WO2004026260A2 - Prophylactic and therapeutic hiv aptamers - Google Patents
Prophylactic and therapeutic hiv aptamers Download PDFInfo
- Publication number
- WO2004026260A2 WO2004026260A2 PCT/US2003/029798 US0329798W WO2004026260A2 WO 2004026260 A2 WO2004026260 A2 WO 2004026260A2 US 0329798 W US0329798 W US 0329798W WO 2004026260 A2 WO2004026260 A2 WO 2004026260A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seq
- gpl
- aptamer
- binding
- aptamers
- Prior art date
Links
- 108091023037 Aptamer Proteins 0.000 title claims abstract description 242
- 230000001225 therapeutic effect Effects 0.000 title abstract description 22
- 230000000069 prophylactic effect Effects 0.000 title description 4
- 238000000034 method Methods 0.000 claims abstract description 137
- 239000000203 mixture Substances 0.000 claims abstract description 53
- 208000031886 HIV Infections Diseases 0.000 claims abstract description 16
- 208000037357 HIV infectious disease Diseases 0.000 claims abstract description 12
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 claims abstract description 12
- 230000001105 regulatory effect Effects 0.000 claims abstract description 9
- 230000027455 binding Effects 0.000 claims description 202
- 238000009739 binding Methods 0.000 claims description 197
- 239000003446 ligand Substances 0.000 claims description 73
- 239000012636 effector Substances 0.000 claims description 55
- 102100035875 C-C chemokine receptor type 5 Human genes 0.000 claims description 50
- 101710149870 C-C chemokine receptor type 5 Proteins 0.000 claims description 50
- 230000003472 neutralizing effect Effects 0.000 claims description 41
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 26
- 102000005962 receptors Human genes 0.000 claims description 24
- 108020003175 receptors Proteins 0.000 claims description 24
- 239000012528 membrane Substances 0.000 claims description 19
- 102100031650 C-X-C chemokine receptor type 4 Human genes 0.000 claims description 18
- 101000922348 Homo sapiens C-X-C chemokine receptor type 4 Proteins 0.000 claims description 18
- 230000028996 humoral immune response Effects 0.000 claims description 14
- 230000008859 change Effects 0.000 claims description 13
- 208000015181 infectious disease Diseases 0.000 claims description 12
- 125000006850 spacer group Chemical group 0.000 claims description 12
- 108010017088 CCR5 Receptors Proteins 0.000 claims description 10
- 102000004274 CCR5 Receptors Human genes 0.000 claims description 10
- 230000035772 mutation Effects 0.000 claims description 9
- 108091008104 nucleic acid aptamers Proteins 0.000 claims description 9
- 239000004971 Cross linker Substances 0.000 claims description 6
- 229920001223 polyethylene glycol Polymers 0.000 claims description 6
- 239000002202 Polyethylene glycol Substances 0.000 claims description 5
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 5
- 238000012216 screening Methods 0.000 claims description 5
- 150000003573 thiols Chemical class 0.000 claims description 5
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 claims description 4
- 235000018417 cysteine Nutrition 0.000 claims description 4
- 102000008394 Immunoglobulin Fragments Human genes 0.000 claims description 3
- 108010021625 Immunoglobulin Fragments Proteins 0.000 claims description 3
- 150000003141 primary amines Chemical group 0.000 claims description 3
- 239000012637 allosteric effector Substances 0.000 claims 3
- 108020001756 ligand binding domains Proteins 0.000 claims 2
- 230000002194 synthesizing effect Effects 0.000 claims 2
- ZAPNXDUFCQIHFS-UHFFFAOYSA-M sodium;2,5-dioxo-1-[6-[3-(pyridin-2-yldisulfanyl)propanoylamino]hexanoyloxy]pyrrolidine-3-sulfonate Chemical group [Na+].O=C1C(S(=O)(=O)[O-])CC(=O)N1OC(=O)CCCCCNC(=O)CCSSC1=CC=CC=N1 ZAPNXDUFCQIHFS-UHFFFAOYSA-M 0.000 claims 1
- 229960005486 vaccine Drugs 0.000 abstract description 28
- 239000000463 material Substances 0.000 abstract description 9
- 238000011321 prophylaxis Methods 0.000 abstract description 2
- 150000007523 nucleic acids Chemical class 0.000 description 97
- 108020004707 nucleic acids Proteins 0.000 description 90
- 102000039446 nucleic acids Human genes 0.000 description 90
- 239000000556 agonist Substances 0.000 description 67
- 230000000694 effects Effects 0.000 description 51
- 102100036011 T-cell surface glycoprotein CD4 Human genes 0.000 description 47
- 101000716102 Homo sapiens T-cell surface glycoprotein CD4 Proteins 0.000 description 46
- 230000008569 process Effects 0.000 description 39
- 241000894007 species Species 0.000 description 35
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 31
- 241000725303 Human immunodeficiency virus Species 0.000 description 29
- 108091034117 Oligonucleotide Proteins 0.000 description 28
- 230000004048 modification Effects 0.000 description 24
- 238000012986 modification Methods 0.000 description 24
- 239000000243 solution Substances 0.000 description 22
- 210000004027 cell Anatomy 0.000 description 21
- 125000003729 nucleotide group Chemical group 0.000 description 21
- 238000000338 in vitro Methods 0.000 description 19
- 108020004414 DNA Proteins 0.000 description 18
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 18
- 230000003993 interaction Effects 0.000 description 18
- 238000003752 polymerase chain reaction Methods 0.000 description 18
- 239000002773 nucleotide Substances 0.000 description 17
- 230000001419 dependent effect Effects 0.000 description 16
- 239000012634 fragment Substances 0.000 description 16
- 230000009870 specific binding Effects 0.000 description 16
- 238000003556 assay Methods 0.000 description 14
- 230000005875 antibody response Effects 0.000 description 12
- 238000000638 solvent extraction Methods 0.000 description 12
- 230000003321 amplification Effects 0.000 description 11
- 238000003199 nucleic acid amplification method Methods 0.000 description 11
- 230000000717 retained effect Effects 0.000 description 11
- 238000010187 selection method Methods 0.000 description 11
- 238000003786 synthesis reaction Methods 0.000 description 11
- 239000000020 Nitrocellulose Substances 0.000 description 10
- 239000002671 adjuvant Substances 0.000 description 10
- 239000000872 buffer Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 10
- 229920001220 nitrocellulos Polymers 0.000 description 10
- 235000018102 proteins Nutrition 0.000 description 10
- 102000004169 proteins and genes Human genes 0.000 description 10
- 108090000623 proteins and genes Proteins 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 102000009410 Chemokine receptor Human genes 0.000 description 9
- 108050000299 Chemokine receptor Proteins 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- 238000013518 transcription Methods 0.000 description 9
- 230000035897 transcription Effects 0.000 description 9
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 241000700605 Viruses Species 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 230000002163 immunogen Effects 0.000 description 8
- 108010087904 neutravidin Proteins 0.000 description 8
- 210000002966 serum Anatomy 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 7
- 208000035475 disorder Diseases 0.000 description 7
- 230000028993 immune response Effects 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- 230000001939 inductive effect Effects 0.000 description 7
- 230000003278 mimic effect Effects 0.000 description 7
- 238000006386 neutralization reaction Methods 0.000 description 7
- 238000000159 protein binding assay Methods 0.000 description 7
- 230000003612 virological effect Effects 0.000 description 7
- 238000005406 washing Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 108060002716 Exonuclease Proteins 0.000 description 6
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 102000013165 exonuclease Human genes 0.000 description 6
- 230000003053 immunization Effects 0.000 description 6
- 230000005847 immunogenicity Effects 0.000 description 6
- 208000030507 AIDS Diseases 0.000 description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 5
- 229940033330 HIV vaccine Drugs 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 5
- 238000012408 PCR amplification Methods 0.000 description 5
- 230000009471 action Effects 0.000 description 5
- 239000000427 antigen Substances 0.000 description 5
- 239000011324 bead Substances 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 108091036078 conserved sequence Proteins 0.000 description 5
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 238000011067 equilibration Methods 0.000 description 5
- 238000002649 immunization Methods 0.000 description 5
- 238000011534 incubation Methods 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 238000012163 sequencing technique Methods 0.000 description 5
- 150000003384 small molecules Chemical class 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- 235000000346 sugar Nutrition 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 239000012646 vaccine adjuvant Substances 0.000 description 5
- 108010041397 CD4 Antigens Proteins 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 4
- 108010042407 Endonucleases Proteins 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- 102100034349 Integrase Human genes 0.000 description 4
- 241000699670 Mus sp. Species 0.000 description 4
- 229910019142 PO4 Chemical group 0.000 description 4
- 101710137500 T7 RNA polymerase Proteins 0.000 description 4
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 108091007433 antigens Proteins 0.000 description 4
- 102000036639 antigens Human genes 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 230000002349 favourable effect Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 231100000219 mutagenic Toxicity 0.000 description 4
- 230000003505 mutagenic effect Effects 0.000 description 4
- 238000005457 optimization Methods 0.000 description 4
- 235000021317 phosphate Nutrition 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 108010043277 recombinant soluble CD4 Proteins 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 238000007920 subcutaneous administration Methods 0.000 description 4
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- 102000053642 Catalytic RNA Human genes 0.000 description 3
- 108090000994 Catalytic RNA Proteins 0.000 description 3
- 102000019034 Chemokines Human genes 0.000 description 3
- 108010012236 Chemokines Proteins 0.000 description 3
- 238000002965 ELISA Methods 0.000 description 3
- 101710163270 Nuclease Proteins 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 3
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 3
- -1 alkyl phosphate Chemical compound 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 238000010367 cloning Methods 0.000 description 3
- 230000009918 complex formation Effects 0.000 description 3
- 230000021615 conjugation Effects 0.000 description 3
- 238000004925 denaturation Methods 0.000 description 3
- 230000036425 denaturation Effects 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 150000002605 large molecules Chemical class 0.000 description 3
- 150000002634 lipophilic molecules Chemical class 0.000 description 3
- 229910001629 magnesium chloride Inorganic materials 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 231100000350 mutagenesis Toxicity 0.000 description 3
- 238000002703 mutagenesis Methods 0.000 description 3
- 239000008194 pharmaceutical composition Substances 0.000 description 3
- 239000010452 phosphate Chemical group 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 108091092562 ribozyme Proteins 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000010254 subcutaneous injection Methods 0.000 description 3
- 239000007929 subcutaneous injection Substances 0.000 description 3
- 229940031626 subunit vaccine Drugs 0.000 description 3
- 229940124931 vaccine adjuvant Drugs 0.000 description 3
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 2
- ASNTZYQMIUCEBV-UHFFFAOYSA-N 2,5-dioxo-1-[6-[3-(pyridin-2-yldisulfanyl)propanoylamino]hexanoyloxy]pyrrolidine-3-sulfonic acid Chemical compound O=C1C(S(=O)(=O)O)CC(=O)N1OC(=O)CCCCCNC(=O)CCSSC1=CC=CC=N1 ASNTZYQMIUCEBV-UHFFFAOYSA-N 0.000 description 2
- 229920000936 Agarose Polymers 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 2
- 108010061299 CXCR4 Receptors Proteins 0.000 description 2
- 102000012000 CXCR4 Receptors Human genes 0.000 description 2
- 241000700198 Cavia Species 0.000 description 2
- 102100031780 Endonuclease Human genes 0.000 description 2
- 102000004533 Endonucleases Human genes 0.000 description 2
- 101710121417 Envelope glycoprotein Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- UGVQELHRNUDMAA-BYPYZUCNSA-N Gly-Ala-Gly Chemical compound [NH3+]CC(=O)N[C@@H](C)C(=O)NCC([O-])=O UGVQELHRNUDMAA-BYPYZUCNSA-N 0.000 description 2
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 108010058683 Immobilized Proteins Proteins 0.000 description 2
- 241000282560 Macaca mulatta Species 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 2
- 108010006785 Taq Polymerase Proteins 0.000 description 2
- 101800001690 Transmembrane protein gp41 Proteins 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000001464 adherent effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000001042 affinity chromatography Methods 0.000 description 2
- 238000005904 alkaline hydrolysis reaction Methods 0.000 description 2
- 230000003281 allosteric effect Effects 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000036436 anti-hiv Effects 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 108010005774 beta-Galactosidase Proteins 0.000 description 2
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 2
- 239000012148 binding buffer Substances 0.000 description 2
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 239000003398 denaturant Substances 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 239000012893 effector ligand Substances 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 125000003147 glycosyl group Chemical group 0.000 description 2
- 230000013595 glycosylation Effects 0.000 description 2
- 238000006206 glycosylation reaction Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 229940042743 immune sera Drugs 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 230000021633 leukocyte mediated immunity Effects 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 102000006240 membrane receptors Human genes 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- UPSFMJHZUCSEHU-JYGUBCOQSA-N n-[(2s,3r,4r,5s,6r)-2-[(2r,3s,4r,5r,6s)-5-acetamido-4-hydroxy-2-(hydroxymethyl)-6-(4-methyl-2-oxochromen-7-yl)oxyoxan-3-yl]oxy-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]acetamide Chemical compound CC(=O)N[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@H]1[C@H](O)[C@@H](NC(C)=O)[C@H](OC=2C=C3OC(=O)C=C(C)C3=CC=2)O[C@@H]1CO UPSFMJHZUCSEHU-JYGUBCOQSA-N 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 231100000956 nontoxicity Toxicity 0.000 description 2
- 239000000346 nonvolatile oil Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical group [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 150000004713 phosphodiesters Chemical class 0.000 description 2
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229940021993 prophylactic vaccine Drugs 0.000 description 2
- 150000003230 pyrimidines Chemical group 0.000 description 2
- 238000002708 random mutagenesis Methods 0.000 description 2
- 230000008707 rearrangement Effects 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 238000010839 reverse transcription Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000002336 ribonucleotide Substances 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- ZFXYFBGIUFBOJW-UHFFFAOYSA-N theophylline Chemical compound O=C1N(C)C(=O)N(C)C2=C1NC=N2 ZFXYFBGIUFBOJW-UHFFFAOYSA-N 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 229940104230 thymidine Drugs 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- RGNOTKMIMZMNRX-XVFCMESISA-N 2-amino-1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]pyrimidin-4-one Chemical compound NC1=NC(=O)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 RGNOTKMIMZMNRX-XVFCMESISA-N 0.000 description 1
- ZLOIGESWDJYCTF-UHFFFAOYSA-N 4-Thiouridine Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=S)C=C1 ZLOIGESWDJYCTF-UHFFFAOYSA-N 0.000 description 1
- ZLOIGESWDJYCTF-XVFCMESISA-N 4-thiouridine Chemical class O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=S)C=C1 ZLOIGESWDJYCTF-XVFCMESISA-N 0.000 description 1
- YBJHBAHKTGYVGT-ZXFLCMHBSA-N 5-[(3ar,4r,6as)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoic acid Chemical compound N1C(=O)N[C@H]2[C@@H](CCCCC(=O)O)SC[C@H]21 YBJHBAHKTGYVGT-ZXFLCMHBSA-N 0.000 description 1
