WO2004018668A1 - Method of evaluating degree of canceration of human-origin specimen - Google Patents

Method of evaluating degree of canceration of human-origin specimen Download PDF

Info

Publication number
WO2004018668A1
WO2004018668A1 PCT/JP2003/010480 JP0310480W WO2004018668A1 WO 2004018668 A1 WO2004018668 A1 WO 2004018668A1 JP 0310480 W JP0310480 W JP 0310480W WO 2004018668 A1 WO2004018668 A1 WO 2004018668A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
seq
nucleotide sequence
oligonucleotide
evaluation method
Prior art date
Application number
PCT/JP2003/010480
Other languages
French (fr)
Japanese (ja)
Inventor
Toshikazu Ushijima
Toshio Takada
Kazuaki Miyamoto
Original Assignee
Sumitomo Chemical Company, Limited
Japan As Represented By President Of National Cancer Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited, Japan As Represented By President Of National Cancer Center filed Critical Sumitomo Chemical Company, Limited
Priority to AU2003257587A priority Critical patent/AU2003257587A1/en
Publication of WO2004018668A1 publication Critical patent/WO2004018668A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/48Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57415Specifically defined cancers of breast
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/154Methylation markers

Definitions

  • the present invention relates to a method for evaluating the degree of canceration of a human-derived specimen, and the like.
  • the present inventors have conducted intensive studies and found that the methylation frequency of a specific DNA in a cancer patient sample is significantly higher than that of a sample from a healthy subject by using a real-time PCR method. Heading, the present invention has been reached.
  • the frequency of methylation in DNA having the nucleotide sequence shown in SEQ ID NO: 1 or its equivalent (hereinafter sometimes referred to as the present DNA) contained in a human-derived specimen is measured by real-time PCR.
  • the evaluation method of the present invention 2. The evaluation method according to the above item 1, wherein the human-derived specimen is a cell; 3. The evaluation method described in 1 above, wherein the human-derived sample is a tissue;
  • the human-derived specimen is breast tissue, mammary gland tissue or mammary gland epithelial tissue, and the cancer is breast cancer;
  • Measuring power of methylation frequency by real-time PCR method S After contacting DNA prepared from a sample with a reagent that modifies unmethylated cytosine, the DNA is shown as SEQ ID NO. PCR is performed using a pair of primers that can identify the presence or absence of cytosine methylation in the DNA having the base sequence or its equivalent, and the amount of the obtained amplification product is determined by the base sequence represented by SEQ ID NO: 1.
  • the evaluation method according to the above wherein the presence or absence of cytosine methylation in DNA or its equivalent is measured in real time using a probe capable of discriminating;
  • the forward primer is an oligonucleotide having the nucleotide sequence of SEQ ID NO: 2
  • the reverse primer is an oligonucleotide having the nucleotide sequence of SEQ ID NO: 3
  • the probe is a nucleotide having the nucleotide sequence of SEQ ID NO: 6.
  • the forward primer is an oligonucleotide having the nucleotide sequence of SEQ ID NO: 4
  • the reverse primer is an oligonucleotide having the nucleotide sequence of SEQ ID NO: 5.
  • a kit for detecting a cancer cell comprising an oligonucleotide having the nucleotide sequence of SEQ ID NO: 2, an oligonucleotide having the nucleotide sequence of SEQ ID NO: 3, and a nucleotide sequence of SEQ ID NO: 6
  • a kit for detecting a cancer cell comprising an oligonucleotide having the nucleotide sequence of SEQ ID NO: 4, an oligonucleotide having the nucleotide sequence of SEQ ID NO: 5, and a nucleotide sequence of SEQ ID NO: 7
  • the present invention relates to the use of methylated DNA having the nucleotide sequence shown in SEQ ID NO: 1 or an equivalent thereof as a cancer marker (for example, a breast cancer marker or the like).
  • the present DNA used as a cancer marker in the present invention is a human-derived Heparan sulfate D-Glucosaminyl 3-0-sulfotransferase-2 gene (hereinafter sometimes referred to as 30ST-2 gene) [J. Biol. Chem., 274, a part of the promoter region of 5170- 51 8 4 (1 "9)] nucleotide sequence is a DNA having a. human-derived 30ST- 2 gene coding region of the (coding region) responsible for the nucleotide sequence of Etason
  • exon 1 The base sequence of genomic DNA containing the most upstream 5 'exon (hereinafter referred to as exon 1) and the 5, upstream promoter region is described in, for example, Genbank Accession No.
  • HUAC003661 In the nucleotide sequence described in Genbank Accession No. HUAC003661, for example, the ATG codon encoding methionine located at the amino terminus of the amino acid sequence of the human 30ST-2 protein is represented by the base number Nos. 58514 to 58516, and the base sequence of exon 1 is shown in base numbers 58514 to 58999.
  • SEQ ID NO: 1 used in the present invention The present DNA having the nucleotide sequence shown is a DNA having the nucleotide sequence represented by nucleotide numbers 58252 to 58432 located in one region of this promoter.
  • the present DNA includes, in addition to DNA having the above-mentioned known nucleotide sequence, as an equivalent, the nucleotide sequence due to a naturally occurring mutation due to a species difference, an individual difference or a difference between organs or tissues of the organism. DNAs having nucleotide sequences in which deletions, substitutions, or additions have occurred are also included.
  • mammals there is a phenomenon in which, of the four types of bases that make up a gene (genomic DNA), only cytosine is methylated.
  • genomic DNA In the human-derived, for example, 30ST-2 gene, some cytosines in the genomic DNA are methylated.
  • the methylation modification of DNA is performed in the base sequence represented by 5′-CG-3 ′ (C represents cytosine, G represents guayun.
  • C represents cytosine
  • G represents guayun.
  • the base sequence may be referred to as CpG.
  • CpG. Limited to cytosine.
  • the site of methylation in cytosine is at position 5.
  • cytosine in the type I chain CpG is methylated immediately after replication, but cytosine in the nascent chain CpG is immediately activated by the action of methyltransferase. Is also fucked. Therefore, the state of DNA methylation will be inherited by two new sets of DNA even after DNA replication.
  • the term “methylation frequency” refers to, for example, the fact that the cytosine is methylated when a plurality of haploids are examined for the presence or absence of cytosine methylation in CpG to be prepared. It is expressed as a percentage of the haploid that exists. More specifically, the amount of methylated DNA originally present in the sample determined by the methylation-specific real-time PCR described later and the amount of methyl originally present in the sample determined by the non-methylation-specific real-time PCR The amount of unmodified DNA is added to the total amount of DNA, and expressed as a ratio obtained by dividing the amount of methylated DNA originally present in the sample by the total amount of DNA.
  • human-derived specimens in the first step of the evaluation method of the present invention include breast cancer cells and the like. Cancer cells or tissues containing the same, and cells that may contain DNA derived from cancer cells such as breast cancer cells, and tissues containing the same (the tissues here include blood, plasma, serum, In a broad sense, it includes body fluids such as lymph fluid, lymph nodes, etc.) or biological samples such as body secretions (urine, milk, etc.). Specifically, for example, when the cancer is breast cancer, breast tissue, mammary gland tissue or mammary gland epithelial tissue collected from a subject can be mentioned. When the human-derived sample is blood, for example, a blood sample collected by a periodic medical examination or a simple test can be used.
  • biological samples may be used as they are, or biological samples prepared by various operations such as separation, fractionation, and immobilization from the biological sample may be used as the samples.
  • a real-time PCR method is used as a method for measuring the methyl nig frequency in DNA having the nucleotide sequence shown in SEQ ID NO: 1 or its equivalent contained in a human-derived specimen.
  • Real-time PCR is a method for monitoring and analyzing the production process of amplification products in a PCR in real time using a device that integrates a thermal cycler and a spectrofluorometer. For example, by monitoring the PCR reaction product in real time using a probe such as a ⁇ -dependent nucleic acid polymerase probe (hereinafter sometimes referred to as the present probe) and performing force kinetic analysis, for example, the gene amount to be doubled This is a PCR method that can perform high-precision quantification, such as detecting the difference between the two. Equipment and kits for the real-time PCR method are already commercially available. First, DNA is extracted from a human-derived specimen using, for example, a commercially available DNA extraction kit or the like.
  • plasma or serum is prepared from blood according to an ordinary method, and free DNA contained in the prepared plasma or serum (DC derived from cancer cells such as breast cancer cells). (Including NA) can be used to analyze DNA from cancer cells such as breast cancer cells while avoiding contamination of blood cell-derived DNA.
  • a reagent that modifies unmethylated cytosine for example, the DNA having the nucleotide sequence shown in SEQ ID NO: 1 or a methylin of the cytosine to be analyzed in an equivalent thereof is obtained.
  • Real-time PCR is performed using primers and probes that can identify the presence or absence of dangling, and the methylation frequency of the present DNA contained in the sample is examined based on the amount of amplification product obtained.
  • the region for designing the primers and probes used here can be a part of the base sequence of the promoter region located at 5, 5 upstream of exon 1 of the 30ST_2 gene of human origin.
  • a base sequence represented by SEQ ID NO: 1 (corresponding to the base sequence represented by base numbers 58252 to 58432 of the base sequence described in Genbank Accession No. HUAC003661).
  • Cytosine in the nucleotide sequence represented by CpG present in the nucleotide sequence represented by SEQ ID NO: 1 has, for example, a high methylation frequency (that is, a hypermethylation state) in cancer cells such as breast cancer cells. Show.
  • a reagent for modifying unmethylated cytosine for example, bisulfite such as sodium hydrogen sulfite can be used.
  • bisulfite such as sodium hydrogen sulfite
  • a reagent that specifically modifies only methylated cytosine may be used instead of a reagent that modifies unmethylated cytosine.
  • a bisulfite such as sodium bisulfite is used. (Concentration in the solution: for example, 3M final concentration), etc., for about 10 hours to about 16 hours (overnight) at 55 ° C.
  • the denaturation at 95 ° C and the reaction at 55 ° C can be repeated 10-20 times. In this case, unmethylated cytosine is converted to peracyl, while methylated cytosine is not converted to peracyl and remains cytosine.
  • the nucleotide sequence [methylated cytosine (cytosine in CpG) remains cytosine
  • the unmethylated cytosine is a base sequence that has become peracil] and is complementary to such base sequence
  • Real-time PCR using a pair of methylation-specific primers and a probe selected from a specific base sequence (hereinafter, also referred to as methyl-specific specific real-time PCR).
  • the DNA sequence treated with bisulfite or the like is type II, and the cytosine is not methylated (base sequence in which all cytosines are peracil) and the base sequence Real-time PCR using a pair of non-methylation-specific primers and a probe selected from complementary nucleotide sequences (hereinafter, also referred to as non-methyl-specific-specific real-time PCR) is performed.
  • the ratio, ie, the methylation frequency can be calculated.
  • the absolute amount of the obtained DNA amount (that is, the amount of methylated DNA originally contained in the sample) obtained by performing only the real-time PCR specific to methyli-dani may be used as the methyleic frequency.
  • Primers (methylation-specific primers) and probes (methylation-specific probes) that are specific to the base sequence containing cytosine Design an unmethylation-specific primer and a probe (unmethylation-specific probe).
  • the methylation specificity is based on each strand of DNA that was originally double-stranded.
  • Primers and probes and unmethylated specific primers and probes It can also be made.
  • Such primers are preferably designed to include cytosine in CpG near the 3rd end of the primer to increase the specificity of methyl and non-methyl. More specifically, in the case of the present DNA, the primer can be designed as described above, for example, based on a base sequence containing one or more cytosines in CpG present in the base sequence of the present DM .
