WO2004011053A1 - Bone repair putty comprising porous particulate and carrier gel - Google Patents
Bone repair putty comprising porous particulate and carrier gel Download PDFInfo
- Publication number
- WO2004011053A1 WO2004011053A1 PCT/US2003/023474 US0323474W WO2004011053A1 WO 2004011053 A1 WO2004011053 A1 WO 2004011053A1 US 0323474 W US0323474 W US 0323474W WO 2004011053 A1 WO2004011053 A1 WO 2004011053A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bone
- putty
- particulate
- bone repair
- defect
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/001—Use of materials characterised by their function or physical properties
- A61L24/0036—Porous materials, e.g. foams or sponges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/0047—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
- A61L24/0073—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material with a macromolecular matrix
- A61L24/0084—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material with a macromolecular matrix containing fillers of phosphorus-containing inorganic compounds, e.g. apatite
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/40—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
- A61L27/44—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
- A61L27/46—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/56—Porous materials, e.g. foams or sponges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/58—Materials at least partially resorbable by the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/02—Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
Definitions
- the present invention relates to improvements in bone repair materials employed to promote growth of bone to repair defects therein. More particularly, the bone material of the invention focuses upon enhancing treatment of dental bone defects such as bone loss from moderate or severe periodontitis, augmenting of bony defects of the alveolar ridge, filling tooth extraction sites, or sinus elevation grafting.
- a treatment may include application of a composition or formulation to the defect site to enhance repair and bone healing.
- the composition typically includes: (1) a particulate material to provide structural support and filling of the defect; (2) compounds or medicaments to enhance repair of bone; and (3) a carrier system to facilitate delivery to and retention of the composition at the defect site for the duration of the treatment.
- tissue augmentation material that is non-resorbable, for example comprising a ceramic particulate of 15-150 ⁇ m, suspended in a resorbable polysaccharide gel carrier, such as hyaluronic acid.
- the non-resorbable ceramic particulate is intended to effect a one-time, permanent repair that does not require repetitious treatments.
- bioactive/biocompatible glass particulates such as described by alker et al in WO 91/17777, also comprising an injectable gel formed of a hyaluronic acid, of at least 10 6 daltons molecular weight. See also Hench et al in US 5,840,290 and related patents, wherein a glass particulate is said to bond to bone at the defect site, enhancing osseous ingrowth or infiltration for repair.
- Gerber notes that resorbability is an essential requirement for a material that is to participate in remodeling and be replaced by natural bone within a certain time without an inflammation reaction that inhibits formation of tissue.
- the various particulate bone derived materials may include naturally occurring organic components that function to induce and mediate replacement bone growth.
- the bone particulate may be treated by a sintering process to reduce such risks.
- the bone particulate source material may be replaced by a completely synthetic hydroxyapatite material that includes no organic residue. The difficulty arising for synthetics is that the resulting material may not resorb or otherwise lacks activity in the remodeling process.
- Gerber describes a resorbable bone replacement material based upon calcium phosphates wherein the material is characterized by a "loose" crystal structure.
- the structure further includes various sized interconnecting pores that encourage ingrowth of collagen fibers to initiate the remodeling process.
- Formulations thought to enhance repair of bone tissue may include bone growth agents.
- Bhatnagar in US 5,635,482 describes a synthetic collagen-like agent that mimics autogenous cell attachment factors that promote bone growth.
- Bhatnagar identified and synthesized a fifteen arnino acid sequence of Type I collagen that promotes migration of reparative cells from surrounding tissues; directs cell attachment and oriented migration; and facilitates a biomimetic environment for bone generation.
- P-15 polypeptide materials, called P-15, are bound to a particulate hydroxyapatite which may be a natural, microporous xenogeneic bone mineral, such as OsteoGraf® N-300 manufactured by Dentsply Friadent CeraMed of Lakewood, Colorado.
- the P-15 cell binding poly peptide In order for the P-15 cell binding poly peptide to be active, it must be bound irreversibly to the particulate. Bhatnagar teaches that the resulting dry particulate matrix including P-15, trade marked PEPGEN P-15® Bone Graft and sold by Friadent CeraMed may be combined with a carrier such as PBS or a hydrogel for placement, for example, in an intrabony defect in a tooth supporting structure.
- a carrier such as PBS or a hydrogel
- the literature includes a number of formulations including other "growth factors" that function differently from P-15, in that the factors are not bound to the particulate but in solution.
- Radomsky in US 5,942,499 and related patents claim increasing bone growth rate or magnitude directly, without the presence of active bone particulates or the like, by combining bFGF with hyaluronic acid. Radomsky distinguishes his formulation from the known effectiveness of demineralized bone matrix (DBM) alone or DBM in combination with hyaluronic acid. Radomsky claims enhancing bone repair, depending solely upon the combination of bFGF with hyaluronic acid to promote growth amount.
- DBM demineralized bone matrix
- Gertzmann et al in US 6,030,635 utilizes an allogenic bone particulate that is demineralized comprising essentially collagen, further containing active "bone morphogenic proteins" (BMP), wherein the resulting formulation is said to be osteoconductive and osteoinductive, with the DBM particulate being remodeled into natural bone.
- the formulation includes less than about 50% by weight DBM suspended in hyaluronic acid, having a molecular weight of 7x10 5 - 3xl0 6 daltons, to form a hydrogel that is a malleable putty. Higher concentrations of DBM in the Gertzmann formulation result in poor formability, too grainy and too dry for convenient placement.
- formulators of bone treatment materials have directed a great deal of effort to improve handling characteristics through selection of an appropriate carrier for delivering the bone repair material to the defect site. It is desirable that the bone repair material be easily placed, but not be allowed to migrate from the defect. In addition, and primarily, bone formation must not be inhibited by the carrier. That is, the carrier materials for the bone repair material must be biocompatible and not interfere with the mediated bone formation, while helping provide adequate spacing between the repair material particulates to allow for cell and vascular infiltration. The carrier material should biodegrade and be resorbed. However, too fast a degradation rate is not preferred since cellular and vascular infiltration cannot develop. Too slow of a resorption rate also interferes with cellular migration, vascular penetration and bone formation.
- preferred carriers are hydrogels that incorporate the bone particulate and any growth enhancing agent.
- Preferred hydro gels include polysaccharides, particularly those of high molecular weight, preferably greater than 10 6 daltons.
- a most particularly preferred carrier is hyaluronic acid and its derivatives. While much of the prior systems have required injectability as a key handling characteristic, compositions that have a putty consistency are particularly useful in treating periodontal and related bone loss defects.
- a bone repair material such as the aforementioned PEPGEN P-15 bone graft material, suspended in a suitable carrier is placed. The gum tissue is then closed, maintaining the repair material in place.
- a barrier material may be utilized to retain the repair formulation in contact with the defect.
- a bone repair material or composition that includes: a porous, resorbable particulate, derived from bone or bone-like hydroxyapatite or synthetic hydroxyapatite; and a resorbable carrier gel component, for placing in a bony defect wherein bone repair is facilitated, said bone repair material of a putty-like consistency.