- LQLQRFGHAALLLE-UHFFFAOYSA-N 5-bromouracil Chemical class BrC1=CNC(=O)NC1=O LQLQRFGHAALLLE-UHFFFAOYSA-N 0.000 description 1
- KSNXJLQDQOIRIP-UHFFFAOYSA-N 5-iodouracil Chemical class IC1=CNC(=O)NC1=O KSNXJLQDQOIRIP-UHFFFAOYSA-N 0.000 description 1
- 108091008875 B cell receptors Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- 108700011778 CCR5 Proteins 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 244000304337 Cuminum cyminum Species 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical group OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- 102100038132 Endogenous retrovirus group K member 6 Pro protein Human genes 0.000 description 1
- 206010015719 Exsanguination Diseases 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 102000008949 Histocompatibility Antigens Class I Human genes 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 102100020873 Interleukin-2 Human genes 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 1
- 125000003412 L-alanyl group Chemical group [H]N([H])[C@@](C([H])([H])[H])(C(=O)[*])[H] 0.000 description 1
- 108091054437 MHC class I family Proteins 0.000 description 1
- 241000283923 Marmota monax Species 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 108091005461 Nucleic proteins Proteins 0.000 description 1
- CIQHWLTYGMYQQR-QMMMGPOBSA-N O(4')-sulfo-L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(OS(O)(=O)=O)C=C1 CIQHWLTYGMYQQR-QMMMGPOBSA-N 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 101710149951 Protein Tat Proteins 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 241001479493 Sousa Species 0.000 description 1
- 241000251131 Sphyrna Species 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 230000024932 T cell mediated immunity Effects 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 206010058874 Viraemia Diseases 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 229940059260 amidate Drugs 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000009833 antibody interaction Effects 0.000 description 1
- 229940124691 antibody therapeutics Drugs 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 238000007413 biotinylation Methods 0.000 description 1
- 230000006287 biotinylation Effects 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 229960001948 caffeine Drugs 0.000 description 1
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001720 carbohydrates Chemical group 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 238000011509 clonal analysis Methods 0.000 description 1
- 238000013373 clone screening Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000009260 cross reactivity Effects 0.000 description 1
- 238000012866 crystallographic experiment Methods 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 150000001982 diacylglycerols Chemical class 0.000 description 1
- 150000001985 dialkylglycerols Chemical class 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 230000009881 electrostatic interaction Effects 0.000 description 1
- 108700004025 env Genes Proteins 0.000 description 1
- 101150030339 env gene Proteins 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- NPUKDXXFDDZOKR-LLVKDONJSA-N etomidate Chemical compound CCOC(=O)C1=CN=CN1[C@H](C)C1=CC=CC=C1 NPUKDXXFDDZOKR-LLVKDONJSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- 238000002825 functional assay Methods 0.000 description 1
- 150000002243 furanoses Chemical group 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 210000002443 helper t lymphocyte Anatomy 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000008004 immune attack Effects 0.000 description 1
- 230000037451 immune surveillance Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000001524 infective effect Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000013383 initial experiment Methods 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 230000031146 intracellular signal transduction Effects 0.000 description 1
- 230000004068 intracellular signaling Effects 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000008176 lyophilized powder Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 108020004084 membrane receptors Proteins 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- CWWARWOPSKGELM-SARDKLJWSA-N methyl (2s)-2-[[(2s)-2-[[2-[[(2s)-2-[[(2s)-2-[[(2s)-5-amino-2-[[(2s)-5-amino-2-[[(2s)-1-[(2s)-6-amino-2-[[(2s)-1-[(2s)-2-amino-5-(diaminomethylideneamino)pentanoyl]pyrrolidine-2-carbonyl]amino]hexanoyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoyl]amino]-5 Chemical compound C([C@@H](C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)OC)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CCCN=C(N)N)C1=CC=CC=C1 CWWARWOPSKGELM-SARDKLJWSA-N 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 239000002687 nonaqueous vehicle Substances 0.000 description 1
- 108700020942 nucleic acid binding protein Proteins 0.000 description 1
- 102000044158 nucleic acid binding protein Human genes 0.000 description 1
- 238000001668 nucleic acid synthesis Methods 0.000 description 1
- 230000005257 nucleotidylation Effects 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 238000002823 phage display Methods 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 238000013081 phylogenetic analysis Methods 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000011809 primate model Methods 0.000 description 1
- 238000011165 process development Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000001397 quillaja saponaria molina bark Substances 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229930182490 saponin Natural products 0.000 description 1
- 150000007949 saponins Chemical class 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- MXWDLLUGULWYIQ-BFRWRHKQSA-N scyllatoxin Chemical group C([C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CS)C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1N=CNC=1)C(N)=O)NC(=O)[C@H](C)N)C1=CC=CC=C1 MXWDLLUGULWYIQ-BFRWRHKQSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012772 sequence design Methods 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 229960000278 theophylline Drugs 0.000 description 1
- 238000012932 thermodynamic analysis Methods 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 150000005691 triesters Chemical class 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 229940125575 vaccine candidate Drugs 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical class [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 229960004854 viral vaccine Drugs 0.000 description 1
- 210000002845 virion Anatomy 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/115—Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/18—Antivirals for RNA viruses for HIV
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/08—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
- C07K16/10—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
- C07K16/1036—Retroviridae, e.g. leukemia viruses
- C07K16/1045—Lentiviridae, e.g. HIV, FIV, SIV
- C07K16/1063—Lentiviridae, e.g. HIV, FIV, SIV env, e.g. gp41, gp110/120, gp160, V3, PND, CD4 binding site
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/31—Chemical structure of the backbone
- C12N2310/317—Chemical structure of the backbone with an inverted bond, e.g. a cap structure
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/32—Chemical structure of the sugar
- C12N2310/321—2'-O-R Modification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/32—Chemical structure of the sugar
- C12N2310/322—2'-R Modification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/35—Nature of the modification
- C12N2310/351—Conjugate
- C12N2310/3513—Protein; Peptide
Definitions
- the invention relates generally to the field of nucleic acids and more particularly to compositions and methods for treating or preventing HIV with aptamers or aptamer compositions that specifically bind to gpl20.
- Aptamers are nucleic acid molecules having specific binding affinity to molecules through interactions other than classic Watson-Crick base pairing.
- Aptamers like peptides generated by phage display or monoclonal antibodies (MAbs), are capable of specifically binding to selected targets and, through binding, block their targets' ability to function.
- amers Created by an in vitro selection process from pools of random sequence oligonucleotides (Fig. 1), aptamers have been generated for over 100 proteins including growth factors, transcription factors, enzymes, immunoglobulins, and receptors.
- a typical aptamer is 10-15 kDa in size (30-45 nucleotides), binds its target with sub-nanomolar affinity, and discriminates against closely related targets (e.g., will typically not bind other proteins from the same gene family).
- a series of structural studies have shown that aptamers are capable of using the same types of binding interactions (hydrogen bonding, electrostatic complementarity, hydrophobic contacts, steric exclusion, etc.) that drive affinity and specificity in antibody-antigen complexes.
- Aptamers have a number of desirable characteristics for use as therapeutics including high specificity and affinity, biological efficacy, and excellent pharmacokinetic properties. In addition, they offer specific competitive advantages over antibodies and other protein biologies, for example:
- aptamers can be administered by subcutaneous injection. This difference is primarily due to the comparatively low solubility and thus large volumes are necessary for most therapeutic MAbs. With good solubility (>150 mg/ml) and comparatively low molecular weight (aptamer: 10-50 KD; antibody: 150 KD), a weekly dose of aptamer may be delivered by injection in a volume of less than 0.5 ml. Aptamer bioavailability via subcutaneous administration is >80% in monkey studies (Tucker, 1999). In addition, the small size of aptamers allows them to penetrate into areas of conformational constrictions that do not allow for antibodies or antibody fragments to penetrate, presenting yet another advantage of aptamer-based therapeutics or prophylaxis.
- Therapeutic aptamers are chemically synthesized and consequently can be readily scaled as needed to meet production demand. Whereas difficulties in scaling production are currently limiting the availability of some biologies and the capital cost of a large-scale protein production plant is enormous, a single large- scale synthesizer can produce upwards of 100 kg oligonucleotide per year and requires a relatively modest initial investment. The current cost of goods for aptamer synthesis at the kilogram scale is estimated at $500/g, comparable to that for highly optimized antibodies. Continuing improvements in process development are expected to lower the cost of goods to ⁇ $100/g in five years. [0009] 5) Stability. Therapeutic aptamers are chemically robust. They are intrinsically adapted to regain activity following exposure to heat, denaturants, etc. and can be stored for extended periods (>1 yr) at room temperature as lyophilized powders. In contrast, antibodies must be stored refrigerated.
- HIN human immunodeficiency virus
- AIDS acquired immunodeficiency syndrome
- the mature envelope glycoprotein exists as a trimer that arises through processing of a larger precursor (gpl60) to gpl20 and gp41 components which non-covalently associate on the virion surface (Kowalski, et al., 1987; Lu et al., 1995; Burton, 1997).
- Each gpl20 monomer consists of five constant regions (C1-C5) interspersed with five variable regions (N1-N5) (Starcich et al., 1986). Variable regions tend to be oriented on the outer surface of the protein where they help to shield core regions from immune surveillance.
- Gpl20 is also heavily glycosylated (Leonard, 1990). The surface variability and glycosylation of gpl20 reduce its immunogenicity. Though progress is being made in development of vaccines that stimulate cell-mediated immune responses, induction of an effective neutralizing antibody response by an HIN vaccine candidate in a clinical setting remains an urgent and unmet medical need.
- Variability of the envelope glycoprotein plays a key role in the exceptional ability of HIN to avoid immune attack. Viral mutations accumulate readily as infection progresses, generating a diverse population of variants, even within a single infected individual, and providing opportunities for escape from CTL control (Gaschen et al., 2002). This diversity presents significant challenges to vaccine design. Together, surface variability and extensive glycosylation contribute to the relatively poor immunogenicity of monomeric gpl20 immunogens (Leonard, 1990; Langlois et ah, 1998; Kwong et al., 2002; Wei et al., 2003). Interestingly, recent results have shown that infected individuals can and often do generate neutralizing antibody responses.
- Subunit vaccines like those used in the recent Naxgen trial, based on HIN surface proteins (primarily gpl 20 or gpl 60) though safe and generally well-tolerated, have not succeeded in eliciting neutralizing antibody responses across populations (Wantanabe, 2003). Neutralizing antibody responses against laboratory-adapted HIN strains produced by most subunit vaccines are several-fold lower than those seen during HIN-1 infection (Graham et al., 2002). Type-specific neutralization can sometimes be achieved, usually corresponding to the origin of the vaccine antigen.
- CD4-inducible (CD4i) antibodies recognizing this unmasked core region (17b, 48d) are reported to have neutralizing activity (Thali et al, 1993; Sullivan et al, 1998).
- Receptor and co-receptor binding sites are attractive targets for use in vaccine design or for therapeutic intervention as they show conservation among different HIN subtypes and must be exposed on the gpl 20 surface, at least transiently, in order for the virus to gain entry into cells.
- the CCR5 binding region in particular, is one of the most ( highly conserved surfaces on the gpl20 core (Rizzuto et al, 1998). Antibody responses to highly conserved epitopes, integral to the fundamental mechanism of HIN entry, are expected to show neutralizing activity even against diverse HIN subtypes.
- a preventative, prophylactic agent that can bind specifically to gpl 20 and induce a conformational change that reveals suitable immunogenic epitopes and results in a humoral immune response to prevent or treat infection of cells by HIN.
- Figure 1 shows the in vitro aptamer selection (SELEXTM) process from pools of random sequence oligonucleotides.
- Figure 2 shows a schematic of HIV infection of cells upon CD4-induced binding of gpl 20 to CCR5 membrane protein.
- Figure 3 shows a schematic of HIV binding interactions with CD4 receptor and with CCR5/CXCR4 co-receptors, each of which appear to be accompanied by significant structural rearrangement in gpl 20.
- Figure 4 shows a schematic of the steps typically required to generate an aptamer.
- Figure 5 shows gpl 20 BaL specific binding was detectible when compared with control in a nitrocellulose binding assay.
- Figure 6 shows results from a nitrocellulose filter binding assay showing binding affinity of aptamers to gpl 20 BaL.
- Figure 7 shows results from a plate binding assay experiment using 5'- 32 P labeled activity selected pool (or na ⁇ ve pool as a negative control) under standard selection conditions. The plot shows the counts remaining in neutravidin coated plates as a function of the presence of CCR5 peptide, gpl 20 BaL, both or neither component.
- Figure 8 shows a schematic of an agonist (e.g., a gpl20 specific aptamer) inducing conformational changes in a target (e.g., gpl 20) to facilitate a specific interaction (e.g., binding) with a target partner (e.g., CCR5 or CXCR4) or a target partner analog (e.g., an antibody that recognizes the CCR5 or CXCR4 binding site on gpl20).
- a target partner e.g., CCR5 or CXCR4
- a target partner analog e.g., an antibody that recognizes the CCR5 or CXCR4 binding site on gpl20.
- FIG. 9 shows a schematic of an agonist SELEXTM strategy.
- a target partner or "TP" or a target partner analog (or "TPA" with agonist-independent affinity for the target is used to screen a diverse molecule library for species which can specifically interact with the TP (or TPA)-target complex.
- Agonist species may be specifically enriched by (1) selecting against binding to the TP/A, (2) selecting for molecules specifically retained on an immobilized TP/A-target complex, and (3) specifically released from the TP/A-target complex by known high affinity agonists.
- FIG 10 shows a schematic of a second agonist SELEXTM strategy.
