WO2004025849A1 - Semiconductor integrated circuit for communication and radio communication system - Google Patents

Semiconductor integrated circuit for communication and radio communication system Download PDF

Info

Publication number
WO2004025849A1
WO2004025849A1 PCT/JP2002/009394 JP0209394W WO2004025849A1 WO 2004025849 A1 WO2004025849 A1 WO 2004025849A1 JP 0209394 W JP0209394 W JP 0209394W WO 2004025849 A1 WO2004025849 A1 WO 2004025849A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
frequency
oscillation
semiconductor integrated
integrated circuit
Prior art date
Application number
PCT/JP2002/009394
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuyuki Tsujimoto
Noriyuki Kurakami
Hirotaka Oosawa
Fumiaki Matsuzaki
Original Assignee
Renesas Technology Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp. filed Critical Renesas Technology Corp.
Priority to JP2004535848A priority Critical patent/JP3831908B2/en
Priority to PCT/JP2002/009394 priority patent/WO2004025849A1/en
Priority to TW091125246A priority patent/TWI227968B/en
Publication of WO2004025849A1 publication Critical patent/WO2004025849A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/403Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency
    • H04B1/406Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency with more than one transmission mode, e.g. analog and digital modes

Definitions

  • the present invention relates to a technology that is effective when applied to a method of measuring characteristics of a VCO (voltage controlled oscillation circuit) and a method of storing a measured value when a power supply is turned off.
  • the present invention relates to a high frequency semiconductor integrated circuit that modulates and demodulates a transmission / reception signal in a wireless communication system, and a technology effective for use in a mobile phone using the same.
  • a VCO is used to generate an oscillation signal of a predetermined frequency combined with a reception signal and a transmission signal.
  • the mobile phones that are proposed traditional, for example 8 8 0 ⁇ 9 1 5MH Z band of GSM (Global System for Mobile Communication) and 1 7 1 0 ⁇ 1 785 MH z band of DCS (Digital Cellular System) like
  • GSM Global System for Mobile Communication
  • DCS Digital Cellular System
  • dual-panel mobile phones that can handle signals in two different frequency bands.
  • PLL circuit phase-locked loop
  • a high-frequency semiconductor integrated circuit (hereinafter, referred to as a high-frequency IC) that modulates a transmission signal and demodulates a reception signal used in a mobile phone that can handle such multiple bands has a low component count.
  • the direct conversion method is effective.
  • the direct conversion method requires multiple bands. Although it is relatively easy to deal with this, it is necessary to widen the frequency range in which the VCO can oscillate.
  • the sensitivity of the control voltage of the VCO becomes high, and it becomes vulnerable to external noise and power supply voltage fluctuation.
  • VCO which is generally configured as a separate module from the high-frequency IC, on the same semiconductor chip as the high-frequency IC.
  • VCO is on-chip, the variation in the absolute value of the oscillation frequency increases, so a function to correct the oscillation frequency after manufacturing is indispensable. If the correction of this parameter is attempted by trimming with a general mask option or bonding wire option used in a conventional semiconductor integrated circuit, cost increases cannot be avoided.
  • the present inventors have set up an oscillation circuit (RFVCO) that generates a high-frequency signal used for transmission and reception so that it can operate in a plurality of bands, and fix a control voltage of the oscillation circuit at a predetermined value. Measures the oscillation frequency of the oscillation circuit in each band and stores it in the storage circuit, and compares the set value for frequency designation given at PLL startup with the measured value of the frequency stored above Then, it is configured so that the band actually used in the oscillation circuit is determined from the comparison result. As a result, even if the frequency range in which the VCO can oscillate is widened to support multiple communication methods, the sensitivity of the VCO control voltage will not increase, and it will not be affected by external noise and power supply voltage fluctuations.
  • RCVCO oscillation circuit
  • the oscillation frequency of the VCO is measured, the measurement result is stored in a volatile storage circuit such as a register, and the characteristic variation of the VCO is automatically corrected by an internal circuit using the measurement result. It is configured to Therefore, when the power is turned off, the measurement result is lost.When the power is turned on again, it is necessary to measure and correct the VCO frequency again. And the power consumption increases.
  • the storage circuit with a nonvolatile memory so that the measurement result is not lost even when the power is turned off.
  • current technology requires a non-volatile memory inside the chip, which complicates the process and significantly increases the cost of the chip, and requires a high voltage to write the nonvolatile memory. Therefore, a booster circuit must be provided, which increases the chip size and increases the power consumption of the booster circuit.Even if the power consumption is reduced by omitting the measurement of the VCO, the total power consumption is not so large. There is a defect that it may not decrease or may increase.
  • the VCO so that it can oscillate in multiple frequency bands for the high-frequency Ic that constitutes a mobile phone that can transmit and receive multiple band signals.
  • the frequency of each frequency band is measured. And the measurement time is longer than that of a VCO operating in a single frequency band.
  • An object of the present invention is to provide a communication semiconductor integrated circuit suitable for configuring a mobile phone capable of transmitting and receiving a plurality of band signals and having low power consumption.
  • Another object of the present invention is to provide a built-in oscillation circuit (VCO) and a communication semiconductor integrated circuit having a mechanism capable of measuring a characteristic variation thereof and correcting based on the measured value, and modulating a transmission signal and demodulating a reception signal. (High frequency IC), it is not necessary to measure the VCO oscillation frequency when the power is turned off and on again.
  • VCO built-in oscillation circuit
  • Another object of the present invention is to provide a built-in oscillation circuit (VCO) and a communication semiconductor integrated circuit having a mechanism capable of measuring a characteristic variation thereof and correcting based on the measured value, and modulating a transmission signal and demodulating a reception signal. It is an object of the present invention to provide a semiconductor integrated circuit for communication (high frequency IC) that can quickly shift the system to a normal operation state when the power is turned off and on again.
  • VCO built-in oscillation circuit
  • a communication semiconductor integrated circuit having a mechanism capable of measuring a characteristic variation thereof and correcting based on the measured value, and modulating a transmission signal and demodulating a reception signal.
  • Yet another object of the present invention is to provide a mobile phone having a long battery life and a long operating time with one charge.
  • At least one of the receiving VCO (voltage controlled oscillator), transmitting VCO, and intermediate frequency VCO, together with the modulation and demodulation circuit, is mounted on a single semiconductor chip.
  • a circuit for determining the use band of the VCO is provided, and the data stored in the storage circuit can be read out or written from the outside.
  • the oscillation frequency measurement value of the VCO stored in the storage circuit is saved in the external memory when the power of the communication semiconductor integrated circuit is turned off, and the saved data is saved when the power is turned on again.
  • a method that allows the storage data in the storage circuit to be read out and written out to the outside a method of providing an external terminal and a function of transmitting and receiving data originally provided in the communication semiconductor integrated circuit are used.
  • the power supply line that supplies the power supply voltage to the storage circuit that stores the measured frequency value of the VCO is provided separately from the power supply lines of circuits other than the storage circuit, so that the data in the storage circuit is not lost when the power is turned off. There is a method of backing up.
  • an external terminal that can read and write the data stored in the storage circuit to the outside
  • it may be provided as a dedicated terminal.However, it is possible to use a terminal for other existing signals. it can.
  • the operation port of another semiconductor chip is externally provided based on the oscillation signal of the VCO in the communication semiconductor integrated circuit. It is preferable to provide a circuit for generating and outputting a chip on the same chip, and supply the power supply voltage to the circuit through the same power supply line as the storage circuit.
  • FIG. 1 is a block diagram illustrating a configuration example of a multi-band communication semiconductor integrated circuit (high frequency IC) to which the present invention is applied and a main part of a wireless communication system using the same.
  • high frequency IC multi-band communication semiconductor integrated circuit
  • FIG. 2 is a block diagram showing an embodiment of a PLL circuit including FVCO in a multi-band communication semiconductor integrated circuit (high frequency IC) to which the present invention is applied.
  • FIG. 3 is a circuit diagram showing an embodiment of a communication semiconductor integrated circuit of a multi-Pando method according to the present invention a voltage-controlled oscillator in the (high-frequency IC) (VCO) £
  • FIG. 4 is a graph showing a relationship between the control voltage Vc and the oscillation frequency f RF when the frequency variable range of the RFVCO is continuously changed and when the RFVCO is changed over a plurality of bands.
  • FIG. 5 is a block diagram showing an example of a schematic configuration of an RFPLL circuit and an example of a mechanism for reading out data of a storage circuit that stores a measured frequency value of RFPCO to the outside.
  • FIG. 6 is a flowchart showing a procedure of power-off / return operation of the high-frequency IC at the time of waiting for frequency measurement of each VCO in the wireless communication system of FIG. 5 using the high-frequency IC of the embodiment of FIG.
  • FIG. 7 is a timing chart showing the timing of the frequency measurement of each VCO in the wireless communication system using the high frequency IC of the embodiment of FIG. 2 and the correction of the frequency characteristic based on the measurement result (determination of the band to be used).
  • FIG. 8 is a block diagram showing a configuration example of a communication semiconductor integrated circuit (high frequency I C) of the second embodiment of the present invention and a main part of a wireless communication system using the same.
  • FIG. 9 is a block diagram showing a configuration example of a communication semiconductor integrated circuit (high-frequency IC) according to a third embodiment of the present invention and a main part of a wireless communication system using the same.
  • high-frequency IC communication semiconductor integrated circuit
  • FIG. 10 is a flowchart illustrating a procedure of a power recovery of the high frequency Ic and a Z return operation in a wireless communication system using the high frequency IC of the embodiment of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a block diagram showing a configuration example of a multi-band communication semiconductor integrated circuit (high frequency IC) to which the present invention is applied and a wireless communication system using the same.
  • 100 is an antenna for transmitting and receiving signal radio waves
  • 110 is a switch for switching between transmission and reception
  • 120 a to l 20 c are high-frequency waves such as a SAW filter that removes unnecessary waves from a received signal.
  • a filter, 130 is a high-frequency power amplifier that amplifies the transmission signal
  • 200 is a high-frequency IC that demodulates the reception signal and modulates the transmission signal
  • 300 is an I and Q signal that converts the transmission data.
  • Convert or control high frequency IC 200 The control is a baseband circuit (LSI).
  • the high-frequency IC 200 is configured as a semiconductor integrated circuit on one semiconductor chip.
  • the high-frequency IC 200 of this embodiment is configured to be able to modulate and demodulate signals using four communication systems, GSM850 and GSM900, DCS1800, and PCS1900.
  • the high-frequency filter includes a filter 120a that passes a reception signal in the GSM frequency band, a filter 120b that passes a reception signal in the DCS 1800 frequency band, and a PCS 1
  • a filter 120c for passing a reception signal of 900 frequency bands. Since the frequency bands of GSM850 and GSM900 are close to each other, a common filter 120a is used in this embodiment.
  • the high-frequency IC 200 of the present embodiment is roughly divided into a reception system circuit RXC, a transmission system circuit TXC, and a control system circuit CTC including other circuits common to the transmission and reception systems such as a control circuit and a clock generation circuit. It consists of.
  • RX circuit RXC divides oscillation signal ⁇ i> RF generated by low-noise amplifiers 210 a, 210 b, and 210 c that amplify received signals, and high-frequency oscillation circuit (RF VCO) 250
  • RF VCO high-frequency oscillation circuit
  • a phase shift divider 211 that generates quadrature signals that are 90 degrees out of phase with each other, and a phase shift divider 211 that converts the received signal amplified by the row noise amplifiers 210a, 210b, 210c.
  • a demodulation circuit composed of a mixer that demodulates by combining the quadrature signals divided by 1 and a demodulation circuit that amplifies the demodulated I and Q signals, respectively. It comprises high gain amplifiers 22 OA and 22 OB to be output to the band circuit 300, and an offset canceller circuit 213 for canceling the input DC offset of the amplifier in the high gain amplifiers 220A and 220B.
  • the high-gain amplifier 220 A has a plurality of aperture filters LPF ll, LPF 12, LPF 13, LPF 14 and gain control amplifiers PGA 11, PGA 1, PGA 13 connected alternately in series
  • the amplifier has a configuration in which an amplifier AMP 1 having a fixed gain is connected to the last stage, and amplifies the I signal and outputs the amplified signal to the baseband circuit 300.
  • the high-gain amplifier 220B includes a plurality of low-pass filters LPF 21, LPF 22, LPF 23, LPF 24 and gain control amplifiers: PGA 21, PGA 22,
  • the PGA 23 is alternately connected in series, and the amplifier AMP2 having a fixed gain is connected to the last stage.
  • the amplifier AMP2 amplifies the Q signal and outputs it to the baseband circuit 300.
  • the offset cancel circuit 213 is provided in correspondence with each of the gain control amplifiers PGA11 to PGA23, and is an AD conversion circuit (ADC) for converting the output potential difference between input terminals into a digital signal when the input terminals are short-circuited. And a D / A conversion circuit that generates an input offset voltage that sets the DC offset of the output of the corresponding gain control amplifier PGA1 1 to 23 to “0” based on the conversion result of these A / D conversion circuits, and gives it to the differential input. (DAC), and a control circuit that controls the AD conversion circuit (ADC) and DA conversion circuit (DAC) to perform offset cancellation.
  • ADC AD conversion circuit
  • DAC digital conversion circuit
  • the transmission circuit TXC includes an oscillation circuit (IFVCO) 230 that generates an oscillation signal ⁇ IF having an intermediate frequency such as 64 OMHz, and divides the oscillation signal ⁇ IF generated by the oscillation circuit 230 by 1Z4.
  • a frequency dividing circuit 231 for generating a signal such as 160 MHz; and a phase shifting frequency dividing circuit for further dividing the signal divided by the frequency dividing circuit 231 and generating quadrature signals 90 ° out of phase with each other.
  • a transmission oscillation circuit (TXVCO) 240 that generates a transmission signal ⁇ of a frequency, a feedpack signal obtained by extracting a transmission signal ⁇ ⁇ output from the transmission oscillation circuit (TXVCO) 240 with a power brush or the like, and a high-frequency oscillation circuit (RFVCO) 250 Oscillation signal generated by the signal ⁇ i »RF divided signal ⁇ i> RF 'And a signal having a frequency corresponding to the frequency difference between the offset mixer 236 and the output of the offset mixer 236 and the signal TXIF synthesized by the adder 234.
  • 237a and a digital phase comparator 237b for detecting the phase difference
  • a loop filter 238 for generating a voltage corresponding to the output of the phase detection circuits 2
  • the transmission oscillation circuit (TXVC O) 240 generates the GSM 850 and GMS 900 transmission signal generation circuit 240 a, and the DCS 180 0 and PCS 190 0 transmission signal. Oscillation circuit to generate 240 b.
  • the reason for providing two oscillation circuits in this way is that the transmission oscillation circuit has a wider variable frequency range than the high-frequency oscillation circuit 250 and the intermediate frequency oscillation circuit 230. This is because it is not easy to design circuits that can be powerful.
  • the reason why the analog phase comparator 237a and the digital phase comparator 237b are provided is to speed up the pull-in operation at the start of the operation of the PLL circuit. Specifically, at the start of transmission, the phase is first compared by the digital phase comparator 237, and then switched to the analog phase comparator 237a, so that the phase loop can be quickly closed. Is to be.
  • Synthesizer 261 IF synthesizer 262 that constitutes an IF PLL circuit together with the intermediate frequency oscillation circuit (IFVCO) 230, and reference signals for these synthesizers 261 and 262
  • a reference oscillator (VCXO) 264 which generates a clock signal "i> r e f is provided.
  • Each of the synthesizers 26 1 and 26 2 includes a phase comparison circuit, a charge pump, a loop filter, and the like.
  • the reference oscillation signal (i ⁇ ref is required to have high frequency accuracy
  • an external crystal oscillator is connected to the reference oscillation circuit 264.
  • the reference oscillation signal ⁇ ⁇ ⁇ £ Frequencies such as 26 ⁇ or 13 ⁇ ⁇ are selected because quartz oscillators with such frequencies are relatively inexpensive.
  • blocks with fractions such as 1/2 and 1Z4 are frequency divider circuits, respectively, and a buffer circuit is denoted by BFF.
  • SW1, SW2, and SW3 are connected in GSM mode for transmitting and receiving in accordance with GSM and DC SZP CS mode for transmitting and receiving in accordance with DCS or PCS. This switch switches the state and selects the frequency division ratio of the transmitted signal.
  • SW4 is a switch that is turned on and off so as to supply the I and Q signals from the baseband circuit 300 to the modulation mixers 233a and 233b during transmission. These switches SW1 to SW4 are controlled by a signal from the control circuit 260.
  • the control circuit 260 is provided with a control register CRG.
  • the register CRG is set based on a signal from the baseband circuit 300. More specifically, a clock signal CLK for synchronization, a data signal SDATA, and a load enable signal LEN as a control signal are supplied from the baseband circuit 300 to the high-frequency IC 200.
  • the 260 sequentially captures the data signal SDATA transmitted from the baseband circuit 300 in synchronization with the clock signal CLK and sets it in the control register CRG. I do. Although not particularly limited, the data signal SDATA is transmitted serially.
  • the base band circuit 300 includes a microprocessor and the like.
  • the control register CRG includes, but is not limited to, a control bit for starting the VCO frequency measurement in the high-frequency oscillation circuit (RFVCO) 250 and the intermediate frequency oscillation circuit (IF VCO) 230, a reception mode, and a transmission mode.
  • a control bit for starting the VCO frequency measurement in the high-frequency oscillation circuit (RFVCO) 250 and the intermediate frequency oscillation circuit (IF VCO) 230 There are provided bit fields for specifying modes such as mode, idle mode, and warm-up mode.
  • the idle mode is a mode in which only a small part of the circuit, such as a standby mode, operates and at least most circuits including the oscillation circuit are stopped
  • the warm-up mode is a PLL circuit immediately before transmission or reception. This is a mode for starting up.
  • a transmission PLL circuit that performs frequency conversion by a phase detection circuit 237a, 237b, a loop filter 238, a transmission oscillation circuit (TXVCO) 240a, 240b, and an offset mixer 236 (TXPLL) is configured.
  • the control circuit 260 responds to a channel using the frequency ⁇ i> RF of the oscillation signal of the high-frequency oscillation circuit 250 at the time of transmission / reception according to a command from the base span circuit 300. Change
  • the switch SW2 by switching the switch SW2 according to the GSM mode or the DCS / PCS mode, the frequency of the signal supplied to the offset mixer 236 is changed, thereby switching the transmission frequency.
  • Table 1 shows the oscillation circuit for intermediate frequency (IFVCO) 230, the oscillation circuit for transmission (TXVCO) 240, and the oscillation circuit for high frequency (RFVCO) 250 in the quad-band high-frequency IC of this embodiment.
  • IFVCO intermediate frequency
  • TXVCO oscillation circuit for transmission
  • RFVCO high frequency
  • the oscillation frequency of the intermediate frequency oscillation circuit (IFVC O) 230 is 640 MHz in any of the GSM, DCS, and PCS. This is set, and this is frequency-divided into 1Z8 by the frequency dividing circuit 2 31 and the phase shifting frequency dividing circuit 2 32 to generate a carrier wave (TXIF) of 8 MHZ and modulation is performed.
  • TXIF carrier wave
  • the oscillation frequency of the high-frequency oscillation circuit (RFVCO) 250 is set to different values in the reception mode and the transmission mode.
  • the oscillation frequency f RF of the high-frequency oscillator (RFVCO) 250 is, for example, 36 16 to 37 16 MHz for GSM 850 in the transmission mode, and 3 8 40 to 3 for GSM 900 in the transmission mode. It is set to 980 MHz, and for DCS, it is set to 3610 to 3730 MHz, and for PCS, it is set to 386 MHz to 380 MHz. In the case of, the frequency is divided by 1/4. In the case of DCS and PCS, the frequency is divided by 1 and offset as 0RF. Supplied to mixer 236.
  • the offset mixer 236 outputs a signal corresponding to the frequency difference (f RF '-f TX) between the frequency of this ⁇ i »RF and the transmission oscillation signal ⁇ from the transmission oscillation circuit 130, and the frequency of this difference signal
  • the transmission PLL (TXP LL) operates so that the frequency matches the frequency of the modulation signal TXIF.
  • the TXVCO 240 is controlled to oscillate at a frequency corresponding to the difference between the frequency (f RFZ ⁇ :) of the oscillation signal RF, from the RFVCO 250 and the frequency (f TX) of the modulation signal TXIF. This is the transmission operation in a so-called offset PLL system.
  • FIG. 2 shows a specific example of a PLL circuit having a frequency measurement function of VCO and a function of correcting the frequency characteristic of VCO based on the measurement result.
  • 250 is a high-frequency oscillation circuit (RFVCO)
  • 12 is a variable frequency divider that divides the oscillation signal ⁇ of the scale VCO 250
  • 13 is a reference oscillation signal from the reference oscillation circuit 2 64 ⁇ i>
  • the fixed frequency divider divides ref to 1 Z 65.14 is a voltage divider that compares the phases of the signals divided by the variable frequency divider 12 and the fixed frequency divider 13 to increase the voltage according to the phase difference.
  • a phase comparator that outputs DOW, 15 is a charge pump
  • 16 is a loop filter. The capacitive element of the loop filter 16 is charged up by the charge pump 15 and is output as the control voltage Vc of the RFVCO 250.
  • a PLL loop in which 250 oscillates at a predetermined frequency is configured. The capacitance and the resistance constituting the loop filter 16 are connected as external elements.
  • the PLL circuit of this embodiment provides a voltage Vc from the charge pump 15 between the charge pump 15 and the loop filter 16 at the time of frequency measurement or PLL pull-in.
  • a switch SW0 that can supply a predetermined DC voltage VDC to the loop filter 16 and a DC voltage source 17 that generates a DC voltage VDC applied to the charge pump 15 are provided.
  • a storage circuit 18 including a register for storing the value counted by the variable frequency dividing circuit 12, a frequency value stored in the storage circuit 18 and a setting externally set in the counter 22. Compare the values N8 to N0 and A5, A with the RFVCO 250 pan switching signal
  • a use band determination circuit 19 for generating VB3 to VB0 is provided.
  • the use band determination circuit 19 may be configured as a part of the control circuit 260.
  • a switch SWO capable of supplying a DC voltage VDC for measurement may be provided between the loop filter 16 and the RFVCO 250.
  • the DC voltage VDC supplied by the switch SW0 may be any voltage value within the effective variable range of the control voltage Vc.
  • the upper limit (Vcp-max) of the variable range of the control voltage Vc is selected.
  • the DC voltage VDC remains the same even when the band is switched.
  • the switch SW0, the variable frequency dividing circuit 12, the memory circuit 18, and the band determining circuit 19 are controlled by the control circuit 260.
  • the variable frequency divider 12 and the fixed frequency divider 13, the phase comparator 14, the charge pump 15, the storage circuit 18, and the band determination circuit 19 use the RF synthesizer 26 1 shown in FIG. Be composed.
  • the RFVCO 250 is composed of, for example, an oscillation circuit shown in FIG. 3 using an LC resonance circuit, for example.
  • a plurality of capacitance elements C ll, C 12 to C 41 and C 42 constituting an LC resonance circuit are provided in parallel via switch elements SW 11 to SW 14, respectively.
  • the oscillation frequency is switched stepwise by switching the value of C of the connected capacitive element, that is, the LC resonance circuit. It is configured to be able to.
  • the RFVCO 250 includes a pair of bipolar transistors Q 1, Q 2 whose bases and collectors are cross-coupled via capacitors C 1, C 2 of a DC cut, and the transistors Q 1, Q 1, A constant current source Ic connected between the common emitter of Q2 and the ground point GND, and inductors (coils) connected between the collectors of the transistors Q1 and Q2 and the power supply voltage terminal Vcc, respectively.
  • the control value Vc changes the capacitance value of this paricap diode, and the oscillation frequency is continuously changed.
  • a plurality of capacitance elements constituting the LC resonance circuit are provided in parallel, and the capacitance elements used by the band switching signals VB3 to VB0 are switched to set the value of C to 16 levels, for example.
  • oscillation is controlled according to multiple Vc-fRF characteristic lines, as shown by the solid line in Fig. 4.
