WO2004017385A2 - Device for rapid heat treatment comprising inside the reaction chamber cold-walled halogen infrared lamps - Google Patents

Device for rapid heat treatment comprising inside the reaction chamber cold-walled halogen infrared lamps Download PDF

Info

Publication number
WO2004017385A2
WO2004017385A2 PCT/FR2003/002492 FR0302492W WO2004017385A2 WO 2004017385 A2 WO2004017385 A2 WO 2004017385A2 FR 0302492 W FR0302492 W FR 0302492W WO 2004017385 A2 WO2004017385 A2 WO 2004017385A2
Authority
WO
WIPO (PCT)
Prior art keywords
lamps
reaction chamber
envelope
coolant
casing
Prior art date
Application number
PCT/FR2003/002492
Other languages
French (fr)
Other versions
WO2004017385A3 (en
Inventor
René-Pierre DUCRET
Hervé Guillon
Franck Laporte
Pierre-Emmanuel Hickel
Original Assignee
Joint Industrial Processors For Electronics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joint Industrial Processors For Electronics filed Critical Joint Industrial Processors For Electronics
Priority to EP03756539A priority Critical patent/EP1573781A2/en
Priority to AU2003285678A priority patent/AU2003285678A1/en
Publication of WO2004017385A2 publication Critical patent/WO2004017385A2/en
Publication of WO2004017385A3 publication Critical patent/WO2004017385A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation

Definitions

  • Rapid heat treatment device comprising cold wall halogen infrared lamps inside the reaction chamber.
  • the invention relates to a device for rapid heat treatment, by infrared type electromagnetic radiation, of a substrate placed in a reaction chamber with cold metal walls, the device comprising halogen infrared lamps each comprising a first tubular quartz envelope.
  • Rapid heat treatment processes allow either to modify the physico-chemical properties of a material, for example during annealing (RTP) implantation of a dopant, oxidation or nitriding, i.e. depositing a material in the form of a layer on a substrate, by vapor deposition
  • RTCVD halogen lamps with infrared radiation as a source of energy for physical phenomena and chemical reactions often taking place in the presence of reactive gas.
  • infrared halogen lamps are installed in front of the substrate, so as to obtain optimal irradiation of the substrate.
  • FIG. 1 representing an oven 1 for rapid heat treatment
  • the lamps 2 are separated from the reaction chamber 3 in which the substrate 4 is placed.
  • the walls of the halogen lamps 2 can reach very high temperatures and the gases used in the reaction chamber 3 are liable to react on contact with the hot walls of the lamps 2, causing their destruction.
  • the lamps 2 are therefore placed in a compartment 5 having a reflector, the compartment 5 being separated from the reaction chamber 3 by a quartz window 6, ideally transparent to the infrared radiation emitted by the lamps 2.
  • the window Part of the infrared radiation emitted by the lamps is nevertheless absorbed by the window, which causes it to heat up.
  • the substrate when the substrate 4 is placed in the reaction chamber 3 and heated by the infrared radiation from the lamps 2, the substrate can emit radiation of wavelength greater than that of the lamps. This radiation can be absorbed by the window 6 and cause its warming up. If the window is too hot, a deposit may form on the window 6 on the side of the reaction chamber 3, preventing the illumination of the substrate 4.
  • patent application FR-A1 -2686967 describes an oven 1 with two portholes 6 between which circulates a coolant 7 transparent to the wavelength emitted by the infrared lamps 2 ( Figure 2).
  • This solution is however limited to relatively short processes, the face of the porthole 6 located on the side of the reaction chamber 3 nevertheless ends up heating up, because of the poor thermal conductivity of the quartz and the thickness of the portholes 6
  • the portholes generally have a thickness of at least one centimeter, which reinforces their mechanical resistance in the face of a significant pressure difference between the reaction chamber and the compartment 5.
  • the object of the invention is to provide a rapid heat treatment device that does not require a quartz window and allows heat treatment and the injection of uniform reactive gases over the entire surface of the substrate.
  • this object is achieved by the fact that: - the lamps are arranged inside the reaction chamber and each comprise an external quartz envelope, concentric with the first envelope and forming an external wall of a circulation channel for a coolant transparent to the infrared radiation of the lamps, so as to form cold-walled lamps,
  • the coolant comprises compounds with a carbon chain saturated with halogens or compounds with a carbon and oxygen chain saturated with halogens,
  • the device comprises fixing means for mounting the outer casing between opposite side walls of the reaction chamber.
  • the lamps each comprise an intermediate tubular envelope of quartz, arranged so as to delimit a tubular space with the first envelope and to constitute an internal wall of the coolant circulation channel.
  • the device comprises control means intended to maintain the temperature of the lamp coolant at a predetermined value, between 5 ° C and 300 ° C.
  • the device comprising means for injecting a reactive gas into the reaction chamber and the means injection means comprise a plurality of supply channels comprising outlet orifices, the lamps being arranged between said orifices and the substrate.
  • FIGS 1 and 2 are schematic representations of two rapid heat treatment devices according to the prior art.
  • Figures 3 and 4 are views in partial section respectively of a first and a second embodiment of a lamp fitted to a device according to the invention.
  • FIG. 5 represents a schematic view of a first embodiment of a device according to the invention, comprising lamps according to FIG. 4.
  • FIGS. 6 and 7 show, in the form of block diagrams, respectively the means for controlling the temperature of the walls of the lamps and the means for controlling the pressure of the reaction chamber of a device according to the invention.
  • FIGS. 8 and 9 are schematic views respectively of a second and of a third embodiment of a device according to the invention, comprising lamps according to FIG. 4.
  • a rapid heat treatment device comprises a reaction chamber 3 in which are arranged a substrate 4 to be treated and halogen tubular lamps 2 with a cold wall, generating infrared electromagnetic radiation.
  • a tubular halogen lamp 2 comprises a first quartz envelope 8, which contains a halogen gas and a tungsten filament connected to each terminal 11 of the lamp 2.
  • the lamp 2 comprises an external envelope 9, made of quartz and concentric with the first envelope 8.
  • the external envelope 9 forms the external wall of a circulation channel 10 in which circulates a coolant coolant transparent to the infrared radiation emitted by the lamp 2.
  • the lamps 2 are arranged inside the reaction chamber. They are mounted between the walls of the reaction chamber, the two terminals 11 of each lamp 2 projecting outside the reaction chamber, while the quartz envelope 9 is fixed between two opposite walls 12 of the reaction chamber.
  • first metal supports 13, fixed (if) to each of the side and opposite walls 12 of the reaction chamber 3 around an orifice 19 formed in the wall 12, define a first cylindrical opening.
  • a second support 14, fixed (s2) to the first support 13, delimits a second cylindrical opening with a diameter greater than the diameter of the first opening.
  • the lamp 2 is arranged so that the first supports 13 come to bear on the ends of the first casing 8, while the second supports 14 come to bear on the ends of the external casing 9.
  • a passage 15 is provided in the support 13, so as to supply the circulation channel 10 with coolant.
  • the assembly is sealed by seals 16a and 16b arranged on the one hand at the interface of the first envelope
  • the seals 16a and 16b can be damaged by heat released by the lamps are preferably protected by metallic deposits, deposited locally on the first envelope 8 and on the external envelope 9.
  • the assembly described above makes it possible to change only the first envelope 8 containing the filament, when the lamp is defective, without having need to change the whole. It is then however necessary to empty the circulation channel 10 before removing the first casing 8 from the reaction chamber.
  • the operation of replacing the first envelope takes place from the outside of the reaction chamber, at the terminals 11, which makes this operation quick and easy.
  • the coolant circulating in the circulation channel 10, transparent to the infrared radiation of the lamps, comprises compounds with carbon chain saturated by halogens or compounds with carbon chain and oxygenated saturated by halogens. It is preferably made up of compounds chosen from compounds with a carbon chain saturated with halogens or compounds with a carbon chain and oxygenated saturated with halogens. Compounds with a carbon chain saturated with halogens or compounds with a carbon and oxygen chain saturated with halogens dissipate a large amount of heat emitted by lamps 2. In addition, their high boiling temperature prevents them from boiling in the circulation channel 10, in contact with the lamp 2. They can thus perfectly fulfill their role as lamp coolant.
  • the coolant can, for example, be chosen from perfluoro opolyethers or from oils made up of low molecular weight polymers of trifluoromonochloroethylene.
  • the coolant is maintained by control means at a predetermined temperature, between 5 ° C and 300 ° C, and preferably between 5 ° C and 25 ° C.
  • the external envelope 9 of the lamp then forming the external wall of the circulation channel 10 is cold, thus making the external wall of the lamp cold.
  • the term cold is to be considered by comparison with the usual temperature of the walls of conventional halogen lamps.
  • the coolant is directly in contact with the first envelope of the lamp, cooling it, which has the disadvantage of reducing the life of the halogen lamp.
  • the walls surrounding the tungsten filament and the halogen gas must be maintained at a temperature of between 200 ° C. and 900 ° C. since this temperature range avoids a deposit on the walls and allows continuous regeneration of the tungsten filament.
  • tungsten evaporates under the effect of electric current and combines in gaseous form with halogen gas.
  • the tungsten halide elements contained in the gas also decompose under the effect of temperature and the tungsten is redeposited on the filament.
  • an intermediate tubular quartz casing 17 may be placed between the first casing 8 and the external casing 9, so as to delimit a tubular space 18 with the first casing 8 ( Figure 4).
  • the intermediate envelope 17 then constitutes the internal wall of the circulation channel 10 of the cooling liquid, the latter no longer being in contact with the first envelope 8 and serving only to cool the external envelope 9.
  • the first support 13 comes to bear on the intermediate casing 17, the seals 16a being arranged at the interface of the intermediate casing 17, of the wall 12 and of the first support 13.
  • Metal deposits can be deposited locally on the casing intermediate 17 or on the outer casing 9, so as to protect the seals 16a and 16b.
  • the rapid heat treatment device may also include means for circulating air, at ambient temperature, in the tubular space 18, so as to maintain the first envelope 8 at a temperature between 200 ° C and 900 ° C . It may also include means for controlling the air flow and the temperature in the tubular space 18.
  • the use of an intermediate envelope 17 has the advantage of having to change only the first envelope of the lamp, in the event of malfunction or maintenance of the lamp 2, without having to empty the circulation channel 10, the intermediate and external envelopes remaining in place.
  • Tubular halogen lamps 2, each associated with an external envelope 9 made of quartz, form cold-walled lamps, which makes it possible to arrange them inside a reaction chamber 3, without being separated from the latter by a quartz window.
  • a reaction chamber 3 preferably made of stainless steel or aluminum, consists of two parts, a lower part 20a and an upper part 20b, so as to render the interior of the reaction chamber accessible.
  • the two parts 20a and 20b are sealed by seals 21.
  • the reaction chamber 3 has a double wall having external walls 12a and internal 12b, delimiting a channel 22 in which circulates a liquid for cooling the walls.
  • the channel 22 is supplied by supply channels 23.
  • a gas injection tube 24, neutral or reactive passes through the metal walls 12a and 12b of the lower part 20a of the reaction chamber, so as to circulate the gas inside the reaction chamber.
  • a pyrometer 41 intended to measure the temperature on the surface of the substrate can be placed in the upper part 20b of the reaction chamber, on the side of the lamps 2, so as to measure the temperature on the surface of the substrate on the side of the lamps. This is made possible thanks to the cold walls of the lamps 2 and to the absence of porthole. In fact, the presence of a porthole causes the wavelengths of the pyrometer to be absorbed by it. The pyrometer must then be placed in the lower part 20a of the reaction chamber.
  • a substrate 4, intended to be treated, is placed inside the reaction chamber 3.
  • Five lamps 2 are arranged above it, on the same plane, and are integral with the opposite side walls 12 located in the section plane of FIG. 5.
  • the lamps 2, represented in FIG. 5, are of the type represented in FIG. 4.
  • the coolant of each lamp circulates between the intermediate 17 and external 9 envelopes and is brought in by pipes 25, which can themselves be connected to means for controlling the temperature and the flow rate of the coolant of the lamps 2 (FIG. 6).
  • the supply pipes 25 supplying the circulation channel 10 of each lamp 2 comprise an inlet 25a and an outlet 25b, connected to a secondary circuit 30 of a first heat exchanger 31.
  • a pump 29 is preferably arranged between the inlet 25a and the first heat exchanger 31.
  • the first exchanger 31 comprises a primary circuit 32 supplied with air, oil or water, so as to regulate the temperature lamp coolant at a predetermined temperature between 5 ° C and 300 ° C.
  • the circuit 30 preferably also acts as the primary circuit of a second heat exchanger 33.
  • the secondary circuit of the second heat exchanger 33, in which the coolant flows from the metal walls of the reaction chamber 3, is connected to the supply channels 23.
  • An expansion vessel 35 can be placed between the first and second heat exchangers 31 and 33.
  • the rapid heat treatment device can also include means for controlling and regulating the pressure (FIG. 7) of the reaction chamber.
  • the reaction chamber 3 has an opening 39 (FIG. 5) intended to be connected to the pressure control and regulation means, so as to carry out rapid heat treatments at atmospheric pressure or to lower the pressure to voids primary and secondary, with controlled variable gas flow rates.
  • a pump 36 is arranged in series with a control valve 37 at the outlet of the opening 39 of the reaction chamber.
  • the valve 37 is controlled by a pressure regulation circuit 38, receiving as input a pressure setpoint on the one hand and the value measured at the outlet of the chamber on the other hand by a pressure sensor. pressure 40 of any known type.
  • the circulation channels 10 for the coolant of the lamps 2 are connected in series and connected to only two supply pipes 25.
  • a gas injection tube 24 is located in the lower part 20a of the reaction chamber, substantially at the level of the substrate 4.
  • the reaction chamber 3 also comprises, a plurality of gas supply channels 26, passing through the metal walls 12a and 12b of the upper part 20b of the reaction chamber 3. '
  • An expansion chamber 27 is preferably located upstream of the gas supply channels 26.
  • the expansion chamber is arranged above the upper part 20b of the reaction chamber, the expansion chamber 27 being itself even supplied by a gas injection tube 34.
  • the gas supply channels 26 have outlet orifices 28 disposed above the lamps 2. The exterior wall of the lamps being cold, the gas is then injected between the lamps , without risk of decomposition. This has the advantage of injecting the gases uniformly over the entire surface of the substrate 4.
  • two series of lamps 2 can be arranged on either side of the substrate 4, which promotes uniform heat treatment over the entire substrate and makes it possible to increase the speed of heating of the substrate.
  • two series of lamps 2 can also be arranged at two different heights and on the same side of the substrate, the first series of lamps being arranged orthogonally to the second series. It is also possible to combine these two embodiments.
  • lamps of the type described in document US20020024277 could possibly be used in the reaction chamber. However, they have the disadvantage of requiring the change of the whole of the cooled lamp in the event of failure of the filament of the lamp.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

The invention concerns a rapid heat treatment device comprising halogen infrared lamps (4) arranged inside a reaction chamber with metal cold walls (12). Each lamp (2) includes a first quartz tubular casing (8) and an outer casing (9) concentric with the first casing (8). The outer casing (9) forms the external wall of a channel circulating (10) a cooling liquid transparent to the infrared radiation of the lamps (2), so as to form cold-walled lamps (2). The cooling liquid includes compounds with halogen-saturated carbon chain or compounds with halogen-saturated oxygen and carbon chain. Each lamp (2) can also include an intermediate tubular casing (17), arranged so as to delimit a tubular space (18) with the first casing (8) and to constitute an internal wall of the channel circulating (10) the cooling liquid. The tubular space (18) serves to maintain the first casing (8) at a temperature ranging between 200 °C and 900 °C.