  • base sequence represented by SEQ ID NO: 1 base numbers 1, 9, 20, 30, 52, 63, 71, 80, 100, 121, 130, 133, 142, 146, 151, 153, 159, 167, 172
  • base numbers 1, 9, 20, 30, 52, 63, 71, 80 100, 121, 130, 133, 142, 146, 151, 153, 159, 167, 172
  • the following primers are preferred.
  • base sequence represented by SEQ ID NO: 1 base numbers 1, 9, 20, 30, 52, 63, 71, 80, 100, 121, 130, 133, 142, 146, 151, 153, 159, It can be designed based on a nucleotide sequence containing one or more cytosines represented by 167, 172 or 174. Specifically, a probe having the following nucleotide sequence as a nucleotide sequence of a region that hybridizes with an amplification product is preferable.
  • the region where the probe hybridizes and the region where the forward primer or reverse primer anneals overlap each other. It is necessary to select a combination of primers and probes so that no.
  • the region where the probe hybridizes in the amplification product is the same as the forward primer and the reverse primer. Select the primer and probe combination so that they are between the regions to be annealed, respectively.
  • the excitation light of the reporter fluorescent dye is not measured while it is absorbed by the quencher, and when the probe changes its structure due to hybridization to the amplification product and is not absorbed by the quencher, the excitation light is not measured. Be measured.
  • the probe used in the TaqMan (Registered Trademark) method is based on fluorescence resonance energy transfer when the reporter fluorochrome is bound to the same probe as the quencher fluorochrome. The fluorescence intensity is suppressed, and the fluorescence intensity is not suppressed in a state where the fluorescence intensity is not bound to the same probe as the quencher-fluorescent dye.
  • a fluorescein-based fluorescent dye such as FAM (6-potassium fluorescein) is preferable, and as a quencher-fluorescent dye, TAMRA (6-potency oxy-tetramethyl-rhodamine) is used.
  • TAMRA 6-potency oxy-tetramethyl-rhodamine
  • rhodamine-based fluorescent dyes are preferred. These fluorescent dyes are known and can be used since they are included in a commercially available detection kit for real-time PCR.
  • the binding positions of the reporter fluorescent dye and the quencher fluorescent dye are not particularly limited. Usually, the reporter fluorescent dye is bound to one end (preferably, the 5 'end) of the probe, and the quencher fluorescent dye is bound to the other end.
  • the reaction solution for real-time PCR may be, for example, 50 ng of type III DNA, 200 nM of the above-mentioned forward primer and reverse primer at a final concentration of 200 nM, 200 ⁇ M of the above-described probe at a final concentration of ⁇ , and 200 ⁇ M of a final concentration of dNTP.
  • reaction conditions for example, the above-mentioned reaction solution is kept at 95 ° C for 3 minutes, and then kept at 95 ° C for 15 seconds and then at 60 ° C for 60 seconds as one cycle. Conditions for performing the cycle are given. Performing such a reaction, the fluorescence intensity from the reaction solution is measured in real time.
  • the real-time PCR method itself is known, and devices and kits for the real-time PCR method are commercially available. Therefore, the real-time PCR method can be performed using such commercially available devices and kits.
  • amplification of DNA occurs by PCR using bisulfite-treated DNA as type II.
  • the DNA has a region that is complementary to the methylidani-specific primer (for example, if the cytosine portion contained in the region that anneals with the methylation-specific primer is completely methylated, If originally present in the sample), the DNA is amplified by the methylidani-specific primer. Furthermore, if the amplified DNA has a region that is complementary to the methylidani-specific probe (for example, the cytosine portion contained in the region that hybridizes with the methionylation-specific probe in the amplified DNA is completely methylmethylated) If the DNA that was originally present in the sample), the methylation-specific probe will hybridize to the amplified DNA in a single-stranded state.
  • the single-stranded DNA is converted into type I DNA in a state where the methylation-specific probe is completely hybridized to the single-stranded DNA.
  • extension occurs, DN Due to the exonuclease activity of A polymerase, the methylidani-specific probe hybridized to the single-stranded DNA is hydrolyzed from the 5 ′ terminal side.
  • the reporter-fluorescent dye and the quencher-fluorescent dye bound to the methylation-specific probe are separated, and suppressed by the fluorescence resonance energy transfer caused by the quencher-fluorescent dye.
  • the fluorescence intensity from the reporter fluorescent dye increases.
  • DNA amplification does not occur, and the methyl-specific probe does not hybridize to the DNA, and thus the methylation-specific probe is hydrolyzed by DNA polymerase. Not even.
  • the fluorescence from the reporter fluorescent dye remains suppressed by the quencher fluorescent dye, and the fluorescent intensity does not increase. Therefore, it is possible to quantify the methylated present DNA present in the sample by measuring the fluorescence intensity.
  • the unmethylated specific primer and probe may be used in place of the unmethylated primer and probe used in the above to obtain methylated DNA. It is possible to quantify this DNA that has not been used.
  • the fluorescence intensity is measured in real time. That is, the PCR reaction is performed while measuring the fluorescence intensity.
  • the measured fluorescence intensity exceeds the lower detection limit after a certain number of cycles and increases rapidly.
  • the target DNA in the sample can be quantified by examining the number of cycles after which the sudden increase in the fluorescence intensity starts. More specifically, for example, the threshold value is set to 10 times the standard deviation of the fluorescence intensity blur up to the 10th cycle, for example, where no rapid increase can occur even if 108 target DNAs are contained.
  • the conventional PCR As described above, there is no need to perform an operation to check the amplification of DNA by electrophoresis of the reaction solution after PCR, which is very simple.
  • the noise can be reduced, and it can be applied to samples derived from elderly people with high accuracy.
  • the methylation frequency of the DNA having the base sequence shown in SEQ ID NO: 1 or its equivalent contained in the human-derived specimen is measured.
  • the degree of canceration of the specimen is determined based on the difference obtained by the comparison.
  • the methylation frequency of the DNA having the nucleotide sequence of SEQ ID NO: 1 or its equivalent contained in a human-derived specimen is higher than that of the control (DNA having the nucleotide sequence of SEQ ID NO: 1 or If the equivalent is in a highly methylated state compared to the control), it can be determined that the specimen has a higher degree of canceration compared to the control.
  • the term “degree of canceration” has the same meaning as generally used in the art. Specifically, for example, when a human-derived specimen is a cell, it means the degree of malignancy of the cell. Further, for example, when a human-derived specimen is a tissue, it means the abundance of cancer cells in the fibrous tissue or the individual that is the source of the specimen. Incidentally, for example, when a human-derived specimen is blood, plasma, or serum, the “degree of canceration” may be considered as the degree of possibility that the individual from which the specimen originated has cancer.
  • primers and probes that can be used in the real-time PCR method for measuring the methylation frequency of the DNA having the base sequence represented by SEQ ID NO: 1 or an equivalent thereof are cancer cells such as breast cancer cells. It is useful as a reagent for detecting kits.
  • the present invention also provides a kit for detecting cancer cells such as breast cancer cells containing these primers and probes as reagents, and the scope of the evaluation method of the present invention utilizes the substantial principle of the method. It also includes use in the form of a detection kit as described above.
  • Example 1 (Confirmation test of methylation status of DNA or its equivalent having nucleotide sequence shown in SEQ ID NO: 1 in blood of early-stage breast cancer patient)
  • the above DNA is dissolved in TE buffer to prepare a 15 / zl genomic DNA solution, about 2 ⁇ l of 6M sodium hydroxide is added thereto, and the mixture is left at 37 ° C for 15 minutes. did. 9 ⁇ l of lOmM hydroquinone (Sigma) and 120 l of 3.6N sodium bisulfite (Sigma) are added to the mixture, and the cycle is 95 ° C for 30 seconds and 50 ° C for 15 minutes. The incubation was performed for 15 cycles. DNA was purified from the incubated solution using a Wizard DNA clean-up system (Promega).
  • the obtained DNA was designated as type III, and the methylation-specific primers Ml and M2 shown below and the 5 'end were labeled with the reporter fluorescent dye FAM (6-potassium fluorescein), and the end was quenched.
  • Real-time PCR was performed using a methylation-specific probe MP labeled with a fluorescent dye, TAMRA (6-carboxy-tetramethyl-rhodamine).
  • TAMRA 6-carboxy-tetramethyl-rhodamine
  • base numbers 1, 9, 20, 63, 71, 80, 153, 159, 167 172 bp DNA is specifically amplified from the present DNA in which all the cytosines represented by 172 and 172 are methylated.
  • the reaction solution for PCR includes l ⁇ L for the DNA to be type II, 200 nM each for the above primer at a final concentration, M ⁇ for the above probe for a final concentration, and 200 M for the final concentration for dNTP. mixed MgCl 2 and 4mM final concentration, Platinum Taq DNA polymerase (Platinum is a registered trademark of Invitrogen) and 1. 5U a, 10 X buffer and 5 1 (lOOmM Tris-HCl pH 8. 3 , 500mM KCl) Then, sterilized ultrapure water was added thereto to adjust the liquid volume to 50 // l.
  • genomic DNA in the usual way from: extracting (1 negative control), the portion of the treated genomic DNA by methylation enzyme SSSL (NEB Co.) - C P G_ all were methylation (2: positive Control).
  • This untreated genomic DNA (1: negative control) and methylated DNA (2: positive control) were subjected to bisulfite treatment in the same manner as described above, and real-time PCR was performed using the obtained DNA as type III. .
  • no amplification product was obtained with untreated DNA, but only with methylated DNA.
  • the methyl-specific primer for PCR and the methyl-specific probe were specifically amplified only for the methylated DNA.
  • use methylated DNA (2: positive control)! / A calibration curve was created.
  • a PCR product obtained by amplifying DNA by PCR was purified.
  • Molecules in PCR reaction solution was measured using an absorption altimeter, and the number of molecules in the solution was calculated from the predicted molecular weight of the PCR product.
  • a PCR containing 10, 100, 1000, 10,000, 100,000, 1,000,000, 10,000,000,000, or 100,000,000 copies of type I PCR product A reaction solution was prepared and used for real-time PCR under a fluorescence monitor.
  • real-time PCR the number of cycles in which the fluorescence intensity from the PCR reaction solution exceeds the threshold value is checked. The number of cycles at the time was plotted on the vertical axis, and a calibration curve was created. After creating this calibration curve, the samples were subjected to real-time PCR and the number of cycles in which the fluorescence intensity exceeded the threshold was determined. From the obtained results, the amount of the methylated present DNA was calculated using a calibration curve.
  • Tables 1 and 2 show the results of examining the frequency of methylation in the DNA having the nucleotide sequence shown in SEQ ID NO: 1 or its equivalent contained in a specimen (plasma) derived from a breast cancer patient. 2 As shown in Tables 1 and 2, 9 out of 30 breast cancer patients (30%) were able to quantify the methylated DNA. In healthy subjects, only 1 out of 35 persons could quantitate the methylated DNA, and the amount was 55.3 copies / 0.2 mL plasma equivalent. In other words, if the present DNA contained in the sample is methylated (if amplification products are obtained by methyl-specific real-time PCR), it is highly likely that the individual from which the sample originated has breast cancer. was gotten.
  • the tumor markers CEA normal value at 5 ng / mL or less
  • CA15-3 normal value at 28 U / mL or less
  • the present invention and a method for assessing a cancerous state of the specimen from human is possible to provide t Sequence Listing Free Text
  • Oligonucleotide primer designed for real-time PCR SEQ ID NO: 4
  • Oligonucleotide primers designed for real-time PCR SEQ ID NO: 5
  • Oligonucleotide primers designed for real-time PCR SEQ ID NO: 6
  • Oligonucleotide probe designed for real-time PCR SEQ ID NO: 7
  • Oligonucleotide probes designed for real-time PCR designed for real-time PCR