- the bone repair material composition or formulation comprises a high concentration of particulate material, comprising 30-75 weight percent of the putty depending upon the particulate density, requiring a high concentration of carrier component to maintain said particulate in the putty.
- the invention provides a bone repair formulation that does not significantly expand in contact with biological fluids, does not migrate from the site of application and does not interfere with bone formation.
- the bone repair formulation of the invention is preferably in the form of a putty that may be trowelled into place using a spatula, placed by syringe or even hand molded into the bony defect to be repaired. The putty maintains the bone repair particulate in a suspension matrix and does not migrate from the defect placement.
- a preferred bone repair or implant material of the invention particularly useful for repairing periodontal defects, in addition to including a bone-like hydroxyapatite mineral particulate, preferably includes a P-15 polypeptide synthetic biomimic of Type I collagen bone growth enhancer, having at least one of the peptide sequences described in Bhatnagar, US 5,635,482, bound to said particulate.
- the formulation of the invention includes a carrier component for suspending said particulate mixture, forming a moldable, putty-like formulation for placing in a periodontal bone defect, wherein bone growth repair is facilitated.
- a preferred carrier component is a polysaccharide such as hydroxylpropyl cellulose or methyl cellulose or the like. Particularly preferred are mucopolysaccharides, such as hyaluronic acid and its derivatives.
- the carrier selected is of high molecular weight and in a sufficiently high concentration in the putty to suspend the high concentration of particulate in the putty, said concentration preferably 45-64 mg/cc.
- the collagen poly peptide treated particulate comprises about 55% by weight of the formulation and 45% by weight of a hyaluronic acid gel carrier of sufficient molecular weight, preferably 0.7-2 x 10 6 daltons, that the formulation forms a viscous, moldable putty.
- a hyaluronic acid gel carrier of sufficient molecular weight, preferably 0.7-2 x 10 6 daltons, that the formulation forms a viscous, moldable putty.
- the invention is a composition or formulation of a bone repair material and a method of using the material to repair defects in bones. It is particularly suited for use in enhancing regeneration of bone and repairing dental bony defects such as in treating periodontal disease where alveolar bone is eroded and support for adjacent teeth has been destroyed or is seriously threatened. It is further useful in augmenting bony defects of the alveolar ridge, filling tooth extraction sites, and sinus elevation grafting.
- the invention provides a bone repair or graft formulation that includes a porous, resorbable particulate, derived from bone or synthetic or natural bone-like material, that forms a matrix structure to enhance and temporarily support new bone growth.
- the particulate material may be derived from an allograft, xenogeneic or other natural bone-derived material, for example.
- a preferred xenogeneic material is any of the porous, resorbable bone graft materials, such as sold under the PEPGEN P-15® or OsteoGraf® marks and manufactured by Dentsply Friadent CeraMed, that are anorganic, natural, microporous, bovine-derived bone mineral.
- the PEPGEN P-15® bone graft material typically has a particle size of 250-420 microns. Over time, the particulate material is resorbed and remodeled into natural bone, remaining only temporarily to provide a structure that is completely integrated by new bone tissue.
- the porous resorbable bone-like material is ALGIPORE® or ALGISORB® hydroxyapatite, also sold by Dentsply Friadent CeraMed, derived from lime- containing algae in accord with Ewers, et al US 4,770,860 and 6,428,803, the disclosures of which are incorporated by reference in their entirety.
- the invention preferably provides a bone growth enhancing composition, most preferably comprising the P-15 polypeptide sequences described by Bhatnagar in US 5,635,482 and its continuations and divisions, wherein P-15 is a synthetic biomimetic of a fifteen amino acid sequence of Type I collagen that is uniquely involved in the binding of cells, particularly fibroblasts and osteoblasts.
- P-15 material promotes the migration of reparative cells from surrounding tissues; directs cell attachment and oriented migration; and facilitates a biomimetic environment for bone generation.
- Any of the synthetic polypeptide sequences described or claimed in US 5,635,482 and its various continuations/divisions thereof are suitable, and their disclosures are incorporated herein by reference.
- An effective formulation includes a high concentration of particulate for maintaining the formulation at the defect site.
- a high concentration of particulate results in higher bone formation. More particulate retained at a site increases the concentration of bone growth enhancing agent, such as P-15 at the defect site, since P-15 is bound to the particulate.
- the concentration of PEPGEN P-15 may range 800-960 mg/cc, including about 880 mg/cc for the preferred 55% by weight composition where PEPGEN P-15 is the putty particulate.
- a successful putty formulation includes 55% by weight of the preferred PEPGEN P-15 composition having a particulate component of OsteoGraf® /N 300 having a bulk density of 1.2 g/cc.
- a successful putty fonnulation, including ALGIPORE particulate, having a bulk density of 0.5 g/cc, comprises 35-40 weight percent ALGIPORE particulate.
- a key element of the invention is that a carrier is provided, in combination with a desired amount of bone particulate, wherein a putty is formed that is moldable, easy to handle and place in a dental bony defect. Especially, the putty upon placement remains substantially fixed and adhered in place without migrating into adjacent tissues. The earner is resorbed after a period of time but maintains its structural integrity long enough to help provide structure for placement of the graft and for bone to form.
- the carrier material must be biocompatible, even at relatively high concentrations that are necessary to achieve a formulation that does not excessively change dimensions. Dimensional stability of the formulation; i.e., neither significantly expanding nor shrinldng, is also a key feature of the invention.
- Preferred carrier compositions are polysaccharides, including mucopolysaccharides.
- polysaccharides including hydroxylpropyl cellulose (HPC) and methyl cellulose are suitable.
- HPC hydroxylpropyl cellulose
- mucopolysaccharides hyaluronic acid and its derivatives are preferred.
- Useful carriers are typically of high molecular weight.
- the preferred hyaluronic acids and derivatives typically are 0.7 - 2.0 xlO 6 daltons, preferably 1.0-1.8 x 10 6 daltons.
- the carrier component selected must be present in a relatively high concentration to contain the desired high concentration of particulate and yet maintain desired putty characteristics and retain the particulate at the defect site.
- Concentrations of the preferred hyaluronic acid are on the order of 45-64 mg/cc in the putty. Such higher carrier concentration forms a preferred putty even at 55 weight percent or greater for the PEPGEN P-15 particulate, in contrast to prior art formulations which are too dry or grainy when approaching 50% particulate of comparable density.
- the dental bone augmentation and bone repair putty of the invention may be utilized in treating sinus elevation defects, extraction sites, bone loss around implants and to support implant placement, extraction site ridge preservation, repair periodontal intrabony defects, preexisting defects around implants, ridge augmentation, ridge onlay, repair furcation defects, to cover exposed implant surfaces or threads, or to repair an edentulous site to facilitate implant acceptance.
- a sinus elevation defect is a lack of available bone height in the maxillary posterior, due to bone resorption after tooth loss.
- Grafting the floor of the sinus increases available bone height allowing for ideal implant placement.
- An incision is made from the posterior tuberosity slightly palatal to the crest of the ridge to the canine area exposing the lateral antral wall.
- a lateral window is created through the cortical bone and then the Schneiderian membrane is gently lifted and positioned superiorly, creating access for recipient graft.