Description

Dispositif de traitement thermique rapide comportant à l'intérieur de la chambre de réaction des lampes infrarouges halogènes à paroi froide.Rapid heat treatment device comprising cold wall halogen infrared lamps inside the reaction chamber.
Domaine technique de l'inventionTechnical field of the invention
L'invention concerne un dispositif de traitement thermique rapide, par rayonnement électromagnétique de type infrarouge, d'un substrat disposé dans une chambre de réaction à parois métalliques froides, le dispositif comportant des lampes infrarouges halogènes comportant chacune une première enveloppe tubulaire en quartz.The invention relates to a device for rapid heat treatment, by infrared type electromagnetic radiation, of a substrate placed in a reaction chamber with cold metal walls, the device comprising halogen infrared lamps each comprising a first tubular quartz envelope.
Etat de la techniqueState of the art
Les procédés de traitements thermiques rapides, souvent utilisés dans le domaine de la microélectronique, permettent soit de modifier les propriétés physico-chimiques d'un matériau, par exemple lors de recuits (RTP) d'implantation d'un dopant, d'oxydation ou de nitruration, soit de déposer un matériau sous forme de couche sur un substrat, par dépôt en phase vapeurRapid heat treatment processes, often used in the field of microelectronics, allow either to modify the physico-chemical properties of a material, for example during annealing (RTP) implantation of a dopant, oxidation or nitriding, i.e. depositing a material in the form of a layer on a substrate, by vapor deposition
(RTCVD). Ils interviennent généralement dans des fours spéciaux, comportant une chambre de réaction sous vide ou sous atmosphère contrôlée, et ils utilisent des lampes halogènes à rayonnement infrarouge comme source d'énergie de phénomènes physiques et de réactions chimiques ayant souvent lieu en présence de gaz réactif.(RTCVD). They generally operate in special ovens, comprising a reaction chamber under vacuum or under controlled atmosphere, and they use halogen lamps with infrared radiation as a source of energy for physical phenomena and chemical reactions often taking place in the presence of reactive gas.
Pour la plupart des fours connus pour les traitements thermiques rapides, les lampes halogènes infrarouges sont installées en face du substrat, de manière à obtenir une irradiation optimale du substrat. For most of the ovens known for rapid heat treatments, infrared halogen lamps are installed in front of the substrate, so as to obtain optimal irradiation of the substrate.
Ainsi sur la figure 1 , représentant un four 1 de traitement thermique rapide, les lampes 2 sont séparées de la chambre de réaction 3 dans laquelle est disposé le substrat 4. En effet, les parois des lampes halogènes 2 peuvent atteindre des températures très élevées et les gaz utilisés dans la chambre de réaction 3 sont susceptibles de réagir au contact des parois chaudes des lampes 2, provoquant leur destruction. Les lampes 2 sont donc disposées dans un compartiment 5 possédant un réflecteur, le compartiment 5 étant séparé de la chambre de réaction 3 par un hublot en quartz 6, idéalement transparent au rayonnement infrarouge émis par les lampes 2.Thus in FIG. 1, representing an oven 1 for rapid heat treatment, the lamps 2 are separated from the reaction chamber 3 in which the substrate 4 is placed. In fact, the walls of the halogen lamps 2 can reach very high temperatures and the gases used in the reaction chamber 3 are liable to react on contact with the hot walls of the lamps 2, causing their destruction. The lamps 2 are therefore placed in a compartment 5 having a reflector, the compartment 5 being separated from the reaction chamber 3 by a quartz window 6, ideally transparent to the infrared radiation emitted by the lamps 2.
Une partie du rayonnement infrarouge émis par les lampes est néanmoins absorbée par le hublot, ce qui provoque son échauffement. De plus, lorsque le substrat 4 est placé dans la chambre de réaction 3 et chauffé par le rayonnement infrarouge des lampes 2, le substrat peut émettre des rayonnements de longueur d'onde supérieure à celle des lampes. Ces rayonnements peuvent être absorbés par le hublot 6 et provoquer son échauffement. Si le hublot est trop chaud, un dépôt peut se former sur le hublot 6 du côté de la chambre de réaction 3, empêchant Péclairement du substrat 4.Part of the infrared radiation emitted by the lamps is nevertheless absorbed by the window, which causes it to heat up. In addition, when the substrate 4 is placed in the reaction chamber 3 and heated by the infrared radiation from the lamps 2, the substrate can emit radiation of wavelength greater than that of the lamps. This radiation can be absorbed by the window 6 and cause its warming up. If the window is too hot, a deposit may form on the window 6 on the side of the reaction chamber 3, preventing the illumination of the substrate 4.
Pour éviter de tels dépôts, la demande de brevet FR-A1 -2686967, décrit un four 1 avec deux hublots 6 entre lesquels circule un liquide de refroidissement 7 transparent à la longueur d'onde émise par les lampes infrarouges 2 (figure 2). Cette solution est cependant limitée à des procédés relativement courts, la face du hublot 6 située du côté de la chambre de réaction 3 finissant tout de même par se réchauffer, à cause de la mauvaise conductivite thermique du quartz et de l'épaisseur des hublots 6. Les hublots ont généralement une épaisseur d'au moins un centimètre, ce qui renforce leur résistance mécanique face à une différence de pression importante entre la chambre de réaction et le compartiment 5.To avoid such deposits, patent application FR-A1 -2686967 describes an oven 1 with two portholes 6 between which circulates a coolant 7 transparent to the wavelength emitted by the infrared lamps 2 (Figure 2). This solution is however limited to relatively short processes, the face of the porthole 6 located on the side of the reaction chamber 3 nevertheless ends up heating up, because of the poor thermal conductivity of the quartz and the thickness of the portholes 6 The portholes generally have a thickness of at least one centimeter, which reinforces their mechanical resistance in the face of a significant pressure difference between the reaction chamber and the compartment 5.
Objet de l'inventionSubject of the invention
L'invention a pour but un dispositif de traitement thermique rapide ne nécessitant pas de hublot en quartz et permettant un traitement thermique et une injection de gaz réactifs uniformes sur toute la surface du substrat.The object of the invention is to provide a rapid heat treatment device that does not require a quartz window and allows heat treatment and the injection of uniform reactive gases over the entire surface of the substrate.
Selon l'invention, ce but est atteint par le fait que : - les lampes sont disposées à l'intérieur de la chambre de réaction et comportent chacune une enveloppe externe en quartz, concentrique à la première enveloppe et formant une paroi externe d'un canal de circulation d'un liquide de refroidissement transparent au rayonnement infrarouge des lampes, de manière à former des lampes à paroi froide,According to the invention, this object is achieved by the fact that: - the lamps are arranged inside the reaction chamber and each comprise an external quartz envelope, concentric with the first envelope and forming an external wall of a circulation channel for a coolant transparent to the infrared radiation of the lamps, so as to form cold-walled lamps,
- le liquide de refroidissement comporte des composés à chaîne carbonée saturée par des halogènes ou des composés à chaîne carbonée et oxygénée saturée par des halogènes,- the coolant comprises compounds with a carbon chain saturated with halogens or compounds with a carbon and oxygen chain saturated with halogens,
- le dispositif comporte des moyens de fixation pour monter l'enveloppe externe entre des parois latérales opposées de la chambre de réaction.- The device comprises fixing means for mounting the outer casing between opposite side walls of the reaction chamber.
Selon un développement de l'invention, les lampes comportent chacune une enveloppe tubulaire intermédiaire en quartz, disposée de manière à délimiter un espace tubulaire avec la première enveloppe et à constituer une paroi interne du canal de circulation du liquide de refroidissement.According to a development of the invention, the lamps each comprise an intermediate tubular envelope of quartz, arranged so as to delimit a tubular space with the first envelope and to constitute an internal wall of the coolant circulation channel.
Selon une autre caractéristique de l'invention, le dispositif comporte des moyens de contrôle destinés à maintenir la température du liquide de refroidissement des lampes à une valeur prédéterminée, comprise entre 5°C et 300°C.According to another characteristic of the invention, the device comprises control means intended to maintain the temperature of the lamp coolant at a predetermined value, between 5 ° C and 300 ° C.
