evaporator 64 was installed on the windward side of the radiator 62 and below the radiator 62.
次にその動作について説明する。 冷媒は圧縮機 3 1 で圧縮されて高温高圧の状 態となり、 放熱器 6 2で蒸発器 6 4を出た乾燥用空気と熱交換して、 乾燥用空気 を加熱することにより冷媒は冷却されて、 膨張機構 3 3で減圧されて、 低温低圧 の状態となり、 蒸発器 6 4で乾燥対象 3 6を経た乾燥用空気と熱交換して、 乾燥 用空気を冷却して乾燥用空気に含まれた水分を凝縮、 除湿することにより冷媒は 加熱されて、 再び圧縮機 3 1 に吸入される。 したがって、 乾燥用空気は蒸発器 6 4で冷却除湿された後に放熱器 6 2で加熱されて高温低湿となり、 送風ファン 3 7によって乾燥対象 3 6に強制的に接触させられた際に、 乾燥対象 3 6から水分 を奪って多湿状態となり、 粗熱取り熱交換器 3 8で外気と熱交換して温度を低下 させた 、 さらに蒸発器 6 4で再び;令却除湿される。 Next, the operation will be described. The refrigerant is compressed by the compressor 31 into a state of high temperature and high pressure, and the radiator 62 exchanges heat with the drying air exiting the evaporator 64 to heat the drying air, thereby cooling the refrigerant. Then, the pressure is reduced by the expansion mechanism 33 to a low-temperature and low-pressure state, and the evaporator 64 exchanges heat with the drying air that has passed through the drying target 36, and cools the drying air to be included in the drying air. The condensed water is condensed and dehumidified, so that the refrigerant is heated and sucked into the compressor 31 again. Therefore, the drying air is cooled and dehumidified by the evaporator 64, then heated by the radiator 62 to become high temperature and low humidity, and when it is forcibly brought into contact with the drying target 36 by the blower fan 37, the drying target is Moisture is deprived from 36, and the temperature is lowered by heat exchange with the outside air in the crude heat removal heat exchanger 38, and is further dehumidified by the evaporator 64 again.
以上のような動作を繰り返すことにより、 乾燥対象 3 6から水分を奪う乾燥動 作を行うことができる。 By repeating the above operation, a drying operation for removing moisture from the drying target 36 can be performed.
本実施の形態では、 蒸発器 6 4で乾燥用空気が除湿されて凝縮生成しだドレン 水をドレン水受け 6 5で受け、 ドレン水受け 6 5に貯められ ドレン水をポンプ 6 6で汲み上げ、 噴霧機構 6 7を用いて放熱器 6 2に噴霧する構成である め、 安定して一定量のドレン水を放熱器 6 2全面にわだり均一に噴霧することが可能 となる。 このため、 放熱器 6 2全面で均一にドレン水の液膜が形成される。 そし て、 放熱器 6 2では乾燥用空気との顕熱交換およびドレン水との潜熱交換が行な われ、 伝熱が促進されることになる。 その結果、 放熱器 6 2での熱交換量が増大 し、 放熱器 6 2内を流れる冷媒との熱伝達が促進されることから、 放熱器 6 2の 大きさを一層小型化することが可能となる。 したがって、 ヒー卜ポンプ装置の小 型化を図ることができる。 In the present embodiment, the drain water that has been decondensed and produced by dehumidifying the drying air in the evaporator 64 is received in the drain water receiver 65, and the drain water stored in the drain water receiver 65 is pumped up by the pump 66. Since the radiator 62 is sprayed by using the spray mechanism 67, a constant amount of drain water can be stably sprayed over the entire surface of the radiator 62. Therefore, a liquid film of the drain water is uniformly formed on the entire surface of the radiator 62. Then, in the radiator 62, sensible heat exchange with drying air and latent heat exchange with drain water are performed, and heat transfer is promoted. As a result, the amount of heat exchange in the radiator 62 is increased, and heat transfer with the refrigerant flowing in the radiator 62 is promoted, so that the size of the radiator 62 can be further reduced. It becomes. Therefore, the size of the heat pump device can be reduced.
また、 放熱器 6 2での熱伝達が促進されることから、 放熱器 6 2出口での冷媒
温度が低下して蒸発器 6 4での冷却能力が増大し、 省エネルギーとなる。 さらに 、 放熱側で超臨界状態となる遷臨界冷凍サイクルとなるだめ、 放熱器 6 2出口で の冷媒温度が低下することから、 冷凍サイクル C O Pを大きく向上できる効果も 有しているので、 さらに省エネルギー化を図ることが可能となる。 Also, since heat transfer at the radiator 62 is promoted, the refrigerant at the outlet of the radiator 62 is As the temperature drops, the cooling capacity of the evaporator 64 increases, which saves energy. Furthermore, a transcritical refrigeration cycle that becomes a supercritical state on the heat radiation side is not achieved, and the temperature of the refrigerant at the radiator 62 outlet is reduced, which has the effect of greatly improving the refrigeration cycle COP. Can be achieved.
なお、 本実施の形態では、 蒸発器 6 4で乾燥用空気が除湿されて凝縮生成した ドレン水をポンプ 6 6で放熱器 6 2に供給したが、 ドレン水でなく外部からの供 給水を用いても同様な効果が得られることは言うまでもない。 In the present embodiment, the drain water produced by dehumidifying the drying air in the evaporator 64 and being condensed is supplied to the radiator 62 by the pump 66, but external water is used instead of drain water. Needless to say, the same effect can be obtained.
また、 乾燥用空気を乾燥対象 3 6に対して強制的に上方から下方に流し両者を 接触させ、 乾燥対象 3 6から水分を奪って乾燥させ、 乾燥対象 3 6の下方からヒ 一トポンプ乾燥機に流す構成である め、 縦型の乾燥機付き洗濯機にヒー卜ボン プ乾燥機を適]!しゅすいという特徴ち有する。 In addition, the drying air is forcibly flowed from above to below the drying target 36 to bring them into contact with each other, deprives the drying target 36 of moisture, and is dried. Heat pump dryer is suitable for a vertical washing machine with a dryer]!