- PEPGEN P-15 graft putty material of the invention is packed into the subantral space anteriorly, medially and posteriorly. The high particle concentration within the putty of the invention assists in lifting the Schneiderian membrane.
- the flap is repositioned and sutured.
- Membrane use is at the discretion of the clinician. [0033] treating extraction socket defects, a tooth is atraumatically extracted, preserving the bony socket walls as much as possible. Thorough debridment, curettage, irrigation and aspiration of the socket is essential and all bleeding should be under control.
- PEPGEN P-15 graft putty of the invention is then placed into the lower portion of the socket and gently packed to insure intimate contact between the graft material and the bony walls. The remainder of the socket is then filled to the height of the alveolar crest.
- PEPGEN P-15 putty of the invention provides spacing to insure vascularization through the graft. Primary closure is preferable but not essential to the success of the graft.
- a containment device or membrane may be placed over the graft to contain the material in the socket. A simple suture (4 to 6 point closure) assists in healing.
- Deficient alveolar ridges require augmentation to provide adequate bone for implant placement. An incision is created over the deficient area and the ridge exposed. After elimination of all periosteum and soft tissue, the cortical bone should be prepared to receive the graft material. Preparation includes cortical fenestration to allow bleeding and the release of bone marrow. PEPGEN P-15 graft putty of the invention is gently packed onto the ridge and approximated over the deficient bony structure. The flap is repositioned over the graft and the primary closure of the tissue completed. Membrane use is at the discretion of the clinician.
- Endosseous implants must be stable in the bony ridge and exposure of the implant through the bone is detrimental to the success of the implant. If a portion of the implant is exposed by a dehiscence defect, for example, through the bone, bone replacement graft material can be used to repair the site and regenerate new bone to cover the implant. Incisions are made through the soft tissue to expose the dehiscence. Depending upon the surface coating of the implant, detoxification of the implant maybe necessary to thoroughly clean and prepare the implant to receive the graft. PEPGEN P-15 graft putty of the invention is packed over the exposure of the implant to assist in bone regeneration and stability of the substrate. The flap is repositioned and primary closure is essential to the success of the graft. [0036] The examples below further describe embodiments of the compositions of the invention and methods of their use. The examples are not intended to limit the scope of the invention but are illustrative only.
- Example 1 Hyaluronic Acid Gel. 60 grams of PEPGEN P-15® bone graft material supplied by Dentsply Friadent CeraMed of Lakewood, Colorado, comprising a P-15 poly peptide sequence described by Bhatnagar in US 5,635,482, irreversibly bound to a natural microporous, xenogenic bone material OsteoGraf®/N 300, was weighed out into a container. 40 grams of hyaluronic acid gel, having a molecular weight of 7 x 10 5 daltons, supplied by Hyaluron Corporation of Woburn, Massachusetts, was mixed with the PEPGEN P-15 material by means of a spatula to homogeneity.
- the resulting material is of a moldable, putty-like consistency, wherein the particulate remains suspended in the putty gel even when spun in a centrifuge (3,000 rpm for 30 minutes)
- the resulting putty of the 60:40 material had a density of 1.664 +/- 0.0533 g/cc.
- the concentration of hyaluronic acid component in the putty is about 47 mg/cc, and the concentration of active PEPGEN P-15 is about 960 mg/cc.
- Example 2 Hydroxylpropyl Cellulose Gel. 7 grams of hydroxylpropyl cellulose, hereinafter abbreviated HPC, having a molecular weight of about 1,150,000 daltons, supplied by Hercules (Klucel, HF Pharma), was added to 93 grams of water or isotonic saline and immediately mixed by hand. The mass was re-mixed after 2-3 minutes and re-mixing was repeated until a gel was formed, which was held overnight at 4-8°C. 55 grams of PEPGEN P-15 was added to 45 grams of the HPC gel and mixed with a spatula until uniform. The resulting formulation was:
- the resulting putty mass had a density in saline of 1.647 +/- 0.0452 g/cc.
- Example 3 Methyl Cellulose Gel. The process of Example 2 was repeated except that methyl cellulose manufactured by Dow Chemical Methocel A, A4CP) was substituted. The resulting formulation was:
- the resulting formulation was autoclavable with no noticeable changes in handling of origina characteristics.
- the material did not substantially expand in PBS or water.
- Example 4 Hyaluronic Acid Gel.
- the method and formulation of Example 1 was repeated except that PEPGEN P-15 graft comprised 55% by weight and a hyaluronic gel of greater MW comprised 45% by weight of the fonnulation.
- PEPGEN P-15 graft comprised 55% by weight and a hyaluronic gel of greater MW comprised 45% by weight of the fonnulation.
- 92% sodium phosphate buffer was blended together with 8% hyaluronate by weight to homogeneity.
- To make 1 cc of putty 0.55 grams of PEPGEN P-15 was thoroughly mixed with 0.45 grams of hyaluronic acid gel.
- a preferred high molecular weight hyaluronic acid of 1.2-1.7 x 10 6 daltons was employed, resulting in a concentration of about 57 mg/ml.
- the concentration of PEPGEN P-15 was about 880 mg/cc in the putty.
- Example 5 Hyaluronic Acid Gel/ALGLPORE particulate.
- 0.40 grams of ALGIP ORE bone graft particulate, supplied by Dentsply Friadent CeraMed of Lakewood, Colorado, comprising the P-15 peptide sequence of Example 1 bound to the ALGIPORE particulate was mixed with 0.60 grams of a gel comprising a hyaluronic acid, prepared as described in Example 4 and having a molecular weight of 1.2-1.7 x 10 6 daltons. Two sizes of ALGIPORE were tested: 0.3-0.5 mm and 0.5-1 mm.
- the concentration of ALGIPORE P-15 in the putty was 440 mg/cc for the 0.3-0.5 cc size and 480 mg/ cc for the 0.5- 1.0 cc size.
- the concentration of hyaluronic acid component in the putty was about 53 mg/cc for the 0.3-0.5 cc size and for the 0.5-1.0 cc size.
- the ALGIPORE component comprised 40 percent by weight of the putty, the formulation comprising:
- Example 6 Carboxymethyl Cellulose Gel.
- a gel comprising carboxymethyl cellulose (CMC), supplied by Hercules (Aqualon 7HFPH) having a MW of about 700,000 daltons and a viscosity of 1500-2500 cp, glycerol and water of the following composition was formed to make a carrier gel of a commercial bone graft material.
- 37.5 grams of PEPGEN P-15 graft was added to 62.5 grams of the CMC gel and mixed until a homogenous blend resulted, yielding about 100 grams of a PEPGEN P-15® FlowTM product.
- the resulting formulation was:
- Example 7 Bench top evaluation of handling. Samples of the invention were formulated as described in the examples above, having the compositions shown in the table below. These putties were evaluated by a panel of clinicians for handling characteristics. Table 1 shows the reported average scores. Example 4 having the highest molecular weight of the hyaluronic acid component of 1.2-1.7 x 10 6 daltons and the highest hyaluronic acid concentration was deemed to have the most preferred handling characteristics of the samples tested.