Selon une autre caractéristique de l'invention, le dispositif comportant des moyens d'injection d'un gaz réactif dans la chambre de réaction et les moyens d'injection comportent une pluralité de canaux d'alimentation comportant des orifices de sortie, les lampes étant disposées entre lesdits orifices et le substrat.According to another characteristic of the invention, the device comprising means for injecting a reactive gas into the reaction chamber and the means injection means comprise a plurality of supply channels comprising outlet orifices, the lamps being arranged between said orifices and the substrate.
Description sommaire des dessinsBrief description of the drawings
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels :Other advantages and characteristics will emerge more clearly from the description which follows of particular embodiments of the invention given by way of nonlimiting examples and represented in the appended drawings, in which:
Les figures 1 et 2 sont des représentations schématiques de deux dispositifs de traitement thermique rapide selon l'art antérieur.Figures 1 and 2 are schematic representations of two rapid heat treatment devices according to the prior art.
Les figures 3 et 4 sont des vues en coupe partielle respectivement d'un premier et d'un second mode de réalisation d'une lampe équipant un dispositif selon l'invention.Figures 3 and 4 are views in partial section respectively of a first and a second embodiment of a lamp fitted to a device according to the invention.
La figure 5 représente une vue schématique d'un premier mode de réalisation d'un dispositif selon l'invention, comportant des lampes selon la figure 4.FIG. 5 represents a schematic view of a first embodiment of a device according to the invention, comprising lamps according to FIG. 4.
Les figures 6 et 7 représentent, sous forme de schéma-blocs, respectivement les moyens de- contrôle de la température des parois des lampes et les moyens de contrôle de la pression de la chambre de réaction d'un dispositif selon l'invention. Les figures 8 et 9 sont des vues schématiques respectivement d'un second et d'un troisième mode de réalisation d'un dispositif selon l'invention, comportant des lampes selon la figure 4.FIGS. 6 and 7 show, in the form of block diagrams, respectively the means for controlling the temperature of the walls of the lamps and the means for controlling the pressure of the reaction chamber of a device according to the invention. FIGS. 8 and 9 are schematic views respectively of a second and of a third embodiment of a device according to the invention, comprising lamps according to FIG. 4.
Description de modes particuliers de réalisation.Description of particular embodiments.
Selon l'invention, un dispositif de traitement thermique rapide comporte une chambre de réaction 3 dans laquelle sont disposés un substrat 4 à traiter et des lampes 2 tubulaires halogènes à paroi froide, générant un rayonnement électromagnétique infrarouge.According to the invention, a rapid heat treatment device comprises a reaction chamber 3 in which are arranged a substrate 4 to be treated and halogen tubular lamps 2 with a cold wall, generating infrared electromagnetic radiation.
Selon un premier mode de réalisation, représenté sur la figure 3, une lampe halogène tubulaire 2 comporte une première enveloppe en quartz 8, qui contient un gaz halogène et un filament de tungstène relié à chaque borne 11 de la lampe 2. La lampe 2 comporte une enveloppe externe 9, en quartz et concentrique à la première enveloppe 8. L'enveloppe externe 9 forme la paroi externe d'un canal de circulation 10 dans lequel circule un liquide de refroidissement caloporteur et transparent au rayonnement infrarouge émis par la lampe 2.According to a first embodiment, represented in FIG. 3, a tubular halogen lamp 2 comprises a first quartz envelope 8, which contains a halogen gas and a tungsten filament connected to each terminal 11 of the lamp 2. The lamp 2 comprises an external envelope 9, made of quartz and concentric with the first envelope 8. The external envelope 9 forms the external wall of a circulation channel 10 in which circulates a coolant coolant transparent to the infrared radiation emitted by the lamp 2.
Les lampes 2 sont disposées à l'intérieur de la chambre de réaction. Elles sont montées entre les parois de la chambre de réaction, les deux bornes 11 de chaque lampe 2 faisant saillie à l'extérieur de la chambre de réaction, tandis que l'enveloppe en quartz 9 est fixée entre deux parois 12 opposées de la chambre de réaction. Ainsi, selon un mode particulier de montage représenté à la figure 3, des premiers supports métalliques 13, fixés (si) à chacune des parois 12 latérales et opposées de la chambre de réaction 3 autour d'un orifice 19 formé dans la paroi 12, délimitent une première ouverture cylindrique. Un second support 14, fixé (s2) au premier support 13, délimite une seconde ouverture cylindrique de diamètre supérieur au diamètre de la première ouverture.The lamps 2 are arranged inside the reaction chamber. They are mounted between the walls of the reaction chamber, the two terminals 11 of each lamp 2 projecting outside the reaction chamber, while the quartz envelope 9 is fixed between two opposite walls 12 of the reaction chamber. Thus, according to a particular mounting method shown in FIG. 3, first metal supports 13, fixed (if) to each of the side and opposite walls 12 of the reaction chamber 3 around an orifice 19 formed in the wall 12, define a first cylindrical opening. A second support 14, fixed (s2) to the first support 13, delimits a second cylindrical opening with a diameter greater than the diameter of the first opening.
La lampe 2 est disposée de manière à ce que les premiers supports 13 viennent en appui sur les extrémités de la première enveloppe 8, tandis que les seconds supports 14 viennent en appui sur les extrémités de l'enveloppe externe 9. Un passage 15 est ménagé dans le support 13, de manière à alimenter le canal de circulation 10 en liquide de refroidissement. L'ensemble est rendu étanche par des joints 16a et 16b disposés d'une part à l'interface de la première enveloppeThe lamp 2 is arranged so that the first supports 13 come to bear on the ends of the first casing 8, while the second supports 14 come to bear on the ends of the external casing 9. A passage 15 is provided in the support 13, so as to supply the circulation channel 10 with coolant. The assembly is sealed by seals 16a and 16b arranged on the one hand at the interface of the first envelope
8, de la paroi 12 et du premier support 13, et d'autre part, à l'interface de l'enveloppe externe 9, du premier support 13 et du second support 14. Les joints 16a et 16b pouvant être endommagés par la chaleur dégagée par les lampes sont, de préférence, protégés par des dépôts métalliques, déposés localement sur la première enveloppe 8 et sur l'enveloppe externe 9.8, the wall 12 and the first support 13, and secondly, at the interface of the outer casing 9, the first support 13 and the second support 14. The seals 16a and 16b can be damaged by heat released by the lamps are preferably protected by metallic deposits, deposited locally on the first envelope 8 and on the external envelope 9.
Le montage décrit ci-dessus permet de changer uniquement la première enveloppe 8 contenant le filament, lorsque la lampe est défectueuse, sans avoir besoin de changer l'ensemble. Il est alors cependant nécessaire de vidanger le canal de circulation 10 avant de retirer la première enveloppe 8 de la chambre de réaction. L'opération de remplacement de la première enveloppe a lieu par l'extérieur de la chambre de réaction, au niveau des bornes 11 , ce qui rend cette opération facile et rapide.The assembly described above makes it possible to change only the first envelope 8 containing the filament, when the lamp is defective, without having need to change the whole. It is then however necessary to empty the circulation channel 10 before removing the first casing 8 from the reaction chamber. The operation of replacing the first envelope takes place from the outside of the reaction chamber, at the terminals 11, which makes this operation quick and easy.