  • the storage circuit 18 and the use band determination circuit 19 are provided, the adjustment work of frequency adjustment performed in the conventional PLL circuit becomes unnecessary.
  • the VCO is operated to measure the frequency, and each of the plurality of Vc-fRF characteristics is measured. The frequency was adjusted so that the line had a predetermined initial value and a predetermined slope.
  • the switch SW0 is switched in advance, a predetermined DC voltage VDC is applied to the RFVCO 250, the frequency in each band is measured, and stored in the storage circuit 18;
  • the setting values N8 to NO and A5, A4 according to the designated band given from the outside to the counter 22 are compared with the measured values stored in the storage circuit 18 and the designation is made.
  • the RFVCO is selected so that the frequency range of the band can be improved by selecting only one of the 16 (16) Vc-f RF characteristic lines as shown in Fig. 4 and performing oscillation control according to that characteristic line. (Capacitance element switching).
  • the power range is set slightly wider than the frequency range in which the power is to be adjusted in advance by considering the variation, and the 16 Vc-fRF characteristic lines are adjacent to each other as shown in Fig. 4. Little by little (preferably half by one) If the RFV CO is designed to overlap several ranges, there will always be characteristic lines that can cover the specified frequency range. Therefore, it is only necessary to select the one corresponding to each designated band based on the actual characteristics separated by the measurement, and it is not necessary to adjust the frequency, and the switching state of the band to be used and the RF VCO must be determined in advance. There is no need to make one-to-one correspondence.
  • the variable frequency dividing circuit 12 includes a prescaler 21 for dividing the frequency of the oscillation signal of the RFVC0250, a modulo counter 22 including a first counter 22N and a second counter 22A for further dividing the signal divided by the prescaler 21. It is composed of
  • the method of frequency division by the prescaler 21 and the modulo counter 22 is a known technique.
  • the prescaler 21 is configured to be able to perform two types of frequency divisions having different frequency division ratios, such as 1/64 frequency division and 1Z65 frequency division, and is switched by the count end signal of the second counter 22A.
  • the first counter 22N and the second counter 22A are programmable counters.
  • the first counter 22N uses a desired frequency (the oscillation frequency fRF of the VCO to be obtained as an output) as a reference oscillation signal ⁇ ⁇ ⁇ : ⁇
  • a desired frequency the oscillation frequency fRF of the VCO to be obtained as an output
  • ⁇ ⁇ ⁇ : ⁇ The integer part when dividing by the frequency fref ′ of the prescaler 21 and the first division ratio (64 in the embodiment) of the prescaler 21, and the remainder (MOD) are set in the second counter 22A.
  • the counting ends and the set value is counted again.
  • the prescaler 21 and the modulo counter 22 operate with such a value set, the prescaler 21 first divides the frequency by 1/64, and the output is counted by the second counter 22A to the set value of ⁇ 2 ''. Then, a count end signal MC is output from the second counter 22A, and the operation of the prescaler 21 is switched by this signal MC, and the second counter 22A counts the set value “2”. Until the prescaler 21 operates at 1/65 division.
  • the modulo counter 22 can perform the frequency division not by the integer ratio but by the ratio having a decimal part.
  • the PLL circuit of the embodiment is fed-packed so that the output frequency of the first counter 22 N matches the frequency f ref (400 kHz) of the reference oscillation signal ref ′, and the RFVCO 250
  • the value N set to the first counter 22 N is “1 4 8” and the value A set to the second counter 22 A is “2” because the oscillation is controlled.
  • the oscillation frequency f RF of RFVCO 250 is
  • first counter 22N and the second counter 22A are actually configured as binary counters, so the value N set to the first counter 22N and the second counter 22A are set.
  • the value A is given in binary code.
  • the first counter 22N operates as a 9-bit counter and the second counter 22A operates as a 6-bit counter during PLL operation.
  • the value to be set to is set by the 9-bit code N8 to N0, and the value to be set to the second counter 22A is set to be given by the 6-bit code A5 to A0.
  • the first counter 22N is configured to operate as an 11-bit counter when measuring the frequency.
  • the RFVCO 250 is configured so that the oscillation frequency can be switched in 16 bands, that is, in 16 steps.
  • the storage circuit 18 stores 16 frequencies to store the frequency measured for each of these 16 bands.
  • the c register REG 0 ⁇ REG 1 5 of is provided, using Pando decision circuit 1 9, the register of the memory circuit 1 8: EG 0 ⁇ REG 1 the value stored in the 5 and the first counter 2 2 N 9-bit code N8 to N0 set in the second counter 22 Compares the upper 2 bits A5 and A4 of the 6-bit code A5 to A0 set in the second counter 22 A 1 1-bit comparator And a 4-bit code VB 3 as a band switching signal for RF VCO 250 To VB0.
  • the control circuit 260 At the time of frequency measurement, the control circuit 260 generates and outputs switching signals VB3 to VB0 so as to sequentially select 16 bands for the RFVC0250. Further, when measuring the frequency, the control circuit 260 operates the first counter 22N as an 11-bit counter and counts the number of clocks in a long period such as, for example, four cycles instead of one cycle of the reference oscillation signal ref '. The first counter 22N is controlled to perform the operation. Further, the control circuit 260 stops the operation of the second counter 22A during the frequency measurement, and controls so that the division ratio of the prescaler 22 is not switched. Thus, at the time of frequency measurement, the prescaler 22 performs a 1/64 frequency division operation.
  • the error is reduced by a factor of 4 to about 6.4 MHz.
  • the 11-bit count value counted by the first counter 22N at the time of frequency measurement is stored in any register of the storage circuit 18.
  • the stored value is compared with the setting code N8 to NO of the first counter 22N supplied from the outside in the use band determination circuit 19 while the upper 8 bits are regarded as an integer part during the PLL operation. You.
  • the lower 2 bits of the value stored in the register of the storage circuit 18 are regarded as a decimal part, and the used band determination circuit 19 sets the setting codes A5 to A2 of the second counter 22A supplied from outside. It is compared with the upper two bits A5 and A4 of A0.
  • the use determination circuit 19 is composed of a comparator and an exclusive OR gate.
  • the RFVCO 250 used band is determined based on the comparison between the stored values of the registers REG0 to REG15 of the storage circuit 18 and the setting codes N8 to N0 and A5 and A4. Are generated and supplied to the RF VCO 250. : In the case of a PLL circuit used in a communication system such as GSM, each of the FVCOs 250 is set to an interval such as 400 kHz according to the channel interval of the GSM.
  • the frequency measurement of the RF VCO and the correction of the frequency characteristic based on the measurement result are performed, for example, every time a predetermined command is input from the baseband circuit 300 during the idle mode.
  • the control circuit 260 When the frequency measurement of the RFVCO 250 is started, the control circuit 260 first switches the switch SW0 to supply the DC voltage VDC to the loop filter 16. Then, it waits until the voltage Vc of the loop filter 16 is stabilized and the oscillation frequency of the RFVC0250 is stabilized. Next, the frequency division ratio of the prescaler 21 is fixed at 1Z64, and the first counter 22N is set to operate as an 11-bit counter. Then, referring to the pointer indicating the selected band, the codes VB3 to VB0 for selecting the band of the RFVCO 250 are output.
  • the band selected first is, for example, BAND 0 having the lowest frequency range.
  • the first counter 22N performs a counting operation over four cycles of the reference oscillation signal ⁇ f »ref ', and stores the count value of the counter in any register of the storage circuit 18.
  • the first stored register is the first register: REG 0. Then, determine whether the frequency measurement of all bands has been completed. If not completed, the value of the pointer indicating the selected band is added (+1), and the above operation is repeated.
  • the band determination circuit 19 uses the registers REG of the storage circuit 18 based on the frequency setting value. From the comparison between the stored values of 0 to REG15 and the setting codes N8 to NO and A5 and A4, RFVC The use band of the O 250 is determined, and the band selection signals VB 3 to VB 0 are supplied to the RFVCO 250 to correct the frequency characteristics.
  • the intermediate frequency VCO (IFVCO) 230 and the transmission VCO (TXVCO) 240 are also provided with a frequency measurement function and a frequency characteristic correction function based on the measurement result. Moreover, by configuring these functions so that they can be executed by a common circuit, an increase in circuit size is suppressed.
  • the configuration for realizing the frequency measurement function of the I FVCO 230 and the TXVCO 240 and the function of correcting the frequency characteristics based on the measurement results is almost the same as the frequency measurement function and the correction function of the RFVCO 250, and therefore, the description thereof is omitted.
  • the present invention is also effective for a high-frequency IC provided with a frequency measurement function and a correction function only for the RFVC0250.
  • the high-frequency IC has a value stored in the storage circuit 18 for storing the frequency measurement value of each band of the RFVCO 250, an intermediate frequency VCO (IF VCO) 230 and a transmission ⁇ 00 ( (TXVCO)
  • IF VCO intermediate frequency VCO
  • TXVCO transmission ⁇ 00
  • the RF synthesizer 26 1 that constitutes the 1 ⁇ 1 ⁇ circuit has a counter 31 that generates a signal to select the registers REG 0 to REG 15 of the storage circuit 18 in order, and a measurement value that is read in parallel.
  • a serial Z-parallel conversion circuit 32 for converting data input from the outside into serial data and converting the data into parallel data and supplying the parallel data to the register.
  • the counter 31 and the serial Z-parallel conversion circuit 32 are operated by the reference oscillation signal ⁇ ref generated by the reference oscillation circuit 264.
  • the high-frequency IC 200 is in an idle mode in which neither transmission nor reception is performed as in a standby mode.
  • a plurality of operation modes are provided, such as an up mode, a reception mode in which a reception system circuit is operated to receive a signal, and a transmission mode in which a transmission system circuit is operated to transmit a signal. These modes are started by a command supplied from the baseband IC 300 to the control circuit 260 of the high-frequency IC 200.
  • the command is composed of a code having a predetermined bit length such as 8 bits or 16 bits (hereinafter referred to as Word), and a plurality of types of command codes are prepared in advance.
  • FIG. 5 shows the high-frequency IC 200 of the present embodiment and the base band L S for controlling it.
  • the relationship between the semiconductor chip 400 and another semiconductor chip 400 having a memory for storing data read from the high frequency IC is shown.
  • a single-chip microcomputer having an internal memory 410 as a semiconductor chip 400 that provides a stack memory that saves the value stored in the storage circuit 18 when power is turned off or the like
  • a high-frequency IC 200 is provided with a terminal 272 for transmitting and receiving data to and from the CPU 400 by serial communication.
  • This data input / output terminal 2 7 2 is connected to another existing terminal (for example, a terminal for connecting an external resistor that generates a voltage to make the RF-PLL open at high speed: terminal “3 9” in Fig. 8). See).
  • Reference numeral 500 denotes a switching regulator such as a DC-DC converter that generates a power supply voltage Vcc of the high-frequency IC 200.
  • Reference numeral 281 denotes a crystal oscillator constituting a part of the reference oscillation circuit 264.
  • the control circuit 260 of the IC 200 is instructed to output the measured value stored in the storage circuit 18 to the outside. Then, the control circuit
  • the counter 31 sequentially generates a register designation signal according to the control signal from 260 and reads data from the storage circuit 18, and the read data is converted to serial data by the serial Z-parallel conversion circuit 32
  • Output to external terminal 2 7 2 CPU 400 fetches the data internally via a serial port or the like, and stores it in internal memory (rewritable nonvolatile memory such as RAM or flash memory) 410 or the like.
  • internal memory rewritable nonvolatile memory such as RAM or flash memory
  • the power supply of the high-frequency IC 200 is turned off by a command from the CPU 400 to the baseband IC 300. Data from the CPU 400 and no command or control signal needs to be sent from the CPU 400 to the high-frequency IC 200. The same applies when returning data saved in external memory.
  • the regulator 500 When the system is turned on, the regulator 500 is activated and the high frequency I C
  • the control circuit 260 controls the register inside the high-frequency IC 200.
  • the high-frequency IC 200 enters the idle mode (command waiting state) (step Sl in FIG. 6, timing 1 in FIG. 7). In this idle mode, the oscillation operation of each VCO is stopped. Thereafter, when a command (Word 7) consisting of a predetermined bit code instructing the measurement of the VCO from the baseband IC 300 is received, the frequency measurement processing of each VCO in the high-frequency IC 200 is performed (Steps S2 and S2).
  • FIG. 7 Timing
  • the frequency measurement of each band of the RFVCO 250 and the IFVC0230 is performed in parallel. Is 16 bands and IF VCO 230 has 8 bands, so the frequency measurement of IF VCO 230 ends earlier (Fig. 7, timing t3). Then, the frequency of the TXVCO 240a for transmission is measured using the counter used for the frequency measurement of IFVC0230, and when that is completed, the frequency of the TXVCO 240b is measured (timing t4 in FIG. 7). As for IF VCO 230, the band to be used is immediately selected at the end of the frequency measurement.
  • the baseband IC 300 After sending "Word 7", the baseband IC 300 sends "Word 5, 6" to command the initial setting after an appropriate time has elapsed.
  • the completion is notified to the control circuit 260.
  • the control circuit 260 After the measurement is completed, the control circuit 260 initializes the inside of the high-frequency IC 200 for transmission and reception operations (step S 3, Figure 7 timing t5).
  • the command “Word 1” including the value to be set in the counter 22 (frequency information of the used channel) is supplied from the baseband IC 300 to the high-frequency IC 200, and the control circuit 260 (Step S4, Figure 7 Timing 1: 6, t8) o
  • This command also includes a bit [TR] to indicate transmission or reception.
  • the RF VCO 250 is oscillated to lock the receiving PLL loop.
  • the band to use the RFVCO 250 and TXVCO 240 is selected, and the frequency value is sent to the counter 22 etc. Set. Then, the RF VCO 250 and the IF VCO 230 are oscillated, and the RFPLL and the IFPLL loop are locked. Whether to use the TXVCO 240a or 240b is determined by a predetermined code included in a command supplied from the baseband IC 300. In addition, this warm-up In the mode, the control circuit 260 activates the offset cancel circuit 213 to perform the input DC offset cancel of the amplifier in the high gain width section 22OA, 220B.
  • the baseband IC 300 instructs the high-frequency IC 200 to “Word 2” for instructing the reception operation or “Word 2” for instructing the transmission operation.
  • the control circuit 260 enters the reception mode, and operates the reception circuit RXC to amplify and demodulate the received signal (step S5, timing in FIG. 7). t7)
  • the control circuit 260 also controls switching of the switch SW1 and the like according to GSM or DCSZPCS.
  • control circuit 260 enters the transmission mode and modulates and amplifies the transmission signal (step S6, timing t9 in FIG. 7). Further, the control circuit 260 turns on the transmission switching switch SW4, and also controls switching of the switch SW2 and the like according to GSM or DC S / PCS.
  • the reception mode and the transmission mode are executed in time units called time slots (for example, 577 ⁇ sec).
  • the reception mode using “Word 1” and “Word 2” or the transmission mode using “Wordl” and “Word 3” is repeatedly executed.
  • the baseband IC 300 sends a command to turn off the power to the 200
  • the baseband IC 300 sends a command “Word 0” to command the data read / write to the high-frequency IC 200 (Fig. 7, timing t10 ).
  • the command “World 0” includes a bit [wr] indicating read / write of the measured value stored in the storage circuit 18 (registers REG 0 to REG 14) and the like. See bit [wr] of "Wo rd 0"
  • the baseband IC 300 sends a signal P-0FF to the switching regulator 500 to stop its operation (step S9). Then, the regulator 500 stops operating, the supply of the power supply voltage V cc to the high frequency IC 200 is stopped, and the high frequency IC 200 shifts to a turn-off state (step S10). Note that even if the high-frequency IC 200 is turned off, the basebands IC 300 and CPU 400 continue to operate.
  • the baseband IC 300 sends an operation start signal P-ON to the switching regulator 500 (step S11), the regulator 500 starts operation and supplies the power supply voltage Vcc to the high-frequency IC 200. And the high frequency IC 200 is turned on (step S12). Then, the baseband IC 300 sends a command “Word 0 ,,” including a bit [wr] indicating the data read / write Z to the high-frequency IC 200.
  • the command “Word 0 When [wr] is set to [1] to indicate "read”, a command "Wo rd 1" for instructing transition to the idle mode is sent.
  • the bit [wr] is set to [0] indicating "write” by the command "Word 0"
  • the command "Word 5, 6" for commanding the initial setting is continuously transmitted.
  • control circuit 260 refers to the bit [wr] of the command “Word 0” in step S 13 and if it is [0], saves the saved data read from the internal memory 410 by the CPU 400 to the external terminal 27.
  • the data is read from 1 and stored in a memory circuit 18 (registers REG0 to REG14) and the like (step S14). Thereafter, the process proceeds to step S3, and receives the command "Word 5, 6" for instructing the initial setting from the baseband IC 300, and initializes the inside of the high-frequency IC 200 for the transmission / reception operation.
  • control circuit 260 of the high-frequency IC 200 determines that [wr] is [1] in step S13, it receives the following command "Word 1" and shifts to the idle mode of step S1.
  • the frequency is measured in response to the command "Word 7" instructing the frequency measurement of each VCO (step S2).
  • a bit [wr] is set to [0], and it is considered that the data saved in the external memory is restored to the memory circuit 18 etc., but the presence of bit [wr] makes it possible to use
  • the high-frequency IC 200 can measure the frequency of the VCO, thereby improving the reliability of the high-frequency IC 200.
  • step S3 when the power of the high-frequency IC 200 is turned on again, first, the data saved in the external memory is restored to the storage circuit 18 or the like (steps S14, S15).
  • step S3 the initial setting
  • step S14 and S15 may be performed after the initial setting (step S3).
  • return processing (steps S14 and S15) is performed during warm-up by referring to the bit [TR] indicating transmission or reception included in the command "Word 1" for instructing PLL activation. It is also possible to do it. In this case, only the measurement data corresponding to each VCO may be returned to the storage circuit 18 or the like in response to reception or transmission.
  • FIG. 8 shows another embodiment of the high frequency IC 200 to which the present invention is applied.
  • the circuits and signals shown in FIGS. 1 and 2 are denoted by the same reference numerals, and redundant description will be omitted.
  • the high-frequency IC 200 of this embodiment is provided with a plurality of power pins (VCC) and a ground pin (GND) in order to prevent noise from flowing through the power line between the circuits. ing.
  • the high-frequency IC 200 of this embodiment uses the frequency measurement value stored in the storage circuit 18 (registers REG0 to EG14) or the like without using a dedicated external terminal (corresponding to the terminal 271 in FIG. 6).
  • a terminal terminal "32" in FIG. 8 provided for transmitting and receiving serial data S DATA of commands and the like to and from the baseband IC 300 is read out to the outside. Things.
  • a signal line for transferring data is provided between the control circuit 260 and each of the storage circuits 18 of the PLL circuit.
  • This signal line may be a single signal line, or may be a signal line group (bus) of a number corresponding to the bit number of the registers REG0 to REG15.
  • reference numeral 281 denotes an external circuit including an element such as a crystal unit and a capacitor, which constitutes a part of the reference oscillation circuit 264.
  • Reference numeral 282 denotes an IF nap-flop, which constitutes an IF PLL circuit together with the IF synthesizer 262.
  • the data read from the high-frequency IC 200 may be stored in the internal memory 310 of the baseband IC 300, or the baseband IC 300 may store the internal memory. If not, or if the internal memory is available but the storage capacity is not sufficient, the data may be transferred to the CPU 400 via the basic IC 300 and stored in the CPU's internal memory 410. good. In a system in which the function of the baseband IC is performed by the CPU, the data read from the high-frequency IC200 when the high-frequency IC200 is turned off is stored in the internal memory 310 of the baseband IC300.
  • the frequency measurement value saved in the external memory when the power of the high-frequency IC 200 is turned off as described above is restored to the original storage circuit 18 and the like by the reverse route when the power of the high-frequency IC 200 is turned on again. .
  • Only the data (measured value) route is different from that of the first embodiment, and the procedure for saving and restoring data is the same as the flow chart shown in FIG. Reading and writing of the measured frequency value stored in the storage circuit 18 (registers REG0 to REG15) are performed, for example, in the data storage field provided in the command “Word 0” indicating the data read / write Z. Can be put in the box.
  • the terminal “42” with the symbol DI VON is used to control whether the clock generated by the reference oscillation circuit 264 and output to the external terminal 27 1 is output as it is or is output by dividing by 1Z2. a terminal to which a signal or voltage to be applied, thereby making it possible to set the frequency of the clock output to the external terminal 27 to any of 1 3MH Z or 26MH z.
  • FIG. 9 shows a third embodiment of a high-frequency IC 200 to which the present invention is applied.
  • the high-frequency IC 200 of this embodiment includes a storage circuit such as a storage circuit 18 (registers REG0 to REG15) storing data to be protected when the power is turned off, a reference oscillation circuit 264, and other circuits. When The power line and the power terminal are separated.
  • the storage circuit in addition to the first regulator 500 that supplies the power supply voltage V cc1 for the storage circuit, the storage circuit And a second regulator 510 for supplying the power supply voltage V cc 2 to other circuits.
  • the power supply voltage Vcc1 generated by the first regulator 500 for the storage circuit is supplied to the baseband Ic300.
  • an off signal P-OFF is given only from the baseband IC 300 to the second regulator 5110, and the second regulator 510 operates. Stop and stop supply of power supply voltage Vcc2.
  • the high-frequency IC 200 of this embodiment is supplied with the same power supply voltage V cc 1 as that of the circuit to be backed up, such as the storage circuit 18, to the reference oscillation circuit 264.
  • V cc 1 the power supply voltage
  • the power supply is turned off, a clock signal is generated and output from an external terminal 271 as an operation clock of an external chip. Therefore, by using the clock (13 MHz or 26 MHz) output from the external terminal 27 1 as the operating clock of the baseband IC 300 or CPU 400, the baseband IC 3
  • the baseband IC 3 There is an advantage that there is no need to provide a circuit for generating the operation results of the CPU 400 and the CPU 400.
  • FIG. 10 shows the frequency measurement procedure of each VCO in the wireless communication system using the high-frequency IC of the embodiment of FIG.
  • the procedure of power-off of high-frequency IC and Z return operation is shown.
  • the procedure of FIG. 10 is for measuring the frequency of each VCO and measuring the high frequency in the wireless communication system using the high-frequency IC of the first embodiment shown in FIG. It is almost the same as the procedure of the power supply cutoff / return operation of the wave IC.
  • step S8 Steps S14 and S15 to restore saved data from external memory to storage circuit 18 (registers REG0 to REG15) after power-cycle of high-frequency IC
  • step 9 only the regulator 5 10 is turned off, and then in step S 11 of turning on the power again, the regulator 5 10 is turned on.
  • the determination of [wr] in step S7 can be omitted.
  • the terminal 272 for reading data stored in the storage circuit 18 and the like and for writing from the outside is provided, but this terminal is used only for reading data. It may be configured as possible.
  • writing of the save data to the storage circuit 18 or the like can be performed, for example, by using the serial data SDATA, the clock CLK, and the control signal LE from the baseband IC 300.
  • the terminal 272 is a high-frequency IC 200 configured so that only data can be read, there is an advantage that the read data can be used to analyze the characteristics of the built-in VCO.
  • the high-frequency IC in which the three VCOs of the reception VCO, the transmission VCO, and the intermediate frequency VCO are formed on one semiconductor chip together with the modulation / demodulation circuit has been described.
  • One VCO can be applied to a high-frequency IC formed on one semiconductor chip together with a modulation / demodulation circuit.
  • the storage circuit 18 is provided with 16 registers REG0 to REG15 for storing the frequency measured for each of the 16 bands of the RF VCO 250.
  • 15 registers REG 0 ⁇ RE G14 is provided to measure and store only 15 bands B and 0 to B and 14, and if the measured value corresponding to the external frequency setting value does not exist in registers REG0 to REG14, It may be configured such that the 16th band B and 15 is automatically selected. The same applies to IF VCO and TXVCO. By reducing the number of registers in this way, the chip size can be reduced, and the time required to read and write measured values can be reduced. Industrial applicability
  • the wireless communication of the mobile phone capable of performing communication by the four communication methods of GSM850 and GSM900, DCS1800, and PCS1900, which are the fields of application, which is mainly based on the invention made by the present inventors.
  • the present invention can also be applied to a high-frequency IC used for a mobile phone capable of supporting the above, a CDMA type mobile phone, a wireless communication system called a wireless LAN network, and a high-frequency IC constituting the same.