- a target partner or target partner analog is used to screen a diverse molecule library for species which can specifically facilitate formation of the TP (or TPA)-target complex under experimental conditions (e.g., temperature, denaturant, salt concentration, target concentration, or TP/A concentration) such that agonist binding is a prerequisite for target-TP/A complex formation.
- Agonist species may be specifically enriched by (1) selecting against binding to TP/A and (2) selecting for molecules specifically retained only when the target is added to the immobilized TP (or TPA).
- Figure 11 shows a schematic of routes to gpl20 agonists, gpl20:gpl20 or variant (e.g. ⁇ C1 ⁇ C5, loop truncations, etc.); CKRA: chemokine receptor or functional analog (e.g. neutralizing antibody 17b, detergent solubilized CCR5, CXCR4, CD4 soluble fragment of CD4 or functional analog (e.g. neutralizing antibody bl2)); (-):negative selection step; (+):positive selection step;():indicated component is optional for selection.
- CKRA chemokine receptor or functional analog
- Figure 12 shows a schematic of selection pool diversification.
- a novel aspect of the current invention is the use of SELEX to isolate nucleic acids that promote specific desired conformational changes in a target of interest ("agonist SELEX").
- the target of interest is gpl 20 and the desired conformational change is that which elicits an effective neutralizing antibody response by, e.g., inducing gpl20 to assume and "lock" into intermediate structures present during infection.
- the target of interest may also be a cell surface receptor and the desired conformational change one that triggers an intracellular signaling pathway or a subunit of a viral surface molecule and the desired conformational change one that fixes the subunit in its natural structure as part of the virus.
- the present invention provides aptamers which bind to gpl 20 to cause a conformational shift in gpl20 that exposes conserved epitopes on gpl20 to co- receptors on cell membranes.
- the present invention provides aptamers which bind to gpl20 to cause a conformational shift in gpl 20 that exposes epitopes on gpl 20 to CCR5 receptors.
- the present invention provides aptamers which bind to gpl 20 to cause a conformational shift in gpl 20 that exposes epitopes on gpl 20 to CXCR4 receptors.
- the present invention provides aptamers which bind to gpl 20 to cause a conformational shift in gpl 20 that exposes epitopes on gpl 20 to CCR5 and CXCR4 receptors, said CCR5 and CXCR4 binding epitopes normally blocked in the absence of binding by CD4.
- the present invention provides aptamers that simulate the effect of CD4 binding to g ⁇ l20.
- the present invention provides a gpl 20 aptamer - gpl 20 conjugate that is "locked” in a conformation that presents epitopes that are able to elicit a neutralizing humoral immune response in an animal or in vitro.
- the present invention provides materials and methods of inducing a humoral immune response to gpl 20 by administering to subjects a gpl 20 aptamer-gpl20 conjugate that is "locked” in a conformation that presents epitopes that are able to elicit a humoral immune response in an animal or in vitro.
- the present invention provides materials and methods of immunizing subjects against HIV infection by administering an effective amount of an aptamer which binds to gpl 20 to cause a conformational shift in gpl 20 that exposes epitopes on gpl 20 to CCR5 receptors.
- the present invention provides a method of producing neutralizing antibodies specific to gpl20 by administering to a subject an aptamer-gpl20 conjugate that is "locked” in a conformation that presents epitopes that are able to elicit a humoral immune response in an animal or in vitro.
- the present invention also provides aptamer regulators that can be used, e.g., to alter biological activity of a therapeutic target in response to changes in the concentration of another regulator molecule. More specifically, the present invention provides aptamers wherein binding of the aptamer to an effector ligand regulates, i.e., activates or suppresses, binding of the effector ligand to a third molecule by, e.g., altering the conformation of the aptamer-bound (effector) ligand.
- the present invention provides therapeutic aptamers whose binding activity is controlled by a first ligand which suppresses the binding activity of the therapeutic aptamer.
- the present invention provides therapeutic aptamers whose binding activity is controlled by a first ligand which enhances the binding activity of the therapeutic aptamer.
- the present invention provides therapeutic aptamers that bind to the CCR5 receptor (thus altering gpl 20 binding).
- aptamers are nucleic acid molecules having specific binding affinity to molecules through interactions other than classic Watson-Crick base pairing.
- a suitable method for generating an aptamer to gpl 20 is with the process entitled “Systematic Evolution of Ligands by Exponential Enrichment” ("SELEXTM”) generally depicted in Figure 1.
- SELEXTM Systematic Evolution of Ligands by Exponential Enrichment
- the SELEXTM process is a method for the in vitro evolution of nucleic acid molecules with highly specific binding to target molecules and is described in, e.g., U.S. patent application Ser. No. 07/536,428, filed Jun. 11, 1990, now abandoned, U.S. Pat. No. 5,475,096 entitled “Nucleic Acid Ligands", and U.S. Pat. No. 5,270,163 (see also WO 91/19813) entitled "Nucleic Acid Ligands”.
- Each SELEX-identified nucleic acid ligand is a specific ligand of a given target compound or molecule.
- the SELEXTM process is based on the unique insight that nucleic acids have sufficient capacity for forming a variety of two- and three-dimensional structures and sufficient chemical versatility available within their monomers to act as ligands (form specific binding pairs) with virtually any chemical compound, whether monomeric or polymeric. Molecules of any size or composition can serve as targets.
- SELEXTM relies as a starting point upon a large library of single stranded oligonucleotide templates comprising randomized sequences derived from chemical synthesis on a standard DNA synthesizer.
- a population of 100% random oligonucleotides is screened.
- each oligonucleotide in the population comprises a random sequence and at least one fixed sequence at its 5' and/or 3' end which comprises a sequence shared by all the molecules of the oligonucleotide population.
- Fixed sequences include sequences such as hybridization sites for PCR primers, promoter sequences for RNA polymerases (e.g., T3, T4, T7, SP6, and the like), restriction sites, or homopolymeric sequences, such as poly A or poly T tracts, catalytic cores (described further below), sites for selective binding to affinity columns, and other sequences to facilitate cloning and/or sequencing of an oligonucleotide of interest.
- the random sequence portion of the oligonucleotide can be of any length and can comprise ribonucleotides and/or deoxyribonucleotides and can include modified or non- natural nucleotides or nucleotide analogs.
- Random oligonucleotides can be synthesized from phosphodiester-linked nucleotides using solid phase oligonucleotide synthesis techniques well known in the art (Froehler et al, Nucl. Acid Res. 14:5399-5467 (1986); Froehler et al, Tet. Lett. 27:5575- 5578 (1986)).
- Oligonucleotides can also be synthesized using solution phase methods such as triester synthesis methods (Sood et al., Nucl. Acid Res. 4:2557 (1977); Hirose et al., Tet. Lett., 28:2449 (1978)).
- Typical syntheses carried out on automated DNA synthesis equipment yield 10 15 -10 molecules. Sufficiently large regions of random sequence in the sequence design increases the likelihood that each synthesized molecule is likely to represent a unique sequence.
- random oligonucleotides comprise entirely random sequences; however, in other embodiments, random oligonucleotides can comprise stretches of nonrandom or partially random sequences. Partially random sequences can be created by adding the four nucleotides in different molar ratios at each addition step.
- Template molecules typically contain fixed 5' and 3' terminal sequences which flank an internal region of 30 - 50 random nucleotides.
- a standard (1 ⁇ mole) scale synthesis will yield 10 15 - 10 16 individual template molecules, sufficient for most SELEX experiments.
- the RNA library is generated from this starting library by in vitro transcription using recombinant T7 RNA polymerase. This library is then mixed with the target under conditions favorable for binding and subjected to step-wise iterations of binding, partitioning and amplification, using the same general selection scheme, to achieve virtually any desired criterion of binding affinity and selectivity.
- the SELEXTM method includes steps of contacting the mixture with the target under conditions favorable for binding, partitioning unbound nucleic acids from those nucleic acids which have bound specifically to target molecules, dissociating the nucleic acid- target complexes, amplifying the nucleic acids dissociated from the nucleic acid-target complexes to yield a ligand-enriched mixture of nucleic acids, then reiterating the steps of binding, partitioning, dissociating and amplifying through as many cycles as desired to yield highly specific high affinity nucleic acid ligands to the target molecule.
- a nucleic acid mixture comprising, for example a 20 nucleotide randomized segment can have 4 20 candidate possibilities. Those which have the higher affinity constants for the target are most likely to bind to the target.
- a second nucleic acid mixture is generated, enriched for the higher binding affinity candidates. Additional rounds of selection progressively favor the best ligands until the resulting nucleic acid mixture is predominantly composed of only one or a few sequences. These can then be cloned, sequenced and individually tested for binding affinity as pure ligands.
- the method may be used to sample as many as about 10 1 different nucleic acid species.
- the nucleic acids of the test mixture preferably include a randomized sequence portion as well as conserved sequences necessary for efficient amplification.
- Nucleic acid sequence variants can be produced in a number of ways including synthesis of randomized nucleic acid sequences and size selection from randomly cleaved cellular nucleic acids.
- the variable sequence portion may contain fully or partially random sequence; it may also contain subportions of conserved sequence inco ⁇ orated with randomized sequence. Sequence variation in test nucleic acids can be introduced or increased by mutagenesis before or during the selection/amplification iterations.
- the selection process is so efficient at isolating those nucleic acid ligands that bind most strongly to the selected target, that only one cycle of selection and amplification is required.
- Such an efficient selection may occur, for example, in a chromatographic-type process wherein the ability of nucleic acids to associate with targets bound on a column operates in such a manner that the column is sufficiently able to allow separation and isolation of the highest affinity nucleic acid ligands.
- the target-specific nucleic acid ligand solution may include a family of nucleic acid structures or motifs that have a number of conserved sequences and a number of sequences which can be substituted or added without significantly affecting the affinity of the nucleic acid ligands to the target.
- SELEXTM SELEXTM
- a variety of nucleic acid primary, secondary and tertiary structures are known to exist.
- U.S. Patent No. 5,707,796 describes the use of SELEXTM in conjunction with gel electrophoresis to select nucleic acid molecules with specific structural characteristics, such as bent DNA.
- U.S. Patent No. 5,763,177 describes SELEXTM based methods for selecting nucleic acid ligands containing photoreactive groups capable of binding and/or photocrosslinking to and/or photoinactivating a target molecule.
- SELEXTM provides means for isolating and identifying nucleic acid ligands which bind to any envisionable target, including large and small biomolecules including proteins (including both nucleic acid- binding proteins and proteins not known to bind nucleic acids as part of their biological function) cofactors and other small molecules.
- proteins including both nucleic acid- binding proteins and proteins not known to bind nucleic acids as part of their biological function
- cofactors and other small molecules.
- U.S. Patent No. 5,580,737 discloses nucleic acid sequences identified through SELEXTM which are capable of binding with high affinity to caffeine and the closely related analog, theophylline.
- Counter- SELEXTM is a method for improving the specificity of nucleic acid ligands to a target molecule by eliminating nucleic acid ligand sequences with cross- reactivity to one or more non-target molecules.
- Counter- SELEXTM is comprised of the steps of a) preparing a candidate mixture of nucleic acids; b) contacting the candidate mixture with the target, wherein nucleic acids having an increased affinity to the target relative to the candidate mixture may be partitioned from the remainder of the candidate mixture; c) partitioning the increased affinity nucleic acids from the remainder of the candidate mixture; d) contacting the increased affinity nucleic acids with one or more non- target molecules such that nucleic acid ligands with specific affinity for the non-target molecule(s) are removed; and e) amplifying the nucleic acids with specific affinity to the target molecule to yield a mixture of nucleic acids enriched for nucleic acid sequences with a relatively higher affinity and specificity for binding to the target molecule.
- nucleic acids as therapeutics and vaccines
- oligonucleotides in their phosphodiester form may be quickly degraded in body fluids by intracellular and extracellular enzymes such as endonucleases and exonucleases before the desired effect is manifest.
- the SELEX method thus encompasses the identification of high-affinity nucleic acid ligands containing modified nucleotides conferring improved characteristics on the ligand, such as improved in vivo stability or improved delivery characteristics. Examples of such modifications include chemical substitutions at the ribose and/or phosphate and/or base positions. SELEX-identified nucleic acid ligands containing modified nucleotides are described in U.S.
- Patent No. 5,660,985 which describes oligonucleotides containing nucleotide derivatives chemically modified at the 5' and 2' positions of pyrimidines.
- U.S. Patent No. 5,756,703 describes oligonucleotides containing various 2'-modified pyrimidines.
- U.S. Patent No. 5,580,737 describes highly specific nucleic acid ligands containing one or more nucleotides modified with 2'-amino (2'-NH 2 ), 2'-fluoro (2'-F), and/or 2'-O-methyl (2'-OMe) substituents.
- nucleic acid ligands contemplated in this invention include, but are not limited to, those which provide other chemical groups that incorporate additional charge, polarizability, hydrophobicity, hydrogen bonding, electrostatic interaction, and fluxionality to the nucleic acid ligand bases or to the nucleic acid ligand as a whole.
- Such modifications include, but are not limited to, 2'-position sugar modifications, 5-position pyrimidine modifications, 8-position purine modifications, modifications at exocyclic amines, substitution of 4-thiouridine, substitution of 5-bromo or 5-iodo-uracil; backbone modifications, phosphorothioate or alkyl phosphate modifications, methylations, unusual base-pairing combinations such as the isobases isocytidine and isoguanidine and the like. Modifications can also include 3' and 5' modifications such as capping.
- the nucleic acid ligands are RNA molecules that are 2'-fluoro (2'-F) modified on the sugar moiety of pyrimidine residues.
- the modifications can be pre- or post-SELEX process modifications.
- Pre-SELEX process modifications yield nucleic acid ligands with both specificity for their SELEX target and improved in vivo stability.
- Post-SELEX process modifications made to 2'-OH nucleic acid ligands can result in improved in vivo stability without adversely affecting the binding capacity of the nucleic acid ligand.
- the SELEX method encompasses combining selected oligonucleotides with other selected oligonucleotides and non-oligonucleotide functional units as described in U.S. Patent No. 5,637,459 and U.S. Patent No. 5,683,867.
- the SELEX method further encompasses combining selected nucleic acid ligands with lipophilic or non-immunogenic high molecular weight compounds in a diagnostic or therapeutic complex, as described in U.S. Patent No.
- VEGF nucleic acid ligands that are associated with a lipophilic compound, such as diacyl glycerol or dialkyl glycerol, in a diagnostic or therapeutic complex are described in U.S. Patent No. 5,859,228.