Le liquide de refroidissement circulant dans le canal de circulation 10, transparent au rayonnement infrarouge des lampes, comporte des composés à chaîne carbonée saturée par des halogènes ou des composés à chaîne carbonée et oxygénée saturée par des halogènes. Il est, de préférence, constitué par des composés choisis parmi les composés à chaîne carbonée saturée par des halogènes ou de composés à chaîne carbonée et oxygénée saturée par des halogènes. Les composés à chaîne carbonée saturée par des halogènes ou les composés à chaîne carbonée et oxygénée saturée par des halogènes permettent d'évacuer une importante quantité de chaleur émise par les lampes 2. De plus, leur température d'ébullition élevée les empêche de bouillir dans le canal de circulation 10, au contact de la lampe 2. Ils peuvent, ainsi, remplir parfaitement leur rôle de liquide de refroidissement des lampes. Le liquide de refroidissement peut, par exemple, être choisi parmi les perfluo opolyéthers ou parmi les huiles constituées par des polymères de faible poids moléculaire du trifluoromonochloroéthylène. Le liquide de refroidissement est maintenu par des moyens de contrôle à une température prédéterminée, comprise entre 5°C et 300°C, et de préférence entre 5 °C et 25°C. L'enveloppe externe 9 de la lampe formant alors la paroi externe du canal de circulation 10 est froide, rendant ainsi la paroi externe de la lampe froide. Le terme froid est à considérer par comparaison avec la température habituelle des parois des lampes halogènes classiques.The coolant circulating in the circulation channel 10, transparent to the infrared radiation of the lamps, comprises compounds with carbon chain saturated by halogens or compounds with carbon chain and oxygenated saturated by halogens. It is preferably made up of compounds chosen from compounds with a carbon chain saturated with halogens or compounds with a carbon chain and oxygenated saturated with halogens. Compounds with a carbon chain saturated with halogens or compounds with a carbon and oxygen chain saturated with halogens dissipate a large amount of heat emitted by lamps 2. In addition, their high boiling temperature prevents them from boiling in the circulation channel 10, in contact with the lamp 2. They can thus perfectly fulfill their role as lamp coolant. The coolant can, for example, be chosen from perfluoro opolyethers or from oils made up of low molecular weight polymers of trifluoromonochloroethylene. The coolant is maintained by control means at a predetermined temperature, between 5 ° C and 300 ° C, and preferably between 5 ° C and 25 ° C. The external envelope 9 of the lamp then forming the external wall of the circulation channel 10 is cold, thus making the external wall of the lamp cold. The term cold is to be considered by comparison with the usual temperature of the walls of conventional halogen lamps.
Le liquide de refroidissement est directement en contact avec la première enveloppe de la lampe, la refroidissant, ce qui présente l'inconvénient de diminuer la durée de vie de la lampe halogène. En effet, il est connu que pour qu'une lampe halogène fonctionne durablement, les parois entourant le filament de tungstène et le gaz halogène doivent être maintenues à une température comprise entre 200°C et 900°C car cette- gamme de température évite un dépôt sur les parois et permet une régénération continue du filament de tungstène. En effet, le tungstène s'évapore sous l'effet du courant électrique et se combine sous forme gazeuse avec le gaz halogène. Les éléments halogénures de tungstène contenus dans le gaz se décomposent par ailleurs sous l'effet de la température et le tungstène se redépose sur le filament. Certains procédés de traitement thermique rapide ne nécessitent cependant pas une lampe halogène ayant une durée de vie importante, de sorte que ce premier mode de réalisation peut être intéressant pour certaines applications. Pour éviter que la température de la première enveloppe en quartz ne soit trop basse, une enveloppe intermédiaire 17 tubulaire en quartz peut être disposée entre la première enveloppe 8 et l'enveloppe externe 9, de manière à délimiter un espace tubulaire 18 avec la première enveloppe 8 (figure 4). L'enveloppe intermédiaire 17 constitue alors la paroi interne du canal de circulation 10 du liquide de refroidissement, celui-ci n'étant plus en contact avec la première enveloppe 8 et servant uniquement à refroidir l'enveloppe externe 9. Dans ce cas, le premier support 13 vient en appui sur l'enveloppe intermédiaire 17, les joints 16a étant disposés à l'interface de l'enveloppe intermédiaire 17, de la paroi 12 et du premier support 13. Des dépôts métalliques peuvent être déposés localement sur l'enveloppe intermédiaire 17 ou sur l'enveloppe externe 9, de manière à protéger les joints 16a et 16b.The coolant is directly in contact with the first envelope of the lamp, cooling it, which has the disadvantage of reducing the life of the halogen lamp. Indeed, it is known that for a halogen lamp to function durably, the walls surrounding the tungsten filament and the halogen gas must be maintained at a temperature of between 200 ° C. and 900 ° C. since this temperature range avoids a deposit on the walls and allows continuous regeneration of the tungsten filament. Indeed, tungsten evaporates under the effect of electric current and combines in gaseous form with halogen gas. The tungsten halide elements contained in the gas also decompose under the effect of temperature and the tungsten is redeposited on the filament. Certain rapid heat treatment methods do not, however, require a halogen lamp having a long service life, so that this first embodiment may be advantageous for certain applications. To prevent the temperature of the first quartz casing from being too low, an intermediate tubular quartz casing 17 may be placed between the first casing 8 and the external casing 9, so as to delimit a tubular space 18 with the first casing 8 (Figure 4). The intermediate envelope 17 then constitutes the internal wall of the circulation channel 10 of the cooling liquid, the latter no longer being in contact with the first envelope 8 and serving only to cool the external envelope 9. In this case, the first support 13 comes to bear on the intermediate casing 17, the seals 16a being arranged at the interface of the intermediate casing 17, of the wall 12 and of the first support 13. Metal deposits can be deposited locally on the casing intermediate 17 or on the outer casing 9, so as to protect the seals 16a and 16b.
Le dispositif de traitement thermique rapide peut également comporter des moyens pour faire circuler de l'air, à température ambiante, dans l'espace tubulaire 18, de manière à maintenir la première enveloppe 8 à une température comprise entre 200°C et 900°C. Il peut également comporter des moyens de contrôle du débit de l'air et de la température dans l'espace tubulaire 18. L'utilisation d'une enveloppe intermédiaire 17 présente l'avantage de n'avoir à changer que la première enveloppe de la lampe, en cas de disfonctionnement ou de maintenance de la lampe 2, sans avoir à vidanger le canal de circulation 10, les enveloppes intermédiaire et externe restant en place. Les lampes halogènes tubulaires 2, chacune associée à une enveloppe externe 9 en quartz, forment des lampes à paroi froide, ce qui permet de les disposer à l'intérieur d'une chambre de réaction 3, sans être séparées de celle-ci par un hublot en quartz.The rapid heat treatment device may also include means for circulating air, at ambient temperature, in the tubular space 18, so as to maintain the first envelope 8 at a temperature between 200 ° C and 900 ° C . It may also include means for controlling the air flow and the temperature in the tubular space 18. The use of an intermediate envelope 17 has the advantage of having to change only the first envelope of the lamp, in the event of malfunction or maintenance of the lamp 2, without having to empty the circulation channel 10, the intermediate and external envelopes remaining in place. Tubular halogen lamps 2, each associated with an external envelope 9 made of quartz, form cold-walled lamps, which makes it possible to arrange them inside a reaction chamber 3, without being separated from the latter by a quartz window.
Comme représentée sur la figure 5, une chambre de réaction 3, de préférence en acier inoxydable ou en aluminium, est constituée de deux parties, une partie inférieure 20a et une partie supérieure 20b, de manière à rendre l'intérieur de la chambre de réaction accessible. Les deux parties 20a et 20b sont rendues étanches par des joints d'étanchéité 21. La chambre de réaction 3 comporte une double paroi comportant des parois externe 12a et interne 12b, délimitant un canal 22 dans lequel circule un liquide de refroidissement des parois. Le canal 22 est alimenté par des canaux d'alimentation 23. Les parois internes12b, métalliques et polies du côté de la chambre de réaction, forment le réflecteur de la chambre de réaction.As shown in FIG. 5, a reaction chamber 3, preferably made of stainless steel or aluminum, consists of two parts, a lower part 20a and an upper part 20b, so as to render the interior of the reaction chamber accessible. The two parts 20a and 20b are sealed by seals 21. The reaction chamber 3 has a double wall having external walls 12a and internal 12b, delimiting a channel 22 in which circulates a liquid for cooling the walls. The channel 22 is supplied by supply channels 23. The internal walls 12b, metallic and polished on the side of the reaction chamber, form the reflector of the reaction chamber.
Un tube d'injection 24 de gaz, neutre ou réactif, traverse les parois métalliques 12a et 12b de la partie inférieure 20a de la chambre de réaction, de manière à faire circuler le gaz à l'intérieur de la chambre de réaction. Un pyromètre 41 destiné à mesurer la température à la surface du substrat, peut être disposé dans la partie supérieure 20b de la chambre de réaction, du côté des lampes 2, de manière à mesurer la température à la surface du substrat du côté des lampes. Ceci est rendu possible grâce aux parois froides des lampes 2 et à l'absence de hublot. En effet, la présence d'un hublot provoque l'absorption des longueurs d'onde du pyromètre par celui-ci. Le pyromètre doit alors être disposé dans la partie inférieure 20a de la chambre de réaction.A gas injection tube 24, neutral or reactive, passes through the metal walls 12a and 12b of the lower part 20a of the reaction chamber, so as to circulate the gas inside the reaction chamber. A pyrometer 41 intended to measure the temperature on the surface of the substrate, can be placed in the upper part 20b of the reaction chamber, on the side of the lamps 2, so as to measure the temperature on the surface of the substrate on the side of the lamps. This is made possible thanks to the cold walls of the lamps 2 and to the absence of porthole. In fact, the presence of a porthole causes the wavelengths of the pyrometer to be absorbed by it. The pyrometer must then be placed in the lower part 20a of the reaction chamber.