Abstract

A semiconductor integrated circuit for communication having at least one of reception VCO (250), transmission VCO (240a, 240b), and intermediate frequency VCO (230) formed together with a modulation/demodulation circuit on a single semiconductor chip. The on-chip VCO is constituted so as to be operable in a plurality of frequency bands. There are provided a circuit (22) for measuring an oscillation frequency of the VCO, a storage circuit (18) for storing the measured value, and a circuit (19) for comparing the measured value stored in the storage circuit to an external preset value so as to determine the usable frequency band of the VCO. Data stored in the storage circuit can be read out and data can be written from outside.

Description

明 細 書 通信用半導体集積回路およぴ無線通信システム  Description Semiconductor integrated circuits for communication and wireless communication systems
技術分野 Technical field
本発明は、 VCO (電圧制御発振回路) の特性の測定おょぴ電源オフ時の測 定値の保存方式に適用して有効な技術に関し、 例えば V C Oを内蔵し複数パン ドの信号を送受信可能な無線通信システムにおいて送受信信号を変復調する高 周波用半導体集積回路およびそれを用いた携帯電話機に利用して有効な技術に 関する。 背景技術  The present invention relates to a technology that is effective when applied to a method of measuring characteristics of a VCO (voltage controlled oscillation circuit) and a method of storing a measured value when a power supply is turned off. The present invention relates to a high frequency semiconductor integrated circuit that modulates and demodulates a transmission / reception signal in a wireless communication system, and a technology effective for use in a mobile phone using the same. Background art
携帯電話機のような無線通信システムにおいては、 受信信号や送信信号と合 成される所定の周波数の発振信号を発生するため V COが用いられている。 従 来提案されている携帯電話機には、 例えば 8 8 0〜9 1 5MH Z帯の GSM (Global System for Mobile Communication) と 1 7 1 0〜 1 785 MH z帯 の DCS (Digital Cellular System) のような 2つの周波数帯の信号を扱える デュアルパンド方式の携帯電話機がある。 また、 かかるデュアルパンド方式の 携帯電話機においては、 PLL回路 (フェーズ · ロックド 'ループ) 内の VC Oの周波数を切り替えることにより一つの P LL回路で 2つのパンドに対応す ることができるようにしたものがある。 In a wireless communication system such as a mobile phone, a VCO is used to generate an oscillation signal of a predetermined frequency combined with a reception signal and a transmission signal. The mobile phones that are proposed traditional, for example 8 8 0~9 1 5MH Z band of GSM (Global System for Mobile Communication) and 1 7 1 0~ 1 785 MH z band of DCS (Digital Cellular System) like There are dual-panel mobile phones that can handle signals in two different frequency bands. In addition, in such a dual-panel type mobile phone, by switching the frequency of VCO in a PLL circuit (phase-locked loop), one PLL circuit can support two bands. There is something.
ところが、 近年においては、 031^ゃ0〇3の他に例ぇば1850〜1 9 1 5 MH z帯の P C S (Personal Communication System) の信号を扱えるトリプ ルパンド方式の携帯電話機に対する要求がある。 また、 携帯電話機は今後さら に多くのパンドに対応できるものが要求されることが考えられる。  In recent years, however, there has been a demand for triple-band type mobile phones capable of handling PCS (Personal Communication System) signals in the 1850 to 1915 MHz band in addition to 031 ^ 3. In addition, it is expected that mobile phones that can handle even more bands will be required in the future.
このような複数のパンドに対応できる携帯電話機に使用される送信信号の変 調や受信信号の復調を行なう高周波用半導体集積回路 (以下、 高周波 I Cと称 する) には、 部品点数の低減という観点からダイレクトコンバージョン方式が 有効である。 しかしながら、 ダイレクトコンバージョン方式は、 複数のパンド に対応することが比較的容易ではあるが、 V C Oの発振可能な周波数範囲を広 くする必要がある。 ここで、 一つの VCOで全ての周波数に対応しょうとする と、 VCOの制御電圧の感度が高くなり外来ノイズや電源電圧変動に弱くなる という不具合がある。 A high-frequency semiconductor integrated circuit (hereinafter, referred to as a high-frequency IC) that modulates a transmission signal and demodulates a reception signal used in a mobile phone that can handle such multiple bands has a low component count. The direct conversion method is effective. However, the direct conversion method requires multiple bands. Although it is relatively easy to deal with this, it is necessary to widen the frequency range in which the VCO can oscillate. Here, if one VCO attempts to support all frequencies, the sensitivity of the control voltage of the VCO becomes high, and it becomes vulnerable to external noise and power supply voltage fluctuation.
一方、 従来は一般に高周波 I Cとは別個のモジュールとして構成されること が多い VCOを、 高周波 I Cと同一の半導体チップ上に形成することが、 部品 点数の低減にとっては有効である。 しかしながら、 現在の製造技術では V CO をオンチップとした場合には、 発振周波数の絶対値のパラツキが大きくなるの で、 製造後に発振周波数を補正する機能が不可欠となる。 そして、 このパラッ キの補正を従来の半導体集積回路に用いられている一般的なマスクオプション やボンディングワイヤォプションによるトリミングで行なおうとすると、 コス トアップが避けられなくなる。  On the other hand, it is effective to reduce the number of components by forming a VCO, which is generally configured as a separate module from the high-frequency IC, on the same semiconductor chip as the high-frequency IC. However, with the current manufacturing technology, when VCO is on-chip, the variation in the absolute value of the oscillation frequency increases, so a function to correct the oscillation frequency after manufacturing is indispensable. If the correction of this parameter is attempted by trimming with a general mask option or bonding wire option used in a conventional semiconductor integrated circuit, cost increases cannot be avoided.
そこで、 本発明者等は、 送受信に使用される高周波の信号を生成する発振回 路 (RFVCO) を複数の帯域で動作可能に構成し、 発振回路の制御電圧を所 定の値に固定した状態で各帯域での発振回路の発振周波数を測定して記憶回路 に記憶しておいて、 P LL起動時に与えられる周波数指定用の設定値と上記記 憶しておいた周波数の測定値とを比較して、 その比較結果から実際に発振回路 において使用する帯域を決定するように構成する。 これにより、 複数の通信方 式に対応するため V COの発振可能な周波数範囲を広くしても、 V COの制御 電圧の感度が高くならず外来ノィズゃ電源電圧変動による影響を受けにくいと ともに、 VCOの発振周波数のパラツキを内部回路で自動的に補正することが できる PL L回路を備えた通信用半導体集積回路 (高周波 I C) を開発し、 先 に出願した (特願 2002— 1 1050号)。  Therefore, the present inventors have set up an oscillation circuit (RFVCO) that generates a high-frequency signal used for transmission and reception so that it can operate in a plurality of bands, and fix a control voltage of the oscillation circuit at a predetermined value. Measures the oscillation frequency of the oscillation circuit in each band and stores it in the storage circuit, and compares the set value for frequency designation given at PLL startup with the measured value of the frequency stored above Then, it is configured so that the band actually used in the oscillation circuit is determined from the comparison result. As a result, even if the frequency range in which the VCO can oscillate is widened to support multiple communication methods, the sensitivity of the VCO control voltage will not increase, and it will not be affected by external noise and power supply voltage fluctuations. Has developed a communication semiconductor integrated circuit (high-frequency IC) equipped with a PLL circuit that can automatically correct the variation in the oscillation frequency of the VCO using an internal circuit, and filed an application for it (Japanese Patent Application No. 2002-1 1050). ).
前記先願においては、 V COの発振周波数を測定しその測定結果をレジスタ のような揮発性の記憶回路に保持し、 その測定結果を用いて VCOの特性パラ ツキを内部回路で自動的に補正するように構成されている。 そのため、 電源が オフされるとその測定結果が失われてしまうので、 電源が再投入されたときに 再度 V COの周波数の測定と捕正を行なう必要があり、 その処理に要する時間 が長くなるとともに、 消費電力も増大するという課題がある。 In the prior application, the oscillation frequency of the VCO is measured, the measurement result is stored in a volatile storage circuit such as a register, and the characteristic variation of the VCO is automatically corrected by an internal circuit using the measurement result. It is configured to Therefore, when the power is turned off, the measurement result is lost.When the power is turned on again, it is necessary to measure and correct the VCO frequency again. And the power consumption increases.
ここで、 電源がオフされても測定結果が失われないように記憶回路を不揮発 性メモリで構成することも考えられる。 しかしながら、 現在の技術では、 不揮 発性メモリをチップ内部に設けようとするとプロセスが複雑になってチップコ ストが大幅に上昇するとともに、 不揮発性メモリの書込みのためには高電圧が 必要であるため昇圧回路を設けなくてはならず、 それによつてチップサイズが 増加するとともに昇圧回路における消費電力が多くなってしまい、 V C Oの測 定省略で消費電力を減らしたとしてもトータルの消費電力はそれほど減少しな いかもしくはかえつて増加するおそれがあるという不具合がある。  Here, it is conceivable to configure the storage circuit with a nonvolatile memory so that the measurement result is not lost even when the power is turned off. However, current technology requires a non-volatile memory inside the chip, which complicates the process and significantly increases the cost of the chip, and requires a high voltage to write the nonvolatile memory. Therefore, a booster circuit must be provided, which increases the chip size and increases the power consumption of the booster circuit.Even if the power consumption is reduced by omitting the measurement of the VCO, the total power consumption is not so large. There is a defect that it may not decrease or may increase.
ところで、 電池で駆動される携帯電話機は 1回の充電で駆動できる時間を長 くするため、 システムを構成する半導体チップはそれぞれできるだけ低消費電 力であることが望まれる。 これとともに、 携帯電話機では、 待ち受け時等にお いて制御用の C P U (マイクロプロセッサ) やベースパンド用の L S Iのみ動 作させ高周波 I Cはその電源をオフするような制御が行なわれることが多い。 上記先願発明のように、 V C Oの発振周波数を測定しその測定結果をレジス タのような揮発性の記憶回路に保持させるように構成されていると、 高周波 I Cの電源がオフされると、 電源再投入の際に V C Oの発振周波数を再度測定し てその測定結果に基づいて特性バラツキを補正する動作を行なう必要がある。 しかも、 複数パンドの信号を送受信可能な携帯電話機を構成する高周波 I cは、 V C Oを複数の周波数帯で発振動作可能に構成するのが望ましいが、 そのよう にすると各周波数帯の周波数を測定する必要があり、 単一周波数帯で動作する V C Oに比べて測定時間が長くなるという不具合がある。  By the way, in order to extend the time that a mobile phone driven by a battery can be driven by one charge, it is desired that the semiconductor chips constituting the system consume as little power as possible. At the same time, mobile phones are often controlled to operate only the control CPU (microprocessor) and baseband LSI and turn off the power of the high frequency IC during standby. If the oscillation frequency of the VCO is measured and the measurement result is stored in a volatile storage circuit such as a register as in the above-mentioned prior invention, when the power of the high-frequency IC is turned off, When the power is turned on again, it is necessary to measure the oscillation frequency of the VCO again and perform an operation to correct the variation in characteristics based on the measurement result. In addition, it is desirable to configure the VCO so that it can oscillate in multiple frequency bands for the high-frequency Ic that constitutes a mobile phone that can transmit and receive multiple band signals. In such a case, the frequency of each frequency band is measured. And the measurement time is longer than that of a VCO operating in a single frequency band.
この発明の目的は、 複数パンドの信号を送受信可能な携帯電話機を構成する のに好適でかつ消費電力の少ない通信用半導体集積回路を提供することにある。 この発明の他の目的は、 内蔵発振回路 (V C O ) およびその特性パラツキを 測定しその測定値に基づいて補正可能な仕組みを備え、 送信信号の変調や受信 信号の復調を行なう通信用半導体集積回路 (高周波 I C ) において、 電源がォ フされ再投入された際に V C Oの発振周波数を測定する必要がなくそれによつ て消費電力を低減することができる通信用半導体集積回路を提供することにあ る。 An object of the present invention is to provide a communication semiconductor integrated circuit suitable for configuring a mobile phone capable of transmitting and receiving a plurality of band signals and having low power consumption. Another object of the present invention is to provide a built-in oscillation circuit (VCO) and a communication semiconductor integrated circuit having a mechanism capable of measuring a characteristic variation thereof and correcting based on the measured value, and modulating a transmission signal and demodulating a reception signal. (High frequency IC), it is not necessary to measure the VCO oscillation frequency when the power is turned off and on again. To provide a communication semiconductor integrated circuit capable of reducing power consumption.
この発明の他の目的は、 内蔵発振回路 (VCO) およびその特性パラツキを 測定しその測定値に基づいて補正可能な仕組みを備え、 送信信号の変調や受信 信号の復調を行なう通信用半導体集積回路 (高周波 I C) において、 電源がォ フされ再投入された際に、 短時間にシステムを通常動作状態に移行させること ができる通信用半導体集積回路を提供することにある。  Another object of the present invention is to provide a built-in oscillation circuit (VCO) and a communication semiconductor integrated circuit having a mechanism capable of measuring a characteristic variation thereof and correcting based on the measured value, and modulating a transmission signal and demodulating a reception signal. It is an object of the present invention to provide a semiconductor integrated circuit for communication (high frequency IC) that can quickly shift the system to a normal operation state when the power is turned off and on again.
この発明のさらに他の目的は、 電池寿命が長くなり 1回の充電で動作可能な 時間が長い携帯電話機を提供することにある。  Yet another object of the present invention is to provide a mobile phone having a long battery life and a long operating time with one charge.
この発明の前記ならぴにそのほかの目的と新規な特徴については、 本明細書の 記述およぴ添附図面から明らかになるであろう。 発明の開示  The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings. Disclosure of the invention
本願において開示される発明のうち代表的なものの概要を簡単に説明すれば、 下記の通りである。  The following is a brief description of an outline of a typical invention disclosed in the present application.
受信用 VCO (電圧制御発振器) と送信用 VCOと中間周波数用 VCOのう ち少なくとも 1つの VCOが変復調回路と共に 1つの半導体チップ上に形成さ れた通信用半導体集積回路において、 オンチップの VCOを複数のパンドで動 作可能に構成し、 また該 V COの発振周波数を測定する回路および測定された 値を記憶する記憶回路と該記憶回路に記憶されている測定値と外部からの設定 値とを比較して上記 VCOの使用パンドを決定する回路を設けるとともに、 該 記憶回路の記憶データを外部へ読出しまた外部から書き込むことができるよう に構成したものである。  At least one of the receiving VCO (voltage controlled oscillator), transmitting VCO, and intermediate frequency VCO, together with the modulation and demodulation circuit, is mounted on a single semiconductor chip. A circuit for measuring the oscillation frequency of the VCO, a storage circuit for storing the measured value, a measured value stored in the storage circuit, and an external set value. And a circuit for determining the use band of the VCO is provided, and the data stored in the storage circuit can be read out or written from the outside.
上記した手段によれば、 記憶回路に記憶されている V COの発振周波数測定 値を当該通信用半導体集積回路の電源オフ時に外部のメモリに退避し、 電源再 投入時に退避データを元の記憶回路に復帰させることにより、 電源投入毎に V COの発振周波数を測定する必要がなくなり、 半導体集積回路としての消費電 力を減らすことができる。 また、 システムの立上り時間すなわち送受信動作を 開始できる通常動作モードに達するまでの時間を短縮することができるととも に、 通信用半導体集積回路の電源をオフさせることでシステム全体としての消 費電力を低減することができるようになる。 According to the above means, the oscillation frequency measurement value of the VCO stored in the storage circuit is saved in the external memory when the power of the communication semiconductor integrated circuit is turned off, and the saved data is saved when the power is turned on again. By restoring to the above, it is not necessary to measure the VCO oscillation frequency every time the power is turned on, and the power consumption of the semiconductor integrated circuit can be reduced. In addition, the rise time of the system, that is, The time required to reach the normal operation mode that can be started can be reduced, and the power consumption of the entire system can be reduced by turning off the power supply of the communication semiconductor integrated circuit.
ここで、 記憶回路の記憶データを外部へ読出しまた外部から書き込むことが できるようにする方式としては、 外部端子を設ける方式と、 元々通信用半導体 集積回路が備えているデータの送受信の機能を利用する方式と、 V C Oの周波 数測定値を記憶する記憶回路に電源電圧を供給する給電線を記憶回路以外の回 路の給電線と分離して設け、 電源遮断時に記憶回路のデータが失われないよう にパックアップする方式などがある。  Here, as a method that allows the storage data in the storage circuit to be read out and written out to the outside, a method of providing an external terminal and a function of transmitting and receiving data originally provided in the communication semiconductor integrated circuit are used. The power supply line that supplies the power supply voltage to the storage circuit that stores the measured frequency value of the VCO is provided separately from the power supply lines of circuits other than the storage circuit, so that the data in the storage circuit is not lost when the power is turned off. There is a method of backing up.
記憶回路の記憶データを外部へ読出しまた外部から書き込むことができる外 部端子を設ける場合にも、 専用の端子として設けても良いが、 既にある他の信 号のための端子を利用することができる。 記憶回路の給電線を記憶回路以外の 回路の給電線と分離して設けるパックアツプ方式の場合、 通信用半導体集積回 路内にある V C Oの発振信号に基づいて外部に他の半導体チップの動作ク口ッ クを生成して出力する回路を同一のチップ上に設け、 該回路には記憶回路と同 一の給電線で電源電圧を供給するように構成すると良い。 これにより、 通信用 半導体集積回路の電源をオフさせても、 記憶回路のデータの消失を防止できか つ他のチップに対しては動作クロックを供給し続けることができる。 図面の簡単な説明  When an external terminal that can read and write the data stored in the storage circuit to the outside is provided, it may be provided as a dedicated terminal.However, it is possible to use a terminal for other existing signals. it can. In the case of a back-up system in which the power supply line of the storage circuit is provided separately from the power supply lines of circuits other than the storage circuit, the operation port of another semiconductor chip is externally provided based on the oscillation signal of the VCO in the communication semiconductor integrated circuit. It is preferable to provide a circuit for generating and outputting a chip on the same chip, and supply the power supply voltage to the circuit through the same power supply line as the storage circuit. As a result, even if the power supply of the semiconductor integrated circuit for communication is turned off, the loss of data in the storage circuit can be prevented, and the operation clock can be continuously supplied to other chips. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明を適用したマルチパンド方式の通信用半導体集積回路 (高周 波 I C ) 及ぴそれを用いた無線通信システムの要部の構成例を示すプロック図 である。  FIG. 1 is a block diagram illustrating a configuration example of a multi-band communication semiconductor integrated circuit (high frequency IC) to which the present invention is applied and a main part of a wireless communication system using the same.
図 2は、 本発明を適用したマルチパンド方式の通信用半導体集積回路 (高周 波 I C ) における; F V C Oを含む P L L回路の一実施例を示すブロック図で ある。  FIG. 2 is a block diagram showing an embodiment of a PLL circuit including FVCO in a multi-band communication semiconductor integrated circuit (high frequency IC) to which the present invention is applied.
図 3は、 本発明を適用したマルチパンド方式の通信用半導体集積回路 (高周 波 I C ) における電圧制御発振回路 (V C O ) の一実施例を示す回路図である £ 図 4は、 R F V C Oの周波数可変範囲を連続的に変化させる場合と複数の帯 域に分けて変化させる場合における制御電圧 V cと発振周波数 f RF との関係を 示すグラフである。 Figure 3 is a circuit diagram showing an embodiment of a communication semiconductor integrated circuit of a multi-Pando method according to the present invention a voltage-controlled oscillator in the (high-frequency IC) (VCO) £ FIG. 4 is a graph showing a relationship between the control voltage Vc and the oscillation frequency f RF when the frequency variable range of the RFVCO is continuously changed and when the RFVCO is changed over a plurality of bands.
図 5は、 R F P L L回路の概略構成と R F V C Oの周波数測定値を記憶する 記憶回路のデータを外部へ読み出す仕組みの一例を示すプロック図である。  FIG. 5 is a block diagram showing an example of a schematic configuration of an RFPLL circuit and an example of a mechanism for reading out data of a storage circuit that stores a measured frequency value of RFPCO to the outside.
図 6は図 2の実施例の高周波 I Cを用いた図 5の無線通信システムにおける 各 V C Oの周波数測定おょぴ待ち受け時等における高周波 I Cの電源遮断/復 帰動作の手順を示すフローチャートである。  FIG. 6 is a flowchart showing a procedure of power-off / return operation of the high-frequency IC at the time of waiting for frequency measurement of each VCO in the wireless communication system of FIG. 5 using the high-frequency IC of the embodiment of FIG.
図 7は、 図 2の実施例の高周波 I Cを用いた無線通信システムにおける各 V C Oの周波数測定および測定結果に基づく周波数特性の補正 (使用パンドの決 定) のタイミングを示すタイミングチャートである。  FIG. 7 is a timing chart showing the timing of the frequency measurement of each VCO in the wireless communication system using the high frequency IC of the embodiment of FIG. 2 and the correction of the frequency characteristic based on the measurement result (determination of the band to be used).
図 8は、 本発明の第 2の実施例の通信用半導体集積回路 (高周波 I C ) 及び それを用いた無線通信システムの要部の構成例を示すプロック図である。  FIG. 8 is a block diagram showing a configuration example of a communication semiconductor integrated circuit (high frequency I C) of the second embodiment of the present invention and a main part of a wireless communication system using the same.
図 9は、 本発明の第 3の実施例の通信用半導体集積回路 (高周波 I C ) 及び それを用いた無線通信システムの要部の構成例を示すブロック図である。  FIG. 9 is a block diagram showing a configuration example of a communication semiconductor integrated circuit (high-frequency IC) according to a third embodiment of the present invention and a main part of a wireless communication system using the same.