- Example 8 Dog study to evaluate handling and efficacy - extraction sockets. A 21.8 kg female dog approximately 1-2 years old was conditioned and approved for use by the USD A. The lower right quadrant of the jaw was anesthetized with 2% xylocaine. Sucular incisions were made on P2, 3 and 4 teeth. Each crown was sectioned with a fissure bur and the three teeth were extracted. The tissue was released on the lingual and buccal sides. Bleeding in the site was controlled with sterile gauze and the grafting material was tapped into the extraction socket to the height of the crest of the bone. The putty formulations described in Example 7 were employed to fill the extracted tooth sockets. Putty Example 1 was packed into P4 anterior and distal. Putty Example 2 was packed into P3 anterior and posterior.
- the extraction socket model in the dog is characterized by elevated blood flow at high hydrostatic pressure which highlights the benefits of lower expansion.
- the low expansion benefit which is a key feature of the invention, is also useful at other dental bone graft treatment sites. For example, in ridge onlays, the preferred putty of Example 4 does not expand while Putty from Example 1 does exhibit expansion.
- Example 1 The material accepted being in the bloody site and was able to be manipulated with surgical instruments and sterile, dry gauze. There was also minimal particle displacement. Putty from Example 2 - This material did not hold together as well in the defect. However, it could be pieced together easily. The product was amenable to manipulation with instruments and sterile, dry gauze.
- the preferred formulation of Example 4 including a high molecular weight hyaluronic acid gel carrier also exhibited insubstantial expansion.
- the graft sites were examined histologically after 2 and 5 weeks.
- Block tissue samples were placed in vials containing 10% zinc formalin and processed including decalcification, embedding in paraffin, sectioning and staining with hematoxylin and eosin.
- the histological sections were evaluated subjectively for bone fonnation. Excellent, good, fair and poor ratings were applied for the speed and amount of bone repair in sockets and the interaction of the graft material with the healing tissues. The results are reported in Table 3.
- Examples 1 and 4 containing high amounts of particulate graft material in hyaluronic acid gel produced better bone than other compositions. Specifically, these preferred formulations produced faster and more bone than the "DBM" formulation of demineralized allograft bone particulate suspended in a 2% hyaluronic acid/saline gel, described by Gertzmann in US 6,030,635.
- Example 9 Dog study to evaluate handling in ridge onlay/flap model. Dogs were prepared in a manner similar to Example 8. In a first dog, the jaw site was anesthetized with 2% xylocaine. A beveled incision was made distal of C to mesial of P4. Vertical incisions were made and a full thickness flap was reflected. A tissue bur was utilized to perforate the cortical plate.
- Putty #1 having the composition of Example 1 described above, was molded to a thickness of 6 mm and placed where it readily adhered as positioned. The flap was closed with 4-0 vicryl. Upon the first center suture, some excess material extruded out through the distal wound opening, which was thereafter sutured closed. After 10-15 minutes, the flap was reopened and the condition of the material observed. The material remained as placed and there was minimal migration and particle loss. Some expansion was observed.
- Putty #2 having the composition of Example 2 described above, was molded to a thickness of 6 mm deep and placed where it readily adhered. The flap was closed with 4-0 vicryl. Upon the first center suture, the material did not extrude out through distal wound opening. After 10-15 minutes, the flap was reopened and observed to have remained as placed with minimal migration and particle loss. No substantial expansion was observed.
- Example 10 Dog study to evaluate handling in defect around implant. Dogs were prepared in a manner similar to Example 8. In a first dog, the jaw area was anesthetized with 2% xylocaine. Teeth were extracted from the lower right quadrant. A buccal dehiscence or defect was created with a fissure bur and ron journey in all three distal sockets. The sockets were cleaned, ircigated and aspirated. A Calcitek hydroxyapatite coated implant cylinder (4 x 10 mm) was placed, hnplant osteotomy sites were created in the distal sockets of each tooth site.
- Putty #2 having the composition of Example 2 above, was placed into P4 posterior. The material broke apart during placement, but was easily reformed. The putty was in contact with irregularities of socket and implant. The putty maintained the newly formed buccal plate.
- Putty #1 having the composition of Example 1 above, was placed into P3 posterior. The material handled well during placement and was in contact with inegularities of socket and implant. The putty maintained the newly formed buccal plate.
- the preferced putty having the composition of Example 4 above, was placed into both P2 and P3 posteriors.
- the material handled well during placement and was in contact with inegularities of socket and implant.
- the putty maintained the newly formed buccal plate. In addition, no particle migration or expansion was observed.
- Example 11 Bulk density and particulate concentration.
- the following commercially available bone-derived particulate materials were placed into a preferred HPC or the prefened hyaluronic acid gel carrier: Bio-Oss, OsteoGraf/LD, PEPGEN P-15, (OsteoGraf/N-300), OsteoGraf/D and ALGIPORE.
- Each of the particulate materials was added to the gel carrier until the desired putty consistency was achieved.
- the particle bulk density and putty particulate concentration required to reach the desired putty consistency is shown below:
- the table shows that there is a positive relationship between optimal particulate percentage to make a putty formulation and the particulate bulk density.
- the Bio-Oss material manufactured by OsteoHealth is an anorganic bovine mineral of 0.25-1.00 mm derived from cancellous bone that is more porous and less dense than PEPGEN P- 15 graft particulate.
- a 30% (w/w) composition of Bio-Oss with HPC gel or the preferred hyaluronic acid composition formed a consistency similar to the preferced putty of 55% PEPGEN P-15.
- a 45% Bio-Oss containing putty was too crumbly and not preferred.
- a 25% Bio-Oss containing putty was too thin to be moldable.
- a 40% - 45% PEPGEN P-15 containing formulation had a density of 1.4 g/cc and was not of a putty consistency. At 50%, the consistency was more like a putty.
- a preferred formulation and putty consistency comprises 55% by weight and had a density of 1.5 - 1.6 .