Un substrat 4, destiné à être traité, est disposé à l'intérieur de la chambre de réaction 3. Cinq lampes 2 sont disposées au-dessus de celui-ci, sur un même plan, et sont solidaires des parois latérales 12 opposées situées dans le plan de coupe de la figure 5. Les lampes 2, représentées sur la figure 5, sont du type représenté sur la figure 4. Le liquide de refroidissement de chaque lampe circule entre les enveloppes intermédiaire 17 et externe 9 et est amené par des tuyaux d'alimentation 25, qui peuvent être, eux-mêmes, raccordés à des moyens de contrôle de la température et du débit du liquide de refroidissement des lampes 2 (figure 6).A substrate 4, intended to be treated, is placed inside the reaction chamber 3. Five lamps 2 are arranged above it, on the same plane, and are integral with the opposite side walls 12 located in the section plane of FIG. 5. The lamps 2, represented in FIG. 5, are of the type represented in FIG. 4. The coolant of each lamp circulates between the intermediate 17 and external 9 envelopes and is brought in by pipes 25, which can themselves be connected to means for controlling the temperature and the flow rate of the coolant of the lamps 2 (FIG. 6).
Sur la figure 6, les tuyaux d'alimentation 25 alimentant le canal de circulation 10 de chaque lampe 2, comportent une entrée 25a et une sortie 25b, connectées à un circuit secondaire 30 d'un premier échangeur de chaleur 31. Une pompe 29 est, de préférence, disposée entre l'entrée 25a et le premier échangeur de chaleur 31. Le premier échangeur 31 comporte un circuit primaire 32 alimenté par de l'air, de l'huile ou de l'eau, de manière à réguler la température du liquide de refroidissement des lampes à une température prédéterminée comprise entre 5°C et 300°C. Le circuit 30 fait, de préférence, également office de circuit primaire d'un second échangeur de chaleur 33. Le circuit secondaire du deuxième échangeur de chaleur 33, dans lequel circule le liquide de refroidissement des parois métalliques de la chambre de réaction 3, est connecté aux canaux d'alimentation 23. Un vase d'expansion 35 peut être disposé entre les premier et second échangeurs de chaleur 31 et 33.In FIG. 6, the supply pipes 25 supplying the circulation channel 10 of each lamp 2, comprise an inlet 25a and an outlet 25b, connected to a secondary circuit 30 of a first heat exchanger 31. A pump 29 is preferably arranged between the inlet 25a and the first heat exchanger 31. The first exchanger 31 comprises a primary circuit 32 supplied with air, oil or water, so as to regulate the temperature lamp coolant at a predetermined temperature between 5 ° C and 300 ° C. The circuit 30 preferably also acts as the primary circuit of a second heat exchanger 33. The secondary circuit of the second heat exchanger 33, in which the coolant flows from the metal walls of the reaction chamber 3, is connected to the supply channels 23. An expansion vessel 35 can be placed between the first and second heat exchangers 31 and 33.
Le dispositif de traitement thermique rapide peut également comporter des moyens de contrôle et de régulation de la pression (figure 7) de la chambre de réaction. La chambre de réaction 3 comporte une ouverture 39 (figure 5) destinée à être raccordée aux moyens de contrôle et de régulation de la pression, de manière à réaliser des traitements thermiques rapides à pression atmosphérique ou d'abaisser la pression jusqu'à des vides primaires et secondaires, avec des débits de gaz variables contrôlés. Une pompe 36 est disposée en série avec une vanne 37 de contrôle à la sortie de l'ouverture 39 de la chambre de réaction. La vanne 37 est commandée par un circuit de régulation de la pression 38, recevant en entrée, d'une part une valeur de consigne de la pression et, d'autre part, la valeur mesurée à la sortie de la chambre par un capteur de pression 40 de tout type connu.The rapid heat treatment device can also include means for controlling and regulating the pressure (FIG. 7) of the reaction chamber. The reaction chamber 3 has an opening 39 (FIG. 5) intended to be connected to the pressure control and regulation means, so as to carry out rapid heat treatments at atmospheric pressure or to lower the pressure to voids primary and secondary, with controlled variable gas flow rates. A pump 36 is arranged in series with a control valve 37 at the outlet of the opening 39 of the reaction chamber. The valve 37 is controlled by a pressure regulation circuit 38, receiving as input a pressure setpoint on the one hand and the value measured at the outlet of the chamber on the other hand by a pressure sensor. pressure 40 of any known type.
Selon une variante de réalisation, comme représentée sur la figure 8, les canaux de circulation 10 du liquide de refroidissement des lampes 2 sont connectés en série et reliés à seulement deux tuyaux d'alimentation 25. Sur la figure 8, un tube d'injection 24 de gaz est situé dans la partie inférieure 20a de la chambre de réaction, sensiblement au niveau du substrat 4. La chambre de réaction 3 comporte également, une pluralité de canaux d'alimentation en gaz 26, traversant les parois métalliques 12a et 12b de la partie supérieure 20b de la chambre de réaction 3.' According to an alternative embodiment, as shown in FIG. 8, the circulation channels 10 for the coolant of the lamps 2 are connected in series and connected to only two supply pipes 25. In FIG. 8, a gas injection tube 24 is located in the lower part 20a of the reaction chamber, substantially at the level of the substrate 4. The reaction chamber 3 also comprises, a plurality of gas supply channels 26, passing through the metal walls 12a and 12b of the upper part 20b of the reaction chamber 3. '
Une chambre de détente 27 est, de préférence, située en amont des canaux d'alimentation en gaz 26. La chambre de détente est disposée au-dessus de la partie supérieure 20b de la chambre de réaction, la chambre de détente 27 étant elle-même alimentée par un tube d'injection de gaz 34. Les canaux d'alimentation en gaz 26 comportent des orifices de sortie 28 disposés au- dessus des lampes 2. La paroi extérieure des lampes étant froide, le gaz est alors injecté entre les lampes, sans risque de décomposition. Cela présente l'avantage d'injecter les gaz uniformément sur toute la surface du substrat 4.An expansion chamber 27 is preferably located upstream of the gas supply channels 26. The expansion chamber is arranged above the upper part 20b of the reaction chamber, the expansion chamber 27 being itself even supplied by a gas injection tube 34. The gas supply channels 26 have outlet orifices 28 disposed above the lamps 2. The exterior wall of the lamps being cold, the gas is then injected between the lamps , without risk of decomposition. This has the advantage of injecting the gases uniformly over the entire surface of the substrate 4.
Selon une variante de réalisation représentée sur la figure 9, deux séries de lampes 2 peuvent être disposées de part et d'autres du substrat 4, ce qui favorise un traitement thermique homogène sur l'ensemble du substrat et permet d'accroître la vitesse de chauffage du substrat.According to an alternative embodiment shown in FIG. 9, two series of lamps 2 can be arranged on either side of the substrate 4, which promotes uniform heat treatment over the entire substrate and makes it possible to increase the speed of heating of the substrate.
De même, deux séries de lampes 2 peuvent également être disposées à deux hauteurs différentes et du même côté du substrat, la première série de lampes étant disposée orthogonalement par rapport à la deuxième série. Il est également possible de combiner ces deux modes de réalisation.Similarly, two series of lamps 2 can also be arranged at two different heights and on the same side of the substrate, the first series of lamps being arranged orthogonally to the second series. It is also possible to combine these two embodiments.
L'invention n'est pas limitée aux modes de réalisation décrits ci-dessus. Ainsi les lampes du type de celles qui sont décrites dans le document US20020024277 pourraient éventuellement être utilisées dans la chambre de réaction. Elles présentent cependant l'inconvénient de nécessiter le changement de l'ensemble de la lampe refroidie en cas de défaillance du filament de la lampe. The invention is not limited to the embodiments described above. Thus lamps of the type described in document US20020024277 could possibly be used in the reaction chamber. However, they have the disadvantage of requiring the change of the whole of the cooled lamp in the event of failure of the filament of the lamp.