図 1 0は、 図 9の実施例の高周波 I Cを用いた無線通信システムにおける各 V C Oの周波数測定および待ち受け時等における高周波 I cの電源遮断 Z復帰 動作の手順を示すフローチャートである。 発明を実施するため最良の形態  FIG. 10 is a flowchart illustrating a procedure of a power recovery of the high frequency Ic and a Z return operation in a wireless communication system using the high frequency IC of the embodiment of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
次に、 本発明の実施例について図面を用いて説明する。  Next, embodiments of the present invention will be described with reference to the drawings.
図 1は、 本発明を適用したマルチパンド方式の通信用半導体集積回路 (高周 波 I C ) 及びそれを用いた無線通信システムの構成例を示すブロック図である。 図 1において、 1 0 0は信号電波の送受信用アンテナ、 1 1 0は送受信切り 替え用のスィッチ、 1 2 0 a〜l 2 0 cは受信信号から不要波を除去する S A Wフィルタなどからなる高周波フィルタ、 1 3 0は送信信号を増幅する高周波 電力増幅回路、 2 0 0は受信信号を復調したり送信信号を変調したりする高周 波 I C、 3 0 0は送信データを I, Q信号に変換したり高周波 I C 2 0 0を制 御したりするベースバンド回路 (L S I ) である。 高周波 I C 200は 1つの 半導体チップ上に半導体集積回路として構成される。 FIG. 1 is a block diagram showing a configuration example of a multi-band communication semiconductor integrated circuit (high frequency IC) to which the present invention is applied and a wireless communication system using the same. In FIG. 1, 100 is an antenna for transmitting and receiving signal radio waves, 110 is a switch for switching between transmission and reception, and 120 a to l 20 c are high-frequency waves such as a SAW filter that removes unnecessary waves from a received signal. A filter, 130 is a high-frequency power amplifier that amplifies the transmission signal, 200 is a high-frequency IC that demodulates the reception signal and modulates the transmission signal, and 300 is an I and Q signal that converts the transmission data. Convert or control high frequency IC 200 The control is a baseband circuit (LSI). The high-frequency IC 200 is configured as a semiconductor integrated circuit on one semiconductor chip.
特に制限されるものでないが、 この実施例の高周波 I C 200は、 GSM8 50と GSM900、 DCS 1 800、 PCS 1 900の 4つの通信方式によ る信号の変復調が可能に構成されている。 また、 これに応じて、 高周波フィル タは、 GSM系の周波数帯の受信信号を通過させるフィルタ 1 20 aと、 DC S 1 800の周波数帯の受信信号を通過させるフィルタ 1 20 bと、 PCS 1 900の周波数帯の受信信号を通過させるフィルタ 1 20 cとが設けられる。 GSM8 50と G SM9 00は周波数帯が近いので、 この実施例では共通の フィルタ 120 aが用いられる。  Although not particularly limited, the high-frequency IC 200 of this embodiment is configured to be able to modulate and demodulate signals using four communication systems, GSM850 and GSM900, DCS1800, and PCS1900. In response to this, the high-frequency filter includes a filter 120a that passes a reception signal in the GSM frequency band, a filter 120b that passes a reception signal in the DCS 1800 frequency band, and a PCS 1 There is provided a filter 120c for passing a reception signal of 900 frequency bands. Since the frequency bands of GSM850 and GSM900 are close to each other, a common filter 120a is used in this embodiment.
本実施例の高周波 I C 200は、 大きく分けると、 受信系回路 RXCと、 送 信系回路 T X Cと、 それ以外の制御回路ゃクロック生成回路など送受信系に共 通の回路からなる制御系回路 CTCとで構成される。  The high-frequency IC 200 of the present embodiment is roughly divided into a reception system circuit RXC, a transmission system circuit TXC, and a control system circuit CTC including other circuits common to the transmission and reception systems such as a control circuit and a clock generation circuit. It consists of.
受信系回路 RXCは、 受信信号を増幅するロウノイズアンプ 2 10 a, 21 0 b, 21 0 cと、 高周波用発振回路 (RF VCO) 250で生成された発振 信号 <i>RF を分周し互いに 90° 位相がずれた直交信号を生成する移相分周回路 2 1 1と、 ロウノィズアンプ 2 1 0 a, 2 10 b, 2 1 0 cで増幅された受信 信号に移相分周回路 2 1 1で分周された直交信号を合成することで復調を行な うミキサからなる復調回路 2 1 2 a, 2 1 2 bと、 復調された I, Q信号をそ れぞれ増幅してベースパンド回路 300へ出力する高利得増幅部 22 OA, 2 2 O Bと、 高利得増幅部 220A, 220 B内のアンプの入力 D Cオフセット をキャンセルするためのオフセットキヤンセノレ回路 213などからなる。  RX circuit RXC divides oscillation signal <i> RF generated by low-noise amplifiers 210 a, 210 b, and 210 c that amplify received signals, and high-frequency oscillation circuit (RF VCO) 250 A phase shift divider 211 that generates quadrature signals that are 90 degrees out of phase with each other, and a phase shift divider 211 that converts the received signal amplified by the row noise amplifiers 210a, 210b, 210c. A demodulation circuit composed of a mixer that demodulates by combining the quadrature signals divided by 1 and a demodulation circuit that amplifies the demodulated I and Q signals, respectively. It comprises high gain amplifiers 22 OA and 22 OB to be output to the band circuit 300, and an offset canceller circuit 213 for canceling the input DC offset of the amplifier in the high gain amplifiers 220A and 220B.
高利得増幅部 220 Aは、 複数の口ゥパスフィルタ LPF l l, L P F 1 2, LPF 13, L P F 14と利得制御アンプ P GA 1 1, PGA 1 2, PGA 1 3とが交互に直列形態に接続され、 最終段に利得が固定のアンプ AMP 1が接 続された構成を有しており、 I信号を増幅してベースパンド回路 300へ出力す る。 高利得増幅部 220 Bも同様に、 複数のロウパスフィルタ LPF 2 1, L P F 22, LPF 23, L P F 24と利得制御アンプ: P G A 21, P GA 22 , PGA23とが交互に直列形態に接続され、 最終段に利得が固定のアンプ AM P 2が接続された構成を有しており、 Q信号を増幅してベースパンド回路 30 0へ出力する。 The high-gain amplifier 220 A has a plurality of aperture filters LPF ll, LPF 12, LPF 13, LPF 14 and gain control amplifiers PGA 11, PGA 1, PGA 13 connected alternately in series The amplifier has a configuration in which an amplifier AMP 1 having a fixed gain is connected to the last stage, and amplifies the I signal and outputs the amplified signal to the baseband circuit 300. Similarly, the high-gain amplifier 220B includes a plurality of low-pass filters LPF 21, LPF 22, LPF 23, LPF 24 and gain control amplifiers: PGA 21, PGA 22, The PGA 23 is alternately connected in series, and the amplifier AMP2 having a fixed gain is connected to the last stage. The amplifier AMP2 amplifies the Q signal and outputs it to the baseband circuit 300.
オフセットキヤンセル回路 21 3は、 各利得制御アンプ PG A 1 1〜: PGA 23に対応して設けられ入力端子間を短絡した状態におけるそれらの出力電位 差をディジタル信号に変換する AD変換回路 (ADC) と、 これらの AD変換 回路による変換結果に基づき対応する利得制御アンプ PGA1 1〜23の出力 の DCオフセットを 「0」 とするような入力オフセット電圧を生成し差動入力 に対して与える DA変換回路 (DAC) と、 これらの AD変換回路 (ADC) と DA変換回路 (DAC) を制御してオフセットキャンセル動作を行なわせる 制御回路などから構成される。  The offset cancel circuit 213 is provided in correspondence with each of the gain control amplifiers PGA11 to PGA23, and is an AD conversion circuit (ADC) for converting the output potential difference between input terminals into a digital signal when the input terminals are short-circuited. And a D / A conversion circuit that generates an input offset voltage that sets the DC offset of the output of the corresponding gain control amplifier PGA1 1 to 23 to “0” based on the conversion result of these A / D conversion circuits, and gives it to the differential input. (DAC), and a control circuit that controls the AD conversion circuit (ADC) and DA conversion circuit (DAC) to perform offset cancellation.
送信系回路 TXCは、 例えば 64 OMH zのような中間周波数の発振信号 φ IF を生成する発振回路 (I FVCO) 230と、 該発振回路 230で生成され た発振信号 φ IF を 1Z4分周して 160 MHzのような信号を生成する分周回 路 231と、 該分周回路 231で分周された信号をさらに分周しかつ互いに 9 0° 位相がずれた直交信号を生成する移相分周回路 232と、 生成された直交 信号をベースパンド回路 300から供給される I信号と Q信号により変調をか ける変調回路 233 a, 233 bと、 変調された信号を合成する加算器 234 と、 所定の周波数の送信信号 ΦΤΧ を発生する送信用発振回路 (TXVCO) 2 40と、 送信用発振回路 (TXVCO) 240から出力される送信信号 ψΤΧ を 力ブラ等で抽出したフィードパック信号と高周波用発振回路 (RFVCO) 2 50で生成された発振信号《i»RF を分周した信号 <i>RF' とをミキシングすること でそれらの周波数差に相当する周波数の信号を生成するオフセットミキサ 23 6と、 該オフセットミキサ 236の出力と前記加算器 234で合成された信号 TXIF とを比較して位相差を検出するアナログ位相比較器 237 aおよびディジ タル位相比較器 237 bと、 該位相検出回路 237 a, 237 bの出力に応じ た電圧を生成するループフィルタ 238などから構成されている。  The transmission circuit TXC includes an oscillation circuit (IFVCO) 230 that generates an oscillation signal φ IF having an intermediate frequency such as 64 OMHz, and divides the oscillation signal φ IF generated by the oscillation circuit 230 by 1Z4. A frequency dividing circuit 231 for generating a signal such as 160 MHz; and a phase shifting frequency dividing circuit for further dividing the signal divided by the frequency dividing circuit 231 and generating quadrature signals 90 ° out of phase with each other. 232, a modulation circuit 233a, 233b for modulating the generated quadrature signal with an I signal and a Q signal supplied from the baseband circuit 300, an adder 234 for synthesizing the modulated signal, A transmission oscillation circuit (TXVCO) 240 that generates a transmission signal ΦΤΧ of a frequency, a feedpack signal obtained by extracting a transmission signal か ら output from the transmission oscillation circuit (TXVCO) 240 with a power brush or the like, and a high-frequency oscillation circuit ( RFVCO) 250 Oscillation signal generated by the signal << i »RF divided signal <i> RF 'And a signal having a frequency corresponding to the frequency difference between the offset mixer 236 and the output of the offset mixer 236 and the signal TXIF synthesized by the adder 234. 237a and a digital phase comparator 237b for detecting the phase difference, and a loop filter 238 for generating a voltage corresponding to the output of the phase detection circuits 237a and 237b.
なお、 ループフィルタ 238を構成する抵抗おょぴ容量は、 外付け素子とし て実施例の高周波 I Cの外部端子に接続される。 送信用発振回路 (TXVC O) 24 0は、 G SM8 5 0と GMS 9 0 0の送信信号を生成する発振回路 2 40 aと、 DC S 1 8 0 0と P C S 1 9 0 0の送信信号を生成する発振回路 2 4 0 bとからなる。 このように発振回路を 2つ設けているのは、 送信用発振回 路は、 高周波用発振回路 2 5 0や中間周波数の発振回路 2 3 0に比べて周波数 の可変範囲が広く 1つの発振回路ですベて力パーできる回路を設計するのは容 易でないためである。 Note that the resistance and capacitance of the loop filter 238 are external elements. To the external terminal of the high-frequency IC of the embodiment. The transmission oscillation circuit (TXVC O) 240 generates the GSM 850 and GMS 900 transmission signal generation circuit 240 a, and the DCS 180 0 and PCS 190 0 transmission signal. Oscillation circuit to generate 240 b. The reason for providing two oscillation circuits in this way is that the transmission oscillation circuit has a wider variable frequency range than the high-frequency oscillation circuit 250 and the intermediate frequency oscillation circuit 230. This is because it is not easy to design circuits that can be powerful.
アナログ位相比較器 2 3 7 aとディジタル位相比較器 2 3 7 bが設けられて いるのは、 P LL回路の動作開始時における引込み動作を早くするためである。 具体的には、 送信開始時は先ずディジタル位相比較器 2 3 7 で位相比較を行 ない、 その後アナログ位相比較器 2 3 7 aに切り替えることで、 高速で位相 ループを口ックさせることができるようにされる。  The reason why the analog phase comparator 237a and the digital phase comparator 237b are provided is to speed up the pull-in operation at the start of the operation of the PLL circuit. Specifically, at the start of transmission, the phase is first compared by the digital phase comparator 237, and then switched to the analog phase comparator 237a, so that the phase loop can be quickly closed. Is to be.
また、 この実施例の高周波 I C 2 0 0のチップ上には、 チップ全体を制御す る制御回路 2 6 0と、 前記高周波用発振回路 (RFVCO) 2 5 0と共に RF 用 P L L回路を構成する RFシンセサイザ 2 6 1と、 前記中間周波数の発振回 路 (I FVCO) 2 3 0と共に I F用 P L L回路を構成する I Fシンセサイザ 2 6 2と、 これらのシンセサイザ 2 6 1および 2 6 2の基準信号となるクロッ ク信号《i>ref を生成する基準発振回路 (VCXO) 264とが設けられている。 シンセサイザ 26 1および 2 6 2は、 位相比較回路とチャージポンプとループ フィルタなどで構成される。 Further, on the chip of the high-frequency IC 200 of this embodiment, a control circuit 260 for controlling the entire chip, and an RF PLL circuit that constitutes an RF PLL circuit together with the high-frequency oscillation circuit (RFVCO) 250 Synthesizer 261, IF synthesizer 262 that constitutes an IF PLL circuit together with the intermediate frequency oscillation circuit (IFVCO) 230, and reference signals for these synthesizers 261 and 262 a reference oscillator (VCXO) 264 which generates a clock signal "i> r e f is provided. Each of the synthesizers 26 1 and 26 2 includes a phase comparison circuit, a charge pump, a loop filter, and the like.
なお、 基準発振信号 (i^ref は周波数精度の高いことが要求されるため、 基準発 振回路 2 64には外付けの水晶振動子が接続される。 基準発振信号 φι·Θ£ として は、 2 6ΜΗ ζあるいは 1 3ΜΗ ζのような周波数が選択される。 かかる周波 数の水晶振動子は比較的安価に手に入るからである。 In addition, since the reference oscillation signal (i ^ ref is required to have high frequency accuracy, an external crystal oscillator is connected to the reference oscillation circuit 264. As the reference oscillation signal φι · Θ £, Frequencies such as 26ΜΗ or 13 選 択 are selected because quartz oscillators with such frequencies are relatively inexpensive.
図 1において 1/2, 1Z4などの分数が付記されているブロックはそれぞ れ分周回路、 符号 B F Fで示されているのはバッファ回路である。 また、 SW 1, SW2, SW3は、 GSM方式に従った送受信を行なう G SMモードと D C Sまたは P C S方式に従った送受信を行なう DC SZP C Sモードとで接続 状態が切り替えられて、 伝達される信号の分周比を選択するスィツチである。In FIG. 1, blocks with fractions such as 1/2 and 1Z4 are frequency divider circuits, respectively, and a buffer circuit is denoted by BFF. SW1, SW2, and SW3 are connected in GSM mode for transmitting and receiving in accordance with GSM and DC SZP CS mode for transmitting and receiving in accordance with DCS or PCS. This switch switches the state and selects the frequency division ratio of the transmitted signal.
SW4は送信時にベースパンド回路 300からの I, Q信号を変調用ミキサ 2 33 a, 23 3 bに供給すべくオン、 オフ制御されるスィッチである。 これら のスィツチ SW1〜SW4は制御回路 260からの信号によって制御される。 制御回路 260には、 コントローノレレジスタ CRGが設けられ、 このレジス タ CRGはベースパンド回路 300からの信号に基づいて設定が行なわれる。 具体的には、 ベースパンド回路 300から高周波用 I C 200に対して同期用 のクロック信号 CLKと、 データ信号 S DATAと、 制御信号としてのロード イネ一プル信号 LENとが供給されており、 制御回路 260は、 ロードイネ一 ブル信号 LENが有効レベルにアサートされると、 ベースパンド回路 300か ら伝送されてくるデータ信号 S DAT Aをクロック信号 CLKに同期して順次 取り込んで、 上記コントロールレジスタ CRGにセットする。 特に制限される ものでないが、 データ信号 S DAT Aはシリアルで伝送される。 ベースパンド 回路 300はマイクロプロセッサなどから構成される。 SW4 is a switch that is turned on and off so as to supply the I and Q signals from the baseband circuit 300 to the modulation mixers 233a and 233b during transmission. These switches SW1 to SW4 are controlled by a signal from the control circuit 260. The control circuit 260 is provided with a control register CRG. The register CRG is set based on a signal from the baseband circuit 300. More specifically, a clock signal CLK for synchronization, a data signal SDATA, and a load enable signal LEN as a control signal are supplied from the baseband circuit 300 to the high-frequency IC 200. When the load enable signal LEN is asserted to a valid level, the 260 sequentially captures the data signal SDATA transmitted from the baseband circuit 300 in synchronization with the clock signal CLK and sets it in the control register CRG. I do. Although not particularly limited, the data signal SDATA is transmitted serially. The base band circuit 300 includes a microprocessor and the like.
コントロールレジスタ CRGは、 特に制限されるものでないが、 高周波用発 振回路 (RFVCO) 250や中間周波数の発振回路 ( I F VCO) 230に おける VCOの周波数測定を開始させる制御ビットや、 受信モード、 送信モー ド、 アイ ドルモード、 ウォームアップモードなどのモードを指定するビッ ト フィールドなどが設けられる。 ここで、 アイ ドルモードは待受け時等ごく一部 の回路のみ動作し少なくとも発振回路を含む大部分の回路が停止するスリープ 状態となるモード、 ウォームアップモードは送信または受信の直前に P LL回 路を起動させるモードである。  The control register CRG includes, but is not limited to, a control bit for starting the VCO frequency measurement in the high-frequency oscillation circuit (RFVCO) 250 and the intermediate frequency oscillation circuit (IF VCO) 230, a reception mode, and a transmission mode. There are provided bit fields for specifying modes such as mode, idle mode, and warm-up mode. Here, the idle mode is a mode in which only a small part of the circuit, such as a standby mode, operates and at least most circuits including the oscillation circuit are stopped, and the warm-up mode is a PLL circuit immediately before transmission or reception. This is a mode for starting up.
この実施例では、 位相検出回路 23 7 a, 23 7 bと、 ループフィルタ 23 8、 送信用発振回路 (TXVCO) 240 a, 240 bおよびオフセットミキ サ 236とによって周波数変換を行なう送信用 P LL回路 (TXPLL) が構 成される。 本実施例のマルチパンド方式の無線通信システムでは、 例えばべ一 スパンド回路 300からの指令によって制御回路 260が、 送受信時に高周波 用発振回路 250の発振信号の周波数 <i>RF を使用するチャネルに応じて変更す ると共に、 G SMモードか D C S/P C Sモードかに応じて上記スィツチ SW 2を切り替えることで、 オフセットミキサ 2 3 6に供給される信号の周波数が 変更されることによって送信周波数の切り替えが行なわれる。 In this embodiment, a transmission PLL circuit that performs frequency conversion by a phase detection circuit 237a, 237b, a loop filter 238, a transmission oscillation circuit (TXVCO) 240a, 240b, and an offset mixer 236 (TXPLL) is configured. In the multi-band wireless communication system of the present embodiment, for example, the control circuit 260 responds to a channel using the frequency <i> RF of the oscillation signal of the high-frequency oscillation circuit 250 at the time of transmission / reception according to a command from the base span circuit 300. Change In addition, by switching the switch SW2 according to the GSM mode or the DCS / PCS mode, the frequency of the signal supplied to the offset mixer 236 is changed, thereby switching the transmission frequency.
表 1は、 本実施例のクゥォッドパンド用の高周波 I Cにおける中間周波用発 振回路 (I FVCO) 2 3 0、 送信用発振回路 (TXVCO) 240およぴ髙 周波用発振回路 (RFVCO) 2 5 0の発振信号0^, φΤΧ, «i»RF の周波数の 設定例を示す。  Table 1 shows the oscillation circuit for intermediate frequency (IFVCO) 230, the oscillation circuit for transmission (TXVCO) 240, and the oscillation circuit for high frequency (RFVCO) 250 in the quad-band high-frequency IC of this embodiment. An example of setting the frequency of the oscillation signal 0 ^, φΤΧ, «i» RF is shown below.
【表 1】  【table 1】
Figure imgf000013_0001
表 1に示されているように、 本実施例では、 中間周波用発振回路 (I FVC O) 2 3 0の発振周波数は G SM、 DC S、 P C Sいずれの場合にも 6 4 0 M H zに設定され、 これが分周回路 2 3 1と移相分周回路 2 3 2で 1Z8に分周 されて 8 OMH zの搬送波 (TXIF) が生成されて変調が行なわれる。
Figure imgf000013_0001
As shown in Table 1, in this embodiment, the oscillation frequency of the intermediate frequency oscillation circuit (IFVC O) 230 is 640 MHz in any of the GSM, DCS, and PCS. This is set, and this is frequency-divided into 1Z8 by the frequency dividing circuit 2 31 and the phase shifting frequency dividing circuit 2 32 to generate a carrier wave (TXIF) of 8 MHZ and modulation is performed.
一方、 高周波用発振回路 (RFVCO) 2 5 0の発振周波数は、 受信モード と送信モードとで異なる値に設定される。 高周波用発振回路 (RFVCO) 2 5 0の発振周波数 f RF は、 送信モードでは、 例えば GSM8 5 0の場合 3 6 1 6〜3 7 1 6MH zに、 G S M 9 0 0の場合 3 8 40〜 3 9 8 0 MH zに、 ま た DC Sの場合 3 6 1 0〜3 7 3 0MH zに、 さらに P C Sの場合 3 8 6 0〜 3 9 8 0MH zに設定され、 これが分周回路で G SMの場合は 1/4に分周さ れ、 また DC Sと P C Sの場合は 1 2に分周されて 0RF, としてオフセット ミキサ 236に供給される。 On the other hand, the oscillation frequency of the high-frequency oscillation circuit (RFVCO) 250 is set to different values in the reception mode and the transmission mode. The oscillation frequency f RF of the high-frequency oscillator (RFVCO) 250 is, for example, 36 16 to 37 16 MHz for GSM 850 in the transmission mode, and 3 8 40 to 3 for GSM 900 in the transmission mode. It is set to 980 MHz, and for DCS, it is set to 3610 to 3730 MHz, and for PCS, it is set to 386 MHz to 380 MHz. In the case of, the frequency is divided by 1/4. In the case of DCS and PCS, the frequency is divided by 1 and offset as 0RF. Supplied to mixer 236.
オフセットミキサ 236では、 この《i»RF, と送信用発振回路 1 30からの送 信用発振信号 ΦΤΧ の周波数の差 (f RF' - f TX) に相当する信号が出力され、 この差信号の周波数が変調信号 TXIF の周波数と一致するように送信用 PL L (TXP L L) が動作する。 言いかえると、 TXVCO 240は、 RFVCO 250からの発振信号 RF, の周波数 (f RFZ^:) と変調信号 TXIF の周波数 (f TX) の差に相当する周波数で発振するように制御される。 これが、 いわゆ るオフセット PL L方式と呼ばれるシステムにおける送信動作である。  The offset mixer 236 outputs a signal corresponding to the frequency difference (f RF '-f TX) between the frequency of this << i »RF and the transmission oscillation signal ΦΤΧ from the transmission oscillation circuit 130, and the frequency of this difference signal The transmission PLL (TXP LL) operates so that the frequency matches the frequency of the modulation signal TXIF. In other words, the TXVCO 240 is controlled to oscillate at a frequency corresponding to the difference between the frequency (f RFZ ^ :) of the oscillation signal RF, from the RFVCO 250 and the frequency (f TX) of the modulation signal TXIF. This is the transmission operation in a so-called offset PLL system.
図 2には、 V C Oの周波数測定機能と測定結果に基づいて V C Oの周波数特 性を補正する機能を備えた P LL回路の具体例が示されている。  FIG. 2 shows a specific example of a PLL circuit having a frequency measurement function of VCO and a function of correcting the frequency characteristic of VCO based on the measurement result.