- a preferced putty including ALGIPORE had a density of 1.1 g/cc for the 0.3-0.5 or the 0.5- 1.0 mm size particles.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Materials Engineering (AREA)
- Dermatology (AREA)
- Transplantation (AREA)
- Surgery (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Pharmacology & Pharmacy (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physical Education & Sports Medicine (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Materials For Medical Uses (AREA)
- Dental Preparations (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2003254211A AU2003254211A1 (en) | 2002-07-31 | 2003-07-28 | Bone repair putty comprising porous particulate and carrier gel |
EP03771937.4A EP1525011B1 (en) | 2002-07-31 | 2003-07-28 | Bone repair putty comprising porous particulate and carrier gel |
CA2496449A CA2496449C (en) | 2002-07-31 | 2003-07-28 | Bone repair putty comprising porous particulate and carrier gel |
JP2004524911A JP5449638B2 (en) | 2002-07-31 | 2003-07-28 | Bone repair putty comprising porous particles and carrier gel |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US39985102P | 2002-07-31 | 2002-07-31 | |
US60/399,851 | 2002-07-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004011053A1 true WO2004011053A1 (en) | 2004-02-05 |
Family
ID=31188630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2003/023474 WO2004011053A1 (en) | 2002-07-31 | 2003-07-28 | Bone repair putty comprising porous particulate and carrier gel |
Country Status (6)
Country | Link |
---|---|
US (1) | US7842300B2 (en) |
EP (2) | EP2295089B1 (en) |
JP (1) | JP5449638B2 (en) |
AU (1) | AU2003254211A1 (en) |
CA (1) | CA2496449C (en) |
WO (1) | WO2004011053A1 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007079053A2 (en) * | 2005-12-28 | 2007-07-12 | Dentsply International Inc. | Light-curable bone growth material for treating dental bone defects |
WO2007134465A1 (en) | 2006-05-23 | 2007-11-29 | Mathys Ag Bettlach | Solid precursor for the preparation of a pasty bone replacement material by admixture of a liquid. |
WO2008028466A2 (en) | 2006-09-06 | 2008-03-13 | Curasan Ag | Phase- and sedimentation-stable, plastically deformable preparation with intrinsic pore forming, intended for example for filling bone defects or for use as bone substitute material, and method of producing it |
GB2441876A (en) * | 2006-09-14 | 2008-03-19 | Univ Tsinghua | A mineralized poly-peptide material used in bone remodeling and corresponding preparation method |
WO2009007034A1 (en) | 2007-07-12 | 2009-01-15 | Straumann Holding Ag | Composite bone repair material |
WO2009038676A2 (en) * | 2007-09-14 | 2009-03-26 | Musculoskeletal Transplant Foundation | Composition for filling bone defects |
EP2114457A1 (en) * | 2007-01-15 | 2009-11-11 | Hans Biomed. Cor | Composition for promoting bone regeneration and restoration |
WO2013120214A1 (en) | 2012-02-14 | 2013-08-22 | Straumann Holding Ag | Bone repair material |
WO2013120215A1 (en) | 2012-02-14 | 2013-08-22 | Straumann Holding Ag | Bone repair material |
WO2014056722A2 (en) * | 2012-10-08 | 2014-04-17 | Anteis S.A. | Injectable sterile aqueous formulation based on crosslinked hyaluronic acid and hydroxyapatite for aesthetic use |
US8876532B2 (en) | 2002-07-31 | 2014-11-04 | Dentsply International Inc. | Bone repair putty |
US10434040B2 (en) | 2012-10-08 | 2019-10-08 | Anteis S.A. | Injectable sterile aqueous formulation based on crosslinked hyaluronic acid and hydroxyapatite for aesthetic use |
US10463762B2 (en) | 2012-10-08 | 2019-11-05 | Anteis S.A. | Injectable sterile aqueous formulation based on crosslinked hyaluronic acid and hydroxyapatite for aesthetic use |
RU2709735C1 (en) * | 2019-07-23 | 2019-12-19 | федеральное государственное бюджетное учреждение "Центральный научно-исследовательский институт стоматологии и челюстно-лицевой хирургии" Министерства здравоохранения Российской Федерации | Method for eliminating lower jaw atrophy |
US11426463B2 (en) | 2012-05-30 | 2022-08-30 | Klox Technologies Inc. | Compositions and methods for biophotonic bone reconstruction |
WO2023105465A1 (en) | 2021-12-08 | 2023-06-15 | Hofmann Heidrun | Dental growth stimulant and treatment set |
WO2024133590A1 (en) | 2022-12-21 | 2024-06-27 | Institut Straumann Ag | Use of bone graft particles for the preparation of a porous bone graft material |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040081704A1 (en) * | 1998-02-13 | 2004-04-29 | Centerpulse Biologics Inc. | Implantable putty material |
US20020114795A1 (en) | 2000-12-22 | 2002-08-22 | Thorne Kevin J. | Composition and process for bone growth and repair |
US7498040B2 (en) | 2005-10-12 | 2009-03-03 | Lifenet Health | Compositions for repair of defects in osseous tissues, and methods of making the same |
US7744597B2 (en) | 2002-06-26 | 2010-06-29 | Lifenet Health | Device and process for producing fiber products and fiber products produced thereby |
US7494811B2 (en) | 2003-05-01 | 2009-02-24 | Lifenet Health | In vitro growth of tissues suitable to the formation of bone and bone forming tissue formed thereby |
US20060110357A1 (en) * | 2004-11-22 | 2006-05-25 | Materna Peter A | Bone putty composition that maintains granule suspension at reduced temperatures |
DE102005024296B4 (en) * | 2005-05-19 | 2007-02-01 | Bundesanstalt für Materialforschung und -Prüfung (BAM) | Absorbable, biocompatible molded body and method of manufacture |
US8048443B2 (en) * | 2005-12-16 | 2011-11-01 | Cerapedics, Inc. | Pliable medical device and method of use |
JP5004505B2 (en) * | 2006-05-18 | 2012-08-22 | 株式会社サンギ | Oral composition |
EP1961765A1 (en) * | 2006-12-08 | 2008-08-27 | Zealand Pharma A/S | Truncated PTH peptides with a cyclic conformation |
US7718616B2 (en) | 2006-12-21 | 2010-05-18 | Zimmer Orthobiologics, Inc. | Bone growth particles and osteoinductive composition thereof |
AU2006352228A1 (en) * | 2006-12-22 | 2008-07-03 | Mathys Ag Bettlach | Precursor for the preparation of a pasty bone replacement material by admixture of a liquid |
US8840913B2 (en) | 2008-03-27 | 2014-09-23 | Warsaw Orthopedic, Inc. | Malleable multi-component implants and materials therefor |
SG174505A1 (en) * | 2009-03-23 | 2011-10-28 | Genzyme Corp | Cartilage repair |
FR2955258A1 (en) * | 2010-01-20 | 2011-07-22 | Biopharmex Holding Ltd | INJECTABLE COMPOSITION |
JP2013525299A (en) | 2010-04-16 | 2013-06-20 | アパテック リミテッド | Biomaterial |
US20110262518A1 (en) * | 2010-04-27 | 2011-10-27 | Smyth Stuart K J | Treatment for cardiac injuries created by myocardial infarction |
CN103313733A (en) | 2010-11-15 | 2013-09-18 | 捷迈整形外科生物材料有限公司 | Bone void fillers |
US8617240B2 (en) | 2010-11-17 | 2013-12-31 | Charles D. Hightower | Moldable cushion for implants |
US9162011B2 (en) | 2011-12-19 | 2015-10-20 | Allosource | Flowable matrix compositions and methods |
RU2551923C1 (en) * | 2013-12-27 | 2015-06-10 | Сергей Валерьевич Шамрин | Method for increase in alveolar bone volume |
CN104548211B (en) * | 2014-12-19 | 2016-11-23 | 戴立军 | A kind of orthopaedics or gear division packing material, a kind of tooth implant and a kind of degradable artificial bone |
CA3177726A1 (en) | 2015-05-21 | 2016-11-24 | Musculoskeletal Transplant Foundation | Modified demineralized cortical bone fibers |
US10632230B2 (en) | 2015-07-10 | 2020-04-28 | Warsaw Orthopedic, Inc. | Implants having a high drug load of an oxysterol and methods of use |
AU2016347052B2 (en) * | 2015-10-27 | 2021-03-25 | Warsaw Orthopedic, Inc. | Implants having a drug load of an oxysterol and methods of use |
RU2618205C1 (en) * | 2015-11-30 | 2017-05-02 | Государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный медицинский университет имени академика И.П. Павлова" Министерства здравоохранения Российской Федерации | Method for plastic repair of atrophied lower alveolar process |
RU2612826C1 (en) * | 2015-12-30 | 2017-03-13 | Артур Магомедович Омаров | Implant unit for reconstruction of defective alveolar bone and method for reconstruction of defective alveolar bone |
US11235086B2 (en) | 2018-02-22 | 2022-02-01 | Cerapedics, Inc. | Processes for coating inorganic particles with a peptide or protein useful for improving cellular activity related to bone growth |
RU2689195C1 (en) * | 2018-06-05 | 2019-05-24 | федеральное государственное бюджетное учреждение "Центральный научно-исследовательский институт стоматологии и челюстно-лицевой хирургии" Министерства здравоохранения Российской Федерации | Method for simultaneous elimination of body defects and mandibular branch |
IT201900001081A1 (en) | 2019-01-24 | 2020-07-24 | Mastelli S R L | Composition for the treatment of periodontitis and regeneration of the interdental papilla |
RU2715677C1 (en) * | 2019-06-26 | 2020-03-02 | федеральное государственное бюджетное учреждение "Центральный научно-исследовательский институт стоматологии и челюстно-лицевой хирургии" Министерства здравоохранения Российской Федерации | Method for eliminating lower jaw atrophy |
US11311647B2 (en) | 2019-07-26 | 2022-04-26 | Warsaw Orthopedic, Inc. | Implantable calcium phosphate compositions and methods |
US11433159B2 (en) | 2019-07-26 | 2022-09-06 | Warsaw Orthopedic, Inc. | Hydratable and flowable implantable compositions and methods of making and using them |
US11498880B2 (en) | 2019-07-26 | 2022-11-15 | Warsaw Orthopedic, Inc. | Calcium phosphate granules and methods of making them |
WO2021050933A1 (en) | 2019-09-11 | 2021-03-18 | Warsaw Orthopedic, Inc. | Hydratable compositions comprising macroparticles and methods of making them |
KR102482319B1 (en) | 2020-09-29 | 2022-12-29 | 주식회사 시지바이오 | Injectable composition for bone defect having high elasticity comprising calcium phosphates and preparation method thereof |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0416398A1 (en) * | 1989-08-24 | 1991-03-13 | Asahi Kogaku Kogyo Kabushiki Kaisha | Paste for bonding granular bone prosthesis and bone prosthesis using same |
WO1994015653A1 (en) * | 1993-01-12 | 1994-07-21 | Genentech, Inc. | Tgf-beta formulation for inducing bone growth |
WO1998054089A1 (en) * | 1997-05-30 | 1998-12-03 | Rolf Ewers | Hydroxylapatite gel |
WO2000045870A1 (en) * | 1999-02-04 | 2000-08-10 | Sdgi Holdings, Inc. | Osteogenic paste compositions and uses thereof |
EP1127581A1 (en) * | 1998-02-27 | 2001-08-29 | Musculoskeletal Transplant Foundation | Malleable paste for filling bone defects |
EP1142595A2 (en) * | 1992-04-17 | 2001-10-10 | FIDIA S.p.A. | Biomaterials for bone replacement |
US6332779B1 (en) * | 2000-07-03 | 2001-12-25 | Osteotech, Inc. | Method of hard tissue repair |
WO2002070029A2 (en) * | 2001-03-02 | 2002-09-12 | Stryker Corporation | Porous beta-tricalcium phosphate granules and methods for producing same |
WO2003082365A1 (en) * | 2002-04-03 | 2003-10-09 | Mathys Medizinaltechnik Ag | Kneadable, pliable bone replacement material |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3542744C1 (en) | 1985-12-03 | 1987-05-27 | Ewers Rolf | Porous hydroxyapatite material |
US4861733A (en) * | 1987-02-13 | 1989-08-29 | Interpore International | Calcium phosphate bone substitute materials |
DE3709897A1 (en) * | 1987-03-26 | 1988-10-06 | Ewers Rolf | METHOD OF MANUFACTURING A HYDROXYLAPATITE MATERIAL |
US5635482A (en) | 1989-08-14 | 1997-06-03 | The Regents Of The University Of California | Synthetic compounds and compositions with enhanced cell binding |
US5290558A (en) * | 1989-09-21 | 1994-03-01 | Osteotech, Inc. | Flowable demineralized bone powder composition and its use in bone repair |
WO1991017777A2 (en) | 1990-05-22 | 1991-11-28 | University Of Florida | Injectable bioactive glass compositions and methods for tissue reconstruction |
ZA93506B (en) | 1992-02-11 | 1994-05-11 | Bristol Myers Squibb Co | Soft tissue augmentation material |
US7060287B1 (en) | 1992-02-11 | 2006-06-13 | Bioform Inc. | Tissue augmentation material and method |
US6537574B1 (en) * | 1992-02-11 | 2003-03-25 | Bioform, Inc. | Soft tissue augmentation material |
EP1120439B1 (en) * | 1992-02-28 | 2004-06-16 | Cohesion Technologies, Inc. | Injectable ceramic compositions and methods for their preparation and use |
US6027742A (en) * | 1995-05-19 | 2000-02-22 | Etex Corporation | Bioresorbable ceramic composites |
US20020136696A1 (en) | 1995-05-19 | 2002-09-26 | Dosuk D. Lee | Orthopedic and dental ceramic implants |
US6287341B1 (en) * | 1995-05-19 | 2001-09-11 | Etex Corporation | Orthopedic and dental ceramic implants |
US5676976A (en) * | 1995-05-19 | 1997-10-14 | Etex Corporation | Synthesis of reactive amorphous calcium phosphates |
US6221854B1 (en) | 1996-03-05 | 2001-04-24 | Orquest, Inc. | Method of promoting bone growth with hyaluronic acid and growth factors |
NZ331238A (en) | 1996-03-05 | 2000-05-26 | Orquest Inc | Method of promoting bone growth with hyaluronic acid and growth factors (bFGF) |
US6190684B1 (en) * | 1996-05-30 | 2001-02-20 | University Of Florida Research Foundation, Inc. | Injectable bio-active glass in a dextran suspension |
US6051247A (en) * | 1996-05-30 | 2000-04-18 | University Of Florida Research Foundation, Inc. | Moldable bioactive compositions |