Claims

Revendications claims
1. Dispositif de traitement thermique rapide, par rayonnement électromagnétique de type infrarouge, d'un substrat (4) disposé dans une chambre de réaction (3) à parois métalliques froides (12a, 12b), le dispositif comportant des lampes (2) infrarouges halogènes comportant chacune une première enveloppe tubulaire (8) en quartz, dispositif caractérisé en ce que :1. Device for rapid thermal treatment, by infrared electromagnetic radiation, of a substrate (4) disposed in a reaction chamber (3) with cold metal walls (12a, 12b), the device comprising infrared lamps (2) halogens each comprising a first tubular casing (8) made of quartz, device characterized in that:
- les lampes (2) sont disposées à l'intérieur de la chambre de réaction (3) et comportent chacune une enveloppe externe (9) en quartz, concentrique à la première enveloppe (8) et formant une paroi externe d'un canal de circulation (10) d'un liquide de refroidissement transparent au rayonnement infrarouge des lampes (2), de manière à former des lampes (2) à paroi froide,- the lamps (2) are arranged inside the reaction chamber (3) and each comprise an external envelope (9) made of quartz, concentric with the first envelope (8) and forming an external wall of a channel circulation (10) of a cooling liquid transparent to the infrared radiation of the lamps (2), so as to form lamps (2) with a cold wall,
- le liquide de refroidissement comporte des composés à chaîne carbonée saturée par des halogènes ou des composés à chaîne carbonée et oxygénée saturée par des halogènes,- the coolant comprises compounds with a carbon chain saturated with halogens or compounds with a carbon and oxygen chain saturated with halogens,
- le dispositif comporte des moyens de fixation (13,14) pour monter l'enveloppe externe entre des parois latérales opposées (12) de la chambre de réaction (3).- The device comprises fixing means (13,14) for mounting the outer casing between opposite side walls (12) of the reaction chamber (3).
2. Dispositif selon la revendication 1 , caractérisé en ce que les lampes (2) comportent chacune une enveloppe tubulaire intermédiaire (17) en quartz, disposée de manière à délimiter un espace tubulaire (18) avec la première enveloppe (8) et à constituer une paroi interne du canal de circulation (10) du liquide de refroidissement.2. Device according to claim 1, characterized in that the lamps (2) each comprise an intermediate tubular envelope (17) of quartz, arranged so as to delimit a tubular space (18) with the first envelope (8) and to constitute an internal wall of the circulation channel (10) of the coolant.
3. Dispositif selon la revendication 2, caractérisé en ce qu'il comporte des moyens pour faire circuler de l'air, à température ambiante, dans l'espace tubulaire (18), de manière à maintenir la première enveloppe (8) à une température comprise entre 200°C et 900°C.3. Device according to claim 2, characterized in that it comprises means for circulating air, at room temperature, in the tubular space (18), so as to maintain the first envelope (8) at a temperature between 200 ° C and 900 ° C.
4. Dispositif selon la revendication 3, caractérisé en ce qu'il comporte des moyens de contrôle du débit et de la température de l'air dans l'espace tubulaire4. Device according to claim 3, characterized in that it comprises means for controlling the flow rate and the temperature of the air in the tubular space
(10).(10).
5. Dispositif selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les canaux de circulation (10) du liquide de refroidissement des lampes (2) sont connectés en parallèle ou en série.5. Device according to any one of claims 1 to 4, characterized in that the circulation channels (10) of the lamp coolant (2) are connected in parallel or in series.
6. Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'il comporte des moyens de contrôle (29, 31 ) destinés à maintenir la température du liquide de refroidissement des lampes (2) à une valeur prédéterminée, comprise entre 5°C et 300°C. 6. Device according to any one of claims 1 to 5, characterized in that it comprises control means (29, 31) intended to maintain the temperature of the lamp coolant (2) at a predetermined value, included between 5 ° C and 300 ° C.
7. Dispositif selon la revendication 6, caractérisé en ce que la valeur prédéterminée de la température du liquide de refroidissement des lampes (2) est comprise entre 5 et 25°C.7. Device according to claim 6, characterized in that the predetermined value of the temperature of the lamp coolant (2) is between 5 and 25 ° C.
8. Dispositif selon l'une des revendications 6 et 7, caractérisé en ce que les moyens de contrôle comportent un premier échangeur (31) de chaleur avec un circuit secondaire (30) dans lequel circule le liquide de refroidissement des lampes (2) et qui constitue le circuit primaire d'un second échangeur de chaleur (33) ayant un circuit secondaire dans lequel circule un liquide de refroidissement des parois métalliques (12a, 12b) de la chambre de réaction (3).8. Device according to one of claims 6 and 7, characterized in that the control means comprise a first heat exchanger (31) with a secondary circuit (30) in which circulates the coolant for the lamps (2) and which constitutes the primary circuit of a second heat exchanger (33) having a secondary circuit in which circulates a liquid for cooling the metal walls (12a, 12b) of the reaction chamber (3).
9. Dispositif selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le dispositif comportant des moyens d'injection d'un gaz réactif dans la chambre de réaction, les moyens d'injection comportent une pluralité de canaux d'alimentation (26) comportant des orifices de sortie (28), les lampes (2) étant disposées entre lesdits orifices (28) et le substrat (4).9. Device according to any one of claims 1 to 8, characterized in that the device comprising means for injecting a reactive gas into the reaction chamber, the injection means comprise a plurality of supply channels (26) having outlet openings (28), the lamps (2) being arranged between said openings (28) and the substrate (4).
10. Dispositif selon la revendication 9, caractérisé en ce que les moyens d'injection comportent une chambre de détente (27) située en amont des canaux d'alimentation (26). 10. Device according to claim 9, characterized in that the injection means comprise an expansion chamber (27) located upstream of the supply channels (26).
PCT/FR2003/002492 2002-08-14 2003-08-08 Device for rapid heat treatment comprising inside the reaction chamber cold-walled halogen infrared lamps WO2004017385A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP03756539A EP1573781A2 (en) 2002-08-14 2003-08-08 Device for rapid heat treatment comprising inside the reaction chamber cold-walled halogen infrared lamps
AU2003285678A AU2003285678A1 (en) 2002-08-14 2003-08-08 Device for rapid heat treatment comprising inside the reaction chamber cold-walled halogen infrared lamps