- VEGF nucleic acid ligands that are associated with a lipophilic compound, such as a glycerol lipid, or a non-immunogenic high molecular weight compound, such as polyalkylene glycol are further described in U.S. Patent No. 6,051,698.
- VEGF nucleic acid ligands that are associated with a non-immunogenic, high molecular weight compound or a lipophilic compound are further described in PCT Publication No. WO 98/18480.
- modified oligonucleotides can be used and can include one or more substitute internucleotide linkages, altered sugars, altered bases, or combinations thereof.
- oligonucleotides are provided in which the P(O)0 group is replaced by P(O)S ("thioate"), P(S)S ("dithioate"), P(O)NR 2 ("amidate"), P(O)R, P(O)OR', CO or CH 2 ("formacetal”) or 3 '-amine (-NH-CH 2 -CH 2 -), wherein each R or R' is independently H or substituted or unsubstituted alkyl.
- Linkage groups can be attached to adjacent nucleotide through an -O-, -N-, or -S- linkage. Not all linkages in the oligonucleotide are required to be identical.
- the oligonucleotides comprise modified sugar groups, for example, one or more of the hydroxyl groups is replaced with halogen, aliphatic groups, or functionalized as ethers or amines.
- the 2'-position of the furanose residue is substituted by any of an O-methyl, O-alkyl, O-allyl, S-alkyl, S-allyl, or halo group.
- 2-fluoro-ribonucleotide oligomer molecules can increase the sensitivity of a nucleic acid sensor molecule for a target molecule by ten- to- one hundred-fold over those generated using unsubstituted ribo- or deoxyribooligonucleotides (Pagratis, et al, Nat. Biotechnol.
- Nucleic acid aptamer molecules are generally selected in a 5 to 20 cycle procedure. In one embodiment, heterogeneity is introduced only in the initial selection stages and does not occur throughout the replicating process.
- the cunent invention describes novel methods for producing aptamers with the ability to induce conformational changes in their targets ("agonist SELEX") and specifically their application, preferably as an adjuvant to be used in conjunction with g ⁇ l20, as a prophylactic vaccine. Steps central to the agonist SELEX method are illustrated in Figs. 8-10. Specific methods used to generate the HIV vaccine adjuvants are illustrated in Fig. 11.
- Aptamers with potential utility as HIV vaccine adjuvants can be isolated on the basis of their ability to drive conformational changes in gpl 20 similar to those induced by the natural gpl 20 receptors/co-receptors (namely CD4 and CCR5/CXCR4).
- Previously isolated and characterized neutralizing antibodies are known to map to the CD4 and chemokine receptor binding sites. These antibodies can be used both as proxy receptors to partially drive appropriate conformational changes for aptamer selection (Fig. 9) and as probes for detecting appropriate conformational changes induced by aptamers (Fig. 10). As shown schematically in Fig.
- binding of an agonist to a target promotes conformational changes in the target which change the nature of the target's interaction (e.g., binding) with a target partner.
- the interaction between the target and the target partner promoted by the agonist initiates a signaling pathway within a cell.
- the target is a membrane receptor
- the agonist is a peptide or protein ligand or as disclosed herein, an aptamer
- the target partner is an intracellular signaling molecule.
- CD4 can be described as an agonist, acting upon the target gpl 20 to promote its interaction with the target partner CCR5 or CXCR4.
- aptamer adjuvant for use as an HIV vaccine would function as an agonist to cause a conformational change in the target (gpl 20) to expose conserved epitopes and thereby drive association between the target (gpl 20) and a B-cell receptor.
- agonist'.' means any molecule (preferably, an aptamer) that upon binding to the target induces an appropriate conformational change in the target.
- target partner or "TP" means a molecule that specifically interacts (e.g., binds) to the target.
- target partner analog means a molecule (such as an antibody) that interacts with a target in a manner similar to that of the target partner (e.g., binding at the same or an overlapping site on the target).
- target partner/analog means either or both a target partner or target partner analog.
- aptamers are isolated on the basis of their ability to (1) specifically interact with a target which has been driven into an agonist-bound conformation through association with a target partner or an analog thereof, and/or (2) specifically drive association of a target with a target partner or an analog thereof.
- the target partner receptor (conesponding to a membrane-associated form of a neutralizing antibody expressed on the surface of a B-cell) can be functionally substituted by target partner analogs such as CCR5, CD4, 17b, or bl2 (or fragments thereof) - species that are all known to bind to epitopes that drive the binding of neutralizing antibodies.
- target partner analogs such as CCR5, CD4, 17b, or bl2 (or fragments thereof) - species that are all known to bind to epitopes that drive the binding of neutralizing antibodies.
- some agonist SELEX strategies rely upon an agonist competitor.
- An agonist competitor is a molecule that interacts with the target at the same site as the agonist and which can be used to competitively elute target-bound agonists.
- Aptamers with desired agonist properties can be generated by the broad strategies outlined in Fig. 9 and Fig. 10 and by a number of specific routes, as illustrated in Fig. 11. Initially, all routes start with selection from a random sequence pool for gpl20-specific aptamers or ligands (Step I). The gpl20-specific aptamer(s) are then used as the starting point for the generation of a biased pool of molecules, predisposed to gpl 20 binding (Step 2). A variety of negative and positive selection pressures can be used to specifically enrich aptamers which trigger conformational changes similar to those generated by receptor/co-receptor-binding (Steps 3-6).
- Steps 3-6 will individually enrich aptamers within the pool generated in Step 2 for molecules with agonist properties. Subsequent high-throughput screening of individual clones within the enriched pools can be used to identify optimal aptamers for use as adjuvants (Step 7). Alternatively, pools enriched by one step can be used as the starting point for subsequent enrichment via another step (Step 8). In addition, Step 1 and/or Step 2 may be dispensed with altogether such that the ability to bind to gpl 20 and the ability to cause the appropriate conformational shift in gpl 20 are selected for simultaneously. By combining multiple selection strategies, aptamers with agonist activity may be most efficiently enriched and ultimately isolated. Detailed methods by which each of the steps in Figure 4 can be carried out are described in the following sections.
- Step 1 gpl20-specific aptamer selection.
- aptamers are selected from random sequence pools for specific binding to target (e.g., gpl20).
- target e.g., gpl20
- aptamers are derived from the SELEX methodologies previously described.
- the gpl 20 specific aptamers can be derived as described below:
- a candidate mixture of nucleic acids of differing sequence is prepared.
- the candidate mixture generally includes regions of fixed sequences (i.e., each of the members of the candidate mixture contains the same sequences in the same location) and regions of randomized sequences.
- the fixed sequence regions are selected either: (i) to assist in the amplification steps described below, (ii) to mimic a sequence known to bind to the target, or (iii) to enhance the concentration of a given structural anangement of the nucleic acids in the candidate mixture.
- the randomized sequences can be totally randomized (i.e., the probability of finding a base at any position being one in four) or only partially randomized (e.g., the probability of finding a base at any location can be selected at any level between 0 and 100 percent).
- the candidate mixture is contacted with the selected target under conditions favorable for binding between the target and members of the candidate mixture. Under these circumstances, the interaction between the target and the nucleic acids of the candidate mixture can be considered as forming nucleic acid-target pairs between the target and those nucleic acids having the strongest affinity for the target.
- the nucleic acids with the highest affinity for the target are partitioned from those nucleic acids with lesser affinity to the target. Because only an extremely small number of sequences (and possibly only one molecule of nucleic acid) conesponding to the highest affinity nucleic acids exist in the candidate mixture, it is generally desirable to set the partitioning criteria so that a significant amount of the nucleic acids in the candidate mixture (approximately 5-50%) are retained during partitioning.
- nucleic acids selected during partitioning as having the relatively higher affinity for the target are then amplified to create a new candidate mixture that is enriched in nucleic acids having a relatively higher affinity for the target.
- This new candidate mixture is contacted with the selected target under conditions favorable for binding between the target and members of the new candidate mixture to form additional nucleic acid-target pairs.
- Steps (C) and (D), partitioning and amplification, respectively, are then repeated until the desired number and types of sequences are obtained.
- the newly formed candidate mixture contains fewer and fewer unique sequences, and the average degree of affinity of the nucleic acids to the target will generally increase.
- the SELEX process yields a candidate mixture containing one or a small number of unique nucleic acids representing those nucleic acids from the original candidate mixture having the highest affinity to the target molecule.
- the aptamers of the invention can also be prepared through the basic SELEX methodology modified in any manner described herein. The SELEX process can be performed using purified gpl 20, or discrete domains or fragments (collectively, "fragments") thereof.
- full-length gpl 20, or gpl 20 fragments can be produced in a suitable expression system.
- the SELEX process can be performed using as a target a synthetic peptide that includes sequences found in gpl20. Determination of the precise number of amino acids needed for the optimal nucleic acid ligand is routine experimentation for skilled artisans.
- the gpl 20 fragments can be used in the SELEX process for both negative selections and as the target in lieu of full length gpl20 in positive selections. Fragments useful in negative selections are described below. Fragments most likely to be useful in positive selections would be those including the VI and V2 regions and or lacking the CI and/or C5 regions.
- both or either of the aptamer or gpl20 could be minimized by deleting portions (e.g., the CI and/or C5 regions of gpl20 or the termini or other nonessential regions of the aptamer), mixing the minimized gpl 20 and/or aptamer to form conjugates, testing the new conjugate for activity and comparing it to the activity of the full length gpl20-aptamer construct.
- portions e.g., the CI and/or C5 regions of gpl20 or the termini or other nonessential regions of the aptamer
- the SELEX process is carried out using fragments of gpl 20 that are bound to magnetic beads through hydrophobic interactions.
- a candidate mixture of single stranded RNA molecules is then contacted with the magnetic beads in the wells of a microtiter plate. After incubation for a predetermined time at a selected temperature, the beads are held to the sides of the wells of the plate by a magnetic field, and the wells of the plate are washed to remove unbound candidate nucleic acid ligands.
- the nucleic acid ligands that bind to gpl 20 are then released into solution in the wells, then reverse transcribed by reverse transcriptase and amplified using the Polymerase Chain Reaction (PCR). The amplified candidate mixture is then used to begin the next round of the SELEX process.
- PCR Polymerase Chain Reaction
- Step 2 Generation of a diverse gpl 20 aptamer-based pool.
- the pool of gpl 20 aptamers in Step 1 is "diversified" - i.e., sequence variation is introduced into the selected clones to increase functional diversification. This can be achieved by a combination of several methods including the following:
- Characterization can include (i) assay for binding affinity, (ii) sequencing, (iii) truncation to define a minimal contiguous domain responsible for binding, (iv) generation of an artificial phylogeny of functional molecules (e.g., via random mutagenesis of the aptamer clone, re-selection of the mutagenized pool for binding species (employing the same SELEX process used with the original random pool), sequencing of the re-selected clones, and analysis of the sequenced clones for conserved sequences and structures required for binding). Information obtained by these experiments can be used to direct the chemical synthesis of a new pool of sequences related to the original aptamer clone (some examples are shown in Fig. 12).
- Step 1 One or more of the aptamers isolated in the original selection (Step 1) can be used as templates for PCR amplification under mutagenic conditions. Repeated rounds of polymerase-mediated replication lead to inco ⁇ oration of mutations throughout the aptamer sequence(s).
- Random sequence tags can be added to the 5'- and/or 3 '-ends of an aptamer or pool of aptamers by either PCR with a random sequence primer or ligation of a random sequence tag (Fig. 12).
- Steps 3-6 Selection schemes to isolate gpl 20 agonists.
- the pool of gpl 20 aptamer-based sequences obtained in Step 2 is subjected to variations on the SELEX process in steps 3-6 to enrich species with or likely to have agonist activity.
- the output from each Step may be assayed for agonist activity or, alternatively, be provided as input for another step of selection.
- Steps 3-4 are designed to isolate gpl 20 aptamer agonists with CD4-like activity (t.e., prone to induce the conformational changes in gpl 20 similar to those induced by binding of CD4).
- Steps 5-6 are designed to isolate gpl 20 aptamer agonists with chemokine receptor-like activity (t.e., prone to induce conformational changes in gpl 20 similar to those induced by binding of CCR5/CXCR4). As such, Steps 3 and 4 can be combined successively to yield one class of agonists while Steps 5 and 6 can be combined successively to yield another.
- Step 3 Selection for aptamers that compete for the CD4 binding site of gpl 20. Selection for CD4-like agonists by this method follows the general strategy outlined in Fig. 9. The pool of sequences generated in Step 2 is subjected to repeated rounds of selection as follows:
- the pool of gpl 20 aptamer based sequences is contacted with the immobilized target partner/analog and allowed to bind under conditions that favor specific binding.
- the target partner/analog is the neutralizing antibody 17b, bound to immobilized protein A.
- Non-binding species are collected and passed forward for subsequent steps.
- Target (gpl 20) or a fragment thereof is immobilized by attachment to a solid support using the immobilized TP/A which, under the experimental conditions is capable of binding the target with high affinity.
- the target is recombinantly expressed gpl20/ ⁇ Cl ⁇ C5.
- the pool of selected sequences is contacted with the immobilized target (gpl 20) and allowed to bind under conditions that favor specific binding and the species with low affinity for target are removed by stringent washing and discarded.
- Excess agonist competitor e.g., CD4
- CD4 has high affinity for gpl 20 and will competitively displace aptamers that bind to gpl20 via sites that overlap with the CD4 binding site.
- Species specifically eluted by the known agonist are enzymatically amplified as described earlier.
- an immobilized complex between target (gpl 20), agonist competitor (e.g., CD4), and optionally the target partner/analog (e.g., lib) can be used first in a negative selection step (i.e., the random sequence pool is contacted with said complex and only non-binding species are collected and passed forward for subsequent steps). Molecules surviving negative selection are subsequently contacted with an immobilized complex containing the target (gpl 20) and optionally the target partner/analog (17b) but lacking the agonist competitor. Molecules with affinity for the complex are isolated by stringent washing, followed by denaturation.
- agonist competitor e.g., CD4
- target partner/analog e.g., lib
- Mutations in these regions are known to disrupt binding and there is evidence that the conformation of these regions is altered as a result of CD4 binding.
- Aptamer agonists might be expected to rely upon similar interactions to drive target activation and, conespondingly, aptamers that fail to use these interactions may be considered unlikely to drive the appropriate conformational changes.
- modified targets lacking these sequences/regions and thus agonist binding can be used in negative selection to remove aptamers that bind to the modified targets from the pool.
- gp 120 ⁇ C 1 / ⁇ C5/ ⁇ V 1 -V2 ( ⁇ Thrl23-Thrl98 replaced with the tripeptide Gly-Ala-Gly) is immobilized and contacted with the pool of gpl20 aptamer-based sequences under conditions that favor specific binding. Following an incubation period during which specific aptamer-modified target complexes can form, non-bound species are collected and the bound species discarded. Collected species are subsequently passed into a positive selection step for wild-type target (gpl 20) binding followed by agonist competitive elution.
- the VI -V2 loop provides approximately half of the contact surface from gpl 20 in the gpl20-CD4 complex and it directly contacts the 17b neutralizing antibody.
- Aptamers capable of specific gpl 20 binding in the absence of V1-V2 are unlikely to interact in a way that would alter the conformation of the N1-N2 loop and thus fail to exhibit agonist activity.
- negative selection may be carried out using a gpl 20 ⁇ Cl/ ⁇ C5/Gly366-Asp370 ->Ala/ ⁇ Met426-Nal430 mutant. These residues are required for the other half of the gpl20-CD4 interaction. Since, however, these residues do not directly define the binding site for the target partner, it is possible that active agonists will be removed from the selected pool during this step.
- Step 4 Selection for aptamers that promote target binding to a target partner/analog. Agonists isolated by this method follow the general strategy outlined in
- Fig. 10 Pre-binding of CD4 has been shown to increase the affinity of gpl 20 for antibody
- the target partner/analog (TP/A) is immobilized on a solid support.
- the TP/A a sulfotyrosine-rich peptide from CCR5 previously shown to bind specifically to gpl 20, immobilized via biotinylation to a streptavidin-coated plate (Cormier et al, 2000).
- Target (gpl20) aptamer-based sequences are optionally contacted with the immobilized TP/A and allowed to bind under conditions that favor specific complex formation. Unbound oligonucleotides (also refened to as "species”) are collected and the bound species are discarded.
- the negatively selected sequences from (1) are combined with target and immobilized TP/A under conditions that disfavor efficient binding between target alone and TP/A.
- Species which are capable of specifically interacting with the target in a manner that increases target affinity for the TP/A will be preferentially retained on the solid support while those that do not will remain in solution.
- the concentration of target and TP/A are maintained sufficiently low such that less than
- excess free target can be provided to competitively displace weakly bound target.
- Specifically retained aptamers can be removed from the immobilized TP/A by denaturation (e.g., by heating) or specifically eluted using, for example, soluble CD4 or
- Step 5 Selection for aptamers that compete for gpl 20 chemokine receptor binding site. Paralleling efforts directed at the generation of CD4-like agonists, selection can be used to generate aptamers which bind near the chemokine receptor binding site to induce appropriate presentation of the CD4BS epitopes. Aptamers with this specificity can be generated using the methods described in Step 3 with replacement of the agonist competitor CD4 by soluble forms of CCR5 or CXCR4 and replacement of the target partner analog 17b with either soluble CD4 or with the neutralizing antibody bl2. As an example:
- Target (gp 120) or a fragment thereof is immobilized by attachment to a solid support using the immobilized target partner/analog which, under the experimental conditions is capable of binding the target with high affinity.
- the target is recombinantly expressed gpl20/ ⁇ Cl ⁇ C5 and the TP/A is monoclonal antibody bl2.
- the pool of selected sequences is contacted with the immobilized target (gpl20) and allowed to bind under conditions that favor specific binding. Species with low affinity for target are removed by stringent washing and discarded.
- chemokine receptor binding site competitor e.g., 17b or detergent solubilized CCR5
- CCR5 and 17b have high affinity for gpl 20 and will competitively displace aptamers that bind to gpl 20 via sites that overlap with the chemokine receptor binding site.
- Species specifically eluted by the known agonist are enzymatically amplified as described earlier.
- selection for chemokine-receptor binding site aptamers will generate non-agonists which - interact with a portion of the receptor binding site but do not drive the appropriate conformational changes in the target.
- aptamers may be preferentially removed from the selected pool by appropriate negative selection steps involving modified forms of the target in which binding site residues have been deleted or substituted.
- a modified form of gpl 20 lacking the extended VI -V2 variable loop (Thrl23-Thrl98 -> Gly-Ala-Gly) is provided during a negative selection step as described previously for CD4-like agonist selection.
- Step 6 Selection for aptamers that promote gpl20 binding to CD4 or its functional analogs. Paralleling efforts directed at the generation of agonists which increase binding affinity of gpl 20 for chemokine receptors and their functional analogs, selection can be used to generate aptamers with chemokine receptor-like agonist activity by isolating molecules which promote high affinity binding to CD4 or its functional analogs. Aptamers with this specificity can be generated using the methods described in Step 4 (Fig. 10) with replacement of the agonist CD4 by soluble forms of CCR5 or CXCR4 and replacement of the target partner analog 17b with either soluble CD4 or with the neutralizing antibody bl2. As an example:
- the target partner/analog is immobilized on a solid support.
- the TP/A is bl2 and it is immobilized by non-covalent binding to pre- immobilized protein A using methods for protein A immobilization well-known in the art).
- Target (gpl 20) aptamer-based sequences are optionally contacted with the immobilized TP/A and allowed to bind under conditions that favor specific complex formation. Unbound species are collected and the bound species are discarded.
- (2) The negatively selected sequences from (1) are combined with target and immobilized TP/A under conditions that disfavor efficient binding between target alone and TP/A.
- Species which are capable of specifically interacting with the target in a manner that increases target affinity for the TP/A will be preferentially retained on the solid support while those that do not will remain in solution.
- the concentration of target and TP/A are maintained sufficiently low such that less than 1% of either forms a complex in the absence of an agonist species that would increase their propensity for binding. After an equilibration period in which novel agonist species- target-TP/A complexes are allowed to form, unbound species are removed by stringent washing.
- excess free target can be provided to competitively displace weakly bound target.
- Specifically retained aptamers can be removed from the immobilized TP/A by denaturation (e.g., by heating) or specifically eluted using, for example, non-biotinylated CCR5-derived sulfopeptides with gpl 20 binding specificity.
- Step 7 Post-SELEX engineering/optimization of gpl 20 agonists for use as vaccine adjuvants. Iterative application of the selection methods described in Steps 3-6 will yield pools enriched for aptamers with the ability to induce conformational changes in gpl 20 which will increase its ability to elicit an effective immune response as an antigen. To generate a useful aptamer-based vaccine adjuvant, the following additional steps are carried out to identify the best starting candidates within the aptamer pool and to improve their production characteristics for use as an adjuvant.
- aptamers isolated in the course of in vitro selection are cloned and characterized for functional activity.
- aptamers may be evaluated on the basis of their ability to promote target partner/analog binding to the target. For example, fluorescently labeled gpl 20 is combined with a defined amount of CD4-like agonist aptamer clone in an assay plate containing immobilized 17b. Following a binding incubation and stringent washing, retained gpl20 can be quantified using a fluorescent plate reader. Aptamers with the strongest agonist activity are expected to most effectively promote gpl 20 retention in the assay. By testing a range of aptamer concentrations, the highest affinity aptamer agonists may be identified. An advantage of this primary screen is its ability to rapidly evaluate a large number of candidates with minimal effort.
- aptamers can be tested in moderate throughput for their ability to induce a neutralizing antibody response.
- Aptamers can be conjugated to recombinantly expressed gpl20 by one of several methods described below and formulated together with a conventional adjuvant, such as Ribi (R-700) or cell wall material (R-730) using methods well known in the art).
- Aptamer complexes are then injected into mice to provoke an immune response. Specifically, mice are injected with 0.05 ml of vaccine in four subcutaneous sites. Booster immunizations are done at 3-week intervals, and mice bled from the tail 10-28 days after immunizations.
- End-labeled aptamer is subjected to limited hydrolysis, separated on the basis of target (gpl 20) binding, and analyzed to determine whether hydrolysis fragments partition as bound or unbound species. Through this process, discrete 5'- and 3'-boundaries can be identified which define a minimal contiguous domain responsible for binding, (c) Phylogenetic analysis.
- An aptamer clone is subjected to random mutagenesis by either mutagenic PCR or doped re-synthesis of an oligonucleotide template for transcription.
- the mutagenized pool of sequences is subjected to re-selection using one or more steps described previously (Steps 3-6).
- Functional clones within the re-selected pool are for binding species (employing the same SELEX process used with the original random pool), sequencing of the re-selected clones, and analysis of the sequenced clones for conserved sequences and structures required for binding), (d) Synthesis.
- Minimal aptamers are synthesized using nucleic acid synthesis techniques which are known in the art.
- Candidate 2'- fluoropyrimidine and 2'-O-methylpurine-containing aptamers containing 3 '-3' thymidine and 3'-biotin cap modifications can be chemically synthesized and tested for gpl20 binding and associated binding-induced conformational changes in gpl 20.
- Activity of the aptamer as an effective vaccine adjuvant may require that the aptamer be covalently coupled to gpl 20.
- Linkage of aptamers via surface carbohydrate moieties of gpl 20 offers one means to engineer covalently linked aptamer/gpl20 complexes.
- Anti-gpl20 aptamers inco ⁇ orating a variable-length PEG spacer region will be modified by hydrazine treatment and reacted with periodate-oxidized gpl 20.
- the resulting covalent aptamer/gpl20 complexes will then be characterized with respect to CD4, CCR5 and antibody interaction, and the capacity to generate neutralizing antibodies.
- the aptamer and gpl 20 can be photo-crosslinked as previously described.
- the method for preventing HIV infection or reducing the levels of HIV in infected individuals involves exposing a human to an aptamer-gpl20 vaccine, actively inducing antibodies that react with gpl 20, and preventing/impairing the ability of HIV to infect cells in vivo.
- This method is appropriate for an uninfected subject or an HIV infected subject with a competent immune system.
- the method induces antibodies, which react with GP120 and neutralize the ability of virus to infect cells.
- the method will prevent virus multiplication upon exposure to HIV.
- the method will decrease the levels of circulating virus ("viral load"), ameliorating the effects of the disease.
- the present invention also encompasses treating HIV infection by the administration of gpl 20 aptamers unconjugated to gpl 20.
- treating means obtaining a desired pharmacologic or physiologic effect.
- the effect can be prophylactic in terms of completely or partially preventing a disorder or sign or symptom thereof, or can be therapeutic in terms of a partial or complete cure for a disorder and/or adverse effect attributable to the disorder.
- Treating covers any treatment and includes: (a) preventing a disorder from occurring in a subject that can be predisposed to a disorder, but has not yet been diagnosed as having it; (b) inhibiting the disorder, i.e., anesting its development; or (c) relieving or ameliorating the disorder.
- an “effective amount” or “therapeutically effective amount” is the amount sufficient to obtain the desired physiological effect.
- Appropriate dosing regimens for the vaccine is generally determined on the basis of controlled clinical trials across patient populations; the effective amount for the vaccine is selected by the physician in each case on the basis of factors normally considered by one skilled in the art to determine appropriate dosages, including the age, sex, and weight of the subject to be treated, the condition being treated, and the severity of the medical condition being treated.
- the aptamer-gpl20 vaccine may be formulated and administered through a variety of means, including systemic, localized or topical admimstration.
- the aptamer-gpl20 vaccine is formulated and administered systemically.
- Techniques for formulation and administration may be found in "Remington: The Science and Practice of Pharmacy, Twentieth Edition," Lippincott Williams & Wilkins, Philadelphia, PA. Suitable routes may include but are not limited to oral, rectal, transmucosal or intestinal administration; parenteral delivery, including intramuscular or subcutaneous injections; or intranasal injections.
- the vaccines are formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hariks's solution, Ringer's solution, or physiological saline buffer and may include adjuvants (e.g., alums, polymers, copolymers).
- the vaccines may be formulated in solid or lyophilized form, then redissolved or suspended immediately prior to use.
- Effective concentrations and frequencies of dosages of the vaccine may be determined through procedures well known to those in the art, which address such parameters as biological half-life, immunologic response, dosing interval, and toxicity.
- a prefened dosage concentration may range from about 0.1 ⁇ g/kg body weight to about 4 ⁇ gkg body weight, with about 0.5 ⁇ g kg body weight being most prefened.
- administration of 2 - 3 doses at monthly intervals, followed by a booster injection at 6 months and subsequently at yearly intervals, may be sufficient to maintain the required circulating concentration of neutralizing antibody. Dose, dosing interval and number of doses will depend upon the patient population (varying by age, weight, underlying diseases, immunologic status etc.).
- the vaccines may be administered to patients alone or in combination with other therapies.
- Such therapies include the sequential or concunent administration of small molecule anti HIV inhibitors or antagonists and/or other anti-HIV vaccines that work through different mechanisms (e.g., by generating T-cell-mediated immunity).
- compositions suitable for administration will typically comprise the vaccine and a pharmaceutically acceptable carrier.
- pharmaceutically acceptable carrier is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and abso ⁇ tion delaying agents, and the like, compatible with pharmaceutical administration. Suitable carriers are described in "Remington: The Science and Practice of Pharmacy, Twentieth Edition," Lippincott Williams & Wilkins, Philadelphia, PA. Prefened examples of such earners or diluents include, but are not limited to, water, saline, Ringer's solutions, dextrose solution and phosphate buffered solutions.
- Adjuvants such as aluminum phosphate, liposomes and non- aqueous vehicles such as fixed oils may also be used.
- Adjuvants such as aluminum phosphate, liposomes and non- aqueous vehicles such as fixed oils may also be used.
- the use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be inco ⁇ orated into the compositions.
- a pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration.
- routes of administration include parenteral, e.g., intramuscular and subcutaneous, administration.
- Solutions or suspensions used for parenteral application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid (EDTA); buffers such as acetates, citrates or phosphates, and agents for the adjustment of tonicity such as sodium chloride or dextrose.
- a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents
- the pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. Immunogenicity may be enhanced by the inclusion of adjuvants such as alum or other agents commonly known in the field.
- the parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vt ⁇ ls made of glass or plastic. In all cases, the composition must be sterile and should be fluid to the extent that easy syringeability exists. It must be stable under the conditions of manufacture and storage and if formulated in multi-dose vt ⁇ ls must be preserved against the contaminating action of microorganisms such as bacteria and fungi.
- Sterile injectable solutions can be prepared by inco ⁇ orating the active compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization.
- dispersions are prepared by inco ⁇ orating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above.
- methods of preparation are vacuum drying, lyophilization and freeze-drying that yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- Dosage unit form refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.
- the specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.
- a regulated aptamer is an aptamer wherein binding of the aptamer to a second ligand (e.g., the CCR5 receptor) is regulated (i.e., activated or suppressed) by binding of the aptamer to a first ligand or effector (e.g., gpl20).
- a second ligand e.g., the CCR5 receptor
- an aptamer with these properties can be generated using any of the following selection strategies.
- TTGAGCGTTTATTCTTGTCTCCCTATAGTGAGTCGTATTA -3' (SEQ IDNO:2), is synthesized using an ABI EXPEDITETM DNA synthesizer, and purified by standard methods (N 0 denotes a random sequence of 40 nucleotides built uniquely into each aptamer). Approximately 10 15 DNA molecules with unique sequences from the template pool can be PCR amplified using the primers YW.42.30.A 5'-
- a second pool "a semi-structured” pool, uses a DNA template with the following sequence: 5'- GGAGCCTTCCTCCGGA- 3' (SEQ ID NO:5) -(N 40 )- 5' - TCCGGTTTCCCGAGCTT-3' (SEQ ID NO:6), is synthesized in the same manner. Approximately 10 DNA molecules with unique sequences from the template pool can be PCR amplified using the primers jd6093a 5'-
- Amplified pool PCR product is precipitated with ethanol, re-suspended in water and desalted on a Nap-5 column (Pharmacia).
- RNA molecules from each of the pool PCR amplifications are transcribed in vitro using a mutant Y639F T7 RNA polymerase which accepts 2'-fluoropyrimidines (Sousa, 1999), 2'-fluoropyrimidine and 2'-OH purine NTPs, to yield ⁇ 3 x 10 16 RNA molecules with conesponding sequences.
- Stabilized 2'-fluoro- pyrimidine pools made up of 10 -10 1 random sequences in a total volume of approximately 100 ⁇ l are contacted with either biotinylated target immobilized in neutravidin coated plates (Pierce) or adherent target-expressing cells immobilized in plates.
- a typical binding buffer used for the positive and negative selection steps contains 20 mM HEPES, pH 7.4, 150 mM NaCl, 10 mM MgC12, 1 mM EDTA, 1 mM DTT, and 0.1 mg/ml tRNA (4 mM).
- RNAs which bind to the target alone are removed in this negative selection step.
- the solution containing unbound RNA is then transfened to another identical well containing immobilized target and effector is added to the solution. The concentration of effector added can be adjusted to ultimately enrich molecules which respond to effector at the most appropriate concentration.
- the effector is provided at saturating concentrations (typically millimolar for small molecule effectors such as glucose and high micromolar concentration for protein effectors) to ensure that molecules with any measure of effector dependence are isolated.
- concentrations typically millimolar for small molecule effectors such as glucose and high micromolar concentration for protein effectors
- the effector concentration can be reduced to preferentially isolate the most effector-dependent molecules.
- wells are rinsed with excess binding buffer (typically washing four times with 120 ⁇ l of lx ASB on a robotic plate washer with 30 sec. shakes).
- RT primer 4 ⁇ M; 5x "Thermo buffer", lx; DTT, 100 mM; mixed dNTPs, 0.2 mM each; vanadate nucleotide inhibitor 200 ⁇ M; tRNA 10 ⁇ g/ml; 0.5 ⁇ l Invitrogen Thermoscript Reverse Transcriptase; brought to 50 ⁇ l with water
- RT primer 4 ⁇ M
- DTT 100 mM
- mixed dNTPs 0.2 mM each
- tRNA 10 ⁇ g/ml 0.5 ⁇ l Invitrogen Thermoscript Reverse Transcriptase; brought to 50 ⁇ l with water
- the RT reaction is diluted 10-fold into a 100 ⁇ l PCR reaction (containing 5'- primer, 1 ⁇ M; 3 '-primer, 1 ⁇ M; lOx Invitrogen supplied PCR buffer (no Mg), lx; dNTPs, 0.2 mM each; MgCl 2 , 3 mM; 1 ⁇ l Invitrogen Taq; 10 ⁇ l incubated RT reaction and brought to 100 ⁇ l with water) and thermocycled with the following schedule: 94 °C, 1 min; 62 °C, 1 min; 72 °C 3 min.
- PCR reactions are assayed at 10 cycles by agarose gel, and then each successive 5 cycles until defined amplification bands are visible via ethidium bromide staining.
- Completed PCR reactions are purified using a Centri-sep column and diluted 10-fold into a 50 ⁇ l transcription reaction (4x TK Transcription buffer, lx; MgCl 2 , 25 mM; NTPs 5 mM each; NEB T7 RNA polymerase 2 ⁇ l; water to 50 ⁇ l).
- the transcription reaction is incubated overnight at 37 °C and the resulting transcription products are purified by denaturing polyacrylamide gel electrophoresis (10% gel).
- the entire selection process is repeated until the fraction of molecules surviving both positive and negative selection increases significantly above the original naive pool fraction, typically >10% of the input. Typically >10 cycles of selection are required for enrichment.
- Individual molecules within the enriched pool are isolated and characterized by subcloning the pooled template DNA using the TOPO TA cloning system (Invitrogen). Individual clones are sequenced and unique clones screened for effector dependent binding.
- Method (2) Pre-selection for target binding followed by effector-dependent selection.
- Selection method (1) can be modified as follows if the probability that molecules with both target and effector binding properties exist in the starting pool is low. Instead of selecting initially for both target binding and effector dependence, in vitro selection can be used to isolate molecules with high affinity for the target. Following an optional diversification step (wherein the selected pool of target-binding sequences is partially randomized), effector-dependent selection can be applied. To isolate target specific aptamers, the previously described selection method is applied with the following modifications: (1) target is omitted from the negative selection step, and (2) effector is omitted from the positive selection step. 5-15 rounds of selection will typically yield a pool of target binding species containing 1-1000 unique sequences. Individual clones are screened for the ability to specifically bind to the target.
- a diversified pool of sequences with increased likelihood of effector-dependent target binding activity can be generated by a number of means including the following:
- Method (3) Pre-selection for effector binding followed by effector-dependent target binding selection.
- Selection method (1) can be modified as follows if the probability that molecules with both target and effector binding properties exist in the starting pool is low. Instead of selecting initially for both target binding and effector dependence, in vitro selection can be used to isolate molecules with high affinity for the effector. Following an optional diversification step (wherein the selected pool of effector-binding sequences is partially randomized), effector-dependent, target-binding selection can be applied as described previously. To isolate effector-specific aptamers, the first selection method is applied with the following modifications: (1) target is omitted from the negative selection step, and (2) target is omitted from the positive selection step and instead effector is immobilized to the capture solid support.
- a sequence-diversified pool of effector-binding molecules can be generated by one of the following methods:
- the diversified pool is subjected to selection for effector-dependent target binding as described in selection method (1).
- Method (4) Pre-selection for effector binding and target binding motifs, followed by effector-dependent target binding selection.
- Selection method (1) can be modified as follows if the probability that molecules with both target and effector binding properties exist in the starting pool is low. Instead of selecting initially for both target binding and effector dependence, in vitro selection can be used to isolate two separate pools of molecules, one with high affinity for the effector and the other with high affinity for the target. Subdomains within the two pools can be engineered to create a chimeric pool of molecules in which each molecule contains one copy of an effector-binding motif and one copy of a target binding motif. This chimeric pool is then subjected to effector-dependent, target-binding selection as described previously.
- selection method (1) is applied with the following modifications: (1) target is omitted from the negative selection step, and (2) effector is omitted from the positive selection step.
- the selection method (1) is applied with the following modifications: (1) target is omitted from the negative selection step, and (2) target is omitted from the positive selection step and instead effector is immobilized to the capture solid support.
- small molecule effectors such as glucose
- conventional affinity chromatography using 200 ⁇ l agarose bead columns with 1-5 mM immobilized effector is the prefened immobilization format.
- chimeric pool for effector-dependent selection.
- the functional subdomains can be identified as described previously (selection method (2)).
- the chimeric pool can be generated by linearly concatenating the functional motifs together with an intervening random sequence domain.
- the motifs can be combined at the secondary structure level by coupling via linking helices as described previously for effector-dependent ribozymes (Soukup, G., and Breaker, R. (1999) "Design of allosteric hammerhead ribozymes activated by ligand- induced structure stabilization.” Structure Fold Des 7 (7): 783-91).
- Figure 4 shows the steps typically required to generate an aptamer for therapeutic pu ⁇ oses. The process can be approximately considered in four phases: (i) and (ii) aptamer identification, (iii) aptamer minimization, and (iv) aptamer optimization for stability.
- Stabilized 2'-fluoro-pyrimidine pools made up of 10 14 -10 15 random sequences were contacted with a biotinylated sulfotyrosine-CCR5 peptide (Cormier et al, 2000) immobilized in neutravidin coated 96-well plates (Pierce). Alternatively, adherent CCR5 expressing cells immobilized in 96-well plates can be used.
- RNAs which bind to the peptide or cells alone were removed in this negative selection step.
- the RNA solution was then transfened to another identical CCR5 peptide.
- a cell containing well can be used.
- gpl 20 was added to the reactions and they were allowed to equilibrate.
- Wells were then rinsed with selection buffer and immobilized RNA amplified by reverse transcription, PCR and transcription for another round of activity-based selection. Aptamers selected in this manner both bind to gpl 20 and induce gpl 20 binding to CCR5, thus exposing the CCR5 or CD4i epitope.
- the aptamers generated by activity- based selection may bind to the CD4 binding site, but this is not absolutely required, as the aptamer may use an alternative mechanism to stabilize gpl 20 in the CCR5 binding conformation. Since an initial negative selection step was used, aptamers which bind to CCR5 and gpl 20 simultaneously in a non-allosteric manner should not have been selected. During the post-selection process, pools and clones were screened appropriately to insure that they do not have any CCR5 binding activity in the absence of gpl 20. A more detailed description of the selection process is provided below.
- GCCTGTTGTGAGCCTCCTGTCGAA- 3' (SEQ ID NO:l), linked by 40 randomized nucleotides -(N 4 o)- to 5' -
- TTGAGCGTTTATTCTTGTCTCCCTATAGTGAGTCGTATTA -3' (SEQ ID NO:2), was synthesized using an ABI EXPEDITETM DNA synthesizer, and purified by standard methods (N 40 denotes a random sequence of 40 nucleotides built uniquely into each aptamer). Approximately 10 15 DNA molecules with unique sequences from the template pool were PCR amplified the primers YW.42.30A, 5'-
- the DNA template sequence 5'- GGAGCCTTCCTCCGGA-3' (SEQ ID NO:5) -(N40)- 5' -TCCGGTTTCCCGAGCTT-3' [SEQ ID No.6] was synthesized in the same manner.
- RNA molecules from the pool PCR amplification were transcribed in vitro using a mutant Y639F T7 RNA polymerase which accepts 2 '-fluoropyrimidmes, 2'-fluoropyrimidine and 2'-OH purine NTPs, to yield ⁇ 3 x 10 16 RNA molecules with conesponding sequences.
- HIN-1 gpl20 BaL was the target for use in selections.
- This strain of gpl 20 uses CCR5 as its co-receptor and thus is more likely to represent a clinically relevant strain of gpl 20 for prophylactic vaccine development than a lab-adapted, CXCR4 co-receptor using strain such as HXB2.
- Purified recombinant gpl 20 BaL expressed in CHO cells was obtained from Advanced Bioscience Laboratories (Gaithersburg, MD).
- RNA/gpl20 BaL complexes were expected to be retained on the nitrocellulose membrane, while unbound RNA would pass through.
- RNA was eluted from the nitrocellulose membrane by submerging the membrane in 7 M urea, 100 mM sodium acetate, 3 M EDTA and heating to 90 °C for 5 minutes. The elution process was repeated twice, followed by extraction of the eluate with phenol and ethanol precipitation of the eluted RNA.
- RNA was amplified by reverse transcription at 50 °C for 30 minutes (ThermoscriptTM RT, Invitrogen) followed by PCR under standard conditions (Taq polymerase, Invitrogen) using the primers YW.42.30B and YW.42.30A, yielding the conesponding DNA templates for the second round of selection. Subsequent rounds of selection were conducted using a similar procedure, except that the pooled RNA was passed through a nitrocellulose filter prior to incubation with gpl 20 to remove molecules that bound to nitrocellulose.
- gpl 20 BaL specific binding was detectible when compared with na ⁇ ve pool in a standard nitrocellulose filter binding assay ( Figure 5) using 5'- 32 P labeled RNA pool. While the extent of binding was low, the goal of this initial step was not to drive selection to generate the highest affinity aptamers, but merely to demonstrate that a naive pool could be enriched for gpl 20 BaL binding.
- RNA pool molecules with a biotinylated sulfotyrosine-CCR5 peptide of the sequence: NH 2 - DYQVSSPI(SO 3 )YDIN(SO 3 )YYTSEGAGK-biotin-NH 2 (SEQ ID NO:226) (Cormier et al, 2000) (synthesized and purified by SynPep (Dublin, CA)) immobilized in a Neutravidin coated 96 well plate (Pierce) in a 100 ⁇ l binding reaction in selection buffer, to remove RNA molecules capable of binding to the CCR5 peptide only.
- a biotinylated sulfotyrosine-CCR5 peptide of the sequence: NH 2 - DYQVSSPI(SO 3 )YDIN(SO 3 )YYTSEGAGK-biotin-NH 2 (SEQ ID NO:226) (Cormier et al, 2000) (synthesized and
- RNA solution was transfened to a fresh well containing immobilized CCR5 peptide.
- gpl 20 BaL was added to a final concentration of from 50 - 100 nM and the RNA/gpl20 solution was allowed to equilibrate with immobilized peptide for 1 hour at room temp. The solution was then removed from the well and discarded. The well was then washed 4-8 times with 200 ⁇ l of selection buffer and the washes were also discarded.
- Peptide bound gpl20/RNA complexes were simultaneously eluted and reverse transcribed directly from the well at 65 °C for 30 minutes (ThermoscriptTM RT, Invitrogen) followed by PCR under standard conditions (Taq polymerase, Invitrogen) using the primers YW.42.30B and YW.42.30A, and transcription of amplified DNA for the subsequent round of selection. [00138] After 13 rounds of activity-based selection, the pool was tested for the ability to bind to gpl 20 BaL. Successfully selected RNA molecules must have the ability to bind to gpl20.