Abstract

A method of evaluating the degree of canceration of a human-origin specimen characterized by having the following steps: (1) the first step of measuring the methylation frequency in a DNA having the base sequence represented by SEQ ID NO:1 or its equivalent contained in the human-origin specimen by the real time PCR method; and (2) the second step of comparing the methylation frequency thus measured with that of a control and judging the degree of canceration of the specimen based on the difference.

Description

明細書  Specification
ヒト由来の検体の癌化度を評価する方法  Method for evaluating the degree of canceration of human-derived specimen
技術分野 Technical field
本発明は、 ヒト由来の検体の癌化度を評価する方法等に関する。 背景技術  The present invention relates to a method for evaluating the degree of canceration of a human-derived specimen, and the like. Background art
癌が遺伝子異常を原因とする疾病であること等が次第に明らかになりつつあるが、 癌患者の死亡率は未だ高く、現在利用可能な診断方法や治療方法が必ずしも十分に満 足できるものではないことを示している。 癌を早期に発見し、発見された癌に対する 有効な治療方法を選択し、 さらに、 治療後には癌再発の有無確認等のアフターケアを 行うことは、 臨床的に重要である。  Although it is becoming increasingly clear that cancer is a disease caused by genetic abnormalities, the mortality rate of cancer patients is still high, and currently available diagnostic and therapeutic methods are not always satisfactory. It is shown that. It is clinically important to detect cancer at an early stage, to select an effective treatment method for the detected cancer, and to provide after-care such as confirmation of the recurrence of cancer after treatment.
そこで、癌を早期に発見するための診断方法、癌に対する治療方法の有効性の評価、 癌再発の有無確認等に適する、遺伝子異常の検出に基づいたヒト由来の検体の癌化度 評価方法の開発が切望されている。 発明の開示  Therefore, a method for evaluating the degree of canceration of human-derived specimens based on the detection of genetic abnormalities, which is suitable for diagnosis methods for early detection of cancer, evaluation of the effectiveness of treatment methods for cancer, confirmation of the presence or absence of cancer recurrence, etc. Development is eagerly awaited. Disclosure of the invention
本発明者らは、 かかる状況の下、 鋭意検討した結果、 癌患者検体において特定な DN Aのメチル化頻度が健常者の検体と比較して有意に高いことを、 リアルタィム PCR法を 用いることにより見出し、 本発明に至った。  Under such circumstances, the present inventors have conducted intensive studies and found that the methylation frequency of a specific DNA in a cancer patient sample is significantly higher than that of a sample from a healthy subject by using a real-time PCR method. Heading, the present invention has been reached.
即ち、 本発明は、  That is, the present invention
1 . ヒト由来の検体の癌化度を評価する方法であって、  1. A method for evaluating the degree of canceration of a human-derived specimen,
( 1 ) ヒト由来の検体に含まれる配列番号 1で示される塩基配列を有する D NA又は その等価体 (以下、 本 D N Aと記すこともある。 ) におけるメチルイ匕頻度をリアルタ ィム PCR法により測定する第一工程、 及び  (1) The frequency of methylation in DNA having the nucleotide sequence shown in SEQ ID NO: 1 or its equivalent (hereinafter sometimes referred to as the present DNA) contained in a human-derived specimen is measured by real-time PCR. The first step, and
( 2 ) 測定された前記メチルイヒ頻度と、 対照とを比較することにより得られる差異に 基づき前記検体の癌ィヒ度を判定する第二工程  (2) The second step of determining the degree of cancer in the sample based on the difference obtained by comparing the measured methyl methane frequency with a control
を有することを特徴とする評価方法 (以下、 本発明評価方法と記すこともある。 ) ; 2 . ヒト由来の検体が細胞であることを特徴とする前項 1記載の評価方法; 3 . ヒ ト由来の検体が組織であることを特徴とする前項 1記載の評価方法; (Hereinafter, also referred to as the evaluation method of the present invention); 2. The evaluation method according to the above item 1, wherein the human-derived specimen is a cell; 3. The evaluation method described in 1 above, wherein the human-derived sample is a tissue;
4 . ヒト由来の検体が血液、血漿又は血清であることを特徴とする前項 1記載の評価 方法;  4. The evaluation method according to the above 1, wherein the human-derived sample is blood, plasma or serum;
5 . ヒト由来の検体が乳房組織、 乳腺組織又は乳腺上皮組織であって、 かつ、 癌が乳 癌であることを特徼とする前項 3記載の評価方法;  5. The evaluation method according to the above 3, wherein the human-derived specimen is breast tissue, mammary gland tissue or mammary gland epithelial tissue, and the cancer is breast cancer;
6 . メチル化頻度が、 当該 DNAの塩基配列内に存在する一つ以上の 5' -CG-3'で示され る塩基配列中のシトシンのメチル化頻度であることを特徴とする前項 1記載の評価 方法;  6. The methylation frequency of the cytosine in the nucleotide sequence represented by one or more 5'-CG-3 'present in the nucleotide sequence of the DNA, wherein the methylation frequency is cytosine methylation frequency. Evaluation method;
7 . ヒ ト由来の検体が血液、血漿又は血清であることを特徴とする前項 6記載の評価 方法;  7. The evaluation method as described in 6 above, wherein the human-derived sample is blood, plasma or serum;
8 . ヒト由来の検体が乳房組織、 乳腺組織又は乳腺上皮組織であって、 かつ、 癌が乳 癌であることを特徴とする前項 6記載の評価方法;  8. The evaluation method according to the above item 6, wherein the human-derived specimen is breast tissue, breast tissue or breast epithelial tissue, and the cancer is breast cancer;
9 . 癌マーカーとしての、 メチルイヒされた配列番号 1で示される塩基配列を有する D N A又はその等価体の使用;  9. Use of DNA having the nucleotide sequence of SEQ ID NO: 1 or an equivalent thereof as a cancer marker;
1 0 . 癌マーカーが乳癌マーカーであることを特徴とする前項 9記載の使用;10. The use according to the above item 9, wherein the cancer marker is a breast cancer marker;
1 1 . リアルタイム P C R法によるメチル化頻度の測定力 S、検体から調製された D N Aを非メチル化シトシンを修飾する試薬と接触させた後、該 D NAを铸型として、配 列番号 1で示される塩基配列を有する D N A又はその等価体中のシトシンのメチル 化の有無を識別可能な一対のプライマーを用いて P C Rを行い、得られた増幅産物の 量を、配列番号 1で示される塩基配列を有する D NA又はその等価体中のシトシンの メチルイ匕の有無を識別可能なプローブを用いてリアルタイムに測定することにより なされることを特徴とする前項 1記載の評価方法; 1 1. Measuring power of methylation frequency by real-time PCR method S. After contacting DNA prepared from a sample with a reagent that modifies unmethylated cytosine, the DNA is shown as SEQ ID NO. PCR is performed using a pair of primers that can identify the presence or absence of cytosine methylation in the DNA having the base sequence or its equivalent, and the amount of the obtained amplification product is determined by the base sequence represented by SEQ ID NO: 1. The evaluation method according to the above 1, wherein the presence or absence of cytosine methylation in DNA or its equivalent is measured in real time using a probe capable of discriminating;
1 2 . フォワードプライマーが配列番号 2で示される塩基配列を有するオリゴヌタレ ォチドであり、 リバースプライマーが配列番号 3で示される塩基配列を有するオリゴ ヌクレオチドであり、 かつ、 プローブが配列番号 6で示される塩基配列を有するオリ ゴヌクレオチドであることを特徴とする前項 1記載の評価方法;  12. The forward primer is an oligonucleotide having the nucleotide sequence of SEQ ID NO: 2, the reverse primer is an oligonucleotide having the nucleotide sequence of SEQ ID NO: 3, and the probe is a nucleotide having the nucleotide sequence of SEQ ID NO: 6. The evaluation method according to the above item 1, wherein the oligonucleotide is an oligonucleotide having a sequence;
1 3 . フォワードプライマーが配列番号 4で示される塩基配列を有するオリゴヌタレ ォチドであり、 リバースプライマーが配列番号 5で示される塩基配列を有するオリゴ ヌクレオチドであり、 かつ、 プローブが配列番号 7で示される塩基配列を有するオリ ゴヌクレオチドであることを特徴とする前項 1記載の評価方法; 13. The forward primer is an oligonucleotide having the nucleotide sequence of SEQ ID NO: 4, and the reverse primer is an oligonucleotide having the nucleotide sequence of SEQ ID NO: 5. The evaluation method according to the above-mentioned item 1, which is a nucleotide, and wherein the probe is an oligonucleotide having a base sequence represented by SEQ ID NO: 7;
1 4 . 癌細胞の検出用キットであって、 配列番号 2で示される塩基配列を有するオリ ゴヌクレオチド、配列番号 3で示される塩基配列を有するオリゴヌクレオチドおよび 配列番号 6で示される塩基配列を有するオリゴヌクレオチドを含有することを特徴 とするキット ;  14. A kit for detecting a cancer cell, comprising an oligonucleotide having the nucleotide sequence of SEQ ID NO: 2, an oligonucleotide having the nucleotide sequence of SEQ ID NO: 3, and a nucleotide sequence of SEQ ID NO: 6 A kit containing an oligonucleotide;
1 5 . 癌細胞の検出用キットであって、 配列番号 4で示される塩基配列を有するオリ ゴヌクレオチド、配列番号 5で示される塩基配列を有するオリゴヌクレオチドおよび 配列番号 7で示される塩基配列を有するオリゴヌクレオチドを含有することを特徴 とするキット ;  15. A kit for detecting a cancer cell, comprising an oligonucleotide having the nucleotide sequence of SEQ ID NO: 4, an oligonucleotide having the nucleotide sequence of SEQ ID NO: 5, and a nucleotide sequence of SEQ ID NO: 7 A kit containing an oligonucleotide;
等を提供するものである。 発明を実施するための最良の形態 And so on. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明は、 癌マーカー (例えば、 乳癌マーカー等) としての、 メチル化された、 配 列番号 1で示される塩基配列を有する D N A又はその等価体の使用等に関連する発 明である。  The present invention relates to the use of methylated DNA having the nucleotide sequence shown in SEQ ID NO: 1 or an equivalent thereof as a cancer marker (for example, a breast cancer marker or the like).
本発明において癌マーカーとして用いられる本 DNAは、 ヒト由来の Heparan sulfate D - Glucosaminyl 3 - 0- sulfotransferase- 2遺伝子 (以下、 30ST-2遺伝子と記すことも ある。 ) [J. Biol. Chem.,274, 5170- 5184 (1"9) ] のプロモーター領域の一部の塩基配 列を有する DNAである。 ヒト由来の 30ST- 2遺伝子の翻訳領域 (コーディング領域) の 塩基配列を担うエタソンのうち最も 5 ' 上流側に位置するェクソン (以下、 ェクソン 1と記す。 ) と、 その 5, 上流に位置するプロモーター領域とが含まれるゲノム D N Aの塩基配列は、 例えば、 Genbank Accession No. HUAC003661等に記載されている。 G enbank Accession No. HUAC003661に記載される塩基配列において、例えば、 ヒト由来 の 30ST- 2タンパク質のアミノ酸配列のァミノ末端に位置するメチォニンをコードす る ATGコドンは、 塩基番号 58514〜58516に示されており、 上記ェクソン 1の塩基配列 は、 塩基番号 58514〜58999に示されている。 本発明において利用される配列番号 1で 示される塩基配列を有する本 DNAは、 このプロモータ一領域に位置する塩基番号 58252 〜58432に示される塩基配列を有する DNAである。 本 DNAには、 上記の公知の塩基配列 を有する DNAのほか、 等価体として、 かかる塩基配列に、 生物の種差、 個体差若しく は器官、 組織間の差異等により天然に生じる変異による塩基の欠失、置換若しくは付 加が生じた塩基配列を有する DNAも含まれる。 哺乳動物では、 遺伝子 (ゲノム D NA) を構成する 4種類の塩基のうち、 シトシン のみがメチルイ匕されるという現象がある。 ヒ ト由来の、 例えば、 30ST - 2遺伝子では、 そのゲノム D N Aの一部のシトシンがメチルイ匕されている。 そして、 D N Aのメチル 化修飾は、 5' - CG- 3'で示される塩基配列 (Cはシトシンを表し、 Gはグァユンを表す。 以下、 当該塩基配列を CpGと記すこともある。 ) 中のシトシンに限られる。 シトシン においてメチル化される部位は、 その 5位である。 細胞分裂に先立つ D N A複製に際 して、 複製直後は铸型鎖の CpG中のシトシンのみがメチル化された状態となるが、 メ チル基転移酵素の働きにより即座に新生鎖の CpG中のシトシンもメチルイ匕される。 従 つて、 D N Aのメチル化の状態は、 D N A複製後も、 新しい 2組の D N Aにそのまま 引き継がれることになる。 本発明評価方法の第一工程において 「メチル化頻度」 とは、 例えば、 調查対象とな る CpG中のシトシンのメチル化の有無を複数のハプロイドについて調べたときの、 当 該シトシンがメチルイヒされているハプロイ ドの割合で表される。 より具体的には、 後 述するメチル化特異的リアルタイム PCRにより求めた元々検体中に存在したメチルイ匕 されていた DNA量と非メチル化特異的リアルタイム PCRにより求めた元々検体中に存 在したメチル化されていない DNA量とを加え総計 DNA量とし、元々検体中に存在したメ チルイ匕されていた DNA量を総計 DNA量で除した割合で表される。 また、 メチル化特異的 リアルタイム PCRにより求めた元々検体中に存在したメチルイ匕されていた DNA量で表 されることもある。 本発明評価方法の第一工程におけるヒト由来の検体としては、例えば、 乳癌細胞等 の癌細胞若しくはそれを含む組織、 及び、 乳癌細胞等の癌細胞由来の D NAが含まれ る可能性のある、 細胞、 それを含む組織 (ここでの組織とは、 血液、 血漿、 血清、 リ ンパ液等の体液、 リンパ節等を含む広義の意味である。 ) 若しくは体分泌物 (尿や乳 汁等) 等の生体試料をあげることができる。 具体的には、 例えば、 癌が乳癌である場 合、 被験者から採取された乳房組織、 乳腺組織又は乳腺上皮組織等をあげることがで きる。 ヒト由来の検体が血液である場合には、 例えば、 定期健康診断や簡便な検査等 で採取される血液試料をあげることもできる。 