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR02/10292 2002-08-14
FR0210292A FR2843629B1 (en) 2002-08-14 2002-08-14 FAST THERMAL PROCESSING DEVICE HAVING INSIDE THE REACTION CHAMBER OF COLD-WALLED HALOGEN INFRARED LAMPS

Publications (2)

Publication Number Publication Date
WO2004017385A2 true WO2004017385A2 (en) 2004-02-26
WO2004017385A3 WO2004017385A3 (en) 2004-04-08

Family

ID=30775989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/002492 WO2004017385A2 (en) 2002-08-14 2003-08-08 Device for rapid heat treatment comprising inside the reaction chamber cold-walled halogen infrared lamps

Country Status (4)

Country Link
EP (1) EP1573781A2 (en)
AU (1) AU2003285678A1 (en)
FR (1) FR2843629B1 (en)
WO (1) WO2004017385A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010008084A1 (en) * 2010-02-15 2011-08-18 Leybold Optics GmbH, 63755 Device for thermal treatment of substrates

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB940627A (en) * 1958-02-01 1963-10-30 Hans Beckmann Method and device for deep freezing of foods (except fish) or medicines
US4960951A (en) * 1989-01-30 1990-10-02 E. I. Du Pont De Nemours And Company Novel perfluoropolyethers
EP1137053A2 (en) * 2000-03-24 2001-09-26 Micro C Technologies, Inc. Water cooled support for lamps and rapid thermal processing chamber
US20010031229A1 (en) * 1998-10-20 2001-10-18 Spjut Reed E. UV-enhanced, in-line, infrared phosphorous diffusion furnace

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5977289A (en) * 1982-10-26 1984-05-02 ウシオ電機株式会社 Beam irradiating furnace
DE10041564C2 (en) * 2000-08-24 2002-06-27 Heraeus Noblelight Gmbh Coolable infrared radiator element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB940627A (en) * 1958-02-01 1963-10-30 Hans Beckmann Method and device for deep freezing of foods (except fish) or medicines
US4960951A (en) * 1989-01-30 1990-10-02 E. I. Du Pont De Nemours And Company Novel perfluoropolyethers
US20010031229A1 (en) * 1998-10-20 2001-10-18 Spjut Reed E. UV-enhanced, in-line, infrared phosphorous diffusion furnace
EP1137053A2 (en) * 2000-03-24 2001-09-26 Micro C Technologies, Inc. Water cooled support for lamps and rapid thermal processing chamber

Also Published As

Publication number Publication date
EP1573781A2 (en) 2005-09-14
FR2843629A1 (en) 2004-02-20
AU2003285678A1 (en) 2004-03-03
FR2843629B1 (en) 2005-05-06
WO2004017385A3 (en) 2004-04-08

Similar Documents

Publication Publication Date Title
EP0334432B1 (en) Epitaxy reactor with wall protected against deposits
EP0259414B1 (en) Apparatus for thermal treatments of thin parts such as silicon wafers
EP1349431B1 (en) Vacuum and gas tight thermal insulating enclosure for induction heating apparatus
EP1048747B1 (en) Process and apparatus for treating a material with electromagnetic radiation under a controlled atmosphere
CA1092200A (en) Frequency electric furnace
FR2554302A1 (en) Radiation source for optical equipment, especially for reproduction systems using photolithography
CA2429393A1 (en) Improvements to methods for calefaction densification of a porous structure
EP1573781A2 (en) Device for rapid heat treatment comprising inside the reaction chamber cold-walled halogen infrared lamps
WO2000062333A1 (en) Integrated heating and cooling device in a reactor for thermal treatment of a substrate
FR2766558A1 (en) HOT WATER PRODUCTION DEVICE
EP0344245B1 (en) Electric immersion heater
JP3788835B2 (en) Organic thin film manufacturing method
FR3026044A1 (en) HOT-SHAPING PROCESS OF THERMOPLASTIC MATERIAL AND INSTALLATION FOR IMPLEMENTING THE SAME
FR2669470A1 (en) METHOD OF COOLING A CURRENT MECHANISM FOR VERY LOW TEMPERATURE ELECTRICAL EQUIPMENT AND DEVICE FOR ITS IMPLEMENTATION.
FR2883490A1 (en) Gas treatment unit, for catalytic treatment oxygen of e.g. volatile organic compounds, comprises placing inside enclosure provided with fluid admission and exhaust collectors, heating device and exchanger for heat charged out of catalyst
FR3092436A1 (en) VCSEL side oxidation furnace with local modification of the oxidation rate
EP1077267B1 (en) Apparatus for the continuous heat treatment of metal workpieces separately or in batches
EP0854323A1 (en) Combustion chamber for air loaded with combustible particles
CH504759A (en) Storage and handling container of a nuclear fuel assembly
FR2567921A1 (en) Epitaxial reactor for silicon wafers
WO2023237351A1 (en) Holder for high-intensity lamps for a rapid thermal annealing furnace
FR2816519A1 (en) Device for injecting gas into a reactor providing multi-zone injection without masking the radiation directed on a substrate from electromagnetic radiation lamps
WO2018162838A1 (en) One-piece moulded frame for a composite layup skin
FR3128748A1 (en) Turbomolecular vacuum pump and associated cleaning method
FR3097304A1 (en) HYBRID RADIATION ABSORBER FOR SOLAR POWER PLANTS, AND PROCESS FOR PREPARING SUCH AN ABSORBER

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003756539

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003756539

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2003756539

Country of ref document: EP