US5840290A (en) * | 1996-05-30 | 1998-11-24 | University Of Florida Research Foundation | Injectable bio-active glass in a dextran suspension |
US6953594B2 (en) | 1996-10-10 | 2005-10-11 | Etex Corporation | Method of preparing a poorly crystalline calcium phosphate and methods of its use |
WO1999002107A1 (en) | 1997-07-10 | 1999-01-21 | Us Biomaterials Corporation | Moldable bioactive compositions |
US6123957A (en) * | 1997-07-16 | 2000-09-26 | Jernberg; Gary R. | Delivery of agents and method for regeneration of periodontal tissues |
US6437018B1 (en) * | 1998-02-27 | 2002-08-20 | Musculoskeletal Transplant Foundation | Malleable paste with high molecular weight buffered carrier for filling bone defects |
US6458375B1 (en) * | 1998-02-27 | 2002-10-01 | Musculoskeletal Transplant Foundation | Malleable paste with allograft bone reinforcement for filling bone defects |
FR2776282B1 (en) * | 1998-03-20 | 2000-05-19 | Toulouse Inst Nat Polytech | PROCESS FOR THE PREPARATION OF A HYDROXYAPATITE-BASED BIOMATERIAL, BIOMATERIAL OBTAINED AND SURGICAL OR DENTAL APPLICATION |
US7371408B1 (en) * | 1999-06-07 | 2008-05-13 | Wright Medical Technology, Inc. | Bone graft substitute composition |
CA2378486A1 (en) * | 1999-08-05 | 2001-02-15 | Takashi Kurasawa | Osteogenesis promoter sustained-release paste |
AU6905100A (en) | 1999-08-13 | 2001-03-13 | Bioform, Inc. | Tissue augmentation material and methods |
DE10060036C1 (en) | 2000-12-02 | 2002-08-08 | Dot Gmbh | Inorganic resorbable bone substitute material |
US20030152606A1 (en) | 2000-01-28 | 2003-08-14 | Thomas Gerber | Inorganic resorbable bone substitute material and production method |
WO2002019937A2 (en) | 2000-09-05 | 2002-03-14 | Technion Research And Development Foundation Ltd. | Hydrogel incorporated with bone growth promoting agents for dental and oral surgery |
US6432436B1 (en) * | 2000-10-03 | 2002-08-13 | Musculoskeletal Transplant Foundation | Partially demineralized cortical bone constructs |
US20030143283A1 (en) * | 2002-01-28 | 2003-07-31 | Andrew Tofe | Bone repair material |
-
2003
- 2003-07-28 CA CA2496449A patent/CA2496449C/en not_active Expired - Fee Related
- 2003-07-28 AU AU2003254211A patent/AU2003254211A1/en not_active Abandoned
- 2003-07-28 EP EP10015208.1A patent/EP2295089B1/en not_active Expired - Lifetime
- 2003-07-28 WO PCT/US2003/023474 patent/WO2004011053A1/en active Application Filing
- 2003-07-28 EP EP03771937.4A patent/EP1525011B1/en not_active Expired - Lifetime
- 2003-07-28 US US10/628,692 patent/US7842300B2/en active Active
- 2003-07-28 JP JP2004524911A patent/JP5449638B2/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0416398A1 (en) * | 1989-08-24 | 1991-03-13 | Asahi Kogaku Kogyo Kabushiki Kaisha | Paste for bonding granular bone prosthesis and bone prosthesis using same |
EP1142595A2 (en) * | 1992-04-17 | 2001-10-10 | FIDIA S.p.A. | Biomaterials for bone replacement |
WO1994015653A1 (en) * | 1993-01-12 | 1994-07-21 | Genentech, Inc. | Tgf-beta formulation for inducing bone growth |
WO1998054089A1 (en) * | 1997-05-30 | 1998-12-03 | Rolf Ewers | Hydroxylapatite gel |
EP1127581A1 (en) * | 1998-02-27 | 2001-08-29 | Musculoskeletal Transplant Foundation | Malleable paste for filling bone defects |
WO2000045870A1 (en) * | 1999-02-04 | 2000-08-10 | Sdgi Holdings, Inc. | Osteogenic paste compositions and uses thereof |
US6332779B1 (en) * | 2000-07-03 | 2001-12-25 | Osteotech, Inc. | Method of hard tissue repair |
WO2002070029A2 (en) * | 2001-03-02 | 2002-09-12 | Stryker Corporation | Porous beta-tricalcium phosphate granules and methods for producing same |
WO2003082365A1 (en) * | 2002-04-03 | 2003-10-09 | Mathys Medizinaltechnik Ag | Kneadable, pliable bone replacement material |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8876532B2 (en) | 2002-07-31 | 2014-11-04 | Dentsply International Inc. | Bone repair putty |
WO2007079053A3 (en) * | 2005-12-28 | 2008-07-31 | Dentsply Int Inc | Light-curable bone growth material for treating dental bone defects |
WO2007079053A2 (en) * | 2005-12-28 | 2007-07-12 | Dentsply International Inc. | Light-curable bone growth material for treating dental bone defects |
WO2007134465A1 (en) | 2006-05-23 | 2007-11-29 | Mathys Ag Bettlach | Solid precursor for the preparation of a pasty bone replacement material by admixture of a liquid. |
WO2008028466A2 (en) | 2006-09-06 | 2008-03-13 | Curasan Ag | Phase- and sedimentation-stable, plastically deformable preparation with intrinsic pore forming, intended for example for filling bone defects or for use as bone substitute material, and method of producing it |
US8580865B2 (en) | 2006-09-06 | 2013-11-12 | Curasan Ag | Phase-and sedimentation-stable, plastically deformable preparation with intrinsic pore forming, intended for example for filling bone defects or for use as bone substitute material, and method of producing it |
WO2008028466A3 (en) * | 2006-09-06 | 2009-06-04 | Curasan Ag | Phase- and sedimentation-stable, plastically deformable preparation with intrinsic pore forming, intended for example for filling bone defects or for use as bone substitute material, and method of producing it |
GB2441876A (en) * | 2006-09-14 | 2008-03-19 | Univ Tsinghua | A mineralized poly-peptide material used in bone remodeling and corresponding preparation method |
EP2114457A1 (en) * | 2007-01-15 | 2009-11-11 | Hans Biomed. Cor | Composition for promoting bone regeneration and restoration |
EP2114457A4 (en) * | 2007-01-15 | 2010-02-17 | Hans Biomed Cor | Composition for promoting bone regeneration and restoration |
US8192751B2 (en) | 2007-01-15 | 2012-06-05 | Hans Biomed.Cor | Composition for promoting bone regeneration and restoration |
EP2564813A2 (en) | 2007-07-12 | 2013-03-06 | Straumann Holding AG | Composite Bone Repair Material |
US8574611B2 (en) | 2007-07-12 | 2013-11-05 | Straumann Holding Ag | Composite bone repair material |
WO2009007034A1 (en) | 2007-07-12 | 2009-01-15 | Straumann Holding Ag | Composite bone repair material |
WO2009038676A3 (en) * | 2007-09-14 | 2010-03-25 | Musculoskeletal Transplant Foundation | Composition for filling bone defects |
US9138509B2 (en) | 2007-09-14 | 2015-09-22 | Musculoskeletal Transplant Foundation | Composition for filling bone defects |
WO2009038676A2 (en) * | 2007-09-14 | 2009-03-26 | Musculoskeletal Transplant Foundation | Composition for filling bone defects |
WO2013120217A1 (en) | 2012-02-14 | 2013-08-22 | Straumann Holding Ag | Bone repair material |
US10238775B2 (en) | 2012-02-14 | 2019-03-26 | Straumann Holding Ag | Bone repair material |
WO2013120216A1 (en) | 2012-02-14 | 2013-08-22 | Straumann Holding Ag | Bone repair material |
US10098983B2 (en) | 2012-02-14 | 2018-10-16 | Straumann Holding Ag | Bone repair material |
WO2013120215A1 (en) | 2012-02-14 | 2013-08-22 | Straumann Holding Ag | Bone repair material |
WO2013120214A1 (en) | 2012-02-14 | 2013-08-22 | Straumann Holding Ag | Bone repair material |
US11426463B2 (en) | 2012-05-30 | 2022-08-30 | Klox Technologies Inc. | Compositions and methods for biophotonic bone reconstruction |
AU2013329751B2 (en) * | 2012-10-08 | 2017-12-21 | Anteis S.A. | Injectable sterile aqueous formulation based on crosslinked hyaluronic acid and hydroxyapatite for aesthetic use |
RU2648450C2 (en) * | 2012-10-08 | 2018-03-26 | Антеис С.А. | Acceptable for injections sterile water composition on the basis of stitched hyaluronic acid and hydroxyapatite for application in plastic surgery |
WO2014056722A3 (en) * | 2012-10-08 | 2014-07-10 | Anteis S.A. | Injectable sterile aqueous formulation based on crosslinked hyaluronic acid and hydroxyapatite for aesthetic use |
WO2014056722A2 (en) * | 2012-10-08 | 2014-04-17 | Anteis S.A. | Injectable sterile aqueous formulation based on crosslinked hyaluronic acid and hydroxyapatite for aesthetic use |
US10434040B2 (en) | 2012-10-08 | 2019-10-08 | Anteis S.A. | Injectable sterile aqueous formulation based on crosslinked hyaluronic acid and hydroxyapatite for aesthetic use |
US10463762B2 (en) | 2012-10-08 | 2019-11-05 | Anteis S.A. | Injectable sterile aqueous formulation based on crosslinked hyaluronic acid and hydroxyapatite for aesthetic use |
US10493006B2 (en) | 2012-10-08 | 2019-12-03 | Anteis S.A. | Injectable sterile aqueous formulation based on crosslinked hyaluronic acid and hydroxyapatite for aesthetic use |
RU2709735C1 (en) * | 2019-07-23 | 2019-12-19 | федеральное государственное бюджетное учреждение "Центральный научно-исследовательский институт стоматологии и челюстно-лицевой хирургии" Министерства здравоохранения Российской Федерации | Method for eliminating lower jaw atrophy |
WO2023105465A1 (en) | 2021-12-08 | 2023-06-15 | Hofmann Heidrun | Dental growth stimulant and treatment set |
WO2024133590A1 (en) | 2022-12-21 | 2024-06-27 | Institut Straumann Ag | Use of bone graft particles for the preparation of a porous bone graft material |
Also Published As
Publication number | Publication date |
---|---|
EP2295089B1 (en) | 2018-05-09 |
US7842300B2 (en) | 2010-11-30 |
EP2295089A3 (en) | 2011-05-04 |
CA2496449A1 (en) | 2004-02-05 |
US20040062816A1 (en) | 2004-04-01 |
EP2295089A2 (en) | 2011-03-16 |
EP1525011B1 (en) | 2016-08-17 |
JP2005538757A (en) | 2005-12-22 |
JP5449638B2 (en) | 2014-03-19 |
CA2496449C (en) | 2011-11-15 |
AU2003254211A1 (en) | 2004-02-16 |
EP1525011A1 (en) | 2005-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2496449C (en) | Bone repair putty comprising porous particulate and carrier gel | |
US8876532B2 (en) | Bone repair putty | |
Schlegel et al. | Histologic findings in sinus augmentation with autogenous bone chips versus a bovine bone substitute. | |
Brkovic et al. | Beta-tricalcium phosphate/type I collagen cones with or without a barrier membrane in human extraction socket healing: clinical, histologic, histomorphometric, and immunohistochemical evaluation | |
Artzi et al. | Biomaterial Resorption Rate and Healing Site Morphology of Inorganic Bovine Bone and β-Tricalcium Phosphate in the Canine: A 24-month Longitudinal Histologic Study and Morphometric Analysis. | |
JP5368102B2 (en) | Maxillofacial bone enhancement using rhPDGF-BB and biocompatible matrix | |
Brkovic et al. | Simple preservation of a maxillary extraction socket using beta-tricalcium phosphate with type I collagen: preliminary clinical and histomorphometric observations. | |
Panagiotou et al. | Comparison of two different xenografts in bilateral sinus augmentation: radiographic and histologic findings. | |
Gatti et al. | Bone augmentation with bioactive glass in three cases of dental implant placement | |
Emam et al. | Microcomputed tomographic and histologic analysis of anorganic bone matrix coupled with cell-binding peptide suspended in sodium hyaluronate carrier after sinus augmentation: a clinical study. | |
van Oirschot et al. | Fast degradable calcium phosphate cement for maxillofacial bone regeneration | |
Stübinger et al. | Maxillary sinus grafting with a nano-structured biomaterial: preliminary clinical and histological results | |
Cehreli et al. | Biological Reactions to a Poly (l-Lactide)—Hydroxyapatite Composite: A Study in Canine Mandible | |
Dellavia et al. | Histomorphometric analysis of human maxillary sinus lift with a new bone substitute biocomposite: A preliminary report | |
Ali et al. | Clinical assessment of a synthetic biomaterial containing hydroxyapatite and beta tricalcium phosphate in socket preservation | |
Fukuyama et al. | Effects of α-DT cement with hydroxypropyl cellulose on bone augmentation within a titanium cap in the rabbit calvarium | |
Bozidar et al. | Beta-tricalcium phosphate/type I collagen cones with or without a barrier membrane in human extraction socket healing: clinical, histologic, histomorphometric, and immunohistochemical evaluation | |
Rejab | The effects of two bone substitute materials in the treatment of experimentally induced mandibular defects: An experimental study | |
Khoury et al. | Use of Grafting Materials in Sinus Floor Elevation: Biologic Basis and Current Updates | |
Fairbairn et al. | Case Report Alveolar Ridge Preservation Using a Novel Synthetic Grafting Material: A Case with Two-Year Follow-Up | |
Vamsi et al. | Regenerative Materials in Periodontics: A Review. | |
Sarkarat et al. | Bone Repair via Osteon and Bio-Oss: A Comparative Histological and Histomorphometric Animal Study | |
AU2006318689B2 (en) | Maxillofacial bone augmentation using rhPDGF-BB and a biocompatible matrix | |
de Souza et al. | Alveolar ridge preservation and regeneration with biomaterials | |
홍성배 | The effect of calcium sulfate with alloplast on the periodontal regeneration in one-wall intrabony defect of beagle dogs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU BR CA CN JP KR MX RU |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
REEP | Request for entry into the european phase |
Ref document number: 2003771937 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003771937 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2496449 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004524911 Country of ref document: JP |
|
WWP | Wipo information: published in national office |
Ref document number: 2003771937 Country of ref document: EP |