The present DNA used as a cancer marker in the present invention is a human-derived Heparan sulfate D-Glucosaminyl 3-0-sulfotransferase-2 gene (hereinafter sometimes referred to as 30ST-2 gene) [J. Biol. Chem., 274, a part of the promoter region of 5170- 51 8 4 (1 "9)] nucleotide sequence is a DNA having a. human-derived 30ST- 2 gene coding region of the (coding region) responsible for the nucleotide sequence of Etason The base sequence of genomic DNA containing the most upstream 5 'exon (hereinafter referred to as exon 1) and the 5, upstream promoter region is described in, for example, Genbank Accession No. HUAC003661. In the nucleotide sequence described in Genbank Accession No. HUAC003661, for example, the ATG codon encoding methionine located at the amino terminus of the amino acid sequence of the human 30ST-2 protein is represented by the base number Nos. 58514 to 58516, and the base sequence of exon 1 is shown in base numbers 58514 to 58999. SEQ ID NO: 1 used in the present invention The present DNA having the nucleotide sequence shown is a DNA having the nucleotide sequence represented by nucleotide numbers 58252 to 58432 located in one region of this promoter. The present DNA includes, in addition to DNA having the above-mentioned known nucleotide sequence, as an equivalent, the nucleotide sequence due to a naturally occurring mutation due to a species difference, an individual difference or a difference between organs or tissues of the organism. DNAs having nucleotide sequences in which deletions, substitutions, or additions have occurred are also included. In mammals, there is a phenomenon in which, of the four types of bases that make up a gene (genomic DNA), only cytosine is methylated. In the human-derived, for example, 30ST-2 gene, some cytosines in the genomic DNA are methylated. The methylation modification of DNA is performed in the base sequence represented by 5′-CG-3 ′ (C represents cytosine, G represents guayun. Hereinafter, the base sequence may be referred to as CpG.) Limited to cytosine. The site of methylation in cytosine is at position 5. During DNA replication prior to cell division, only cytosine in the type I chain CpG is methylated immediately after replication, but cytosine in the nascent chain CpG is immediately activated by the action of methyltransferase. Is also fucked. Therefore, the state of DNA methylation will be inherited by two new sets of DNA even after DNA replication. In the first step of the evaluation method of the present invention, the term “methylation frequency” refers to, for example, the fact that the cytosine is methylated when a plurality of haploids are examined for the presence or absence of cytosine methylation in CpG to be prepared. It is expressed as a percentage of the haploid that exists. More specifically, the amount of methylated DNA originally present in the sample determined by the methylation-specific real-time PCR described later and the amount of methyl originally present in the sample determined by the non-methylation-specific real-time PCR The amount of unmodified DNA is added to the total amount of DNA, and expressed as a ratio obtained by dividing the amount of methylated DNA originally present in the sample by the total amount of DNA. It may also be expressed by the amount of methylated DNA originally present in the sample determined by methylation-specific real-time PCR. Examples of human-derived specimens in the first step of the evaluation method of the present invention include breast cancer cells and the like. Cancer cells or tissues containing the same, and cells that may contain DNA derived from cancer cells such as breast cancer cells, and tissues containing the same (the tissues here include blood, plasma, serum, In a broad sense, it includes body fluids such as lymph fluid, lymph nodes, etc.) or biological samples such as body secretions (urine, milk, etc.). Specifically, for example, when the cancer is breast cancer, breast tissue, mammary gland tissue or mammary gland epithelial tissue collected from a subject can be mentioned. When the human-derived sample is blood, for example, a blood sample collected by a periodic medical examination or a simple test can be used.
これらの生体試料はそのまま検体として用いてもよく、 また、 かかる生体試料から 分離、 分画、 固定ィヒ等の種々の操作により調製された生体試料を検体として用いても よい。 本発明評価方法の第一工程において、 ヒト由来の検体に含まれる配列番号 1で示さ れる塩基配列を有する D NA又はその等価体におけるメチルイヒ頻度を測定する方法 としては、 リアルタイム PCR法を用いる。  These biological samples may be used as they are, or biological samples prepared by various operations such as separation, fractionation, and immobilization from the biological sample may be used as the samples. In the first step of the evaluation method of the present invention, a real-time PCR method is used as a method for measuring the methyl nig frequency in DNA having the nucleotide sequence shown in SEQ ID NO: 1 or its equivalent contained in a human-derived specimen.
リアルタイム PCR法とは、 サーマルサイクラーと分光蛍光光度計を一体化した装置 を用いて、 P C Rでの増幅産物の生成過程をリアルタイムでモニタリングし、解析す る方法である。 例えば、 鐯型依存性核酸ポリメラーゼプロープ (以下、 本プローブと 記すこともある。 ) 等のプローブを用いて PCR反応産物をリアルタイムでモュターし 、 力イネティックス分析を行うことにより、例えば 2倍の遺伝子量の差を検出する等 の高精度の定量が可能な PCR法である。 当該リアルタイム P C R法のための装置及び キットもすでに市販されている。 まずヒト由来の検体から、例えば、 市販の D NA抽出用キット等を用いて D NAを 抽出する。  Real-time PCR is a method for monitoring and analyzing the production process of amplification products in a PCR in real time using a device that integrates a thermal cycler and a spectrofluorometer. For example, by monitoring the PCR reaction product in real time using a probe such as a 鐯 -dependent nucleic acid polymerase probe (hereinafter sometimes referred to as the present probe) and performing force kinetic analysis, for example, the gene amount to be doubled This is a PCR method that can perform high-precision quantification, such as detecting the difference between the two. Equipment and kits for the real-time PCR method are already commercially available. First, DNA is extracted from a human-derived specimen using, for example, a commercially available DNA extraction kit or the like.
因みに、血液を検体として用いる場合には、血液から通常の方法に準じて血漿又は 血清を調製し、 調製された血漿又は血清の中に含まれる遊離 D NA (乳癌細胞等の癌 細胞由来の D NAが含まれる) を分析すると、 血球由来の D NAの混入を避けて乳癌 細胞等の癌細胞由来の D N Aを解析することができる。 次いで、抽出された D N Aを、非メチル化シトシンを修飾する試薬と接触させた後 、例えば、 配列番号 1で示される塩基配列を有する D NA又はその等価体中の解析対 象とするシトシンのメチルイ匕の有無を識別可能なプライマー及びプローブを用いて リアルタイム PCRを行い、 得られる増幅産物の量により、 検体中に含まれていた本 DNA のメチル化頻度を調べる。 By the way, when blood is used as a specimen, plasma or serum is prepared from blood according to an ordinary method, and free DNA contained in the prepared plasma or serum (DC derived from cancer cells such as breast cancer cells). (Including NA) can be used to analyze DNA from cancer cells such as breast cancer cells while avoiding contamination of blood cell-derived DNA. Next, after contacting the extracted DNA with a reagent that modifies unmethylated cytosine, for example, the DNA having the nucleotide sequence shown in SEQ ID NO: 1 or a methylin of the cytosine to be analyzed in an equivalent thereof is obtained. Real-time PCR is performed using primers and probes that can identify the presence or absence of dangling, and the methylation frequency of the present DNA contained in the sample is examined based on the amount of amplification product obtained.
ここで使用するプライマー及びプローブを設計する領域としては、 ヒト由来の 30ST _2遺伝子のェクソン 1の 5,上流に位置するプロモーター領域の一部の塩基配列をあ げることができ、 具体的には、 配列番号 1で示される塩基配列 (Genbank Accession No. HUAC003661に記載される塩基配列の塩基番号 58252〜58432で示される塩基配列に 相当する。 ) である。 配列番号 1で示される塩基配列中に存在する CpGで示される塩 基配列中のシトシンは、 例えば、 乳癌細胞等の癌細胞において高いメチルイ匕頻度 (即 ち、 高メチル化状態 (hypermethylation) ) を示す。 非メチル化シトシンを修飾する試薬としては、 例えば、 亜硫酸水素ナトリゥム等の 重亜硫酸塩 (bisulfite) 等を用いることができる。 因みに、 原理的には、 非メチル 化シトシンを修飾する試薬の代わりに、メチル化シトシンのみを特異的に修飾する試 薬を用いてもよい。  The region for designing the primers and probes used here can be a part of the base sequence of the promoter region located at 5, 5 upstream of exon 1 of the 30ST_2 gene of human origin. And a base sequence represented by SEQ ID NO: 1 (corresponding to the base sequence represented by base numbers 58252 to 58432 of the base sequence described in Genbank Accession No. HUAC003661). Cytosine in the nucleotide sequence represented by CpG present in the nucleotide sequence represented by SEQ ID NO: 1 has, for example, a high methylation frequency (that is, a hypermethylation state) in cancer cells such as breast cancer cells. Show. As a reagent for modifying unmethylated cytosine, for example, bisulfite such as sodium hydrogen sulfite can be used. Incidentally, in principle, a reagent that specifically modifies only methylated cytosine may be used instead of a reagent that modifies unmethylated cytosine.
抽出された D NAを非メチルイ匕シトシンを修飾する試薬と接触させるには、例えば 、 まず当該 DNAをアルカリ溶液 (p H9〜14) で変性した後、 亜硫酸水素ナトリウム等 の重亜硫酸塩 (bisulfite) (溶液中の濃度:例えば、 終濃度 3M) 等で約 10時間〜約 1 6時間 (一晩) 程度、 55°Cで処理する。 反応を促進するため、 95°Cでの変性と、 55°C での反応を 10- 20回繰り返すこともできる。 この場合、 メチルイ匕されていないシトシ ンはゥラシルに変換され、 一方、 メチル化されているシトシンはゥラシルに変換され ず、 シトシンのままである。  To bring the extracted DNA into contact with a reagent that modifies non-methylated cytosine, for example, after denaturing the DNA with an alkaline solution (pH 9 to 14), a bisulfite such as sodium bisulfite is used. (Concentration in the solution: for example, 3M final concentration), etc., for about 10 hours to about 16 hours (overnight) at 55 ° C. To accelerate the reaction, the denaturation at 95 ° C and the reaction at 55 ° C can be repeated 10-20 times. In this case, unmethylated cytosine is converted to peracyl, while methylated cytosine is not converted to peracyl and remains cytosine.
次いで、 例えば、 重亜硫酸塩等で処理された DNAを鍚型とし、 かつ、 メチル化され たシトシンが含まれる場合の塩基配列 [メチル化されているシトシン (CpG中のシト シン) はシトシンのままであり、 メチル化されていないシトシン (CpG中に含まれて ないシトシンも含む) はゥラシルとなつた塩基配列] とかかる塩基配列に対して相補 的な塩基配列からそれぞれ選ばれる一対のメチル化特異的プライマーならびにプロ ーブを用いるリアルタイム PCR (以下、 メチルイヒ特異的リアルタイム PCRとも記すこと もある。 ) を行う。 あるいは、 例えば、 重亜硫酸塩等で処理された DNAを錶型とし、 かつ、 シトシンがメチル化されていない場合の塩基配列 (全てのシトシンがゥラシル となった塩基配列) とかかる塩基配列に対して相補的な塩基配列からそれぞれ選ばれ る一対の非メチル化特異的プライマー及ぴプローブを用いるリアルタイム PCR (以下 、 非メチルイヒ特異的リアルタイム PCRとも記すこともある。 ) を行う。 Next, for example, when the DNA treated with bisulfite or the like is type III and contains methylated cytosine, the nucleotide sequence [methylated cytosine (cytosine in CpG) remains cytosine The unmethylated cytosine (including cytosine not included in CpG) is a base sequence that has become peracil] and is complementary to such base sequence Real-time PCR using a pair of methylation-specific primers and a probe selected from a specific base sequence (hereinafter, also referred to as methyl-specific specific real-time PCR). Alternatively, for example, the DNA sequence treated with bisulfite or the like is type II, and the cytosine is not methylated (base sequence in which all cytosines are peracil) and the base sequence Real-time PCR using a pair of non-methylation-specific primers and a probe selected from complementary nucleotide sequences (hereinafter, also referred to as non-methyl-specific-specific real-time PCR) is performed.