- Clones from the activity-based selections were screened. Two dominant clones from the N40 pool activity-only based selections have gpl 20 BaL specific binding. They are:
- sequences of SEQ ID No. 11 through SEQ ID No. 28 were generated from R8 of the anti-gpl20 BaL filter binding selection with N40 pool (no activity based selection yet).
- sequences of SEQ ID No. 29 through SEQ ID No. 36 were generated from R8 of the anti-gpl20 BaL filter binding selection with SS pool (no activity based selection yet).
- sequences of SEQ ID No. 37 through SEQ ID No. 67 were generated from R8 of the anti-gpl20 BaL filter binding selection with N40 pool and then through 10 rounds of the activity based selection with the CCR5 peptide included.
- sequences of SEQ ID No. 68 through SEQ ID No. 115 were generated from R10 of activity selection only with the N40 pool (no pre-enrichment for BaL binders).
- sequences of SEQ ID No. 116 through SEQ ID No. 161 were generated from R13 of activity selection only with the N40 pool (no pre-enrichment for BaL binders).
- sequences of SEQ ID NO. 162 through SEQ ID No. 225 were generated from either R10 or R13 of activity selection only with the SS pool (no pre-enrichment for BaL binders) (plate 810 sequences went through 10 rounds and plate 813 sequences went through 13 rounds).
- GGAGCCTTCCTCCGGATGCGA-AAGTA TGATGGTCTTTACTTTTGAA CATCCTGTGGTCCGGTTTCCCGAGCTA
- SELEX typically yields RNA molecules 70 to 90 nucleotides long. Minimizing aptamer length facilitates chemical synthesis of aptamer candidates and can increase the affinity of the aptamer-ligand complex by eliminating alternative, non-binding structures. Once individual aptamers are identified from the original pool, the minimal sequence element required for high affinity binding can be identified through two parallel approaches: (1) truncation analysis by limited alkaline hydrolysis, and (2) doped reselection (methods are reviewed in Fitzwater & Polisky, 1996).
- Nucleic acids are degraded in serum by a combination of endonucleases and 5'- 3' and 3'- 5' exonucleases. Appropriate chemical modifications, as otherwise disclosed herein, block each activity (Pieken et al, 1991; Cummins et al, 1995; Jellinek et al, 1995; Dougan et al, 2000). Briefly, inco ⁇ oration of 2'-fluoropyrimidines during selection in transcription reactions, and post selection addition of 2'-O-methyl purines protect aptamers from endonuclease degradation, while modification of termini with a 3'- 3' thymidine cap can provide significant resistance to exonucleases.
- the pooled template DNA are cloned using the TOPO TA cloning system (Invitrogen). Individual clones are sequenced. Unique clones are screened for the desired properties using the techniques outlined below. [00150] Selected aptamer clones are evaluated on the basis of their ability to bind to gpl 20. Simple binding is required for aptamers to be CD4 mimics and thus can be used to rapidly triage the library of selected aptamer clones.
- Sensitive three-component optical biosensor binding assays are configured to detect CD4 or aptamer inducible changes in binding affinities of gpl 20 for biotinylated CCR5 peptide (Cormier et al, 2000), on a Biacore 3000 surface plasmon detection system.
- gpl 20 dependent binding of 32 P- labeled aptamer clones on CCR5 expressing cells are screened in filter binding experiments functionally analogous to those used to quantitate the effects of sCD4 upon gpl 20 binding to co-receptors (Doranz et al, 1999) as well as for the ability of binding to be specifically blocked by the CCR5 specific monoclonal antibody 3A9 (Wu et al, 1997) and the gpl 20 CD4i epitope specific antibody 17b (Kwong et al, 1998).
- Cells expressing CCR5 can be obtained, e.g., from Merck Research Laboratories (West Point, PA), soluble CD4 has been purchased from US Biologies (Swampscott, MA) and antibodies 3A9 and 17b are freely available from the NIH AIDS Research and Reference Reagent Program.
- Anti-gpl20 aptamers are synthesized with polyethylene glycol (PEG) spacers at their 5 '-termini to yield aptamers with from -20-200 A (Angstrom) spacers ending in a primary amine moiety.
- PEG polyethylene glycol
- the length and "water-like" properties of the spacer allow the aptamer to bind to gpl 20 in a manner identical to that observed in an uncoupled 2-piece system.
- a series of single cysteine mutations in the N and C termini and non-neutralizing face of gpl 20 are generated by standard mutagenesis techniques.
- Amine terminated aptamers are then covalently attached to free thiols on gpl 20 using a hetero-bifunctional crosslinker available from Pierce (Sulfo-LC-SPDP, sulfosuccinimidyl 6-[3'-(2-pyridyldithio)-propionamido] hexanoate).
- Aptamer/gpl20 conjugates are then screened for the ability to bind to CCR5 peptide or to CCR5 expressing cells as described above. By testing multiple gpl 20 BaL mutants and aptamer spacer lengths the optimal configuration for biochemical activity is identified.
- EXAMPLE 6 Generation of antibodies against aptamer/gp!20 immunogens
- Guinea pigs are immunized with either: i.) optimized aptamer/gpl20 conjugate, ii.) a scrambled sequence (nonfunctional) aptamer/gpl20 conjugate, iii.) aptamer/gpl20 complex without covalent conjugation, iv.) scrambled sequence aptamer/gpl20 complex without covalent conjugation, v.) gpl 20 only, or vi.) adjuvant only.
- the effects of the aptamer(s), the conjugation, and nucleic acid in comparison with gpl20 alone as immunogens are evaluated.
- Various aptamer complexes are injected into guinea pigs to provoke an immune response.
- Neutralization assays are performed using U87.CD4.CCR5 cells (available from the NIH AIDS Research Reagent Database) (Bjornal et al, 1997 and Richman et al, 2003) transiently transfected with HIV-1 LTR driven ⁇ -galactosidase, and the non- fluorescent fluorogenic substrate, 5-chloromethylfluoroscein di- ⁇ -D-galactopyranoside (CMFDG) (Molecular Probes) in a single cycle HIV-1 infection assay. HIV infection results in expression of Tat which transactivates expression of the ⁇ -galactosidase gene which can be detected via production of fluorescein. Each dilution is tested in triplicate.
- CMFDG 5-chloromethylfluoroscein di- ⁇ -D-galactopyranoside
- Pre-immune sera is also tested as a control for nonspecific neutralization.
- An HIV-1 BaL strain is available for single cycle infectivity assays from Advanced Bioscience Laboratories (Gaithersburg, MD).
- Viruses 50-100 50% tissue culture infective dose) in 50 ⁇ l of RPMI complete medium containing 20 U of interleukin-2 (Hoffman-LaRoche) is pre-incubated with an equal volume of serially diluted heat-inactivated sera (35 min at 56 °C) for 10 minutes at room temperature.
- This mixture is then incubated in 96-well flat bottom plates with transfected U87.CD4.CCR5 cells for 48 hours at 37 °C to allow for a single cycle of infection and production of ⁇ -glactosidase.
- Production of ⁇ -glactosidase can then be measured by addition of the fluorogenic substrate CMFDG and quantification of fluorescein fluorescence in a Packard Fusion fluorescence plate reader. Each dilution is tested in triplicate. Pre-immune sera is also tested as a control for nonspecific neutralization.
- Serum stabilities of aptamers are assayed in vitro as described (Green et al, 1995). Briefly, 5'- 32 P end-labeled aptamers are incubated at 2 nM in human serum at 37° C. Reactions are terminated at specific time points by addition of 87% formamide and analyzed for percent degradation by denaturing PAGE.
- the selection for gpl 20 specific binding aptamers can be facilitated by linking the RNA pool to a capture (oligonucleotide) probe attached at the end of a spacer (e.g., a PEG spacer).
- the probe-spacer is attached to either a monoclonal antibody with a known locus specificity on gpl20, or directly to gpl20. In this manner, a low affinity aptamer that is capable of inducing a conformational shift in gpl 20 can be more easily identified.
- the probe-spacer is linked to a gpl20-specific binding monoclonal antibody or fragment thereof through linking chemistries to the glycosyl residues on the antibody or fragment through linkers and linking methods known in the art.
- the probe-spacer is linked directly to gpl 20 by linking to glycosyl residues on gpl 20 using the same linkers and linking chemistries also known in the art.
- aptamers that can mimic CD4 but have low intrinsic gpl 20 affinity can be enriched.
- monoclonal antibodies of known epitopes to attach the RNA pool to gpl 20 also provides an indication of where to engineer in a cysteine mutation for final covalent coupling of aptamer and gpl 20 in subsequent vaccine trials.
- Monoclonal antibodies or Fab fragments thereof that are chosen are non-neutralizing and do not interfere with either receptor or co-receptor binding. This method is compatible with activity based selection methods.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Virology (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- General Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Immunology (AREA)
- Biophysics (AREA)
- Medicinal Chemistry (AREA)
- Oncology (AREA)
- AIDS & HIV (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Hematology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Physics & Mathematics (AREA)
- Tropical Medicine & Parasitology (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Public Health (AREA)
- Communicable Diseases (AREA)
- General Chemical & Material Sciences (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004538383A JP2006506055A (en) | 2002-09-17 | 2003-09-17 | Prophylactic and therapeutic HIV aptamers |
EP03752557.3A EP1549763B1 (en) | 2002-09-17 | 2003-09-17 | Methods for selecting aptamers |
AU2003270844A AU2003270844A1 (en) | 2002-09-17 | 2003-09-17 | Prophylactic and therapeutic hiv aptamers |
CA002498325A CA2498325A1 (en) | 2002-09-17 | 2003-09-17 | Prophylactic and therapeutic hiv aptamers |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US41141402P | 2002-09-17 | 2002-09-17 | |
US60/411,414 | 2002-09-17 | ||
US46196603P | 2003-04-10 | 2003-04-10 | |
US60/461,966 | 2003-04-10 | ||
US49023703P | 2003-07-25 | 2003-07-25 | |
US60/490,237 | 2003-07-25 | ||
US10/664,610 | 2003-09-16 | ||
US10/664,610 US9303262B2 (en) | 2002-09-17 | 2003-09-16 | Methods for identifying aptamer regulators |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2004026260A2 true WO2004026260A2 (en) | 2004-04-01 |
WO2004026260A3 WO2004026260A3 (en) | 2004-07-15 |
Family
ID=32686269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2003/029798 WO2004026260A2 (en) | 2002-09-17 | 2003-09-17 | Prophylactic and therapeutic hiv aptamers |
Country Status (6)
Country | Link |
---|---|
US (1) | US9303262B2 (en) |
EP (1) | EP1549763B1 (en) |
JP (1) | JP2006506055A (en) |
AU (1) | AU2003270844A1 (en) |
CA (1) | CA2498325A1 (en) |
WO (1) | WO2004026260A2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004043996A2 (en) * | 2002-11-12 | 2004-05-27 | Isis Innovation Ltd | Ligands |
EP1667729A2 (en) * | 2003-05-23 | 2006-06-14 | Board Of Regents The University Of Texas System | Structure based and combinatorially selected oligonucleoside phosphorothioate and phosphorodithioate aptamer targeting ap-1 transcription factors |
JP2007534339A (en) * | 2004-04-26 | 2007-11-29 | アーケミックス コーポレイション | Nucleic acid ligands specific for immunoglobulin E and their use as atopic disease treatment |
US7338762B2 (en) | 2002-10-16 | 2008-03-04 | Board Of Regents, The University Of Texas System | Bead bound combinatorial oligonucleoside phosphorothioate and phosphorodithioate aptamer libraries |
WO2011012819A1 (en) | 2009-07-30 | 2011-02-03 | Snecma | Method for manufacturing a thermal barrier |
US7910523B2 (en) | 2003-05-23 | 2011-03-22 | Board Of Regents, The University Of Texas System | Structure based and combinatorially selected oligonucleoside phosphorothioate and phosphorodithioate aptamer targeting AP-1 transcription factors |
EP2976427A4 (en) * | 2013-03-18 | 2017-02-22 | University Of The Witwatersrand, Johannesburg | Cd7 receptor aptamers |
WO2017127762A1 (en) * | 2016-01-20 | 2017-07-27 | Vitrisa Therapeutics, Inc. | Methods for improved aptamer selection |
EP3206719A4 (en) * | 2014-10-15 | 2018-01-17 | City of Hope | Rna aptamers against transferrin receptor (tfr) |
WO2023164075A1 (en) * | 2022-02-24 | 2023-08-31 | Universal Stabilization Technologies Inc. | Thermostable uv inactivated vaccines and other biopharmaceuticals |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1933850A4 (en) * | 2005-09-15 | 2009-12-23 | Univ Duke | Aptamers as agonists |
US20100076060A1 (en) * | 2005-09-15 | 2010-03-25 | Duke University | Aptamers as agonists |
CA2730796C (en) * | 2008-07-14 | 2015-11-03 | The University Of Tokyo | Aptamer against il-17 and use thereof |
EP2542266A4 (en) | 2010-03-03 | 2013-10-23 | Somalogic Inc | Aptamers to 4-1bb and their use in treating diseases and disorders |
KR101807590B1 (en) | 2013-03-22 | 2017-12-11 | 고쿠리츠다이가쿠호징 도쿄다이가쿠 | Aptamer to il-17 and use thereof |
US9605266B2 (en) | 2014-07-16 | 2017-03-28 | City Of Hope | Cell-specific internalizing RNA aptamers against human CCR5 and uses therefore |