なお、 本実施の形態では、 乾燥用空気を乾燥対象 3 6に対して強制的に上方か ら下方に流す構成を説明し が、 この構成に限るものではなく、 実施の形態 1 お よび実施の形態 2と同様に乾燥用空気を乾燥対象 3 6に対して強制的に下方から 上方に流す構成であっても、 蒸発器 6 4で凝縮生成しだドレン水をポンプ 6 6で 放熱器 6 2に供給しだ場合、 同じ効果を有することは言うまでもない。 In the present embodiment, a configuration is described in which the drying air is forced to flow downward from above from the drying target 36. However, the present invention is not limited to this configuration. Even in the configuration in which the drying air is forced to flow from below to the drying target 36 as in Embodiment 2, the drain water condensed and generated in the evaporator 64 is radiated by the pump 66 to the radiator 62. It is needless to say that the same effect can be obtained by supplying
(実施の形態 4 ) (Embodiment 4)
図 6は、 本発明の実施の形態 4の乾燥装置を示す構成図である。 図に示す実施 の形態 4の乾燥装置において、 圧縮機 1 と、 放熱器 2と、 絞り装置 3と、 蒸発器 4とを順に配管で接続し、 冷媒を実線矢印で示すように流すことによりヒートポ ンプ装置を構成する。 ま 、 乾燥室 5と、 循環ダク卜 6と、 送風ファン了と、 撒 水機構 8と、 ドレン水受け 9と、 回収機構 1 0とを備える。 FIG. 6 is a configuration diagram illustrating a drying apparatus according to Embodiment 4 of the present invention. In the drying apparatus according to the fourth embodiment shown in the figure, a compressor 1, a radiator 2, a squeezing device 3, and an evaporator 4 are sequentially connected by pipes, and a refrigerant flows as indicated by a solid line arrow. A pump device. Further, a drying chamber 5, a circulation duct 6, a blower fan, a water spray mechanism 8, a drain water receiver 9, and a recovery mechanism 10 are provided.
そして、 白抜き矢印 Mのように循環する乾燥用空気は、 送風ファン了で送られ て、 乾燥室 5の下方から循環ダク卜 6内に入り、 蒸発器 4、 放熱器 2の順に通り 抜けて、 乾燥室 5の上方へ流れる構成とする。 即ち、 蒸発器 4を放熱器 2の風上 側で、 放熱器 2の下方に設置する。 The drying air circulating as indicated by the white arrow M is sent by the blower fan, enters the circulation duct 6 from below the drying chamber 5, passes through the evaporator 4 and the radiator 2 in this order. The drying chamber 5 is configured to flow upward. That is, the evaporator 4 is installed on the windward side of the radiator 2 and below the radiator 2.
また、 配管等にて外部から水を供給するための撒水機構 8を、 放熱器 2の風下 側で、 重力方向に放熱器 2の上部に設置する。 さらに、 ドレン水受け 9を蒸発器 4の風上側で、 重力方向に蒸発器 4の下部に設置する。 そして、 回収機構 1 0を
放熱器 2と蒸発器 4の間に設置する構成としている。 In addition, a water sprinkling mechanism 8 for supplying water from the outside with piping or the like is installed on the leeward side of the radiator 2 and in the direction of gravity above the radiator 2. Furthermore, the drain water receiver 9 is installed on the windward side of the evaporator 4 and below the evaporator 4 in the direction of gravity. And the collection mechanism 10 It is configured to be installed between the radiator 2 and the evaporator 4.
次に、 上記構成の乾燥装置の動作について説明する。 Next, the operation of the drying apparatus having the above configuration will be described.
ヒー卜ポンプ装置の運転が開始されると、 冷媒は、 圧縮機 1で圧縮されて高温 高圧の状態となり、 放熱器 2で蒸発器 4を出 乾燥用空気と熱交換して、 乾燥用 空気を加熱することにより冷却される。 そして、 絞り装置 3で減圧されて低温低 圧の伏態となり、 蒸発器 4で乾燥対象 1 6を経 乾燥用空気と熱交換して乾燥用 空気を冷却し、 乾燥用空気に含まれた水分を凝縮、 除湿することにより、 冷媒は 加熱されて、 再び圧縮機 1 に吸入される。 When the operation of the heat pump device is started, the refrigerant is compressed by the compressor 1 to be in a state of high temperature and high pressure, exits the evaporator 4 in the radiator 2 and exchanges heat with the drying air to convert the drying air. It is cooled by heating. Then, the air is decompressed by the expansion device 3 and becomes a low-temperature low-pressure state. The evaporator 4 exchanges heat with the drying air through the drying object 16 to cool the drying air, and the water contained in the drying air is cooled. By condensing and dehumidifying the refrigerant, the refrigerant is heated and sucked into the compressor 1 again.
一方、 乾燥用空気は、 蒸発器 4で冷却除湿された後に、 放熱器 2で加熱されて 高温低湿となり、 送風ファン 7によって乾燥室 5に送られ、 乾燥対象 1 6に強制 的に接触させられる。 この際に、 乾燥対象 1 6から水分を奪って多湿状態となり 、 蒸発器 4で再び冷却除湿される。 以上のような動作を繰り返すことにより、 乾 燥室 5の内部に入れた乾燥対象 1 6から水分を奪う乾燥動作を行うことができる また、 撒水機構 8は、 上方から放熱器 2に水を滴下あるいは噴霧する。 また、 レン水受け 9は、 蒸発器 4から落下してき ドレン水を受けて、 貯まっ ドレ ン水を外部に排出する。 さらに、 回収機構 1 0は、 放熱器 2と蒸発器 4の間の乾 燥用空気を低温の外気に触れさせて、 当該乾燥用空気に含まれる水分を回収する 本実施の形態の乾燥装置では、 撒水機構 8を用いて放熱器 2に水を滴下あるい は噴霧する構成であるため、 安定して一定量の水を放熱器 2全面にわたり均一に 撒くことが可能となる。 この め、 放熱器 2全面で均一に水の液膜が形成される 。 すなわち、 放熱器 2では乾燥用空気との顕熱交換及び水との潜熱交換が行なわ れ、 伝熱が促進されることになる。 その結果、 放熱器 2での熱交換量が増大し、 放熱器 2内を流れる冷媒との熱伝達が促進されることから、 放熱器 2の大きさを 一層小型化することが可能となる。 したがって、 ヒー卜ポンプ装置の小型化を図 ることができる。 . On the other hand, the drying air is cooled and dehumidified by the evaporator 4 and then heated by the radiator 2 to become high-temperature and low-humidity, sent to the drying chamber 5 by the blower fan 7 and forcedly contact the drying target 16. . At this time, moisture is taken from the object 16 to be dried to be in a humid state, and the evaporator 4 cools and dehumidifies it again. By repeating the above operation, a drying operation for removing moisture from the drying target 16 placed in the drying chamber 5 can be performed.The watering mechanism 8 drops water to the radiator 2 from above. Or spray. The drain water receiver 9 receives the drain water that has fallen from the evaporator 4 and discharges the stored drain water to the outside. Further, the recovery mechanism 10 recovers the moisture contained in the drying air by exposing the drying air between the radiator 2 and the evaporator 4 to low-temperature outside air. However, since the water spray mechanism 8 is used to drop or spray water to the radiator 2, it is possible to stably and uniformly spray a certain amount of water over the entire surface of the radiator 2. Therefore, a liquid film of water is uniformly formed on the entire surface of the radiator 2. That is, in the radiator 2, the sensible heat exchange with the drying air and the latent heat exchange with the water are performed, and the heat transfer is promoted. As a result, the amount of heat exchange in the radiator 2 increases, and heat transfer with the refrigerant flowing in the radiator 2 is promoted, so that the size of the radiator 2 can be further reduced. Therefore, the size of the heat pump device can be reduced. .
ま 、 蒸発器 4で冷却され乾燥用空気が除湿されて凝縮生成した水分は、 ドレ ン水受け 9に滴下して外部に排出されるが、 蒸発器 4の風下側の空気中の水分を
、 低温の外気と接触するような位置に配置した回収機構 1 0によって凝縮させ、 外部に排出することにより、 さらに乾燥対象 1 6中の水分の除去を促進させるこ とができる。 また、 回収機構 1 0は、 外気と接触させることのみによらず、 ファ ンなどで強制的に冷却する構成でち良く、 より乾燥対象 1 6の乾燥を促進させる ことができる。 The water that is cooled by the evaporator 4 and dehumidifies the drying air to form condensation is dropped into the drain water receiver 9 and discharged to the outside, but the water in the air downstream of the evaporator 4 is removed. However, the condensed water is condensed by the recovery mechanism 10 disposed at a position where it comes into contact with low-temperature outside air, and is discharged to the outside, whereby the removal of water in the object 16 to be dried can be further promoted. Further, the recovery mechanism 10 may be configured not only to be brought into contact with the outside air but also to be forcibly cooled by a fan or the like, so that the drying of the object 16 to be dried can be further promoted.
また、 放熱器 2での熱伝達が促進されることから、 放熱器 2出口での冷媒温度 が低下して蒸発器 4での冷却能力が増大し、 省エネルギーとなる。 さらに、 冷媒 の放熱側で超臨界状態となる遷臨界冷凍サイクルとなるため、 放熱器 2出口での 冷媒温度が低下することから、 冷凍サイクル C O Pを大きく向上できる効果ち有 しているので、 さらに省エネルギー化を図ることが可能となる。 Further, since the heat transfer in the radiator 2 is promoted, the temperature of the refrigerant at the outlet of the radiator 2 decreases, and the cooling capacity in the evaporator 4 increases, thereby saving energy. Furthermore, since the transcritical refrigeration cycle is in a supercritical state on the heat radiation side of the refrigerant, the temperature of the refrigerant at the outlet of the radiator 2 drops, and the refrigeration cycle COP can be greatly improved. Energy can be saved.
まだ、 乾燥用空気を乾燥対象 1 6に対して強制的に上方から下方に流して両者 を接触させ、 乾燥対象 1 6から水分を奪って乾燥させ、 乾燥対象 1 6の下方から ヒー卜ポンプ乾燥機に流す構成であるため、 縦型の乾燥機付き洗濯機にヒー卜ポ ンプ乾燥機を適^しゆすいという特徴ち有する。 Still, the drying air is forced to flow from above to below the drying target 16 to bring them into contact with each other, deprive the drying target 16 of moisture and dry, and heat pump drying from below the drying target 16 Since it is designed to flow into a machine, it has the characteristic that a heat pump dryer is suitable for a vertical washing machine with a dryer.
(実施の形態 5 ) (Embodiment 5)
以下、 本発明の実施の形態 5について、 図面を参照しながら説明する。 図 7は 、 本発明の実施の形態 5の乾燥装置を示す構成図である。 なお、 図了の実施の形 態 5において、 図 6の実施の形態 4と共通の構成要素については同一の符号を付 し、 その説明を省略する。 , Hereinafter, a fifth embodiment of the present invention will be described with reference to the drawings. FIG. 7 is a configuration diagram showing a drying apparatus according to Embodiment 5 of the present invention. In Embodiment 5 of the drawings, the same components as those in Embodiment 4 of FIG. 6 are denoted by the same reference numerals, and description thereof will be omitted. ,
実施の形態 5の乾燥装置は、 実施の形態 4の構成と比べて、 ドレン水受け 9に 貯められたドレン水を、 ポンプ 1 4で汲み上げて配管等にて給水し、 放熱器 2に 滴下あるいは噴霧する めの撒水機構 8 aが異なる。 The drying device according to the fifth embodiment is different from the configuration according to the fourth embodiment in that the drain water stored in the drain water receiver 9 is pumped up by a pump 14 and supplied through a pipe or the like, and then dropped into the radiator 2 or Spraying mechanism 8a for spraying is different.
本実施の形態の乾燥装置では、 蒸発器 4で凝縮生成され 低温のドレン水を、 放熱器 2に滴下あるいは嗔霧するため、 より放熱器 2の冷媒温度と大きな温度差 で潜熱交換を行い、 ヒー卜ポンプ装置の高圧側の圧力を低減させることができる ので、 圧縮機の所要動力低減すなわちヒー卜ポンプ装置の省エネルギー化を図る ことが可能となる。 In the drying apparatus of the present embodiment, low-temperature drain water condensed and generated in the evaporator 4 is dropped or sprayed on the radiator 2, so that latent heat exchange is performed with a larger temperature difference from the refrigerant temperature of the radiator 2, Since the pressure on the high pressure side of the heat pump device can be reduced, it is possible to reduce the required power of the compressor, that is, to save energy of the heat pump device.
(実施の形態 6 ) (Embodiment 6)
以下、 本発明の実施の形態 6について、 図面を参照しながら説明する。 図 8は
、 本発明の実施の形態 6の乾燥装置を示す構成図である。 なお、 図 8の実施の形 態 6において、 図 6の実施の形態 4と共通の構成要素については同一の符号を付 し、 その説明を省略する。 Hereinafter, a sixth embodiment of the present invention will be described with reference to the drawings. Figure 8 shows FIG. 16 is a configuration diagram illustrating a drying device according to a sixth embodiment of the present invention. In Embodiment 6 in FIG. 8, the same reference numerals are given to the same components as those in Embodiment 4 in FIG. 6, and the description thereof will be omitted.
実施の形態 6の乾燥装置は、 実施の形態 4の構成と比べて、 乾燥用空気を循環 させる構成と、 撒水機構とが異なる。 The drying device according to the sixth embodiment differs from the configuration according to the fourth embodiment in the configuration for circulating the drying air and the water spraying mechanism.
即ち、 乾燥用空気は、 乾燥室 5の上方から循環ダクト 6内に入り、 蒸発器 4、 放熱器 2の順に通り抜け、 送風ファン了で送られて、 乾燥室 5の下方へ循環して 流れる構成とする。 That is, the drying air enters the circulation duct 6 from above the drying chamber 5, passes through the evaporator 4 and the radiator 2 in this order, is sent by the blower fan, and circulates below the drying chamber 5 and flows. And
そして、 蒸発器 4を放熱器 2の風上側で、 重力方向に放熱器 2の上方に設置し 、 蒸発器 4による除湿で発生したドレン水を、 重力ゆ風力で放熱器 2に滴下させ ることで撒水機構を構成する。 さらに、 ドレン水受け 9を放熱器 2の風下側で、 重力方向に放熱器 2の下部に設置し、 蒸発器 4から落下して放熱器 2を通過した ドレン水をドレン水受け 9にて貯める構成としている。 Then, the evaporator 4 is installed on the windward side of the radiator 2 and above the radiator 2 in the direction of gravity, and drain water generated by dehumidification by the evaporator 4 is dropped on the radiator 2 by gravity wind. Constitutes a watering mechanism. In addition, a drain water receiver 9 is installed on the leeward side of the radiator 2, in the direction of gravity, below the radiator 2, and the drain water that has dropped from the evaporator 4 and passed through the radiator 2 is stored in the drain water receiver 9. It has a configuration.
次に、 上記構成の乾燥装置の動作について説明する。 Next, the operation of the drying apparatus having the above configuration will be described.
ヒー卜ポンプ装置の運転が開始されると、 冷媒は、 圧縮機 1で圧縮されて高温 高圧の状態となり、 放熱器 2で蒸発器 4を出 乾燥用空気と熱交換して、 乾燥用 空気を加熱することにより冷却される。 そして、 絞り装置 3で減圧されて低温低 圧の状態となり、 蒸発器 4で乾燥対象 1 6を経た乾燥用空気と熱交換して乾燥用 空気を冷却し、 乾燥用空気に含まれた水分を凝縮、 除湿することにより、 冷媒は 加熱されて、 再び圧縮機 1 に吸入される。 When the operation of the heat pump device is started, the refrigerant is compressed by the compressor 1 to be in a state of high temperature and high pressure, exits the evaporator 4 in the radiator 2 and exchanges heat with the drying air to convert the drying air. It is cooled by heating. Then, the pressure is reduced by the expansion device 3 to a low-temperature and low-pressure state, and the evaporator 4 exchanges heat with the drying air that has passed through the drying target 16 to cool the drying air, and removes the moisture contained in the drying air. By condensing and dehumidifying, the refrigerant is heated and sucked into the compressor 1 again.
—方、 乾燥用空気は、 蒸発器 4で冷却除湿された後に、 放熱器 2で加熱されて 高温低湿となり、 送風ファン 7によって乾燥室 5に送られ、 乾燥対象 1 6に強制 的に接触させられる。 この際に、 乾燥対象 1 6から水分を奪って多湿状態となり 、 蒸発器 4で再び冷却除湿される。 以上のような動作を繰り返すことにより、 乾 燥室 5の内部に入れた乾燥対象 1 6から水分を奪う乾燥動作を行うことができる ま 、 撒水機構によって、 蒸発器 4で生成されたドレン水を重力等により上方 から放熱器 2に滴下する。 また、 ドレン水受け 9に貯められたドレン水は、 外部 に排出される。 さらに、 実施の形態 4と同様に、 回収機構 1 0は、 放熱器 2と蒸
発器 4の間に流れる乾燥用空気を低温の外気に触れさせて、 当該乾燥用空気に含 まれる水分を回収する動作を行う。 On the other hand, the drying air is cooled and dehumidified by the evaporator 4 and then heated by the radiator 2 to become high-temperature and low-humidity, sent to the drying chamber 5 by the blower fan 7 and forcedly contact the drying target 16. Can be At this time, moisture is taken from the object 16 to be dried to be in a humid state, and the evaporator 4 cools and dehumidifies it again. By repeating the above operation, a drying operation for removing moisture from the drying target 16 placed in the drying chamber 5 can be performed, and the drain water generated in the evaporator 4 can be removed by the watering mechanism. Drop onto the radiator 2 from above due to gravity. The drain water stored in the drain water receiver 9 is discharged to the outside. Further, as in Embodiment 4, the recovery mechanism 10 is connected to the radiator 2 The drying air flowing between the generators 4 is brought into contact with low-temperature outside air to perform an operation of recovering the moisture contained in the drying air.
本実施の形態の乾燥装置では、 蒸発器 4で乾燥対象 1 6を経た多湿の乾燥用空 気と熱交換して、 乾燥用空気を冷却し、 乾燥用空気に含まれた水分を蒸発器 4の フィン表面に凝縮させ、 その結果生じるドレン水を、 重力及び送風によるせん断 力を利用して、 放熱器 2に滴下する構成としたことにより、 放熱器 2では乾燥用 空気との顕熱交換及びドレン水との潜熱交換が行われることになり、 伝熱が促進 される。 その結果、 放熱器 2での熱交換量が増大し、 放熱器 2内を流れる冷媒と の熱伝達が促進されることから、 放熱器 2の大きさを蒸発器 4の大きさと同程度 にし、 乾燥装置を小型化することが可能となる。 In the drying device of the present embodiment, the evaporator 4 exchanges heat with the humid drying air that has passed through the drying object 16 to cool the drying air, and removes the moisture contained in the drying air from the evaporator 4. The condensed water is condensed on the fin surface, and the resulting drain water is dropped onto the radiator 2 using the shear force generated by gravity and blast, so that the radiator 2 can exchange sensible heat with the drying air. Latent heat exchange with drain water is performed, and heat transfer is promoted. As a result, the amount of heat exchange in the radiator 2 increases, and heat transfer with the refrigerant flowing in the radiator 2 is promoted, so that the size of the radiator 2 is made approximately equal to the size of the evaporator 4, The size of the drying device can be reduced.
また、 実施の形態 4または実施の形態 5の構成と比較して、 水の供給ゆ、 ポン プ動力を要することなく、 重力及び送風によるせん断力のみで放熱器 2に水を接 触させることができるので、 さらに、 乾燥装置の小型化と省エネルギー化を図る ことができる。 Further, compared to the configuration of the fourth or fifth embodiment, the water can be brought into contact with the radiator 2 only by the gravity and the shearing force due to the blast without the need for water supply or pump power. Therefore, it is possible to further reduce the size of the drying apparatus and save energy.
なお、 実施の形態 4 ~ 6では、 膨張弁を絞り装置 3に用いた構成で説明したが 、 キヤビラリチューブを用いても同様の効果が得られることは言うまでもない。 また、 実施の形態 6では、 蒸発器 4で生じるドレン水を利用する構成の撒水機 構を説明しだが、 この構成に限るものではなく、 実施の形態 4及び実施の形態 5 と同様に、 外部からの水の供給ゆ、 ポンプ動力を用いる構成の撒水機構であって も、 同じ効果を有することは言うまでもない。 In the fourth to sixth embodiments, the configuration in which the expansion valve is used for the expansion device 3 has been described. However, it is needless to say that the same effect can be obtained by using a capillary tube. In the sixth embodiment, the sprinkler system using the drain water generated in the evaporator 4 has been described. However, the present invention is not limited to this configuration. It is needless to say that the same effect can be obtained even if the water sprinkling mechanism is configured to use water supply from the pump or pump power.
(実施の形態了) (Embodiment)
以下、 本発明の実施の形態了について、 図面を参照しながら説明する。 図 9は 、 本発明の実施の形態 7の乾燥装置を示す構成図である。 なお、 図 9の実施の形 態了において、 図 8の実施の形態 6と共通の構成要素については同一の符号を付 し、 その説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 9 is a configuration diagram illustrating a drying apparatus according to Embodiment 7 of the present invention. In the end of the embodiment in FIG. 9, the same reference numerals are given to the same components as those in the sixth embodiment in FIG. 8, and the description thereof will be omitted.
実施の形態 7の乾燥装置は、 実施の形態 6の構成と比べて、 第 1の蒸発器 4 a 及び第 2の蒸発器 4 bと、 第 1 の循環ダク卜 6 a及び第 2の循環ダクト 6 bと、 第 1のドレン水受け 9 a及び第 2のドレン水受け 9 bとを備える点が異なる。 即ち、 乾燥用空気は、 乾燥室 5の上方から第 1 の循環ダクト 6 a内に入り、 第
1 の蒸発器 4 aを通り抜ける。 その後、 第 2の循環ダク卜 6 b内に入り、 第 2の 蒸発器 4 b、 放熱器 2の順に通り抜け、 送風ファン了で送られて、 乾燥室 5の下 方へ循環して流れる構成とする。 The drying device according to the seventh embodiment is different from the configuration according to the sixth embodiment in that a first evaporator 4a and a second evaporator 4b, a first circulation duct 6a and a second circulation duct 6b and a first drain water receiver 9a and a second drain water receiver 9b. That is, the drying air enters the first circulation duct 6 a from above the drying chamber 5, Pass through evaporator 4a of 1. After that, it enters the second circulation duct 6b, passes through the second evaporator 4b and the radiator 2 in that order, is sent by the blower fan, and circulates to the lower part of the drying chamber 5 to flow. I do.
また、 第 1の蒸発器 4 aを第 2の蒸発器 4 bの風上側に設置する。 Also, the first evaporator 4a is installed on the windward side of the second evaporator 4b.
また、 第 1のドレン水受け 9 aを第 1 の蒸発器 4 aの風下側で、 重力方向に第 1 の蒸発器 4 aの下部に設置し、 第 1の蒸発器 4 aによる除湿で発生したドレン 水を、 第 1 のドレン水受け 9 aにて受け、 貯まったドレン水を外部に排出するた めの排水機構を構成する。 In addition, the first drain water receiver 9a is installed on the leeward side of the first evaporator 4a and below the first evaporator 4a in the direction of gravity, and is generated by dehumidification by the first evaporator 4a. The collected drain water is received by the first drain water receiver 9a, and a drainage mechanism is configured to discharge the stored drain water to the outside.
そして、 第 2の蒸発器 4 bを放熱器 2の風上側で、 重力方向に放熱器 2の上方 Then, the second evaporator 4 b is located on the windward side of the radiator 2,
5又 I し、 第 2の蒸発器 4 bによる除湿で発生したドレン水を、 重力や風力で放 熱器 2に滴下させることで撒水機構を構成する。 5 or I, the drain water generated by dehumidification by the second evaporator 4b is dropped on the heat radiator 2 by gravity or wind power to form a water spray mechanism.
さらに、 ドレン水受け 9 bを放熱器 2の風下側で、 重力方向に放熱器 2の下部 に設置し、 第 2の蒸発器 4 bから落下して放熱器 2を通過したドレン水を、 第 2 のドレン水受け 9 bにて貯める構成としている。 In addition, a drain water receiver 9 b is installed on the leeward side of the radiator 2, in the direction of gravity, below the radiator 2, and the drain water that has dropped from the second evaporator 4 b and passed through the radiator 2 is It is configured to store in the drain water receiver 9 b of 2.
次に、 上記構成の乾燥装置の動作について説明する。 Next, the operation of the drying apparatus having the above configuration will be described.
ヒー卜ポンプ装置の運転が開始されると、 冷媒は、 圧縮機 1 で圧縮されて高温 高圧の状態となり、 放熱器 2で第 2の蒸発器 4 bを出 乾燥用空気と熱交換して 、 乾燥用空気を加熱することにより冷却される。 そして、 絞り装置 3で減圧され 、 低温低圧の状態となり、 第 1 の蒸発器 4 a及び第 2の蒸発器 4 bで乾燥対象 1 6を経た乾燥用空気と熱交換し、 乾燥用空気を冷却し、 乾燥用空気に含まれた水 分を凝縮、 除湿することにより、 冷媒は加熱されて、 再び圧縮機 1 に吸入される 一方、 乾燥用空気は、 第 1 の蒸発器 4 a及び第 2の蒸発器 4 bで冷却除湿され 後に、 放熱器 2で加熱されて高温低湿となり、 送風ファン 7によって乾燥室 5 に送られ、 乾燥対象 1 6に強制的に接触させられる。 この際に、 乾燥対象 1 6か ら水分を奪って多湿伏態となり、 第 1の蒸発器 4 a及び第 2の蒸発器 4 bで再び 冷却除湿される。 以上のような動作を繰り返すことにより、 乾燥室 5の内部に入 れ 乾燥対象 1 6から水分を奪う乾燥動作を行うことができる。 When the operation of the heat pump device is started, the refrigerant is compressed by the compressor 1 to be in a state of high temperature and high pressure, exits the second evaporator 4b in the radiator 2, and exchanges heat with the drying air. It is cooled by heating the drying air. Then, the pressure is reduced by the squeezing device 3 to be in a state of low temperature and low pressure, and the first evaporator 4a and the second evaporator 4b exchange heat with the drying air that has passed through the drying target 16 to cool the drying air. Then, by condensing and dehumidifying the water contained in the drying air, the refrigerant is heated and sucked into the compressor 1 again, while the drying air is supplied to the first evaporator 4a and the second evaporator 4a. After being cooled and dehumidified by the evaporator 4 b, it is heated by the radiator 2 to become high temperature and low humidity, sent to the drying chamber 5 by the blower fan 7, and forcedly contact the drying target 16. At this time, moisture is deprived from the drying target 16 to be in a humid state, and is cooled and dehumidified again by the first evaporator 4a and the second evaporator 4b. By repeating the above operations, a drying operation of entering the drying chamber 5 and removing moisture from the drying target 16 can be performed.
また、 撒水機構によって、 第 2の蒸発器 4 bで生成されたドレン水を重力等に
より上方から放熱器 2に滴下する。 ま 、 第 2のドレン水受け 9 bに貯められ ドレン水は、 外部に排出される。 さらに、 実施の形態 5と同様に、 回収機構 1 〇 は、 第 2の蒸発器 4 bと放熱器 2の間に流れる乾燥用空気を低温の外気に れさ せて、 当該乾燥用空気に含まれる水分を回収する動作を行 。 In addition, the sprinkling mechanism causes the drain water generated in the second evaporator 4b to fall into gravity or the like. Drop the radiator 2 from above. The drain water stored in the second drain water receiver 9b is discharged to the outside. Further, similarly to the fifth embodiment, the recovery mechanism 1 、 allows the drying air flowing between the second evaporator 4 b and the radiator 2 to be exposed to low-temperature outside air and includes the drying air in the drying air. Perform the operation to collect the water that is collected.
本実施の形態の乾燥装置では、 第 1 の蒸発器 4 aの下方に第 1 のドレン水受 け 9 aを設け、 第 2の蒸発器 4 bの下方に放熱器 2を配置するものである。 この 構成により、 乾燥対象 1 6を経 多湿の乾燥用空気は、 第 1 の蒸発器 4 aと熱交 換し、 第 1 の蒸発器 4 aによって凝縮生成され 水分は、 第 1 のドレン水受け 9 aに滴下して外部に排出される。 そして、 第 1 の蒸発器 4 aと熱交換し 後の乾 燥用空気は、 第 2の蒸発器 4 bと熱交換し、 第 2の蒸発器 4 bによって凝縮生成 された水分は、 放熱器 2に滴下することにより、 放熱器 2では乾燥用空気との顕 熱交換及びドレン水との潜熱交換が行われることになり、 伝熱が促進される。 そ の結果、 放熱器 2での熱交換量が増大し、 放熱器 2内を流れる冷媒との熱伝達が 促進されることから、 放熱器 2の大きさを蒸発器の大きさと同程度にし、 乾燥装 置を小型化することが可能となる。 In the drying device of the present embodiment, a first drain water receiver 9a is provided below the first evaporator 4a, and the radiator 2 is arranged below the second evaporator 4b. . With this configuration, the humid drying air passing through the drying target 16 exchanges heat with the first evaporator 4a, and is condensed and generated by the first evaporator 4a. Drops on 9a and is discharged outside. Then, the drying air after heat exchange with the first evaporator 4a exchanges heat with the second evaporator 4b, and the moisture condensed and generated by the second evaporator 4b becomes a radiator. By dropping on the radiator 2, the radiator 2 performs sensible heat exchange with the drying air and latent heat exchange with the drain water, thereby promoting heat transfer. As a result, the amount of heat exchange in the radiator 2 increases, and heat transfer with the refrigerant flowing in the radiator 2 is promoted, so that the size of the radiator 2 is made approximately equal to the size of the evaporator. The size of the drying device can be reduced.
その上、 このよ 5に蒸発器を第 1 の蒸発器 4 aと第 2の蒸発器 4 bに分割する ことにより、 第 1 の蒸発器 4 aで凝縮生成された水分は、 第 1 のドレン水受け 9 aから確実に外部に排出することができる。 したがって、 実施の形態 6と比較し て、 回収機構 1 0では完全に凝縮できない水分をより確実に回収することができ るので、 乾燥対象 1 6の水分除去に要する時間を短縮させ、 さらに省エネルギー 化を図ることができる。 In addition, by dividing the evaporator into the first evaporator 4a and the second evaporator 4b in this way, the water condensed and generated in the first evaporator 4a is reduced to the first drain. Water can be reliably discharged from the water receiver 9a. Therefore, as compared with the sixth embodiment, the water that cannot be completely condensed can be more reliably recovered by the recovery mechanism 10, so that the time required for removing the water from the object 16 to be dried is reduced, and further energy saving is achieved. Can be achieved.
(実施の形態 8 ) (Embodiment 8)
以下、 本発明の実施の形態 8について、 図面を参照しながら説明する。 図 1 0 は、 本発明の実施の形態 8の乾燥装置を示す構成図である。 なお、 図 1 0の第 8 実施の形態において、 図 9の実施の形態 7と共通の構成要素については同一の符 号を付し、 その説明を省略する。 Hereinafter, Embodiment 8 of the present invention will be described with reference to the drawings. FIG. 10 is a configuration diagram showing a drying apparatus according to Embodiment 8 of the present invention. In the eighth embodiment shown in FIG. 10, the same reference numerals are given to the same components as those in the seventh embodiment shown in FIG. 9, and the description thereof will be omitted.
実施の形態 8の乾燥装置は、 実施の形態了の構成と比べて、 バイパス回路を備 える点が異なる。 The drying apparatus according to the eighth embodiment is different from the configuration according to the eighth embodiment in that a drying circuit is provided.
即ち、 バイパス回路は、 第 1 の蒸発器 4 aと第 2の蒸発器 4 bの間に設けられ
た三方弁 1 2と、 三方弁 1 2と圧縮機 1 の入口を接続し バイパス配管 1 3とか ら搆成される。 That is, the bypass circuit is provided between the first evaporator 4a and the second evaporator 4b. A three-way valve 12 connects the three-way valve 12 to the inlet of the compressor 1 and is formed by a bypass pipe 13.
次に、 上記構成の乾燥装置の動作について説明する。 Next, the operation of the drying apparatus having the above configuration will be described.
ヒー卜ポンプ装置の運転が開始されると、 冷媒は、 圧縮機 1 で圧縮されて高温 高圧の状態となり、 放熱器 2で第 2の蒸発器 4 bを出 乾燥用空気と熱交換して 、 乾燥用空気を加熱することにより冷却される。 そして、 絞り装置 3で減圧され 、 低温低圧の状態となる。 さらに、 第 1 の蒸発器 4 aで乾燥対象 1 6を経た乾燥 用空気と熱交換して加熱された後に、 三方弁 1 2で A方向の方へ流され、 第 2の 蒸発器 4 bに流入し、 再び乾燥用空気と熱交換して、 乾燥用空気に含まれ 水分 を凝縮、 除湿することにより、 冷媒は加熱されて、 圧縮機 1 に吸入される。 When the operation of the heat pump device is started, the refrigerant is compressed by the compressor 1 to be in a state of high temperature and high pressure, exits the second evaporator 4b in the radiator 2, and exchanges heat with the drying air. It is cooled by heating the drying air. Then, the pressure is reduced by the expansion device 3 to be in a state of low temperature and low pressure. Furthermore, after being heated by exchanging heat with the drying air that has passed through the drying object 16 in the first evaporator 4a, the heat is flown in the direction A by the three-way valve 12 and is then sent to the second evaporator 4b. The refrigerant flows in and exchanges heat with the drying air again to condense and dehumidify the water contained in the drying air, whereby the refrigerant is heated and sucked into the compressor 1.
一方、 乾燥用空気は、 第 1 の蒸発器 4 a及び第 2の蒸発器 4 bで冷却除湿され た後に、 放熱器 2で加熱されて高温低湿となり、 送風ファン 7によって乾燥室 5 に送られ、 乾燥対象 1 6に強制的に接触させられる。 この際に、 乾燥対象 1 6か ら水分を奪って多湿状態となり、 第 1 の蒸発器 4 a及び第 2の蒸発器 4 bで再び 冷却除湿される。 On the other hand, the drying air is cooled and dehumidified by the first evaporator 4a and the second evaporator 4b, then heated by the radiator 2 to become high temperature and low humidity, and sent to the drying chamber 5 by the blower fan 7. The dry object is forcibly brought into contact with 16. At this time, moisture is taken from the drying target 16 to be in a humid state, and is cooled and dehumidified again by the first evaporator 4a and the second evaporator 4b.
まだ、 ヒー卜ポンプ運転開始から T分 (例えば 6 0分) が経過し 後、 三方弁 1 2を B方向に切り替わるように制御することによって、 冷媒は、 第 1 の蒸発器 4 aで熱交換した後に、 バイパス配管 1 3の方へ流されて、 圧縮機 1 に吸入され る。 し がって、 第 2の蒸発器 4 bには冷媒が流れないため、 放熱器 2にドレン 水が滴下されることはなく、 放熱器 2で再蒸発する水分を抑制することができる 。 以上のような動作を繰り返すことにより、 乾燥室 5の内部に入れた乾燥対象 1 6から水分を奪う乾燥動作を行 oことができる。 After a lapse of T minutes (for example, 60 minutes) from the start of the operation of the heat pump, the refrigerant is exchanged with the first evaporator 4a by controlling the three-way valve 12 to switch to the B direction. After that, it flows to the bypass pipe 13 and is sucked into the compressor 1. Therefore, since the refrigerant does not flow through the second evaporator 4b, the drain water does not drop to the radiator 2, and the moisture re-evaporated by the radiator 2 can be suppressed. By repeating the above operations, a drying operation for removing moisture from the drying target 16 placed inside the drying chamber 5 can be performed.
本実施の形態の乾燥装置では、 三方弁 1 2とバイパス配管 1 3とから成るバイ パス回路を設け、 流れ方向を替えることにより、 ヒー卜ポンプ運転開始から一定 時間が経過した後は、 放熱器 2で再蒸発する水分を抑制することができるので、 乾燥対象 1 6の水分の除去を確実に行う.ことができる。 In the drying apparatus of the present embodiment, a bypass circuit including a three-way valve 12 and a bypass pipe 13 is provided, and by changing the flow direction, a radiator is provided after a certain period of time has elapsed from the start of the heat pump operation. Since the re-evaporated water can be suppressed in step 2, the water in the object 16 to be dried can be reliably removed.
なお、 上記第 1から実施の形態 5の乾燥装置において、 ヒー卜ポンプ装置の放 熱器 2に流す冷媒の温度を水の沸点以上の温度とする構成 (図示 ·説明を省略) であってち良い。 本構成によれば、 放熱器 2に滴下するドレン水の温度を水の沸
点以上の温度に加熱することができる。 これにより、 放熱器 2のフィンに発生す るカビなどの成長を抑制または減少させることができる。 In the drying apparatus according to the first to fifth embodiments, the temperature of the refrigerant flowing to the heat radiator 2 of the heat pump device is set to a temperature equal to or higher than the boiling point of water (illustration and description are omitted). good. According to this configuration, the temperature of the drain water dropped onto the radiator 2 is adjusted to the boiling point of water. It can be heated to a temperature above the point. Thereby, growth of mold and the like generated on the fins of the radiator 2 can be suppressed or reduced.
(実施の形態 9 ) (Embodiment 9)
本発明の実施の形態 9について、 図 1 1 及び図 1 2を用いて説明する。 図 1 1 は、 実施の形態 4〜9のヒー卜ポンプ装置に、 高圧側の圧力が超臨界状態となる ような冷媒 (例えば C〇2 ) を用いた場合の、 実施の形態 9の乾燥装置の放熱器 における冷媒と空気の温度変化を示す図であり、 図 1 2は、 フロン冷媒を用い 場合の、 放熱器における冷媒と空気の温度変化を示す図である。 Embodiment 9 Embodiment 9 of the present invention will be described with reference to FIGS. 11 and 12. FIG. FIG. 11 shows a drying apparatus according to the ninth embodiment in which a refrigerant (for example, C〇 2 ) whose pressure on the high pressure side is in a supercritical state is used for the heat pump apparatus according to the fourth to ninth embodiments. FIG. 12 is a diagram showing a change in the temperature of the refrigerant and the air in the radiator of FIG. 1, and FIG. 12 is a diagram showing a change in the temperature of the refrigerant and the air in the radiator in the case of using the Freon refrigerant.
すなわち、 図 1 2に示すように、 フロン冷媒の場合、 放熱器 2で泠媒は過熱状 態から気液二相状態、 過冷却状態と状態変化して空気と熱交換し、 放熱器 2にお ける空気出口温度は Cまで上昇する。 That is, as shown in Fig. 12, in the case of a CFC refrigerant, the heat exchanger in the radiator 2 changes its state from a superheated state to a gas-liquid two-phase state and a supercooled state, and exchanges heat with air. The outlet air temperature rises to C.
一方、 高圧側の圧力が超臨界状態とな 、 放熱器 2の熱交換が超臨界状態で行 える C〇2のよラな冷媒の場合は、 図 1 1 に示すよ 5に、 放熱器 2では相変化せ ずに熱交換が行われる。 その め、 空気出口温度と冷媒入口温度の温度差△ tを 、 フロン冷媒を用いた場合の温度差 Δ Τよりも小さくすることができ、 放熱器 2 の空気出口温度は Dとなる。 即ち、 冷媒入口温度 T oが同一温度であれば、 C O 2冷媒を用いた場合の空気出口温度 Dを、 フロン;令媒を用いた揚合の空気出口温 度 Cよりも高くすることができる。 従って、 乾燥対象 1 6から水分を奪う能力が 増大し、 短時間で乾燥を行うことが可能となる。 On the other hand, when the pressure on the high pressure side is in a supercritical state and the refrigerant is a poor refrigerant of C 熱2 in which heat exchange of the radiator 2 can be performed in a supercritical state, as shown in FIG. The heat exchange takes place without phase change. Therefore, the temperature difference Δt between the air outlet temperature and the refrigerant inlet temperature can be made smaller than the temperature difference Δ 場合 when using a Freon refrigerant, and the air outlet temperature of the radiator 2 becomes D. That is, if the refrigerant inlet temperature To is the same temperature, the air outlet temperature D when using the CO 2 refrigerant can be made higher than the air outlet temperature C when merging with CFCs. . Accordingly, the ability to remove moisture from the drying target 16 is increased, and drying can be performed in a short time.
本実施の形態 9の乾燥装置では、 ヒー卜ポンプ装置の高圧側の圧力を超臨界圧 力で運転することによって、 さらに乾燥空気温度を高くすることができる。 従つ て、 乾燥時間を短縮させることが可能となり、 高効率な乾燥装置の運転を行うこ' とができる。 In the drying apparatus of the ninth embodiment, the drying air temperature can be further increased by operating the pressure on the high pressure side of the heat pump apparatus at a supercritical pressure. Therefore, the drying time can be shortened, and the drying device can be operated with high efficiency.
なお、 上記実施の形態で説明した乾燥装置は、 衣類乾燥機ゆ浴室乾燥機だけで はなく、 食器乾燥機ゆ、 生ゴミ処理乾燥機などとして利用することもできる。 産業上の利用可能性 The drying apparatus described in the above embodiment can be used not only as a clothes dryer and a bathroom dryer, but also as a tableware dryer and a garbage disposal dryer. Industrial applicability
以上述べだところから明らかなように、 本発明の乾燥装置によれば、 撒水機構 を用いて、 放熱器に水を滴下あるいは噴霧する構成とし ため、 放熱器では乾燥
用空気との顕熱交換及びドレン水との潜熱交換が行われることになり、 その結果 、 放熱器での熱交換量が増大し、 放熱器内を流れる冷媒との熱伝達が促進される ことから、 放熱器を小型化し、 ヒー卜ポンプ方式の乾燥装置の小型化を図ること ができる。 また、 放熱器での熱伝達が促進されることから、 冷媒として C〇2等 の冷凍サイクルの放熱側で超臨界状態となりうる冷媒を用い 揚合に、 放熱器出 口での冷媒温度が低下すること、 及び蒸発器の冷却能力が増大することから、 さ らに高効率なヒー卜ポンプ方式の乾燥装置を実現することが可能となる。 As is clear from the above description, according to the drying device of the present invention, water is dropped or sprayed on the radiator by using the water spray mechanism. The sensible heat exchange with the working air and the latent heat exchange with the drain water are performed. As a result, the amount of heat exchange in the radiator increases, and the heat transfer with the refrigerant flowing in the radiator is promoted. Therefore, it is possible to reduce the size of the radiator and the size of the heat pump type drying device. Further, since the heat transfer in the radiator is promoted, the Agego with refrigerant can be brought into a supercritical state on the heat radiation side of the refrigeration cycle such as C_〇 2 as a refrigerant, the refrigerant temperature at the radiator exit drop And the cooling capacity of the evaporator is increased, it is possible to realize a more efficient heat pump type drying apparatus.
ま 、 本発明の乾燥装置によれば、 蒸発器で凝縮生成された低温のドレン水を 放熱器に滴下あるいは嘖霧することにより、 放熱器の冷媒温度とより大きな温度 差で潜熱交換を行い、 ヒートポンプ装置の高圧側の圧力を低減させることができ るので、 圧縮機の所要動力低減すなわちヒー卜ポンプ装置の省エネルギー化を図 ることが可能となる。 Further, according to the drying device of the present invention, the low-temperature drain water condensed and generated in the evaporator is dropped or sprayed on the radiator, thereby performing latent heat exchange with a larger temperature difference from the refrigerant temperature of the radiator, Since the pressure on the high pressure side of the heat pump device can be reduced, it is possible to reduce the required power of the compressor, that is, to save energy of the heat pump device.
ま 、 本発明の乾燥装置によれば、 蒸発器で凝縮生成したドレン水を、 重力及 び送風によるせん断力を利用して、 放熱器に滴下する構成とし ことにより、 水 の供給や、 ポンプ動力を要することな <、 重力及び送風によるせん断力のみで放 熱器に水を接触させることができるので、 さらに省エネルギー化を図ることがで きる。 Further, according to the drying apparatus of the present invention, the drain water condensed and generated in the evaporator is dropped on the radiator by utilizing the shear force generated by gravity and blast, so that water supply and pump power <Since the water can be brought into contact with the heatsink only by gravity and shearing force due to air blowing, energy can be further saved.
また、 本発明の乾燥装置によれば、 蒸発器を第 1 の蒸発器と第 2の蒸発器に分 割することにより、 第 1 の蒸発器で凝縮生成された水分は、 ドレン水受けで確実 に外部に排出することができるので、 回収機構では完全に凝縮できない水分をよ り確実に回収し、 乾燥対象の水分除去に要する時間を短縮させて、 さらに省エネ ルギー化を図ることができる。 Further, according to the drying device of the present invention, by dividing the evaporator into the first evaporator and the second evaporator, the water condensed and generated in the first evaporator is surely received by the drain water receiver. Since the water can be discharged to the outside, the water that cannot be completely condensed by the recovery mechanism can be collected more reliably, the time required for removing the water to be dried can be shortened, and further energy saving can be achieved.
また、 本発明の乾燥装置によれば、 第 1 の蒸発器と第 2の蒸発器の間に三方弁 を設け、 流れ方向を替えることにより、 ヒー卜ポンプ運転開始から一定時間後の 放熱器での再蒸発する水分を抑制することができるので、 乾燥対象の水分の除去 を確実に行 ことができる。 Further, according to the drying device of the present invention, a three-way valve is provided between the first evaporator and the second evaporator, and the flow direction is changed, so that the radiator after a certain time from the start of the operation of the heat pump. Since the water that re-evaporates can be suppressed, the water to be dried can be reliably removed.
また、 本発明の乾燥装置によれば、 放熱器に流れる冷媒は、 水の沸点以上の温 度とすることにより、 放熱器に滴下するドレン水の温度を加熱させて、 放熱器の フィンに発生するカビなどの成長を抑制または減少させることができる。
ま 、 本発明の乾燥装置によれば、 ヒー卜ポンプ装置は高圧側圧力においては 超臨界圧力で運転することによって、 さらに乾燥空気温度を高くすることができ るので、 乾燥時間をより短縮させることが可能となり、 高効率な乾燥装置の運転 を行うことができる。
Further, according to the drying device of the present invention, the refrigerant flowing through the radiator has a temperature equal to or higher than the boiling point of water, thereby heating the temperature of the drain water dripped onto the radiator and generating the fins of the radiator. The growth of mold and the like can be suppressed or reduced. Further, according to the drying apparatus of the present invention, by operating the heat pump apparatus at the supercritical pressure at the high pressure side, the temperature of the drying air can be further increased, so that the drying time can be further reduced. This makes it possible to operate the drying device with high efficiency.