メチル化特異的プライマー及ぴプローブを用いるリアルタイム PCRの場合 (前者) には、解析対象とするシトシンがメチル化されている DNAから DNAが増幅され検出され る。 一方、 非メチル化特異的プライマー及びプローブを用いるリアルタイム PCRの場 合 (後者) には、 解析対象とするシトシンがメチルイヒされていない DNAから DNAが増幅 され検出される。 これらの増幅産物の量により、 元々検体中に含まれていたメチルイ匕 されていた DNA量及びメチル化されていなかった DNA量を求める。 次に、 以下の式 (メ チル化されていた DNA量) / [ (メチルイ匕されていた DNA量) + (メチルイ匕されていなか つた DNA量) ]を用いて、 メチルイ匕されていた DNAの割合、 すなわち、 メチル化頻度を 算出することができる。 また、 メチルイ匕特異的リアルタイム PCRのみを実施して、 得 られた DNA量 (すなわち、 元々検体中に含まれていたメチル化されていた DNA量) の絶 対量をメチルイヒ頻度として用いてもよい。 ここで、 プライマー及びプローブとしては、 メチル化を受けていないシトシンがゥ ラシルに変換され、 かつ、 メチル化を受けているシトシンはゥラシルに変換されなレ、 ことを考慮して、 メチノレイヒを受けているシトシンを含む塩基配列に特異的なプライマ 一 (メチル化特異的プライマー) およびプローブ (メチル化特異的プローブ) を設計 し、 また、 メチルイヒを受けていないシトシンを含む塩基配列に特異的なプライマー ( 非メチル化特異的プライマー) 及びプローブ (非メチル化特異的プローブ) を設計す る。重亜硫酸塩処理により化学的に変換され相補的ではなくなつた D N A鎖を基に設 計することから、 元来二本鎖であった D N Aのそれぞれの鎖を基に、 それぞれからメ チル化特異的プライマー、プローブと非メチル化特異的プライマー及びプローブを作 製することもできる。 かかるプライマーは、 メチル、 非メチルの特異性を高めるため に、 プライマーの 3,末端近傍に CpG中のシトシンを含むように設計することが好まし い。 より具体的には、 本 DNAの場合、 プライマーは、 例えば、 本 DMの塩基配列内に存在 する CpG中のシトシンを 1以上含む塩基配列を基にして、 上記のようにして設計する ことができる。 例えば、 配列番号 1で示される塩基配列において塩基番号 1、 9、 20、 30、 52、 63、 71、 80、 100、 121、 130、 133、 142、 146、 151、 153、 159、 167、 172又 は 174で示されるシトシンを 1以上含む塩基配列を基に設計することができる。 さら に具体的には、 以下のプライマーが好ましい。 In the case of real-time PCR using methylation-specific primers and probes (the former), DNA is amplified and detected from DNA in which cytosine to be analyzed is methylated. On the other hand, in the case of real-time PCR using unmethylation-specific primers and probes (the latter), DNA is amplified and detected from DNA in which the cytosine to be analyzed is not methylenzyme. From the amounts of these amplification products, the amounts of methylated DNA and unmethylated DNA originally contained in the sample are determined. Next, using the following formula (amount of methylated DNA) / [(amount of methylated DNA) + (amount of methylated DNA)], the amount of methylated DNA is calculated. The ratio, ie, the methylation frequency, can be calculated. Alternatively, the absolute amount of the obtained DNA amount (that is, the amount of methylated DNA originally contained in the sample) obtained by performing only the real-time PCR specific to methyli-dani may be used as the methyleic frequency. . Here, as a primer and a probe, taking into account that unmethylated cytosine is converted to peracil and methylated cytosine is not converted to peracil, Primers (methylation-specific primers) and probes (methylation-specific probes) that are specific to the base sequence containing cytosine Design an unmethylation-specific primer and a probe (unmethylation-specific probe). Since the design is based on the DNA strand that has been chemically converted by bisulfite treatment and is no longer complementary, the methylation specificity is based on each strand of DNA that was originally double-stranded. Primers and probes and unmethylated specific primers and probes It can also be made. Such primers are preferably designed to include cytosine in CpG near the 3rd end of the primer to increase the specificity of methyl and non-methyl. More specifically, in the case of the present DNA, the primer can be designed as described above, for example, based on a base sequence containing one or more cytosines in CpG present in the base sequence of the present DM . For example, in the base sequence represented by SEQ ID NO: 1, base numbers 1, 9, 20, 30, 52, 63, 71, 80, 100, 121, 130, 133, 142, 146, 151, 153, 159, 167, 172 Alternatively, it can be designed based on a nucleotide sequence containing one or more cytosines represented by 174. More specifically, the following primers are preferred.
くメチル化特異的プライマー〉 Methylation-specific primer>
Ml (フォワードプライマー) : 5, -CGGTTGTTCGGAGTTTTATC-3' (配列番号 2 )  Ml (forward primer): 5, -CGGTTGTTCGGAGTTTTATC-3 '(SEQ ID NO: 2)
M2 (リバースプライマー) : 5, -GTAACGCTACCACGACCACG- 3' (配列番号 3 ) く非メチル化特異的プライマー > M2 (reverse primer): 5, -GTAACGCTACCACGACCACG-3 '(SEQ ID NO: 3) Unmethylated specific primer>
U1 (フォヮードプライマ一) : 5' - TGGAGTTTTATTGTTTAGGATT- 3' (配列番号 4 ) U2 (リバースプライマー) : 5, -AAAACTCACATAACACTACCACA-3' (配列番号 5 ) 本発明におけるプローブとしては、例えば、 オリゴヌクレオチドに後述するレポ一 タ一蛍光色素とクェンチヤ一蛍光色素とが結合したものをあげることができる。プロ ーブ上の、本 D N Aからの増幅産物とハイプリダイズする領域の塩基配列は、例えば 、 本 DNAの塩基配列内に存在する CpG中のシトシンを 1以上含む塩基配列を基にして、 上記のようにして設計することができる。 例えば、 配列番号 1で示される塩基配列に おいて塩基番号 1、 9、 20、 30、 52、 63、 71、 80、 100、 121、 130、 133、 142、 146、 15 1、 153、 159、 167、 172又は 174で示されるシトシンを 1以上含む塩基配列を基に設計 することができる。 具体的には、増幅産物とハイブリダイズする領域の塩基配列とし て以下の塩基配列を有するプローブが好ましい。 U1 (Forward primer): 5'-TGGGAGTTTTATTGTTTAGGATT-3 '(SEQ ID NO: 4) U2 (reverse primer): 5, -AAAACTCACATAACACTACCACA-3' (SEQ ID NO: 5) Examples of the probe in the present invention include oligonucleotides Examples thereof include those in which a reporter fluorescent dye and a quencher fluorescent dye described below are bonded. The base sequence of the region on the probe that hybridizes with the amplification product from the present DNA is, for example, based on the base sequence containing one or more cytosines in CpG present in the base sequence of the present DNA. It can be designed as follows. For example, in the base sequence represented by SEQ ID NO: 1, base numbers 1, 9, 20, 30, 52, 63, 71, 80, 100, 121, 130, 133, 142, 146, 151, 153, 159, It can be designed based on a nucleotide sequence containing one or more cytosines represented by 167, 172 or 174. Specifically, a probe having the following nucleotide sequence as a nucleotide sequence of a region that hybridizes with an amplification product is preferable.
<メチル化特異的プローブ > <Methylation specific probe>
MP: 5' -CCCGAAAACAACGACTCCTCGAA-3' (配列番号 6 ) <非メチル化特異的プローブ > MP: 5'-CCCGAAAACAACGACTCCTCGAA-3 '(SEQ ID NO: 6) <Unmethylated specific probe>
UP: 5' -TCCCAAAAACAACAACTCCTCAAAA-3' (配列番号 7 ) 尚、錶型となる D NAおよび増幅産物において、 プローブがハイブリダィズする領 域と、 上記フォワードプライマー又はリバースプライマーがァニールする領域とが、 互いに重複することがないように、プライマーとプローブの組み合わせを選択する必 要がある。 また、上記フォワードプライマーおょぴリバースプライマーを用いて得ら れる増幅産物を、 上記プローブで検出可能とするために、増幅産物においてプローブ がハイプリダイズする領域が、上記フォワードプライマーおょぴリバースプライマー がそれぞれァニールする領域の間にあるように、プライマーとプローブの組み合わせ を選択する。 上記レポーター蛍光色素の励起光は、クェンチヤ一により吸収されている間は測定 されず、増幅産物へのハイプリダイズによりプローブに構造等の変化が生じてクェン チヤ一により吸収されなくなると当該励起光が測定されるようになる。 例えば、 T a q M a n (Roche Molecular Systemsの登録商標) 法で用レ、られるプローブは、 レポ 一ター蛍光色素がクェンチヤ一蛍光色素と同一のプローブに結合されている場合に は蛍光共鳴エネルギー転移によりその蛍光強度が抑制され、前記クェンチヤ一蛍光色 素と同一のプローブに結合されていない状態では蛍光強度が抑制されないものであ る。 レポーター蛍光色素としては、 F AM ( 6—力ルポキシーフルォレツセイン) の ようなフルォレツセイン系蛍光色素が好ましく、 クェンチヤ一蛍光色素としては、 T AMR A ( 6 _力 ボキシーテトラメチルーローダミン) のようなローダミン系蛍光 色素が好ましい。 これらの蛍光色素は公知であり、 市販のリアルタイム P C R用検出 キットに含まれているのでそれを用いることもできる。 レポーター蛍光色素及ぴクェ ンチヤー蛍光色素の結合位置は特に限定されないが、 通常、 プローブの一端 (好まし くは 5 ' 末端) にレポーター蛍光色素が、 他端にクェンチヤ一蛍光色素が結合される 。 尚、 オリゴヌクレオチドに蛍光色素を結合する方法は公知であり、 例えば、 Noble et al., (1984) Nuc. Acids Res. 12 : 3387—3403、 Iyer et al., (1990) J. Am. Chem . Soc. 112 : 1253-1254等に記載されている。 リアルタイム PCRにおける反応液としては、 例えば、 鎳型とする DNAを 50ngと、 上記 フォワードプライマー、 リバースプライマーを終濃度で、 それぞれ 200nMと、 上記プ ローブを終濃度で ΙΟΟηΜと、 dNTPを終濃度で 200 μ Μと、 MgCl2を終濃度で ½Μと、耐熱性 DNAポリメラーゼを 1. 5Uと、 10 X緩衝液(lOOmM Tris- HC1 pH 8. 3、 500raM KC1)を 5 1 とを混合し、 これに滅菌超純水を加えて液量を とした反応液をあげることがで きる。 尚、 プライマー及ぴプローブの組み合わせについては、 メチルイヒ特異的リアル タイム PCRの場合には、 メチルイヒ特異的プライマーとメチル化特異的プローブとを組 み合わせて使用し、 非メチルイ匕特異的リアルタイム PCRの場合には、 非メチル化特異 的プライマーと非メチルイ匕特異的プローブとを組み合わせて使用する。反応条件とし ては、 例えば、 前記のような反応液を、 95°Cにて 3分間保温した後、 95°Cにて 15秒間 次いで 60°Cにて 60秒間を 1サイクルとする保温を 55サイクル行う条件があげられる。 このような反応を行い、 反応液からの蛍光強度をリアルタイムに測定する。 このリア ルタイム P C R法自体は公知であり、そのための装置及ぴキットも市販されているの で、 このような市販の装置及びキットを用いて行なうことができる。 反応では、 bisulfite処理された DNAを铸型として PCRにより DNAの増幅が起きる。 も し、 DNAがメチルイ匕特異的プライマーと相捕的な領域を有していれば (例えば、 メチ ル化特異的プライマーとァニールする領域に含まれるシトシン部分が、全てメチル化 されていた DNAが元々検体中に存在していれば) 、 メチルイ匕特異的プライマーにより D NAが増幅される。 さらに、 増幅された DNAがメチルイ匕特異的プローブと相補的な領域 を有していれば (例えば、 増幅された DNAにおいてメチノレ化特異的プローブとハイブ リダイズする領域に含まれるシトシン部分が、 全てメチルイヒされていた DNAが元々検 体中に存在していれば) 、 メチル化特異的プロ一ブは一本鎖状態の増幅 DNAにハイブ リダィズする。 次いで、 例えば、 T a q M a n (Roche Molecular Systemsの登録商 標) 法によるリアルタイム PCRでは、 メチル化特異的プローブが一本鎖 D N Aに完全 にハイブリダィズした状態で、 当該一本鎖 D NAを铸型とする伸長が起きると、 D N Aポリメラーゼのェキソヌクレアーゼ活性により、当該一本鎖 D NAにハイブリダイ ズしていたメチルイ匕特異的プローブが 5 ' 末端側から加水分解される。 この分解の結 果、 メチル化特異的プローブに結合されているレポ一タ一蛍光色素とクェンチヤ一蛍 光色素とが分離され、 クェンチヤ一蛍光色素に起因する蛍光共鳴エネルギー転移によ り抑制されていたレポーター蛍光色素からの蛍光強度が増加する。 一方、 検体中に上 記 DNAが存在しない場合には、 D NAの増幅が起きず、 メチルイヒ特異的プローブは D N Aにハイブリダイズせず、従ってメチル化特異的プローブが D N Aポリメラーゼに よって加水分解されることもない。 このため、 レポーター蛍光色素からの蛍光は、 ク ェンチヤ一蛍光色素により抑制されたままであり、 蛍光強度は増加しない。 従って、 蛍光強度を測定することにより、 検体中に存在しているメチル化された本 DNAを定量 することが可能である。 メチルイ匕されていない本 DNAを定量する場合には、 上記で使 用した、 メチル化特異的プライマー及ぴプローブの代わりに、 非メチル化特異的ブラ イマー及ぴプローブを用いることにより、 メチルイ匕されていない本 DNAを定量するこ とが可能である。 本発明評価方法では、 蛍光強度をリアルタイムに測定する。 すなわち、 蛍光強度を 測定しながら P C R反応を行なう。 測定される蛍光強度は、 あるサイクル数を過ぎる と検出下限を超え、 急激に増加する。 そして、 検体中に目的とする DNA量が多いほど 、 少ないサイクル数で蛍光強度が急に増加する。 従って、 何サイクルを過ぎた時に蛍 光強度の急激な増加が始まるか等を調べることにより、 検体中の目的とする DNAを定 量することができる。 より具体的には、 例えば、 108個の目的とする DNAが含まれてい たとしても急激な増加が起こりえない例えば 10サイクル目までの蛍光強度のブレの 標準偏差の 1 0倍を閾値として設定し、蛍光強度がこの閾値を超えるサイクル数を調 ベることにより、 検体中のメチルイヒされた本 DNAを正確に定量することができる。 即 ち、 検体中のメチルイヒされた本 DNAの数の常用対数を横軸に、 上記閾値を超えた時の サイクル数を縦軸にとると、 測定結果はほぼ完全に直線上にのるので、 検量線を作成 しておけば、何サイクルで閾値を超えるかを調べることにより検体中のメチルイ匕され た本 DNAを定量することができる。 従って、 本発明評価方法によれば、 従来の P C R のように、 P C R後に反応液の電気泳動を行なって DNAの増幅を調べる操作が不要で あり、 非常に簡便である。 またプライマーの他にプローブを同時に用いると、 ノイズ を低く抑えることが可能となり、 高年齢者由来の検体にも精度よく適用可能である。 以上の方法を用いて、 ヒト由来の検体に含まれる配列番号 1で示される塩基配列を 有する D N A又はその等価体におけるメチル化頻度を測定する。測定されたメチルイ匕 頻度と、 例えば、 乳癌細胞等の癌細胞を持たないと診断され得る健常なヒト由来の検 体に含まれる配列番号 1で示される塩基配列を有する D N A又はその等価体におけ るメチル化頻度 (対照) とを比較して、 当該比較により得られる差異に基づき前記検 体の癌化度を判定する。 仮に、 ヒト由来の検体に含まれる配列番号 1で示される塩基 配列を有する D N A又はその等価体におけるメチル化頻度が対照と比較して高けれ ば(配列番号 1で示される塩基配列を有する D NA又はその等価体が対照と比較の上 で高メチルイ匕状態であれば) 、 当該検体の癌ィ匕度が対照と比較の上で高いと判定する ことができる。 