Family Cites Families (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4959309A (en) * | 1983-07-14 | 1990-09-25 | Molecular Diagnostics, Inc. | Fast photochemical method of labelling nucleic acids for detection purposes in hybridization assays |
US4801530A (en) * | 1984-02-29 | 1989-01-31 | Rockefeller University | Nucleotide hybridization assay for protozoan parasites |
CA1260372A (en) * | 1984-04-27 | 1989-09-26 | Elazar Rabbani | Hybridization method for the detection of genetic materials |
US4683195A (en) * | 1986-01-30 | 1987-07-28 | Cetus Corporation | Process for amplifying, detecting, and/or-cloning nucleic acid sequences |
DE3590766T (en) | 1985-03-30 | 1987-04-23 | ||
US4935363A (en) * | 1987-03-30 | 1990-06-19 | Board Of Regents, The University Of Texas System | Sterol regulatory elements |
WO1989006694A1 (en) | 1988-01-15 | 1989-07-27 | Trustees Of The University Of Pennsylvania | Process for selection of proteinaceous substances which mimic growth-inducing molecules |
US5118801A (en) * | 1988-09-30 | 1992-06-02 | The Public Health Research Institute | Nucleic acid process containing improved molecular switch |
US5070010A (en) * | 1989-10-30 | 1991-12-03 | Hoffman-La Roche Inc. | Method for determining anti-viral transactivating activity |
BR9106258A (en) | 1990-03-21 | 1993-04-06 | Isis Pharmaceuticals Inc | PROCESSES TO MODULATE THE EXPRESSION OF A GENE, TO TREAT A DISEASE, ANIMAL OR INFECTION, AND TO INTERFER WITH THE FUNCTION OR REPLICATION OF A VIRUS AND OLIGONUCLEOTIDE OR OLIGONUCLEOTIDE ANALOG |
US5580737A (en) * | 1990-06-11 | 1996-12-03 | Nexstar Pharmaceuticals, Inc. | High-affinity nucleic acid ligands that discriminate between theophylline and caffeine |
US5496938A (en) * | 1990-06-11 | 1996-03-05 | Nexstar Pharmaceuticals, Inc. | Nucleic acid ligands to HIV-RT and HIV-1 rev |
US5270163A (en) * | 1990-06-11 | 1993-12-14 | University Research Corporation | Methods for identifying nucleic acid ligands |
US5707796A (en) * | 1990-06-11 | 1998-01-13 | Nexstar Pharmaceuticals, Inc. | Method for selecting nucleic acids on the basis of structure |
US5763177A (en) * | 1990-06-11 | 1998-06-09 | Nexstar Pharmaceuticals, Inc. | Systematic evolution of ligands by exponential enrichment: photoselection of nucleic acid ligands and solution selex |
US5654151A (en) * | 1990-06-11 | 1997-08-05 | Nexstar Pharmaceuticals, Inc. | High affinity HIV Nucleocapsid nucleic acid ligands |
US5705337A (en) * | 1990-06-11 | 1998-01-06 | Nexstar Pharmaceuticals, Inc. | Systematic evolution of ligands by exponential enrichment: chemi-SELEX |
US5660985A (en) * | 1990-06-11 | 1997-08-26 | Nexstar Pharmaceuticals, Inc. | High affinity nucleic acid ligands containing modified nucleotides |
US5637459A (en) * | 1990-06-11 | 1997-06-10 | Nexstar Pharmaceuticals, Inc. | Systematic evolution of ligands by exponential enrichment: chimeric selex |
US5861254A (en) * | 1997-01-31 | 1999-01-19 | Nexstar Pharmaceuticals, Inc. | Flow cell SELEX |
US5648214A (en) * | 1990-06-11 | 1997-07-15 | University Research Corporation | High-affinity oligonucleotide ligands to the tachykinin substance P |
US6011020A (en) * | 1990-06-11 | 2000-01-04 | Nexstar Pharmaceuticals, Inc. | Nucleic acid ligand complexes |
US5459015A (en) * | 1990-06-11 | 1995-10-17 | Nexstar Pharmaceuticals, Inc. | High-affinity RNA ligands of basic fibroblast growth factor |
US5683867A (en) * | 1990-06-11 | 1997-11-04 | Nexstar Pharmaceuticals, Inc. | Systematic evolution of ligands by exponential enrichment: blended SELEX |
US5763173A (en) * | 1990-06-11 | 1998-06-09 | Nexstar Pharmaceuticals, Inc. | Nucleic acid ligand inhibitors to DNA polymerases |
US5503978A (en) * | 1990-06-11 | 1996-04-02 | University Research Corporation | Method for identification of high affinity DNA ligands of HIV-1 reverse transcriptase |
US5635615A (en) * | 1990-06-11 | 1997-06-03 | Nexstar Pharmaceuticals, Inc. | High affinity HIV nucleocapsid nucleic acid ligands |
US5567588A (en) * | 1990-06-11 | 1996-10-22 | University Research Corporation | Systematic evolution of ligands by exponential enrichment: Solution SELEX |
EP1493825A3 (en) | 1990-06-11 | 2005-02-09 | Gilead Sciences, Inc. | Method for producing nucleic acid ligands |
US5789157A (en) * | 1990-06-11 | 1998-08-04 | Nexstar Pharmaceuticals, Inc. | Systematic evolution of ligands by exponential enrichment: tissue selex |
AU8547691A (en) | 1990-09-21 | 1992-04-15 | Fred Hutchinson Cancer Research Center | Protein sequence-specific oligonucleotide sequences |
EP0552178B1 (en) | 1990-10-12 | 1997-01-02 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Modified ribozymes |
CA2104698A1 (en) | 1991-02-21 | 1992-08-22 | John J. Toole | Aptamers specific for biomolecules and methods of making |
WO1992014842A1 (en) | 1991-02-21 | 1992-09-03 | Gilead Sciences, Inc. | Aptamers specific for thrombin and methods of use |
WO1996040717A1 (en) | 1995-06-07 | 1996-12-19 | Nexstar Pharmaceuticals, Inc. | High-affinity nucleic acid ligands of cytokines |
US5756291A (en) * | 1992-08-21 | 1998-05-26 | Gilead Sciences, Inc. | Aptamers specific for biomolecules and methods of making |
US5338671A (en) | 1992-10-07 | 1994-08-16 | Eastman Kodak Company | DNA amplification with thermostable DNA polymerase and polymerase inhibiting antibody |
US6013443A (en) * | 1995-05-03 | 2000-01-11 | Nexstar Pharmaceuticals, Inc. | Systematic evolution of ligands by exponential enrichment: tissue SELEX |
US5859228A (en) * | 1995-05-04 | 1999-01-12 | Nexstar Pharmaceuticals, Inc. | Vascular endothelial growth factor (VEGF) nucleic acid ligand complexes |
ATE494394T1 (en) * | 1995-06-07 | 2011-01-15 | Gilead Sciences Inc | NUCLEIC ACID LIGANDS THAT BIND TO AND INHIBIT DNA POLYMERASES |
US5756710A (en) * | 1996-06-05 | 1998-05-26 | The Trustees Of Columbia University In City Of New York | Phosphorothioate oligonucleotides that bind to the V3-loop and uses thereof |
US5691145A (en) * | 1996-08-27 | 1997-11-25 | Becton, Dickinson And Company | Detection of nucleic acids using G-quartets |
AU733674B2 (en) | 1996-10-25 | 2001-05-24 | Gilead Sciences, Inc. | Vascular endothelial growth factor (VEGF) nucleic acid ligand complexes |
US6051698A (en) * | 1997-06-06 | 2000-04-18 | Janjic; Nebojsa | Vascular endothelial growth factor (VEGF) nucleic acid ligand complexes |
WO2002034935A2 (en) * | 2000-10-27 | 2002-05-02 | Research Development Foundation | In vitro selection of signaling aptamers |
WO1999031276A1 (en) | 1997-12-15 | 1999-06-24 | Nexstar Pharmaceuticals, Inc. | Homogeneous detection of a target through nucleic acid ligand-ligand beacon interaction |
US5989823A (en) * | 1998-09-18 | 1999-11-23 | Nexstar Pharmaceuticals, Inc. | Homogeneous detection of a target through nucleic acid ligand-ligand beacon interaction |
US6287765B1 (en) * | 1998-05-20 | 2001-09-11 | Molecular Machines, Inc. | Methods for detecting and identifying single molecules |
US6506887B1 (en) | 1999-07-29 | 2003-01-14 | Somalogic, Incorporated | Conditional-selex |
JP3463098B2 (en) | 1999-10-08 | 2003-11-05 | 独立行政法人産業技術総合研究所 | Modulated aptamer and method for detecting target protein using the same |
DK2070939T3 (en) * | 2001-05-25 | 2014-06-23 | Univ Duke | Modulators of pharmacological agents |
WO2003029492A1 (en) * | 2001-09-28 | 2003-04-10 | Justin Gallivan | Metabolic genes and related methods and compositions |
-
2003
- 2003-09-16 US US10/664,610 patent/US9303262B2/en active Active
- 2003-09-17 AU AU2003270844A patent/AU2003270844A1/en not_active Abandoned
- 2003-09-17 EP EP03752557.3A patent/EP1549763B1/en not_active Expired - Lifetime
- 2003-09-17 JP JP2004538383A patent/JP2006506055A/en active Pending
- 2003-09-17 CA CA002498325A patent/CA2498325A1/en not_active Abandoned
- 2003-09-17 WO PCT/US2003/029798 patent/WO2004026260A2/en active Application Filing
Non-Patent Citations (2)
Title |
---|
None |
See also references of EP1549763A4 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7338762B2 (en) | 2002-10-16 | 2008-03-04 | Board Of Regents, The University Of Texas System | Bead bound combinatorial oligonucleoside phosphorothioate and phosphorodithioate aptamer libraries |
WO2004043996A3 (en) * | 2002-11-12 | 2004-08-05 | Isis Innovation | Ligands |
WO2004043996A2 (en) * | 2002-11-12 | 2004-05-27 | Isis Innovation Ltd | Ligands |
US9567579B2 (en) | 2003-05-23 | 2017-02-14 | Board Of Regents, The University Of Texas System | Structure based and combinatorially selected oligonucleoside phosphorothioate and phosphorodithioate aptamer targeting AP-1 transcription factors |
EP1667729A2 (en) * | 2003-05-23 | 2006-06-14 | Board Of Regents The University Of Texas System | Structure based and combinatorially selected oligonucleoside phosphorothioate and phosphorodithioate aptamer targeting ap-1 transcription factors |
EP1667729A4 (en) * | 2003-05-23 | 2007-10-17 | Univ Texas | Structure based and combinatorially selected oligonucleoside phosphorothioate and phosphorodithioate aptamer targeting ap-1 transcription factors |
US7910523B2 (en) | 2003-05-23 | 2011-03-22 | Board Of Regents, The University Of Texas System | Structure based and combinatorially selected oligonucleoside phosphorothioate and phosphorodithioate aptamer targeting AP-1 transcription factors |
JP2007534339A (en) * | 2004-04-26 | 2007-11-29 | アーケミックス コーポレイション | Nucleic acid ligands specific for immunoglobulin E and their use as atopic disease treatment |
WO2011012819A1 (en) | 2009-07-30 | 2011-02-03 | Snecma | Method for manufacturing a thermal barrier |
EP2976427A4 (en) * | 2013-03-18 | 2017-02-22 | University Of The Witwatersrand, Johannesburg | Cd7 receptor aptamers |
EP3206719A4 (en) * | 2014-10-15 | 2018-01-17 | City of Hope | Rna aptamers against transferrin receptor (tfr) |
US11236341B2 (en) | 2014-10-15 | 2022-02-01 | City Of Hope | RNA aptamers against transferrin receptor (TFR) |
WO2017127762A1 (en) * | 2016-01-20 | 2017-07-27 | Vitrisa Therapeutics, Inc. | Methods for improved aptamer selection |
WO2023164075A1 (en) * | 2022-02-24 | 2023-08-31 | Universal Stabilization Technologies Inc. | Thermostable uv inactivated vaccines and other biopharmaceuticals |
Also Published As
Publication number | Publication date |
---|---|
US9303262B2 (en) | 2016-04-05 |
EP1549763B1 (en) | 2013-08-21 |
AU2003270844A1 (en) | 2004-04-08 |
WO2004026260A3 (en) | 2004-07-15 |
CA2498325A1 (en) | 2004-04-01 |
JP2006506055A (en) | 2006-02-23 |
EP1549763A4 (en) | 2006-03-29 |
EP1549763A2 (en) | 2005-07-06 |
US20040137010A1 (en) | 2004-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1549763B1 (en) | Methods for selecting aptamers | |
Ulrich et al. | DNA and RNA aptamers: from tools for basic research towards therapeutic applications | |
US5654151A (en) | High affinity HIV Nucleocapsid nucleic acid ligands | |
AU2007223796B2 (en) | Complement binding aptamers and anti-C5 agents useful in the treatment of ocular disorders | |
US5635615A (en) | High affinity HIV nucleocapsid nucleic acid ligands | |
Sayer et al. | Structural characterization of a 2′ F-RNA aptamer that binds a HIV-1 SU glycoprotein, gp120 | |
Burmeister et al. | 2-Deoxy purine, 2-O-methyl pyrimidine (dRmY) aptamers as candidate therapeutics | |
US20050037394A1 (en) | Method for in vitro selection of 2'-substituted nucleic acids | |
JP2006508688A (en) | Method for in vitro selection of 2'-substituted nucleic acids | |
JP2009521208A (en) | Aptamers against the human IL-12 cytokine family and their use as therapeutics for autoimmune related diseases | |
MX2007016561A (en) | Materials and methods for the generation of fully 2'-modified nucleic acid transcripts. | |
Dua et al. | Patents on SELEX and therapeutic aptamers | |
WO1999027133A1 (en) | Improved selex procedure and an anti-cd4 aptamer | |
Cohen et al. | An aptamer that neutralizes R5 strains of HIV-1 binds to core residues of gp120 in the CCR5 binding site | |
ZA200504733B (en) | Ligands | |
L'Hernault et al. | Dimerisation of HIV-2 genomic RNA is linked to efficient RNA packaging, normal particle maturation and viral infectivity | |
AU2022202115A1 (en) | Complement binding aptamers and anti-C5 agents useful in the treatment of ocular disorders | |
WO2004031360A2 (en) | Therapeutic aptamers having binding specificity to gp41 of hiv | |
Rong et al. | Hydrophobic amino acids in the human immunodeficiency virus type 1 p2 and nucleocapsid proteins can contribute to the rescue of deleted viral RNA packaging signals | |
JP2008529517A (en) | Compound | |
Redman | Methods for Directed Evolution of Carbohydrate Clusters on 2’-fluoro-modified RNA | |
WO1997003085A1 (en) | Intracellular action of nucleic acid ligands | |
Zumrut | Development of Ligand Guided Selection (LIGS) to Identify Specific DNA Aptamers Against Cell Surface Proteins | |
Temme | Synthesis of Oligomannan Azides; Directed Evolution of DNA-Supported Glycoclusters Targeting HIV bnAb 2G12 by SELMA: Selection with Modified Aptamers | |
Kräusslich | Genetic analysis and gene expression of human immunodeficiency virus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2498325 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004538383 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003270844 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003752557 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2003752557 Country of ref document: EP |