図 2において、 250は高周波用発振回路 (RFVCO)、 また、 1 2は尺 VCO250の発振信号 φΚΡ を分周する可変分周回路、 1 3は基準発振回路 2 64からの基準発振信号 <i>ref を 1 Z 65に分周する固定分周回路、 14は上記 可変分周回路 1 2と固定分周回路 1 3で分周された信号の位相を比較して位相 差に応じた電圧 UP, DOW を出力する位相比較器、 15はチャージポンプ、 16 はループフィルタであり、 チャージポンプ 1 5によってループフィルタ 1 6の 容量素子がチャージアップされて上記 RFVCO 250の制御電圧 V cとして 出力され、 RFVCO 250が所定の周波数で発振動作される P L Lループが 構成されている。 ループフィルタ 1 6を構成する容量や抵抗は外付け素子とし て接続される。  In FIG. 2, 250 is a high-frequency oscillation circuit (RFVCO), 12 is a variable frequency divider that divides the oscillation signal φΚΡ of the scale VCO 250, 13 is a reference oscillation signal from the reference oscillation circuit 2 64 <i> The fixed frequency divider divides ref to 1 Z 65.14 is a voltage divider that compares the phases of the signals divided by the variable frequency divider 12 and the fixed frequency divider 13 to increase the voltage according to the phase difference. A phase comparator that outputs DOW, 15 is a charge pump, and 16 is a loop filter.The capacitive element of the loop filter 16 is charged up by the charge pump 15 and is output as the control voltage Vc of the RFVCO 250. A PLL loop in which 250 oscillates at a predetermined frequency is configured. The capacitance and the resistance constituting the loop filter 16 are connected as external elements.
この実施例の P LL回路は、 図 2に示されているように、 チャージポンプ 1 5とループフィルタ 1 6との間に、 周波数測定時や P L L引込み時にチャージ ポンプ 1 5からの電圧 V cの代わりに所定の直流電圧 VDC をループフィルタ 1 6に供給可能なスィッチ SW0と、 チャージポンプ 1 5に印加される直流電圧 VDC を生成する直流電圧源 17が設けられている。 また、 可変分周回路 1 2に より計数された値を記憶するレジスタなどからなる記憶回路 1 8と、 該記憶回 路 1 8に記憶されている周波数値と外部からカウンタ 22に設定される設定値 N8〜N0 および A5, A とを比較して R F V C O 250のパンド切り替え信号 VB3〜VB0 を生成する使用パンド決定回路 1 9等が設けられている。 なお、 この使用パンド決定回路 1 9は前記制御回路 260の一部として構成すること も可能である。 測定時の直流電圧 VDC を供給可能なスィッチ SWOは、 ループ フィルタ 16と RFVCO250との間に設けても良い。 As shown in FIG. 2, the PLL circuit of this embodiment provides a voltage Vc from the charge pump 15 between the charge pump 15 and the loop filter 16 at the time of frequency measurement or PLL pull-in. Instead, a switch SW0 that can supply a predetermined DC voltage VDC to the loop filter 16 and a DC voltage source 17 that generates a DC voltage VDC applied to the charge pump 15 are provided. Also, a storage circuit 18 including a register for storing the value counted by the variable frequency dividing circuit 12, a frequency value stored in the storage circuit 18 and a setting externally set in the counter 22. Compare the values N8 to N0 and A5, A with the RFVCO 250 pan switching signal A use band determination circuit 19 for generating VB3 to VB0 is provided. The use band determination circuit 19 may be configured as a part of the control circuit 260. A switch SWO capable of supplying a DC voltage VDC for measurement may be provided between the loop filter 16 and the RFVCO 250.
周波数測定時、 スィッチ SW0により供給される直流電圧 VDC は、 制御電圧 V cの有効可変範囲内であればどのような電圧値であってもよい。 本実施例で は、 制御電圧 V cの可変範囲の上限値 (Vcp-max) が選択される。 周波数測定 中、 直流電圧 VDC は、 パンドを切り替えても同一の値とされる。 上記スィッチ SW0、 可変分周回路 1 2、 記憶回路 1 8および使用バンド決定回路 1 9は、 前記制御回路 260によって制御される。 可変分周回路 1 2と固定分周回路 1 3、 位相比較器 14、 チャージポンプ 1 5、 記憶回路 1 8および使用パンド決 定回路 1 9により、 図 1に示されている RFシンセサイザ 26 1が構成される。  At the time of frequency measurement, the DC voltage VDC supplied by the switch SW0 may be any voltage value within the effective variable range of the control voltage Vc. In this embodiment, the upper limit (Vcp-max) of the variable range of the control voltage Vc is selected. During frequency measurement, the DC voltage VDC remains the same even when the band is switched. The switch SW0, the variable frequency dividing circuit 12, the memory circuit 18, and the band determining circuit 19 are controlled by the control circuit 260. The variable frequency divider 12 and the fixed frequency divider 13, the phase comparator 14, the charge pump 15, the storage circuit 18, and the band determination circuit 19 use the RF synthesizer 26 1 shown in FIG. Be composed.
RFVCO 250は、 例えば LC共振回路を用いた例えば図 3に示すような 発振回路で構成される。 図 3の RFVCO 250は、 LC共振回路を構成する 容量素子 C l l, C 1 2〜C 4 1, C 42が各々スィッチ素子 S W 1 1〜 S W 14を介して複数個並列に設けられており、 そのスィッチ素子 SW1 1〜SW 14を上記パンド切り替え信号 VB3〜VB0 で選択的にオンさせることにより、 接続される容量素子すなわち LC共振回路の Cの値を切り替えることで発振周 波数を段階的に切り替えることができるように構成されている。  The RFVCO 250 is composed of, for example, an oscillation circuit shown in FIG. 3 using an LC resonance circuit, for example. In the RFVCO 250 shown in FIG. 3, a plurality of capacitance elements C ll, C 12 to C 41 and C 42 constituting an LC resonance circuit are provided in parallel via switch elements SW 11 to SW 14, respectively. By selectively turning on the switch elements SW11 to SW14 with the above-described band switching signals VB3 to VB0, the oscillation frequency is switched stepwise by switching the value of C of the connected capacitive element, that is, the LC resonance circuit. It is configured to be able to.
より具体的には、 RFVCO 250は、 互いのベースとコレクタが直流カツ トの容量 C 1, C 2を介して交差結合された一対のパイポーラトランジスタ Q 1, Q 2と、 該トランジスタ Q 1 , Q 2の共通ェミッタと接地点 GNDとの間 に接続された定電流源 I cと、 各トランジスタ Q 1 , Q 2のコレクタと電源電 圧端子 V c cとの間にそれぞれ接続されたインダクタ (コイル) L I, L 2と、 上記トランジスタ Q l, Q 2のコレクタ端子間に直列に接続された可変容量素 子としてのパリキャップダイオード Dv 1, Dv 2とを有しており、 上記ルー プフィルタ 1 6からの制御電圧 V cによりこのパリキャップダイォードの容量 値が変化され、 発振周波数が連続的に変化される。 VCOが力パーすべき周波数範囲を広くしたい場合、 制御電圧 V cによるパ リキャップダイォードの容量値の変化のみで行なおうとすると、 図 4に破線 A で示すように、 V c— fRF特性が急峻になり、 V COの感度すなわち周波数変 化量と制御電圧変化量との比 (A f ZAV c) が大きくなつてノイズに弱くな る。 つまり、 制御電圧 V cに僅かなノイズがのっただけで V COの発振周波数 fRFが大きく変化してしまう。 More specifically, the RFVCO 250 includes a pair of bipolar transistors Q 1, Q 2 whose bases and collectors are cross-coupled via capacitors C 1, C 2 of a DC cut, and the transistors Q 1, Q 1, A constant current source Ic connected between the common emitter of Q2 and the ground point GND, and inductors (coils) connected between the collectors of the transistors Q1 and Q2 and the power supply voltage terminal Vcc, respectively. LI and L2, and Paris-cap diodes Dv1 and Dv2 as variable capacitance elements connected in series between the collector terminals of the transistors Ql and Q2. The control value Vc changes the capacitance value of this paricap diode, and the oscillation frequency is continuously changed. If it is desired to widen the frequency range in which the VCO should increase the power, it is necessary to change only the capacitance value of the parasitic diode due to the control voltage Vc. As shown by the broken line A in FIG. The steepness increases, and the sensitivity of the VCO, that is, the ratio (A f ZAV c) between the amount of change in frequency and the amount of change in control voltage increases, and the noise becomes weaker. In other words, even a slight noise on the control voltage Vc greatly changes the oscillation frequency fRF of VCO.
そこで、 この実施例の RFVCO 250は、 LC共振回路を構成する容量素 子を複数個並列に設けて、 パンド切替え信号 VB3〜VB0 で使用する容量素子 を切り替えて Cの値を例えば 1 6段階に変化させることで、 図 4に実線で示す ように、 複数の Vc— fRF特性線に従った発振制御を行なえるように構成した ものである。 しかも、 この実施例では、 記憶回路 1 8と使用パンド決定回路 1 9とを設けたことにより、 従来の P LL回路で行なわれている周波数の合わせ 込みという調整作業が不要になっている。  Therefore, in the RFVCO 250 of this embodiment, a plurality of capacitance elements constituting the LC resonance circuit are provided in parallel, and the capacitance elements used by the band switching signals VB3 to VB0 are switched to set the value of C to 16 levels, for example. By changing it, oscillation is controlled according to multiple Vc-fRF characteristic lines, as shown by the solid line in Fig. 4. In addition, in this embodiment, since the storage circuit 18 and the use band determination circuit 19 are provided, the adjustment work of frequency adjustment performed in the conventional PLL circuit becomes unnecessary.
すなわち、 従来の PL L回路では、 例えば図 4のような複数の V c— fRF 特 性線を有する VCOを構成する場合にも、 VCOを動作させて周波数を測定し 各複数の Vc— fRF 特性線が所定の初期値と所定の傾きとなるように、 周波数 の合わせ込みを行なっていた。 これに対し、 本実施例の P L L回路は、 予めス ィツチ SW0を切り替えて所定の直流電圧 VDC を RFVCO250に印加して 各パンドでの周波数を測定して記憶回路 1 8に記憶しておき、 実際の使用に際 しては、 外部からカウンタ 22に与えられる指定パンドに応じた設定値 N8〜 NOおよび A 5, A 4と記憶回路 1 8に記憶されている測定値を比較して、 その 指定パンドの周波数範囲を力パーできるものを、 図 4のような複数 (1 6個) の V c— f RF 特性線の中から 1つだけ選んでその特性線に従って発振制御動作 するように、 RFVCOの切り替え (容量素子の切り替え) を行なうようにす る。  That is, in the conventional PLL circuit, for example, when configuring a VCO having a plurality of Vc-fRF characteristic lines as shown in Fig. 4, the VCO is operated to measure the frequency, and each of the plurality of Vc-fRF characteristics is measured. The frequency was adjusted so that the line had a predetermined initial value and a predetermined slope. On the other hand, in the PLL circuit of this embodiment, the switch SW0 is switched in advance, a predetermined DC voltage VDC is applied to the RFVCO 250, the frequency in each band is measured, and stored in the storage circuit 18; When using, the setting values N8 to NO and A5, A4 according to the designated band given from the outside to the counter 22 are compared with the measured values stored in the storage circuit 18 and the designation is made. The RFVCO is selected so that the frequency range of the band can be improved by selecting only one of the 16 (16) Vc-f RF characteristic lines as shown in Fig. 4 and performing oscillation control according to that characteristic line. (Capacitance element switching).
このような方式によれば、 予め力パーしたい周波数範囲よりもパラツキを考 慮した分だけ少し広めの範囲を力パーするとともに、 図 4のように 1 6段階の V c— fRF 特性線を隣接するもの同士で少しずつ (望ましくは半分ずつ) 周波 数範囲が重なるように RFV COを設計しておけば、 必ず指定された周波数範 囲をカバーできる特性線が存在することになる。 従って、 測定によって分かつ た実際の特性に基づいて、 各指定パンドに対応しているものを選択すればよく、 周波数の合わせ込みが不要となるとともに、 予め使用パンドと RF VCOの切 り替え状態とを 1対 1で対応させておく必要がない。 According to such a method, the power range is set slightly wider than the frequency range in which the power is to be adjusted in advance by considering the variation, and the 16 Vc-fRF characteristic lines are adjacent to each other as shown in Fig. 4. Little by little (preferably half by one) If the RFV CO is designed to overlap several ranges, there will always be characteristic lines that can cover the specified frequency range. Therefore, it is only necessary to select the one corresponding to each designated band based on the actual characteristics separated by the measurement, and it is not necessary to adjust the frequency, and the switching state of the band to be used and the RF VCO must be determined in advance. There is no need to make one-to-one correspondence.
可変分周回路 12は、 RFVC0250の発振信号を分周するプリスケーラ 21と、 プリスケーラ 21で分周された信号をさらに分周する第 1カウンタ 2 2 Nおよび第 2カウンタ 22 Aからなるモジュロカウンタ 22とにより構成さ れている。  The variable frequency dividing circuit 12 includes a prescaler 21 for dividing the frequency of the oscillation signal of the RFVC0250, a modulo counter 22 including a first counter 22N and a second counter 22A for further dividing the signal divided by the prescaler 21. It is composed of
プリスケーラ 21とモジュロカウンタ 22による分周の仕方は既に公知の技 術である。 プリスケーラ 21は、 例えば 1ノ64分周と 1Z65分周のように、 分周比の異なる 2種類の分周が可能に構成されており、 第 2カウンタ 22 Aの カウント終了信号で切り替えが行なわれる。 第 1カウンタ 22Nと第 2カウン タ 22 Aはプログラマプルカウンタで、 第 1カウンタ 22 Nには、 所望の周波 数 (出力として得たい V COの発振周波数 fRF) を基準発振信号 φι·β:Τ の周波 数 fref' とプリスケーラ 21の第 1の分周比 (実施例では 64) とで割り算し たときの整数部が、 また第 2カウンタ 22 Aには、 その余り (MOD) が設定 され、 その設定された値を計数するとカウントを終了し、 再度設定値のカウン トを行なう。  The method of frequency division by the prescaler 21 and the modulo counter 22 is a known technique. The prescaler 21 is configured to be able to perform two types of frequency divisions having different frequency division ratios, such as 1/64 frequency division and 1Z65 frequency division, and is switched by the count end signal of the second counter 22A. . The first counter 22N and the second counter 22A are programmable counters. The first counter 22N uses a desired frequency (the oscillation frequency fRF of the VCO to be obtained as an output) as a reference oscillation signal φι · β: Τ The integer part when dividing by the frequency fref ′ of the prescaler 21 and the first division ratio (64 in the embodiment) of the prescaler 21, and the remainder (MOD) are set in the second counter 22A. When the set value is counted, the counting ends and the set value is counted again.
具体的には、 例えば基準発振信号 ref' の周波数 fref' が 400 kHzで、 所望の V COの発振周波数 fRF が 3789. 6 MH zの場合を考えると、 37 89. 6 ÷0. 4÷ 64= 148余り 2であるので、 第 1カウンタ 22Nに設定 される値 Nは 「148」 で、 第 2カウンタ 22 Aに設定される値 Aは 「2」 で ある。 このような値が設定された状態でプリスケーラ 21とモジュロカウンタ 22が動作すると、 プリスケーラ 21は先ず 1/64分周動作をし、 その出力 を第 2カウンタ 22 Aが設定値の 「2」 まで計数すると、 第 2カウンタ 22A からカウント終了信号 MCが出力され、 この信号 MCによってプリスケーラ 2 1の動作が切り替えられ、 再ぴ第 2カウンタ 22 Aが設定値の 「2」 を計数す るまでプリスケーラ 2 1は 1ノ 6 5分周で動作する。 Specifically, for example, when the frequency fref 'of the reference oscillation signal ref' is 400 kHz and the oscillation frequency fRF of the desired VCO is 378.6 MHz, it is assumed that 37 899.6 ÷ 0.4. 64 Since the value of the second counter 22N is “148”, the value N set to the second counter 22A is “2”. When the prescaler 21 and the modulo counter 22 operate with such a value set, the prescaler 21 first divides the frequency by 1/64, and the output is counted by the second counter 22A to the set value of `` 2 ''. Then, a count end signal MC is output from the second counter 22A, and the operation of the prescaler 21 is switched by this signal MC, and the second counter 22A counts the set value “2”. Until the prescaler 21 operates at 1/65 division.
このような動作をすることによって、 モジュロカウンタ 2 2は整数比でなく、 小数部を有する比で分周を行なうことができるようになる。 実施例の P L L回 路は、 第 1カウンタ 2 2 Nの出力の周波数が基準発振信号 ref' の周波数 f ref (4 0 0 kH z) と一致するようにフィードパックがかかって R F V C O 2 5 0が発振制御されるため、 第 1カウンタ 2 2 Nに設定される値 Nが 「1 4 8」 で、 第 2カウンタ 2 2 Aに設定される値 Aが 「2」 である上記具体例の場 合には、 RFVCO 25 0の発振周波数 f RFは、  By performing such an operation, the modulo counter 22 can perform the frequency division not by the integer ratio but by the ratio having a decimal part. The PLL circuit of the embodiment is fed-packed so that the output frequency of the first counter 22 N matches the frequency f ref (400 kHz) of the reference oscillation signal ref ′, and the RFVCO 250 In the case of the above specific example, the value N set to the first counter 22 N is “1 4 8” and the value A set to the second counter 22 A is “2” because the oscillation is controlled. The oscillation frequency f RF of RFVCO 250 is
f RF= (64 X 1 4 8 + 2) X f ref = 9474 X 40 0 = 3 78 9 6 00 より、 3 78 9. 6 MH zとなる。  From f RF = (64 X 1 4 8 + 2) X f ref = 9474 X 400 = 3 789.600, it is 3 789.6 MHz.
なお、 第 1カウンタ 2 2Nと第 2カウンタ 2 2 Aは実際にはバイナリカウン タで構成されるので、 第 1カウンタ 2 2 Nに設定される値 Nと第 2カウンタ 2 2 Aに設定される値 Aは、 バイナリコードで与えられる。 この実施例では、 特 に制限されるものでないが、 P L L動作時には第 1カウンタ 2 2Nは 9ビット カウンタとして、 また第 2カウンタ 2 2 Aは 6ビットカウンタとして動作する ため、 第 1カウンタ 2 2 Nに設定される値は 9ビットコード N 8〜N 0で、 ま た第 2カウンタ 2 2 Aに設定される値は、 6ビットコ一ド A 5〜A0で与えら れるようにされる。  Note that the first counter 22N and the second counter 22A are actually configured as binary counters, so the value N set to the first counter 22N and the second counter 22A are set. The value A is given in binary code. In this embodiment, although not particularly limited, the first counter 22N operates as a 9-bit counter and the second counter 22A operates as a 6-bit counter during PLL operation. The value to be set to is set by the 9-bit code N8 to N0, and the value to be set to the second counter 22A is set to be given by the 6-bit code A5 to A0.
さらに、 この実施例では、 第 1カウンタ 2 2 Nは周波数の測定時には 1 1 ビットのカウンタとして動作できるように構成されている。 RFVCO 2 5 0 は 1 6バンドすなわち 1 6段階で発振周波数を切り替えることができるように 構成され、 記憶回路 1 8にはこの 1 6パンドのそれぞれについて測定された周 波数を記憶するため 1 6個のレジスタ REG 0〜REG 1 5が設けられている c また、 使用パンド決定回路 1 9は、 記憶回路 1 8のレジスタ: EG 0〜REG 1 5に記憶されている値と第 1カウンタ 2 2 Nに設定される 9ビットコード N 8〜N0およぴ第 2カウンタ 2 2 Aに設定される 6ビットコード A 5〜A 0の うち上位 2ビット A 5, A4とを比較する 1 1ビットのコンパレータを備え、 RF VCO 2 5 0に対するパンド切り替え信号として 4ビットのコ一ド VB 3 〜VB 0を出力するように構成されている。 Further, in this embodiment, the first counter 22N is configured to operate as an 11-bit counter when measuring the frequency. The RFVCO 250 is configured so that the oscillation frequency can be switched in 16 bands, that is, in 16 steps. The storage circuit 18 stores 16 frequencies to store the frequency measured for each of these 16 bands. the c register REG 0~REG 1 5 of is provided, using Pando decision circuit 1 9, the register of the memory circuit 1 8: EG 0~REG 1 the value stored in the 5 and the first counter 2 2 N 9-bit code N8 to N0 set in the second counter 22 Compares the upper 2 bits A5 and A4 of the 6-bit code A5 to A0 set in the second counter 22 A 1 1-bit comparator And a 4-bit code VB 3 as a band switching signal for RF VCO 250 To VB0.
制御回路 260は、 周波数測定時には、 RFVC0250に対して 1 6個の パンドを順番に選択するように切り替え信号 VB3〜VB0 を生成して出力する。 さらに、 制御回路 2 60は、 周波数測定時には、 第 1カウンタ 22 Nを 1 1 ビットのカウンタとして動作させるとともに基準発振信号 ref' の 1周期では なく例えば 4周期のような長い期間におけるクロック数を計数するように第 1 カウンタ 22Nを制御する。 また、 制御回路 260は、 周波数測定時には、 第 2カウンタ 22 Aの動作を停止させ、 プリスケーラ 22の分周比の切り替えが 行なわれないように制御する。 これによつて、 周波数測定時には、 プリスケー ラ 22は 1/64のみの分周動作を行なうようにされる。  At the time of frequency measurement, the control circuit 260 generates and outputs switching signals VB3 to VB0 so as to sequentially select 16 bands for the RFVC0250. Further, when measuring the frequency, the control circuit 260 operates the first counter 22N as an 11-bit counter and counts the number of clocks in a long period such as, for example, four cycles instead of one cycle of the reference oscillation signal ref '. The first counter 22N is controlled to perform the operation. Further, the control circuit 260 stops the operation of the second counter 22A during the frequency measurement, and controls so that the division ratio of the prescaler 22 is not switched. Thus, at the time of frequency measurement, the prescaler 22 performs a 1/64 frequency division operation.
この実施例において、 周波数測定時に基準発振信号 ΦΓΘΪ' の 1周期ではなく 4周期にわたって計数動作させるようにしているのは、 測定精度を高くするた めである。 すなわち、 プリスケーラ 2 1が設けられていることによって、 ψ ref の 1周期の測定でカウンタ 22 Nにおいて生じる最大誤差つまり <i>ref' の 1周期の測定でカウンタ 22 Nが 1パルスカウントエラーを起こしたとする と、 そのときの誤差はプリスケーラ 21の分周比である 64倍に拡大される。 そのため、 基準発振信号 f»ref' が 400 kH zの場合にはカウンタ 22Nの最 大誤差は 25, 6MH z (=400 kH z X 64) であるが、 4周期の測定で カウンタ 22 Nにおいて生じる誤差は 1/4の約 6. 4MHzに低減される。 周波数測定時に第 1カウンタ 22 Nによって計数された 1 1ビットの計数値 は記憶回路 1 8のいずれかのレジスタに格納される。 そして、 この格納された 値は、 PLL動作時には、 上位 8ビットが整数部とみなされて使用パンド決定 回路 1 9において、 外部から供給される第 1カウンタ 22 Nの設定コード N8 〜NOと比較される。 また、 記憶回路 1 8のレジスタに格納された値のうち下 位 2ビットは小数部とみなされて使用パンド決定回路 1 9において、 外部から 供給される第 2カウンタ 22 Aの設定コード A 5〜A0のうち上位 2ビット A 5, A 4と比較される。  In this embodiment, the counting operation is performed not for one cycle of the reference oscillation signal Φ 発 振 ′ but for four cycles at the time of frequency measurement in order to increase the measurement accuracy. That is, due to the provision of the prescaler 21, the maximum error that occurs in the counter 22N in the measurement of one cycle of つ ま り ref, that is, the counter 22N generates one pulse count error in the measurement of one cycle of <i> ref ' If so, the error at that time is enlarged to 64 times, which is the dividing ratio of the prescaler 21. Therefore, when the reference oscillation signal f »ref 'is 400 kHz, the maximum error of the counter 22N is 25, 6 MHz (= 400 kHz X 64). The error is reduced by a factor of 4 to about 6.4 MHz. The 11-bit count value counted by the first counter 22N at the time of frequency measurement is stored in any register of the storage circuit 18. The stored value is compared with the setting code N8 to NO of the first counter 22N supplied from the outside in the use band determination circuit 19 while the upper 8 bits are regarded as an integer part during the PLL operation. You. The lower 2 bits of the value stored in the register of the storage circuit 18 are regarded as a decimal part, and the used band determination circuit 19 sets the setting codes A5 to A2 of the second counter 22A supplied from outside. It is compared with the upper two bits A5 and A4 of A0.
使用パンド決定回路 1 9は、 コンパレータとイクスクルーシブ ORゲートな どから構成されおり、 記憶回路 1 8の各レジスタ REG 0〜REG 1 5の格納 値と設定コード N8〜N0および A5, A 4との比較結果から R F V C O 25 0の使用パンドを決定し、 そのパンドを選択するようなパンド切り替えコード VB 3〜VB 0が生成されて RF VCO 250に供給される。 : F V C O 25 0は、 GSMのような通信システムに使用される P L L回路の場合には、 各パ ンドが GSMのチャンネル間隔に応じて例えば 400 kH zのような間隔に設 定される。 The use determination circuit 19 is composed of a comparator and an exclusive OR gate. The RFVCO 250 used band is determined based on the comparison between the stored values of the registers REG0 to REG15 of the storage circuit 18 and the setting codes N8 to N0 and A5 and A4. Are generated and supplied to the RF VCO 250. : In the case of a PLL circuit used in a communication system such as GSM, each of the FVCOs 250 is set to an interval such as 400 kHz according to the channel interval of the GSM.
以下、 この実施例の PL L回路における制御回路 260による周波数測定お よび周波数特性の捕正の手順を説明する。 なお、 この RF VCOの周波数測定 と測定結果に基づく周波数特性の補正は、 例えばアイドルモード中にベースパ ンド回路 300から所定のコマンドが入力される度に行なわれる。  Hereinafter, the procedure of frequency measurement and frequency characteristic correction by the control circuit 260 in the PLL circuit of this embodiment will be described. The frequency measurement of the RF VCO and the correction of the frequency characteristic based on the measurement result are performed, for example, every time a predetermined command is input from the baseband circuit 300 during the idle mode.
制御回路 260は、 RFVCO 250の周波数測定が開始されると、 先ずス イッチ SW0を切り替えてループフィルタ 1 6に直流電圧 VDC を供給する。 そ して、 ループフィルタ 1 6の電圧 V cが安定し、 RFVC0250の発振周波 数が安定するのを待つ。 次に、 プリスケーラ 2 1の分周比を 1Z64に固定す るとともに、 第 1カウンタ 22 Nが 1 1ビットカウンタとして動作するように 設定する。 それから、 選択パンドを示すポインタを参照して RFVCO 250 のパンドを選択するコード VB 3〜VB 0を出力する。 ここで、 最初に選択さ れるバンドは、 例えば周波数範囲が最も低い BAND 0である。  When the frequency measurement of the RFVCO 250 is started, the control circuit 260 first switches the switch SW0 to supply the DC voltage VDC to the loop filter 16. Then, it waits until the voltage Vc of the loop filter 16 is stabilized and the oscillation frequency of the RFVC0250 is stabilized. Next, the frequency division ratio of the prescaler 21 is fixed at 1Z64, and the first counter 22N is set to operate as an 11-bit counter. Then, referring to the pointer indicating the selected band, the codes VB3 to VB0 for selecting the band of the RFVCO 250 are output. Here, the band selected first is, for example, BAND 0 having the lowest frequency range.
次に、 第 1カウンタ 22Nを基準発振信号 <f»ref' の 4周期にわたって計数動 作させ、 カウンタの計数値を記憶回路 1 8のいずれかのレジスタに格納する。 最初に格納されるレジスタは第 1レジスタ: REG 0である。 それから、 全ての パンドの周波数測定を終了したか判定する。 ここで、 終了していなければ選択 パンドを示すポインタの値を加算 (+ 1) して上記の動作を繰り返す。  Next, the first counter 22N performs a counting operation over four cycles of the reference oscillation signal <f »ref ', and stores the count value of the counter in any register of the storage circuit 18. The first stored register is the first register: REG 0. Then, determine whether the frequency measurement of all bands has been completed. If not completed, the value of the pointer indicating the selected band is added (+1), and the above operation is repeated.
その後、 スタンパイ状態で送受信開始に伴いベースバンド回路から使用チヤ ネルに応じた周波数設定値が供給されると、 使用パンド決定回路 1 9において その周波数設定値に基づいて記憶回路 1 8の各レジスタ REG 0〜REG 1 5 の格納値と設定コード N 8〜NOおよび A 5, A 4との比較結果から RFVC O 250の使用パンドが決定され、 RFVCO250にパンド選択信号 VB 3 〜VB 0が供給されて周波数特性が補正される。 After that, when the baseband circuit supplies a frequency setting value corresponding to the channel used in the stamped state with the start of transmission / reception, the band determination circuit 19 uses the registers REG of the storage circuit 18 based on the frequency setting value. From the comparison between the stored values of 0 to REG15 and the setting codes N8 to NO and A5 and A4, RFVC The use band of the O 250 is determined, and the band selection signals VB 3 to VB 0 are supplied to the RFVCO 250 to correct the frequency characteristics.
図 1の実施例の高周波 I C 200においては、 中間周波数用 VCO ( I F V CO) 230と送信用 VCO (TXVCO) 240に関しても周波数測定機能 と測定結果に基づく周波数特性の補正機能が設けられている。 しかも、 これら の機能を共通の回路により実行できるように構成することで、 回路規模の増加 を抑制している。 I FVCO 230と TXVCO 240の周波数測定機能と、 測定結果に基づく周波数特性の捕正機能を実現する構成は、 RFVCO 250 の周波数測定機能と補正機能とほぼ同様であるので説明は省略する。 本発明は、 RFVC0250に関してのみ周波数測定機能と補正機能が設けられている高 周波 I Cに対しても有効である。  In the high-frequency IC 200 of the embodiment of FIG. 1, the intermediate frequency VCO (IFVCO) 230 and the transmission VCO (TXVCO) 240 are also provided with a frequency measurement function and a frequency characteristic correction function based on the measurement result. Moreover, by configuring these functions so that they can be executed by a common circuit, an increase in circuit size is suppressed. The configuration for realizing the frequency measurement function of the I FVCO 230 and the TXVCO 240 and the function of correcting the frequency characteristics based on the measurement results is almost the same as the frequency measurement function and the correction function of the RFVCO 250, and therefore, the description thereof is omitted. The present invention is also effective for a high-frequency IC provided with a frequency measurement function and a correction function only for the RFVC0250.
本実施例の高周波 I Cは、 RFVCO 250の各パンドの周波数測定値を記 憶する上記記憶回路 1 8に記憶されている値おょぴ中間周波数用 VCO ( I F VCO) 230と送信用¥00 (TXVCO) 240の各パンドの周波数測定 値を記憶する図示しない記憶回路に記憶されている値が、 電源遮断時等にチッ プ外部へ読み出されて外部のメモリに記憶され、 電源再投入時には逆に外部メ モリに退避されていた測定値を記憶回路 1 8に復帰できるように構成されてい る。  The high-frequency IC according to the present embodiment has a value stored in the storage circuit 18 for storing the frequency measurement value of each band of the RFVCO 250, an intermediate frequency VCO (IF VCO) 230 and a transmission ¥ 00 ( (TXVCO) The value stored in the storage circuit (not shown) that stores the frequency measurement value of each band of 240 is read out to the outside of the chip when the power is turned off, etc. The measurement value saved in the external memory can be returned to the storage circuit 18.
記憶回路 1 8等からの測定値の読出しを可能にするため、 ]^ 用?1^1^回路 を構成する RFシンセサイザ 26 1には、 記憶回路 1 8の各レジスタ REG 0 〜REG 1 5を順に選択する信号を生成するカウンタ 3 1と、 並列に読み出さ れた測定値をシリアルデータに変換し、 逆に外部からシリアルに入力された データをパラレルデータに変換してレジスタに供給するシリアル Zパラレル変 換回路 32とが設けられている。 特に制限されるものでないが、 カウンタ 3 1 とシリアル Zパラレル変換回路 32は、 基準発振回路 264により生成される 基準発振信号 φ r ef によって動作される。  Is it for] ^ to enable reading of measured values from storage circuit 18 etc.? The RF synthesizer 26 1 that constitutes the 1 ^ 1 ^ circuit has a counter 31 that generates a signal to select the registers REG 0 to REG 15 of the storage circuit 18 in order, and a measurement value that is read in parallel. There is provided a serial Z-parallel conversion circuit 32 for converting data input from the outside into serial data and converting the data into parallel data and supplying the parallel data to the register. Although not particularly limited, the counter 31 and the serial Z-parallel conversion circuit 32 are operated by the reference oscillation signal φref generated by the reference oscillation circuit 264.
本実施例の高周波 I C 200は、 待ち受け時のような送信も受信も行なわない アイドルモード、 送信や受信の直前に: P L Lを起動してロックさせるウォーム アップモード、 受信系回路を動作させて信号の受信を行なう受信モード、 送信 系回路を動作させて信号の送信を行なう送信モードのような複数の動作モード を備えている。 そして、 これらのモードは、 ベースパンド I C 3 0 0から高周 波 I C 2 0 0の制御回路 2 6 0に対して供給されるコマンドによって開始され る。 コマンドは例えば 8ビットや 1 6ビットのような所定のビット長のコード (以下、 W o r dと記す) によって構成されており、 予め複数種類のコマンド コードが用意されている。 The high-frequency IC 200 according to the present embodiment is in an idle mode in which neither transmission nor reception is performed as in a standby mode. A plurality of operation modes are provided, such as an up mode, a reception mode in which a reception system circuit is operated to receive a signal, and a transmission mode in which a transmission system circuit is operated to transmit a signal. These modes are started by a command supplied from the baseband IC 300 to the control circuit 260 of the high-frequency IC 200. The command is composed of a code having a predetermined bit length such as 8 bits or 16 bits (hereinafter referred to as Word), and a plurality of types of command codes are prepared in advance.
図 5には、 本実施例の高周波 I C 2 0 0とこれを制御するベースパンド L S FIG. 5 shows the high-frequency IC 200 of the present embodiment and the base band L S for controlling it.
1 3 0 0や高周波 I Cから読み出されたデータを記憶するメモリを有する他の 半導体チップ 4 0 0との関係が示されている。 図 5の実施例においては、 上記 記憶回路 1 8に記憶されている値を電源遮断時等に退避するスタックメモリを 提供する半導体チップ 4 0 0として、 内部メモリ 4 1 0を有するシングルチッ プマイコン (C P U) が用いられており、 高周波 I C 2 0 0には C P U 4 0 0 とシリアル通信でデータを送受信するための端子 2 7 2が設けられている。 The relationship between the semiconductor chip 400 and another semiconductor chip 400 having a memory for storing data read from the high frequency IC is shown. In the embodiment of FIG. 5, a single-chip microcomputer having an internal memory 410 as a semiconductor chip 400 that provides a stack memory that saves the value stored in the storage circuit 18 when power is turned off or the like A high-frequency IC 200 is provided with a terminal 272 for transmitting and receiving data to and from the CPU 400 by serial communication.
このデータ入出力端子 2 7 2は既存の他の端子 (例えば R F— P L Lを高速 で口ックさせるための電圧を生成する外付け抵抗を接続するための端子:図 8 の端子 「3 9」 参照) と兼用させることができる。 5 0 0は、 高周波 I C 2 0 0の電源電圧 V c cを発生する D C—D Cコンバータのようなスィツチング · レギュレータ、 2 8 1は基準発振回路 2 6 4の一部を構成する水晶振動子ゃ容 量素子などの素子からなる外付け回路、 2 7 1は基準発振回路 2 6 4で生成さ れた発振信号を外部の同期用クロックとして出力する外部端子である。  This data input / output terminal 2 7 2 is connected to another existing terminal (for example, a terminal for connecting an external resistor that generates a voltage to make the RF-PLL open at high speed: terminal “3 9” in Fig. 8). See). Reference numeral 500 denotes a switching regulator such as a DC-DC converter that generates a power supply voltage Vcc of the high-frequency IC 200. Reference numeral 281 denotes a crystal oscillator constituting a part of the reference oscillation circuit 264. An external circuit composed of elements such as a capacitive element, and 271, an external terminal for outputting the oscillation signal generated by the reference oscillation circuit 264 as an external synchronization clock.
この実施例においては、 C P U 4 0 0がベースバンド I C 3 0 0に対して高周 波 I C 2 0 0の電源をオフするように指令するコマンドを送ると、 ベースパン ド I C 3 0 0が高周波 I C 2 0 0の制御回路 2 6 0に対して記憶回路 1 8に記 憶されている測定値を外部へ出力するように指令を与える。 すると、 制御回路 In this embodiment, when the CPU 400 sends a command to the baseband IC 300 to turn off the power of the high-frequency IC 200, the baseband IC 300 The control circuit 260 of the IC 200 is instructed to output the measured value stored in the storage circuit 18 to the outside. Then, the control circuit
2 6 0からの制御信号によってカウンタ 3 1がレジスタ指定信号を順次生成し て記憶回路 1 8からデータの読み出しを行ない、 読み出されたデータはシリア ル Zパラレル変換回路 3 2でシリアルデータに変換されて外部端子 2 7 2へ出 力され、 CPU 400がそのデータをシリアルポート等を介して内部に取り込 み、 内部メモリ (RAMもしくはフラッシュメモリのような書替え可能な不揮 発性メモリ) 41 0等に格納する。 また、 高周波 I C 200の電源を再投入す る際には外部のメモリに退避されていたデータが元の記憶回路 1 8等に復帰さ れる。 The counter 31 sequentially generates a register designation signal according to the control signal from 260 and reads data from the storage circuit 18, and the read data is converted to serial data by the serial Z-parallel conversion circuit 32 Output to external terminal 2 7 2 CPU 400 fetches the data internally via a serial port or the like, and stores it in internal memory (rewritable nonvolatile memory such as RAM or flash memory) 410 or the like. When the power of the high-frequency IC 200 is turned on again, the data saved in the external memory is restored to the original storage circuit 18 and the like.
この実施例では、 高周波 I C 200の電源のオフは C PU400からベース パンド I C 300へのコマンドによってなされるので、 C PU400は電源ォ フコマンドを発行した後、 所定時間経過したのを見計らってシリアルポートか らデータを取り込めば良く、 CPU 400から高周波 I C 200に対して何ら コマンドや制御信号を送る必要がない。 外部のメモリに退避されていたデータ を戻す場合も同様である。  In this embodiment, the power supply of the high-frequency IC 200 is turned off by a command from the CPU 400 to the baseband IC 300. Data from the CPU 400 and no command or control signal needs to be sent from the CPU 400 to the high-frequency IC 200. The same applies when returning data saved in external memory.
以下、 本実施例の高周波 I Cを用いた図 5の無線通信システムにおける各 V COの周波数測定および測定結果に基づく周波数特性の補正 (使用パンドの決 定) の手順および待ち受け時等における高周波 I cの電源遮断 Z復帰動作の手 順について、 図 6およぴ図 7を用いて詳細に説明する。  In the following, the procedure of measuring the frequency of each VCO in the wireless communication system of FIG. 5 using the high-frequency IC of this embodiment and correcting the frequency characteristics based on the measurement results (deciding the band to be used) and the high-frequency I c during standby, etc. The procedure of the power-off Z return operation will be described in detail with reference to FIG. 6 and FIG.
システムの電源が投入されるとレギユレータ 500が起動され、 高周波 I C When the system is turned on, the regulator 500 is activated and the high frequency I C
200に対して電源の供給が開始される。 電源の立上り後にベースパンド I CPower supply to 200 is started. Baseband I C after power up
300から高周波 I C 200に対して例えばビット B 1, B 0が [00] に設 定された "Wo r d 1" なるコマンドが供給されると、 制御回路 260によつ て高周波 I C 200内部のレジスタなどの回路がリセット状態にされ、 高周波 I C 200はアイドルモード (コマンド待ち状態) に入る (図 6ステップ S l, 図 7タイミング 1: 1)。 このアイドルモードでは、 各 VCOの発振動作は停止さ れる。 その後、 ベースパンド I C 300からの VCOの測定を指示する所定の ビットコ一ドからなるコマンド (Wo r d 7) を受けると、 高周波 I C 200 内の各 VCOの周波数測定処理が行なわれる (ステップ S 2, 図 7タイミング 実施例の高周波 I C 200においては、 RFVCO 250と I FVC023 0の各パンドの周波数測定は並行して行なわれる。 ここで、 RFVCO 250 は 1 6バンド、 I F VCO 230は 8パンドであるため、 I FVCO 230の 周波数測定の方が早く終了する (図 7タイミング t 3)。 すると、 I FVC02 30の周波数測定に使用したカウンタを用いた送信用 TXVCO 240 aの周 波数測定を行ない、 それが終了すると、 TXVCO 240 bの周波数測定を行 なう (図 7タイミング t 4)。 なお、 I F VCO 230に関しては、 その周波数 測定終了時点で直ちに使用バンドの選択を行なうようにされている。 For example, when a command “Word 1” in which bits B 1 and B 0 are set to [00] is supplied from 300 to the high-frequency IC 200, the control circuit 260 controls the register inside the high-frequency IC 200. The high-frequency IC 200 enters the idle mode (command waiting state) (step Sl in FIG. 6, timing 1 in FIG. 7). In this idle mode, the oscillation operation of each VCO is stopped. Thereafter, when a command (Word 7) consisting of a predetermined bit code instructing the measurement of the VCO from the baseband IC 300 is received, the frequency measurement processing of each VCO in the high-frequency IC 200 is performed (Steps S2 and S2). Figure 7 Timing In the high-frequency IC 200 of the embodiment, the frequency measurement of each band of the RFVCO 250 and the IFVC0230 is performed in parallel. Is 16 bands and IF VCO 230 has 8 bands, so the frequency measurement of IF VCO 230 ends earlier (Fig. 7, timing t3). Then, the frequency of the TXVCO 240a for transmission is measured using the counter used for the frequency measurement of IFVC0230, and when that is completed, the frequency of the TXVCO 240b is measured (timing t4 in FIG. 7). As for IF VCO 230, the band to be used is immediately selected at the end of the frequency measurement.
ベースパンド I C 300は "Wo r d 7" の送信後、 適当な時間が経過する と初期設定を指令する "Wo r d 5, 6" を送って来る。 TXVCO 240 b の周波数測定が終了すると、 終了が制御回路 260に通知されるように構成さ れており、 制御回路 260は測定終了後に高周波 I C 200内部を送受信動作 のために初期設定する (ステップ S 3, 図 7タイミング t 5)。  After sending "Word 7", the baseband IC 300 sends "Word 5, 6" to command the initial setting after an appropriate time has elapsed. When the frequency measurement of the TXVCO 240b is completed, the completion is notified to the control circuit 260. After the measurement is completed, the control circuit 260 initializes the inside of the high-frequency IC 200 for transmission and reception operations (step S 3, Figure 7 timing t5).
この初期設定が終了すると、 ベースパンド I C 300から高周波 I C 200 に対して、 カウンタ 22に設定する値 (使用チャネルの周波数情報) を含むコ マンド "Wo r d 1" が供給され、 制御回路 260は VCOを起動するウォー ムアップモードに入る (ステップ S 4, 図 7タイミング 1: 6, t 8)o このコマ ンドには送信または受信を指示するビット [TR] も含まれており、 そのビッ トに応じて受信の時はベースパンドからの周波数情報と記憶回路 1 8 (レジス タ: EG0〜REG 14) に記憶されている周波数測定結果に基づいて: R F V CO 250の使用パンドを選択するとともにカウンタ 22に周波数値を設定す る。 そして、 RF VCO 250を発振動作させ、 受信用 P L Lループをロック 状態にさせる。  When this initial setting is completed, the command “Word 1” including the value to be set in the counter 22 (frequency information of the used channel) is supplied from the baseband IC 300 to the high-frequency IC 200, and the control circuit 260 (Step S4, Figure 7 Timing 1: 6, t8) o This command also includes a bit [TR] to indicate transmission or reception. At the time of reception, based on the frequency information from the base band and the frequency measurement result stored in the storage circuit 18 (registers: EG0 to REG14): Select the use band of the RFV CO 250 and set the counter 22 Set the frequency value to. Then, the RF VCO 250 is oscillated to lock the receiving PLL loop.
また、 送信の時はベースパンド I C 300からの周波数情報と記憶回路 1 8 等に記憶されている周波数測定結果に基づいて RFVCO 250と TXVCO 240の使用パンドを選択するとともに、 カウンタ 22等に周波数値を設定す る。 そして、 RF VCO 250と I F VCO 230を発振動作させ、 R F P L Lおよび I F P L Lループをロック状態にさせる。 TXVCO 240 aまたは 240 bのいずれを使用するかは、 ベースパンド I C 300から供給されるコ マンドに含まれる所定のコードで決定される。 さらに、 このウォームアップ モードでは制御回路 260は、 オフセットキヤンセル回路 213を起動させて 高利得增幅部 22 OA, 220 B内のアンプの入力 DCオフセットキヤンセル を行なわせる。 At the time of transmission, based on the frequency information from the base band IC 300 and the frequency measurement results stored in the storage circuit 18 etc., the band to use the RFVCO 250 and TXVCO 240 is selected, and the frequency value is sent to the counter 22 etc. Set. Then, the RF VCO 250 and the IF VCO 230 are oscillated, and the RFPLL and the IFPLL loop are locked. Whether to use the TXVCO 240a or 240b is determined by a predetermined code included in a command supplied from the baseband IC 300. In addition, this warm-up In the mode, the control circuit 260 activates the offset cancel circuit 213 to perform the input DC offset cancel of the amplifier in the high gain width section 22OA, 220B.
その後、 前記コマンド " Wo r d 1,, 内のビット [TR] の応じてベースパ ンド I C 300から高周波 I C 200に対して、 受信動作を指令する "Wo r d 2" または送信動作を指令する "Wo r d 3" を送って来る。 "Wo r d 2" を受信すると、 制御回路 260は受信モードに入り、 受信系回路 RXCを動作 させて受信信号の増幅、 復調を行なわせる (ステップ S 5, 図 7タイミング t 7)。 また、 制御回路 260は、 GSMか DCSZPCSかに応じてスィッチ S W 1などの切替え制御も行なう。  After that, according to the bit [TR] in the command “Word 1,”, the baseband IC 300 instructs the high-frequency IC 200 to “Word 2” for instructing the reception operation or “Word 2” for instructing the transmission operation. When "Word 2" is received, the control circuit 260 enters the reception mode, and operates the reception circuit RXC to amplify and demodulate the received signal (step S5, timing in FIG. 7). t7) The control circuit 260 also controls switching of the switch SW1 and the like according to GSM or DCSZPCS.
一方、 "Wo r d 3" を受信すると、 制御回路 260は送信モードに入り、 送 信信号の変調、 増幅を行なわせる (ステップ S 6, 図 7タイミング t 9)。 また、 制御回路 260は、 送信切替えスィッチ SW4をオンさせると共に、 GSMか DC S/P C Sかに応じてスィツチ SW2などの切替え制御も行なう。 なお、 上記受信モードおよび送信モードは、 それぞれタイムスロットと呼ばれる時間 単位 (例えば 577 μ秒) で実行される。  On the other hand, when "Word 3" is received, the control circuit 260 enters the transmission mode and modulates and amplifies the transmission signal (step S6, timing t9 in FIG. 7). Further, the control circuit 260 turns on the transmission switching switch SW4, and also controls switching of the switch SW2 and the like according to GSM or DC S / PCS. The reception mode and the transmission mode are executed in time units called time slots (for example, 577 μsec).
通常は上記 "Wo r d 1" と "Wo r d 2" による受信モードまたは "Wo r d l" と "Wo r d 3" による送信モードを繰返し実行するが、 CPU 40 0がベースパンド I C 300に対して高周波 I C 200の電源オフを指令する コマンドを送ると、 ベースパンド I C 300は高周波 I C 200に対して、 データのリード /"ライ トを指令するコマンド "Wo r d 0" を送って来る (図 7タイミング t 10)。  Normally, the reception mode using “Word 1” and “Word 2” or the transmission mode using “Wordl” and “Word 3” is repeatedly executed. When the baseband IC 300 sends a command to turn off the power to the 200, the baseband IC 300 sends a command “Word 0” to command the data read / write to the high-frequency IC 200 (Fig. 7, timing t10 ).
このコマンド " Wo r d 0" には、 記憶回路 18 (レジスタ REG 0〜RE G 14) 等に記憶されている測定値のリード/ライトを示すビット [wr] が 含まれており、 制御回路 260は " Wo r d 0" のビット [w r ] を参照して  The command “World 0” includes a bit [wr] indicating read / write of the measured value stored in the storage circuit 18 (registers REG 0 to REG 14) and the like. See bit [wr] of "Wo rd 0"