UP: 5'-TCCCAAAAACAACAACTCCTCAAAA-3 '(SEQ ID NO: 7) In the DNA and amplification product of type III, the region where the probe hybridizes and the region where the forward primer or reverse primer anneals overlap each other. It is necessary to select a combination of primers and probes so that no In addition, in order to enable the amplification product obtained using the forward primer and the reverse primer to be detectable with the probe, the region where the probe hybridizes in the amplification product is the same as the forward primer and the reverse primer. Select the primer and probe combination so that they are between the regions to be annealed, respectively. The excitation light of the reporter fluorescent dye is not measured while it is absorbed by the quencher, and when the probe changes its structure due to hybridization to the amplification product and is not absorbed by the quencher, the excitation light is not measured. Be measured. For example, the probe used in the TaqMan (Registered Trademark) method is based on fluorescence resonance energy transfer when the reporter fluorochrome is bound to the same probe as the quencher fluorochrome. The fluorescence intensity is suppressed, and the fluorescence intensity is not suppressed in a state where the fluorescence intensity is not bound to the same probe as the quencher-fluorescent dye. As a reporter fluorescent dye, a fluorescein-based fluorescent dye such as FAM (6-potassium fluorescein) is preferable, and as a quencher-fluorescent dye, TAMRA (6-potency oxy-tetramethyl-rhodamine) is used. Such rhodamine-based fluorescent dyes are preferred. These fluorescent dyes are known and can be used since they are included in a commercially available detection kit for real-time PCR. The binding positions of the reporter fluorescent dye and the quencher fluorescent dye are not particularly limited. Usually, the reporter fluorescent dye is bound to one end (preferably, the 5 'end) of the probe, and the quencher fluorescent dye is bound to the other end. In addition, a method for binding a fluorescent dye to an oligonucleotide is known. For example, Noble et al., (1984) Nuc. Acids Res. 12: 3387-3403, Iyer et al., (1990) J. Am. Chem. Soc. 112: 1253-1254. The reaction solution for real-time PCR may be, for example, 50 ng of type III DNA, 200 nM of the above-mentioned forward primer and reverse primer at a final concentration of 200 nM, 200 μM of the above-described probe at a final concentration of ΙΟΟηΜ, and 200 μM of a final concentration of dNTP. μ μ, MgCl 2 at a final concentration of ½Μ, 1.5 U of thermostable DNA polymerase, and 51 of 10X buffer (100 mM Tris-HC1 pH 8.3, 500raM KC1), and mix them. It is possible to increase the volume of the reaction solution by adding sterile ultrapure water. For the combination of primer and probe, in the case of methyl-specific real-time PCR, use a combination of methyl-specific primer and methylation-specific probe, and in the case of non-methyl-specific real-time PCR. For this, a non-methylation-specific primer and a non-methyl-specific probe are used in combination. As reaction conditions, for example, the above-mentioned reaction solution is kept at 95 ° C for 3 minutes, and then kept at 95 ° C for 15 seconds and then at 60 ° C for 60 seconds as one cycle. Conditions for performing the cycle are given. Performing such a reaction, the fluorescence intensity from the reaction solution is measured in real time. The real-time PCR method itself is known, and devices and kits for the real-time PCR method are commercially available. Therefore, the real-time PCR method can be performed using such commercially available devices and kits. In the reaction, amplification of DNA occurs by PCR using bisulfite-treated DNA as type II. If the DNA has a region that is complementary to the methylidani-specific primer (for example, if the cytosine portion contained in the region that anneals with the methylation-specific primer is completely methylated, If originally present in the sample), the DNA is amplified by the methylidani-specific primer. Furthermore, if the amplified DNA has a region that is complementary to the methylidani-specific probe (for example, the cytosine portion contained in the region that hybridizes with the methionylation-specific probe in the amplified DNA is completely methylmethylated) If the DNA that was originally present in the sample), the methylation-specific probe will hybridize to the amplified DNA in a single-stranded state. Next, for example, in real-time PCR by the TaqMan (registered trademark of Roche Molecular Systems) method, the single-stranded DNA is converted into type I DNA in a state where the methylation-specific probe is completely hybridized to the single-stranded DNA. When extension occurs, DN Due to the exonuclease activity of A polymerase, the methylidani-specific probe hybridized to the single-stranded DNA is hydrolyzed from the 5 ′ terminal side. As a result of this decomposition, the reporter-fluorescent dye and the quencher-fluorescent dye bound to the methylation-specific probe are separated, and suppressed by the fluorescence resonance energy transfer caused by the quencher-fluorescent dye. The fluorescence intensity from the reporter fluorescent dye increases. On the other hand, if the above DNA is not present in the sample, DNA amplification does not occur, and the methyl-specific probe does not hybridize to the DNA, and thus the methylation-specific probe is hydrolyzed by DNA polymerase. Not even. Thus, the fluorescence from the reporter fluorescent dye remains suppressed by the quencher fluorescent dye, and the fluorescent intensity does not increase. Therefore, it is possible to quantify the methylated present DNA present in the sample by measuring the fluorescence intensity. When quantifying the present DNA that has not been methylated, the unmethylated specific primer and probe may be used in place of the unmethylated primer and probe used in the above to obtain methylated DNA. It is possible to quantify this DNA that has not been used. In the evaluation method of the present invention, the fluorescence intensity is measured in real time. That is, the PCR reaction is performed while measuring the fluorescence intensity. The measured fluorescence intensity exceeds the lower detection limit after a certain number of cycles and increases rapidly. Then, as the amount of the target DNA in the sample is larger, the fluorescence intensity increases rapidly with a smaller number of cycles. Therefore, the target DNA in the sample can be quantified by examining the number of cycles after which the sudden increase in the fluorescence intensity starts. More specifically, for example, the threshold value is set to 10 times the standard deviation of the fluorescence intensity blur up to the 10th cycle, for example, where no rapid increase can occur even if 108 target DNAs are contained. Then, by determining the number of cycles in which the fluorescence intensity exceeds this threshold value, it is possible to accurately quantify the methyl-enriched DNA of the sample. That is, when the horizontal axis is the common logarithm of the number of methyl-enriched DNAs in the sample and the vertical axis is the number of cycles when the above threshold is exceeded, the measurement results are almost completely on a straight line. By preparing a calibration curve, it is possible to quantify the methylated DNA of the sample by examining how many cycles the threshold is exceeded. Therefore, according to the evaluation method of the present invention, the conventional PCR As described above, there is no need to perform an operation to check the amplification of DNA by electrophoresis of the reaction solution after PCR, which is very simple. If a probe is used in addition to the primer, the noise can be reduced, and it can be applied to samples derived from elderly people with high accuracy. Using the above method, the methylation frequency of the DNA having the base sequence shown in SEQ ID NO: 1 or its equivalent contained in the human-derived specimen is measured. The measured methylation frequency and, for example, the DNA having the base sequence represented by SEQ ID NO: 1 contained in a healthy human-derived sample that can be diagnosed as having no cancer cells such as breast cancer cells, or an equivalent thereof. And the degree of canceration of the specimen is determined based on the difference obtained by the comparison. If the methylation frequency of the DNA having the nucleotide sequence of SEQ ID NO: 1 or its equivalent contained in a human-derived specimen is higher than that of the control (DNA having the nucleotide sequence of SEQ ID NO: 1 or If the equivalent is in a highly methylated state compared to the control), it can be determined that the specimen has a higher degree of canceration compared to the control.
ここで 「癌化度」 とは、 一般に当該分野において使用される意味と同様である。 具 体的には、.例えば、 ヒト由来の検体が細胞である場合には当該細胞の悪性度を意味す る。 また、 例えば、 ヒト由来の検体が組織である場合には当該糸且織又は当該検体の起 源である個体における癌細胞の存在量等を意味している。 因みに、 例えば、 ヒト由来 の検体が血液、 血漿、 血清である場合には 「癌化度」 を当該検体の起源である個体が 癌を有している可能性の度合いとしても考えてもよい。 . 本発明評価方法における配列番号 1で示される塩基配列を有する D N A又はその 等価体におけるメチル化頻度を測定するためのリアルタィム PCR法で使用し得るブラ イマー及ぴプローブは、乳癌細胞等の癌細胞の検出用キットの試薬として有用である 。 本発明は、 これらプライマー及ぴプローブを試薬として含有する乳癌細胞等の癌細 胞の検出用キットも提供しており、本発明評価方法の権利範囲は、 当該方法の実質的 な原理を利用してなる前記のような検出用キットのような形態での使用も含むもの である。 実施例 Here, the term “degree of canceration” has the same meaning as generally used in the art. Specifically, for example, when a human-derived specimen is a cell, it means the degree of malignancy of the cell. Further, for example, when a human-derived specimen is a tissue, it means the abundance of cancer cells in the fibrous tissue or the individual that is the source of the specimen. Incidentally, for example, when a human-derived specimen is blood, plasma, or serum, the “degree of canceration” may be considered as the degree of possibility that the individual from which the specimen originated has cancer. In the evaluation method of the present invention, primers and probes that can be used in the real-time PCR method for measuring the methylation frequency of the DNA having the base sequence represented by SEQ ID NO: 1 or an equivalent thereof are cancer cells such as breast cancer cells. It is useful as a reagent for detecting kits. The present invention also provides a kit for detecting cancer cells such as breast cancer cells containing these primers and probes as reagents, and the scope of the evaluation method of the present invention utilizes the substantial principle of the method. It also includes use in the form of a detection kit as described above. Example
以下に実施例により本発明を詳細に説明する力 S、本発明はこれらに限定されるもの ではない。  Hereinafter, the power S for describing the present invention in detail by examples, the present invention is not limited to these.
実施例 1 (早期乳癌患者の血液における配列番号 1で示される塩基配列を有する D N A又はその等価体のメチル化状態の確認試験) Example 1 (Confirmation test of methylation status of DNA or its equivalent having nucleotide sequence shown in SEQ ID NO: 1 in blood of early-stage breast cancer patient)
ステージ I及び IIの乳癌患者 30名並びに健常者 35名から血漿 2 mLを得た (ィン フォームドコンセント実施済) 。 血漿 2 mL中の DNAを QIAamp DNA Blood Midi Kit (QIAGEN)により抽出した。抽出により得られた DNA全量を、 Clark et al. , Nucl. Acids Res., 22, 2990-2997, 1994; Herman et al. , Proc. Natl. Acad. Sci. USA, 93, 9821-9826, 1996に記載される方法に準じて亜硫酸水素ナトリウム処理した。 即ち、 上記の D NAを TEバッファーに溶解して 15 /z lのゲノム D NA溶液を調製し、 これ に 6M水酸化ナトリウムを約 2 μ 1加えた後、 当該混合物を 37°Cで 15分間放置した。 放置された混合物に、 lOmMヒドロキノン(Sigma) 9 μ 1と 3. 6N亜硫酸水素ナトリウム (Sigma) 120 lとを加えた後、 これを 95°C30秒、 50°Cで 15分を 1サイクルとする保 温を 15サイクル行った。 ィンキュベートされた液から Wizard DNA clean-up system (Promega)を用いて DNAを精製した。 精製された DNAの溶液 (約 50 1の TEノ ッファ一溶液) に 5 μ 1の 6M水酸化ナトリウムを加えた後、 当該混合物を室温で 5分 間放置した。 次いで、放置された混合物をエタノール沈澱することにより沈澱 (DNA) を回収した。 回収された沈澱を 10 / lの ΤΕバッファーに懸濁した。  2 mL of plasma was obtained from 30 stage I and II breast cancer patients and 35 healthy subjects (informed consent was implemented). DNA in 2 mL of plasma was extracted using QIAamp DNA Blood Midi Kit (QIAGEN). The total amount of DNA obtained by the extraction was determined by Clark et al., Nucl. Acids Res., 22, 2990-2997, 1994; Herman et al., Proc. Natl. Acad. Sci. USA, 93, 9821-9826, 1996. The product was treated with sodium bisulfite according to the method described in (1). That is, the above DNA is dissolved in TE buffer to prepare a 15 / zl genomic DNA solution, about 2 μl of 6M sodium hydroxide is added thereto, and the mixture is left at 37 ° C for 15 minutes. did. 9 μl of lOmM hydroquinone (Sigma) and 120 l of 3.6N sodium bisulfite (Sigma) are added to the mixture, and the cycle is 95 ° C for 30 seconds and 50 ° C for 15 minutes. The incubation was performed for 15 cycles. DNA was purified from the incubated solution using a Wizard DNA clean-up system (Promega). After adding 5 μl of 6M sodium hydroxide to the purified DNA solution (about 501 TE buffer solution), the mixture was left at room temperature for 5 minutes. Then, the precipitate (DNA) was recovered by precipitating the left mixture with ethanol. The collected precipitate was suspended in 10/1 buffer.
得られた DNAを錶型とし、 以下に示すメチル化特異的プライマー Mlと M2、 および 5'末端がレポーター蛍光色素である F AM ( 6—力ルポキシ一フルォレツセイン) で 標識され 3,末端がクェンチヤ一蛍光色素である T AMR A ( 6—カルボキシーテトラ メチル一ローダミン) で標識されたメチル化特異的プローブ MPを用いてリアルタイ ム PCRを行つた。 この場合、 配列番号 1で示される塩基配列の塩基番号 1〜172の bisulfite処理後の塩基配列に相当する 172bpの DNAが増幅される。 すなわち、 配列 番号 1で示される塩基配列において塩基番号 1、 9、 20、 63、 71、 80、 153、 159、 167 及び 172で示されるシトシンが全てメチル化されている本 DNAから 172bpの DNAが特 異的に増幅される。 The obtained DNA was designated as type III, and the methylation-specific primers Ml and M2 shown below and the 5 'end were labeled with the reporter fluorescent dye FAM (6-potassium fluorescein), and the end was quenched. Real-time PCR was performed using a methylation-specific probe MP labeled with a fluorescent dye, TAMRA (6-carboxy-tetramethyl-rhodamine). In this case, a 172 bp DNA corresponding to the base sequence of base numbers 1 to 172 of the base sequence represented by SEQ ID NO: 1 after bisulfite treatment is amplified. That is, in the base sequence represented by SEQ ID NO: 1, base numbers 1, 9, 20, 63, 71, 80, 153, 159, 167 172 bp DNA is specifically amplified from the present DNA in which all the cytosines represented by 172 and 172 are methylated.
くメチル化特異的プライマー > Methylation-specific primers>
Ml (フォワードプライマー) : 5, -CGGTTGTTCGGAGTTTTATC- 3, (配列番号 2 )  Ml (forward primer): 5, -CGGTTGTTCGGAGTTTTATC-3, (SEQ ID NO: 2)
M2 (リパースプライマー) : 5' - GTAACGCTACCACGACCACG - 3' (配列番号 3 ) M2 (Repurse primer): 5'-GTAACGCTACCACGACCACG-3 '(SEQ ID NO: 3)
<メチル化特異的プローブ > <Methylation specific probe>
MP: 5' -CCCGAAAACAACGACTCCTCGAA-3' (配列番号 6 )  MP: 5'-CCCGAAAACAACGACTCCTCGAA-3 '(SEQ ID NO: 6)
PCRの反応液としては、铸型とする DNAを l ^ Lと、 上記プライマーを終濃度で、 そ れぞれ 200nMと、上記プローブを終濃度で ΙΟΟηΜと、 dNTPを終濃度で 200 Mと、 MgCl2 を終濃度で 4mMと、 Platinum Taq DNAポリメラーゼ (Platinumは Invitrogenの登録 商標) を 1. 5Uと、 10 X緩衝液(lOOmM Tris-HCl pH 8. 3、 500mM KCl)を 5 1とを混合 し、これに滅菌超純水を加えて液量を 50 // 1としたものを用いた。当該反応液を、 95°C にて 3分間保温した後、 95°Cにて 15秒間次いで 60°Cにて 60秒間を 1サイクルとする 保温を 55サイクル行う条件でリアルタィム P C Rを行った。 リアルタイム PCRの装 置としては、 iCycler iQ Real-Time Detection System (Bio-Rad社)を使用した。 尚、 メチル化特異的 PCR用プライマー及ぴメチル化特異的プローブが、 メチル化された本 DNAのみ特異的に増幅することを確認するため、ヒ ト由来の正常乳腺上皮細胞 (HMEC、 Clonetics社) から通常の方法でゲノム DNA (1:ネガティブコントロール)を抽出し、 この一部をメチル化酵素 Sssl (NEB社) により処理しゲノム DNAの- CPG_全てをメチ ル化した(2:ポジティブコントロール)。 この無処理のゲノム DNA(1:ネガティブコン トロール)及びメチルイ匕処理した DNA (2:ポジティブコントロー )を、 上記と同様、 bisulfite処理に供し、 得られた DNAを鎵型として、 リアルタイム PCRを行った。 そ の結果、 無処理の DNAでは、 増幅産物は得られず、 メチル化処理した DNAでのみ増幅 産物が得られた。 この事実により、 メチルイヒ特異的 PCR用プライマー及ぴメチルイ匕特 異的プローブが、メチル化処理した DNAのみ特異的に増幅することを確認した。また、 メチル化処理した DNA (2:ポジティブコント口ール)を用!/、て検量線を作成した。即ち、 まず、 DNAを PCRにより増幅し得られた PCR産物を精製した。 PCR反応溶液中の分子 の重量を吸光高度計により計測し、 PCR産物の予測分子量から、 溶液中の分子数を算 出した。その分子数をもとに、铸型となる PCR産物を 10、 100、 1000、 10, 000、 100, 000、 1, 000, 000、 10, 000, 000又は 100, 000, 000コピー含んだ PCR反応溶液を調製し、 これ を用いて蛍光モニター下、リアルタイム PCRを行った。リアルタイム PCRにおいて PCR 反応溶液からの蛍光強度が閾値を超えるサイクル数を調べ、 当該 PCR反応溶液中の DNA数 (メチル化された本 DNAの数) の常用対数を横軸に、 上記閾値を超えた時のサ ィクル数を縦軸にとり、 検量線を作成した。 この検量線を作成した後、 検体のリアル タイム PCRを行!/、、蛍光強度が閾値を越えるサイクル数を求めた。得られた結果から、 検量線を用いて、 メチル化された本 DNAの量を算出した。 The reaction solution for PCR includes l ^ L for the DNA to be type II, 200 nM each for the above primer at a final concentration, MηΜ for the above probe for a final concentration, and 200 M for the final concentration for dNTP. mixed MgCl 2 and 4mM final concentration, Platinum Taq DNA polymerase (Platinum is a registered trademark of Invitrogen) and 1. 5U a, 10 X buffer and 5 1 (lOOmM Tris-HCl pH 8. 3 , 500mM KCl) Then, sterilized ultrapure water was added thereto to adjust the liquid volume to 50 // l. After incubating the reaction solution at 95 ° C for 3 minutes, real-time PCR was performed under the conditions that 55 cycles of 95 ° C for 15 seconds and 60 ° C for 60 seconds as one cycle were performed. As a device for real-time PCR, an iCycler iQ Real-Time Detection System (Bio-Rad) was used. In order to confirm that the methylation-specific PCR primer and the methylation-specific probe specifically amplify only the methylated present DNA, normal human mammary epithelial cells (HMEC, Clonetics) were used. genomic DNA in the usual way from: extracting (1 negative control), the portion of the treated genomic DNA by methylation enzyme SSSL (NEB Co.) - C P G_ all were methylation (2: positive Control). This untreated genomic DNA (1: negative control) and methylated DNA (2: positive control) were subjected to bisulfite treatment in the same manner as described above, and real-time PCR was performed using the obtained DNA as type III. . As a result, no amplification product was obtained with untreated DNA, but only with methylated DNA. Based on this fact, it was confirmed that the methyl-specific primer for PCR and the methyl-specific probe were specifically amplified only for the methylated DNA. Also, use methylated DNA (2: positive control)! /, A calibration curve was created. That is, first, a PCR product obtained by amplifying DNA by PCR was purified. Molecules in PCR reaction solution Was measured using an absorption altimeter, and the number of molecules in the solution was calculated from the predicted molecular weight of the PCR product. Based on the number of molecules, a PCR containing 10, 100, 1000, 10,000, 100,000, 1,000,000, 10,000,000,000, or 100,000,000 copies of type I PCR product A reaction solution was prepared and used for real-time PCR under a fluorescence monitor. In real-time PCR, the number of cycles in which the fluorescence intensity from the PCR reaction solution exceeds the threshold value is checked. The number of cycles at the time was plotted on the vertical axis, and a calibration curve was created. After creating this calibration curve, the samples were subjected to real-time PCR and the number of cycles in which the fluorescence intensity exceeded the threshold was determined. From the obtained results, the amount of the methylated present DNA was calculated using a calibration curve.
乳癌患者由来の検体 (血漿) に含まれる配列番号 1で示される塩基配列を有する D N A又はその等価体におけるメチルイ匕頻度 (メチルイヒされた本 DNAの量) を調べた結 果を表 1及ぴ表 2に示した。 表 1及ぴ表 2に示すように、 乳癌患者 30名のうち 9名 (30%)でメチルイ匕された本 DNAを定量することができた。また、健常者においては、 35名中 1名でしかメチルイ匕された本 DNAを定量することができず、 その量は、 55. 3 コピー /0. 2mL血漿相当量であった。即ち、検体中に含まれる本 DNAがメチル化されて いれば (メチルイヒ特異的リアルタイム PCRにおいて増幅産物が得られれば) 、 検体の 起源である個体が乳癌を有している可能性が高いという結果が得られた。 また、 これ ら乳癌患者においては、腫瘍マーカーである CEA (5ng/mL以下で正常値)及び CA15 - 3 (28U/mL以下で正常値) が測定されており、 CEAについては、 2例でのみ擬陽性を示 し、 CA15- 3については、全員陰性であった。 従って、 本発明評価方法が、 現在一般的 に用いられる腫瘍マーカーよりも高感度である可能性が示唆された。 Tables 1 and 2 show the results of examining the frequency of methylation in the DNA having the nucleotide sequence shown in SEQ ID NO: 1 or its equivalent contained in a specimen (plasma) derived from a breast cancer patient. 2 As shown in Tables 1 and 2, 9 out of 30 breast cancer patients (30%) were able to quantify the methylated DNA. In healthy subjects, only 1 out of 35 persons could quantitate the methylated DNA, and the amount was 55.3 copies / 0.2 mL plasma equivalent. In other words, if the present DNA contained in the sample is methylated (if amplification products are obtained by methyl-specific real-time PCR), it is highly likely that the individual from which the sample originated has breast cancer. was gotten. In these breast cancer patients, the tumor markers CEA (normal value at 5 ng / mL or less) and CA15-3 (normal value at 28 U / mL or less) were measured. False positives were shown, and all of CA15-3 were negative. Therefore, it was suggested that the evaluation method of the present invention may have higher sensitivity than the currently commonly used tumor markers.
検体名 年齢 メチノレイ匕された本 DNAの量 CEA CAI5-3 ヽ (コヒ一 ヽ Specimen Age Age Amount of this DNA that has been breached CEA CAI5-3 ヽ (Kohichi ヽ
/0. 2ml血對目当量) ig/ml) (U/ml) /0.2 ml blood equivalent) ig / ml) (U / ml)
BBOOl 46 0 BBOOl 46 0
BB002 40 0  BB002 40 0
BB003 58 0  BB003 58 0
BB004 60 0  BB004 60 0
BB005 51 4400  BB005 51 4400
BB006 48 248  BB006 48 248
BB007 56 0  BB007 56 0
BB008 57 27. 3  BB008 57 27. 3
BB009 50 4. 72  BB009 50 4.72
BBOIO 54 0  BBOIO 54 0
BBOll 44 0 5. D  BBOll 44 0 5.D
BB012 46 0  BB012 46 0
BB013 59 0  BB013 59 0
BB014 52 0  BB014 52 0
BB015 34 0 BB015 34 0
表 2 Table 2
Figure imgf000018_0001
以上の結果から、 検体に含まれる本 DNAがメチルイ匕されていれば (メチルイヒ特異的 リアルタイム PCRにおいて増幅産物が得られれば) 、 被検者が乳癌を有している可能 性が高いことが示された。 産業上の利用の可能性
Figure imgf000018_0001
The above results indicate that the subject is highly likely to have breast cancer if the DNA contained in the sample is methylated (if amplification products are obtained by methylich-specific real-time PCR). Was done. Industrial potential
本発明により、 ヒ ト由来の検体の癌化度を評価する方法等が提供可能となる t 配列表フリーテキスト The present invention, and a method for assessing a cancerous state of the specimen from human is possible to provide t Sequence Listing Free Text
配列番号 2 リアルタイム PCRのために設計されたオリゴヌクレオチドプライマ一 配列番号 3 SEQ ID NO: 2 Oligonucleotide primer designed for real-time PCR SEQ ID NO: 3
リアルタイム PCRのために設計されたオリゴヌクレオチドプライマ一 配列番号 4  Oligonucleotide primer designed for real-time PCR SEQ ID NO: 4
リアルタイム PCRのために設計されたオリゴヌクレオチドプライマー 配列番号 5  Oligonucleotide primers designed for real-time PCR SEQ ID NO: 5
リアルタイム PCRのために設計されたオリゴヌクレオチドプライマー 配列番号 6  Oligonucleotide primers designed for real-time PCR SEQ ID NO: 6
リアルタイム PCRのために設計されたオリゴヌクレオチドプローブ 配列番号 7  Oligonucleotide probe designed for real-time PCR SEQ ID NO: 7
リアルタイム PCRのために設計されたオリゴヌクレオチドプローブ  Oligonucleotide probes designed for real-time PCR