[0] ならばそのままターンオフ状態に移行し、 [wr] 力 S [1] なら記憶回路 18 (レジスタ REG 0〜REG 14) 等に記憶されている測定値を読み出し て外部端子 271より出力させる (ステップ S 7, S 8)。 出力されたデータは CPU 400によって CPUの内部メモリ 410に格納される。 If it is [0], it shifts to the turn-off state. If it is [wr] force S [1], it reads out the measured value stored in the memory circuit 18 (registers REG0 to REG14) and outputs it from the external terminal 271 ( Steps S7, S8). The output data is The data is stored in the internal memory 410 of the CPU by the CPU 400.
続いて、 ベースパンド I C 300はスィツチング · レギュレータ 500に対 してその動作を停止させる信号 P-0FF を送る (ステップ S 9)。 すると、 レギュ レータ 500は動作を停止して高周波 I C 200に対する電源電圧 V c cの供 給が停止され、 高周波 I C 200はターンオフ状態に移行する (ステップ S 1 0)。 なお、 高周波 I C 200がターンオフされても、 ベースパンド I C 300 と C P U 400は動作を継続する。  Subsequently, the baseband IC 300 sends a signal P-0FF to the switching regulator 500 to stop its operation (step S9). Then, the regulator 500 stops operating, the supply of the power supply voltage V cc to the high frequency IC 200 is stopped, and the high frequency IC 200 shifts to a turn-off state (step S10). Note that even if the high-frequency IC 200 is turned off, the basebands IC 300 and CPU 400 continue to operate.
その後、 ベースパンド I C 300がスィツチング · レギュレータ 500に対 して動作開始信号 P- ON を送る (ステップ S 1 1) と、 レギユレータ 500は動 作を開始して高周波 I C 200に対して電源電圧 V c cを供給し、 高周波 I C 200はターンオンする (ステップ S 1 2)。 そして、 ベースバンド I C 300 は高周波 I C 200に対してデータのリード Zライトを示すビット [wr] を 含むコマンド " W o r d 0,, を送る。 また、 このコマンド "W o r d 0,, で ビッ ト [w r] を "リード" を示す [1] にしたときには、 続けてアイ ドル モードへの移行を指示するコマンド " Wo r d 1 " を送る。 一方、 コマンド "Wo r d 0" でビット [w r ] を "ライト" を示す [0] にしたときには、 続けて初期設定を指令するコマンド "Wo r d 5, 6" を送る。  Thereafter, when the baseband IC 300 sends an operation start signal P-ON to the switching regulator 500 (step S11), the regulator 500 starts operation and supplies the power supply voltage Vcc to the high-frequency IC 200. And the high frequency IC 200 is turned on (step S12). Then, the baseband IC 300 sends a command “Word 0 ,,” including a bit [wr] indicating the data read / write Z to the high-frequency IC 200. In addition, the command “Word 0 ,, When [wr] is set to [1] to indicate "read", a command "Wo rd 1" for instructing transition to the idle mode is sent. On the other hand, when the bit [wr] is set to [0] indicating "write" by the command "Word 0", the command "Word 5, 6" for commanding the initial setting is continuously transmitted.
すると、 制御回路 260はステップ S 1 3でコマンド "Wo r d 0" のビッ ト [wr] を参照して [0] ならば CPU400によって内部メモリ 41 0か ら読み出された退避データを外部端子 27 1より取り込み、 記憶回路 1 8 (レ ジスタ REG 0〜REG 1 4) 等に格納する (ステップ S 14)。 その後、 ス テツプ S 3へ移行し、 ベースパンド I C 300からの初期設定を指令するコマ ンド " Wo r d 5, 6" を受けて、 高周波 I C 200内部を送受信動作のため に初期設定させる。  Then, the control circuit 260 refers to the bit [wr] of the command “Word 0” in step S 13 and if it is [0], saves the saved data read from the internal memory 410 by the CPU 400 to the external terminal 27. The data is read from 1 and stored in a memory circuit 18 (registers REG0 to REG14) and the like (step S14). Thereafter, the process proceeds to step S3, and receives the command "Word 5, 6" for instructing the initial setting from the baseband IC 300, and initializes the inside of the high-frequency IC 200 for the transmission / reception operation.
一方、 高周波 I C 200の制御回路 260は、 ステップ S 1 3で [w r ] が [1] と判定したなら、 続くコマンド "Wo r d 1" を受けてステップ S 1の アイ ドルモードへ移行し、 その後各 V COの周波数測定を指示するコマンド "Wo r d 7" を受けて周波数の測定を行なう (ステップ S 2)。 通常はビット [wr] は [0] に設定され外部メモリに退避したデータが記憶回路 1 8等に 復帰される動作が行なわれると考えられるが、 ビット [w r] があることに よって、 必要に応じていつでも高周波 I C 200に VCOの周波数の測定を実 行させることができ、 高周波 I C 200の信頼性が向上する。 On the other hand, if the control circuit 260 of the high-frequency IC 200 determines that [wr] is [1] in step S13, it receives the following command "Word 1" and shifts to the idle mode of step S1. The frequency is measured in response to the command "Word 7" instructing the frequency measurement of each VCO (step S2). Usually a bit [wr] is set to [0], and it is considered that the data saved in the external memory is restored to the memory circuit 18 etc., but the presence of bit [wr] makes it possible to use The high-frequency IC 200 can measure the frequency of the VCO, thereby improving the reliability of the high-frequency IC 200.
なお、 図 6においては、 高周波 I C 200の電源が再投入された際に先ず外 部メモリに退避していたデータを記憶回路 1 8等に復帰させる処理 (ステップ S 14, S 1 5) をしてから初期設定 (ステップ S 3) を行なっているが、 初 期設定 (ステップ S 3) の後で復帰処理 (ステップ S 14, S 1 5) を行なう ようにしても良い。 さらに、 P L Lの起動を指令するコマンド " Wo r d 1" に含まれる送信または受信を示すビット [TR] を参照してウォームアップを 行なっている間に復帰処理 (ステップ S 14, S 1 5) を行なうようにするこ とも可能である。 この場合、 受信または送信に応じてそれぞれの VCOに対応 した測定データのみを記憶回路 18等に復帰させるようにしても良い。  In FIG. 6, when the power of the high-frequency IC 200 is turned on again, first, the data saved in the external memory is restored to the storage circuit 18 or the like (steps S14, S15). Although the initial setting (step S3) is performed after the initial setting, the return processing (steps S14 and S15) may be performed after the initial setting (step S3). In addition, return processing (steps S14 and S15) is performed during warm-up by referring to the bit [TR] indicating transmission or reception included in the command "Word 1" for instructing PLL activation. It is also possible to do it. In this case, only the measurement data corresponding to each VCO may be returned to the storage circuit 18 or the like in response to reception or transmission.
図 8には、 本発明を適用した高周波 I C 200の他の実施例を示す。 図 8に おいて、 図 1や図 2に示されている回路や信号には同一の符号を付して重複し た説明は省略する。 特に制限されるものでないが、 この実施例の高周波 I C 2 00では各回路間の電源ラインを介したノイズの回込みを防止するため複数の 電源ピン (VCC) とグランドピン (GND) が設けられている。  FIG. 8 shows another embodiment of the high frequency IC 200 to which the present invention is applied. In FIG. 8, the circuits and signals shown in FIGS. 1 and 2 are denoted by the same reference numerals, and redundant description will be omitted. Although not particularly limited, the high-frequency IC 200 of this embodiment is provided with a plurality of power pins (VCC) and a ground pin (GND) in order to prevent noise from flowing through the power line between the circuits. ing.
この実施例の高周波 I C 200は、 記憶回路 1 8 (レジスタ REG0〜: E G 14) 等に記憶されている周波数測定値を、 専用の外部端子 (図 6の端子 2 7 1に相当) を用いずに、 ベースパンド I C 300との間でコマンド等のシリ アルデータ S DAT Aの送受信のために設けられている端子 (図 8の符号 「3 2」 の端子) を用いて外部へ読み出すようにしたものである。  The high-frequency IC 200 of this embodiment uses the frequency measurement value stored in the storage circuit 18 (registers REG0 to EG14) or the like without using a dedicated external terminal (corresponding to the terminal 271 in FIG. 6). In addition, a terminal (terminal "32" in FIG. 8) provided for transmitting and receiving serial data S DATA of commands and the like to and from the baseband IC 300 is read out to the outside. Things.
図 8には示されていないが、 制御回路 260と各; P LL回路の記憶回路 1 8 等との間にはデータを転送する信号線が設けられる。 この信号線は 1本でも良 いし、 レジスタ REG 0〜R EG 1 5のビット数に対応した本数の信号線群 (バス) であっても良い。 なお、 図 8において、 符号 28 1は基準発振回路 2 64の一部を構成する水晶振動子や容量素子などの素子からなる外付け回路、 282は I Fシンセサイザ 26 2とともに I F用 P L L回路を構成する I F用 ノレープフイノレタである。 Although not shown in FIG. 8, a signal line for transferring data is provided between the control circuit 260 and each of the storage circuits 18 of the PLL circuit. This signal line may be a single signal line, or may be a signal line group (bus) of a number corresponding to the bit number of the registers REG0 to REG15. In FIG. 8, reference numeral 281 denotes an external circuit including an element such as a crystal unit and a capacitor, which constitutes a part of the reference oscillation circuit 264. Reference numeral 282 denotes an IF nap-flop, which constitutes an IF PLL circuit together with the IF synthesizer 262.
ベースパンド I C 300が内^メモリを有する場合には高周波 I C 200か ら読み出されたデータはベースパンド I C 300の内部メモリ 3 1 0に格納し ても良いし、 ベースパンド I C 300が内部メモリを有していない場合や内部 メモリがあってもその記憶容量が充分でない場合にはべ一スパンド I C 300 を経由して CPU 400へ転送し CPUの内部メモリ 4 1 0に格納するように しても良い。 ベースパンド I Cの機能を C PUにより行なうシステムでは、 高 周波 I C 200の電源オフ時に高周波 I C 2 00から読み出されたデータは ベースパンド I C 300の内部メモリ 310に格納される。  If the baseband IC 300 has an internal memory, the data read from the high-frequency IC 200 may be stored in the internal memory 310 of the baseband IC 300, or the baseband IC 300 may store the internal memory. If not, or if the internal memory is available but the storage capacity is not sufficient, the data may be transferred to the CPU 400 via the basic IC 300 and stored in the CPU's internal memory 410. good. In a system in which the function of the baseband IC is performed by the CPU, the data read from the high-frequency IC200 when the high-frequency IC200 is turned off is stored in the internal memory 310 of the baseband IC300.
上記のようにして高周波 I C 200の電源オフ時に外部のメモリに退避され た周波数測定値は、 高周波 I C 200への電源再投入時に上記と逆のルートで 元の記憶回路 1 8等に復帰される。 第 1の実施例とはデータ (測定値) のルー トが異なるだけで、 データの退避ノ復帰の手順は図 6に示されているフロー チャートと同一とされる。 記憶回路 18 (レジスタ REG 0〜REG 1 5) 等 に記憶されている周波数測定値の読出しと書込みは、 例えばデータのリード Z ライ トを示すコマンド "Wo r d 0" に設けられているデータ格納フィールド に入れて行なうようにすることができる。  The frequency measurement value saved in the external memory when the power of the high-frequency IC 200 is turned off as described above is restored to the original storage circuit 18 and the like by the reverse route when the power of the high-frequency IC 200 is turned on again. . Only the data (measured value) route is different from that of the first embodiment, and the procedure for saving and restoring data is the same as the flow chart shown in FIG. Reading and writing of the measured frequency value stored in the storage circuit 18 (registers REG0 to REG15) are performed, for example, in the data storage field provided in the command “Word 0” indicating the data read / write Z. Can be put in the box.
なお、 図 8において、 符号 D I VONが付された端子 「42」 は、 基準発振 回路 264で生成され外部端子 27 1に出力されるクロックをそのまま出力す るか 1Z2分周して出力するか制御する信号もしくは電圧が印加される端子で あり、 これにより外部端子 27 1に出力されるクロックの周波数を 1 3MH Z または 26MH zのいずれかに設定することができる。 In FIG. 8, the terminal “42” with the symbol DI VON is used to control whether the clock generated by the reference oscillation circuit 264 and output to the external terminal 27 1 is output as it is or is output by dividing by 1Z2. a terminal to which a signal or voltage to be applied, thereby making it possible to set the frequency of the clock output to the external terminal 27 to any of 1 3MH Z or 26MH z.
図 9には、 本発明を適用した高周波 I C 200の第 3の実施例を示す。 図 9 においては、 図 5に示されている回路や信号と同一の回路や信号には同一の符 号を付して重複した説明は省略する。 この実施例の高周波 I C 200は、 電源 オフ時に保護したいデータが格納されている記憶回路 1 8 (レジスタ REG 0 〜REG 1 5) 等の記憶回路おょぴ基準発振回路 264と、 それ以外の回路と で電源ラインおよぴ電源端子を分離したものである。 FIG. 9 shows a third embodiment of a high-frequency IC 200 to which the present invention is applied. In FIG. 9, the same circuits and signals as the circuits and signals shown in FIG. 5 are denoted by the same reference numerals, and redundant description will be omitted. The high-frequency IC 200 of this embodiment includes a storage circuit such as a storage circuit 18 (registers REG0 to REG15) storing data to be protected when the power is turned off, a reference oscillation circuit 264, and other circuits. When The power line and the power terminal are separated.
また、 これに応じて、 この高周波 I C 2 0 0を用いた通信システムではレ ギユレータに関しても、 記憶回路用の電源電圧 V c c 1を供給する第 1のレ ギュレータ 5 0 0の他に、 記憶回路以外の回路に電源電圧 V c c 2を供給する 第 2のレギユレータ 5 1 0とを設けられている。 ベースパンド I C 3 0 0には、 記憶回路用の第 1のレギユレータ 5 0 0で生成された電源電圧 V c c 1が供給 される。 待ち受け時等消費電力を下げたい場合においては、 ベースパンド I C 3 0 0から第 2のレギユレータ 5 1 0に対してのみオフ信号 P- OFF が与えられ て、 第 2のレギユレータ 5 1 0が動作を停止して電源電圧 V c c 2の供給を停 止する。  Accordingly, in the communication system using the high-frequency IC 200, in addition to the first regulator 500 that supplies the power supply voltage V cc1 for the storage circuit, the storage circuit And a second regulator 510 for supplying the power supply voltage V cc 2 to other circuits. The power supply voltage Vcc1 generated by the first regulator 500 for the storage circuit is supplied to the baseband Ic300. When it is desired to reduce the power consumption during standby or the like, an off signal P-OFF is given only from the baseband IC 300 to the second regulator 5110, and the second regulator 510 operates. Stop and stop supply of power supply voltage Vcc2.
この実施例においては、 記憶回路 1 8等の電源電圧がチップの電源オフ時に も供給されパックアップされるので、 電源ォフ時に記憶回路に格納されている 周波数測定値をチップ外部へ退避する必要がない。 そのため、 記憶回路 1 8か ら順次データを読み出すための信号を生成するカウンタ 3 1やシリアル /パラ レル変換回路 3 2、 データを入出力する外部端子 2 7 2も不要とされる。  In this embodiment, since the power supply voltage of the storage circuit 18 and the like is supplied even when the power of the chip is turned off and is backed up, it is necessary to save the frequency measurement value stored in the storage circuit to the outside of the chip when the power is turned off. There is no. Therefore, a counter 31 for generating a signal for sequentially reading data from the storage circuit 18, a serial / parallel conversion circuit 32, and an external terminal 272 for inputting / outputting data are not required.
さらに、 本実施例の高周波 I C 2 0 0は基準発振回路 2 6 4に対しても記憶 回路 1 8等パックアップされる回路と同一の電源電圧 V c c 1が供給され、 高 周波 I C 2 0 0の電源オフ時にもクロック信号を生成して外部のチップの動作 クロックとして外部端子 2 7 1より出力するように構成されている。 従って、 この外部端子 2 7 1より出力されるクロック (1 3 MH zまたは 2 6 MH z ) をベースパンド I C 3 0 0や C P U 4 0 0の動作クロックとして使用すること で、 別途ベースパンド I C 3 0 0や C P U 4 0 0の動作ク口ックを生成する回 路を設けなくて済むという利点がある。  Further, the high-frequency IC 200 of this embodiment is supplied with the same power supply voltage V cc 1 as that of the circuit to be backed up, such as the storage circuit 18, to the reference oscillation circuit 264. When the power supply is turned off, a clock signal is generated and output from an external terminal 271 as an operation clock of an external chip. Therefore, by using the clock (13 MHz or 26 MHz) output from the external terminal 27 1 as the operating clock of the baseband IC 300 or CPU 400, the baseband IC 3 There is an advantage that there is no need to provide a circuit for generating the operation results of the CPU 400 and the CPU 400.
図 1 0には、 図 9の実施例の高周波 I Cを用いた無線通信システムにおける 各 V C Oの周波数測定おょぴ測定結果に基づく周波数特性の補正 (使用パンド の決定) の手順および待ち受け時等における高周波 I Cの電源遮断 Z復帰動作 の手順が示されている。 図 1 0の手順は、 図 6に示されている第 1実施例の高 周波 I Cを用いた無線通信システムにおける各 V C Oの周波数測定およぴ高周 波 I Cの電源遮断/復帰動作の手順とほぼ同じである。 FIG. 10 shows the frequency measurement procedure of each VCO in the wireless communication system using the high-frequency IC of the embodiment of FIG. The procedure of power-off of high-frequency IC and Z return operation is shown. The procedure of FIG. 10 is for measuring the frequency of each VCO and measuring the high frequency in the wireless communication system using the high-frequency IC of the first embodiment shown in FIG. It is almost the same as the procedure of the power supply cutoff / return operation of the wave IC.
図 10の手順が図 6の手順と異なる点は、 高周波 I Cの電源オフの直前に記 憶回路 1 8 (レジスタ REG 0〜REG 1 5) 等に格納されているデータを読 み出すステップ S 8と、 高周波 I Cの電源再投入後に外部メモリから退避デー タを記憶回路 1 8 (レジスタ REG 0〜REG 1 5) 等に復帰させるステップ S 14, S 1 5がない点と、 電源オフ ·ステップ S 9ではレギュレータ 5 10 のみをオフし、 その後電源再投入のステップ S 1 1ではレギユレータ 5 10を オンさせる点にある。 この実施例ではステップ S 7の [wr] の判定は省略す ることができる。  The difference between the procedure of FIG. 10 and the procedure of FIG. 6 is that the step of reading data stored in the storage circuit 18 (registers REG0 to REG15) immediately before the power of the high-frequency IC is turned off S8 Steps S14 and S15 to restore saved data from external memory to storage circuit 18 (registers REG0 to REG15) after power-cycle of high-frequency IC In step 9, only the regulator 5 10 is turned off, and then in step S 11 of turning on the power again, the regulator 5 10 is turned on. In this embodiment, the determination of [wr] in step S7 can be omitted.
以上本発明者によってなされた発明を実施例に基づき具体的に説明したが、 本発明は上記実施例に限定されるものではなく、 その要旨を逸脱しない範囲で 種々変更可能であることはいうまでもない。  Although the invention made by the inventor has been specifically described based on the embodiments, the present invention is not limited to the above-described embodiments, and it is needless to say that various modifications can be made without departing from the gist of the invention. Nor.
例えば、 上記第 1の実施例では、 記憶回路 1 8等に記憶されているデータを 外部へリードし、 かつ外部からライ トするための端子 272を設けているが、 この端子はデータのリードのみ可能であるように構成してもよい。 この場合、 記憶回路 18等への退避データのライトは、 例えばベースパンド I C 300か らシリアルデータ S DATA, クロック CLKおよび制御信号 LEを使用して 行なうようにすることができる。 端子 2 72がデータのリードのみ可能に構成 された高周波 I C 200であっても、 読み出されたデータを解析して内蔵 VC Oの特性を解析するのに利用することができるという利点がある。  For example, in the first embodiment, the terminal 272 for reading data stored in the storage circuit 18 and the like and for writing from the outside is provided, but this terminal is used only for reading data. It may be configured as possible. In this case, writing of the save data to the storage circuit 18 or the like can be performed, for example, by using the serial data SDATA, the clock CLK, and the control signal LE from the baseband IC 300. Even if the terminal 272 is a high-frequency IC 200 configured so that only data can be read, there is an advantage that the read data can be used to analyze the characteristics of the built-in VCO.
また、 前記実施例では、 受信用 VCOと送信用 VCOと中間周波数用 VCO の 3つの V COが変復調回路と共に 1つの半導体チップ上に形成された高周波 I Cについて説明したが、 本発明はいずれか 1つの V COが変復調回路と共に 1つの半導体チップ上に形成された高周波 I Cにおいても適用することができ る。  Further, in the above-described embodiment, the high-frequency IC in which the three VCOs of the reception VCO, the transmission VCO, and the intermediate frequency VCO are formed on one semiconductor chip together with the modulation / demodulation circuit has been described. One VCO can be applied to a high-frequency IC formed on one semiconductor chip together with a modulation / demodulation circuit.
さらに、 前記実施例では、 記憶回路 1 8には RF VCO 250の 1 6バンド のそれぞれについて測定された周波数を記憶するため 1 6個のレジスタ REG 0〜REG 1 5が設けられているとしたが、 1 5個のレジスタ REG 0〜RE G 14を設けて 1 5個のバンド B a n d 0〜B a n d 14についてのみ測定を 行なって記憶させ、 外部からの周波数設定値に対応する測定値がレジスタ R E G 0〜REG 14に存在しない場合には自動的に 1 6番目のパンド B a n d 1 5が選択されるように構成しても良い。 I F VCOおよび TXVCOについて も同様である。 このようにレジスタの数を減らすことによりチップサイズを低 減できるとともに、 測定値の読出し書込み時間も短縮できる。 産業上の利用可能性 Further, in the above embodiment, the storage circuit 18 is provided with 16 registers REG0 to REG15 for storing the frequency measured for each of the 16 bands of the RF VCO 250. , 15 registers REG 0 ~ RE G14 is provided to measure and store only 15 bands B and 0 to B and 14, and if the measured value corresponding to the external frequency setting value does not exist in registers REG0 to REG14, It may be configured such that the 16th band B and 15 is automatically selected. The same applies to IF VCO and TXVCO. By reducing the number of registers in this way, the chip size can be reduced, and the time required to read and write measured values can be reduced. Industrial applicability
以上の説明では主として本発明者によってなされた発明をその背景となった 利用分野である GSM850と GSM900、 DC S 1 800、 P C S 1 90 0の 4つの通信方式による通信が可能な携帯電話機の無線通信システムに用い られる高周波 I Cに適用した場合について説明したが、 本発明はそれに限定さ れるものでなく、 G SMにおける位相変調に振幅変調を加えたような QP SK 変調モードを有する EDGEと呼ばれる通信方式にも対応可能な携帯電話機に 用いられる高周波 I Cや CDMA方式の携帯電話機あるいは無線 LANゃプ ルートウースと呼ばれる無線通信システムおよびそれを構成する高周波 I Cに 対しても本発明を適用することができる。  In the above description, the wireless communication of the mobile phone capable of performing communication by the four communication methods of GSM850 and GSM900, DCS1800, and PCS1900, which are the fields of application, which is mainly based on the invention made by the present inventors. Although the description has been given of the case where the present invention is applied to a high-frequency IC used in a system, the present invention is not limited to this, and a communication system called EDGE having a QPSK modulation mode in which amplitude modulation is added to phase modulation in GSM. The present invention can also be applied to a high-frequency IC used for a mobile phone capable of supporting the above, a CDMA type mobile phone, a wireless communication system called a wireless LAN network, and a high-frequency IC constituting the same.

Claims

請求の範囲 The scope of the claims
1 . 受信用発振回路と送信用発振回路と中間周波数用発振回路のうち少なくと も 1つの発振回路が変復調回路と共に 1つの半導体チップに形成された通信用 半導体集積回路であって、 1. A communication semiconductor integrated circuit in which at least one oscillation circuit among a reception oscillation circuit, a transmission oscillation circuit, and an intermediate frequency oscillation circuit is formed on one semiconductor chip together with a modulation / demodulation circuit,
半導体チップに形成された上記発振回路は複数の周波数帯で動作可能に構成 され、 該発振回路の発振周波数を測定する回路おょぴ測定された値を記憶する 記憶回路と、 該記憶回路に記憶されている測定値と外部からの設定値とを比較 して上記発振回路の使用周波数帯を決定する回路とを備え、 上記記憶回路の記 憶データを外部へ読み出すことができるように構成されてなることを特徴とす る通信用半導体集積回路。  The oscillation circuit formed on the semiconductor chip is configured to be operable in a plurality of frequency bands, a circuit for measuring an oscillation frequency of the oscillation circuit, a storage circuit for storing a measured value, and a storage circuit for storing the measured value. A circuit for comparing the measured value with an externally set value to determine a frequency band to be used by the oscillation circuit, so that data stored in the storage circuit can be read out to the outside. A communication semiconductor integrated circuit characterized in that:
2 . 上記記憶回路へ外部からデータを格納することができるように構成されて いることを特徴とする請求項 1に記載の通信用半導体集積回路。 2. The communication semiconductor integrated circuit according to claim 1, wherein the communication circuit is configured to be able to externally store data in the storage circuit.
3 . 上記記憶回路の記憶データを外部へ読み出す経路と上記記憶回路へ外部か らデータを格納する経路とは同一であることを特徴とする請求項 2に記載の通 信用半導体集積回路。 3. The communication semiconductor integrated circuit according to claim 2, wherein a path for externally reading data stored in the storage circuit and a path for externally storing data in the storage circuit are the same.
4 . 外部から入力されたコマンドを解読して内部の制御信号を生成する制御回 路を備え、 該制御回路は外部から所定のコマンドが入力されたことに応じて上 記記憶回路の記憶データを外部へ出力するように構成されていることを特徴と する請求項 1〜 3のいずれかに記載の通信用半導体集積回路。 4. A control circuit that decodes a command input from the outside and generates an internal control signal is provided, and the control circuit reads data stored in the storage circuit in response to a predetermined command input from the outside. 4. The communication semiconductor integrated circuit according to claim 1, wherein the communication semiconductor integrated circuit is configured to output to the outside.
5 . 外部から上記記憶回路へ格納されるデータは、 上記コマンドが入力される 経路と同一の経路を介して入力されるように構成されていることを特徴とする 請求項 4に記載の通信用半導体集積回路。 5. The communication device according to claim 4, wherein the data stored in the storage circuit from the outside is configured to be input via the same path as the path to which the command is input. Semiconductor integrated circuit.
6 . 上記記憶回路の記憶データを外部へ出力する専用の経路を備えていること を特徴とする請求項 1〜 5のいずれかに記載の通信用半導体集積回路。 6. The communication semiconductor integrated circuit according to claim 1, further comprising a dedicated path for outputting data stored in the storage circuit to the outside.
7 . 請求項 1〜 6のいずれかに記載の通信用半導体集積回路と、 7. A communication semiconductor integrated circuit according to any one of claims 1 to 6,
該通信用半導体集積回路によつて所望の周波数までダウンコンパートされた 受信信号からデータを抽出したり送信データを I , Q信号に変換したりする ベースノ ンド回路と、  A base node circuit for extracting data from a reception signal down-compartmented to a desired frequency by the communication semiconductor integrated circuit and converting transmission data into I and Q signals;
内部メモリを備え、 システム全体を制御するマイクロプロセッサと、 上記通信用半導体集積回路の電源電圧を生成する電圧発生回路と、  A microprocessor that has an internal memory and controls the entire system; a voltage generation circuit that generates a power supply voltage of the communication semiconductor integrated circuit;
を含む無線通信システムであって、 A wireless communication system comprising:
上記記憶回路の記憶データが外部へ出力され上記マイクロプロセッサの上記 内部メモリに退避された後で、 上記ベースパンド回路または上記マイクロプロ セッサからの指令により上記電圧発生回路の動作が停止されるように構成され てなることを特徴とする無線通信システム。  After the data stored in the storage circuit is output to the outside and saved in the internal memory of the microprocessor, the operation of the voltage generation circuit is stopped by a command from the base fold circuit or the microprocessor. A wireless communication system characterized by being constituted.
8 . 請求項 1〜 6のいずれかに記載の通信用半導体集積回路と、 8. A communication semiconductor integrated circuit according to any one of claims 1 to 6,
内部メモリを備え、 上記通信用半導体集積回路によって所望の周波数までダ ゥンコンバートされた受信信号からデータを抽出したり送信データを I , Q信 号に変換したりするベースパンド回路と、  A base-band circuit that includes an internal memory and extracts data from a received signal down-converted to a desired frequency by the communication semiconductor integrated circuit and converts transmission data into I and Q signals;
システム全体を制御するマイクロプロセッサと、  A microprocessor that controls the entire system;
上記通信用半導体集積回路の電源電圧を生成する電圧発生回路と、 · を含む無線通信システムであって、  A voltage generation circuit for generating a power supply voltage of the communication semiconductor integrated circuit, a wireless communication system including:
上記記憶回路の記憶データが外部へ出力され上記ベースパンド回路の上記内 部メモリに退避された後で、 上記ベースパンド回路または上記マイクロプロ セッサからの指令により上記電圧発生回路の動作が停止されるように構成され てなることを特徴とする無線通信システム。  After the data stored in the storage circuit is output to the outside and saved in the internal memory of the base band circuit, the operation of the voltage generation circuit is stopped by a command from the base band circuit or the microprocessor. A wireless communication system characterized by being configured as described above.
9 . 上記ベースパンド回路または上記マイクロプロセッサからの指令により 上記電圧発生回路が再起動された後、 上記内部メモリに退避されていたデータ が上記記憶回路に復帰された後に、 送受信動作が可能にされるように構成され てなることを特徴とする請求項 7または 8に記載の無線通信システム。 9. In response to a command from the baseband circuit or microprocessor The transmission / reception operation is enabled after the voltage generation circuit is restarted and after the data saved in the internal memory is restored to the storage circuit. 7. The wireless communication system according to 7 or 8.
1 0 . 受信用発振回路と送信用発振回路と中間周波数用発振回路のうち少なく とも 1つの発振回路が変復調回路と共に 1つの半導体チップに形成された通信 用半導体集積回路であって、 10. A communication semiconductor integrated circuit in which at least one of the reception oscillation circuit, the transmission oscillation circuit, and the intermediate frequency oscillation circuit is formed on one semiconductor chip together with the modulation / demodulation circuit,
半導体チップに形成された上記発振回路は複数の周波数帯で動作可能に構成 され、 該発振回路の発振周波数を測定する回路おょぴ測定された値を記憶する 記憶回路と、 該記憶回路に記憶されている測定値と外部からの設定値とを比較 して上記発振回路の使用周波数帯を決定する回路とを備え、 上記記憶回路へ電 源電圧を供給する給電線が該記憶回路以外の回路へ電源電圧を供給する給電線 と分離されていることを特徴とする通信用半導体集積回路。  The oscillation circuit formed on the semiconductor chip is configured to be operable in a plurality of frequency bands, a circuit for measuring an oscillation frequency of the oscillation circuit, a storage circuit for storing a measured value, and a storage circuit for storing the measured value. A circuit for comparing the measured value measured with an external set value to determine a frequency band used by the oscillation circuit, wherein a power supply line for supplying a power supply voltage to the storage circuit is a circuit other than the storage circuit. A communication semiconductor integrated circuit, which is separated from a power supply line for supplying a power supply voltage to the semiconductor integrated circuit.
1 1 . 基準となる発振信号を生成する基準発振回路おょぴ該基準発振回路の発 振信号に基づいて所定の周波数のクロック信号を生成して出力するクロック生 成回路を備え、 上記基準発振回路およびクロック生成回路は上記記憶回路と同 一の給電線により供給される電源電圧で動作されるように構成されていること を特徴とする請求項 1 0に記載の通信用半導体集積回路。 11. A reference oscillation circuit for generating a reference oscillation signal and a clock generation circuit for generating and outputting a clock signal of a predetermined frequency based on the oscillation signal of the reference oscillation circuit, 10. The communication semiconductor integrated circuit according to claim 10, wherein the circuit and the clock generation circuit are configured to operate with a power supply voltage supplied by the same power supply line as the storage circuit.
1 2 . 請求項 1 0または 1 1に記載の通信用半導体集積回路と、 12. The communication semiconductor integrated circuit according to claim 10 or 11,
該通信用半導体集積回路によつて所望の周波数までダゥンコンパートされた 受信信号からデータを抽出したり送信データを I, Q信号に変換したりする ベースパンド回路と、  A base band circuit for extracting data from a received signal down-compartmented to a desired frequency by the communication semiconductor integrated circuit and converting transmission data into I and Q signals;
システム全体を制御するマイクロプロセッサと、  A microprocessor that controls the entire system;
上記記憶回路の電源電圧を生成する第 1の電圧発生回路と、  A first voltage generation circuit that generates a power supply voltage of the storage circuit;
上記記憶回路以外の回路の電源電圧を生成する第 2の電圧発生回路と、 を含む無線通信システムであって、 上記第 2の電圧発生回路は、 上記第 1の電圧発生回路の動作中においても、 上記ベースパンド回路または上記マイクロプロセッサからの指令により動作が 停止可能に構成されていることを特徴とする無線通信システム。 A second voltage generation circuit for generating a power supply voltage of a circuit other than the storage circuit, a wireless communication system including: The second voltage generation circuit is configured to be able to stop operation by a command from the base band circuit or the microprocessor even during operation of the first voltage generation circuit. system.
PCT/JP2002/009394 2002-09-13 2002-09-13 Semiconductor integrated circuit for communication and radio communication system WO2004025849A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004535848A JP3831908B2 (en) 2002-09-13 2002-09-13 Semiconductor integrated circuit for communication and wireless communication system
PCT/JP2002/009394 WO2004025849A1 (en) 2002-09-13 2002-09-13 Semiconductor integrated circuit for communication and radio communication system
TW091125246A TWI227968B (en) 2002-09-13 2002-10-25 Communication semiconductor IC and radio communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/009394 WO2004025849A1 (en) 2002-09-13 2002-09-13 Semiconductor integrated circuit for communication and radio communication system

Publications (1)

Publication Number Publication Date
WO2004025849A1 true WO2004025849A1 (en) 2004-03-25

Family

ID=31986100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/009394 WO2004025849A1 (en) 2002-09-13 2002-09-13 Semiconductor integrated circuit for communication and radio communication system

Country Status (3)

Country Link
JP (1) JP3831908B2 (en)
TW (1) TWI227968B (en)
WO (1) WO2004025849A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199032A (en) * 2005-06-30 2008-08-28 Seiko Epson Corp Integrated circuit device and electronic instrument
JP2009246854A (en) * 2008-03-31 2009-10-22 Sony Corp Electronic apparatus, dispersion adjustment method of ic internal components section of electronic apparatus, and ic
JP2009246853A (en) * 2008-03-31 2009-10-22 Sony Corp Electronic apparatus, dispersion adjustment method of ic internal component section of electronic apparatus, and ic
JP2009246852A (en) * 2008-03-31 2009-10-22 Sony Corp Electronic apparatus, dispersion adjustment method of ic internal component section of electronic apparatus, and ic
US8188544B2 (en) 2005-06-30 2012-05-29 Seiko Epson Corporation Integrated circuit device and electronic instrument

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04275731A (en) * 1991-03-04 1992-10-01 Toshiba Corp Radio communication equipment
JPH11196139A (en) * 1997-12-26 1999-07-21 Seiko Epson Corp Transmitter, receiver, and transmitter-receiver
JP2001244416A (en) * 2000-02-29 2001-09-07 Hitachi Ltd Semiconductor integrated circuit for processing signal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04275731A (en) * 1991-03-04 1992-10-01 Toshiba Corp Radio communication equipment
JPH11196139A (en) * 1997-12-26 1999-07-21 Seiko Epson Corp Transmitter, receiver, and transmitter-receiver
JP2001244416A (en) * 2000-02-29 2001-09-07 Hitachi Ltd Semiconductor integrated circuit for processing signal

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199032A (en) * 2005-06-30 2008-08-28 Seiko Epson Corp Integrated circuit device and electronic instrument
US8188544B2 (en) 2005-06-30 2012-05-29 Seiko Epson Corporation Integrated circuit device and electronic instrument
JP2009246854A (en) * 2008-03-31 2009-10-22 Sony Corp Electronic apparatus, dispersion adjustment method of ic internal components section of electronic apparatus, and ic
JP2009246853A (en) * 2008-03-31 2009-10-22 Sony Corp Electronic apparatus, dispersion adjustment method of ic internal component section of electronic apparatus, and ic
JP2009246852A (en) * 2008-03-31 2009-10-22 Sony Corp Electronic apparatus, dispersion adjustment method of ic internal component section of electronic apparatus, and ic
US8121578B2 (en) 2008-03-31 2012-02-21 Sony Corporation Electronic apparatus, dispersion adjustment method of IC internal component section of electronic apparatus and IC
US8676146B2 (en) 2008-03-31 2014-03-18 Sony Corporation Electronic apparatus, dispersion adjustment method of IC internal component section of electronic apparatus and IC

Also Published As

Publication number Publication date
JPWO2004025849A1 (en) 2006-01-12
JP3831908B2 (en) 2006-10-11
TWI227968B (en) 2005-02-11

Similar Documents

Publication Publication Date Title
JP4018393B2 (en) Semiconductor integrated circuit for communication and wireless communication system
US7313369B2 (en) Communication semiconductor integrated circuit and radio communication system
US7212047B2 (en) Semiconductor integrated circuit having built-in PLL circuit
US7242916B2 (en) Communication semiconductor integrated circuit device and wireless communication system
JP3997525B2 (en) Semiconductor integrated circuit for communication and wireless communication system
US7301416B2 (en) Semiconductor integrated circuit for wireless communication
JP5005455B2 (en) Semiconductor integrated circuit
JP2006033822A (en) Semiconductor integrated circuit device for communication, and wireless communication system
JP2006261714A (en) Semiconductor integrated circuit for communication and portable communication terminal
US7154341B2 (en) Communication semiconductor integrated circuit device and wireless communication system
WO2004025849A1 (en) Semiconductor integrated circuit for communication and radio communication system
US20040180643A1 (en) Semiconductor integrated circuit device
JP2006041580A (en) Semiconductor integrated circuit for communication
JP2005020736A (en) Semiconductor integrated circuit device and portable terminal system
JP2006262439A (en) Communication-oriented semiconductor integrated circuit incorporating pll circuit therein

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004535848

Country of ref document: JP

122 Ep: pct application non-entry in european phase