Claims

請求の範囲 The scope of the claims
1 . ヒ ト由来の検体の癌化度を評価する方法であって、  1. A method for evaluating the degree of canceration of a human-derived specimen,
( 1 ) ヒト由来の検体に含まれる配列番号 1で示される塩基配列を有する D NA又は その等価体におけるメチル化頻度をリアルタイム PCR法により測定する第一工程、 及 ぴ  (1) a first step of measuring the methylation frequency of DNA having the nucleotide sequence shown in SEQ ID NO: 1 or its equivalent contained in a human-derived specimen by real-time PCR, and
( 2 ) 測定された前記メチルイヒ頻度と、 対照とを比較することにより得られる差異に 基づき前記検体の癌化度を判定する第二工程  (2) a second step of determining the degree of canceration of the sample based on a difference obtained by comparing the measured methyl methane frequency with a control
を有することを特徴とする評価方法。 2 . ヒ ト由来の検体が細胞であることを特徴とする請求項 1記載の評価方法。 An evaluation method comprising: 2. The evaluation method according to claim 1, wherein the human-derived specimen is a cell.
3 . ヒ ト由来の検体が組織であることを特徴とする請求項 1記載の評価方法。 3. The evaluation method according to claim 1, wherein the human-derived specimen is a tissue.
4 . ヒト由来の検体が血液、血漿又は血清であることを特徴とする請求項 1記載の評 価方法。 4. The evaluation method according to claim 1, wherein the human sample is blood, plasma or serum.
5 . ヒト由来の検体が乳房組織、 乳腺組織又は乳腺上皮組織であって、 かつ、 癌が乳 癌であることを特徴とする請求項 3記載の評価方法。 5. The evaluation method according to claim 3, wherein the human-derived specimen is breast tissue, breast tissue or breast epithelial tissue, and the cancer is breast cancer.
6 . メチル化頻度が、 当該 DNAの塩基配列内に存在する一つ以上の 5' - CG - 3'で示され る塩基配列中のシトシンのメチル化頻度であることを特徴とする請求項 1記載の評 価方法。 6. The methylation frequency is the cytosine methylation frequency in one or more nucleotide sequences represented by 5'-CG-3 'present in the nucleotide sequence of the DNA. Evaluation method described.
7 . ヒ ト由来の検体が血液、血漿又は血清であることを特徴とする請求項 6記載の評 価方法。 7. The evaluation method according to claim 6, wherein the human-derived specimen is blood, plasma, or serum.
8 . ヒト由来の検体が乳房組織、 乳腺組織又は乳腺上皮組織であって、 かつ、 癌が乳 癌であることを特徴とする請求項 6記載の評価方法。 8. The evaluation method according to claim 6, wherein the human-derived specimen is a breast tissue, a mammary gland tissue or a mammary gland epithelial tissue, and the cancer is breast cancer.
9 . 疡マーカーとしての、 メチル化された配列番号 1で示される塩基配列を有する D N A又はその等価体の使用。 9. Use of methylated DNA having the nucleotide sequence of SEQ ID NO: 1 or an equivalent thereof as a marker.
1 0 . 癌マーカーが乳癌マーカーであることを特徴とする請求項 9記載の使用。 10. The use according to claim 9, wherein the cancer marker is a breast cancer marker.
1 1 . リアルタイム P C R法によるメチル化頻度の測定力 検体から調製された D N Aを非メチルイ匕シトシンを修飾する試薬と接触させた後、該 D N Aを铸型として、配 列番号 1で示される塩基配列を有する D N A又はその等価体中のシトシンのメチル 化の有無を識別可能な一対のプライマーを用いて P C Rを行い、得られた増幅産物の 量を、配列番号 1で示される塩基配列を有する D N A又はその等価体中のシトシンの メチルイ匕の有無を識別可能なプローブを用いてリアルタイムに測定することにより なされることを特徴とする請求項 1記載の評価方法。 1 1. Ability to measure methylation frequency by real-time PCR After contacting DNA prepared from a sample with a reagent that modifies non-methylated cytosine, the DNA is designated as 铸 and the nucleotide sequence represented by SEQ ID NO: 1 PCR is performed using a pair of primers capable of distinguishing the presence or absence of cytosine methylation in the DNA or its equivalent, and the amount of the resulting amplification product is determined by the DNA having the nucleotide sequence represented by SEQ ID NO: 1 or 2. The evaluation method according to claim 1, wherein the evaluation is performed by measuring in real time using a probe capable of discriminating the presence or absence of cytosine methylation in the equivalent.
1 2 . フォワードプライマーが配列番号 2で示される塩基配列を有するオリゴヌタレ ォチドであり、 リバースプライマーが配列番号 3で示される塩基配列を有するオリゴ ヌクレオチドであり、 かつ、 プローブが配列番号 6で示される塩基配列を有するオリ ゴヌクレオチドであることを特徴とする請求項 1記載の評価方法。 12. The forward primer is an oligonucleotide having the nucleotide sequence of SEQ ID NO: 2, the reverse primer is an oligonucleotide having the nucleotide sequence of SEQ ID NO: 3, and the probe is a nucleotide having the nucleotide sequence of SEQ ID NO: 6. 2. The evaluation method according to claim 1, wherein the evaluation method is an oligonucleotide having a sequence.
1 3 . フォワードプライマーが配列番号 4で示される塩基配列を有するオリゴヌクレ ォチドであり、 リパースプライマーが配列番号 5で示される塩基配列を有するオリゴ ヌクレオチドであり、 かつ、 プローブが配列番号 7で示される塩基配列を有するオリ ゴヌクレオチドであることを特徴とする請求項 1記載の評価方法。 13. The forward primer is an oligonucleotide having the nucleotide sequence of SEQ ID NO: 4, the reppers primer is an oligonucleotide having the nucleotide sequence of SEQ ID NO: 5, and the probe is represented by SEQ ID NO: 7. 2. The evaluation method according to claim 1, wherein the evaluation method is an oligonucleotide having a base sequence.
1 4 . 癌細胞の検出用キットであって、 配列番号 2で示される塩基配列を有するオリ ゴヌクレオチド、配列番号 3で示される塩基配列を有するオリゴヌクレオチドおよび 配列番号 6で示される塩基配列を有するオリゴヌクレオチドを含有することを特徴 とするキット。 14. A kit for detecting a cancer cell, comprising an oligonucleotide having the nucleotide sequence of SEQ ID NO: 2, an oligonucleotide having the nucleotide sequence of SEQ ID NO: 3, and a nucleotide sequence of SEQ ID NO: 6 A kit comprising an oligonucleotide.
1 5 . 癌細胞の検出用キットであって、 配列番号 4で示される塩基配列を有するオリ ゴヌクレオチド、配列番号 5で示される塩基配列を有するオリゴヌクレオチドおよび 配列番号 7で示される塩基配列を有するオリゴヌクレオチドを含有することを特徴 とするキット。 15. A kit for detecting a cancer cell, comprising an oligonucleotide having the nucleotide sequence of SEQ ID NO: 4, an oligonucleotide having the nucleotide sequence of SEQ ID NO: 5, and a nucleotide sequence of SEQ ID NO: 7 A kit comprising an oligonucleotide.
PCT/JP2003/010480 2002-08-23 2003-08-20 Method of evaluating degree of canceration of human-origin specimen WO2004018668A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003257587A AU2003257587A1 (en) 2002-08-23 2003-08-20 Method of evaluating degree of canceration of human-origin specimen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-243126 2002-08-23
JP2002243126 2002-08-23

Publications (1)

Publication Number Publication Date
WO2004018668A1 true WO2004018668A1 (en) 2004-03-04

Family

ID=31944085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010480 WO2004018668A1 (en) 2002-08-23 2003-08-20 Method of evaluating degree of canceration of human-origin specimen

Country Status (2)

Country Link
AU (1) AU2003257587A1 (en)
WO (1) WO2004018668A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002018632A2 (en) * 2000-09-01 2002-03-07 Epigenomics Ag Method for determining the degree of methylation of defined cytosines in genomic dna in the sequence context 5'-cpg-3'
WO2002018631A2 (en) * 2000-09-01 2002-03-07 Epigenomics Ag Diagnosis of illnesses or predisposition to certain illnesses
WO2002060318A2 (en) * 2001-01-31 2002-08-08 The Ohio State University Research Foundation Detection of methylated cpg rich sequences diagnostic for malignant cells
WO2003018840A1 (en) * 2001-08-23 2003-03-06 Sumitomo Chemical Company, Limited Method of evaluating degree of canceration of mammal-origin specimen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002018632A2 (en) * 2000-09-01 2002-03-07 Epigenomics Ag Method for determining the degree of methylation of defined cytosines in genomic dna in the sequence context 5'-cpg-3'
WO2002018631A2 (en) * 2000-09-01 2002-03-07 Epigenomics Ag Diagnosis of illnesses or predisposition to certain illnesses
WO2002060318A2 (en) * 2001-01-31 2002-08-08 The Ohio State University Research Foundation Detection of methylated cpg rich sequences diagnostic for malignant cells
WO2003018840A1 (en) * 2001-08-23 2003-03-06 Sumitomo Chemical Company, Limited Method of evaluating degree of canceration of mammal-origin specimen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MIYAMOTO K. ET AL.: "Methylation-associated silencing of heparan sulfate D_glucosaminyl 3-O-sulfotransferase-2 (3-Ost-2) in human breast, colon, lung and pancreatic cancers", ONCOGENE, vol. 22, no. 2, 2003, pages 274 - 280, XP002973975 *

Also Published As

Publication number Publication date
AU2003257587A1 (en) 2004-03-11
AU2003257587A8 (en) 2004-03-11

Similar Documents

Publication Publication Date Title
JP5378687B2 (en) Method for detecting liver cancer, liver cancer risk, liver cancer recurrence risk, liver cancer malignancy and liver cancer progression over time using methylated cytosine in BASP1 gene and / or SRD5A2 gene
CA2887218C (en) System for amplification of a fetal dna species
US10221458B2 (en) Method for screening cancer
ES2538214T3 (en) A method for nucleic acid methylation analysis
JP6269494B2 (en) Method for obtaining information on endometrial cancer, and marker and kit for obtaining information on endometrial cancer
EP3301194A2 (en) Method for assisting diagnosis of onset risk of gastric cancer, and artificial dna and kit for diagnosing onset risk of gastric cancer used in the method
JP6269492B2 (en) Method for obtaining information on hepatocellular carcinoma, and marker and kit for obtaining information on hepatocellular carcinoma
EP4098755A1 (en) Composition using cpg methylation changes in specific genes to diagnose bladder cancer, and use thereof
EP2341150A1 (en) Breast cancer metastasis determination method and blood serum evaluation method
CN111808963A (en) Composition for noninvasive screening of early lung cancer, application and kit and sample processing method
JP5602355B2 (en) Treatment selection method and prognosis after surgical operation for cancer patients
JP6583817B2 (en) Diagnostic markers for tumors in uterine smooth muscle
WO2004018668A1 (en) Method of evaluating degree of canceration of human-origin specimen
JP7142872B2 (en) Method for assisting diagnosis of gastric cancer risk, artificial DNA used in the method, and kit for diagnosing gastric cancer risk
WO2006064737A1 (en) Method of detecting gene methylation and method of examining neoplasm by detecting methylation
TWI753455B (en) Method for assessing risk of a subject suffering from gastric cancer or precancerous lesions, kit, analyzer, and biomarkerthereof
CN111088358B (en) Colorectal cancer molecular marker combination, application thereof, primer group and detection kit
JP5116939B2 (en) Method for evaluating the degree of canceration of a mammal-derived specimen
JP2004135655A (en) Method for evaluating degree of canceration of specimen derived from human
JP5116938B2 (en) Method for evaluating the degree of canceration of a mammal-derived specimen
JP2005087050A (en) Method for evaluating carcinogenesis degree of specimen originating from mammal
CN117683888A (en) Composition for detecting lung cancer and application thereof
CN117004722A (en) Composition for detecting lung cancer and application thereof
JP2022089577A (en) Methods for detecting mild cognition impairment
CN116751863A (en) Kit for detecting methylation level of pharyngeal malignant tumor molecular marker and application

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase