WO2004007194A1 - Composite and process for producing the same - Google Patents

Composite and process for producing the same Download PDF

Info

Publication number
WO2004007194A1
WO2004007194A1 PCT/JP2003/008569 JP0308569W WO2004007194A1 WO 2004007194 A1 WO2004007194 A1 WO 2004007194A1 JP 0308569 W JP0308569 W JP 0308569W WO 2004007194 A1 WO2004007194 A1 WO 2004007194A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
rubber
group
weight
vulcanized
Prior art date
Application number
PCT/JP2003/008569
Other languages
French (fr)
Japanese (ja)
Inventor
Toru Ikuta
Mitsuteru Mutsuda
Yasumasa Negoro
Original Assignee
Daicel-Degussa Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel-Degussa Ltd. filed Critical Daicel-Degussa Ltd.
Priority to AU2003252471A priority Critical patent/AU2003252471A1/en
Publication of WO2004007194A1 publication Critical patent/WO2004007194A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/12Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/08Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B2038/0052Other operations not otherwise provided for
    • B32B2038/0076Curing, vulcanising, cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2319/00Synthetic rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2398/00Unspecified macromolecular compounds

Definitions

  • the present invention relates to a composite (or a composite member) in which a resin and a vulcanized rubber are bonded to a body and are useful as a mechanical part, an automobile part, and the like, and a method for producing the same.
  • Background art a composite (or a composite member) in which a resin and a vulcanized rubber are bonded to a body and are useful as a mechanical part, an automobile part, and the like, and a method for producing the same.
  • thermoplastic component such as a polyformaldehyde olefin polymer and a vulcanized rubber component compatible with the thermoplastic component are disclosed.
  • a method for producing a composite in which a plastic surface is melted by frictional contact with a plastic component and a plastic component and a rubber component are solidified while being kept in contact with each other.
  • Japanese Patent Application Laid-Open No. Sho 61-204,600 discloses a polyphenylene ether resin and a synthetic rubber. A method for heat treatment in the presence of a vulcanization system has been disclosed.
  • Japanese Patent Application Laid-Open No. 9-124803 proposes obtaining a composite member by heating and bonding an acrylonitrile-containing thermoplastic resin and an acrylonitrile-containing rubber.
  • Japanese Patent Application Laid-Open Nos. 2-150304 and 3-313 No. 631, JP-A-3-138114 discloses a polyamide resin, a rubber containing a propyloxyl group or an acid anhydride group as a rubber component, a peroxide and vulcanization activation. It has been proposed to use a rubber component containing an agent.
  • Japanese Patent Application Laid-Open No. 8-156618 / 88 discloses that a composite member can be obtained by bringing an epoxy group-containing resin member and a carboxyl group or acid anhydride group-containing rubber member into close contact and vulcanizing them. Proposed.
  • Japanese Patent Application Laid-Open No. 7-11013 discloses a polyamide molded product, a rubber, a peroxide vulcanizing agent, and a silane compound.
  • a method of vulcanizing by contacting a rubber compound containing a vulcanizing activator as required is disclosed.
  • a thermoplastic polyester is used as a hard component, and a rubber component containing a rubber, a peroxide vulcanizing agent, a bifunctional or polyfunctional maleimide and, if necessary, a vulcanizing activator is used as a soft component ( Japanese Unexamined Patent Publication (Kokai) No.
  • thermoplastic resin and rubber are limited in order to obtain high adhesive strength.
  • Japanese Patent Application Laid-Open No. H10-58605 discloses that a base film (such as a polyester film) and a rubber film containing a polyfunctional methacrylate as an adhesion improver (such as silicone rubber and ethylene propylene rubber) are laminated.
  • a method for obtaining a composite film by vulcanizing and vulcanizing is disclosed.
  • irradiation is performed using an electron beam, which is a high-energy beam, for bonding, and is used for joining a thick, three-dimensional rubber molded body to a resin molded body. Is difficult to do.
  • the bonding strength varies greatly depending on the type and prescription of rubber, so that a large change in rubber prescription is required, and high bonding strength may not be obtained even if the rubber prescription is changed.
  • rubber formulations in which the amount of additives such as fillers, fillers, and plasticizers must be increased, and rubber formulations in which the type of vulcanizing agent is restricted for example, sulfur In rubber formulations that require a vulcanizing agent
  • the range of choices for formulations to increase joint strength is severely limited.
  • changing rubber formulations is often difficult in practice.
  • an object of the present invention is to provide a composite in which a resin molded article and a vulcanized rubber molded article are firmly joined in a wide range of combinations, and a method for producing the same.
  • Another object of the present invention is to provide a composite in which a resin molded article and a vulcanized rubber molded article are firmly joined without subjecting the surface of the resin molded article to an easy adhesion treatment, and a method for producing the same. .
  • Still another object of the present invention is to provide a composite firmly bonded to a resin member without changing the rubber composition of the vulcanized rubber member, and a method for producing the same.
  • Another object of the present invention is to provide a composite in which a resin member and a vulcanized rubber member are firmly joined even in a three-dimensional structure, and a method for producing the same. Disclosure of the invention
  • the inventors of the present invention have conducted intensive studies in order to achieve the above-mentioned object.
  • the unvulcanized rubber layer is vulcanized by means of heating or the like, It has been found that the rubber member and the resin member can be firmly integrated, and a resin-rubber composite can be obtained efficiently, and the present invention has been completed.
  • the vulcanized rubber member and the resin member are joined via the vulcanized rubber layer vulcanized with the vulcanizing agent to form a resin-rubber composite.
  • the vulcanizing agent may be a sulfur vulcanizing agent (such as sulfur or a sulfur compound) or a peroxide vulcanizing agent (organic peroxide). Radical generator vulcanizing agent).
  • the resin member can be composed of at least one selected from a thermoplastic resin and a resin having a bridging group.
  • the resin having a bridging group is a thermosetting resin and / or a thermoplastic resin having an unsaturated bond. It may be a resin.
  • the unvulcanized rubber composition and the resin member for forming the vulcanized rubber layer often satisfy at least one of the following conditions (i) to (iii).
  • An active atom (or at least one active atom selected from a hydrogen atom and a sulfur atom) in which the resin member has an orbital interaction energy coefficient S represented by the following formula (1) of not less than 0.006. ) Is composed of a thermoplastic resin having at least two on average in one molecule
  • E c , C H0M0 I 1 , E H 0M0, n, C LUM0, n, E LUM0, n are all values calculated by the semiempirical molecular orbital method M ⁇ P AC PM 3. hand,
  • E c indicates the orbital energy (e V) of the radical generator as a vulcanizing agent
  • C and o and n are the highest occupied molecular orbitals of the nth hydrogen atom constituting the basic unit of the thermoplastic resin.
  • (HOMO) indicates the molecular orbital coefficient
  • E H0M0 , n indicates the orbital energy (e V) of H ⁇ M ⁇
  • C LUM0, n indicates the lowest unoccupied molecular orbital (LUMO) of the nth hydrogen atom. It indicates the molecular orbital coefficient
  • E LUM0 , n indicates the orbital energy (e V) of the LUMO.
  • At least one of the unvulcanized rubber composition and the resin member Contains a polyfunctional polymerizable compound having a plurality of polymerizable groups
  • the resin member is composed of a thermosetting resin or a resin having an unsaturated bond in a molecule, and the unvulcanized rubber composition contains a polyfunctional polymerizable compound having a plurality of polymerizable groups.
  • the vulcanized rubber layer, the vulcanized rubber member and the resin member may be formed of a composition containing a vulcanization activator.
  • the vulcanization activator may be composed of a polyfunctional polymerizable compound having a plurality of polymerizable groups.
  • the vulcanized rubber layer is formed of an unvulcanized rubber composition containing a vulcanizing agent and a vulcanizing activator, and at least one of a vulcanized rubber member and a resin member (for example, a resin member) is vulcanized. It may be formed of a composition containing a sulfur activator.
  • the amount of the vulcanization activator may be about 0.1 to 10 parts by weight with respect to 100 parts by weight of the resin and / or rubber, for example, 2 parts by weight with respect to 100 parts by weight of rubber. It may be as follows.
  • the resin member may further contain a stabilizer for the vulcanization activator (for example, an antioxidant, a light stabilizer, a thermal polymerization inhibitor, etc.), and the ratio between the vulcanization activator and the stabilizer is the former Z
  • the latter (weight ratio) may be about 9 9 Z 1 to 25/75.
  • the resin member examples include a polyamide resin, a polyester resin, a polyacetal resin, a polyphenylene ether resin, a polysulfide resin, a polyether ketone resin, a polycarbonate resin, a polyimide resin, and a polysulfone.
  • the vulcanized rubber layer may be vulcanized with a sulfur-based vulcanizing agent.
  • the vulcanized rubber layer is composed of gen-based rubber (such as styrene-gen-based rubber vulcanized with a sulfur-based vulcanizing agent), and the resin member is It may be composed of a refinylene ether-based resin.
  • a rubber element selected from an unvulcanized rubber composition, a semi-vulcanized rubber member and a vulcanized rubber member is provided via an unvulcanized rubber layer containing a vulcanizing agent; A non-vulcanized rubber or semi-vulcanized rubber, and vulcanized unvulcanized rubber or semi-vulcanized rubber.
  • a resin Z rubber composite in which the vulcanized rubber member of the rubber element and the resin member of the resin element are joined is manufactured.
  • the unvulcanized rubber or the semi-vulcanized rubber may be vulcanized, and the rubber element and the resin element may be molded if necessary.
  • a layer of an unvulcanized rubber composition containing a vulcanizing agent is formed on at least one of the bonding surfaces of the rubber element and the resin element, and the rubber is interposed via the unvulcanized rubber composition layer.
  • the element and the resin element may be heated under pressure contact.
  • the unvulcanized rubber composition layer containing the vulcanizing agent may be formed of a film or a coating material of the unvulcanized rubber composition.
  • the unvulcanized rubber composition of the intermediate layer is interposed between the molded resin member and a rubber element selected from the unvulcanized rubber composition and the semi-vulcanized rubber member. Crosslinking or vulcanization may be performed while molding the semi-vulcanized rubber.
  • At least one of the unvulcanized rubber composition layer, the rubber element and the resin element may contain a vulcanizing activator.
  • the amount of the vulcanization activator may be about 0.1 to 5 parts by weight based on 100 parts by weight of the resin element.
  • an unvulcanized rubber composition containing an organic peroxide and a multifunctional polymerizable compound having a plurality of polymerizable groups is provided between a rubber element containing a vulcanizing agent and a resin element. The molding may be performed by heating under pressure with a layer interposed.
  • at least one of the rubber element and the resin element may include a polyfunctional polymerizable compound having a plurality of polymerizable groups.
  • rubber means a vulcanized rubber layer Rubber or a rubber for forming a vulcanized rubber member (the rubber element).
  • resin is used to include a resin (the resin element) for forming a resin member.
  • the resin member is made of at least one selected from a thermoplastic resin and a resin having a crosslinkable group (hereinafter, may be simply referred to as a resin).
  • thermoplastic resin (Thermoplastic resin)
  • thermoplastic resin examples include polyamide resin, polyester resin, poly (thio) ether resin (polyacetal resin, polyphenylene ether resin, polysulfide resin, polyetherketone resin, etc.), and polycarbonate.
  • -Based resins polyimide-based resins, polysulfone-based resins, polyurethane-based resins, and other condensed thermoplastic resins; polyolefin-based resins, halogen-containing vinyl-based resins, styrene-based resins, and vinyl polymers such as (meth) acrylic-based resins
  • thermoplastic resin examples include a thermoplastic resin; and a thermoplastic elastomer. These resins can be used alone or in combination of two or more. When two or more resins are used in combination, the resin composition may form a composite resin composition such as a polymer alloy.
  • polyamide resin examples include an aliphatic polyamide resin, an alicyclic polyamide resin, and an aromatic polyamide resin.
  • the alicyclic polyamide-based resin examples include polyamides using an alicyclic diamine and / or an alicyclic dicarboxylic acid as at least a part of the aliphatic diamine component and / or the aliphatic dicarboxylic acid component.
  • the alicyclic made of Polyamide for example, the aliphatic dicarboxylic acid components amount and alicyclic Jiamin component [C 5 _ 8 consequent opening such Kishirujiamin cyclohexylene Arukirujiamin; bis (cyclohexyl amino cyclo) methane, 2, 2 - Bis (amino C) such as bis (aminocyclohexyl) propane
  • cycloalkyl alkanes e.g., bis (to amino cyclo key Sil) include condensates of alkanes), etc.
  • the aromatic polyamide resin includes a polyamide in which at least one of the aliphatic diamine component and the aliphatic dicarboxylic acid component is an aromatic component, for example, a polyamide in which the diamine component is an aromatic component [ Condensates of aromatic diamines such as MXD-6 (such as meta-xylylenediamine) with aliphatic dicarboxylic acids, etc.), and polyamides whose dicarboxylic acid component is an aromatic component [aliphatic diamines (trimethylhexamethylenediamine) Condensates of aromatic dicarboxylic acids (terephthalic acid, isophthalic acid, etc.)], polyamides in which diamine and dicarboxylic acid components are aromatic [poly (m-phenylene isophthalamide), etc.] Wholly aromatic polyamides (aramids).
  • a polyamide in which the diamine component is an aromatic component Condensates of aromatic diamines such as MXD-6 (such as meta-xylylenedi
  • dimer monoacid is further added to the dicarboxylic acid component.
  • a polyamide a small amount of a polyfunctional polyamine and a di- or poly-carbonic acid component to mix or graft-polymerize a polyamide having a branched structure, a modified polyamide (such as N-alkoxymethylpolyamide), and a modified polyolefin.
  • a high-impact polyamide which has been subjected to high impact.
  • the ratio between the terminal NH 2 group and the terminal CO OH group is not particularly limited.
  • Terminal amino group Z-terminal carboxyl group about 10Z90 0 to 100ZO (molar ratio), preferably about 20/80 to 955 (molar ratio), more preferably 25/75 to 95 / It can be selected from a range of about 5 (molar ratio).
  • the polyester-based resin may be an aliphatic polyester-based resin, but usually, an aromatic polyester-based resin, for example, a poly (alkylene) arylate-based resin or a saturated aromatic polyester-based resin is used.
  • aromatic polyester resins polyalkylene ⁇ Relay preparative resin (e.g., polyethylene terephthalate ( ⁇ ⁇ ), polybutylene terephthalate evening rate ( ⁇ ⁇ ) poly C 2 such as - 4 Arukirentere phthalate; this polyalkylene Lev Poly C4 alkylene naphthalate corresponding to the sauce (eg, polyethylene naphthalate); poly 1,4-cyclohexyl dimethylene terephthalate (PC
  • polyarylate resin for example, polyarylate resin obtained by polycondensation of bisphenols (such as bisphenol ⁇ ) and aromatic dicarboxylic acids (such as terephthalic acid); wholly aromatic or liquid And crystalline aromatic polyesters (for example, liquid crystalline polyesters using paraoxybenzoic acid).
  • the polyester-based resin may be a copolyester containing an alkylene arylate unit as a main component (for example, 50% by weight or more).
  • the copolymerizable component of the copolyester ethylene glycol, propylene glycol, C 2 _ 6 alkylene glycols such as hexanediol to butanediol ol, (Po Li) Okishi C 2 - 4 alkylene render recall, phthalic acid, isophthalic Yurusan which asymmetric aromatic dicarboxylic acids or their anhydrides, C 6, such as adipic acid Do - such as 1 2 aliphatic dicarboxylic acids can be exemplified. Further, a branched chain structure may be introduced into the linear polyester by using a small amount of polyol and / or polycarboxylic acid.
  • a modified polyester resin modified with a modifying compound having an active atom for example, at least one selected from an amino group and an oxyalkylene group
  • Aromatic polyester-based resin include polyamines (aliphatic diamines such as ethylenediamine, trimethylenediamine, propylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylene).
  • Alicyclic diamines such as diamines, trimethylhexamethylene diamine, 1,7-diaminoheptane, 1,8-diaminooctane, etc .; linear or branched alkylenediamines having about 2 to 10 carbon atoms; , Isophoronediamine, bis (4-amino-3-methylcyclohexyl) methane, bis (aminomethyl) cyclohexane, etc .; aromatic diamines such as phenylenediamine, xylylenediamine, diaminodiphenylmethane ), Polyols (eg, ethylene glycol, Propylene glycol, C 2 _ 6 alkylene render recalls such butanediol hexanediol to, (poly) O carboxymethyl ethylene glycol, (poly) O ⁇ The shea trimethylene glycol, (poly) O carboxymethyl propylene glycol, (Poly)
  • the modification can be carried out, for example, by heating and mixing the polyester resin and the modifying compound, and utilizing amidation, esterification or transesterification.
  • the degree of modification of the polyester-based resin may be, for example, 0.1 mol of the modified compound per 1 mol of the functional group (hydroxyl group or hydroxyl group) of the polyester-based resin. It may be about 2 to 2 mol, preferably about 0.2 to 1.5 mol, and more preferably about 0.3 to 1 mol.
  • the amount of the polyols used may be about 1 to 50 parts by weight, preferably about 5 to 30 parts by weight, based on 100 parts by weight of the polyester resin.
  • the poly (thio) ether resins include polyoxyalkylene resins, polyphenylene ether resins, polysulfide resins (polythioether resins), and polyetherketone resins.
  • Preferred polyether resins include polyacetal resins, polyphenylene ether resins, polysulfide resins, and polyetherketone resins.
  • the polyacetone-based resin may be a homopolymer (a homopolymer of formaldehyde) or a copolymer (such as a copolymer of trioxane and ethylenoxide and / or 1,3-dioxolane). Is also good. Further, the terminal of the polyacetal resin may be blocked and stabilized.
  • Polyphenylene ether resins include various resins containing 2,6-dimethylphenylene oxide as a main component, for example, a copolymer of 2,6-dimethylphenylene oxide and phenols, styrene. A modified resin obtained by blending or grafting a system resin is included.
  • Other modified polyphenylene ether resins include polyphenylene ether Z polyamide, polyphenylene ether / saturated polyester, polyphenylene ether Z polyphenylene sulfide, and polyphenylene ether / polyolefin. Is mentioned.
  • the modification with the styrene-based resin lowers the heat resistance of the polyphenylene ether-based resin and may be deformed by heating in the vulcanization process. Further, the addition of a styrene resin may adversely affect the adhesion between the rubber and the polyphenylene ether resin, and excessive addition of the styrene resin is not preferable. On the other hand, polyphenylene ether-based resin has low melt fluidity, and if used without being combined with styrene-based resin, moldability decreases.
  • the ratio of the styrene resin is 2 to 150 parts by weight, preferably 3 to 100 parts by weight, more preferably 5 to 100 parts by weight, based on 100 parts by weight of the polyphenylene ether resin. About 50 parts by weight.
  • the polysulfide resin is not particularly limited as long as it has a thio group (—S—) in a polymer chain.
  • a resin include a polyphenylene sulfide resin, a polydisulfide resin, a polyphenylene sulfide resin, a polyketone sulfide resin, and a polythioether sulfone resin.
  • the polysulfide resin may have a substituent such as an amino group as in poly (aminophenylene sulfide).
  • a preferred polysulfide resin is a polyphenylene sulfide resin.
  • Dihalogenobenzophenone examples thereof include polyether ketone resins obtained by polycondensation of dihydrobenzozophenone and dihydrobenzozophenone, and polyether ether ketone resins obtained by polycondensation of dihalogenobenzophenone and hydroquinone.
  • the polycarbonate resin may be an aliphatic polycarbonate resin, but is usually an aromatic polycarbonate resin, for example, an aromatic dihydroxy compound (bisphenol A, bisphenol, bisphenol AD, bisphenol S, etc.). And aromatic polycarbonates obtained by the reaction of phosgene or carbonic acid diester (dialkyl carbonate such as diphenyl carbonate, dialkyl carbonate such as dimethyl carbonate).
  • aromatic polycarbonates obtained by the reaction of phosgene or carbonic acid diester (dialkyl carbonate such as diphenyl carbonate, dialkyl carbonate such as dimethyl carbonate).
  • Polyimide resins include thermoplastic polyimide resins such as aromatic tetracarboxylic acids or their anhydrides (such as benzophenonetetracarboxylic acid) and aromatic diamines (such as diaminodiphenylmethane). The resulting polyimide resin, polyimide imide resin, polyester imide resin and the like are included.
  • Polysulfone resins include polysulfone resins, polyethersulfone resins, and polyallyl sulfones obtained by polycondensation of dihalogenodiphenylsulfone (such as dichlorophenylsulfone) and bisphenols (such as bisphenol A or a metal salt thereof).
  • dihalogenodiphenylsulfone such as dichlorophenylsulfone
  • bisphenols such as bisphenol A or a metal salt thereof.
  • An example is a sulfone resin (trade name: RADEL).
  • the polyurethane resin can be obtained by reacting a diisocyanate, a polyol (particularly, a diol) and, if necessary, a chain extender.
  • a diisocyanate as a diisocyanate
  • Aliphatic diisocyanates such as 2,2,4-trimethylhexamethylene diisocyanate
  • alicyclic diisocyanates such as 1,4-cyclohexanediisocyanate and isophorone diisocyanate
  • phene Examples thereof include aromatic diisocyanates such as range isocyanate, tolylene diisocyanate, diphenylmethane-1,4'-diisocyanate, and aromatic aliphatic diisocyanates such as xylylene diisocyanate.
  • diisocyanates compounds in which an alkyl group (for example, a methyl group) is substituted on the main chain or the ring may be used.
  • the diols, C 4 _ 1 2 aliphatic dicarboxylic acid component such as polyester diol (of adipic acid, ethylene glycol, propylene glycol, butanediol, C 2 _ 1 2 aliphatic diol component such as neopentyl glycol, .epsilon.
  • polyester diols obtained from such a lactone component
  • Porieteruji ol polyethylene glycol, polypropylene glycol, port Riokishechiren one polyoxypropylene proc copolymer, poly old alkoxy tetramethylene da recall, bisphenol A-alkylene oxide adducts, etc.
  • polyester ether diols polyester diols using the above polyether diols as part of the diol component
  • Jiamin acids can also be used.
  • diamines include aliphatic diamines, for example, ethylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, trimethylhexamethylenediamine, 1 , 7-diaminoheptane, 1,8-diaminooctane and other linear or branched alkylenediamines having about 2 to 10 carbon atoms, such as alkylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine and dipropylenetriamine.
  • Alicyclic diamines for example, isophoronediamine, bis (4-amino-13-methylcyclohexyl) methane, bis (aminomethyl) cyclohexane, etc .
  • aromatic diamines For example, phenylenediamine, xylylenediamine, diaminodiphenylmethane and the like can be exemplified.
  • Polyolefin resins include, for example, homo- or copolymers of olefins such as polyethylene, polypropylene, ethylene-propylene copolymer, poly (methylpentene-11), and copolymers of olefins and copolymerizable monomers.
  • olefins such as polyethylene, polypropylene, ethylene-propylene copolymer, poly (methylpentene-11), and copolymers of olefins and copolymerizable monomers.
  • ethylene-vinyl acetate copolymer ethylene- (meth) acrylic acid copolymer
  • ethylene- (meth) acrylate copolymer ethylene- (meth) acrylate copolymer
  • Preferred polyolefin resins are polypropylene resins having a propylene content of 50% by weight or more (particularly 75 to 100% by weight), for example, polypropylene, propylene-ethylene copolymer, propylene butene copolymer. Propylene-ethylene-butene copolymer. Also, the polyolefin resin is preferably crystalline.
  • halogen-containing vinyl resins include polyvinyl chloride, polyvinylidene chloride, vinyl chloride-vinyl acetate copolymer, chlorine-containing biel resin such as vinylidene chloride-vinyl acetate copolymer, polyfluoride bifluoride, and polyfluoride.
  • fluorine-containing vinyl resins such as vinylidene, polychloroethylene, and copolymers of tetrafluoroethylene and a copolymerizable monomer.
  • Preferred halogen-containing vinyl resins are fluorine-containing vinyl resins (eg, polyvinyl fluoride, polyvinylidene fluoride, etc.).
  • Styrene resin examples include homo- or copolymers of styrene-based monomers (such as polystyrene, styrene-vinyltoluene copolymer, and styrene- ⁇ -methylstyrene copolymer), and copolymerizable monomers with styrene-based monomers.
  • styrene-based monomers such as polystyrene, styrene-vinyltoluene copolymer, and styrene- ⁇ -methylstyrene copolymer
  • Copolymers with styrene styrene-acrylonitrile copolymer (AS resin), (meth) acrylate-styrene copolymer (MS resin, etc.), styrene-maleic anhydride copolymer, styrene-butadiene Styrene copolymers such as copolymers; impact-resistant polystyrene (HIPS), acrylonitrile-butadiene-styrene copolymer (ABS resin), acrylonitrile-acrylic rubber-styrene copolymer (acrylonitrile-acrylic acid) Ester-styrene copolymer) (AAS resin), acrylonitrile-chlorinated polyethylene-styrene copolymer (ACS tree ), Acrylonitrile-ethylene propylene rubber-styrene copolymer (AES resin), acrylonitrile- (ethylene-pinyl acetate copolymer
  • Examples of the (meth) acrylic resin include a single or copolymer of a (meth) acrylic monomer, and a copolymer of a (meth) acrylic monomer and a copolymerizable monomer.
  • (Meth) acrylic monomers include (meth) acrylic acid, (meth) methyl acrylate, (meth) ethyl acrylate, (meth) isopropyl acrylate, (meth) butyl acrylate, and (meth) acryl.
  • (meth) acrylic acid C i_ 10 alkyl esters such as hexyl acid 2- Echiru, (meth) (main evening), such as cyclohexyl acrylate cycloalkyl acrylate C 5 _ 10 cycloalkyl ester, (meth) phenyl acrylate, etc. of (meth) Akuriru acid C 6 _ 1 0 ⁇ Li one glycol ester, (meth) acrylic acid hydroxy E chill (meth) hydroxy acrylate
  • C 2 _ 10 alkyl esters (meth) acrylamide, (meth) acrylonitrile, glycidyl (meth) acrylate and the like.
  • the compatible monomer include vinyl monomers such as vinyl acetate and vinyl chloride, and styrene monomers such as styrene and -methylstyrene.
  • Thermoplastic elastomers include polyamide-based elastomers (copolymers with polyamide as a hard phase and aliphatic polyether as a soft phase), and polyester-based elastomers (polyalkylene acrylate as a hard phase, and Copolymer with aliphatic polyether or aliphatic polyester as the soft phase), polyurethane-based elastomer (copolymer with short-chain Dalicol polyurethane as the hard phase, and aliphatic polyether or aliphatic polyester as the soft phase)
  • polystyrene-based elastomers block copolymers using a polystyrene block as a hard phase and a gen-polymer block or a hydrogenated block thereof as a soft phase
  • polyolefin Elastomer Polyethylene or PO Elastomers with propylene as the hard
  • aliphatic polyether examples include (poly) oxy C 2 _ 4 alkylene glycols (for example, (poly) oxyethylene glycol, (poly) oxytrimethylene dalicol, (poly) oxypropylene glycol, (Poly) oxytetramethylene glycol, in particular, polyoxyethylene render glycol) and the like can be used.
  • the aliphatic polyester the polyester diol described in the section of the polyurethane resin can be used.
  • These thermoplastic elastomers can be used alone or in combination of two or more.
  • the block structure is not particularly limited, and the triblock structure, the multiblock structure, A star block structure or the like may be used.
  • thermoplastic elastomers include polyamide-based elastomers, polyester-based elastomers, polyurethane-based elastomers, polystyrene-based elastomers, and polyolefin-based elastomers.
  • the resin having a crosslinkable group can be roughly classified into a thermoplastic resin having an unsaturated bond (polymerizable or crosslinkable unsaturated bond) and a thermosetting resin having a crosslinkable functional group. It may have an unsaturated bond and a crosslinkable functional group.
  • thermoplastic resin having unsaturated bond (Thermoplastic resin having unsaturated bond)
  • the present invention can also be used for bonding rubbers with various thermoplastic resins containing a radical-active unsaturated bond at a predetermined concentration. Therefore, if the thermoplastic resin is a resin that does not have an unsaturated bond or a resin whose unsaturated bond concentration does not reach a predetermined concentration, use it as a modified resin or a modified resin into which an unsaturated bond has been introduced. Is also good.
  • the unsaturated bond is not particularly limited as long as it can be activated by a vulcanizing agent (such as a radical generator), and various bonds exhibiting crosslinkability or polymerizability by application of heat or light (for example, polymerizable unsaturation). (Saturated bond).
  • Examples of the group having an unsaturated bond include a vinyl group, a 1-propyl group, an isopropyl group, a 1-butenyl group, an aryl group and a 2-methyl group.
  • Lou 2- propenyl group, 2-C 2 _ 6 alkenyl groups such as butenyl; 4 one Binirufueniru group, C 2 _ 6 alkenyl one C 6 _ 20 ⁇ Li Ichiru group such as 4 Isopuro Bae Nirufueniru group; a styryl C Ariru one C 2 _ 6 alkenyl group such as a group; Echiniru group, 1-Puropieru group, 1-Petit two group, propargyl group, 2-butynyl group, such as 1-methyl-2-propyl sulfonyl group C 2 - 6 Alkynyl group; mono- or di-C such as vinylene group, methylvinylene group, ethylvin
  • a vinylene group which may have a substituent such as a halovinylene group such as an alkylvinylene group and a chlorovinylene group; a vinylidene group; an ethinylene group;
  • thermoplastic resin having an unsaturated bond examples include: (1) a reactive group (A) and a compound having an unsaturated bond; and a reactive group (B) capable of reacting with the reactive group (A).
  • thermoplastic resin with unsaturated bond introduced by copolymerization or co-condensation
  • resin with unsaturated bond and resin Polymer blends examples include: (1) a reactive group (A) and a compound having an unsaturated bond; and a reactive group (B) capable of reacting with the reactive group (A).
  • thermoplastic resin with unsaturated bond introduced by copolymerization or co-condensation (3) resin with unsaturated bond and resin Polymer blends, (4)
  • Various organic reactions for example, introduction of vinyl groups by Leppe reaction using acetylene, introduction of unsaturated bonds using organometallic reagents such as vinyllithium, and unsaturation by force ringing reaction
  • Preferred resins are the above-menti
  • a polymerizable compound having at least one reactive group (A) and at least one unsaturated bond is reacted with the reactive group (A) of the polymerizable compound.
  • an unsaturated bond can be introduced into the resin.
  • Representative reactive groups (A) of the polymerizable compound include (A1) a hydroxyl group, (A2) a carbonyl group or an acid anhydride thereof, (A3) an amino group, (A4) an epoxy group, and (A5) ) Isocyanate group and the like, and a combination of the reactive group (A) of the polymerizable compound and the reactive group (B) of the resin
  • the following combinations can be exemplified.
  • the form in parentheses indicates the bonding form between the reactive group (A) and the reactive group (B).
  • the reactive group (B) of the resin in a polyamide resin, for example, a remaining carboxyl group or an amino group can be used as the reactive group (B).
  • a polyester resin for example, the remaining hydroxyl group can be used.
  • the hydroxyl group can be used as the reactive group (B).
  • the remaining hydroxyl groups and mercapto groups may be used as the reactive group (B) in the poly (thio) ether resin, and the remaining hydroxyl groups may be used as the reactive group (B) in the polyacetal resin. Available.
  • the remaining hydroxyl group can be used as a reactive group (B), and in a polyimide resin, the remaining carboxyl group, acid anhydride group, amino group, imino group, or the like can be used as a reactive group (B).
  • the reactive group (B) may be used as the reactive group (B).
  • the monomer having the reactive group (B) is used as a copolymerization component to thereby form the reactive group (B). ) Can be introduced.
  • hydroxyl group-containing compound for example, ⁇ Lil alcohol, 2-butene one 1-ol, 3-buten - C 3 _ 6 such as 2-Saiichi C 3 _ 6
  • Arukenoru include Le, propargyl alcohol alkyno Ichiru, 2-hydroxy-E chill (meth) Akurireto, 2 - hydroxypropyl (meth) Akurireto, butanediol mono (main evening)
  • Akurireto C 2 such as - 6 alkyl render Rico one mono (meth) ⁇ acrylate, diethylene glycol Polyoxy C 2 _ 6 alkylenedaricol mono (meth) acrylates such as (meth) acrylates, C 2 _ 6 alkenylphenols such as 4-hydroxystyrene, 4-hydroxy-1-methylstyrene, dihydroxystyrene, vinyl naphthol, etc.]
  • Containing carboxyl group or acid anhydride group For example things [, (
  • Jiaminosuchiren epoxy group-containing compound ( For example, aryl glycidyl ether, glycidyl (meth) acrylate, and the like, and isocyanate group compounds (for example, vinyl isocyanate) can be exemplified.
  • epoxy group-containing compound For example, aryl glycidyl ether, glycidyl (meth) acrylate, and the like
  • isocyanate group compounds for example, vinyl isocyanate
  • the reactive group (B) may be introduced. May be used to modify or modify the resin.
  • the method for introducing the reactive group (B) into the resin include: (i) in the production of the resin, a monomer having the reactive group (B) (for example, the polymerizable compound described above); Materials (or monomers, (Ii) introduction of carboxyl groups by oxidation, halogenation, grafting of polymerizable monomers, and various other organic reactions.
  • the monomer having the reactive group (B) is usually used as a copolymer component to introduce the reactive group (B) in many cases.
  • the reactive group (B) can be easily introduced by a graft reaction of the polymerizable compound having the reactive group.
  • the resin (2) as a method for introducing an unsaturated bond, for example, in the preparation of a condensation resin (for example, a polyamide resin, a polyester resin, or the like), as a part of the reaction component (comonomer), Compounds having a functional unsaturated bond [for example, aliphatic unsaturated dicarboxylic acids (for example, maleic acid, maleic anhydride, fumaric acid, itaconic acid, anhydrous itaconic acid, citraconic acid, citraconic anhydride, mesaconic acid, etc.
  • aliphatic unsaturated dicarboxylic acids for example, maleic acid, maleic anhydride, fumaric acid, itaconic acid, anhydrous itaconic acid, citraconic acid, citraconic anhydride, mesaconic acid, etc.
  • aliphatic unsaturated diol (1 (- - C 4, such as 1, 4 Jioru 2-butene) aliphatic unsaturated diol; - 4 1 () unsaturated polyvalent carbonitrile phosphate such as such as aliphatic unsaturated dicarboxylic acid) And the like)
  • a method of co-condensing (or copolymerizing) unsaturated polyhydric alcohols such as
  • a monomer having a conjugated unsaturated bond eg, -1,3-butadiene, 2-methyl
  • — Copolymerization of optionally substituted conjugated C 4 _ 1 () alkadiene such as 1,3-butadiene, 2,3-dimethyl-1,3-butadiene and chloroprene).
  • thermoplastic resin (A) and the resin (B) having an unsaturated bond are mixed to form a polymer blend (or a resin composition), whereby the thermoplastic resin is unsaturated. A bond can be introduced.
  • the thermoplastic resin (A) is not particularly limited, and examples thereof include various thermoplastic resins [for example, thermoplastic resins (polyamide-based resins, polyester-based resins, and the like described below) and the like].
  • thermoplastic resin (A) May be a saturated resin having no unsaturated bond or a resin having an unsaturated bond.
  • thermoplastic resin having an unsaturated bond introduced therein, such as the resin (1), (2) or (4), or a rubber containing an unsaturated bond (for example, polybutadiene, polybutadiene, or polybutadiene).
  • the poly-C 4 - 15 Aruke two Ren, Shikuroorefi emissions (such, good cyclopentene, cycloheptene, Shikurookuten, cyclodecene, which may have a substituent such as cyclododecene C
  • the proportion of the resin (B) is within a range where unsaturated bonds can be introduced into the polymer blend at a predetermined concentration, for example, the resin
  • Resin (B) (weight ratio) 595-95 / 5, preferably 30Z70-95Z5, more preferably about 50Z50-95 / 5.
  • an unsaturated bond-containing rubber for example, polyoctenylene
  • the proportion of the resin (B) can be selected within a range that does not impair the properties of the resin (A).
  • ) / Resin (B) (weight ratio) 50 / 50-95Z5, preferably 6040-95 / 5, more preferably about 70 / 30-95Z5.
  • (B) may form a polymer alloy (eg, a polymer alloy having a sea-island structure).
  • a polymer alloy eg, a polymer alloy having a sea-island structure
  • thermoplastic resin examples include polyamide resin and polyester resin.
  • Resin poly (thio) ether resin (polyacetal resin, polyphenyleneether resin, polysulfide resin, polyetherketone resin, etc.), polycarbonate resin, polyimide resin, polysulfone resin, polyurethane
  • Thermoplastic resins such as polyolefin resins, halogen-containing vinyl resins, styrene resins, and (meth) acrylic resins; and thermoplastic elastomers. .
  • These resins can be used alone or in combination of two or more. When two or more resins are used in combination, the resin composition may form a composite resin composition such as a polymer alloy.
  • the ratio of unsaturated bonds depends on the type of the resin and the degree of activation of the unsaturated bonds.
  • the ratio is, for example, 0.1 or more per one resin molecule (for example, 0.1 to 0.1). 100), preferably 1 or more (for example, 1 to 100) on average, and more preferably 2 or more (for example, about 2 to 50) on average.
  • the concentration of the unsaturated bond is, for example, 0.01 to 6.6 mol, preferably 0.01 to 4 mol (for example, 0.01 to 1 mol) per 1 kg of the resin, More preferably, it is about 0.02 to 2 mol (for example, 0.05 to 0.5 mol).
  • the number of unsaturated bonds can be calculated as an average value of the unsaturated bonds according to the weight fraction of each resin, but the number of unsaturated bonds in the resin composition can be calculated. It is convenient to calculate the number as the molar concentration Z kg.
  • thermosetting resin having a crosslinkable functional group (Thermosetting resin having a crosslinkable functional group)
  • thermosetting resin examples include a resin having a functional group (eg, a methylol group, an alkoxymethyl group, an epoxy group, an isocyanate group, etc.) exhibiting a crosslinking property or a curability in the presence of a crosslinking agent (or a curing agent).
  • a functional group eg, a methylol group, an alkoxymethyl group, an epoxy group, an isocyanate group, etc.
  • thermosetting resins include polycondensation or addition condensation resins (phenolic resins, amino resins, epoxy resins, thermosetting polyimide resins, thermosetting polyurethane resins, silicone resins).
  • addition polymerization resins unsaturated polyester resins, vinyl ester resins, diaryl phthalate resins, thermosetting (meth) acrylic resins, etc.
  • the thermosetting resins may be used alone or in combination of two or more.
  • the phenolic resin includes a nopolak resin, a resol resin and the like, and a nopolak resin is usually used.
  • Nopolak resin is obtained by reacting phenols with aldehydes in the presence of an acid catalyst.
  • phenols include phenol, o-, m-, or p-cresol, 2, 5-, 3, 5- or 3,4-xylenol, 2, 3, 5-trimethyl phenol, ethyl phenol, propyl phenol C Bok 4 alkylphenol, dihydroxy benzene such as resorcinol, naphthol can be exemplified. These phenols may be used alone or in combination of two or more.
  • aldehydes examples include aliphatic aldehydes such as formaldehyde, paraformaldehyde, acetaldehyde and propionaldehyde, and aromatic aldehydes such as benzaldehyde and salicylaldehyde. These aldehydes may be used alone or in combination of two or more.
  • the amino resin is usually obtained by reacting an amino group-containing compound with an aldehyde (for example, an aliphatic aldehyde such as formaldehyde, acetate aldehyde, propionaldehyde, or an aromatic aldehyde such as phenylacetaldehyde).
  • an aldehyde for example, an aliphatic aldehyde such as formaldehyde, acetate aldehyde, propionaldehyde, or an aromatic aldehyde such as phenylacetaldehyde.
  • Can be Amino resins include urea resins (such as urea resins obtained by the reaction of urea and aldehydes) and aniline resins (aniline such as aniline, naphthylamine, toluidine, xylidine, N, N-dimethylaniline, and benzidine).
  • Resins and aldehydes and melamine resins (melamine obtained by the reaction of melamines and aldehydes) And guanamine resins (such as guanamine resins obtained by the reaction of guanamines such as benzoguanamine, acetoguanamine and formoguanamine with aldehydes).
  • Epoxy resins include bisphenol epoxy resins, nopolak epoxy resins, and amine epoxy resins.
  • Examples of the bisphenol-type epoxy resin include glycidyl ethers such as 4,4-biphenol, 2,2-biphenol, bisphenol F, bisphenol AD, and bisphenol A.
  • Examples of the nopolak resin constituting the nopolak-type epoxy resin include, for example, the nopolak resin obtained by the reaction of the phenols and the aldehydes described in the section of the nopolak resin.
  • Examples of the amine component constituting the amine-based epoxy resin include aromatic amines such as aniline and toluidine, aromatic diamines such as diaminobenzene and xylylenediamine, aminohydroxybenzene, and diaminodiphenylmethane.
  • thermosetting polyimide-based resin includes the resins described in the paragraph of the polyimide-based resin (for example, a curable resin composition having a plurality of ring-closable imido groups).
  • thermosetting polyurethane resin examples include the resins described in the section of the polyurethane resin (for example, a curable resin composed of a prepolymer having a plurality of free isocyanate groups and a polyol component such as polyester polyol). Composition).
  • the silicone resin has a unit represented by the formula: R a S i 0 (4— a) / 2 (where the coefficient a is about 1.9 to 2.1) and a formula: R b S i O ( 4 _ b) / 2 Silicon resin composed of units (where the coefficient b is about 0.9 to 1.1) is included.
  • R represents, for example, a C!-! O alkyl group such as a methyl group, an ethyl group, a propyl group or a butyl group, a halogen group such as a 3-chlorobutyryl group or a 3,3,3-trifluoropropyl group.
  • alkyl group pinyl group, Ariru group, C 2 _ 10 alkenyl groups such as butenyl group, phenyl group, a tolyl group, C 6 _ 12 ⁇ aryl group such as a naphthyl group, a cyclopentyl group, cyclohexyl C 3 _ 10 consequent opening alkyl group such as a group, a benzyl group, C 6, such as phenethyl - such as 12 Ariru one C Bok 4 alkyl group.
  • an unsaturated polyester resin an unsaturated polyester obtained by using an unsaturated dicarboxylic acid or an anhydride thereof (for example, maleic acid, maleic anhydride, fumaric acid, etc.) as the dicarboxylic acid component in the polyester resin described above. And the like.
  • vinyl ester resin examples include a polymer obtained by reacting the epoxy resin with (meth) acrylic acid and a polymer obtained by reacting polyhydric phenols with daricidyl (meth) acrylate.
  • diaryl phthalate resin examples include resins obtained from diaryl phthalate monomers such as diaryl orthophthalate and diaryl isophthalate.
  • thermosetting (meth) acrylic resin includes the resin described in the section of the above (meth) acrylic resin (a (meth) acrylic resin having a reactive group such as a hydroxyl group, and a curing agent). Resin compositions, etc.).
  • the resin is a thermoplastic resin or a resin having a crosslinkable group (particularly, In the case of a crosslinkable resin excluding the curable resin), a plurality of hydrogen atoms (active hydrogen atoms) or sulfur atoms (active sulfur atoms) exhibiting high activity against radicals (hereinafter referred to as hydrogen and sulfur atoms) (May be referred to as an active atom).
  • the resin only needs to have at least one active atom selected from the above active hydrogen atoms and active sulfur atoms, and may have both active hydrogen atoms and active sulfur atoms.
  • a resin having an active atom has an active atom whose orbital interaction energy coefficient S represented by the following formula is equal to or larger than a fixed value (for example, 0.06, preferably 0.08). May be.
  • a preferable orbital interaction energy coefficient S of the active atom is about 0.006 to 0.06, preferably about 0.007 to 0.05 (particularly 0.01 to 0.045). is there.
  • the number of active atoms depends on the binding site of the functional group having an active atom (terminal, branched chain, main chain, etc.). For example, in a resin molecule, an average of two or more (2 to 100,000) ), Preferably an average of 2.5 or more (about 2.5 to 500), more preferably an average of 3 or more (about 3 to 1000)].
  • E c indicates the orbital energy of the radical of the radical generator (e V), and C H0M0 , n is the n-th active atom constituting the basic unit of the thermoplastic resin
  • the basic unit in the formula (1) means a model molecular structure formed by a polymer terminal and about 1 to 3 repeating units.
  • the calculation may be performed on a molecular structure model (basic unit) formed of the terminal of the polymer and about 2 to 3 repeating units.
  • PBT polybutylene terephthalate evening rate
  • the orbital energy E e (e V) of the radical of the radical generator is preferably calculated by MOP AC PM3 based on the molecular structure of the radical. However, for convenience, a predetermined value is determined based on the type of the radical generator. May be used.
  • the radical generator when the radical generator is an organic peroxide, an amino (1-NH 2 ) group (for example, terminal amino group), imino (one NH-) groups (e.g., main chain or terminal imino group, such as single NH- group amide binding), mercapto (- SH) groups, methyl (one CH 3) group,
  • an amino (1-NH 2 ) group for example, terminal amino group
  • imino (one NH-) groups e.g., main chain or terminal imino group, such as single NH- group amide binding
  • mercapto (- SH) groups methyl (one CH 3) group
  • radical generation is considered.
  • the raw material is an organic peroxide, thio group (-S-), mercapto '(-SH) group, alkylthio group (alkylthio group such as methylthio group, ethylthio group, etc.), sulfiel group (-SO-), etc.
  • thio group -S-
  • mercapto '(-SH) group alkylthio group
  • alkylthio group alkylthio group such as methylthio group, ethylthio group, etc.
  • sulfiel group sulfiel group
  • Examples of the methyl group include a methyl group bonded to an alkylene chain, a cycloalkylene chain or an aromatic ring, and a methyl group bonded to an oxygen atom (a methyl group of a methoxy group).
  • Examples of the methylene group include a methylene group adjacent to an oxygen atom of a (poly) oxyalkylene unit such as a (poly) oxymethylene unit and a (poly) oxyethylene unit, and a nitrogen atom adjacent to an amino group or a dimino group. Examples of such a group include a methylene group.
  • methylidyne group examples include a methylidyne group at the 1-position adjacent to an amino group or an imino group, for example, a methylidyne group at the -position to the amino group of the aminocycloalkyl group.
  • the number of active atoms is not a single molecule but a mixture of many molecules having slightly different structures and chain lengths, the number of active atoms may be calculated for a plurality of expected basic units. For example, repeat unit
  • the average number N of active hydrogen atoms in one molecule of polyamide 66 is determined by the following formula according to the ratio of terminal NH 2 groups to terminal COOH groups of the polymer (polyamide 66) as an aggregate. It can be calculated based on (2).
  • the terminal NH 2 group Z terminal COOH group 1 1 (molar ratio)
  • the number of active atoms of the mixed resin can be represented by an average value of the number of active atoms of each resin.
  • the number of active atoms is individually calculated from the basic unit of each resin constituting the mixed resin, and the average of the number of active atoms is calculated based on the weight ratio of each resin.
  • examples of the resin having such an active atom include a polyamide resin, a polyester resin, a polyacetal resin, a polyphenylene ether resin, a polysulfide resin, and a polyolefin resin. Resins, polyurethane resins, thermoplastic elastomers, amino resins, epoxy resins, etc. are included.
  • a hydrogen atom at the terminal amino group for example, a hydrogen atom at the terminal amino group, a hydrogen atom bonded to a carbon atom at the ⁇ -position to the terminal amino group, or a carbon atom adjacent to one of the amide bond groups
  • Hydrogen atoms eg, a hydrogen atom of a methylene group ⁇ a hydrogen atom of a methylidine group
  • a hydrogen atom of a terminal amino group constitutes an active hydrogen atom.
  • polyester-based resins usually, (poly) oxyalkylene units
  • the hydrogen atom of the methylene group adjacent to the oxygen atom constitutes an active hydrogen atom.
  • a hydrogen atom of a terminal amino group or a hydrogen atom bonded to a carbon atom at a position higher than the terminal amino group A hydrogen atom bonded to a carbon atom adjacent to one NH— group of an amide bond (eg, a hydrogen atom of a methylene group ⁇ ⁇ a hydrogen atom of a methylidyne group), particularly a hydrogen atom of a terminal amino group, constitutes an active hydrogen atom.
  • a polyacetal resin for example, a hydrogen atom of an oxymethylene unit, a hydrogen atom of an alkoxy group (especially a methoxy group) whose terminal is blocked, particularly a hydrogen atom of an oxymethylene unit constitutes an active hydrogen atom, and in a polyphenylene ether resin,
  • a hydrogen atom of a methyl group bonded to a benzene ring forms an active hydrogen atom
  • a polysulfide resin for example, a thio group in a main chain forms an active atom.
  • polyurethane resins for example, hydrogen atoms of alkyl groups (particularly, hydrogen atoms at the benzyl position) bonded to the main chain or ring of diisocyanates, hydrogen atoms of alkylene groups of polyols and polyoxyalkylene glycols, chains
  • the hydrogen atom of the amino group of the extender constitutes an active hydrogen atom.
  • a hydrogen atom of a methylene group constituting the main chain of the polyolefin, a hydrogen atom of a methyl group branched from the main chain, and the like constitute an active hydrogen atom.
  • a hydrogen atom of an oxyalkylene unit constituting the soft phase may constitute an active hydrogen atom.
  • an amino group for example, an amino group constituting melamine, guanamine, etc.
  • an active hydrogen atom for example, an amino group constituting melamine, guanamine, etc.
  • a hydrogen atom bonded to a carbon atom constituting the epoxy group constitutes an active hydrogen atom.
  • the resin composition for forming the resin member may contain a crosslinking accelerator for promoting crosslinking.
  • the crosslinking accelerator can be selected according to the type of resin, for example, resin When is a resin having a crosslinkable functional group, crosslinking (or curing) can be remarkably promoted by using an acid, a base, or a curing agent (such as an organic curing agent or an inorganic curing agent).
  • cross-linking accelerator examples include radical generators (radical generators described below), acids (fatty acids such as acetic acid, sulfonic acids such as p-toluenesulfonic acid, and aromatic fatty acids such as benzoic acid).
  • radical generators radiation generators described below
  • acids fatty acids such as acetic acid, sulfonic acids such as p-toluenesulfonic acid, and aromatic fatty acids such as benzoic acid.
  • Diamines, etc. compounds having a methylol group or an alkoxymethyl group (eg, a polymer having an N-methylol (meth) acrylamide group, etc.), polyisocyanates, etc.), inorganic curing agents [ Boric acid or borate (borax, etc.), zirconium compounds, titanium compounds, aluminum compounds, phosphorus compounds, silane coupling agents, etc.], curing catalysts (organotin compounds, organoaluminum compounds, etc.) It is.
  • These crosslinking accelerators may be used alone or in combination of two or more.
  • the resin composition for forming the resin member includes various additives such as a filler or a reinforcing agent, a stabilizer (an ultraviolet absorber, an antioxidant, and a heat stabilizer), a coloring agent, a plasticizer, a lubricant, It may contain flame retardants, antistatic agents and the like.
  • the rubber member is obtained by molding (vulcanizing) a rubber composition containing a vulcanizing agent and rubber.
  • the type of the rubber is not particularly limited.
  • the rubber include gen-based rubber, olefin rubber, acrylic rubber, fluoro rubber, silicone rubber, urethane rubber, epichlorohydrin rubber (epichlorohydrin homopolymer C0, epichlorohydrin and ethylene oxide) EC0, copolymers obtained by further copolymerizing aryl glycidyl ether, etc.), chlorosulfonated polyethylene, propylene oxide rubber (GPO;), ethylene monoacetate vinyl copolymer (E AM), polynor Examples thereof include polene rubber and modified rubbers thereof (acid-modified rubber and the like). These rubbers can be used alone or in combination of two or more. Of these rubbers, generally, gen rubber, olefin rubber, acrylic rubber, fluoro rubber, silicone rubber, urethane rubber, epichlorohydrin
  • Gen-based rubbers include, for example, polymers of gen-based monomers such as natural rubber (NR), isoprene rubber IR), isobutylene isoprene rubber (butyl rubber) (IIR), bush gen rubber (BR), and chloroprene rubber (CR).
  • NR natural rubber
  • IIR isobutylene isoprene rubber
  • BR bush gen rubber
  • CR chloroprene rubber
  • NBR Acrylonitrile-butadiene rubber
  • NCR nitrile chloroprene rubber
  • NIR nitrile isoprene rubber
  • SBR styrene butadiene rubber
  • SB Block copolymers composed of styrene and butadiene blocks, etc.
  • SCR styrene chloroprene rubber
  • SIR styrene isoprene rubber
  • Gen-based rubber also includes hydrogenated rubber, for example, hydrogenated nitrile rubber (HNBR).
  • HNBR hydrogenated nitrile rubber
  • the ene copolymer rubber may be a random copolymer or a block copolymer.
  • the proportion of the styrene component in the styrene-gen copolymer rubber is, for example, 10 to 80% by weight, preferably 20 to 70% by weight, and more preferably 30 to 60% by weight (for example, 40 to 50% by weight). %).
  • olefin rubber examples include, for example, ethylene propylene rubber (EPM), ethylene-propylene-gen rubber (such as EPDM), and polypropylene rubber.
  • EPM ethylene propylene rubber
  • EPDM ethylene-propylene-gen rubber
  • polypropylene rubber examples include, for example, polypropylene rubber.
  • Acrylic rubbers include rubbers containing alkyl acrylate as a main component, for example, copolymer ACM of alkyl acrylate and chlorine-containing crosslinkable monomer, and copolymer of alkyl acrylate and alkyl nitrile.
  • Copolymer ANM a copolymer of an alkyl acrylate and a monomer containing a carboxyl group or Z or an epoxy group, and ethylene acryl rubber can be exemplified.
  • fluorine rubber examples include rubbers containing a fluorine-containing monomer, for example, a copolymer of vinylidene fluoride and polyfluoropropene and, if necessary, a copolymer of ethylene tetrafluoride FKM, and a copolymer of ethylene tetrafluoride and propylene And FF KM, a copolymer of tetrafluoroethylene and perfluoromethyl vinyl ether.
  • a fluorine-containing monomer for example, a copolymer of vinylidene fluoride and polyfluoropropene and, if necessary, a copolymer of ethylene tetrafluoride FKM, and a copolymer of ethylene tetrafluoride and propylene And FF KM, a copolymer of tetrafluoroethylene and perfluoromethyl vinyl ether.
  • Silicone rubber (Q) is of the formula: R a S I_ ⁇ (4- a) / 2 organopolysiloxane composed of units represented by.
  • R is a halogen such as a C!-! O alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a 3-chloropropyl group, and a 3,3,3-trifluoropropyl group.
  • o alkyl group hexyl vinyl group, Ariru group, C 2 _ 10 alkenyl groups such as Buteni group, phenyl group, a tolyl group, C 6 _ 12 Ariru group such as a naphthyl group, a cyclopentyl group, cyclohexylene C 3 _ 1 () cycloalkyl group such group, a benzyl group, such as phenethyl
  • R is a methyl group, phenyl Group, alkenyl group (vinyl group, etc.) and fluoro C ⁇ e alkyl group.
  • the molecular structure of the silicone rubber is usually linear, but may have a partially branched structure or may be a branched chain.
  • the main chain of the silicone rubber is, for example, a dimethylpolysiloxane chain, a methylvinylpolysiloxane chain, a methylphenylpolysiloxane chain, or a copolymer chain of these siloxane units [dimethylsiloxane-methylvinylsiloxane copolymer.
  • Both ends of the silicone rubber may be, for example, a trimethylsilyl group, a dimethylvinylsilyl group, a silanol group, a tri-C j- 2 alkoxysilyl group, or the like.
  • Silicone rubber (Q) includes, for example, methyl silicone rubber (MQ), pinyl silicone rubber (VMQ;), phenyl silicone rubber (P MQ), phenyl vinyl silicone rubber (PVMQ), fluorinated silicone rubber ( FVMQ).
  • Silicone rubber is not limited to the above-mentioned high temperature vulcanizable HTV (High Temperature Vulcanizable) solid rubber, but may be room temperature vulcanized RTV (Room Temperature Vulcanizable) or low temperature vulcanized LTV (Low Temperature Vulcanizable) silicone. Rubber, for example, liquid or pasty rubber is also included.
  • urethane rubber (U) examples include a polyester type urethane elastomer and a polyether type urethane elastomer.
  • modified rubber examples include acid-modified rubbers such as carboxylated styrene butadiene rubber (X-SBR;), carboxylated nitrile rubber (X-NBR), and carboxylated ethylene propylene rubber (X-EP (D) Rubbers having a carboxylic group or an acid anhydride group such as M) are included.
  • X-SBR carboxylated styrene butadiene rubber
  • X-NBR carboxylated nitrile rubber
  • X-EP (D) Rubbers having a carboxylic group or an acid anhydride group such as M) are included.
  • the rubber can be vulcanized with various vulcanizing agents, and the type of the vulcanizing agent is not particularly limited.
  • the vulcanizing agent sulfur vulcanizing agents such as sulfur and sulfur-containing compounds, and non-sulfur vulcanizing agents (for example, radical generating vulcanizing agents such as organic peroxides) are used. It can.
  • sulfur include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, and highly dispersible sulfur.
  • the sulfur-containing compounds include, for example, sulfur chloride (sulfur monochloride, sulfur dichloride, etc.), dithio heterocyclic compounds (dithio group-containing compounds such as 4,4′-dithiomorpholine), and mercapto group-containing compounds.
  • Triazines such as mercapto group-containing compounds such as 2-di-n-butylamino-4,6-dimercapto-S-triazine, 2,4,6-trimercapto-S-triazine
  • thiurams tetramethylthiuram monosulfuric acid
  • T MTD tetramethylthiuram disulfide
  • TETD tetraethylthiuram disulfide
  • TB TD tetrabutylthiuram disulfide
  • DP TT dipentamethylenethiuram tetrasulfide
  • Jichiokarupamin acid salts (di-methyl di Chio Scarpa Min acid, di 0 ⁇ _4 alkyl such geminal chill di Chio Scarpa Min acid Salts of dithiorubamic acid with metals such as alkali metals (sodium, potassium, etc.), transition metals (iron, copper, zinc, etc.), Period
  • Preferred vulcanizing agents are radical generator-based vulcanizing agents that can be combined with a wide range of resin components.
  • the vulcanizing agent functions as a radical generator and activates the rubber to form a strong bond.
  • radical generators can be used as the radical generator as a vulcanizing agent, and examples thereof include organic peroxides, azo compounds, and sulfur excluding sulfur. It can be selected from contained organic compounds. Sulfur is not included in the radical generator because it causes an ionic reaction and not only has a very low radical generation efficiency, but also traps the generated radicals.
  • the radical generators can be used alone or in combination of two or more. Examples of organic peroxides include diacyl peroxides (lauroyl peroxide, benzoyl peroxide, 4-chlorobenzoyl peroxide, 2,4-dichlorobenzoyl peroxide, etc.).
  • Dialkyl peroxides (di-t-butylperoxide, 2,5-di (t-butylperoxy) -1,2,5-dimethylhexane, 1,1-bis (t-butylperoxy) —3,3, 5—Trimethylcyclohexane, 2,5-di (t-butylperoxy) —2,5-monodimethylhexene—3,1,3-bis (t—butylperoxyisopropyl) benzene, dicumylperoxide Alkyl peroxides (t-butyl hydroperoxide, cumene hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, diisopropyl Benzene hydroperoxide, etc.), alkylidene peroxides (ethyl methyl ketone peroxide, cyclohexanone peroxide, 1,1-bis (t-butylperoxy) —3,
  • the azo compound includes azobisisobutyronitrile and the like. Note that, among the above-mentioned sulfur-containing organic compounds, thiurams, dithiolbamates, and thiazoles can also function as radical generators.
  • a photopolymerization initiator can also be used as a radical generator.
  • the photopolymerization initiator include benzophenone or a derivative thereof (eg, 3,3′-dimethyl-14-methoxybenzophenone, 4,4-dimethoxybenzophenone), alkylphenylketone or a derivative thereof (acetophenone, diethoxya).
  • Radical generators also include persulfates (such as ammonium persulfate and persulfate).
  • the preferred radical generator among these compounds is an organic peroxide.
  • the ratio of the vulcanizing agent can be selected, for example, from a range of about 0.5 to 15 parts by weight with respect to 100 parts by weight of the unvulcanized rubber, and is usually about 1 to 10 parts by weight, preferably about 1 to 10 parts by weight. It is about 1 to 8 parts by weight (for example, 2 to 7 parts by weight), and more preferably about 3 to 5 parts by weight.
  • the ratio of the radical generator can be selected from, for example, about 0.5 to 15 parts by weight, based on 100 parts by weight of the unvulcanized rubber, and is usually about 1 to 10 parts by weight, preferably about 1 to 10 parts by weight. It is about 1 to 8 parts by weight (for example, 2 to 7 parts by weight).
  • the vulcanizing agent (for example, sulfur-based vulcanizing agent) includes various compounds, for example, metal oxides (polyvalent metal oxides such as zinc oxide, magnesium oxide, and lead oxide), quinone dioxime (p-quinone dioxime, It may be used in combination with p, p'-benzoylquinonedioxime, poly ⁇ -dinitrobenzene, modified phenolic resin (alkylphenol formaldehyde resin, brominated alkylphenol formaldehyde resin, etc.).
  • the vulcanized rubber member and the resin member are vulcanized with a vulcanizing agent.
  • a vulcanized rubber layer or a middle layer of an unvulcanized rubber composition containing a vulcanizing agent In such a configuration, by utilizing the fact that rubber and rubber easily adhere to each other, even if the vulcanized rubber member has a different type or prescription of rubber, it can be securely and firmly bonded to a wide range of resins. This means that a composite in which a vulcanized rubber member and a resin member are firmly joined can be easily and reliably manufactured without changing the prescription of a rubber member that has already been put into practical use.
  • the rubber in the vulcanized rubber layer has a wide range as in the case of the above-described vulcanized rubber member, for example, gen rubber, olefin rubber, acrylic rubber, fluorine rubber, silicone rubber, urethane rubber, and epichlorohydrin. Rubber, chlorosulfonated polyethylene, propylene oxide rubber (GPO), ethylene-vinyl acetate copolymer (EAM), polynorporene rubber, and modified rubbers (such as acid-modified rubber). These rubbers can be used alone or in combination of two or more.
  • a rubber of the same type (preferably the same type) as the rubber of the vulcanized rubber member is used as the rubber of the vulcanized rubber layer
  • the joining strength can be reliably improved.
  • the rubber member is a sulfur-vulcanized gen-based rubber (IIR, NBR, SBR, etc.)
  • the rubber of the vulcanized rubber layer is of the same type (rubber with a similar molecular structure, such as EPDM or other olefins). Rubber can be used. If the same type of rubber (gen-based rubber) is used instead of the same rubber, higher bonding strength can be obtained.
  • any of a sulfur-based vulcanizing agent (sulfur or a sulfur-containing compound) and a radical generator-based vulcanizing agent (a peroxide-based vulcanizing agent such as an organic peroxide) may be used.
  • a vulcanizing agent of the same type (particularly the same type) as the vulcanizing agent used for vulcanizing the vulcanized rubber member.
  • the sulfur-based vulcanizing agent and the radical-generating agent-based vulcanizing agent include the same compounds as described above.
  • Preferred vulcanizing agents are radical generator-based vulcanizing agents (particularly organic peroxides) capable of bonding with a wide range of resins.
  • the ratio of the radical generator vulcanizing agent is 100 parts by weight of the unvulcanized rubber. Then, for example, it can be selected from a range of about 0.5 to 15 parts by weight, usually about 1 to 10 parts by weight, preferably about 1 to 8 parts by weight (for example, about 2 to 7 parts by weight). .
  • At least one layer or member of the vulcanized rubber layer, the vulcanized rubber member and the resin member is preferably formed of a composition containing a vulcanization activator. It is. That is, at least one component of the unvulcanized rubber composition, the vulcanized rubber member, and the resin member for forming the vulcanized rubber layer may include a vulcanization activator. Usually, the vulcanization activator may be contained in at least one of the unvulcanized rubber composition (composition for the intermediate layer) and the resin member.
  • the vulcanization activator when at least the unvulcanized rubber composition (composition for the intermediate layer) contains a vulcanization activator (sometimes referred to as a curing agent) together with a radical generator vulcanizing agent, the vulcanization activator becomes In addition to accelerating the vulcanization of the rubber, the cross-linking between the rubber molecules of the intermediate layer and the resin molecules of the resin member is promoted, so that the bonding between the vulcanized rubber member and the resin member is made easier.
  • the resin is a polyamide resin
  • a radical generator and a vulcanization activator when used in combination, a crosslinking reaction proceeds between the resin member and the vulcanized rubber member via an intermediate layer, and both are reacted. Can be connected securely and firmly.
  • the vulcanization activator only needs to be present in an amount necessary for accelerating the vulcanization of the rubber and forming a cross-link between the rubber and the resin. Therefore, an appropriate amount can be selected as appropriate.
  • the vulcanization activator examples include an organic compound having a carbon-carbon double bond (polymerizable unsaturated bond) [for example, a pinyl-based monomer (such as divinylbenzene) or an acryl-based monomer (such as divinylbenzene)]. Ryl phthalate, triallyl phosphate, triaryl (iso) cyanurate, etc.), (meth) acrylic monomers, etc.), and maleimide compounds. These vulcanizing activators can be used alone or in combination of two or more. As the vulcanizing activator, usually, two or more polymerizable groups (polymerizable unsaturated bonds) Is used.
  • (Meth) acrylic monomers include, for example, bifunctional (meth) acrylates [ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,4-butanediol (meta) C, such as acrylate, hexanediol di (meth) acrylate, and neopentyl dalichol di (meth) acrylate
  • Alkylene glycol di (meth) acrylate diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, dipropylene glycol (meth) acrylate, Poly C 2 _ 4 alkylene glycol di (meth) acrylate, glycerin di (meth) such as propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate Akurireto, Torimechiro Rupuropanji (meth) Akurireto, pen evening erythritol Toruji (main evening) Akurireto, the C 2 _ 4 alkylene O wherein de adduct of bisphenol a di (meth) Akurireto etc.
  • Trifunctional or polyfunctional (meth) acrylates [glycerin tri (meth) acrylate, trimethylol ester (meth) acrylate, trimethylolpropanetri (meth) acrylate, penyerythritol tri (meth) acrylate, pentaerythritol Thortetra (meth) acrylate, dipentyl erythritol, tetra (meth) acrylate, dipentaerythritolhexa (meth) acrylate, etc.].
  • a maleimide compound having a plurality of maleimide groups can be obtained by reacting a polyamine with maleic anhydride.
  • Maleimide compounds include, for example, aromatic bismaleimides (N, N'-1,3-phenylenediimide, N, N'-1,4-phenylenediimide, ⁇ , ⁇ '— 3 —Methyl-1,4-phenylenedimaleimide, 4, 4' —Bis ( ⁇ , ⁇ , maleimide) diphenylmethane, 4, 4 ' 1-bis (N, N, 1-maleimide) diphenylsulfone, 4,4, -bis (N, ⁇ '-maleimide) diphenyl ether, etc.), aliphatic bismale-imide ( ⁇ , ⁇ '), 1, 2 — Ethylene bismaleimide, ⁇ , ⁇ '— 1, 3 — propylene bismaleimide, ⁇ , ⁇ ' — 1, 4-tetramethylene bismaleimide, etc.).
  • aromatic bismaleimides N, N'-1,3-phenylenediimide, N, N'-1,4
  • Preferred vulcanization activators are compounds having a plurality of (for example, about 2 to 6, especially about 3 to 6) carbon-carbon double bonds (polymerizable unsaturated bonds) in one molecule, such as triallyl. (Iso) cyanurate, bifunctional to polyfunctional (meth) acrylate (especially trifunctional or polyfunctional (meth) acrylate), and aromatic maleimide compounds.
  • the addition of a vulcanization activator is not essential. For example, depending on the number of resins having a crosslinkable group, the number of crosslinkable groups, and the type of rubber material used, joining of both members is possible without the presence of a vulcanizing activator.
  • a vulcanization activator in order to securely join the rubber member and the resin member.
  • the vulcanizing activator is often added to at least one of the unvulcanized rubber (or unvulcanized rubber composition) and the resin (or resin composition) of the intermediate layer (the rubber layer). And may be added to both components. Further, a vulcanization activator may be added to rubber (unvulcanized rubber) for forming the vulcanized rubber member.
  • the resin is a resin having a crosslinkable unsaturated bond-containing group
  • the crosslinking between the resin and the rubber is activated by adding a vulcanizing activator to the resin component, so that the resin member and the intermediate layer can be combined with each other. In many cases, it is possible to firmly join the joints.
  • the amount of vulcanization activator used depends on the type of vulcanization activator used and the type of component added (unvulcanized rubber and ⁇ or resin), but usually it can promote adhesion between resin and rubber Amount, for example, from rubber [rubber for forming a vulcanized rubber layer or rubber (rubber element) for forming a vulcanized rubber member] and resin [resin for forming a resin member (resin element)]
  • the vulcanization activator can be selected from the range of about 0.1 to 10 parts by weight, preferably about 0.1 to 5 parts by weight, and more preferably about 0.1 to 3 parts by weight.
  • the amount of the vulcanization activator is 0.1 per 100 parts by weight of at least one component selected from rubber and resin.
  • the addition amount to the resin may be small, and the vulcanization activator is 0.1 to 7 parts by weight, preferably 0 to 100 parts by weight, based on 100 parts by weight of the resin. It may be about 1 to 5 parts by weight, more preferably about 0.1 to 3 parts by weight.
  • the addition of the vulcanization activator should exceed 10 parts by weight with respect to 100 parts by weight of the material to be added (rubber or resin). However, it is necessary to pay attention to the addition of more than 5 parts by weight, and it is necessary to examine the effect on the added material in advance.
  • the amount of the vulcanizing activator to be added is as follows when the material to be added is rubber.
  • 100 parts by weight of rubber 2 parts by weight or less, for example, 0.1 to 1.9 parts by weight (for example, 0.5 to 1.9 parts by weight), and when the material to be added is resin 5 parts by weight or less, for example, 0.1 to 5 parts by weight (for example, 3 to 5 parts by weight) with respect to 100 parts by weight of the resin.
  • a vulcanization aid may be further used in order to increase the efficiency of adhesion.
  • the addition of a vulcanization aid can further strengthen the joining between the rubber member and the resin member.
  • the vulcanization aid includes the unvulcanized rubber (or unvulcanized rubber composition) of the intermediate layer, the unvulcanized rubber (or unvulcanized rubber composition) of the vulcanized rubber member, and the resin (or resin composition). It may be added to at least one of the components, and it is added to all components and to both the unvulcanized rubber (or unvulcanized rubber composition) and the resin (or resin composition) in the intermediate layer. May be.
  • the vulcanization aid is added to at least one of the unvulcanized rubber (or the unvulcanized rubber composition) and the resin (or the resin composition) (particularly the resin or the resin composition) of the intermediate layer. Often. In this case, if necessary, a vulcanization aid may be added to the unvulcanized rubber of the vulcanized rubber member.
  • the vulcanization aid can be selected according to the type of resin or rubber.
  • an oligomer of a condensation thermoplastic resin for example, a number average molecular weight of the oligomer of the polyamide resin or the oligomer of the polyester resin
  • Oligomer of about 100 to 100.
  • the oligomer when used as a vulcanization aid, does not necessarily have to have a crosslinkable group as described above.
  • Polyamines for example, (7) diamines and the like described in the section of the polyurethane-based resin
  • polyols for example, the polyols and the like described in the section (2) of the polyester-based resin described above
  • polyvalent carboxylic acids or acid anhydrides thereof Compounds with multiple aldehyde groups, epoxy compounds, nitrogen-containing resins (such as amino resins), compounds with methylol or alkoxymethyl groups, polyiso An example is cyanate.
  • These vulcanization aids may be used alone or in combination of two or more.
  • Preferred vulcanization aids are compounds having an average of two or more active hydrogen atoms in one molecule of the active atoms represented by the formula (1), for example, a condensation thermoplastic resin (for example, polyamide Oligomers, and the above-mentioned polyamines.
  • the ratio of the vulcanization aid is, for example, 0.1 to 30 parts by weight, preferably 0.5 to 20 parts by weight, and more preferably 1 to 1 part by weight based on 100 parts by weight of the rubber and / or the resin. About 5 parts by weight.
  • the rubber composition for forming the vulcanized rubber member / intermediate layer may contain various additives, for example, fillers, plasticizers or softeners, and co-vulcanizing agents (metals such as zinc oxide).
  • Oxides vulcanization accelerators (reaction products of aldehydes such as hexamethylenetetramine diacetaldehyde and ammonia with ammonia, condensation products of aldehydes and amides, guanidines, thiopereas, thiazoles, Sulfenamides, thiurams, dithiolbamates, xanthates, etc.
  • anti-aging agents heat aging inhibitors, ozone deterioration inhibitors, antioxidants, ultraviolet absorbers, etc.
  • tackifiers processing aids
  • Lubricants stearic acid, metal stearate, wax, etc.
  • coloring agents foaming agents, dispersants, flame retardants, antistatic agents, etc. It may be.
  • the filler includes, for example, powdery or granular fillers or reinforcing agents (such as my strength, clay, talc, caicic acids, silica, calcium carbonate, magnesium carbonate, carbon black, ferrite, etc.), and fibrous materials. Filaments or reinforcing agents (organic fibers such as rayon, nylon, vinylon, and aramide, and inorganic fibers such as carbon fiber and glass fiber) are included.
  • the rubber is silicone rubber
  • the most common filler added as a reinforcing agent is silica powder.
  • silica powders used for silicone rubber are roughly classified into wet silica produced by a wet process and dry silica produced by a dry process.
  • Silicium powder suitable for silicone rubber is dry silica. When dry silica is used, high bonding strength between the resin member and the rubber member can be easily obtained. In the case of wet-type silica, it is considered that the water contained in the silica powder inhibits crosslinking between the resin member and the rubber member.
  • wet silica Even if wet silica is fatal If it does not hinder the bonding between the rubber member and the resin member, depending on the type of resin used, the type of silicone rubber used, the type and amount of vulcanizing activator used and the molding conditions, etc., even when wet silica can be used There is. Mixed use of dry silica and wet silica is also acceptable.
  • the plasticizer is not particularly limited as long as it can impart plasticity to the rubber composition.
  • Conventional softeners eg, vegetable oils such as linoleic acid, oleic acid, castor oil, and palm oil; minerals such as paraffin, process oil, and extender) Oils, etc.
  • plasticizers phthalate esters, aliphatic dicarbonate esters, sulfur-containing plasticizers, polyester polymer plasticizers, etc.
  • the content of the filler is, for example, about 0 to 300 parts by weight, preferably about 0 to 200 parts by weight, and more preferably about 0 to 100 parts by weight, based on 100 parts by weight of the rubber. It may be.
  • the content of the plasticizer or the softener is, for example, about 0 to 200 parts by weight, preferably about 0 to 150 parts by weight, and more preferably 0 to 120 parts by weight with respect to 100 parts by weight of the rubber. It may be about parts by weight.
  • the content of the co-vulcanizing agent, anti-aging agent, vulcanizing agent or lubricant, coloring agent, etc. may be any effective amount.
  • the content of the co-vulcanizing agent is 100 parts by weight of rubber. To about 0 to 20 parts by weight, preferably about 0.5 to 15 parts by weight, and more preferably about 1 to 10 parts by weight.
  • a system containing an active ingredient such as a vulcanization activator (unvulcanized rubber composition for an intermediate layer, unvulcanized rubber composition for a vulcanized rubber member, composition for a resin member, particularly a composition for a resin member)
  • a vulcanization activator having a polymerizable unsaturated bond in a heating and mixing process (for example, a kneading process of a resin and a vulcanization activator) by combining with a stabilizer, a gel (or a block) can be obtained. ) Can be suppressed or prevented.
  • the vulcanization activator can be made to function effectively and the resin and the rubber can be securely and firmly bonded or adhered without lowering the strength or deteriorating the appearance of the composite.
  • the stabilizer may stabilize the resin or rubber. It is preferred to stabilize the sulfur activator.
  • an antioxidant including a heat-resistant processing stabilizer and a light stabilizer
  • a thermal polymerization inhibitor hydroquinones such as hydroquinone and methylhydroquinone
  • Antioxidants include, for example, phenolic antioxidants, amine antioxidants, phosphorus antioxidants, zeotype antioxidants, hydroquinone antioxidants, quinoline antioxidants, and ketone amine resins. included.
  • the phenolic antioxidants include hindered phenolic antioxidants, for example, monophenols, bisphenols, polyvalent phenols and the like.
  • the monophenols include mono- or di-tert-butylphenol which may have a substituent [for example, 2,6-di-t-butyl-p-cresol, 2,6-di-t-butyl-1 4 — Ci- 4 alkyldi-t-butylphenol such as ethyl phenol; 2-alkoxy-mono or di-t-butylphenol such as t-butyl-4-methoxy-phenol, 3-tert-butyl-4-methoxyphenol; stearyl- / 3 - (3, 5-di - t - butyl - 4-hydroxyphenyl) propionate C 10 _ 2 () alkyl, such as - (di t - butyl - hydroxyphenyl) C 2 - 6 force Rupokishire DOO; 2- Echir
  • hydroxybenzyl) phosphonate such as phenol having a C 4 _ 10 alkylthio group [2, 4-di (Okuchiruchio) methyl one 6- methylcarbamoyl Rufuwenoru (Irganox 1520 Ciba Geigy one Ltd.)], bis phenols and (meth ) Monoester with acrylic acid [for example, 2- (2-hydroxy-3- 3-t-butyl-5-methylbenzyl)-4-methyl-6-t-butyl phenyl acrylate (Sumilyzer-G M Sumitomo Chemical Co., Ltd.), 2— [1— (2-hydroxy-3-t-butyl-5-methylphenyl) ethyl] —4-methyl-6—t—butylphenyl acrylate, 2-—1— ( 2-hydroxy-3,
  • Alkylene bis (mono or mono) such as 1,4-, 6-di (t-pentyl) phenyl acrylate (Sumilyzer-1 GS, manufactured by Sumitomo Chemical Co., Ltd.) Monoester of di-t-butylphenol) and (meth) acrylic acid, etc.].
  • Bisphenols include 2,2'-methylenebis (4-methyl-6-t-butylphenol), 2,2'-methylenebis (4-ethyl-6-t-butylphenol), 2,2'-ethylidenebis (Four,
  • 6-di-t-butylphenol 2,2'-ethylidenebis [4,6-di (t-pentyl) phenol], 4,4'-butylidenebis (3-methyl-6-t-butylphenol), 4,4 '- methylenebis (2, 6-di-one t one-butylphenol) C _ 6 alkylene bis (such as mono- or di-t- butylphenol); 4, 4' Chiobisu (three to methyl - 6 t one-butylphenol) Thiobis (mono- or di-t-butylphenol); bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionic acid] 1,6-hexanediolester, bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionic acid] triethylene glycol ester (Irganox 245 manufactured by Ciba-Geigy Corporation) and other (mono- or di-t-
  • Polyhydric phenols include trisphenols ⁇ for example, 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene (ADK STAB AO-330 Asahi) tris (mono or di t one-butyl, such as Denka Kogyo Co., Ltd.) - hydroxy Shibenjiru) C 6 _ 10 Aren; 1, 1, 3- tris (2-methyl - 4-hydroxy-5-t-Puchirufueniru) Bed evening Tris (mono or di-t-butyl-hydroxyphenyl) CH alkane; tris [3- (3,5-di-t-butyl-4-hydroxyphenyl) propyl ionic acid] mono- or di-like Dali serine ester - triesters of t one-butyl-hydroxyphenyl C 2 _ 6 carboxylic acids with C 3 _ 6 Al force Ntorioru; 1, 3, 5-tris
  • Amine-based antioxidants include aromatic amines, for example, phenyl-1-naphthylamine, phenyl-2-naphthylamine, N, N'-diphenyl-1,4-phenylenediamine, N-phenyl-1-N '— Phosphorus antioxidants, including cyclohexyl-1,4-phenylenediamine, etc., include, for example, triisodecyl phosphite, phenyldisodecyl phosphite, diphenyl isodecyl phosphite Ait, trifenyl phosphite, tris (2,4-di-t-butylphenyl) phosphite (ADEKA STAB 2112 made by Asahi Denka Kogyo Co., Ltd.), tris (noelphenyl) phosphite, dinonylphenylbis (nonylphen
  • zwitterion-based antioxidants examples include dilauryl 3,3-thiodibution pionate, di (tridecyl) 3,3-thiodipropionate, dimyristyl 2,2-thiodiacetate, dimyristyl 3,3-thiodipropion Thiol, laurylstearyl 3,3-thiodipropionate, distearyl 3,3-thiodipropionate
  • Hydroquinone-based antioxidants include, for example, 2,5-di-tert-butylhydroquinone, 2,5-di-t-amylhydroquinone, and quinoline-based antioxidants include, for example, 6-ethoxy 2, Includes 2,4-trimethyl-1,2-dihydroquinoline.
  • Light stabilizers include hindered amine light stabilizers (HAL S), quenchers and the like.
  • Hindered amine light stabilizers (HAL S) include, for example, optionally substituted tetramethylpiperidine (eg, C !! such as 4-methoxy-2,2,6,6-tetramethylpiberidine).
  • Quenchers include nickel bis (octylphenol) sulphide, [2,2,1-chobis (4,1 t, 1 year old octylphenol)] — n-butylamine nickel, nickel complex 1,3,5- Di-t-butyl-4-hydroxybenzyl-monoethyl phosphate.
  • Organic nickel complexes such as nickel dibutyl thiocarbamate and 1-phenyl-3-methyl-4-decanoylpyrazolate nickel; cobalt dicyclohexyldithio. Examples thereof include organic cobalt complexes such as phosphate.
  • stabilizers may be used alone or in combination of two or more.
  • Preferred stabilizers include phenolic antioxidants and stabilizers having radical scavenging ability, such as HALS. Further, a stabilizer having such a radical scavenging ability and another stabilizer may be used in combination.
  • a combination includes, for example, a phenol-based antioxidant and a zeolite-based antioxidant. Combinations, combinations of phenolic antioxidants and phosphorus antioxidants, etc. are included.
  • the amount of the stabilizer used is, for example, 0.01 to 15 parts by weight (for example, 0.01 to 10 parts by weight), preferably 0.05 to 10 parts by weight, based on 100 parts by weight of the resin or rubber. It may be about 10 to 10 parts by weight (for example, 0.05 to 8 parts by weight), more preferably about 0.1 to 7 parts by weight (for example, 0.1 to 5 parts by weight).
  • the ratio between the vulcanizing activator and the stabilizer can be selected according to the type of the vulcanizing activator or the stabilizer, the mixing and kneading temperature, and the like.
  • the vulcanized rubber layer is provided between the resin member and the vulcanized rubber member. Because of the interposition, even when the resin member and the vulcanized rubber member are combined in a wide range, the composite can be reliably and firmly joined, and a highly integrated composite can be obtained. Also, whether the vulcanization system is a sulfur vulcanization system or a non-sulfur vulcanization system, the bonding strength between the resin member and the vulcanized rubber member can be improved. Therefore, the combination of the resin member and the vulcanized rubber member is not particularly limited, and the resin and the rubber can be appropriately combined.
  • At least one of the vulcanized rubber layer, the vulcanized rubber member and the resin member is formed of a composition containing a vulcanizing activator.
  • the vulcanized rubber layer is formed of an unvulcanized rubber composition containing a vulcanizing agent and a vulcanizing activator, and at least one of the vulcanized rubber member and the resin member (particularly at least the resin member) is vulcanized.
  • the resin member and the vulcanized rubber member can be joined with extremely high joining strength.
  • thermoplastic resin of the resin member or the composition thereof is composed of a polyphenylene-based resin
  • the unvulcanized rubber of the vulcanized rubber layer or the composition thereof is composed of a styrene-gen copolymer rubber.
  • the vulcanized rubber layer can be bonded to the vulcanized rubber member with a high bonding strength regardless of whether it is vulcanized with a radical generator (such as an organic peroxide) or a sulfur-based vulcanizing agent.
  • the polyphenylene ether-based resin may be modified or modified with a styrene-based resin.
  • the amount of the sulfur vulcanizing agent to be used is preferably 1 to 10 parts by weight, more preferably 100 to 100 parts by weight of the rubber component. Is about 2 to 7 parts by weight, more preferably about 3 to 5 parts by weight.
  • the rubber element and the resin element are brought into contact with each other via an unvulcanized rubber layer containing a vulcanizing agent, and the unvulcanized rubber or semi-vulcanized rubber is vulcanized.
  • the resin Z rubber in which the vulcanized rubber member of the rubber element and the resin member of the resin element are joined via the composite that is, the vulcanized rubber layer obtained by vulcanizing the unvulcanized rubber layer
  • a vulcanized rubber member is brought into contact with a resin member via an unvulcanized rubber layer containing a vulcanizing agent, and the unvulcanized rubber layer is vulcanized by heating or other means.
  • a composite in which the vulcanized rubber member and the resin member are joined can be obtained.
  • the rubber element (rubber material) constituting the vulcanized rubber member may be a rubber material which has been vulcanized, and may be an unvulcanized rubber material (unvulcanized rubber composition) or a semi-vulcanized rubber material (half) (Vulcanized rubber member).
  • the rubber element (rubber material) is an unvulcanized rubber composition or a semi-vulcanized rubber member, both are vulcanized in the vulcanizing step of the unvulcanized rubber layer.
  • the resin element (resin material) constituting the resin member may be an unformed resin composition, a semi-molded resin member, or a molded resin member.
  • vulcanized rubber member means a member formed into a predetermined shape as a final component, and include “unvulcanized rubber composition” and “unformed resin composition”. By means a composition that does not have a particular shape.
  • unsemi-vulcanized rubber material refers to a member that has been processed but does not have the shape and Z or component of the form of the final member. It means unvulcanized rubber, active vulcanizing agents, and preforms which may contain vulcanizing activators and uncrosslinked resins.
  • the rubber element contains at least a vulcanizing agent (particularly, a radical generator-based vulcanizing agent). Further, in order to increase the bonding strength with the intermediate layer, the rubber element (particularly, the unvulcanized composition and the semi-vulcanized rubber member) is made of a vulcanization activator (a polyfunctional polymer having a plurality of polymerizable unsaturated bonds). Compound). The proportion of each component is as described above.
  • the resin element (particularly, a resin having a crosslinkable group) A crosslinking accelerator may be included. Further, the resin element (a thermoplastic resin or a resin having a crosslinkable group) may contain a vulcanization activator (a polymerizable compound having a plurality of polymerizable unsaturated bonds) as described above. In order to increase the bonding strength between the vulcanized rubber member and the resin member, the polyfunctional polymerizable compound having a plurality of polymerizable groups is preferably contained in at least one of the rubber element and the resin element, and is contained in both. You may let it. The proportions of these components are also as described above.
  • the unvulcanized rubber composition for forming the unvulcanized rubber layer may contain at least a vulcanizing agent (particularly a radical generator-based vulcanizing agent such as an organic peroxide).
  • a vulcanizing activator a polyfunctional polymerizable compound having a plurality of polymerizable groups.
  • the contents of the vulcanizing agent and the vulcanizing activator are as described above.
  • the resin constituting the resin member is a resin having the specific active atom (active hydrogen atom and hydrogen or active sulfur atom).
  • At least one of the unvulcanized rubber composition and the resin member contains a polyfunctional polymerizable compound having a plurality of polymerizable groups.
  • the resin member is composed of a thermosetting resin or a resin having an unsaturated bond in a molecule, and the unvulcanized rubber composition contains a polyfunctional polymerizable compound having a plurality of polymerizable groups. .
  • the unvulcanized rubber layer may be formed on at least one of the bonding surfaces of the rubber element and the resin element. Although the unvulcanized rubber layer is often a substantially uniform layer, it is not necessary that the unvulcanized rubber layer be substantially uniform unless the bonding between the vulcanized rubber member and the resin member is impaired.
  • the unvulcanized rubber layer may be a layer having an uneven thickness (for example, an uneven layer or a dotted layer).
  • Vulcanization molding is usually performed by irradiating light, in particular, heating the rubber element and the resin element through the unvulcanized rubber layer under pressure contact.
  • the rubber composition for the vulcanized rubber member and the semi-vulcanized rubber member are vulcanized together with the vulcanization of the unvulcanized rubber composition.
  • the unformed resin composition and the semi-formed resin member are also formed, and the resin having a crosslinkable group can be crosslinked and cured. .
  • the unvulcanized rubber layer is not limited to a film (sheet) of the unvulcanized rubber composition interposed on the bonding surface of the rubber element and / or the resin element, and may be a coating layer formed by a coating agent.
  • a liquid unvulcanized rubber composition for example, a solution or dispersion of an unvulcanized rubber composition (emulsion, suspension), etc.
  • An unvulcanized rubber layer can be formed by drying if necessary.
  • the film or sheet of the unvulcanized rubber composition may be formed in advance according to the molding method as described above, and together with the composition for the vulcanized rubber member or the composition for the resin member, It may be formed by co-extrusion of an unvulcanized rubber composition.
  • the method of the present invention includes the steps of molding a resin composition, an unvulcanized rubber composition of an intermediate layer, and an unvulcanized rubber composition of a vulcanized rubber member, respectively.
  • a resin composition for example, one of the resin member and the vulcanized rubber member is preliminarily molded or formed into a final member, and the other molded element and the intermediate layer are unformed.
  • the vulcanized rubber composition is brought into contact with the other unmolded element (unmolded resin composition or unvulcanized rubber composition), and the uncured rubber composition is bridged or vulcanized while being molded.
  • Resin member and vulcanized rubber via intermediate layer A method of joining or adhering to a member (two-stage method), a molding resin element (a molded resin member previously formed into a preformed or final member form) with an unvulcanized rubber composition for an intermediate layer interposed therebetween. ) And a molded rubber element (a molded rubber member preliminarily molded or formed into a final member form), cross-linked or vulcanized to form a resin member and a vulcanized rubber member via an intermediate layer. And a method of joining or bonding them (three-step method).
  • a conventional multicolor molding machine multicolor injection molding machine, multilayer extruder, etc.
  • the resin composition and the unvulcanized rubber composition of the intermediate layer are vulcanized.
  • a more composite molded article can be obtained.
  • the resin composition and the unvulcanized rubber composition may be mixed.
  • a conventional molding machine such as an injection molding machine, an extrusion molding machine, or a hot press molding machine
  • a conventional molding machine can be used for molding the molded rubber element.
  • injection molding machine, press molding machine, transfer molding machine, extrusion molding machine, etc. can be used.
  • a molded resin element is accommodated in a mold (or capty) corresponding to the shape of the composite, and the unvulcanized rubber composition for the intermediate layer and the unvulcanized rubber composition for the vulcanized rubber member are placed on the resin element.
  • the vulcanized rubber member and the resin member may be bonded via an intermediate layer by injecting or extruding the vulcanized rubber composition and crosslinking or vulcanizing the unvulcanized rubber composition.
  • the unvulcanized rubber for the intermediate layer can be formed on the molded resin element without using the mold (or the cavity).
  • a composite may be produced by laminating a film or sheet of the composition and a plate-shaped or sheet-shaped unvulcanized rubber composition for forming a vulcanized rubber member, followed by crosslinking or vulcanization.
  • hot press molding or injection molding is used to remove volatile components and gas components in the unvulcanized rubber composition. Then, pressure may be appropriately applied, or pressure molding may be performed in a reduced-pressure atmosphere.
  • a molded resin element and a molded rubber element are brought into contact with each other via a film (sheet) of an unvulcanized rubber composition, and the crosslinked or A composite may be obtained by vulcanization, and an unvulcanized rubber layer is formed by applying a coating liquid of an unvulcanized rubber composition to a bonding surface of at least one of a molded resin element and a molded rubber element. Then, the composite may be obtained by pressurizing and molding the molded resin element and the molded rubber element via the unvulcanized rubber layer.
  • the thickness of the film (sheet) of the unvulcanized rubber composition is not particularly limited, and is, for example, about 0.1 to 10 mm, preferably about 0.5 to 5 mm, and more preferably about 0.5 to 3 mm. There may be.
  • the coating amount (in terms of solid content) of the coating agent on the contact surface or the bonding surface is, for example, about 0.1 to 500 gZm 2 , preferably about 10 to 300 gZm 2 , particularly about 50 gZm 2. It may be about 100 gZm 2 .
  • the crosslinking (or vulcanization) temperature (or the joining temperature between the rubber member and the resin member) of the molded resin material and the molded rubber material is, for example, 70 to 250, preferably 100 to 230 °. C, more preferably in the range of about 150 to 200 ° C.
  • the pressure acting between the rubber Z resins can be selected, for example, from the range of about 0.1 to 350 MPa, preferably 1 to 150 MPa, and more preferably about 2 to 10 OMPa.
  • the solvent of the coating agent is not always necessary when a low molecular weight rubber (for example, liquid rubber) is used, but the solvent may be a hydrocarbon (aliphatic hydrocarbon, alicyclic hydrocarbon, aromatic hydrocarbon). Hydrogen), alcohols, esters, ketones, ethers, sulfoxides, amides, and the like.
  • the resin molded body and the vulcanized rubber molded body can be used in a wide range of combinations.
  • a complex can be obtained in which the and are firmly joined.
  • the resin molded article and the vulcanized rubber molded article can be firmly joined without subjecting the surface of the resin molded article to an easy adhesion treatment.
  • a space between the resin member and the vulcanized rubber member is provided. Since the vulcanized layer of the unvulcanized rubber composition is interposed, the resin member and the vulcanized rubber member can be firmly joined even in a three-dimensional structure.
  • the rubber member and the resin member are bonded with extremely high strength by vulcanization.
  • the properties of resin and rubber can be effectively expressed, and used in various applications, such as automotive parts (vibration absorbing bushes, spring plates, door lock members, radiator mounts, etc.), anti-vibration rubber, valves It can be advantageously used as various members such as electric plugs.
  • PA 6 1 2 Preparation of (A 1): hexamethylene di ⁇ Min and pressurizing the salt 8 0% by weight aqueous solution in Otokurebu purged with nitrogen dodecanoic dicarboxylic acid (1 7. 5 kg / cm 2 ) heating under (220 T), and the water in the system was discharged to the outside of the system along with the nitrogen gas in 4 hours. After one hour, the temperature was gradually raised (275) to remove water out of the system, and then the internal pressure of the autoclave was returned to normal pressure, followed by cooling to obtain polyamide 612. .
  • PA 6 12 (A 2) The above resin composition PA 6 12 (A 1) and the following resin composition (A 3) were kneaded at a weight ratio of 1 Z 1 using a twin screw extruder. . This was used alone as the resin composition PA 612 (A 2).
  • the number of active hydrogen atoms in P A612 (A2) is 2.4 per molecule.
  • PA612 (A3): A predetermined amount of dodecanedicarboxylic acid was added to an 80% by weight aqueous solution of hexamethylenediamine and dodecanedicarboxylic acid, and the mixture was pressurized in a nitrogen-purged autoclave (17). The system was heated under a pressure of 5 kZcm 2 ), and the water in the system was discharged together with nitrogen gas to the outside of the system in 4 hours. After one hour, the temperature was gradually increased (275 ° C) to remove water from the system, and the internal pressure of the autoclave was returned to normal pressure. After cooling, polyamide 612 was obtained.
  • the number of active hydrogens in PA612 (A3) is 0.8 per molecule.
  • Vestorannl900 manufactured by Degussa (Degusa) was used.
  • the number of active hydrogens per molecule is 6 or more.
  • Fortron 0220 A9 manufactured by Polyplastics Co., Ltd. was used.
  • the number of active sulfur per molecule is 6 or more.
  • a flat plate having a thickness of 4 mm was prepared using "Sumicon MMC-50" (black colored product) manufactured by Sumitomo Bakelite Co., Ltd. and used as a sample of the melamine resin composition (F1).
  • TR IM Trimethylolpropane trimethacrylate [Composition of vulcanized rubber layer]
  • NBR “Nipo 1 1 0 4 2” manufactured by Zeon Corporation
  • the average molecular weight is 290,000, It was determined to be a polysiloxane having a degree of polymerization of about 400.
  • the amount of vinyl in the obtained polymer was determined by —NMR, and it was determined that the average of 100 repeating units was 0.1%. It had 0.2 vinyl groups, ie, 0.8 double bonds per molecule on average.
  • the molar ratio of (A) dimethylchlorosilane to (B) methylvinylchlorosilane was 50:50 to obtain (C 2) cyclic dimethylsiloxane-methylvinylsiloxane tetramer.
  • the obtained polymer (siloxane B) was subjected to gas chromatography (Capillary column: DURABONDDB_1701 from J & W, injection temperature: Cool-on column method) The temperature was raised to 270 ° C in 50 ° C / 30 seconds, and the carrier gas was: Analysis by helium (30 ml / in, detector: FID) revealed a degree of polymerization of about 10. — NMR analysis showed that an average of 50 vinyl groups out of 100 repeating units, And Had 5 double bonds per molecule.
  • Siloxane A and Siloxane B were mixed at a molar ratio of 47:53, and used as VMQ-1 having an average of three double bonds per molecule.
  • EP DM 100 parts by weight of EP DM, 3 parts by weight of Ves tenamer8012 (manufactured by Degussa), 3 parts by weight of carbon black [N582] (manufactured by Asahi Rikibon Co., Ltd.), 3 parts by weight of magnesium silicate One part "(manufactured by Nippon Mistron Co., Ltd.) 25 parts by weight, naphthenic oil” Diana Process Oil NS100 “(manufactured by Idemitsu Kosan Co., Ltd.) 5 parts by weight, paraffin oil” Diana Process Oil PW 3 " 800 ”(manufactured by Idemitsu Kosan Co., Ltd.) 14 parts by weight, 1 part by weight of polyethylene diol (400), 0.5 part by weight of stearic acid, 3 parts by weight of zinc oxide.
  • SBR 60 / NBR 40 60 parts by weight of the above SBR, 40 parts by weight of the above NBR, 50 parts by weight of Ribon Bon Black “N582" (manufactured by Asahi Carbon Co., Ltd.), Diana Process Naphthenic oil Oil NS 100 "(manufactured by Idemitsu Kosan Co., Ltd.) 10 parts by weight, stearic acid 1 part by weight, zinc oxide 5 parts by weight, stabilizer” Nonflex RD “(manufactured by Seikagaku Co., Ltd.) 1 weight 1 part by weight, Stabilizer "Santite 2" (manufactured by Seikagaku Co., Ltd.) 0.2 part by weight of stabilizer "Santogard PV I” (manufactured by Flexis Co., Ltd.), Noxeller vulcanization accelerator C Zj (Ouchi Shinko Chemical Co., Ltd.) 1 part by weight, vulcanization accelerator "Noxera-TS” (Ouchi Shinko
  • SBR 60 ZNR40 SBR 60 parts by weight above, NR 40 parts by weight above, Ribon Bon Black “Asahi # 70" (made by Asahi Carbon Co., Ltd.) 4 5 layers Amount, naphthenic oil "Diana Process Oil NS 100" (made by Idemitsu Kosan Co., Ltd.) 10 parts by weight, stabilizer "Nocrack ODA” (made by Ouchi Shinko Chemical Co., Ltd.) 1.5 weight Parts, stabilizer “Nocrack 224” (Ouchi Shinko Chemical Co., Ltd.) 1.5 parts by weight, vulcanization accelerator “Noxeller DM” (Ouchi Shinko Chemical Co., Ltd.) 0.6 parts by weight 0.3 parts by weight of vulcanization accelerator "NOXELLA CZ” (manufactured by Ouchi Shinko Chemical Co., Ltd.) 0.3 parts by weight of stearic acid 1.5 parts by weight, zinc oxide 5 parts by weight.
  • VMQ-2 "Silicone rubber SH851" manufactured by Toray Dow Corning Co., Ltd.
  • FKM Fluoro rubber “DaiELG902” (manufactured by Daikin Industries, Ltd.) 100 parts by weight, power pump rack “Thermax x N990” Cancarb 10 parts by weight
  • BR Butadiene rubber “BUNA CB 100” (manufactured by Bayer) 100 parts by weight, naphthenic oil “Diana Process Oil NS-24” (manufactured by Idemitsu Kosan Co., Ltd.) 100 parts by weight, power pump rack Shaw Black N330T (manufactured by Showa Kyapot Co., Ltd.) 50 parts by weight, Stabilizer "Vu1 ka ⁇ X4010 ⁇ ⁇ " (manufactured by Bayer AG) 1.5 parts by weight Sulfur accelerator Accelerator Noxeller CZ (Ouchi Shinko Chemical Co., Ltd.) 1 part by weight, stearic acid 2 parts by weight, zinc oxide 5 parts by weight.
  • Each of the above resin compositions was molded by an injection molding method or a compression molding method to obtain a flat plate having a thickness of 4 mm.
  • a rubber solution prepared by the following method was applied to one surface of the flat plate to a thickness of 100 using Barco overnight. Rubber solution applied Thereafter, the mixture was left for 1 hour, and the solvent was air-dried to form an unvulcanized rubber layer.
  • the resin flat plate having the unvulcanized rubber layer is placed in a mold whose temperature is controlled at 170 with the unvulcanized rubber layer as an upper surface, and the unvulcanized rubber constituting the rubber member is placed on the unvulcanized rubber layer.
  • the unvulcanized rubber layer and the unvulcanized rubber member were bonded by vulcanization while a predetermined amount of the vulcanized rubber composition was loaded and compression-molded so that the thickness of the rubber member became 3 mm.
  • the heating time was approximately 15 minutes.
  • Table 1 shows the combinations of the resin flat plate, the unvulcanized rubber layer, and the vulcanized rubber member.
  • “* J indicates that after forming an unvulcanized rubber layer on a resin plate, and then vulcanizing this unvulcanized rubber layer, This shows that the unvulcanized rubber composition for a rubber member was put on the vulcanized rubber layer and vulcanized at 170 ° C.
  • the resin / rubber layer obtained by the above method was cut into a width of 3 Om m, and the obtained test piece was subjected to a 180 ° peel test.
  • the adhesiveness was evaluated according to the following criteria.
  • a peeling interface occurs in the rubber layer or the rubber member (cohesive failure), and the destruction is 100% cohesive failure.
  • Table 1 shows the results. In the table, the ratio of each component is part by weight. As is clear from Table 1, the composites obtained in the examples show high bonding strength.

Abstract

A resin/rubber composite comprising a vulcanized rubber member and a resin member bonded to each other through a vulcanized rubber layer is produced by bringing a rubber element and a resin element into mutual contact through an unvulcanized rubber layer, the unvulcanized rubber layer containing a vulcanizing agent, under pressure and effecting heating and molding thereof while maintaining the pressurized contact. The resin member may consist of a thermoplastic resin or resin having a crosslinkable group, and may consist of a resin having active atom. The components of at least one of the unvulcanized rubber composition for forming the vulcanized rubber layer and the resin member may contain a polyfunctional polymerizable compound having multiple polymerizable groups. Thus, there can be obtained a composite wherein the resin member and the vulcanized rubber member are strongly bonded to each other in a wide range of combination.

Description

明 細 書 複合体及びその製造方法 技術分野  Description Composite and its manufacturing method
本発明は、 樹脂と加硫ゴムとがー体に接合し、 かつ機械部品、 自 動車部品などとして有用な複合体 (又は複合部材) 及びその製造方 法に関する。 背景技術  TECHNICAL FIELD The present invention relates to a composite (or a composite member) in which a resin and a vulcanized rubber are bonded to a body and are useful as a mechanical part, an automobile part, and the like, and a method for producing the same. Background art
樹脂成形部材とゴム成形部材とを複合一体化する方法として、 接 着剤を用いて樹脂成形体とゴム成形体とを接着する方法が知られて いる。 しかし、 接着剤を用いる方法は、 工程が複雑で工程管理が煩 雑であり、 コストが高くなるだけでなく、 耐熱性、 耐水性などの特 性が低下し、 必ずしも十分な接着性を得られない。  As a method for integrally integrating a resin molded member and a rubber molded member, a method of bonding a resin molded body and a rubber molded body using an adhesive is known. However, the method using an adhesive requires a complicated process and complicated process control, which not only increases the cost but also lowers the characteristics such as heat resistance and water resistance, so that sufficient adhesiveness cannot always be obtained. Absent.
樹脂とゴムとが直接接合した複合体が提案されている。 例えば、 特開昭 5 0— 2 5 6 8 2号公報には、 ポリホルムアルデヒドゃォレ フィン重合体などの熱可塑性プラスチック成分と、 この熱可塑性プ ラスチック成分と相溶性の加硫したゴム成分とを摩擦接触させてプ ラスチック表面を溶融し、 プラスチック成分とゴム成分とを接触さ せたまま凝固させる複合体の製造方法が開示されている。  A composite in which a resin and a rubber are directly joined has been proposed. For example, Japanese Patent Application Laid-Open No. 50-25882 discloses that a thermoplastic component such as a polyformaldehyde olefin polymer and a vulcanized rubber component compatible with the thermoplastic component are disclosed. Discloses a method for producing a composite in which a plastic surface is melted by frictional contact with a plastic component and a plastic component and a rubber component are solidified while being kept in contact with each other.
熱可塑性樹脂とゴムとの相'溶性を利用して複合体を製造する方法 として、 特開昭 6 1— 2 0 42 6 0号公報には、 ポリフエ二レンェ 一テル系樹脂と合成ゴムとを加硫系の存在下に熱処理する方法が開 示されている。 特開平 9— 1 2 48 0 3号公報には、 ァクリロニト リル含有熱可塑性樹脂と、 ァクリロ二トリル含有ゴムとを加熱密着 させて複合部材を得ることが提案されている。  As a method for producing a composite utilizing the compatibility of a thermoplastic resin and a rubber, Japanese Patent Application Laid-Open No. Sho 61-204,600 discloses a polyphenylene ether resin and a synthetic rubber. A method for heat treatment in the presence of a vulcanization system has been disclosed. Japanese Patent Application Laid-Open No. 9-124803 proposes obtaining a composite member by heating and bonding an acrylonitrile-containing thermoplastic resin and an acrylonitrile-containing rubber.
熱可塑性樹脂とゴムとの化学的な反応を利用して複合体を製造す る方法として、 特開平 2— 1 5 043 9号公報、 特開平 3— 1 3 3 6 3 1号公報、 特開平 3— 1 3 8 1 1 4号公報には、 ポリアミ ド系 樹脂と、 ゴム成分として、 力ルポキシル基又は酸無水物基含有ゴム と過酸化物と加硫活性化剤とを含むゴム成分を用いることが提案さ れている。 特開平 8— 1 5 6 1 8 8号公報には、 エポキシ基含有樹 脂部材と、 カルボキシル基又は酸無水物基含有ゴム部材とを密着さ せて加硫することにより複合部材を得ることが提案されている。 さらに、 特定の添加剤を用いることにより複合体を得る方法とし て、 特開平 7 - 1 1 0 1 3号公報には、 ポリアミ ド成形体と、 ゴム と過酸化物加硫剤とシラン化合物と必要により加硫活性剤とを含む ゴムコンパゥンドとを接触させて加硫する方法が開示されている。 さらに、 硬質成分として熱可塑性ポリエステルを用い、 軟質成分と して、 ゴムと過酸化物加硫剤と二官能又は多官能マレイミ ドと必要 により.加硫活性剤とを含むゴム成分を用いること (特開平 7— 3 0 4 8 8 0号公報) 、 ゴムと過酸化物加硫剤とシラン化合物と必要に より加硫活性剤とを含むゴム成分を用いること (特開平 7— 1 6 6 0 4 3号公報) が提案されている。 As a method for producing a composite by utilizing a chemical reaction between a thermoplastic resin and rubber, Japanese Patent Application Laid-Open Nos. 2-150304 and 3-313 No. 631, JP-A-3-138114 discloses a polyamide resin, a rubber containing a propyloxyl group or an acid anhydride group as a rubber component, a peroxide and vulcanization activation. It has been proposed to use a rubber component containing an agent. Japanese Patent Application Laid-Open No. 8-156618 / 88 discloses that a composite member can be obtained by bringing an epoxy group-containing resin member and a carboxyl group or acid anhydride group-containing rubber member into close contact and vulcanizing them. Proposed. Further, as a method for obtaining a composite by using a specific additive, Japanese Patent Application Laid-Open No. 7-11013 discloses a polyamide molded product, a rubber, a peroxide vulcanizing agent, and a silane compound. A method of vulcanizing by contacting a rubber compound containing a vulcanizing activator as required is disclosed. Further, a thermoplastic polyester is used as a hard component, and a rubber component containing a rubber, a peroxide vulcanizing agent, a bifunctional or polyfunctional maleimide and, if necessary, a vulcanizing activator is used as a soft component ( Japanese Unexamined Patent Publication (Kokai) No. 7-304880), a rubber component containing rubber, a peroxide vulcanizing agent, a silane compound and, if necessary, a vulcanizing activator is used (Japanese Patent Laid-Open No. 7-166600). 43 No. 3) has been proposed.
しかし、 これらの方法では、 高い接着強度を得るためには、 熱可 塑性樹脂およびゴムの種類が制限される。 特に、 反応性の乏しい加 硫ゴムと熱可塑性樹脂との複合体を得ることは困難である。  However, in these methods, the types of thermoplastic resin and rubber are limited in order to obtain high adhesive strength. In particular, it is difficult to obtain a composite of a poorly reactive vulcanized rubber and a thermoplastic resin.
特開平 1 0— 5 8 6 0 5号公報には、 基材フィルム (ポリエステ ルフィルムなど) と、 接着性改良剤として多官能性メタクリレート を含むゴムフィルム (シリコーンゴム、 エチレンプロピレン系ゴム など) を積層して加硫することにより複合フィルムを得る方法が開 示されている。 しかし、 この方法では、 基材フィルムとの十分な接 着強度を得るためには多量の接着性改良剤を含有したゴムを使用す る必要があり、 かつ基材フィルムはコロナ放電処理又は易接着処理 する必要がある。 さらに、 この文献の実施例では、 接着に際しては 高エネルギー線である電子線を照射を利用することが記載されてお り、 厚みが大きく立体的なゴム成形体と樹脂成形体との接合に利用 することが困難である。 Japanese Patent Application Laid-Open No. H10-58605 discloses that a base film (such as a polyester film) and a rubber film containing a polyfunctional methacrylate as an adhesion improver (such as silicone rubber and ethylene propylene rubber) are laminated. A method for obtaining a composite film by vulcanizing and vulcanizing is disclosed. However, in this method, it is necessary to use a rubber containing a large amount of an adhesion improver in order to obtain sufficient bonding strength with the base film, and the base film is subjected to corona discharge treatment or easy adhesion. Need to be processed. Furthermore, in the examples of this document, it is described that irradiation is performed using an electron beam, which is a high-energy beam, for bonding, and is used for joining a thick, three-dimensional rubber molded body to a resin molded body. Is difficult to do.
このように、 樹脂部材とゴム部材とを高い接着強度で接合するた めの汎用性の高い技術は知られていない。 特に、 ゴムの種類や処方 によって接合強度が大きく変動し、 ゴム処方の大きな変更が必要と なったり、 ゴム処方を変更しても高い接合強度が得られない場合が ある。 例えば、 ゴム部材の性能の点から、 充填剤, フィラー、 可塑 剤などの添加剤の添加量を多くせざるを得ないゴム処方や、 加硫剤 の種類が制約されるゴム処方 (例えば、 硫黄加硫剤を必要とするゴ ム処方) では、 接合強度を高めるための処方の選択幅が大きく制限 される。 さらに、 ゴム処方を変更することは、 実質的に困難である 場合が多い。  As described above, a highly versatile technique for joining a resin member and a rubber member with high adhesive strength has not been known. In particular, the bonding strength varies greatly depending on the type and prescription of rubber, so that a large change in rubber prescription is required, and high bonding strength may not be obtained even if the rubber prescription is changed. For example, from the viewpoint of the performance of rubber members, rubber formulations in which the amount of additives such as fillers, fillers, and plasticizers must be increased, and rubber formulations in which the type of vulcanizing agent is restricted (for example, sulfur In rubber formulations that require a vulcanizing agent), the range of choices for formulations to increase joint strength is severely limited. In addition, changing rubber formulations is often difficult in practice.
従って、 本発明の目的は、 広範囲の組合せにおいて樹脂成形体と 加硫ゴム成形体とが強固に接合した複合体及びその製造方法を提供 することにある。  Accordingly, an object of the present invention is to provide a composite in which a resin molded article and a vulcanized rubber molded article are firmly joined in a wide range of combinations, and a method for producing the same.
本発明の他の目的は、 樹脂成形体の表面を易接着処理することな く、 樹脂成形体と加硫ゴム成形体とが強固に接合した複合体及びそ の製造方法を提供することにある。  Another object of the present invention is to provide a composite in which a resin molded article and a vulcanized rubber molded article are firmly joined without subjecting the surface of the resin molded article to an easy adhesion treatment, and a method for producing the same. .
本発明のさらに他の目的は、 加硫ゴム部材のゴム処方を変更する ことなく、 樹脂部材と強固に接合した複合体とその製造方法を提供 することにある。  Still another object of the present invention is to provide a composite firmly bonded to a resin member without changing the rubber composition of the vulcanized rubber member, and a method for producing the same.
本発明の別の目的は、 三次元的構造であっても樹脂部材と加硫ゴ ム部材とが強固に接合した複合体及びその製造方法を提供すること にある。 発明の開示  Another object of the present invention is to provide a composite in which a resin member and a vulcanized rubber member are firmly joined even in a three-dimensional structure, and a method for producing the same. Disclosure of the invention
本発明者らは、 前記課題を達成するため鋭意検討した結果、 ゴム とゴムとが接合しやすいことを利用して、 ゴム部材と樹脂部材との 間に加硫剤を含む未加硫ゴム層を介在させ、 この未加硫ゴム層を加 熱などの手段により加硫すると、 広範囲の組合せにおいて、 前記ゴ ム部材と樹脂部材とを強固に一体化でき、 榭脂ノゴム複合体を効率 よく得ることができることを見いだし、 本発明を完成した。 Means for Solving the Problems The inventors of the present invention have conducted intensive studies in order to achieve the above-mentioned object. When the unvulcanized rubber layer is vulcanized by means of heating or the like, It has been found that the rubber member and the resin member can be firmly integrated, and a resin-rubber composite can be obtained efficiently, and the present invention has been completed.
すなわち、 本発明の複合体は、 加硫剤により加硫した加硫ゴム層 を介して、 加硫ゴム部材と樹脂部材とが接合し、 樹脂ノゴム複合体 を形成している。 本発明では加硫剤の種類に拘わらず接合強度を向 上できるので、 前記加硫剤は、 硫黄系加硫剤 (硫黄や硫黄化合物な ど) 又は過酸化物系加硫剤 (有機過酸化物などのラジカル発生剤系 加硫剤) であってもよい。 前記樹脂部材は、 熱可塑性樹脂および架 橋性基を有する樹脂から選択された少なくとも一種で構成でき、 架 橋性基を有する樹脂は、 熱硬化性樹脂及び 又は不飽和結合を有す る熱可塑性樹脂であってもよい。 さらに、 加硫ゴム層を形成するた めの未加硫ゴム組成物と樹脂部材は、 下記条件 (i) 〜 (iii) のう ち少なくとも一つの条件を満足する場合が多い。  That is, in the composite of the present invention, the vulcanized rubber member and the resin member are joined via the vulcanized rubber layer vulcanized with the vulcanizing agent to form a resin-rubber composite. In the present invention, since the bonding strength can be improved regardless of the type of vulcanizing agent, the vulcanizing agent may be a sulfur vulcanizing agent (such as sulfur or a sulfur compound) or a peroxide vulcanizing agent (organic peroxide). Radical generator vulcanizing agent). The resin member can be composed of at least one selected from a thermoplastic resin and a resin having a bridging group. The resin having a bridging group is a thermosetting resin and / or a thermoplastic resin having an unsaturated bond. It may be a resin. Further, the unvulcanized rubber composition and the resin member for forming the vulcanized rubber layer often satisfy at least one of the following conditions (i) to (iii).
( i ) 樹脂部材が、 下記式 ( 1 ) で表される軌道相互作用ェネル ギ一係数 Sが 0. 0 0 6以上である活性原子 (水素原子および硫黄 原子から選択された少なくとも一種の活性原子) を一分子中に少な くとも平均 2つ有する熱可塑性樹脂で構成されている  (i) An active atom (or at least one active atom selected from a hydrogen atom and a sulfur atom) in which the resin member has an orbital interaction energy coefficient S represented by the following formula (1) of not less than 0.006. ) Is composed of a thermoplastic resin having at least two on average in one molecule
S = ( CH0M0,n) , I E C— EH0M0,n l + ( C LUM0,n) , I E c— E LUMO.n I ( 1 ) S = (C H0M0, n) , I E C- E H0M0, nl + (C LUM0, n), I E c - E LUMO.n I (1)
(式中、 Ec、 CH0M0)I1, EH0M0,n、 CLUM0,n、 ELUM0,nは、 いずれも半 経験的分子軌道法 M〇P AC PM 3により算出された値であって、( Where E c , C H0M0) I 1 , E H 0M0, n, C LUM0, n, E LUM0, n are all values calculated by the semiempirical molecular orbital method M〇P AC PM 3. hand,
E cは加硫剤としてのラジカル発生剤のラジカルの軌道エネルギー (e V) を示し、 C画 o,nは熱可塑性樹脂の基本単位を構成する第 n 番目の水素原子の最高被占分子軌道 (HOMO) の分子軌道係数を 示し、 EH0M0,nは前記 H〇M〇の軌道エネルギー (e V) を示し、 C LUM0,nは前記 n番目の水素原子の最低空分子軌道 (LUMO) の分子 軌道係数を示し、 ELUM0,nは前記 L UMOの軌道エネルギー (e V) を示す) E c indicates the orbital energy (e V) of the radical generator as a vulcanizing agent, and C and o and n are the highest occupied molecular orbitals of the nth hydrogen atom constituting the basic unit of the thermoplastic resin. (HOMO) indicates the molecular orbital coefficient, E H0M0 , n indicates the orbital energy (e V) of H〇M〇, and C LUM0, n indicates the lowest unoccupied molecular orbital (LUMO) of the nth hydrogen atom. It indicates the molecular orbital coefficient, and E LUM0 , n indicates the orbital energy (e V) of the LUMO.)
(ii) 未加硫ゴム組成物及び樹脂部材のうち少なくとも一方の成 分が、 複数の重合性基を有する多官能重合性化合物を含有する (ii) At least one of the unvulcanized rubber composition and the resin member Contains a polyfunctional polymerizable compound having a plurality of polymerizable groups
( i i i ) 樹脂部材が、 熱硬化性樹脂、 又は分子中に不飽和結合を有 する樹脂で構成され、 未加硫ゴム組成物が複数の重合性基を有する 多官能重合性化合物を含有する  (ii) The resin member is composed of a thermosetting resin or a resin having an unsaturated bond in a molecule, and the unvulcanized rubber composition contains a polyfunctional polymerizable compound having a plurality of polymerizable groups.
前記複合体において、 前記加硫ゴム層、 加硫ゴム部材および樹脂 部材の少なくとも 1つは、 加硫活性剤を含む組成物で形成してもよ い。 加硫活性剤は、 複数の重合性基を有する多官能重合性化合物で 構成されていてもよい。 例えば、 加硫ゴム層を、 加硫剤および加硫 活性剤を含有する未加硫ゴム組成物で形成し、 加硫ゴム部材および 樹脂部材の少なくとも一方の部材 (例えば、 樹脂部材) を、 加硫活 性剤を含む組成物で形成してもよい。 加硫活性剤の量は、 樹脂及び /又はゴム 1 0 0重量部に対して 0 . 1〜 1 0重量部程度であって もよく、 例えば、 ゴム 1 0 0重量部に対して 2重量部以下であって もよい。 樹脂部材は、 さらに加硫活性剤に対する安定剤 (例えば、 酸化防止剤、 光安定剤、 熱重合禁止剤など) を含んでいてもよく、 加硫活性剤と安定剤との割合は、 前者 Z後者 (重量比) = 9 9 Z 1 〜2 5 / 7 5程度であってもよい。 樹脂部材は、 例えば、 ポリアミ ド系樹脂、 ポリエステル樹脂、 ポリアセタール系樹脂、 ポリフエ二 レンエーテル系樹脂、 ポリスルフイ ド系樹脂、 ポリエーテルケトン 系樹脂、 ポリ力一ポネート系樹脂、 ポリイミ ド系樹脂、 ポリスルホ ン系樹脂、 ポリウレタン系樹脂、 ポリオレフイン系樹脂、 ハロゲン 含有ビニル系樹脂、 スチレン系樹脂、 (メタ) アクリル系樹脂、 熱 可塑性エラストマ一、 フエノール樹脂、 アミノ系樹脂、 エポキシ樹 脂、 熱硬化性ポリイミ ド系樹脂、 熱硬化性ポリウレタン系樹脂、 シ リコーン樹脂、 不飽和ポリエステル系樹脂、 ビニルエステル樹脂、 ジァリルフタレート樹脂、 熱硬化性 (メタ) アクリル系樹脂などで 構成されている。 また、 加硫ゴム層は、 硫黄系加硫剤で加硫されて もよい。 例えば、 加硫ゴム層を、 ジェン系ゴム (硫黄系加硫剤で加 硫されたスチレン—ジェン系ゴムなど) で構成し、 樹脂部材を、 ポ リフエ二レンエーテル系樹脂で構成してもよい。 In the composite, at least one of the vulcanized rubber layer, the vulcanized rubber member and the resin member may be formed of a composition containing a vulcanization activator. The vulcanization activator may be composed of a polyfunctional polymerizable compound having a plurality of polymerizable groups. For example, the vulcanized rubber layer is formed of an unvulcanized rubber composition containing a vulcanizing agent and a vulcanizing activator, and at least one of a vulcanized rubber member and a resin member (for example, a resin member) is vulcanized. It may be formed of a composition containing a sulfur activator. The amount of the vulcanization activator may be about 0.1 to 10 parts by weight with respect to 100 parts by weight of the resin and / or rubber, for example, 2 parts by weight with respect to 100 parts by weight of rubber. It may be as follows. The resin member may further contain a stabilizer for the vulcanization activator (for example, an antioxidant, a light stabilizer, a thermal polymerization inhibitor, etc.), and the ratio between the vulcanization activator and the stabilizer is the former Z The latter (weight ratio) may be about 9 9 Z 1 to 25/75. Examples of the resin member include a polyamide resin, a polyester resin, a polyacetal resin, a polyphenylene ether resin, a polysulfide resin, a polyether ketone resin, a polycarbonate resin, a polyimide resin, and a polysulfone. Resin, polyurethane resin, polyolefin resin, halogen-containing vinyl resin, styrene resin, (meth) acrylic resin, thermoplastic elastomer, phenol resin, amino resin, epoxy resin, thermosetting polyimide It is composed of resin, thermosetting polyurethane resin, silicone resin, unsaturated polyester resin, vinyl ester resin, diaryl phthalate resin, and thermosetting (meth) acrylic resin. Further, the vulcanized rubber layer may be vulcanized with a sulfur-based vulcanizing agent. For example, the vulcanized rubber layer is composed of gen-based rubber (such as styrene-gen-based rubber vulcanized with a sulfur-based vulcanizing agent), and the resin member is It may be composed of a refinylene ether-based resin.
本発明の方法では、 加硫剤を含有する未加硫ゴム層を介して、 未 加硫ゴム組成物、 半加硫ゴム部材および加硫ゴム部材から選択され たゴムエレメントと、 未成形樹脂組成物、 半成形樹脂部材および成 形樹脂部材から選択された樹脂エレメントとを接触させ、 未加硫ゴ ム又は半加硫ゴムを加硫し、 前記未加硫ゴム層が加硫した加硫ゴム 層を介して、 前記ゴムエレメン卜の加硫ゴム部材と樹脂エレメント の樹脂部材とが接合した樹脂 Zゴム複合体を製造する。 この方法に おいて、 未加硫ゴム又は半加硫ゴムを加硫し、 必要によりゴムエレ メントと樹脂エレメントとを成形してもよい。 また、 ゴムエレメン ト及び樹脂エレメントの接合面のうち少なくとも一方の接合面に、 加硫剤を含有する未加硫ゴム組成物の層を形成し、 この未加硫ゴム 組成物層を介して前記ゴムエレメントと樹脂エレメン卜とを加圧接 触下で加熱してもよい。 また、 加硫剤を含有する未加硫ゴム組成物 層は、 未加硫ゴム組成物のフィルム又は塗布剤で形成してもよい。 この方法において、 中間層の未加硫ゴム組成物を、 成形樹脂部材と、 未加硫ゴム組成物及び半加硫ゴム部材から選択されたゴムエレメン トとの間に介在させ、 未加硫ゴム及び/又は半加硫ゴムを成形しな がら架橋又は加硫させてもよい。 未加硫ゴム組成物層、 ゴムエレメ ントおよび樹脂エレメントの少なくとも 1つは、 加硫活性剤を含ん でもよい。 樹脂エレメントが加硫活性剤を含む場合、 加硫活性剤の 量は、 樹脂エレメント 1 0 0重量部に対して 0 . 1〜 5重量部程度 であってもよい。 さらに、 加硫剤を含むゴムエレメントと、 樹脂ェ レメン卜との間に、 有機過酸化物と、 複数の重合性基を有する多官 能重合性化合物とを含有する未加硫ゴム組成物の層を介在させて加 圧下で加熱して成形してもよい。 さらには、 ゴムエレメント及び樹 脂エレメントのうち少なくとも一方のエレメントは、 複数の重合性 基を有する多官能重合性化合物を含んでいてもよい。  In the method of the present invention, a rubber element selected from an unvulcanized rubber composition, a semi-vulcanized rubber member and a vulcanized rubber member is provided via an unvulcanized rubber layer containing a vulcanizing agent; A non-vulcanized rubber or semi-vulcanized rubber, and vulcanized unvulcanized rubber or semi-vulcanized rubber. Through the layers, a resin Z rubber composite in which the vulcanized rubber member of the rubber element and the resin member of the resin element are joined is manufactured. In this method, the unvulcanized rubber or the semi-vulcanized rubber may be vulcanized, and the rubber element and the resin element may be molded if necessary. Further, a layer of an unvulcanized rubber composition containing a vulcanizing agent is formed on at least one of the bonding surfaces of the rubber element and the resin element, and the rubber is interposed via the unvulcanized rubber composition layer. The element and the resin element may be heated under pressure contact. Further, the unvulcanized rubber composition layer containing the vulcanizing agent may be formed of a film or a coating material of the unvulcanized rubber composition. In this method, the unvulcanized rubber composition of the intermediate layer is interposed between the molded resin member and a rubber element selected from the unvulcanized rubber composition and the semi-vulcanized rubber member. Crosslinking or vulcanization may be performed while molding the semi-vulcanized rubber. At least one of the unvulcanized rubber composition layer, the rubber element and the resin element may contain a vulcanizing activator. When the resin element contains a vulcanization activator, the amount of the vulcanization activator may be about 0.1 to 5 parts by weight based on 100 parts by weight of the resin element. Further, an unvulcanized rubber composition containing an organic peroxide and a multifunctional polymerizable compound having a plurality of polymerizable groups is provided between a rubber element containing a vulcanizing agent and a resin element. The molding may be performed by heating under pressure with a layer interposed. Further, at least one of the rubber element and the resin element may include a polyfunctional polymerizable compound having a plurality of polymerizable groups.
なお、 本明細書において、 「ゴム」 とは、 加硫ゴム層を形成する ためのゴム、 又は加硫ゴム部材を形成するためのゴム (前記ゴムェ レメント) を含む意味に用いる。 また、 「樹脂」 とは、 樹脂部材を 形成するための樹脂 (前記樹脂エレメント) を含む意味に用いる。 発明の詳細な説明 In the present specification, “rubber” means a vulcanized rubber layer Rubber or a rubber for forming a vulcanized rubber member (the rubber element). The term “resin” is used to include a resin (the resin element) for forming a resin member. Detailed description of the invention
[樹脂部材]  [Resin material]
本発明の複合体において、 樹脂部材は、 熱可塑性樹脂および架橋 性基を有する樹脂から選択された少なくとも一種 (以下、 単に樹脂 と称することがある) で構成されている。  In the composite of the present invention, the resin member is made of at least one selected from a thermoplastic resin and a resin having a crosslinkable group (hereinafter, may be simply referred to as a resin).
(熱可塑性樹脂)  (Thermoplastic resin)
熱可塑性樹脂としては、 例えば、 ポリアミ ド系樹脂、 ポリエステ ル系樹脂、 ポリ (チォ) エーテル系樹脂 (ポリアセタール系樹脂、 ポリフエ二レンエーテル系樹脂、 ポリスルフイ ド系樹脂、 ポリエー テルケトン系樹脂など)、 ポリカーボネート系樹脂、 ポリイミ ド系樹 脂、 ポリスルホン系樹脂、 ポリウレタン系樹脂などの縮合系熱可塑 性樹脂; ポリオレフイン系樹脂、 ハロゲン含有ビニル系樹脂、 スチ レン系樹脂、 (メタ)アクリル系樹脂などのビニル重合系熱可塑性樹 脂;熱可塑性エラストマ一などが例示できる。 これらの樹脂は単独 で又は二種以上組み合わせて使用できる。 二種以上の樹脂を組み合 わせて用いる場合、 樹脂組成物はポリマーァロイなどの複合樹脂組 成物を形成してもよい。  Examples of the thermoplastic resin include polyamide resin, polyester resin, poly (thio) ether resin (polyacetal resin, polyphenylene ether resin, polysulfide resin, polyetherketone resin, etc.), and polycarbonate. -Based resins, polyimide-based resins, polysulfone-based resins, polyurethane-based resins, and other condensed thermoplastic resins; polyolefin-based resins, halogen-containing vinyl-based resins, styrene-based resins, and vinyl polymers such as (meth) acrylic-based resins Examples thereof include a thermoplastic resin; and a thermoplastic elastomer. These resins can be used alone or in combination of two or more. When two or more resins are used in combination, the resin composition may form a composite resin composition such as a polymer alloy.
( 1 ) ポリアミ ド系樹脂  (1) Polyamide resin
ポリアミ ド系樹脂としては、 脂肪族ポリアミ ド系樹脂、 脂環族ポ リアミド系樹脂、 芳香族ポリアミ ド系樹脂などが挙げられる。 脂肪 族ポリアミド系樹脂としては、 脂肪族ジァミン成分 (テトラメチレ ンジァミン、 へキサメチレンジアミンなどの C 410アルキレンジァ ミン) と脂肪族ジカルボン酸成分 (アジピン酸、 セパシン酸、 ドデ 力ンニ酸などの炭素数 4〜 2 0程度のアルキレンジカルボン酸な ど) との縮合物 (例えば、 ポリアミ ド 4 6、 ポリアミ ド 6 6、 ポリ アミ ド 6 1 0、 ポリアミ ド 6 1 2など)、 ラクタム ( ε —力プロラク タム、 ω—ラウロラクタムなどの炭素数 4〜2 0程度のラクタムな ど) 又はアミノカルボン酸 (ω —アミノウンデカン酸などの炭素数 4〜 2 0程度のァミノカルボン酸など) の単独又は共重合体 (例え ば、 ポリアミ ド 6、 ポリアミ ド 1 1、 ポリアミ ド 1 2など)、 これら のポリアミ ド成分が共重合したコポリアミ ド (例えば、 ポリアミ ド 6 / 1 1 , ポリアミ ド 6 Z 1 2 , ポリアミ ド 6 6 1 1 , ポリアミ ド 6 6 1 2など) などが挙げられる。 Examples of the polyamide resin include an aliphatic polyamide resin, an alicyclic polyamide resin, and an aromatic polyamide resin. The aliphatic polyamide-series resin, (C 4, such as hexamethylene diamine Tetoramechire Njiamin to - 10 Arukirenjia Min) aliphatic Jiamin component carbon atoms such as an aliphatic dicarboxylic acid component (adipic acid, sebacic acid, dodecane force Nni acid Condensates with alkylene dicarboxylic acids having a number of about 4 to 20 (for example, Polyamide 46, Polyamide 66, Polyamide) Amide 610, polyamide 612, etc.), lactam (e.g., lactam having about 4 to 20 carbon atoms such as e-prolactam, ω-laurolactam) or aminocarboxylic acid (ω-aminoundecanoic acid) Homo- or copolymers (e.g., aminocarboxylic acids having about 4 to 20 carbon atoms) (for example, Polyamide 6, Polyamide 11, Polyamide 12, etc.), and copolymers obtained by copolymerizing these polyamide components. (For example, polyamide 6/11, polyamide 6Z12, polyamide 6611, polyamide 612, etc.).
脂環族ポリアミ ド系樹脂としては、 前記脂肪族ジァミン成分及び Ζ又は脂肪族ジカルボン酸成分の少なくとも一部として、 脂環族ジ ァミン及び/又は脂環族ジカルボン酸を用いたポリアミドが挙げら れる。 脂環族ポリアミ ドには、 例えば、 前記脂肪族ジカルボン酸成 分と脂環族ジァミン成分 [シクロへキシルジァミンなどの C 5_8シク 口アルキルジァミン; ビス (アミノシクロへキシル) メタン、 2, 2 —ビス (アミノシクロへキシル) プロパンなどのビス (ァミノ CExamples of the alicyclic polyamide-based resin include polyamides using an alicyclic diamine and / or an alicyclic dicarboxylic acid as at least a part of the aliphatic diamine component and / or the aliphatic dicarboxylic acid component. . The alicyclic made of Polyamide, for example, the aliphatic dicarboxylic acid components amount and alicyclic Jiamin component [C 5 _ 8 consequent opening such Kishirujiamin cyclohexylene Arukirujiamin; bis (cyclohexyl amino cyclo) methane, 2, 2 - Bis (amino C) such as bis (aminocyclohexyl) propane
5-8シクロアルキル) アルカン類 (例えば、 ビス (アミノシクロへキ シル) アルカン類) など] との縮合体が含まれる。 5 - 8 cycloalkyl) alkanes (e.g., bis (to amino cyclo key Sil) include condensates of alkanes), etc.].
芳香族ポリアミ ド系榭脂には、 前記脂肪族ジァミン成分及び脂肪 族ジカルボン酸成分のうち少なくとも一方の成分が芳香族成分であ るポリアミ ド、 例えば、 ジァミン成分が芳香族成分であるポリアミ ド [ M X D— 6などの芳香族ジァミン (メタキシリレンジァミンな ど) と脂肪族ジカルボン酸との縮合体など]、 ジカルボン酸成分が芳 香族成分であるポリアミ ド [脂肪族ジァミン (トリメチルへキサメ チレンジァミンなど) と芳香族ジカルボン酸 (テレフタル酸、 イソ フタル酸など) との縮合体など]、 ジァミン成分及びジカルボン酸成 分が芳香族成分であるポリアミ ド [ポリ (m—フエ二レンイソフタ ルアミ ド) などの全芳香族ポリアミ ド (ァラミ ド) など] などが含 まれる。  The aromatic polyamide resin includes a polyamide in which at least one of the aliphatic diamine component and the aliphatic dicarboxylic acid component is an aromatic component, for example, a polyamide in which the diamine component is an aromatic component [ Condensates of aromatic diamines such as MXD-6 (such as meta-xylylenediamine) with aliphatic dicarboxylic acids, etc.), and polyamides whose dicarboxylic acid component is an aromatic component [aliphatic diamines (trimethylhexamethylenediamine) Condensates of aromatic dicarboxylic acids (terephthalic acid, isophthalic acid, etc.)], polyamides in which diamine and dicarboxylic acid components are aromatic [poly (m-phenylene isophthalamide), etc.] Wholly aromatic polyamides (aramids).
ポリアミ ド系樹脂には、 さらに、 ダイマ一酸をジカルボン酸成分 とするポリアミ ド、 少量の多官能性ポリアミン及びノ又はポリカル ボン酸成分を用い、 分岐鎖構造を導入したポリアミ ド、 変性ポリア ミド (N—アルコキシメチルポリアミ ドなど)、変性ポリオレフィン を混合あるいはグラフト重合させた高耐衝撃性ポリアミ ドも含まれ る。 In the polyamide resin, dimer monoacid is further added to the dicarboxylic acid component. Using a small amount of a polyamide, a small amount of a polyfunctional polyamine and a di- or poly-carbonic acid component to mix or graft-polymerize a polyamide having a branched structure, a modified polyamide (such as N-alkoxymethylpolyamide), and a modified polyolefin. Also included is a high-impact polyamide which has been subjected to high impact.
ポリアミド系樹脂において、 末端 NH2基と末端 CO OH基との 割合は、 特に限定されず、 例えば、 末端アミノ基の水素原子と α — 炭素位の水素原子とで活性水素原子を構成する場合、 末端アミノ基 Z末端カルボキシル基 = 1 0Z9 0〜 1 0 0ZO (モル比) 程度、 好ましくは 2 0/8 0〜 9 5 5 (モル比) 程度、 さらに好ましく は 2 5 / 7 5〜 9 5/ 5 (モル比) 程度の範囲から選択できる。 ま た、 末端アミノ基の水素原子だけで活性水素原子を構成する場合、 末端アミノ基 Ζ末端カルボキシル基 = 5 0 / 5 0〜; L 0 0/0 (モ ル比) 程度、 好ましくは 6 0/4 0〜 9 5ノ 5 (モル比) 程度、 さ らに好ましくは 7 0Ζ 3 0〜 9 5 5 (モル比) 程度であってもよ い。 In the polyamide resin, the ratio between the terminal NH 2 group and the terminal CO OH group is not particularly limited. For example, when an active hydrogen atom is constituted by a hydrogen atom of a terminal amino group and a hydrogen atom of α-carbon position, Terminal amino group Z-terminal carboxyl group = about 10Z90 0 to 100ZO (molar ratio), preferably about 20/80 to 955 (molar ratio), more preferably 25/75 to 95 / It can be selected from a range of about 5 (molar ratio). Further, when an active hydrogen atom is constituted only by the hydrogen atom of the terminal amino group, the terminal amino groupΖthe terminal carboxyl group = 50/50 to about L 0/0 (mol ratio), preferably 60 It may be about 40 to 95 to 5 (molar ratio), more preferably about 70 to 30 to 955 (molar ratio).
(2) ポリエステル系樹脂  (2) Polyester resin
ポリエステル系樹脂は、 脂肪族ポリエステル系樹脂であってもよ いが、 通常、 芳香族ポリエステル系樹脂、 例えば、 ポリ (アルキレ ン) ァリレート系樹脂又は飽和芳香族ポリエステル系樹脂が使用さ れる。 芳香族ポリエステル系樹脂としては、 ポリアルキレンァリレ ート系樹脂 (例えば、 ポリエチレンテレフタレート (Ρ ΕΤ)、 ポリ ブチレンテレフ夕レート (Ρ ΒΤ) などのポリ C 24アルキレンテレ フタレート ; このポリアルキレンテレフタレ一トに対応するポリ C 4アルキレンナフ夕レート (例えば、 ポリエチレンナフタレートな ど);ポリ 1 , 4ーシクロへキシルジメチレンテレフ夕レート (P CThe polyester-based resin may be an aliphatic polyester-based resin, but usually, an aromatic polyester-based resin, for example, a poly (alkylene) arylate-based resin or a saturated aromatic polyester-based resin is used. The aromatic polyester resins, polyalkylene § Relay preparative resin (e.g., polyethylene terephthalate (Ρ ΕΤ), polybutylene terephthalate evening rate (Ρ ΒΤ) poly C 2 such as - 4 Arukirentere phthalate; this polyalkylene Lev Poly C4 alkylene naphthalate corresponding to the sauce (eg, polyethylene naphthalate); poly 1,4-cyclohexyl dimethylene terephthalate (PC
Τ)) ; ビスフエノール類 (ビスフエノール Αなど) と、 芳香族ジカ ルボン酸 (テレフタル酸など) との重縮合により得られるポリアリ レート系樹脂 (例えば、 ポリアリレート樹脂など);全芳香族又は液 晶性芳香族ポリエステル (例えば、 パラォキシ安息香酸を用いた液 晶性ポリエステルなど) などが含まれる。 ポリエステル系樹脂は、 アルキレンァリレ一ト単位を主成分 (例えば、 5 0重量%以上) と して含むコポリエステルであってもよい。 コポリエステルの共重合 成分には、 エチレングリコール、 プロピレングリコール、 ブタンジ オール、 へキサンジオールなどの C 2_6アルキレングリコール、 (ポ リ) ォキシ C 24アルキレンダリコール、 フタル酸、 イソフ夕ル酸な どの非対称芳香族ジカルボン酸又はその酸無水物、 アジピン酸など の C 61 2脂肪族ジカルボン酸などが例示できる。 さらに、 少量のポ リオール及び/又はポリカルボン酸を用い、 線状ポリエステルに分 岐鎖構造を導入してもよい。 Ii)); polyarylate resin (for example, polyarylate resin) obtained by polycondensation of bisphenols (such as bisphenol Α) and aromatic dicarboxylic acids (such as terephthalic acid); wholly aromatic or liquid And crystalline aromatic polyesters (for example, liquid crystalline polyesters using paraoxybenzoic acid). The polyester-based resin may be a copolyester containing an alkylene arylate unit as a main component (for example, 50% by weight or more). The copolymerizable component of the copolyester, ethylene glycol, propylene glycol, C 2 _ 6 alkylene glycols such as hexanediol to butanediol ol, (Po Li) Okishi C 2 - 4 alkylene render recall, phthalic acid, isophthalic Yurusan which asymmetric aromatic dicarboxylic acids or their anhydrides, C 6, such as adipic acid Do - such as 1 2 aliphatic dicarboxylic acids can be exemplified. Further, a branched chain structure may be introduced into the linear polyester by using a small amount of polyol and / or polycarboxylic acid.
芳香族ポリエステル系樹脂が前記活性原子を所定の濃度で有しな い場合、 活性原子を有する変性化合物で変性した変性ポリエステル 系樹脂 (例えば、 アミノ基及びォキシアルキレン基から選択された 少なくとも一種を有する芳香族ポリエステル系樹脂) を用いてもよ い。 活性原子、 特に活性水素原子を有する化合物としては、 ポリア ミン類 (脂肪族ジァミン類、 例えば、 エチレンジァミン、 トリメチ レンジァミン、 プロピレンジァミン、 テトラメチレンジァミン、 ぺ ンタメチレンジァミン、 へキサメチレンジアミン、 トリメチルへキ サメチレンジァミン、 1, 7 —ジァミノヘプタン、 1, 8 -ジアミ ノオクタンなどの炭素数 2〜 1 0程度の直鎖又は分岐鎖状アルキレ ンジァミンなど;脂環族ジアミン類、 例えば、 イソホロンジァミン、 ビス ( 4 一アミノー 3—メチルシク口へキシル) メタン、 ビス (ァ ミノメチル) シクロへキサンなど; 芳香族ジァミン類、 例えば、 フ ェニレンジァミン、 キシリレンジァミン、 ジアミノジフエニルメタ ンなど)、 ポリオール類 (例えば、 エチレングリコール、 プロピレン グリコール、 ブタンジオール、 へキサンジオールなどの C 2_6アルキ レンダリコール、 (ポリ) ォキシエチレングリコール、 (ポリ) ォキ シトリメチレングリコール、 (ポリ)ォキシプロピレングリコール、 (ポリ) ォキシテトラメチレングリコールなどの (ポリ) ォキシ CWhen the aromatic polyester resin does not have the active atom at a predetermined concentration, a modified polyester resin modified with a modifying compound having an active atom (for example, at least one selected from an amino group and an oxyalkylene group) Aromatic polyester-based resin). Compounds having an active atom, particularly an active hydrogen atom, include polyamines (aliphatic diamines such as ethylenediamine, trimethylenediamine, propylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylene). Alicyclic diamines such as diamines, trimethylhexamethylene diamine, 1,7-diaminoheptane, 1,8-diaminooctane, etc .; linear or branched alkylenediamines having about 2 to 10 carbon atoms; , Isophoronediamine, bis (4-amino-3-methylcyclohexyl) methane, bis (aminomethyl) cyclohexane, etc .; aromatic diamines such as phenylenediamine, xylylenediamine, diaminodiphenylmethane ), Polyols (eg, ethylene glycol, Propylene glycol, C 2 _ 6 alkylene render recalls such butanediol hexanediol to, (poly) O carboxymethyl ethylene glycol, (poly) O · The shea trimethylene glycol, (poly) O carboxymethyl propylene glycol, (Poly) oxy C such as (poly) oxytetramethylene glycol
2-4アルキレングリコール類など) などが例示できる。 変性は、 例え ば、 ポリエステル系樹脂と変性化合物とを加熱混合し、 アミ ド化、 エステル化又はエステル交換反応を利用して行うことができる。 ポ リエステル系樹脂の変性の程度は、 前記化合物中の活性水素原子の 量に応じて、 ポリエステル系樹脂の官能基 (ヒドロキシル基又は力 ルポキシル基) 1モルに対して、 例えば、 変性化合物 0 . 1〜 2モ ル、 好ましくは 0 . 2〜 1 . 5モル、 さらに好ましくは 0 . 3〜 1 モル程度であってもよい。 エステル交換反応に用いる場合、 ポリオ ール類の使用量は、 ポリエステル系樹脂 1 0 0重量部に対して 1〜 5 0重量部程度、 好ましくは 5〜 3 0重量部程度であってもよい。 2- 4 alkylene glycols), and others. The modification can be carried out, for example, by heating and mixing the polyester resin and the modifying compound, and utilizing amidation, esterification or transesterification. Depending on the amount of active hydrogen atoms in the compound, the degree of modification of the polyester-based resin may be, for example, 0.1 mol of the modified compound per 1 mol of the functional group (hydroxyl group or hydroxyl group) of the polyester-based resin. It may be about 2 to 2 mol, preferably about 0.2 to 1.5 mol, and more preferably about 0.3 to 1 mol. When used in a transesterification reaction, the amount of the polyols used may be about 1 to 50 parts by weight, preferably about 5 to 30 parts by weight, based on 100 parts by weight of the polyester resin.
( 3 ) ポリ (チォ) エーテル系樹脂  (3) Poly (thio) ether-based resin
ポリ (チォ) エーテル系樹脂には、 ポリオキシアルキレン系樹脂、 ポリフエ二レンエーテル系樹脂、 ポリスルフイ ド系樹脂 (ポリチォ エーテル系樹脂)、 ポリエーテルケトン系樹脂が含まれる。ポリオキ シアルキレン系樹脂としては、 ポリオキシメチレングリコール、 ポ リォキシエチレンダリコール、 ポリオキシプロピレンダリコール、 ポリオキシエチレン—ポリオキシプロピレンブロック共重合体、 ポ リオキシテトラメチレンダリコールなどのポリオキシ C 24 アルキ レンダリコールなどが含まれる。好ましいポリエーテル系樹脂には、 ポリアセタール系樹脂、 ポリフエ二レンエーテル系樹脂、 ポリスル フィ ド系樹脂及びポリエーテルケトン系樹脂が含まれる。 The poly (thio) ether resins include polyoxyalkylene resins, polyphenylene ether resins, polysulfide resins (polythioether resins), and polyetherketone resins. The Porioki Shiarukiren resins, polyoxymethylene glycols, Po Rio carboxymethyl ethylene da recall, polyoxypropylene da recall, polyoxyethylene - polyoxypropylene block copolymers, polyoxy C 2 such as port re oxytetramethylene da recalled — Includes 4 Archi render recalls. Preferred polyether resins include polyacetal resins, polyphenylene ether resins, polysulfide resins, and polyetherketone resins.
( 3a) ポリアセタール系樹脂  (3a) Polyacetal resin
ポリアセ夕一ル系樹脂は、 ホモポリマ一 (ホルムアルデヒドの単 独重合体) であってもよく、 コポリマー (トリオキサンと、 ェチレ ンォキサイ ド及び/又は 1, 3 —ジォキゾランとの共重合体など) であってもよい。 また、 ポリアセタール系樹脂の末端は封鎖され安 定化されていてもよい。  The polyacetone-based resin may be a homopolymer (a homopolymer of formaldehyde) or a copolymer (such as a copolymer of trioxane and ethylenoxide and / or 1,3-dioxolane). Is also good. Further, the terminal of the polyacetal resin may be blocked and stabilized.
( 3b) ポリフエ二レンエーテル系樹脂 ポリフエ二レンエーテル系樹脂には、 2, 6—ジメチルフエニレ ンオキサイ ドを主成分とする種々の樹脂、 例えば、 2, 6—ジメチ ルフエ二レンォキサイ ドとフエノ一ル類との共重合体、 スチレン系 樹脂をプレンド又はグラフトした変性樹脂などが含まれる。 他の変 性ポリフエ二レンエーテル系樹脂としては、 ポリフエ二レンエーテ ル Zポリアミ ド系、ポリフエ二レンエーテル/飽和ポリエステル系、 ポリフエ二レンエーテル Zポリフエ二レンスルフィ ド系、 ポリフエ 二レンエーテル/ポリオレフィン系などが挙げられる。 (3b) Polyphenylene ether resin Polyphenylene ether resins include various resins containing 2,6-dimethylphenylene oxide as a main component, for example, a copolymer of 2,6-dimethylphenylene oxide and phenols, styrene. A modified resin obtained by blending or grafting a system resin is included. Other modified polyphenylene ether resins include polyphenylene ether Z polyamide, polyphenylene ether / saturated polyester, polyphenylene ether Z polyphenylene sulfide, and polyphenylene ether / polyolefin. Is mentioned.
なお、 スチレン系樹脂による変性は、 ポリフエ二レンエーテル系 樹脂の耐熱性を低下させ、 加硫過程での加熱により変形する場合が ある。 さらに、 スチレン系樹脂の添加は、 ゴムとポリフエ二レンェ 一テル系樹脂との接着性にも悪影響を及ぼす場合があり、 スチレン 系樹脂の過剰の添加は好ましくない。 一方、 ポリフエ二レンエーテ ル系樹脂は溶融流動性が低く、 スチレン系樹脂と組み合わせること なく用いると、 成形性が低下する。 これらの点から、 スチレン系樹 脂の割合は、ポリフエ二レンエーテル系樹脂 1 0 0重量部に対して、 2〜1 5 0重量部、 好ましくは 3〜 1 0 0重量部、 さらに好ましく は 5〜5 0重量部程度である。  Note that the modification with the styrene-based resin lowers the heat resistance of the polyphenylene ether-based resin and may be deformed by heating in the vulcanization process. Further, the addition of a styrene resin may adversely affect the adhesion between the rubber and the polyphenylene ether resin, and excessive addition of the styrene resin is not preferable. On the other hand, polyphenylene ether-based resin has low melt fluidity, and if used without being combined with styrene-based resin, moldability decreases. From these points, the ratio of the styrene resin is 2 to 150 parts by weight, preferably 3 to 100 parts by weight, more preferably 5 to 100 parts by weight, based on 100 parts by weight of the polyphenylene ether resin. About 50 parts by weight.
( 3c) ポリスルフイ ド系樹脂 (ポリチォェ一テル系樹脂) ポリスルフイ ド系樹脂は、 ポリマー鎖中にチォ基 (― S—) を有 する樹脂であれば特に限定されない。 このような樹脂としては、 例 えば、 ポリフエ二レンスルフイ ド樹脂、 ポリジスルフイ ド樹脂、 ポ リビフエ二レンスルフイ ド樹脂、 ポリケトンスルフイ ド樹脂、 ポリ チォエーテルスルホン樹脂などが例示できる。 また、 ポリスルフィ ド系樹脂は、 ポリ (ァミノフエ二レンスルフイ ド) のようにァミノ 基などの置換基を有していてもよい。 好ましいポリスルフィ ド系樹 脂はポリフエ二レンスルフィ ド樹脂である。  (3c) Polysulfide Resin (Polyether Resin) The polysulfide resin is not particularly limited as long as it has a thio group (—S—) in a polymer chain. Examples of such a resin include a polyphenylene sulfide resin, a polydisulfide resin, a polyphenylene sulfide resin, a polyketone sulfide resin, and a polythioether sulfone resin. Further, the polysulfide resin may have a substituent such as an amino group as in poly (aminophenylene sulfide). A preferred polysulfide resin is a polyphenylene sulfide resin.
( 3d) ポリエーテルケトン系樹脂  (3d) Polyetherketone resin
ポリエーテルケトン系樹脂には、 ジハロゲノベンゾフエノン (ジ クロ口べンゾフエノンなど) とジヒドロべンゾフエノンとの重縮合 により得られるポリエーテルケトン樹脂、 ジハロゲノベンゾフエノ ンとヒドロキノンとの重縮合により得られるポリエーテルエーテル ケトン樹脂などが例示できる。 Dihalogenobenzophenone (poly) Examples thereof include polyether ketone resins obtained by polycondensation of dihydrobenzozophenone and dihydrobenzozophenone, and polyether ether ketone resins obtained by polycondensation of dihalogenobenzophenone and hydroquinone.
( 4 ) ポリカーボネート系樹脂  (4) Polycarbonate resin
ポリカーボネート系樹脂としては、 脂肪族ポリカーボネート系樹 脂であってもよいが、 通常、 芳香族ポリカーボネート系樹脂、 例え ば、 芳香族ジヒドロキシ化合物 (ビスフエノール A、 ビスフエノー ル 、 ビスフエノール A D、 ビスフエノール Sなどのビスフエノー ル化合物など) と、 ホスゲン又は炭酸ジエステル (ジフエ二ルカ一 ポネートなどのジァリ一ルカ一ポネート、 ジメチルカーポネー卜な どのジアルキルカーボネートなど) との反応により得られる芳香族 ポリカーボネートなどが使用できる。  The polycarbonate resin may be an aliphatic polycarbonate resin, but is usually an aromatic polycarbonate resin, for example, an aromatic dihydroxy compound (bisphenol A, bisphenol, bisphenol AD, bisphenol S, etc.). And aromatic polycarbonates obtained by the reaction of phosgene or carbonic acid diester (dialkyl carbonate such as diphenyl carbonate, dialkyl carbonate such as dimethyl carbonate).
( 5 ) ポリイミ ド系樹脂  (5) Polyimide resin
ポリイミド系榭脂には、 熱可塑性ポリイミ ド系樹脂、 例えば、 芳 香族テトラカルボン酸又はその無水物 (ベンゾフヱノンテ卜ラカル ボン酸など) と、 芳香族ジァミン (ジアミノジフエニルメタンなど) との反応で得られるポリイミド樹脂、 ポリアミ ドイミ ド樹脂、 ポリ エステルイミ ド榭脂などが含まれる。  Polyimide resins include thermoplastic polyimide resins such as aromatic tetracarboxylic acids or their anhydrides (such as benzophenonetetracarboxylic acid) and aromatic diamines (such as diaminodiphenylmethane). The resulting polyimide resin, polyimide imide resin, polyester imide resin and the like are included.
( 6 ) ポリスルホン系樹脂  (6) Polysulfone resin
ポリスルホン系樹脂には、 ジハロゲノジフエニルスルホン (ジク ロロジフエニルスルホンなど) とビスフエノール類 (ビスフエノー ル A又はその金属塩など) との重縮合により得られるポリスルホン 樹脂、 ポリエーテルスルホン樹脂、 ポリアリルスルホン樹脂 (商品 名 : R A D E L ) などが例示できる。  Polysulfone resins include polysulfone resins, polyethersulfone resins, and polyallyl sulfones obtained by polycondensation of dihalogenodiphenylsulfone (such as dichlorophenylsulfone) and bisphenols (such as bisphenol A or a metal salt thereof). An example is a sulfone resin (trade name: RADEL).
( 7 ) ポリウレタン系樹脂  (7) Polyurethane resin
ポリウレタン系樹脂は、 ジイソシァネート類とポリオール類 (特 に、 ジオール類) と必要により鎖伸長剤との反応により得ることが できる。 ジイソシァネート類としては、 へキサメチレンジイソシァ ネート、 2 , 2 , 4—トリメチルへキサメチレンジイソシァネート などの脂肪族ジイソシァネート類、 1, 4—シクロへキサンジイソ シァネ一ト、 イソホロンジィソシァネートなどの脂環族ジィソシァ ネート類、 フエ二レンジイソシァネ一卜、 トリレンジイソシァネー ト、 ジフエニルメタン一 4, 4 ' ージイソシァネートなどの芳香族 ジイソシァネート類、 キシリレンジイソシァネ一トなどの芳香脂肪 族ジィソシァネ一ト類などが例示できる。 ジイソシァネート類とし て、 アルキル基 (例えば、 メチル基) が主鎖又は環に置換した化合 物を使用してもよい。 The polyurethane resin can be obtained by reacting a diisocyanate, a polyol (particularly, a diol) and, if necessary, a chain extender. Hexamethylene diisocyanate as a diisocyanate , Aliphatic diisocyanates such as 2,2,4-trimethylhexamethylene diisocyanate, alicyclic diisocyanates such as 1,4-cyclohexanediisocyanate and isophorone diisocyanate, and phene Examples thereof include aromatic diisocyanates such as range isocyanate, tolylene diisocyanate, diphenylmethane-1,4'-diisocyanate, and aromatic aliphatic diisocyanates such as xylylene diisocyanate. As the diisocyanates, compounds in which an alkyl group (for example, a methyl group) is substituted on the main chain or the ring may be used.
ジオール類としては、 ポリエステルジオール (アジピン酸などの C 4_1 2脂肪族ジカルボン酸成分、 エチレングリコール、 プロピレン グリコール、 ブタンジオール、 ネオペンチルグリコールなどの C 2_ 1 2脂肪族ジオール成分、 ε—力プロラクトンなどの C 41 2ラクトン 成分などから得られるポリエステルジオールなど)、ポリエーテルジ オール (ポリエチレングリコール、 ポリプロピレングリコール、 ポ リォキシェチレン一ポリオキシプロピレンプロック共重合体、 ポリ 才キシテトラメチレンダリコール、 ビスフエノール A—アルキレン ォキサイ ド付加体など)、 ポリエステルエーテルジオール(ジオール 成分の一部として上記ポリエーテルジオールを用いたポリエステル ジオール) などが利用できる。 The diols, C 4 _ 1 2 aliphatic dicarboxylic acid component such as polyester diol (of adipic acid, ethylene glycol, propylene glycol, butanediol, C 2 _ 1 2 aliphatic diol component such as neopentyl glycol, .epsilon. force such as caprolactone C 4 - 1 2 such as polyester diols obtained from such a lactone component), Porieteruji ol (polyethylene glycol, polypropylene glycol, port Riokishechiren one polyoxypropylene proc copolymer, poly old alkoxy tetramethylene da recall, bisphenol A-alkylene oxide adducts, etc.), polyester ether diols (polyester diols using the above polyether diols as part of the diol component), and the like can be used.
さらに、 鎖伸長剤としては、 エチレングリコール、 プロピレング リコールなどの C 21 () アルキレンダリコールの他、 ジァミン類も使 用できる。 ジァミン類としては、 脂肪族ジァミン類、 例えば、 ェチ レンジァミン、 トリメチレンジァミン、 テトラメチレンジァミン、 ペンタメチレンジァミン、 へキサメチレンジァミン、 トリメチルへ キサメチレンジァミン、 1, 7—ジァミノヘプタン、 1 , 8—ジァ ミノォクタンなどの炭素数 2〜 1 0程度の直鎖又は分岐鎖状アルキ レンジァミン、 ジエチレントリアミン、 トリエチレンテトラミン、 テトラエチレンペンタミン、 ジプロピレントリアミンなどの直鎖又 は分岐鎖状ポリアルキレンポリアミンなど ;脂環族ジァミン類、 例 えば、 イソホロンジアミン、 ビス (4ーァミノ一 3—メチルシクロ へキシル) メタン、 ビス (アミノメチル) シクロへキサンなど;芳 香族ジァミン類、 例えば、 フエ二レンジァミン、 キシリレンジアミ ン、 ジアミノジフエニルメタンなどが例示できる。 Furthermore, as the chain extender, ethylene glycol, C 2, such as propylene grayed recalls - 1 other () alkyl render recall, Jiamin acids can also be used. Examples of diamines include aliphatic diamines, for example, ethylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, trimethylhexamethylenediamine, 1 , 7-diaminoheptane, 1,8-diaminooctane and other linear or branched alkylenediamines having about 2 to 10 carbon atoms, such as alkylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine and dipropylenetriamine. Alicyclic diamines, for example, isophoronediamine, bis (4-amino-13-methylcyclohexyl) methane, bis (aminomethyl) cyclohexane, etc .; aromatic diamines, For example, phenylenediamine, xylylenediamine, diaminodiphenylmethane and the like can be exemplified.
( 8 ) ポリオレフィン系樹脂  (8) Polyolefin resin
ポリオレフイン系樹脂には、 例えば、 ポリエチレン、 ポリプロピ レン、 エチレン—プロピレン共重合体、 ポリ (メチルペンテン一 1 ) などのォレフィンの単独又は共重合体、 ォレフィンと共重合性単量 体との共重合体 (エチレン—酢酸ビニル共重合体、 エチレン一 (メ 夕) アクリル酸共重合体、 エチレン一 (メタ) アクリル酸エステル 共重合体など) が挙げられる。 これらのポリオレフイン系樹脂は単 独で又は二種以上組み合わせて使用できる。  Polyolefin resins include, for example, homo- or copolymers of olefins such as polyethylene, polypropylene, ethylene-propylene copolymer, poly (methylpentene-11), and copolymers of olefins and copolymerizable monomers. (E.g., ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylate copolymer). These polyolefin resins can be used alone or in combination of two or more.
好ましいポリオレフィン系榭脂には、 プロピレン含量が 5 0重 量%以上 (特に 7 5〜 1 0 0重量%) のポリプロピレン系樹脂、 例 えば、 ポリプロピレン、 プロピレン一エチレン共重合体、 プロピレ ンーブテン共重合体、 プロピレン一エチレン—ブテン共重合体など が含まれる。 また、 ポリオレフイン系樹脂は結晶性であるのが好ま しい。  Preferred polyolefin resins are polypropylene resins having a propylene content of 50% by weight or more (particularly 75 to 100% by weight), for example, polypropylene, propylene-ethylene copolymer, propylene butene copolymer. Propylene-ethylene-butene copolymer. Also, the polyolefin resin is preferably crystalline.
( 9 ) ハロゲン含有ビニル系樹脂  (9) Halogen-containing vinyl resin
ハロゲン含有ビニル系樹脂としては、 例えば、 ポリ塩化ビニル、 ポリ塩化ピニリデン、 塩化ビニルー酢酸ビニル共重合体、 塩化ビエ リデン—酢酸ビニル共重合体などの塩素含有ビエル系樹脂、 ポリフ ッ化ビエル、 ポリフッ化ビニリデン、 ポリクロ口トリフルォロェチ レン、 テトラフルォロエチレンと共重合性単量体との共重合体など のフッ素含有ビニル系樹脂などが例示できる。 好ましいハロゲン含 有ビニル系樹脂は、 フッ素含有ビニル系樹脂 (例えば、 ポリフッ化 ビニル、 ポリフッ化ビニリデンなど) である。  Examples of halogen-containing vinyl resins include polyvinyl chloride, polyvinylidene chloride, vinyl chloride-vinyl acetate copolymer, chlorine-containing biel resin such as vinylidene chloride-vinyl acetate copolymer, polyfluoride bifluoride, and polyfluoride. Examples include fluorine-containing vinyl resins such as vinylidene, polychloroethylene, and copolymers of tetrafluoroethylene and a copolymerizable monomer. Preferred halogen-containing vinyl resins are fluorine-containing vinyl resins (eg, polyvinyl fluoride, polyvinylidene fluoride, etc.).
( 1 0 ) スチレン系樹脂 スチレン系樹脂としては、 スチレン系単量体の単独又は共重合体 (ポリスチレン、 スチレン—ビニルトルエン共重合体、 スチレン一 α—メチルスチレン共重合体など)、スチレン系単量体と共重合性単 量体との共重合体 (スチレン—アクリロニトリル共重合体 (A S樹 脂)、 (メタ) アクリル酸エステル—スチレン共重合体 (M S樹脂な ど)、スチレン一無水マレイン酸共重合体、 スチレン一ブタジエン共 重合体などのスチレン共重合体;耐衝撃性ポリスチレン(H I P S ) , ァクリロ二トリル—ブタジエン一スチレン共重合体( A B S樹脂)、 アクリロニトリル一ァクリルゴムースチレン共重合体 (ァクリロ二 トリル—アクリル酸エステルースチレン共重合体) (A A S樹脂)、 ァクリロ二トリル—塩素化ポリエチレン—スチレン共重合体 (A C S樹脂)、アクリロニトリル一エチレンプロピレンゴム一スチレン共 重合体 (A E S樹脂)、 アクリロニトリル— (エチレン—酢酸ピニル 共重合体) 一スチレン共重合体 (アクリロニトリル一酢酸ビエル— スチレン共重合体) (A X S樹脂)などのスチレン系グラフト共重合 体など) などが挙げられる。 (10) Styrene resin Examples of the styrene-based resin include homo- or copolymers of styrene-based monomers (such as polystyrene, styrene-vinyltoluene copolymer, and styrene-α-methylstyrene copolymer), and copolymerizable monomers with styrene-based monomers. Copolymers with styrene (styrene-acrylonitrile copolymer (AS resin), (meth) acrylate-styrene copolymer (MS resin, etc.), styrene-maleic anhydride copolymer, styrene-butadiene Styrene copolymers such as copolymers; impact-resistant polystyrene (HIPS), acrylonitrile-butadiene-styrene copolymer (ABS resin), acrylonitrile-acrylic rubber-styrene copolymer (acrylonitrile-acrylic acid) Ester-styrene copolymer) (AAS resin), acrylonitrile-chlorinated polyethylene-styrene copolymer (ACS tree ), Acrylonitrile-ethylene propylene rubber-styrene copolymer (AES resin), acrylonitrile- (ethylene-pinyl acetate copolymer) -styrene copolymer (acrylonitrile-monoacetate biel-styrene copolymer) (AXS resin) Styrene-based graft copolymer).
( 1 1 ) (メタ) アクリル系樹脂  (1 1) (meth) Acrylic resin
(メタ) ァクリル系樹脂としては、 (メタ) ァクリル系単量体の単 独又は共重合体、 (メタ)アクリル系単量体と共重合性単量体との共 重合体などが挙げられる。 (メタ) アクリル系単量体には、 (メタ) アクリル酸、 (メタ) アクリル酸メチル、 (メタ) アクリル酸ェチル、 (メタ) アクリル酸イソプロピル、 (メタ) アクリル酸プチル、 (メ 夕) アクリル酸 2—ェチルへキシルなどの (メタ) アクリル酸 C i_ 10アルキルエステル、 (メタ) アクリル酸シクロへキシルなどの(メ 夕) アクリル酸 C 5_10シクロアルキルエステル、 (メタ) アクリル酸 フエニルなどの (メタ)ァクリル酸 C 6_1 0ァリ一ルエステル、 (メタ) アクリル酸ヒドロキシェチルなどの (メタ) アクリル酸ヒドロキシExamples of the (meth) acrylic resin include a single or copolymer of a (meth) acrylic monomer, and a copolymer of a (meth) acrylic monomer and a copolymerizable monomer. (Meth) acrylic monomers include (meth) acrylic acid, (meth) methyl acrylate, (meth) ethyl acrylate, (meth) isopropyl acrylate, (meth) butyl acrylate, and (meth) acryl. (meth) acrylic acid C i_ 10 alkyl esters, such as hexyl acid 2- Echiru, (meth) (main evening), such as cyclohexyl acrylate cycloalkyl acrylate C 5 _ 10 cycloalkyl ester, (meth) phenyl acrylate, etc. of (meth) Akuriru acid C 6 _ 1 0 § Li one glycol ester, (meth) acrylic acid hydroxy E chill (meth) hydroxy acrylate
C 2_10 アルキルエステル、 (メタ) ァクリルアミ ド、 (メタ) ァクリ ロニトリル、 (メタ) アクリル酸グリシジルなどが挙げられる。共重 合性単量体には、 酢酸ビニル、 塩化ビニルなどのビニル系単量体、 スチレン、 —メチルスチレンなどのスチレン系単量体などが挙げ られる。 C 2 _ 10 alkyl esters, (meth) acrylamide, (meth) acrylonitrile, glycidyl (meth) acrylate and the like. Shared weight Examples of the compatible monomer include vinyl monomers such as vinyl acetate and vinyl chloride, and styrene monomers such as styrene and -methylstyrene.
( 1 2 ) 熱可塑性エラストマ一  (1 2) Thermoplastic elastomer
熱可塑性エラストマ一には、 ポリアミ ド系エラストマ一 (ポリア ミ ドを硬質相とし、脂肪族ポリエーテルを軟質相とする共重合体)、 ポリエステル系エラストマ一 (ポリアルキレンァリレートを硬質相 とし、 脂肪族ポリエーテルや脂肪族ポリエステルを軟質相とする共 重合体)、ポリウレタン系エラストマ一(短鎖ダリコールのポリウレ タンを硬質相とし、 脂肪族ポリエーテルや脂肪族ポリエステルを軟 質相とする共重合体、例えば、 ポリエステルウレタンエラストマ一、 ポリエーテルウレタンエラストマ一など)、ポリスチレン系エラスト マー (ポリスチレンブロックを硬質相とし、 ジェン重合体ブロック 又はその水素添加ブロックを軟質相とするプロック共重合体)、ポリ ォレフィン系エラストマ一 (ポリエチレン又はポリプロピレンを硬 質相とし、 エチレン—プロピレンゴムやエチレン一プロピレンージ ェンゴムを軟質相とするエラストマ一、 結晶化度の異なる硬質相と 軟質相とで構成されたォレフィン系エラストマ一など)、ポリ塩化ビ ニル系エラストマ一、 フッ素系熱可塑性エラストマ一などが含まれ る。 脂肪族ポリエーテルとしては、 (ポリ) ォキシ C 2_4アルキレン グリコール類(例えば、 (ポリ) ォキシエチレングリコ一ル、 (ポリ) ォキシトリメチレンダリコール、 (ポリ)ォキシプロピレングリコー ル、 (ポリ) ォキシテトラメチレングリコール、特にポリオキシェチ レンダリコール) などが使用でき、 脂肪族ポリエステルとしては、 ポリウレタン系樹脂の項で述べたポリエステルジオールなどが使用 できる。 これらの熱可塑性エラストマ一は単独で又は二種以上組み 合わせて使用できる。 Thermoplastic elastomers include polyamide-based elastomers (copolymers with polyamide as a hard phase and aliphatic polyether as a soft phase), and polyester-based elastomers (polyalkylene acrylate as a hard phase, and Copolymer with aliphatic polyether or aliphatic polyester as the soft phase), polyurethane-based elastomer (copolymer with short-chain Dalicol polyurethane as the hard phase, and aliphatic polyether or aliphatic polyester as the soft phase) For example, polyester urethane elastomers, polyether urethane elastomers, etc.), polystyrene-based elastomers (block copolymers using a polystyrene block as a hard phase and a gen-polymer block or a hydrogenated block thereof as a soft phase), polyolefin Elastomer (Polyethylene or PO Elastomers with propylene as the hard phase and ethylene-propylene rubber or ethylene-propylene diene rubber as the soft phase, olefin-based elastomers composed of hard and soft phases with different degrees of crystallinity, etc., polyvinyl chloride And fluorinated thermoplastic elastomers. Examples of the aliphatic polyether include (poly) oxy C 2 _ 4 alkylene glycols (for example, (poly) oxyethylene glycol, (poly) oxytrimethylene dalicol, (poly) oxypropylene glycol, (Poly) oxytetramethylene glycol, in particular, polyoxyethylene render glycol) and the like can be used. As the aliphatic polyester, the polyester diol described in the section of the polyurethane resin can be used. These thermoplastic elastomers can be used alone or in combination of two or more.
熱可塑性エラス卜マ一がプロック共重合体であるとき、 ブロック 構造は特に制限されず、 トリブロック構造、 マルチブロック構造、 星形プロック構造などであってもよい。 When the thermoplastic elastomer is a block copolymer, the block structure is not particularly limited, and the triblock structure, the multiblock structure, A star block structure or the like may be used.
好ましい熱可塑性エラストマ一には、ポリアミ ド系エラストマ一、 ポリエステル系エラストマ一、 ポリウレタン系エラストマ一、 ポリ スチレン系エラストマ一、 ポリオレフイン系エラストマ一が含まれ る。  Preferred thermoplastic elastomers include polyamide-based elastomers, polyester-based elastomers, polyurethane-based elastomers, polystyrene-based elastomers, and polyolefin-based elastomers.
(架橋性基を有する樹脂)  (Resin with crosslinkable group)
架橋性基を有する樹脂は、 不飽和結合 (重合性又は架橋性不飽和 結合) を有する熱可塑性樹脂と、 架橋性官能基を有する熱硬化性樹 脂とに大別でき、 架橋性樹脂は前記不飽和結合と架橋性官能基とを 有していてもよい。  The resin having a crosslinkable group can be roughly classified into a thermoplastic resin having an unsaturated bond (polymerizable or crosslinkable unsaturated bond) and a thermosetting resin having a crosslinkable functional group. It may have an unsaturated bond and a crosslinkable functional group.
(不飽和結合を有する熱可塑性樹脂)  (Thermoplastic resin having unsaturated bond)
本発明は、 ラジカルに対して活性な不飽和結合を所定の濃度で含 有する種々の熱可塑性樹脂とゴムとの接合にも利用できる。 そのた め、 熱可塑性樹脂が不飽和結合を有しない樹脂や不飽和結合濃度が 所定の濃度に達しない樹脂である場合には、 不飽和結合を導入した 変性樹脂又は改質樹脂として使用してもよい。 前記不飽和結合は、 加硫剤 (ラジカル発生剤など) により活性化可能であれば特に限定 されず、熱や光の付与により架橋性又は重合性を示す種々の結合(例 えば、 重合性不飽和結合) であってもよい。 このような不飽和結合 又は不飽和結合を有するュニッ トは、 連結基 (エーテル結合 (-0 -)、 エステル結合 ( -0C O0) -、 - C (=0) 0 -)、 アミ ド結合 (- NHC0-, - C0NH -)、 ィミノ結合 (- NH -)、 ウレタン結合 (- NHC (=0) 0-)、 尿素結合、 ピウ レッ ト結合など) を介して、 熱可塑性樹脂に結合していてもよい。 さらに、 前記不飽和結合又はそのユニットは、 樹脂の末端 (主鎖末 端) 及び 又は側鎖に位置していてもよく、 樹脂の主鎖に位置して いてもよく、 さらにはこれらを組み合わせた異なる部位に位置して いてもよい。  The present invention can also be used for bonding rubbers with various thermoplastic resins containing a radical-active unsaturated bond at a predetermined concentration. Therefore, if the thermoplastic resin is a resin that does not have an unsaturated bond or a resin whose unsaturated bond concentration does not reach a predetermined concentration, use it as a modified resin or a modified resin into which an unsaturated bond has been introduced. Is also good. The unsaturated bond is not particularly limited as long as it can be activated by a vulcanizing agent (such as a radical generator), and various bonds exhibiting crosslinkability or polymerizability by application of heat or light (for example, polymerizable unsaturation). (Saturated bond). Such an unsaturated bond or a unit having an unsaturated bond includes a linking group (ether bond (-0-), ester bond (-0C O0)-, -C (= 0) 0-), amide bond ( -NHC0-, -C0NH-), imino bond (-NH-), urethane bond (-NHC (= 0) 0-), urea bond, piuret bond, etc. You may. Further, the unsaturated bond or a unit thereof may be located at the terminal (end of the main chain) and / or a side chain of the resin, or may be located at the main chain of the resin, or a combination thereof. It may be located in a different part.
不飽和結合を有する基としては、 例えば、 ビニル基、 1 一プロべ ニル基、 イソプロぺニル基、 1ーブテニル基、 ァリル基、 2—メチ ルー 2—プロぺニル基、 2—ブテニル基などの C2_6アルケニル基; 4一ビニルフエニル基、 4ーィソプロぺニルフエニル基などの C2_ 6アルケニル一 C 6_20ァリ一ル基;スチリル基などの C ァリール 一 C2_6アルケニル基;ェチニル基、 1—プロピエル基、 1—プチ二 ル基、 プロパルギル基、 2—ブチニル基、 1—メチルー 2—プロピ ニル基などの C26アルキニル基; ビニレン基、 メチルビ二レン基、 ェチルビ二レン基、 1, 2—ジメチルビ二レンなどのモノ又はジ CExamples of the group having an unsaturated bond include a vinyl group, a 1-propyl group, an isopropyl group, a 1-butenyl group, an aryl group and a 2-methyl group. Lou 2- propenyl group, 2-C 2 _ 6 alkenyl groups such as butenyl; 4 one Binirufueniru group, C 2 _ 6 alkenyl one C 6 _ 20 § Li Ichiru group such as 4 Isopuro Bae Nirufueniru group; a styryl C Ariru one C 2 _ 6 alkenyl group such as a group; Echiniru group, 1-Puropieru group, 1-Petit two group, propargyl group, 2-butynyl group, such as 1-methyl-2-propyl sulfonyl group C 2 - 6 Alkynyl group; mono- or di-C such as vinylene group, methylvinylene group, ethylvinylene group, 1,2-dimethylvinylene
!_6アルキルビニレン基、クロロビニレン基などのハロビニレン基な どの置換基を有していてもよいビニレン基; ビニリデン基; ェチニ レン基などが例示できる。 ! _ 6 A vinylene group which may have a substituent such as a halovinylene group such as an alkylvinylene group and a chlorovinylene group; a vinylidene group; an ethinylene group;
不飽和結合を有する熱可塑性樹脂としては、 例えば、 ( 1 )反応性 基 (A) 及び不飽和結合を有する化合物と、 前記反応性基 (A) に 対して反応可能な反応性基 (B) を有する樹脂 (熱可塑性樹脂など) との反応により生成する樹脂、 ( 2 )共重合又は共縮合により不飽和 結合を導入した熱可塑性樹脂、 (3)不飽和結合を有する樹脂と樹脂 とで形成されたポリマープレンド、 (4)種々の有機反応(例えば、 アセチレンを利用したレッペ反応によるビニル基の導入、 ビニルリ チウムなどの有機金属試薬を利用した不飽和結合の導入、 力ップリ ング反応による不飽和結合の導入など) により不飽和結合を導入し た熱可塑性樹脂などが例示できる。 好ましい樹脂は、 前記樹脂 ( 1)、 ( 2)、 又は (3) である。  Examples of the thermoplastic resin having an unsaturated bond include: (1) a reactive group (A) and a compound having an unsaturated bond; and a reactive group (B) capable of reacting with the reactive group (A). (2) thermoplastic resin with unsaturated bond introduced by copolymerization or co-condensation, (3) resin with unsaturated bond and resin Polymer blends, (4) Various organic reactions (for example, introduction of vinyl groups by Leppe reaction using acetylene, introduction of unsaturated bonds using organometallic reagents such as vinyllithium, and unsaturation by force ringing reaction) Thermoplastic resin into which an unsaturated bond has been introduced. Preferred resins are the above-mentioned resins (1), (2) and (3).
前記樹脂 ( 1 ) において、 少なくとも 1つの反応性基 (A) およ び少なくとも 1つの不飽和結合を有する重合性化合物と、 前記重合 性化合物の反応性基 (A) に対して反応性の反応性基 (B) を有す る樹脂とを反応させることにより、樹脂に不飽和結合を導入できる。 重合性化合物の代表的な反応性基 (A) としては、 (A1) ヒドロキ シル基、 (A2) 力ルポキシル基又はその酸無水物基、 (A3) アミノ基、 (A4) エポキシ基、 (A5) イソシァネート基などが例示でき、 重合性 化合物の反応性基 (A) と樹脂の反応性基 (B) との組み合わせと しては、 次のような組み合わせが例示できる。 なお、 括弧内は反応 性基 (A) と反応性基 (B) との結合形式を示す。 In the resin (1), a polymerizable compound having at least one reactive group (A) and at least one unsaturated bond is reacted with the reactive group (A) of the polymerizable compound. By reacting with a resin having a functional group (B), an unsaturated bond can be introduced into the resin. Representative reactive groups (A) of the polymerizable compound include (A1) a hydroxyl group, (A2) a carbonyl group or an acid anhydride thereof, (A3) an amino group, (A4) an epoxy group, and (A5) ) Isocyanate group and the like, and a combination of the reactive group (A) of the polymerizable compound and the reactive group (B) of the resin For example, the following combinations can be exemplified. The form in parentheses indicates the bonding form between the reactive group (A) and the reactive group (B).
(A1) ヒドロキシル基:  (A1) hydroxyl group:
(B) 力ルポキシル基又はその酸無水物基 (エステル結合)、 イソ シァネー卜基 (エステル結合)  (B) carboxylic group or its anhydride group (ester bond), isocyanate group (ester bond)
(A2) 力ルポキシル基又はその無水物基:  (A2) a lipoxyl group or its anhydride group:
(B) ヒドロキシル基 (エステル結合)、 アミノ基 (アミ ド結合)、 エポキシ基 (エステル結合)、 イソシァネ一ト基 (アミ ド結合) (A3) アミノ基:  (B) hydroxyl group (ester bond), amino group (amide bond), epoxy group (ester bond), isocyanate group (amide bond) (A3) amino group:
(B) 力ルポキシル基又はその酸無水物基 (アミ ド結合)、 ェポキ シ基 (ィミノ結合)、 イソシァネート基 (アミド結合)  (B) Roxypoxyl group or its acid anhydride group (amide bond), epoxy group (imino bond), isocyanate group (amide bond)
(A4) エポキシ基:  (A4) Epoxy group:
(B) カルボキシル基又はその酸無水物基 (エステル結合)、 アミ ノ基 (ィミノ結合)  (B) Carboxyl group or its acid anhydride group (ester bond), amino group (imino bond)
(A5) ィソシァネ一ト基:  (A5) Isocyanate group:
(B) ヒドロキシル基 (エステル結合)、 力ルポキシル基又はその 酸無水物基 (アミ ド結合)、 アミノ基 (アミド結合)  (B) hydroxyl group (ester bond), carboxylic acid group or its anhydride group (amide bond), amino group (amide bond)
前記樹脂の反応性基 (B) に関し、 ポリアミ ド系樹脂では、 例え ば、 残存するカルボキシル基やアミノ基を反応性基 (B) として利 用でき、 ポリエステル系樹脂では、 例えば、 残存する力ルポキシル 基ゃヒドロキシル基を反応性基 (B) として利用できる。 ポリ (チ ォ) エーテル系樹脂では、 残存するヒドロキシル基、 メルカプト基 などを反応性基 (B) として利用してもよく、 ポリアセタール系樹 脂では、 残存するヒドロキシル基を反応性基 (B) として利用でき る。 さらに、 ポリカーボネート系樹脂では、 残存するヒドロキシル 基を反応性基 (B) として利用でき、 ポリイミ ド系樹脂では、 残存 するカルボキシル基や酸無水物基、 アミノ基、 イミノ基などを反応 性基 (B) として利用できる。 さらに、 ポリウレタン系樹脂では、 例えば、 残存するヒドロキシル基、 アミノ基、 イソシァネート基な どを反応性基 (B ) として利用してもよく、 (メタ) アクリル系樹脂 では、 反応性基 (B ) を有する単量体を共重合成分として用いるこ とにより、 前記反応性基 (B ) を導入できる。 Regarding the reactive group (B) of the resin, in a polyamide resin, for example, a remaining carboxyl group or an amino group can be used as the reactive group (B). In a polyester resin, for example, the remaining hydroxyl group can be used. The hydroxyl group can be used as the reactive group (B). The remaining hydroxyl groups and mercapto groups may be used as the reactive group (B) in the poly (thio) ether resin, and the remaining hydroxyl groups may be used as the reactive group (B) in the polyacetal resin. Available. Furthermore, in a polycarbonate resin, the remaining hydroxyl group can be used as a reactive group (B), and in a polyimide resin, the remaining carboxyl group, acid anhydride group, amino group, imino group, or the like can be used as a reactive group (B). ) Is available. Furthermore, in the case of polyurethane resins, for example, residual hydroxyl groups, amino groups, isocyanate groups, etc. And the like. The reactive group (B) may be used as the reactive group (B). In the case of the (meth) acrylic resin, the monomer having the reactive group (B) is used as a copolymerization component to thereby form the reactive group (B). ) Can be introduced.
重合性化合物としては、 ヒドロキシル基含有化合物 [例えば、 ァ リルアルコール、 2—ブテン一 1—オール、 3—ブテン— 2—才一 ルなどの C 3_6 ァルケノール、 プロパルギルアルコールなどの C 3_6 アルキノ一ル、 2—ヒドロキシェチル (メタ) ァクリレート、 2 - ヒドロキシプロピル(メタ) ァクリレート、 ブタンジオールモノ (メ 夕) ァクリレートなどの C 26アルキレンダリコ一ルモノ (メタ) ァ クリレート、 ジエチレングリコールモノ (メタ) ァクリレー卜など のポリオキシ C 2_6アルキレンダリコールモノ (メタ) ァクリレー卜、 4ーヒドロキシスチレン、 4—ヒドロキシ一ひーメチルスチレンの などの C 2_6アルケニルフエノール、 ジヒドロキシスチレン、 ビニル ナフトールなど]、 カルボキシル基又は酸無水物基含有化合物 [例え ば、 (メタ) アクリル酸、 クロトン酸、 3 —ブテン酸などの C 3_6ァ ルケンカルボン酸、 ィタコン酸、 マレイン酸、 無水マレイン酸など の C 4_8アルケンジカルボン酸又はその無水物、ビニル安息香酸など の不飽和芳香族カルボン酸、ケィ皮酸など]、アミノ基含有化合物(例 えば、 ァリルァミンなどの C 36ァルケニルァミン、 4 一アミノスチ レン、 ジァミノスチレンなど)、 エポキシ基含有化合物 (例えば、 ァ リルグリシジルェ一テル、 グリシジル (メタ) ァクリレートなど)、 イソシァネート基化合物 (例えば、 ビニルイソシァネートなど) な どが例示できる。 As the polymerizable compound, hydroxyl group-containing compound [for example, § Lil alcohol, 2-butene one 1-ol, 3-buten - C 3 _ 6 such as 2-Saiichi C 3 _ 6 Arukenoru include Le, propargyl alcohol alkyno Ichiru, 2-hydroxy-E chill (meth) Akurireto, 2 - hydroxypropyl (meth) Akurireto, butanediol mono (main evening) Akurireto C 2 such as - 6 alkyl render Rico one mono (meth) § acrylate, diethylene glycol Polyoxy C 2 _ 6 alkylenedaricol mono (meth) acrylates such as (meth) acrylates, C 2 _ 6 alkenylphenols such as 4-hydroxystyrene, 4-hydroxy-1-methylstyrene, dihydroxystyrene, vinyl naphthol, etc.] , Containing carboxyl group or acid anhydride group For example things [, (meth) acrylic acid, crotonic acid, 3 - C 3 _ 6 § Rukenkarubon acids such as butenoic acid, Itakon acid, maleic acid, C 4 _ 8 alkene dicarboxylic acid or its anhydride such as maleic anhydride unsaturated aromatic carboxylic acids such as vinyl benzoate, Kei cinnamic acid, amino group-containing compound (eg if, C 3, such as Ariruamin - 6 Arukeniruamin, 4 one Aminosuchi Ren, etc. Jiaminosuchiren), epoxy group-containing compound ( For example, aryl glycidyl ether, glycidyl (meth) acrylate, and the like, and isocyanate group compounds (for example, vinyl isocyanate) can be exemplified.
なお、 前記樹脂 ( 1 ) において、 樹脂として反応性基 (B ) を有 していない樹脂や、 反応性基 (B ) の濃度が低い樹脂を用いる場合、 反応性基 (B ) を導入することにより樹脂を改質又は変性してもよ い。 榭脂に反応性基 (B ) を導入する方法としては、 (i ) 樹脂の製 造において、 反応性基 (B ) を有する単量体 (例えば、 前記例示の 重合性化合物など) と、 樹脂材料 (又は樹脂の原料である単量体や オリゴマー) とを共重合させる方法、 (i i )酸化反応によるカルポキ シル基の導入、ハロゲン化法、重合性単量体のグラフト法などの種々 の有機反応が利用できる。 なお、 ビエル重合系樹脂では、 通常、 前 記反応性基 (B ) を有する単量体を共重合成分として用いることに より前記反応性基 (B ) を導入する場合が多く、 ビニル重合系樹脂 を含めていずれの樹脂でも、 前記反応性基を有する重合性化合物の グラフト反応により、 前記反応性基 (B ) を容易に導入できる。 前記樹脂 (2 ) において、 不飽和結合の導入方法としては、 例え ば、 縮合系樹脂 (例えば、 ポリアミ ド系樹脂、 ポリエステル系樹脂 など) の調製において、 反応成分の一部 (コモノマー) として、 多 官能性の不飽和結合を有する化合物 [例えば、 脂肪族不飽和ジカル ボン酸 (マレイン酸、 無水マレイン酸、 フマル酸、 ィタコン酸、 無 水ィタコン酸、 シトラコン酸、 無水シトラコン酸、 メサコン酸など の C 41 ()脂肪族不飽和ジカルボン酸など) などの不飽和多価カルボ ン酸; 脂肪族不飽和ジオール ( 2—ブテン— 1, 4ージオールなど の C 41 ()脂肪族不飽和ジオールなど) などの不飽和多価アルコール など] を共縮合 (又は共重合) させる方法などが例示できる。 また、 付加重合系樹脂 (例えば、 ォレフィン系樹脂など) においては、 反 応成分の一部 (コモノマー) として、 共役不飽和結合を有する単量 体 (例えば、 - 1 , 3 —ブタジエン、 2—メチル— 1, 3—ブタジェ ン、 2 , 3 —ジメチルー 1, 3—ブタジエン、 クロ口プレンなどの 置換基を有していてもよい共役 C 4_1 () アルカジエンなど) を共重合 させる方法などが例示できる。 In the case where a resin having no reactive group (B) or a resin having a low concentration of the reactive group (B) is used as the resin in the resin (1), the reactive group (B) may be introduced. May be used to modify or modify the resin. Examples of the method for introducing the reactive group (B) into the resin include: (i) in the production of the resin, a monomer having the reactive group (B) (for example, the polymerizable compound described above); Materials (or monomers, (Ii) introduction of carboxyl groups by oxidation, halogenation, grafting of polymerizable monomers, and various other organic reactions. In the case of the Bier polymer resin, the monomer having the reactive group (B) is usually used as a copolymer component to introduce the reactive group (B) in many cases. In any resin including the above, the reactive group (B) can be easily introduced by a graft reaction of the polymerizable compound having the reactive group. In the resin (2), as a method for introducing an unsaturated bond, for example, in the preparation of a condensation resin (for example, a polyamide resin, a polyester resin, or the like), as a part of the reaction component (comonomer), Compounds having a functional unsaturated bond [for example, aliphatic unsaturated dicarboxylic acids (for example, maleic acid, maleic anhydride, fumaric acid, itaconic acid, anhydrous itaconic acid, citraconic acid, citraconic anhydride, mesaconic acid, etc. aliphatic unsaturated diol (1 (- - C 4, such as 1, 4 Jioru 2-butene) aliphatic unsaturated diol; - 4 1 () unsaturated polyvalent carbonitrile phosphate such as such as aliphatic unsaturated dicarboxylic acid) And the like)), and a method of co-condensing (or copolymerizing) unsaturated polyhydric alcohols such as In addition-polymerized resins (eg, olefin-based resins), a monomer having a conjugated unsaturated bond (eg, -1,3-butadiene, 2-methyl) is part of the reaction component (comonomer). — Copolymerization of optionally substituted conjugated C 4 _ 1 () alkadiene such as 1,3-butadiene, 2,3-dimethyl-1,3-butadiene and chloroprene). Can be illustrated.
前記樹脂 ( 3 ) では、 熱可塑性樹脂 (A ) と、 不飽和結合を有す る樹脂 (B ) とを混合してポリマーブレンド (又は樹脂組成物) を 形成させることにより熱可塑性樹脂に不飽和結合を導入できる。 前記熱可塑性樹脂(A)としては、 特に限定されず、 種々の熱可塑 性樹脂 [例えば、 後述する熱可塑性樹脂 (ポリアミ ド系樹脂、 ポリ エステル系樹脂など) など]が例示できる。 また、熱可塑性樹脂(A) は、 不飽和結合を有さない飽和樹脂であってもよく、 不飽和結合を 有する樹脂であってもよい。 In the resin (3), the thermoplastic resin (A) and the resin (B) having an unsaturated bond are mixed to form a polymer blend (or a resin composition), whereby the thermoplastic resin is unsaturated. A bond can be introduced. The thermoplastic resin (A) is not particularly limited, and examples thereof include various thermoplastic resins [for example, thermoplastic resins (polyamide-based resins, polyester-based resins, and the like described below) and the like]. In addition, thermoplastic resin (A) May be a saturated resin having no unsaturated bond or a resin having an unsaturated bond.
不飽和結合を有する樹脂 (B) としては、 前記樹脂 ( 1 )、 (2) 又は (4) などの不飽和結合が導入された熱可塑性樹脂、 不飽和結 合含有ゴム (例えば、 ポリブタジエン、 ポリイソプレン、 ポリペン テナマ一、 ポリヘプテナマー、 ポリオクテナマ一、 ポリ ( 3—メチ ルォクテナマ一)、 ポリデセナマー、 ポリ ( 3—メチルデセナマ一)、 ポリ ドデセナマーなどのポリ C415 アルケニレン、 ブタジエンーィ ソプレン共重合体などの C415 アルカジエンの共重合体、 ブタジェ ン変性ポリエチレンなどのゴム変性ポリオレフインなど) などが例 示できる。 なお、 前記ポリ C415 ァルケ二レンは、 シクロォレフィ ン類 (例えば、 シクロペンテン、 シクロヘプテン、 シクロォクテン、 シクロデセン、 シクロドデセンなどの置換基を有していてもよい CAs the resin (B) having an unsaturated bond, a thermoplastic resin having an unsaturated bond introduced therein, such as the resin (1), (2) or (4), or a rubber containing an unsaturated bond (for example, polybutadiene, polybutadiene, or polybutadiene). isoprene, polygonal pen Tenama one, Poriheputenama, Poriokutenama mono-, poly (3-methylcarbamoyl Ruokutenama I), Poridesenama, poly (3-Mechirudesenama one), poly C 4, such as poly Dodesenama - 15 alkenylene, C 4, such as butadiene-I isoprene copolymer — 15 alkadiene copolymer, rubber-modified polyolefin such as butadiene-modified polyethylene, etc.). Incidentally, the poly-C 4 - 15 Aruke two Ren, Shikuroorefi emissions (such, good cyclopentene, cycloheptene, Shikurookuten, cyclodecene, which may have a substituent such as cyclododecene C
5_20 シクロォレフインなど) のメタセシス重合、 ポリアルケ二レン (例えば、 ポリブタジエンなど) の部分水素添加などにより得ても よい。 It may be obtained by metathesis polymerization of 5 to 20 cycloolefin, or partial hydrogenation of polyalkenedylene (for example, polybutadiene).
前記樹脂 (4) において、 前記樹脂 (B) の割合は、 ポリマーブ レンドに所定の濃度で不飽和結合を導入できる範囲、 例えば、 樹脂 In the resin (4), the proportion of the resin (B) is within a range where unsaturated bonds can be introduced into the polymer blend at a predetermined concentration, for example, the resin
(A) 樹脂 (B) (重量比) = 5 9 5〜 9 5/ 5、 好ましくは 3 0Z7 0〜 9 5Z5、 さらに好ましくは 5 0 Z 5 0〜 9 5 / 5程度 である。 また、 樹脂 (B) として不飽和結合含有ゴム (例えば、 ポ リオクテニレンなど) を用いる場合、樹脂(B) の割合は、樹脂(A) の性質を損なわない範囲で選択でき、例えば、樹脂(A) /樹脂(B) (重量比) = 5 0/ 5 0〜 9 5Z 5、 好ましくは 6 0 40〜 9 5 / 5、 さらに好ましくは 7 0 / 3 0〜 9 5Z5程度である。 (A) Resin (B) (weight ratio) = 595-95 / 5, preferably 30Z70-95Z5, more preferably about 50Z50-95 / 5. When an unsaturated bond-containing rubber (for example, polyoctenylene) is used as the resin (B), the proportion of the resin (B) can be selected within a range that does not impair the properties of the resin (A). ) / Resin (B) (weight ratio) = 50 / 50-95Z5, preferably 6040-95 / 5, more preferably about 70 / 30-95Z5.
なお、 前記樹脂 (4) の樹脂組成物において、 樹脂 (A) と樹脂 In the resin composition of the resin (4), the resin (A) and the resin
(B) とが、 ポリマーァロイ (海島構造を有するポリマーァロイな ど) を形成していてもよい。 (B) may form a polymer alloy (eg, a polymer alloy having a sea-island structure).
熱可塑性樹脂としては、 例えば、 ポリアミ ド系樹脂、 ポリエステ ル系樹脂、 ポリ (チォ) エーテル系樹脂 (ポリアセタール系樹脂、 ポリフエ二レンェ一テル系樹脂、 ポリスルフイ ド系樹脂、 ポリエー テルケトン系樹脂など)、 ポリカーボネート系樹脂、ポリイミド系樹 脂、 ポリスルホン系樹脂、 ポリウレタン系樹脂などの縮合系熱可塑 性樹脂; ポリオレフイン系樹脂、 ハロゲン含有ビニル系樹脂、 スチ レン系樹脂、 (メタ)ァクリル系樹脂などのビニル重合系熱可塑性樹 脂;熱可塑性エラストマ一などが例示できる。 これらの樹脂は単独 で又は二種以上組み合わせて使用できる。 二種以上の樹脂を組み合 わせて用いる場合、 樹脂組成物はポリマーァロイなどの複合樹脂組 成物を形成してもよい。 Examples of the thermoplastic resin include polyamide resin and polyester resin. Resin, poly (thio) ether resin (polyacetal resin, polyphenyleneether resin, polysulfide resin, polyetherketone resin, etc.), polycarbonate resin, polyimide resin, polysulfone resin, polyurethane Thermoplastic resins such as polyolefin resins, halogen-containing vinyl resins, styrene resins, and (meth) acrylic resins; and thermoplastic elastomers. . These resins can be used alone or in combination of two or more. When two or more resins are used in combination, the resin composition may form a composite resin composition such as a polymer alloy.
不飽和結合の割合は、 樹脂の種類、 不飽和結合の活性化の程度な どにもよるが、 例えば、 樹脂一分子に対して、 例えば、 平均 0 . 1 個以上(例えば、 0 . 1〜 1 0 0 0個)、好ましくは平均 1個以上(例 えば、 1〜 1 0 0個)、 さらに好ましくは平均 2個以上 (例えば、 2 〜 5 0程度) である。 また、 不飽和結合の濃度は、 例えば、 樹脂 1 k gに対して、 0 . 0 0 1〜 6 . 6モル、 好ましくは 0 . 0 1〜4 モル (例えば、 0 . 0 1〜 1モル)、 さらに好ましくは 0 . 0 2〜 2 モル (例えば、 0 . 0 5〜 0 . 5モル) 程度である。  The ratio of unsaturated bonds depends on the type of the resin and the degree of activation of the unsaturated bonds. For example, the ratio is, for example, 0.1 or more per one resin molecule (for example, 0.1 to 0.1). 100), preferably 1 or more (for example, 1 to 100) on average, and more preferably 2 or more (for example, about 2 to 50) on average. The concentration of the unsaturated bond is, for example, 0.01 to 6.6 mol, preferably 0.01 to 4 mol (for example, 0.01 to 1 mol) per 1 kg of the resin, More preferably, it is about 0.02 to 2 mol (for example, 0.05 to 0.5 mol).
なお、 ポリマーフレンドによる不飽和結合の導入において、 不飽 和結合の数は、 各樹脂の重量分率に応じて不飽和結合を平均値とし て算出できるが、 樹脂組成物中の不飽和結合の数を濃度モル Z k g として算出するのが便利である。  In addition, in the introduction of unsaturated bonds by the polymer friend, the number of unsaturated bonds can be calculated as an average value of the unsaturated bonds according to the weight fraction of each resin, but the number of unsaturated bonds in the resin composition can be calculated. It is convenient to calculate the number as the molar concentration Z kg.
(架橋性官能基を有する熱硬化性樹脂)  (Thermosetting resin having a crosslinkable functional group)
熱硬化性樹脂としては、 架橋剤 (又は硬化剤) などの存在下で架 橋性又は硬化性を示す官能基 (例えば、 メチロール基、 アルコキシ メチル基、 エポキシ基、 イソシァネート基など) を有する樹脂が挙 げられる。 このような熱硬化性樹脂としては、 重縮合又は付加縮合 系樹脂 (フエノール樹脂、 アミノ系樹脂、 エポキシ樹脂、 熱硬化性 ポリイミ ド系樹脂、 熱硬化性ポリウレタン系樹脂、 シリコーン樹脂 など)、 付加重合系樹脂 (不飽和ポリエステル系樹脂、 ビニルエステ ル樹脂、 ジァリルフタレート樹脂、 熱硬化性 (メタ) アクリル系樹 脂など) が例示できる。 熱硬化性樹脂は、 単独で又は 2種以上組み 合わせて用いてもよい。 Examples of the thermosetting resin include a resin having a functional group (eg, a methylol group, an alkoxymethyl group, an epoxy group, an isocyanate group, etc.) exhibiting a crosslinking property or a curability in the presence of a crosslinking agent (or a curing agent). Are listed. Examples of such thermosetting resins include polycondensation or addition condensation resins (phenolic resins, amino resins, epoxy resins, thermosetting polyimide resins, thermosetting polyurethane resins, silicone resins). ), And addition polymerization resins (unsaturated polyester resins, vinyl ester resins, diaryl phthalate resins, thermosetting (meth) acrylic resins, etc.). The thermosetting resins may be used alone or in combination of two or more.
( 1 3 ) フエノール樹脂  (13) Phenol resin
フエノール樹脂には、 ノポラック樹脂、 レゾール樹脂などが含ま れるが、 通常ノポラック樹脂が用いられる。 ノポラック樹脂は、 酸 触媒の存在下、 フエノール類とアルデヒド類との反応により得られ る。 フエノール類としては、 例えば、 フエノール、 o—、 m―、 又 は p —クレゾール、 2, 5—、 3, 5—又は 3, 4—キシレノール 、 2, 3, 5—トリメチルフエノール、 ェチルフエノール、 プロピ ルフエノールなどの C卜 4アルキルフエノール、 ジヒドロキシベンゼ ン、 レゾルシノール、 ナフトールなどが例示できる。 これらのフエ ノール類は単独で又は 2種以上組み合わせて用いてもよい。 アルデ ヒド類としては、 例えば、 ホルムアルデヒド、 パラホルムアルデヒ ド、 ァセトアルデヒド、 プロピオンアルデヒドなどの脂肪族アルデ ヒド、 ベンズアルデヒド、 サリチルアルデヒドなどの芳香族アルデ ヒドなどが例示できる。 これらのアルデヒド類は単独で又は 2種以 上組み合わせて用いてもよい。 The phenolic resin includes a nopolak resin, a resol resin and the like, and a nopolak resin is usually used. Nopolak resin is obtained by reacting phenols with aldehydes in the presence of an acid catalyst. Examples of phenols include phenol, o-, m-, or p-cresol, 2, 5-, 3, 5- or 3,4-xylenol, 2, 3, 5-trimethyl phenol, ethyl phenol, propyl phenol C Bok 4 alkylphenol, dihydroxy benzene such as resorcinol, naphthol can be exemplified. These phenols may be used alone or in combination of two or more. Examples of the aldehydes include aliphatic aldehydes such as formaldehyde, paraformaldehyde, acetaldehyde and propionaldehyde, and aromatic aldehydes such as benzaldehyde and salicylaldehyde. These aldehydes may be used alone or in combination of two or more.
( 1 4 ) アミノ系樹脂  (14) Amino resin
アミノ系樹脂は、 通常、 アミノ基含有化合物とアルデヒド類 (例 えば、 ホルムアルデヒド、 ァセトアルデヒド、 プロピオンアルデヒ ドなどの脂肪族アルデヒド、 フエ二ルァセトアルデヒドなどの芳香 族アルデヒドなど) との反応により得られる。 アミノ系榭脂には、 尿素樹脂 (尿素とアルデヒド類との反応により得られる尿素樹脂な ど)、 ァニリン樹脂 (ァニリン、 ナフチルァミン、 トルイジン、 キシ リジン、 N, N—ジメチルァニリン、 ベンジジンなどのァニリン類 と、 アルデヒド類との反応により得られるァニリン樹脂など)、 メラ ミン樹脂 (メラミン類とアルデヒド類との反応により得られるメラ ミン樹脂など)、 グアナミン樹脂 (ベンゾグアナミン、 ァセトグアナ ミン、 ホルモグアナミンなどのグアナミン類と、 アルデヒド類との 反応により得られるグアナミン樹脂など) などが含まれる。 The amino resin is usually obtained by reacting an amino group-containing compound with an aldehyde (for example, an aliphatic aldehyde such as formaldehyde, acetate aldehyde, propionaldehyde, or an aromatic aldehyde such as phenylacetaldehyde). Can be Amino resins include urea resins (such as urea resins obtained by the reaction of urea and aldehydes) and aniline resins (aniline such as aniline, naphthylamine, toluidine, xylidine, N, N-dimethylaniline, and benzidine). Resins and aldehydes), and melamine resins (melamine obtained by the reaction of melamines and aldehydes) And guanamine resins (such as guanamine resins obtained by the reaction of guanamines such as benzoguanamine, acetoguanamine and formoguanamine with aldehydes).
( 1 5) エポキシ系樹脂  (15) Epoxy resin
エポキシ系樹脂としては、 ビスフエノール型エポキシ樹脂、 ノポ ラック型エポキシ樹脂、 アミン系エポキシ樹脂などが含まれる。 ビスフエノール型エポキシ樹脂としては、 例えば、 4, 4ービフ ェノール、 2, 2—ビフエノール、 ビスフエノール F、 ビスフエノ ール AD、 ビスフエノール Aなどのグリシジルエーテル類が例示で きる。  Epoxy resins include bisphenol epoxy resins, nopolak epoxy resins, and amine epoxy resins. Examples of the bisphenol-type epoxy resin include glycidyl ethers such as 4,4-biphenol, 2,2-biphenol, bisphenol F, bisphenol AD, and bisphenol A.
ノポラック型エポキシ樹脂を構成するノポラック樹脂としては、 例えば、 前記ノポラック樹脂の項に記載のフエノール類とアルデヒ ド類との反応により得られるノポラック樹脂などが例示できる。 アミン系エポキシ樹脂を構成するアミン成分としては、 例えば、 ァニリン、 トルイジンなどの芳香族アミン、 ジアミノベンゼン、 キ シリレンジァミンなどの芳香族ジァミン、 アミノヒドロキシベンゼ ン、 ジアミノジフエニルメタンなどが例示できる。  Examples of the nopolak resin constituting the nopolak-type epoxy resin include, for example, the nopolak resin obtained by the reaction of the phenols and the aldehydes described in the section of the nopolak resin. Examples of the amine component constituting the amine-based epoxy resin include aromatic amines such as aniline and toluidine, aromatic diamines such as diaminobenzene and xylylenediamine, aminohydroxybenzene, and diaminodiphenylmethane.
( 1 6) 熱硬化性ポリイミド系樹脂  (16) Thermosetting polyimide resin
熱硬化性ポリイミ ド系樹脂には前記ポリイミ ド系樹脂の項で記載 の樹脂 (例えば、 閉環可能な複数のイミ ド基を有する硬化性樹脂組 成物) が含まれる。  The thermosetting polyimide-based resin includes the resins described in the paragraph of the polyimide-based resin (for example, a curable resin composition having a plurality of ring-closable imido groups).
( 1 7) 熱硬化性ポリウレタン系樹脂  (17) Thermosetting polyurethane resin
熱硬化性ポリウレタン系樹脂には前記ポリウレタン系樹脂の項で 記載の樹脂 (例えば、 複数の遊離のイソシァネート基を有するプレ ポリマーと、 ポリエステルポリオ一ルなどのポリオール成分とで構 成された硬化性樹脂組成物) が含まれる。  Examples of the thermosetting polyurethane resin include the resins described in the section of the polyurethane resin (for example, a curable resin composed of a prepolymer having a plurality of free isocyanate groups and a polyol component such as polyester polyol). Composition).
( 1 8) シリコーン樹脂  (18) Silicone resin
シリコーン樹脂には、 式: RaS i 0(4— a)/2で表される単位 (式中、 係数 aは 1. 9〜 2. 1程度) と、 式: RbS i O (4_b)/2で表される 単位 (式中、 係数 bは 0. 9〜1. 1程度) とで構成されたシリコ ーン榭脂などが含まれる。 式中、 Rは、 例えば、 メチル基、 ェチル 基、 プロピル基、 ブチル基などの C!-!oアルキル基、 3—クロロブ 口ピル基、 3 , 3, 3—トリフルォロプロピル基などのハロゲン化 C!-!o アルキル基、 ピニル基、 ァリル基、 ブテニル基などの C2_10 アルケニル基、 フエニル基、 トリル基、 ナフチル基などの C6_12 ァ リール基、 シクロペンチル基、 シクロへキシル基などの C3_10 シク 口アルキル基、 ベンジル基、 フエネチル基などの C 612ァリール一 C卜 4アルキル基などが挙げられる。 The silicone resin has a unit represented by the formula: R a S i 0 (4— a) / 2 (where the coefficient a is about 1.9 to 2.1) and a formula: R b S i O ( 4 _ b) / 2 Silicon resin composed of units (where the coefficient b is about 0.9 to 1.1) is included. In the formula, R represents, for example, a C!-! O alkyl group such as a methyl group, an ethyl group, a propyl group or a butyl group, a halogen group such as a 3-chlorobutyryl group or a 3,3,3-trifluoropropyl group. of C -!! o alkyl group, pinyl group, Ariru group, C 2 _ 10 alkenyl groups such as butenyl group, phenyl group, a tolyl group, C 6 _ 12 § aryl group such as a naphthyl group, a cyclopentyl group, cyclohexyl C 3 _ 10 consequent opening alkyl group such as a group, a benzyl group, C 6, such as phenethyl - such as 12 Ariru one C Bok 4 alkyl group.
( 1 9 ) 不飽和ポリエステル系樹脂  (19) Unsaturated polyester resin
不飽和ポリエステル系樹脂としては、 前記ポリエステル系樹脂に おいて、 ジカルボン酸成分として、 不飽和ジカルボン酸又はその無 水物 (例えば、 マレイン酸、 無水マレイン酸、 フマル酸など) を用 いた不飽和ポリエステルなどが挙げられる。  As the unsaturated polyester resin, an unsaturated polyester obtained by using an unsaturated dicarboxylic acid or an anhydride thereof (for example, maleic acid, maleic anhydride, fumaric acid, etc.) as the dicarboxylic acid component in the polyester resin described above. And the like.
( 2 0) ビニルエステル樹脂  (20) Vinyl ester resin
ビニルエステル樹脂としては、 前記エポキシ樹脂と、 (メタ) ァク リル酸との反応により得られる重合体、 多価フエノール類とダリシ ジル (メタ) ァクリレートとの反応により得られる重合体などが挙 げられる。  Examples of the vinyl ester resin include a polymer obtained by reacting the epoxy resin with (meth) acrylic acid and a polymer obtained by reacting polyhydric phenols with daricidyl (meth) acrylate. Can be
( 2 1 ) ジァリルフタレート樹脂  (21) Diaryl phthalate resin
ジァリルフタレート樹脂には、 ジァリルオルソフタレート、 ジァ リルイソフタレートなどのジァリルフタレートモノマーから得られ る樹脂などが含まれる。  Examples of the diaryl phthalate resin include resins obtained from diaryl phthalate monomers such as diaryl orthophthalate and diaryl isophthalate.
( 2 2) 熱硬化性 (メ夕) アクリル系樹脂  (2 2) Thermosetting acrylic resin
熱硬化性 (メタ) アクリル系樹脂には、 前記 (メタ) アクリル系 樹脂の項で記載の樹脂(ヒドロキシル基などの反応性基を有する(メ 夕) アクリル系樹脂と硬化剤とで構成された樹脂組成物など) が含 まれる。  The thermosetting (meth) acrylic resin includes the resin described in the section of the above (meth) acrylic resin (a (meth) acrylic resin having a reactive group such as a hydroxyl group, and a curing agent). Resin compositions, etc.).
なお、 樹脂が熱可塑性樹脂および架橋性基を有する樹脂 (特に熱 硬化性樹脂を除く架橋性樹脂) である場合、 ラジカルに対して高い 活性を示す複数の水素原子 (活性水素原子) 又は硫黄原子 (活性硫 黄原子) (以下、これらの水素原子及び硫黄原子を活性原子と称する ことがある) を有していてもよい。 樹脂は前記活性水素原子、 活性 硫黄原子から選択された少なくとも一方の活性原子を有していれば よく、 活性水素原子と活性硫黄原子の双方の活性原子を有していて もよい。 The resin is a thermoplastic resin or a resin having a crosslinkable group (particularly, In the case of a crosslinkable resin excluding the curable resin), a plurality of hydrogen atoms (active hydrogen atoms) or sulfur atoms (active sulfur atoms) exhibiting high activity against radicals (hereinafter referred to as hydrogen and sulfur atoms) (May be referred to as an active atom). The resin only needs to have at least one active atom selected from the above active hydrogen atoms and active sulfur atoms, and may have both active hydrogen atoms and active sulfur atoms.
前記活性原子を有する樹脂を用いると、 加硫ゴム層、 ひいては加 硫ゴム部材との接合をより強固にできる。 すなわち、 活性原子を有 する樹脂は、 下記式で表される軌道相互作用エネルギー係数 Sがー 定値 (例えば、 0. 0 0 6、 好ましくは 0. 0 0 8 ) 以上の活性原 子を有していてもよい。 好ましい活性原子の軌道相互作用エネルギ 一係数 Sは、 0. 0 0 6〜0. 0 6、 好ましくは 0. 0 0 7〜0. 0 5 (特に 0. 0 1〜0. 04 5 ) 程度である。 この活性原子の数 は、 活性原子を有する官能基の結合部位 (末端、 分岐鎖や主鎖など) に依存し、 例えば、 樹脂の一分子中、 平均 2個以上 (2〜1 0 0 0 0個程度)、好ましくは平均 2. 5個以上(2. 5〜5 0 0 0個程度)、 さらに好ましくは平均 3個以上( 3〜 1 0 0 0個程度)]であっても よい。  When the resin having the active atom is used, the bonding with the vulcanized rubber layer and, eventually, the vulcanized rubber member can be further strengthened. That is, a resin having an active atom has an active atom whose orbital interaction energy coefficient S represented by the following formula is equal to or larger than a fixed value (for example, 0.06, preferably 0.08). May be. A preferable orbital interaction energy coefficient S of the active atom is about 0.006 to 0.06, preferably about 0.007 to 0.05 (particularly 0.01 to 0.045). is there. The number of active atoms depends on the binding site of the functional group having an active atom (terminal, branched chain, main chain, etc.). For example, in a resin molecule, an average of two or more (2 to 100,000) ), Preferably an average of 2.5 or more (about 2.5 to 500), more preferably an average of 3 or more (about 3 to 1000)].
S = 、し HOMO, n) , I E c一 EH0M0,n I + し LUMO'n) Z I E c— ES =, then HOMO, n), IE c- E H0M0, n I + then LUMO'n) ZIE c — E
LUMO, n I (上 ) LUMO, n I (top)
(式中、 E (;、 CH0M0,n、 EH0M0,n、 C LUM0,n、 ELUM0,nは、 レ 9れも半 経験的分子軌道法 MO P AC PM 3により算出された値であって、 (Wherein, E (;, C H 0M0 , n, E H0M0, n, C LUM0, n, E LUM0, n also Re Les 9 calculated by the semiempirical molecular orbital method MO P AC PM 3 values And
Ecはラジカル発生剤のラジカルの軌道エネルギー (e V) を示し、 CH0M0,n は熱可塑性樹脂の基本単位を構成する第 n番目の活性原子E c indicates the orbital energy of the radical of the radical generator (e V), and C H0M0 , n is the n-th active atom constituting the basic unit of the thermoplastic resin
(水素原子又は硫黄原子) の最高被占分子軌道 (HOMO) の分子 軌道係数を示し、 EH0MO>nは前記 HOMOの軌道エネルギー (e V) を示し、 CLUM0,nは前記 n番目の活性原子 (水素原子又は硫黄原子) の最低空分子軌道 (LUMO) の分子軌道係数を示し、 ELUM(),n は 前記 LUM〇の軌道エネルギー (e V) を示す) The molecular orbital coefficient of the highest occupied molecular orbital (HOMO) of (hydrogen or sulfur atom), E H0MO> n indicates the orbital energy (e V) of the HOMO, and C LUM0 , n indicates the n-th activity Indicates the molecular orbital coefficient of the lowest unoccupied molecular orbital (LUMO) of an atom (hydrogen or sulfur), and E LUM () , n is Orbital energy (eV) of LUM〇
式 ( 1) での基本単位とは、 高分子の末端と、 1〜 3個程度の繰 返単位とで形成したモデル的な分子構造を意味する。 すなわち、 M 〇P AC PM 3で高分子化合物について計算する場合、 分子を構成 する原子の数が多すぎるため、 分子そのものを対象として計算する のが困難である。 そのため、 高分子の末端と、 2〜 3個程度の繰り 返し単位とで形成した分子構造モデル (基本単位) を対象にして計 算を行ってもよい。 例えば、 ポリブチレンテレフ夕レート (P B T) の分子構造 (繰返単位) は、 一般に、 化学式一 (CH2- CH2- CH 2- CH2 - O- C (=0) - C6H4- C ( = 0) - O) n—で表されるが、 前記式 ( 1 ) では、 基本単位を、 便宜的に HO- CH2- CH2- CH2- CH2-〇-C (=〇) - C6H4-C (=0) -OHとして計算してもよ い。 The basic unit in the formula (1) means a model molecular structure formed by a polymer terminal and about 1 to 3 repeating units. In other words, when calculating a polymer using M で PAC PM 3, it is difficult to calculate the molecule itself because the number of atoms constituting the molecule is too large. Therefore, the calculation may be performed on a molecular structure model (basic unit) formed of the terminal of the polymer and about 2 to 3 repeating units. For example, the molecular structure of the polybutylene terephthalate evening rate (PBT) (repeating unit), in general, the chemical formula one (CH 2 - CH 2 - CH 2- CH 2 - O- C (= 0) - C 6 H 4 - C (= 0) - O) n - but it expressed in the in formula (1), the base unit, for convenience HO- CH 2 - CH 2 - CH 2 - CH 2 -〇-C (= 〇 )-It may be calculated as C 6 H 4 -C (= 0) -OH.
なお、 ラジカル発生剤のラジカルの軌道エネルギー Ee ( e V) は、 ラジカルの分子構造に基づいて、 MOP AC PM 3により計算する のが好ましいが、 ラジカル発生剤の種類に基づいて、 便宜上、 所定 の値を用いてもよい。 例えば、 ラジカル発生剤が有機過酸化物では Ec=— 8 e V、 ァゾ化合物では Ec=— 5 e V、 硫黄を除く硫黄含 有有機化合物では Ec=— 6 e Vとして計算してもよい。 The orbital energy E e (e V) of the radical of the radical generator is preferably calculated by MOP AC PM3 based on the molecular structure of the radical. However, for convenience, a predetermined value is determined based on the type of the radical generator. May be used. For example, E is a radical generating agent an organic peroxide c = - 8 e V, in § zone Compound E c = - 5 e V, a sulfur-containing organic organic compound except the sulfur E c = - calculated as 6 e V You may.
軌道相互作用エネルギー係数 Sが所定値 (例えば、 0. 0 0 6 ) 以上である水素原子 (活性水素原子) としては、 ラジカル発生剤が 有機過酸化物の場合、 ァミノ (一 NH2) 基 (例えば、 末端アミノ基)、 ィミノ (一 NH—) 基 (例えば、 主鎖又は末端イミノ基、 アミド結 合の一 NH—基など)、 メルカプト (― S H) 基、 メチル (一 CH3) 基、 メチレン (一 CH2—) 基 (電子吸引性基に隣接するメチレン基、 すなわち活性メチレン基)、 メチリジン (― CH = ) 基 (主鎖又は末 端のメチリジン基) などの水素原子が挙げられる。 As the hydrogen atom (active hydrogen atom) whose orbital interaction energy coefficient S is equal to or more than a predetermined value (for example, 0.06), when the radical generator is an organic peroxide, an amino (1-NH 2 ) group ( for example, terminal amino group), imino (one NH-) groups (e.g., main chain or terminal imino group, such as single NH- group amide binding), mercapto (- SH) groups, methyl (one CH 3) group, Examples include hydrogen atoms such as a methylene (one CH 2 —) group (a methylene group adjacent to an electron-withdrawing group, that is, an active methylene group) and a methylidyne (—CH =) group (a main chain or terminal methylidyne group).
また、 軌道相互作用エネルギー係数 Sが所定値 (例えば、 0. 0 0 6) 以上である硫黄原子 (活性硫黄原子) としては、 ラジカル発 生剤が有機過酸化物の場合、チォ基(― S—)、 メルカプト'(一 SH) 基、 アルキルチオ基 (メチルチオ基、 ェチルチオ基などの アル キルチオ基など)、 スルフィエル基 (— S O—) などの硫黄原子が挙 げられる。 In addition, as a sulfur atom (active sulfur atom) whose orbital interaction energy coefficient S is equal to or more than a predetermined value (for example, 0.06), radical generation is considered. When the raw material is an organic peroxide, thio group (-S-), mercapto '(-SH) group, alkylthio group (alkylthio group such as methylthio group, ethylthio group, etc.), sulfiel group (-SO-), etc. Of sulfur atoms.
前記メチル基としては、 例えば、 アルキレン鎖、 シクロアルキレ ン鎖又は芳香族環に結合するメチル基、 酸素原子に結合するメチル 基 (メトキシ基のメチル基) などが例示できる。 メチレン基として は、 例えば、 (ポリ) ォキシメチレン単位、 (ポリ) ォキシエチレン 単位などの (ポリ) ォキシアルキレン単位の酸素原子に隣接するメ チレン基の他、 アミノ基ゃィミノ基などの窒素原子に隣接するメチ レン基などが例示できる。 メチリジン基としては、 例えば、 ァミノ 基又はイミノ基に隣接するひ一位のメチリジン基、 例えば、 ァミノ シクロアルキル基のアミノ基に対する —位のメチリジン基などが 例示できる。  Examples of the methyl group include a methyl group bonded to an alkylene chain, a cycloalkylene chain or an aromatic ring, and a methyl group bonded to an oxygen atom (a methyl group of a methoxy group). Examples of the methylene group include a methylene group adjacent to an oxygen atom of a (poly) oxyalkylene unit such as a (poly) oxymethylene unit and a (poly) oxyethylene unit, and a nitrogen atom adjacent to an amino group or a dimino group. Examples of such a group include a methylene group. Examples of the methylidyne group include a methylidyne group at the 1-position adjacent to an amino group or an imino group, for example, a methylidyne group at the -position to the amino group of the aminocycloalkyl group.
活性原子数は、 樹脂が、 一般に単一分子ではなく、 構造や鎖長な どがいくらか異なる多数の分子の混合物であるため、 予想される主 たる複数の基本単位について計算すればよい。 例えば、 繰返単位一 Since the number of active atoms is not a single molecule but a mixture of many molecules having slightly different structures and chain lengths, the number of active atoms may be calculated for a plurality of expected basic units. For example, repeat unit
(NH- (CH2) 6-NH-C ( = 0) - (CH2) 4— (C = 0)) n - を有するポリマー (ポリアミド 6 6) に含まれる活性水素原子の数 は、 モデル基本単位 NH2- (CH2) 6-NH-C ( = 0) - (CH2) 4 - C ( =〇) -OHに基づいて計算でき、 ラジカル発生剤が有機過酸 化物のとき、 末端 NH2 基の 2つの水素原子が活性水素原子 (すな わち、 S≥ 0. 0 0 6 ) である。 この場合、 ポリアミ ド 6 6につい て一分子中の活性水素原子の平均数 Nは、 集合体としてのポリマー (ポリアミ ド 6 6) の末端 NH2 基と末端 COOH基との比率によ り下記式 (2 ) に基づいて算出できる。 (NH- (CH 2) 6 -NH -C (= 0) - (CH 2) 4 - (C = 0)) n - number of active hydrogen atoms contained in the polymer (polyamide 6 6) with the model Basic unit NH 2- (CH 2 ) 6-NH-C (= 0)-(CH 2 ) 4 -C (= 〇)-Can be calculated based on -OH. When the radical generator is an organic peroxide, the terminal The two hydrogen atoms of the NH 2 group are active hydrogen atoms (ie, S≥0.006). In this case, the average number N of active hydrogen atoms in one molecule of polyamide 66 is determined by the following formula according to the ratio of terminal NH 2 groups to terminal COOH groups of the polymer (polyamide 66) as an aggregate. It can be calculated based on (2).
N= 2 X A ( 2 )  N = 2 X A (2)
(式中、 Aは一分子中の平均の末端 NH2基の数を示す) (Where A represents the average number of terminal NH 2 groups in one molecule)
例えば、 末端 NH2基 Z末端 C OOH基 = 1ノ 1 (モル比) の場 合、 一分子中の末端 NH2 基の数 A= 1個、 一分子中の活性水素原 子の数 N= 2個である。 また、 末端 NH2 基/末端 C〇〇H基 = 1 /2 (モル比) の場合、 一分子中の末端 NH2基の数 A=2 3個、 一分子中の活性水素原子の数 N= 4 Z 3個である。 For example, if the terminal NH 2 group Z terminal COOH group = 1 1 (molar ratio) In this case, the number of terminal NH 2 groups in one molecule is A = 1, and the number of active hydrogen atoms in one molecule is N = 2. When the terminal NH 2 group / terminal C〇〇H group = 1/2 (molar ratio), the number of terminal NH 2 groups in one molecule A = 23, the number of active hydrogen atoms in one molecule N = 4 Z 3 pieces.
なお、 樹脂が異なる活性原子数を有する複数の樹脂で構成された 混合樹脂である場合、 混合樹脂の活性原子数は、 各樹脂が有する活 性原子数の平均値で表すこともできる。 つまり、 混合樹脂を構成す る各樹脂の基本単位から活性原子数を個別に算出し、 各樹脂の重量 割合をもとにして活性原子数の平均を算出することにより、 混合樹 脂の見かけ上の活性原子数を算出できる。 例えば、 混合樹脂が、 前 記 N= 2個のポリアミ ド 66 (A) と、 前記 N=4Z3個のポリア ミド 6 6 (B) とで構成され、 (A) ノ (B) = 1/1 (モル比) で ある場合、 混合樹脂一分子中の活性原子数は、 N=5Z3個とみな すことができる。 また、 混合樹脂が、 前記 N-2個のポリアミド 6 6 (A) と、 全末端がカルボキシル基 (つまり N=0個) であるポ リアミ ド 66 (C) とで構成され、 (A) ノ (C) =3Z1 (モル比) である場合、 混合樹脂一分子中の活性原子数は、 N= 3/2個とみ なすことができる。  When the resin is a mixed resin composed of a plurality of resins having different numbers of active atoms, the number of active atoms of the mixed resin can be represented by an average value of the number of active atoms of each resin. In other words, the number of active atoms is individually calculated from the basic unit of each resin constituting the mixed resin, and the average of the number of active atoms is calculated based on the weight ratio of each resin. Can be calculated. For example, the mixed resin is composed of the aforementioned N = 2 polyamides 66 (A) and the aforementioned N = 4Z3 polyamides 66 (B), and (A) NO (B) = 1/1 (Molar ratio), the number of active atoms in one mixed resin molecule can be regarded as N = 5Z3. Further, the mixed resin is composed of the N-2 polyamide 66 (A) and a polyamide 66 (C) having a carboxyl group at all terminals (that is, N = 0), wherein (A) When (C) = 3Z1 (molar ratio), the number of active atoms in one mixed resin molecule can be regarded as N = 3/2.
前記例示の樹脂のうち、 このような活性原子を有する樹脂として は、 例えば、 ポリアミ ド系樹脂、 ポリエステル系樹脂、 ポリアセタ ール系樹脂、 ポリフエ二レンエーテル系樹脂、 ポリスルフイ ド系樹 脂、 ポリオレフイン系樹脂、 ポリウレタン系樹脂、 熱可塑性エラス トマ一、 アミノ系樹脂、 エポキシ樹脂などが含まれる。  Among the resins exemplified above, examples of the resin having such an active atom include a polyamide resin, a polyester resin, a polyacetal resin, a polyphenylene ether resin, a polysulfide resin, and a polyolefin resin. Resins, polyurethane resins, thermoplastic elastomers, amino resins, epoxy resins, etc. are included.
ポリアミ ド系榭脂において、例えば、末端アミノ基の水素原子や、 末端アミノ基に対して α —位の炭素原子に結合する水素原子、 アミ ド結合の一 ΝΗ—基に隣接する炭素原子に結合する水素原子 (メチ レン基の水素原子ゃメチリジン基の水素原子など)、特に末端アミノ 基の水素原子が活性水素原子を構成する。  In a polyamide resin, for example, a hydrogen atom at the terminal amino group, a hydrogen atom bonded to a carbon atom at the α-position to the terminal amino group, or a carbon atom adjacent to one of the amide bond groups Hydrogen atoms (eg, a hydrogen atom of a methylene group 原子 a hydrogen atom of a methylidine group), and particularly, a hydrogen atom of a terminal amino group constitutes an active hydrogen atom.
ポリエステル系樹脂では、通常、 (ポリ) ォキシアルキレン単位の 酸素原子に隣接するメチレン基の水素原子が活性水素原子を構成し 変性ポリエステル系樹脂では、 通常、 末端アミノ基の水素原子や、 末端アミノ基に対してひ—位の炭素原子に結合する水素原子、 アミ ド結合の一 N H—基に隣接する炭素原子に結合する水素原子 (メチ レン基の水素原子ゃメチリジン基の水素原子など)、特に末端アミノ 基の水素原子が活性水素原子を構成する。 In polyester-based resins, usually, (poly) oxyalkylene units The hydrogen atom of the methylene group adjacent to the oxygen atom constitutes an active hydrogen atom. In a modified polyester resin, usually, a hydrogen atom of a terminal amino group or a hydrogen atom bonded to a carbon atom at a position higher than the terminal amino group A hydrogen atom bonded to a carbon atom adjacent to one NH— group of an amide bond (eg, a hydrogen atom of a methylene group 水 素 a hydrogen atom of a methylidyne group), particularly a hydrogen atom of a terminal amino group, constitutes an active hydrogen atom.
ポリアセタール系樹脂では、 例えば、 ォキシメチレン単位の水素 原子、 末端を封鎖したアルコキシ基 (特にメトキシ基) の水素原子、 特にォキシメチレン単位の水素原子が活性水素原子を構成し、 ポリ フエ二レンエーテル系樹脂では、 例えば、 ベンゼン環に結合するメ チル基の水素原子が活性水素原子を構成し、 ポリスルフィ ド系樹脂 では、 例えば、 主鎖中のチォ基がそれぞれ活性原子を構成する。 ポリウレタン系樹脂では、 例えば、 ジイソシァネート類の主鎖又 は環に結合するアルキル基の水素原子 (特に、 ベンジル位の水素原 子)、ポリオール類やポリォキシアルキレングリコールのアルキレン 基の水素原子、 鎖伸長剤のアミノ基の水素原子などが活性水素原子 を構成する。  In a polyacetal resin, for example, a hydrogen atom of an oxymethylene unit, a hydrogen atom of an alkoxy group (especially a methoxy group) whose terminal is blocked, particularly a hydrogen atom of an oxymethylene unit constitutes an active hydrogen atom, and in a polyphenylene ether resin, For example, a hydrogen atom of a methyl group bonded to a benzene ring forms an active hydrogen atom, and in a polysulfide resin, for example, a thio group in a main chain forms an active atom. In polyurethane resins, for example, hydrogen atoms of alkyl groups (particularly, hydrogen atoms at the benzyl position) bonded to the main chain or ring of diisocyanates, hydrogen atoms of alkylene groups of polyols and polyoxyalkylene glycols, chains The hydrogen atom of the amino group of the extender constitutes an active hydrogen atom.
ポリオレフイン系樹脂では、 例えば、 ポリオレフインの主鎖を構 成するメチレン基の水素原子、 前記主鎖から分岐するメチル基の水 素原子などが活性水素原子を構成する。熱可塑性エラストマ一では、 例えば、 軟質相を構成するォキシアルキレン単位の水素原子が活性 水素原子を構成してもよい。  In the polyolefin resin, for example, a hydrogen atom of a methylene group constituting the main chain of the polyolefin, a hydrogen atom of a methyl group branched from the main chain, and the like constitute an active hydrogen atom. In the thermoplastic elastomer, for example, a hydrogen atom of an oxyalkylene unit constituting the soft phase may constitute an active hydrogen atom.
アミノ系樹脂では、 例えば、 アミノ基 (例えば、 メラミン、 グァ ナミンなどを構成するァミノ基など) などが活性水素原子を構成す る。 エポキシ系樹脂では、 例えば、 エポキシ基を構成する炭素原子 に結合する水素原子などが活性水素原子を構成する。  In the amino resin, for example, an amino group (for example, an amino group constituting melamine, guanamine, etc.) constitutes an active hydrogen atom. In the epoxy resin, for example, a hydrogen atom bonded to a carbon atom constituting the epoxy group constitutes an active hydrogen atom.
樹脂部材を形成するための樹脂組成物 (特に架橋性基を有する樹 脂) は、 架橋を促進するための架橋促進剤を含んでいてもよい。 架 橋促進剤は樹脂の種類に応じて選択することができ、 例えば、 榭脂 が架橋性官能基を有する樹脂である場合には、 酸類、 塩基類や硬化 剤 (有機系硬化剤、 無機系硬化剤など) などを用いると架橋 (又は 硬化) を著しく促進できる。 The resin composition for forming the resin member (particularly, a resin having a crosslinkable group) may contain a crosslinking accelerator for promoting crosslinking. The crosslinking accelerator can be selected according to the type of resin, for example, resin When is a resin having a crosslinkable functional group, crosslinking (or curing) can be remarkably promoted by using an acid, a base, or a curing agent (such as an organic curing agent or an inorganic curing agent).
このような架橋促進剤には、 ラジカル発生剤 (後述するラジカル 発生剤など)、 酸類 (酢酸などの脂肪酸類、 p —トルエンスルホン酸 などのスルホン酸類、 安息香酸などの芳香族脂肪酸類などの有機酸 類、 塩酸などの無機酸類など)、 塩基類 (トリエチルァミンなどの脂 肪族ァミン、 ァニリンなどの芳香族ァミン、 ピリジンなどのへテロ 環式ァミンなど)、有機系硬化剤 [多価カルボン酸又はその酸無水物 (例えば、 ダリオキザール、 マロンジアルデヒド、 ダルタルアルデ ヒド、 テレフタルアルデヒドなど)、複数のアルデヒド基を有する化 合物、 エポキシ化合物 (例えば、 アルキレングリコールジグリシジ ルェ一テル、 ポリォキシアルキレンダリコールジグリシジルエーテ ル、 グリセロールトリグリシジルエーテル、 トリメチロールプロパ ントリダリシジルエーテルなどの複数のエポキシ基を有する化合物 など)、 窒素含有化合物 (例えば、 尿素樹脂、 グアナミン樹脂、 メラ ミン樹脂等のアミノ樹脂、 前記 (7 ) ポリウレタン系樹脂の項に記 載のジァミン類など)、メチロール基又はアルコキシメチル基を有す る化合物 (例えば、 N—メチロール (メタ) アクリルアミ ド基を有 する重合体など)、 ポリイソシァネートなど]、 無機系硬化剤 [ホウ 酸又はホウ酸塩(ホウ砂など)、 ジルコニウム化合物、 チタニウム化 合物、 アルミニウム化合物、 リン化合物、 シランカップリング剤な ど]、 硬化触媒 (有機スズ化合物、 有機アルミニウム化合物など) な どが含まれる。 これらの架橋促進剤は単独で又は二種以上組み合わ せてもよい。  Examples of such a cross-linking accelerator include radical generators (radical generators described below), acids (fatty acids such as acetic acid, sulfonic acids such as p-toluenesulfonic acid, and aromatic fatty acids such as benzoic acid). Acids, inorganic acids such as hydrochloric acid, etc.), bases (aliphatic amines such as triethylamine, aromatic amines such as aniline, heterocyclic amines such as pyridine), organic curing agents [polyvalent carboxylic acid] Acids or acid anhydrides thereof (eg, dalioxal, malondialdehyde, daltaraldehyde, terephthalaldehyde, etc.), compounds having a plurality of aldehyde groups, epoxy compounds (eg, alkylene glycol diglycidyl ether, polyoxyalkylene) Dalicol diglycidyl ether, glycerol triglycidyl ether, A compound having a plurality of epoxy groups such as methylolpropanthridicidyl ether; a nitrogen-containing compound (for example, an amino resin such as a urea resin, a guanamine resin, a melamine resin, etc .; described in (7) Polyurethane resin). Diamines, etc.), compounds having a methylol group or an alkoxymethyl group (eg, a polymer having an N-methylol (meth) acrylamide group, etc.), polyisocyanates, etc.), inorganic curing agents [ Boric acid or borate (borax, etc.), zirconium compounds, titanium compounds, aluminum compounds, phosphorus compounds, silane coupling agents, etc.], curing catalysts (organotin compounds, organoaluminum compounds, etc.) It is. These crosslinking accelerators may be used alone or in combination of two or more.
また、 樹脂部材を形成するための樹脂組成物は、 種々の添加剤、 例えば、 フィラー又は補強剤、 安定剤 (紫外線吸収剤、 酸化防止剤、 熱安定剤)、 着色剤、 可塑剤、 滑剤、 難燃剤、 帯電防止剤などを含ん でいてもよい。 [ゴム部材 (加硫ゴム部材)] In addition, the resin composition for forming the resin member includes various additives such as a filler or a reinforcing agent, a stabilizer (an ultraviolet absorber, an antioxidant, and a heat stabilizer), a coloring agent, a plasticizer, a lubricant, It may contain flame retardants, antistatic agents and the like. [Rubber members (vulcanized rubber members)]
(ゴム)  (Rubber)
ゴム部材 (加硫ゴム部材) は、 加硫剤とゴムとを含有するゴム組 成物を成形 (加硫) することにより得られる。 本発明では種々のゴ ムを強固に接合できるので、 前記ゴムの種類は特に制限されない。 ゴムとしては、 ジェン系ゴム、 ォレフィン系ゴム、 アクリル系ゴ ム、 フッ素ゴム、 シリコーン系ゴム、 ウレタン系ゴム、 ェピクロ口 ヒドリンゴム (ェピクロロヒドリン単独重合体 C 0、 ェピクロロヒ ドリンとエチレンォキサイ ドとの共重合体 E C 0、 ァリルグリシジ ルエーテルをさらに共重合させた共重合体など)、クロロスルホン化 ポリエチレン、 プロピレンォキシドゴム (GPO;)、 エチレン一酢酸 ビニル共重合体 (E AM)、 ポリノルポルネンゴム、 及びこれらの変 性ゴム (酸変性ゴムなど) などが例示できる。 これらのゴムは単独 で又は二種以上組み合わせて使用できる。 これらのゴムのうち、 通 常、 ジェン系ゴム、 ォレフィン系ゴム、 アクリル系ゴム、 フッ素ゴ ム、 シリコーン系ゴム、 ウレタン系ゴムなどが実用的な観点から広 く使用される。  The rubber member (vulcanized rubber member) is obtained by molding (vulcanizing) a rubber composition containing a vulcanizing agent and rubber. In the present invention, since various rubbers can be firmly joined, the type of the rubber is not particularly limited. Examples of the rubber include gen-based rubber, olefin rubber, acrylic rubber, fluoro rubber, silicone rubber, urethane rubber, epichlorohydrin rubber (epichlorohydrin homopolymer C0, epichlorohydrin and ethylene oxide) EC0, copolymers obtained by further copolymerizing aryl glycidyl ether, etc.), chlorosulfonated polyethylene, propylene oxide rubber (GPO;), ethylene monoacetate vinyl copolymer (E AM), polynor Examples thereof include polene rubber and modified rubbers thereof (acid-modified rubber and the like). These rubbers can be used alone or in combination of two or more. Of these rubbers, generally, gen rubber, olefin rubber, acrylic rubber, fluorine rubber, silicone rubber, urethane rubber and the like are widely used from a practical viewpoint.
ジェン系ゴムには、例えば、天然ゴム(NR)、ィソプレンゴム I R)、 イソブチレンイソプレンゴム (プチルゴム) ( I I R)、 ブ夕ジ ェンゴム (B R)、 クロロプレンゴム (CR) などのジェン系単量体 の重合体;ァクリロニトリルブタジエンゴム (二トリルゴム) (NB R)、 二トリルクロロプレンゴム (NCR)、 二トリルイソプレンゴ ム (N I R) などのアクリロニトリル—ジェン共重合ゴム ; スチレ ンブタジエンゴム (S B R、 例えば、 スチレンとブタジエンとのラ ンダム共重合体、 スチレンブロックとブタジエンブロックとで構成 された S Bブロック共重合体など)、 スチレンクロロプレンゴム (S CR)、 スチレンイソプレンゴム (S I R) などのスチレン一ジェン 共重合ゴムなどが含まれる。 ジェン系ゴムには、 水添ゴム、 例えば、 水素添加二トリルゴム (HNB R) なども含まれる。 スチレン—ジ ェン共重合ゴムはランダム共重合体であってもよく、 プロック共重 合体であってもよい。 スチレン—ジェン共重合ゴム中のスチレン成 分の割合は、 例えば、 1 0〜 80重量%、 好ましくは 20〜70重 量%、 さらに好ましくは 30〜 60重量% (例えば、 40〜5 0重 量%) 程度であってもよい。 Gen-based rubbers include, for example, polymers of gen-based monomers such as natural rubber (NR), isoprene rubber IR), isobutylene isoprene rubber (butyl rubber) (IIR), bush gen rubber (BR), and chloroprene rubber (CR). Acrylonitrile-butadiene rubber (nitrile rubber) (NBR), nitrile chloroprene rubber (NCR), nitrile isoprene rubber (NIR) and other acrylonitrile-gen copolymer rubbers; styrene butadiene rubber (SBR, Random copolymers of styrene and butadiene, SB block copolymers composed of styrene and butadiene blocks, etc.), styrene-one copolymers such as styrene chloroprene rubber (SCR) and styrene isoprene rubber (SIR) Rubber and the like are included. Gen-based rubber also includes hydrogenated rubber, for example, hydrogenated nitrile rubber (HNBR). Styrene-di The ene copolymer rubber may be a random copolymer or a block copolymer. The proportion of the styrene component in the styrene-gen copolymer rubber is, for example, 10 to 80% by weight, preferably 20 to 70% by weight, and more preferably 30 to 60% by weight (for example, 40 to 50% by weight). %).
ォレフィン系ゴムとしては、例えば、エチレンプロピレンゴム(E PM)、 エチレン一プロピレン—ジェンゴム (EPDMなど)、 ポリ ォクテ二レンゴムなどが例示できる。  Examples of the olefin rubber include, for example, ethylene propylene rubber (EPM), ethylene-propylene-gen rubber (such as EPDM), and polypropylene rubber.
ァクリル系ゴムには、 アクリル酸アルキルエステルを主成分とす るゴム、 例えば、 アクリル酸アルキルエステルと塩素含有架橋性単 量体との共重合体 ACM、 ァクリル酸アルキルエステルとァクリ口 二トリルとの共重合体 ANM、 ァクリル酸アルキルエステルとカル ポキシル基及び Z又はエポキシ基含有単量体との共重合体、 ェチレ ンァクリルゴムなどが例示できる。  Acrylic rubbers include rubbers containing alkyl acrylate as a main component, for example, copolymer ACM of alkyl acrylate and chlorine-containing crosslinkable monomer, and copolymer of alkyl acrylate and alkyl nitrile. Copolymer ANM, a copolymer of an alkyl acrylate and a monomer containing a carboxyl group or Z or an epoxy group, and ethylene acryl rubber can be exemplified.
フッ素ゴムとしては、 フッ素含有単量体を用いたゴム、 例えば、 フッ化ビニリデンとパ一フルォロプロペンと必要により四フッ化工 チレンとの共重合体 F KM、 四フッ化工チレンとプロピレンとの共 重合体、 四フッ化工チレンとパーフルォロメチルビニルエーテルと の共重合体 F F KMなどが例示できる。  Examples of the fluorine rubber include rubbers containing a fluorine-containing monomer, for example, a copolymer of vinylidene fluoride and polyfluoropropene and, if necessary, a copolymer of ethylene tetrafluoride FKM, and a copolymer of ethylene tetrafluoride and propylene And FF KM, a copolymer of tetrafluoroethylene and perfluoromethyl vinyl ether.
シリコーンゴム (Q) は、 式: RaS i〇(4— a)/2で表される単位で 構成されたオルガノポリシロキサンである。 式中、 Rは、 例えば、 メチル基、 ェチル基、 プロピル基、 ブチル基などの C!-!oアルキル 基、 3—クロ口プロピル基、 3, 3, 3—トリフルォロプロピル基 などのハロゲン化 C!-!oアルキル基、 ビニル基、 ァリル基、 ブテニ ル基などの C2_10 アルケニル基、 フエニル基、 トリル基、 ナフチル 基などの C6_12 ァリール基、 シクロペンチル基、 シクロへキシル基 などの C3_1() シクロアルキル基、 ベンジル基、 フエネチル基などのSilicone rubber (Q) is of the formula: R a S I_〇 (4- a) / 2 organopolysiloxane composed of units represented by. In the formula, R is a halogen such as a C!-! O alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a 3-chloropropyl group, and a 3,3,3-trifluoropropyl group. of C -!! o alkyl group, hexyl vinyl group, Ariru group, C 2 _ 10 alkenyl groups such as Buteni group, phenyl group, a tolyl group, C 6 _ 12 Ariru group such as a naphthyl group, a cyclopentyl group, cyclohexylene C 3 _ 1 () cycloalkyl group such group, a benzyl group, such as phenethyl
C6-12ァリール一 Ci-4アルキル基などが挙げられる。 式中、 係数 a は 1. 9〜2. 1程度である。 好ましい Rは、 メチル基、 フエニル 基、 アルケニル基 (ビニル基など)、 フルォロ C^eアルキル基であ る。 C 6 -12 aryl and Ci- 4 alkyl groups. Where the coefficient a is about 1.9 to 2.1. Preferred R is a methyl group, phenyl Group, alkenyl group (vinyl group, etc.) and fluoro C ^ e alkyl group.
シリコーンゴムの分子構造は、 通常、 直鎖状であるが、 一部分岐 構造を有していてもよく、 分岐鎖状であってもよい。 シリコーンゴ ムの主鎖は、 例えば、 ジメチルポリシロキサン鎖、 メチルビ二ルポ リシロキサン鎖、 メチルフエ二ルポリシロキサン鎖、 これらのシロ キサン単位の共重合体鎖 [ジメチルシロキサンーメチルビ二ルシロ キサン共重合体鎖、 ジメチルシロキサン一メチルフエニルシロキサ ン共重合体鎖、 ジメチルシロキサン一メチル (3 , 3 , 3—トリフ ルォロプロピル) シロキサン共重合体鎖、 ジメチルシロキサンーメ チルピニルシロキサン一メチルフエニルシロキサン共重合体鎖な ど] で構成できる。 シリコーンゴムの両末端は、 例えば、 トリメチ ルシリル基、 ジメチルビニルシリル基、 シラノール基、 トリ C j— 2 アルコキシシリル基などであってもよい。 The molecular structure of the silicone rubber is usually linear, but may have a partially branched structure or may be a branched chain. The main chain of the silicone rubber is, for example, a dimethylpolysiloxane chain, a methylvinylpolysiloxane chain, a methylphenylpolysiloxane chain, or a copolymer chain of these siloxane units [dimethylsiloxane-methylvinylsiloxane copolymer. Copolymer chain, dimethylsiloxane-methylphenylsiloxane copolymer chain, dimethylsiloxane-methyl (3,3,3-trifluoropropyl) siloxane copolymer chain, dimethylsiloxane-methylpinylsiloxane-methylphenylsiloxane Copolymer chain, etc.]. Both ends of the silicone rubber may be, for example, a trimethylsilyl group, a dimethylvinylsilyl group, a silanol group, a tri-C j- 2 alkoxysilyl group, or the like.
シリコーンゴム (Q) には、 例えば、 メチルシリコーンゴム (M Q), ピニルシリコーンゴム ( V M Q;)、 フエニルシリコーンゴム ( P MQ)、 フエ二ルビニルシリコーンゴム (PVMQ)、 フッ化シリコ ーンゴム (FVMQ) などが含まれる。 さらに、 シリコーン系ゴム には、 上記高温加硫型 HTV (High Temperature Vulcanizable) の 固形ゴム に限 らず、 室温加硫型 R T V ( Room Temperature Vulcanizable ) 又 は低温加硫型 L T V ( Low Temperature Vulcanizable) シリコーンゴム、 例えば、 液状又はペースト状ゴム も含まれる。  Silicone rubber (Q) includes, for example, methyl silicone rubber (MQ), pinyl silicone rubber (VMQ;), phenyl silicone rubber (P MQ), phenyl vinyl silicone rubber (PVMQ), fluorinated silicone rubber ( FVMQ). Silicone rubber is not limited to the above-mentioned high temperature vulcanizable HTV (High Temperature Vulcanizable) solid rubber, but may be room temperature vulcanized RTV (Room Temperature Vulcanizable) or low temperature vulcanized LTV (Low Temperature Vulcanizable) silicone. Rubber, for example, liquid or pasty rubber is also included.
ウレタンゴム (U) としては、 例えば、 ポリエステル型ウレタン エラストマ一、 ポリエーテル型ウレタンエラストマ一などが含まれ る。  Examples of the urethane rubber (U) include a polyester type urethane elastomer and a polyether type urethane elastomer.
変性ゴムとしては、 酸変性ゴム、 例えば、 カルポキシル化スチレ ンブタジエンゴム (X— S B R;)、 カルボキシル化二トリルゴム (X 一 NB R)、カルボキシル化工チレンプロピレンゴム(X— E P (D) M)などの力ルポキシル基又は酸無水物基を有するゴムが含まれる。 (加硫剤) Examples of the modified rubber include acid-modified rubbers such as carboxylated styrene butadiene rubber (X-SBR;), carboxylated nitrile rubber (X-NBR), and carboxylated ethylene propylene rubber (X-EP (D) Rubbers having a carboxylic group or an acid anhydride group such as M) are included. (Vulcanizing agent)
前記ゴムは種々の加硫剤で加硫でき、 加硫剤の種類は特に制限さ れない。 例えば、 加硫剤としては、 硫黄、 硫黄含有化合物などの硫 黄系加硫剤、 非硫黄系加硫剤 (例えば、 有機過酸化物などのラジカ ル発生剤系加硫剤) のいずれも使用できる。 硫黄としては、 粉末硫 黄、 沈降硫黄、 コロイ ド硫黄、 不溶性硫黄、 高分散性硫黄などが例 示できる。  The rubber can be vulcanized with various vulcanizing agents, and the type of the vulcanizing agent is not particularly limited. For example, as the vulcanizing agent, sulfur vulcanizing agents such as sulfur and sulfur-containing compounds, and non-sulfur vulcanizing agents (for example, radical generating vulcanizing agents such as organic peroxides) are used. it can. Examples of sulfur include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, and highly dispersible sulfur.
硫黄系加硫剤のうち硫黄含有化合物には、 例えば、 塩化硫黄 (一 塩化硫黄、 二塩化硫黄など)、 ジチォ複素環化合物 (4, 4 ' ージチ オモルホリンなどのジチォ基含有化合物)、メルカプト基含有トリア ジン類 (2—ジ— n—ブチルアミノー 4, 6—ジメルカプト— S— 卜リアジン、 2 , 4, 6—トリメルカプト一 S—トリアジンなどの メルカプト基含有化合物など)、 チウラム類(テトラメチルチウラム モノスルフィ ド(TMTM)、テトラメチルチウラムジスルフィ ド(T MTD)、 テトラェチルチウラムジスルフイ ド (TETD)、 テトラ ブチルチウラムジスルフィ ド (TB TD)、 ジペンタメチレンチウラ ムテトラスルフィ ド(D P TT)など)、ジチォカルパミン酸塩類(ジ メチルジチォカルパミン酸、 ジェチルジチォカルパミン酸などのジ 0 }_4アルキルジチォ力ルバミン酸と、 アル力リ金属 (ナトリゥム、 カリウムなど)、 遷移金属 (鉄、 銅、 亜鉛など)、 周期表 6 B族元素 (セレン、 テルルなど) などの金属との塩など)、 チアゾ―ル類 (2 一メルカプトべンゾチアゾール、 2— (4 ' —モルホリノジチォ) ベンゾチアゾールなど) などが含まれる。 Among sulfur-based vulcanizing agents, the sulfur-containing compounds include, for example, sulfur chloride (sulfur monochloride, sulfur dichloride, etc.), dithio heterocyclic compounds (dithio group-containing compounds such as 4,4′-dithiomorpholine), and mercapto group-containing compounds. Triazines (such as mercapto group-containing compounds such as 2-di-n-butylamino-4,6-dimercapto-S-triazine, 2,4,6-trimercapto-S-triazine), and thiurams (tetramethylthiuram monosulfuric acid) (TMTM), tetramethylthiuram disulfide (T MTD), tetraethylthiuram disulfide (TETD), tetrabutylthiuram disulfide (TB TD), dipentamethylenethiuram tetrasulfide (DP TT), etc.) , Jichiokarupamin acid salts (di-methyl di Chio Scarpa Min acid, di 0} _4 alkyl such geminal chill di Chio Scarpa Min acid Salts of dithiorubamic acid with metals such as alkali metals (sodium, potassium, etc.), transition metals (iron, copper, zinc, etc.), Periodic Table 6 Group B elements (selenium, tellurium, etc.), thiazo -2- (4'-morpholinodithio) benzothiazole, etc. (2-mercaptobenzothiazole, etc.).
好ましい加硫剤は、 広範囲の樹脂部材との組合せが可能なラジカ ル発生剤系加硫剤である。 この加硫剤は、 ラジカル発生剤として機 能し、 ゴムを活性化して強固な接合を形成する。  Preferred vulcanizing agents are radical generator-based vulcanizing agents that can be combined with a wide range of resin components. The vulcanizing agent functions as a radical generator and activates the rubber to form a strong bond.
加硫剤としてのラジカル発生剤としては、 種々のラジカル発生剤 が使用でき、 例えば、 有機過酸化物、 ァゾ化合物、 硫黄を除く硫黄 含有有機化合物などから選択できる。 なお、 硫黄は、 イオン的な反 応を引き起こし、 ラジカルの発生効率がかなり低いだけでなく、 発 生したラジカルをトラップするため、 ラジカル発生剤には含まれな い。前記ラジカル発生剤は単独で又は二種以上組合せて使用できる。 有機過酸化物としては、 過酸化ジァシル類 (ラウロイルパ一ォキ サイ ド、 ベンゾィルパーオキサイ ド、 4—クロ口ベンゾィルパ一ォ キサイ ド、 2 , 4—ジクロ口ベンゾィルパーオキサイ ドなど)、 過酸 化ジアルキル類 (ジ— t —ブチルペルォキシド、 2, 5—ジ ( t— ブチルペルォキシ) 一 2 , 5 —ジメチルへキサン、 1, 1—ビス ( t —プチルペルォキシ) — 3, 3 , 5 —トリメチルシクロへキサン、 2 , 5—ジ ( t—ブチルペルォキシ) — 2 , 5 一ジメチルへキセン — 3, 1 , 3—ビス ( t —ブチルペルォキシイソプロピル) ベンゼ ン、 ジクミルペルォキシドなど)、 過酸化アルキル類( tーブチルヒ ドロパーオキサイ ド、 クメンヒドロパーオキサイ ド、 2, 5—ジメ チルへキサン— 2, 5 —ジヒドロパーオキサイ ド、 ジイソプロピル ベンゼンヒドロパーォキサイ ドなど)、アルキリデンペルォキシド類 (ェチルメチルケトンペルォキシド、 シクロへキサノンペルォキシ ド、 1, 1 一ビス ( t 一ブチルペルォキシ) — 3 , 3 , 5—トリメ チルシクロへキサンなど)、 過酸エステル類 (過酢酸 t—プチル、 過 ピパリン酸 t —ブチルなど) などが挙げられる。 Various radical generators can be used as the radical generator as a vulcanizing agent, and examples thereof include organic peroxides, azo compounds, and sulfur excluding sulfur. It can be selected from contained organic compounds. Sulfur is not included in the radical generator because it causes an ionic reaction and not only has a very low radical generation efficiency, but also traps the generated radicals. The radical generators can be used alone or in combination of two or more. Examples of organic peroxides include diacyl peroxides (lauroyl peroxide, benzoyl peroxide, 4-chlorobenzoyl peroxide, 2,4-dichlorobenzoyl peroxide, etc.). , Dialkyl peroxides (di-t-butylperoxide, 2,5-di (t-butylperoxy) -1,2,5-dimethylhexane, 1,1-bis (t-butylperoxy) —3,3, 5—Trimethylcyclohexane, 2,5-di (t-butylperoxy) —2,5-monodimethylhexene—3,1,3-bis (t—butylperoxyisopropyl) benzene, dicumylperoxide Alkyl peroxides (t-butyl hydroperoxide, cumene hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, diisopropyl Benzene hydroperoxide, etc.), alkylidene peroxides (ethyl methyl ketone peroxide, cyclohexanone peroxide, 1,1-bis (t-butylperoxy) —3,3,5-trime Tert-butyl peracetic acid, t-butyl perpiate, etc.).
ァゾ化合物には、 ァゾビスイソプチロニトリルなどが含まれる。 なお、 前記硫黄含有有機化合物のうち、 チウラム類、 ジチォ力ルバ ミン酸塩類、 チアゾール類はラジカル発生剤として機能させること もできる。  The azo compound includes azobisisobutyronitrile and the like. Note that, among the above-mentioned sulfur-containing organic compounds, thiurams, dithiolbamates, and thiazoles can also function as radical generators.
光照射可能であれば、 ラジカル発生剤として光重合開始剤も利用 できる。 光重合開始剤としては、 例えば、 ベンゾフエノン又はその 誘導体 (3 , 3 ' ージメチル一 4—メトキシベンゾフエノン、 4 , 4—ジメトキシベンゾフエノンなど)、アルキルフエ二ルケトン又は その誘導体 (ァセトフエノン、 ジエトキシァセトフエノン、 2—ヒ ドロキシ— 2—メチルー 1—フエニルプロパン— 1—オン、 ベンジ ルジメチルケタール、 1—ヒドロキシシクロへキシルフェニルケト ン、 2—ベンジル— 2—ジメチルァミノ— 1一 (モルホリノフエ二 ル) ーブタノンなど)、 アントラキノン又はその誘導体 (2—メチル アントラキノンなど)、 チォキサントン又はその誘導体( 2—クロ口 チォキサントン、 アルキルチオキサントンなど)、 ベンゾィンエーテ ル又はその誘導体(ベンゾィン、 ベンゾィンアルキルエーテルなど), ホスフィンォキシド又はその誘導体などが例示できる。 さらに、 ラ ジカル発生剤には、 過硫酸塩 (過硫酸アンモニゥム、 過硫酸力リウ ムなど) も含まれる。 If light irradiation is possible, a photopolymerization initiator can also be used as a radical generator. Examples of the photopolymerization initiator include benzophenone or a derivative thereof (eg, 3,3′-dimethyl-14-methoxybenzophenone, 4,4-dimethoxybenzophenone), alkylphenylketone or a derivative thereof (acetophenone, diethoxya). Setofenone, 2—hi Droxy-2-methyl-1-phenylpropane-1-one, benzyldimethylketal, 1-hydroxycyclohexylphenylketone, 2-benzyl-2-dimethylamino-11- (morpholinophenyl) -butanone, etc.), Anthraquinone or a derivative thereof (such as 2-methylanthraquinone), thioxanthone or a derivative thereof (such as 2-chloro thioxanthone or alkylthioxanthone), benzoin ether or a derivative thereof (such as benzoin or benzoin alkyl ether), phosphinoxide or a derivative thereof And the like. Radical generators also include persulfates (such as ammonium persulfate and persulfate).
これらの化合物のうち好ましいラジカル発生剤は有機過酸化物で ある。  The preferred radical generator among these compounds is an organic peroxide.
加硫剤の割合は、 例えば、 未加硫ゴム 1 0 0重量部に対して、 0 . 5〜 1 5重量部程度の範囲から選択でき、 通常、 1〜 1 0重量部程 度、 好ましくは 1〜 8重量部 (例えば、 2〜 7重量部) 程度、 さら に好ましくは 3〜 5重量部程度である。  The ratio of the vulcanizing agent can be selected, for example, from a range of about 0.5 to 15 parts by weight with respect to 100 parts by weight of the unvulcanized rubber, and is usually about 1 to 10 parts by weight, preferably about 1 to 10 parts by weight. It is about 1 to 8 parts by weight (for example, 2 to 7 parts by weight), and more preferably about 3 to 5 parts by weight.
ラジカル発生剤の割合は、 未加硫ゴム 1 0 0重量部に対して、 例 えば、 0 . 5〜 1 5重量部程度の範囲から選択でき、 通常、 1〜 1 0重量部程度、 好ましくは 1〜 8重量部 (例えば、 2〜7重量部) 程度である。  The ratio of the radical generator can be selected from, for example, about 0.5 to 15 parts by weight, based on 100 parts by weight of the unvulcanized rubber, and is usually about 1 to 10 parts by weight, preferably about 1 to 10 parts by weight. It is about 1 to 8 parts by weight (for example, 2 to 7 parts by weight).
なお、 加硫剤 (例えば、 硫黄系加硫剤) は、 種々の化合物、 例え ば、 金属酸化物 (酸化亜鉛、 酸化マグネシウム、 酸化鉛などの多価 金属酸化物)、 キノンジォキシム (p—キノンジォキシム、 p, p ' —ベンゾィルキノンジォキシムなど)、ポリ ρ—ジニトロベンゼン、 変性フエノール樹脂 (アルキルフエノールホルムアルデヒド樹脂、 臭素化アルキルフエノールホルムアルデヒド樹脂など) などと組み 合わせて使用してもよい。  The vulcanizing agent (for example, sulfur-based vulcanizing agent) includes various compounds, for example, metal oxides (polyvalent metal oxides such as zinc oxide, magnesium oxide, and lead oxide), quinone dioxime (p-quinone dioxime, It may be used in combination with p, p'-benzoylquinonedioxime, polyρ-dinitrobenzene, modified phenolic resin (alkylphenol formaldehyde resin, brominated alkylphenol formaldehyde resin, etc.).
[加硫ゴム層 (又は中間層)]  [Vulcanized rubber layer (or middle layer)]
本発明では、 加硫ゴム部材と樹脂部材とを、 加硫剤により加硫し た加硫ゴム層 (加硫剤を含む未加硫ゴム組成物の加硫ゴム層又は中 聞層) を介して接合している。 このような構成では、 ゴムとゴムと が接着しやすいことを利用して、 前記加硫ゴム部材のゴムの種類や 処方などが異なっても、 幅広い樹脂と確実かつ強固に接合できる。 このことは、 既に実用化されているゴム部材について、 その処方を 変更することなく、 加硫ゴム部材と樹脂部材とが強固に接合した複 合体を容易かつ確実に製造できることを意味している。 In the present invention, the vulcanized rubber member and the resin member are vulcanized with a vulcanizing agent. (A vulcanized rubber layer or a middle layer of an unvulcanized rubber composition containing a vulcanizing agent). In such a configuration, by utilizing the fact that rubber and rubber easily adhere to each other, even if the vulcanized rubber member has a different type or prescription of rubber, it can be securely and firmly bonded to a wide range of resins. This means that a composite in which a vulcanized rubber member and a resin member are firmly joined can be easily and reliably manufactured without changing the prescription of a rubber member that has already been put into practical use.
加硫ゴム層のゴムは、 前記加硫ゴム部材と同様に広い範囲、 例え ば、 ジェン系ゴム、 ォレフィン系ゴム、 アクリル系ゴム、 フッ素ゴ ム、 シリコーン系ゴム、 ウレタン系ゴム、 ェピクロロヒドリンゴム、 クロロスルホン化ポリエチレン、 プロピレンォキシドゴム (G P O )、 エチレン—酢酸ビニル共重合体 (E A M)、 ポリノルポルネンゴム、 これらの変性ゴム (酸変性ゴムなど) などから選択できる。 これら のゴムは単独で又は二種以上組み合わせて使用できる。  The rubber in the vulcanized rubber layer has a wide range as in the case of the above-described vulcanized rubber member, for example, gen rubber, olefin rubber, acrylic rubber, fluorine rubber, silicone rubber, urethane rubber, and epichlorohydrin. Rubber, chlorosulfonated polyethylene, propylene oxide rubber (GPO), ethylene-vinyl acetate copolymer (EAM), polynorporene rubber, and modified rubbers (such as acid-modified rubber). These rubbers can be used alone or in combination of two or more.
加硫ゴム層のゴムとして、 加硫ゴム部材のゴムと同系統 (好まし くは同種) のゴムを用いると、 確実に接合強度を向上できる。 例え ば、 ゴム部材が硫黄加硫系ジェン系ゴム ( I I R, N B R, S B R など) であっても、 加硫ゴム層のゴムとして同系統 (分子構造が類 似するゴム、 例えば、 E P D Mなどのォレフィン系ゴムなど) のゴ ムを使用でき、 同一のゴムでなくとも同種 (ジェン系ゴム) のゴム を使用すると、 より高い接合強度が得られる。  If a rubber of the same type (preferably the same type) as the rubber of the vulcanized rubber member is used as the rubber of the vulcanized rubber layer, the joining strength can be reliably improved. For example, even if the rubber member is a sulfur-vulcanized gen-based rubber (IIR, NBR, SBR, etc.), the rubber of the vulcanized rubber layer is of the same type (rubber with a similar molecular structure, such as EPDM or other olefins). Rubber can be used. If the same type of rubber (gen-based rubber) is used instead of the same rubber, higher bonding strength can be obtained.
加硫剤としては、 硫黄系加硫剤 (硫黄や硫黄含有化合物) 、 ラジ カル発生剤系加硫剤 (有機過酸化物などの過酸化物系加硫剤など) のいずれであってもよいが、 加硫ゴム部材の加硫に利用される加硫 剤と同系統 (特に同種) の加硫剤を選択するのが好ましい。 硫黄系 加硫剤及びラジカル発生剤系加硫剤としては、 前記と同様の化合物 が例示できる。 好ましい加硫剤は、 広範囲の樹脂との接合が可能な ラジカル発生剤系加硫剤 (特に有機過酸化物) である。  As the vulcanizing agent, any of a sulfur-based vulcanizing agent (sulfur or a sulfur-containing compound) and a radical generator-based vulcanizing agent (a peroxide-based vulcanizing agent such as an organic peroxide) may be used. However, it is preferable to select a vulcanizing agent of the same type (particularly the same type) as the vulcanizing agent used for vulcanizing the vulcanized rubber member. Examples of the sulfur-based vulcanizing agent and the radical-generating agent-based vulcanizing agent include the same compounds as described above. Preferred vulcanizing agents are radical generator-based vulcanizing agents (particularly organic peroxides) capable of bonding with a wide range of resins.
ラジカル発生剤系加硫剤の割合は、 未加硫ゴム 1 0 0重量部に対 して、 例えば、 0 . 5〜 1 5重量部程度の範囲から選択でき、 通常、 1〜 1 0重量部程度、 好ましくは 1〜 8重量部 (例えば、 2〜 7重 量部) 程度である。 The ratio of the radical generator vulcanizing agent is 100 parts by weight of the unvulcanized rubber. Then, for example, it can be selected from a range of about 0.5 to 15 parts by weight, usually about 1 to 10 parts by weight, preferably about 1 to 8 parts by weight (for example, about 2 to 7 parts by weight). .
[加硫活性剤]  [Vulcanizing activator]
加硫ゴム部材と樹脂部材とを確実に接合するため、 加硫ゴム層、 加硫ゴム部材および樹脂部材の少なくとも 1つの層又は部材は、 加 硫活性剤を含む組成物で形成するのが有利である。 すなわち、 前記 加硫ゴム層を形成するための未加硫ゴム組成物、 加硫ゴム部材及び 樹脂部材のうち少なくとも 1つの成分は、 加硫活性剤を含んでいて もよい。 加硫活性剤は、 通常、 少なくとも未加硫ゴム組成物 (中間 層用組成物)又は樹脂部材のいずれか一方に含有されていてもよい。 特に、 少なくとも未加硫ゴム組成物 (中間層用組成物) にラジカル 発生剤系加硫剤と共に加硫活性剤(硬化剤などと称する場合もある) を含有させると、 加硫活性剤が、 ゴムの加硫を促進するのみならず、 中間層のゴム分子と樹脂部材の樹脂分子との架橋を促進するため、 加硫ゴム部材と樹脂部材との接合をより容易にする。 例えば、 樹脂 がポリアミド系樹脂であるとき、 ラジカル発生剤と加硫活性剤とを 組み合わせて用いると、 中間層を介して樹脂部材と加硫ゴム部材と の間で架橋反応が進行し、 両者を確実かつ強固に結合できる。 なお、 加硫活性剤は、 ゴムの加硫促進とゴムと樹脂との間の架橋形成に必 要な量が存在すればよく、 必要以上の添加はゴムや樹脂の物性の低 下を招く場合があるので、 適宜、 適正な添加量を選択できる。  In order to securely join the vulcanized rubber member and the resin member, at least one layer or member of the vulcanized rubber layer, the vulcanized rubber member and the resin member is preferably formed of a composition containing a vulcanization activator. It is. That is, at least one component of the unvulcanized rubber composition, the vulcanized rubber member, and the resin member for forming the vulcanized rubber layer may include a vulcanization activator. Usually, the vulcanization activator may be contained in at least one of the unvulcanized rubber composition (composition for the intermediate layer) and the resin member. In particular, when at least the unvulcanized rubber composition (composition for the intermediate layer) contains a vulcanization activator (sometimes referred to as a curing agent) together with a radical generator vulcanizing agent, the vulcanization activator becomes In addition to accelerating the vulcanization of the rubber, the cross-linking between the rubber molecules of the intermediate layer and the resin molecules of the resin member is promoted, so that the bonding between the vulcanized rubber member and the resin member is made easier. For example, when the resin is a polyamide resin, when a radical generator and a vulcanization activator are used in combination, a crosslinking reaction proceeds between the resin member and the vulcanized rubber member via an intermediate layer, and both are reacted. Can be connected securely and firmly. The vulcanization activator only needs to be present in an amount necessary for accelerating the vulcanization of the rubber and forming a cross-link between the rubber and the resin. Therefore, an appropriate amount can be selected as appropriate.
前記加硫活性剤としては、 炭素 -炭素二重結合 (重合性不飽和結 合) を有する有機化合物 〔例えば、 ピニル系単量体 (ジビ二ルペン ゼンなど)、 ァリル系単量体 (ジァリルフタレート、 トリアリルホス フェート、 トリァリル (イソ) シァヌレートなど)、 (メタ) ァクリ ル系単量体など〕、 マレイミ ド系化合物などが挙げられる。 これらの 加硫活性剤は単独で又は二種以上組み合わせて使用できる。 加硫活 性剤としては、 通常、 2以上の複数の重合性基 (重合性不飽和結合) を有する多官能重合性化合物が使用される。 Examples of the vulcanization activator include an organic compound having a carbon-carbon double bond (polymerizable unsaturated bond) [for example, a pinyl-based monomer (such as divinylbenzene) or an acryl-based monomer (such as divinylbenzene)]. Ryl phthalate, triallyl phosphate, triaryl (iso) cyanurate, etc.), (meth) acrylic monomers, etc.), and maleimide compounds. These vulcanizing activators can be used alone or in combination of two or more. As the vulcanizing activator, usually, two or more polymerizable groups (polymerizable unsaturated bonds) Is used.
(メタ) アクリル系単量体としては、 例えば、 二官能性 (メタ) ァクリレート類 [エチレングリコ一ルジ (メタ) ァクリレート、 プ ロピレングリコ一ルジ (メタ) ァクリレート、 1, 4一ブタンジォ ールジ (メタ) ァクリレート、 へキサンジオールジ (メタ) ァクリ レート、 ネオペンチルダリコールジ (メタ) ァクリレートなどの C (Meth) acrylic monomers include, for example, bifunctional (meth) acrylates [ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,4-butanediol (meta) C, such as acrylate, hexanediol di (meth) acrylate, and neopentyl dalichol di (meth) acrylate
2- 1 0 アルキレンダリコールジ (メタ) ァクリレート ; ジエチレング リコールジ (メタ) ァクリレー卜、 トリエチレングリコールジ (メ 夕) ァクリレート、 ポリエチレングリコールジ (メタ) ァクリレー ト、 ジプロピレングリコ一ルジ (メタ) ァクリレート、 トリプロピ レングリコールジ (メタ) ァクリレート、 ポリプロピレングリコ一 ルジ (メタ) ァクリレート、 ポリテトラメチレングリコール.ジ (メ 夕) ァクリレートなどのポリ C 2_4アルキレングリコ一ルジ (メタ) ァクリレート、 グリセリンジ (メタ) ァクリレート、 トリメチロー ルプロパンジ (メタ) ァクリレート、 ペン夕エリスリ トールジ (メ 夕) ァクリレート、 ビスフエノール Aの C 2_4アルキレンォキサイ ド 付加体のジ (メタ) ァクリレートなど〕、 三官能性又は多官能性 (メ 夕) ァクリレート類 [グリセリントリ (メタ) ァクリレート、 トリ メチロールェ夕ントリ (メタ) ァクリレート、 トリメチロールプロ パントリ (メタ) ァクリレート、 ペン夕エリスリ トールトリ (メタ) ァクリレート、 ペンタエリスリ トールテトラ (メタ) ァクリレート、 ジペン夕エリスリ トールテトラ (メタ) ァクリレート、 ジペンタエ リスリ トールへキサ (メタ) ァクリレートなど] などが例示できる。 複数のマレイミ ド基を有するマレイミド化合物は、 ポリアミンと 無水マレイン酸との反応により得ることができる。 マレイミ ド系化 合物には、 例えば、 芳香族ビスマレイミド (N, N ' — 1 , 3—フ ェニレンジマレイミ ド、 N , N ' - 1 , 4—フエ二レンジマレイミ ド、 Ν, Ν ' — 3 —メチル一 1, 4一フエ二レンジマレイミド、 4 , 4 ' —ビス (Ν, Ν, 一マレイミ ド) ジフエニルメタン、 4, 4 ' 一ビス (N, N, 一マレイミ ド) ジフエニルスルホン、 4 , 4, ― ビス (N, Ν ' 一マレイミ ド) ジフエエルエーテルなど)、 脂肪族ビ スマレイミ ド (Ν, Ν ' — 1, 2—エチレンビスマレイミ ド、 Ν , Ν ' — 1 , 3 —プロピレンビスマレイミ ド、 Ν, Ν ' — 1 , 4—テ トラメチレンビスマレイミドなど) などが例示できる。 2-10 Alkylene glycol di (meth) acrylate; diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, dipropylene glycol (meth) acrylate, Poly C 2 _ 4 alkylene glycol di (meth) acrylate, glycerin di (meth) such as propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate Akurireto, Torimechiro Rupuropanji (meth) Akurireto, pen evening erythritol Toruji (main evening) Akurireto, the C 2 _ 4 alkylene O wherein de adduct of bisphenol a di (meth) Akurireto etc. , Trifunctional or polyfunctional (meth) acrylates [glycerin tri (meth) acrylate, trimethylol ester (meth) acrylate, trimethylolpropanetri (meth) acrylate, penyerythritol tri (meth) acrylate, pentaerythritol Thortetra (meth) acrylate, dipentyl erythritol, tetra (meth) acrylate, dipentaerythritolhexa (meth) acrylate, etc.]. A maleimide compound having a plurality of maleimide groups can be obtained by reacting a polyamine with maleic anhydride. Maleimide compounds include, for example, aromatic bismaleimides (N, N'-1,3-phenylenediimide, N, N'-1,4-phenylenediimide, Ν, Ν '— 3 —Methyl-1,4-phenylenedimaleimide, 4, 4' —Bis (Ν, Ν, maleimide) diphenylmethane, 4, 4 ' 1-bis (N, N, 1-maleimide) diphenylsulfone, 4,4, -bis (N, Ν'-maleimide) diphenyl ether, etc.), aliphatic bismale-imide (Ν, Ν '), 1, 2 — Ethylene bismaleimide, Ν, Ν '— 1, 3 — propylene bismaleimide, Ν, Ν' — 1, 4-tetramethylene bismaleimide, etc.).
好ましい加硫活性剤は、 一分子中に複数 (例えば、 2〜6個、 特 に 3〜6個程度) の炭素一炭素二重結合 (重合性不飽和結合) を有 する化合物、 例えば、 トリアリル (イソ) シァヌレート、 二官能乃 至多官能性 (メタ) ァクリレート (特に三官能性又は多官能性 (メ 夕) ァクリレート)、 芳香族マレイミ ド化合物などが含まれる。 本発明において加硫活性剤の添加は必須ではない。 例えば、 架橋 性基を有する樹脂や架橋性基の数、 使用するゴム材料の種類によつ ては、 加硫活性剤が存在しなくても両部材の接合は可能である。 し かし、 多くの場合、 ゴム部材と樹脂部材とを確実に接合するため、 加硫活性剤を添加する方が有利である。 加硫活性剤は、 中間層 (ゴ ム層) の未加硫ゴム (又は未加硫ゴム組成物) 及び樹脂 (又は樹脂 組成物) のうち少なくともいずれか一方の成分に添加する場合が多 く、 双方の成分に添加してもよい。 さらに、 前記加硫ゴム部材を形 成するためのゴム (未加硫ゴム) に加硫活性剤を添加してもよい。 なお、樹脂が、 架橋性不飽和結合含有基を有する樹脂である場合は、 樹脂成分に加硫活性剤を添加することにより、 樹脂一ゴム間の架橋 を活性化させ、 樹脂部材と中間層との接合を強固にできる場合が多 い。  Preferred vulcanization activators are compounds having a plurality of (for example, about 2 to 6, especially about 3 to 6) carbon-carbon double bonds (polymerizable unsaturated bonds) in one molecule, such as triallyl. (Iso) cyanurate, bifunctional to polyfunctional (meth) acrylate (especially trifunctional or polyfunctional (meth) acrylate), and aromatic maleimide compounds. In the present invention, the addition of a vulcanization activator is not essential. For example, depending on the number of resins having a crosslinkable group, the number of crosslinkable groups, and the type of rubber material used, joining of both members is possible without the presence of a vulcanizing activator. However, in many cases, it is more advantageous to add a vulcanization activator in order to securely join the rubber member and the resin member. The vulcanizing activator is often added to at least one of the unvulcanized rubber (or unvulcanized rubber composition) and the resin (or resin composition) of the intermediate layer (the rubber layer). And may be added to both components. Further, a vulcanization activator may be added to rubber (unvulcanized rubber) for forming the vulcanized rubber member. When the resin is a resin having a crosslinkable unsaturated bond-containing group, the crosslinking between the resin and the rubber is activated by adding a vulcanizing activator to the resin component, so that the resin member and the intermediate layer can be combined with each other. In many cases, it is possible to firmly join the joints.
加硫活性剤の使用量は、 使用する加硫活性剤の種類や、 添加する 成分の種類 (未加硫ゴム及び Ζ又は樹脂) によって異なるが、 通常、 樹脂とゴムとの接着を促進可能な量、 例えば、 ゴム [加硫ゴム層を 形成するためのゴム又は加硫ゴム部材を形成するためのゴム (ゴム エレメント)] 及び樹脂 [樹脂部材を形成するための樹脂 (樹脂エレ メント)]から選択された少なくとも一種の成分 1 0 0重量部に対し て、 加硫活性剤 0. 1〜 10重量部程度、 好ましくは 0. 1〜5重 量部程度、 さらに好ましくは 0. 1〜 3重量部程度の範囲から選択 できる。 例えば、 加硫活性剤が多価アルコールのメタクリル酸エス テルである場合、 加硫活性剤の添加量は、 ゴム及び樹脂から選択さ れた少なくとも一種の成分 1 00重量部に対して 0. 1〜1 0重量 部程度、 好ましくは 0. 1〜5重量部、 さらに好ましくは 0. 1〜 3重量部、 実用的には 0. 1〜 1. 9重量部 (例えば 0. 5重量部 や 1. 0重量部) である。 また、 ゴムと樹脂の双方に添加する場合、 樹脂に対する添加量は少量であってもよく、 樹脂 10 0重量部に対 して、 加硫活性剤 0. 1〜 7重量部程度、 好ましくは 0. 1〜5重 量部程度、 さらに好ましくは 0. 1〜3重量部程度であってもよい。 なお、 加硫活性剤の添加は、 ゴム成分への添加であっても、 樹脂 成分への添加であっても、 被添加材 (ゴム又は樹脂) 100重量部 に対して 10重量部を超えることは好ましくなく、 5重量部以上の 添加は注意を要し、事前に被添加材への影響を検討する必要がある。 被添加材への影響に特段の配慮をすることなく、 ゴム部材と樹脂部 材との十分な接合強度を得るには、 加硫活性剤の添加量は、 被添加 材がゴムの場合、 。ゴム 1 00重量部に対して、 2重量部以下、 例え ば、 0. 1〜 1. 9重量部 (例えば、 0. 5〜1. 9重量部) 程度 であり、 被添加材が樹脂の場合、 樹脂 1 00重量部に対して、 5重 量部以下、 例えば、 0. 1〜5重量部 (例えば、 3〜 5重量部) 程 度である。 The amount of vulcanization activator used depends on the type of vulcanization activator used and the type of component added (unvulcanized rubber and Ζ or resin), but usually it can promote adhesion between resin and rubber Amount, for example, from rubber [rubber for forming a vulcanized rubber layer or rubber (rubber element) for forming a vulcanized rubber member] and resin [resin for forming a resin member (resin element)] For 100% by weight of selected at least one component The vulcanization activator can be selected from the range of about 0.1 to 10 parts by weight, preferably about 0.1 to 5 parts by weight, and more preferably about 0.1 to 3 parts by weight. For example, when the vulcanization activator is a polyhydric alcohol methacrylate, the amount of the vulcanization activator is 0.1 per 100 parts by weight of at least one component selected from rubber and resin. About 10 parts by weight, preferably 0.1 to 5 parts by weight, more preferably 0.1 to 3 parts by weight, practically 0.1 to 1.9 parts by weight (for example, 0.5 parts by weight or 1 part by weight) 0.0 parts by weight). When added to both the rubber and the resin, the addition amount to the resin may be small, and the vulcanization activator is 0.1 to 7 parts by weight, preferably 0 to 100 parts by weight, based on 100 parts by weight of the resin. It may be about 1 to 5 parts by weight, more preferably about 0.1 to 3 parts by weight. The addition of the vulcanization activator, whether added to the rubber component or the resin component, should exceed 10 parts by weight with respect to 100 parts by weight of the material to be added (rubber or resin). However, it is necessary to pay attention to the addition of more than 5 parts by weight, and it is necessary to examine the effect on the added material in advance. In order to obtain sufficient bonding strength between the rubber member and the resin member without giving special consideration to the influence on the material to be added, the amount of the vulcanizing activator to be added is as follows when the material to be added is rubber. 100 parts by weight of rubber, 2 parts by weight or less, for example, 0.1 to 1.9 parts by weight (for example, 0.5 to 1.9 parts by weight), and when the material to be added is resin 5 parts by weight or less, for example, 0.1 to 5 parts by weight (for example, 3 to 5 parts by weight) with respect to 100 parts by weight of the resin.
なお、 加硫活性剤をゴムに添加する場合、 加硫剤 (特にラジカル 発生剤系加硫剤) と加硫活性剤との割合は、 例えば、 前者 Z後者 = 0. 3 /Ί-20/1 (例えば、 0. 5 / 1〜 20 1 ) (重量比) 程度、 好ましくは 0. 4Z1〜 1 5Z1 (例えば、 1ノ 1〜 1 5 1) (重量比) 程度、 さらに好ましくは 0. 5ノ 1〜1 0/1 (例え ば、 2/1- 10/1) (重量比) 程度であってもよい。  When a vulcanizing activator is added to rubber, the ratio between the vulcanizing agent (particularly a radical generator vulcanizing agent) and the vulcanizing activator is, for example, the former Z the latter = 0.3 / Ί-20 / About 1 (for example, 0.5 / 1 to 201) (weight ratio), preferably about 0.4Z1 to 15Z1 (for example, 1 1 to 151) (weight ratio), more preferably 0.5 No. 1 to 10/1 (for example, 2/1 to 10/1) (weight ratio).
[加硫助剤] 本発明では、 接着の効率を高めるため、 さらに加硫助剤を用いて もよい。 ゴムや樹脂の種類によっては、 加硫助剤を添加することに より、 ゴム部材と樹脂部材の接合をより強固にできる。加硫助剤は、 中間層の未加硫ゴム (又は未加硫ゴム組成物)、加硫ゴム部材の未加 硫ゴム (又は未加硫ゴム組成物) 及び樹脂 (又は樹脂組成物) のう ち少なくともいずれかの成分に添加すればよく、 全ての成分や、 中 間層の未加硫ゴム (又は未加硫ゴム組成物) 及び樹脂 (又は樹脂組 成物) の双方の成分に添加してもよい。 通常、 加硫助剤は、 中間層 の未加硫ゴム (又は未加硫ゴム組成物) 及び樹脂 (又は樹脂組成物) のうち少なくとも一方の成分 (特に樹脂又は樹脂組成物) に添加す る場合が多い。 この場合、 必要であれば、 加硫ゴム部材の未加硫ゴ ムに加硫助剤を添加してもよい。 [Vulcanization aid] In the present invention, a vulcanization aid may be further used in order to increase the efficiency of adhesion. Depending on the type of rubber or resin, the addition of a vulcanization aid can further strengthen the joining between the rubber member and the resin member. The vulcanization aid includes the unvulcanized rubber (or unvulcanized rubber composition) of the intermediate layer, the unvulcanized rubber (or unvulcanized rubber composition) of the vulcanized rubber member, and the resin (or resin composition). It may be added to at least one of the components, and it is added to all components and to both the unvulcanized rubber (or unvulcanized rubber composition) and the resin (or resin composition) in the intermediate layer. May be. Usually, the vulcanization aid is added to at least one of the unvulcanized rubber (or the unvulcanized rubber composition) and the resin (or the resin composition) (particularly the resin or the resin composition) of the intermediate layer. Often. In this case, if necessary, a vulcanization aid may be added to the unvulcanized rubber of the vulcanized rubber member.
加硫助剤は、 樹脂やゴムの種類に応じて選択でき、 例えば、 縮合 系熱可塑性樹脂のオリゴマー (例えば、 前記ポリアミ ド系樹脂のォ リゴマー、 前記ポリエステル系樹脂のオリゴマーなどの数平均分子 量 1 0 0〜 1 0 0 0程度のオリゴマーなど。 但し、 加硫助剤として 用いる場合、 オリゴマーは必ずしも前述のような架橋性基を有して いる必要はない。), ポリアミン類 (例えば、 前記 (7 ) ポリウレタ ン系樹脂の項に記載のジァミン類など)、 ポリオール類 (例えば、 前 記 (2 ) ポリエステル系樹脂の項に記載のポリオール類など)、 多価 カルボン酸又はその酸無水物、複数のアルデヒド基を有する化合物、 エポキシ化合物、 窒素含有樹脂 (ァミノ樹脂など)、 メチロール基又 はアルコキシメチル基を有する化合物、 ポリイソシァネートなどが 例示できる。 これらの加硫助剤は、 単独で又は 2種以上を組合せて 使用してもよい。  The vulcanization aid can be selected according to the type of resin or rubber. For example, an oligomer of a condensation thermoplastic resin (for example, a number average molecular weight of the oligomer of the polyamide resin or the oligomer of the polyester resin) Oligomer of about 100 to 100. However, when used as a vulcanization aid, the oligomer does not necessarily have to have a crosslinkable group as described above.) Polyamines (for example, (7) diamines and the like described in the section of the polyurethane-based resin), polyols (for example, the polyols and the like described in the section (2) of the polyester-based resin described above), polyvalent carboxylic acids or acid anhydrides thereof, Compounds with multiple aldehyde groups, epoxy compounds, nitrogen-containing resins (such as amino resins), compounds with methylol or alkoxymethyl groups, polyiso An example is cyanate. These vulcanization aids may be used alone or in combination of two or more.
好ましい加硫助剤は、 前記式 ( 1 ) で表される活性原子のうち、 活性水素原子を一分子中に平均 2個以上有する化合物、 例えば、 縮 合系熱可塑性樹脂 (例えば.、 ポリアミ ド系樹脂、 ポリエステル系樹 脂など) のオリゴマー、 前記ポリアミン類などが例示できる。 加硫助剤の割合は、 例えば、 ゴム及び/又は樹脂 1 0 0重量部に 対し、 0 . 1〜 3 0重量部、 好ましくは 0 . 5〜 2 0重量部、 さら に好ましくは 1〜 1 5重量部程度である。 Preferred vulcanization aids are compounds having an average of two or more active hydrogen atoms in one molecule of the active atoms represented by the formula (1), for example, a condensation thermoplastic resin (for example, polyamide Oligomers, and the above-mentioned polyamines. The ratio of the vulcanization aid is, for example, 0.1 to 30 parts by weight, preferably 0.5 to 20 parts by weight, and more preferably 1 to 1 part by weight based on 100 parts by weight of the rubber and / or the resin. About 5 parts by weight.
[他の添加剤]  [Other additives]
前記加硫ゴム部材ゃ中間層を形成するためのゴム組成物には、 必 要に応じて、 種々の添加剤、 例えば、 フィラー、 可塑剤又は軟化剤、 共加硫剤 (酸化亜鉛などの金属酸化物など)、 加硫促進剤 (へキサメ チレンテトラミンゃァセトアルデヒド · アンモニアなどのアルデヒ ドとアンモニアとの反応生成物、 アルデヒドとァミンとの縮合生成 物、 グァニジン類、 チォゥレア類、 チアゾール類、 スルフェンアミ ド類、 チウラム類、 ジチォ力ルバミン酸塩類、 キサントゲン酸塩類 など)、 老化防止剤 (熱老化防止剤、 オゾン劣化防止剤、 酸化防止剤、 紫外線吸収剤など)、 粘着付与剤、 加工助剤、 滑剤 (ステアリン酸、 ステアリン酸金属塩、 ワックスなど)、 着色剤、 発泡剤、 分散剤、 難 燃剤、 帯電防止剤などを配合してもよい。  The rubber composition for forming the vulcanized rubber member / intermediate layer may contain various additives, for example, fillers, plasticizers or softeners, and co-vulcanizing agents (metals such as zinc oxide). Oxides), vulcanization accelerators (reaction products of aldehydes such as hexamethylenetetramine diacetaldehyde and ammonia with ammonia, condensation products of aldehydes and amides, guanidines, thiopereas, thiazoles, Sulfenamides, thiurams, dithiolbamates, xanthates, etc., anti-aging agents (heat aging inhibitors, ozone deterioration inhibitors, antioxidants, ultraviolet absorbers, etc.), tackifiers, processing aids , Lubricants (stearic acid, metal stearate, wax, etc.), coloring agents, foaming agents, dispersants, flame retardants, antistatic agents, etc. It may be.
前記フイラ一 (又は補強剤) には、 例えば、 粉粒状フィラー又は 補強剤 (マイ力、 クレー、 タルク、 ケィ酸類、 シリカ、 炭酸カルシ ゥム、 炭酸マグネシウム、 カーボンブラック、 フェライトなど)、 繊 維状フイラ一又は補強剤 (レーヨン、 ナイロン、 ビニロン、 ァラミ ドなどの有機繊維、 炭素繊維、 ガラス繊維などの無機繊維) などが 含まれる。  The filler (or reinforcing agent) includes, for example, powdery or granular fillers or reinforcing agents (such as my strength, clay, talc, caicic acids, silica, calcium carbonate, magnesium carbonate, carbon black, ferrite, etc.), and fibrous materials. Filaments or reinforcing agents (organic fibers such as rayon, nylon, vinylon, and aramide, and inorganic fibers such as carbon fiber and glass fiber) are included.
ゴムがシリコーンゴムである場合、 補強剤として添加される最も 一般的なフィラ一はシリカ粉末である。 一般的にシリコーンゴムに 使用されるシリカ粉末には、 湿式で製造される湿式シリカと、 乾式 で製造される乾式シリカの二種に大別される。 シリコーンゴムに適 するシリ力粉末は、 乾式シリカであり、 乾式シリカを用いると、 樹 脂部材とゴム部材との高い接合強度が得られ易い。 湿式シリカの場 合、 シリ力粉末中に含まれる水分が樹脂部材とゴム部材間の架橋を 阻害するものと考えられる。 伹し、 湿式シリカであっても致命的に ゴム部材と樹脂部材の接合を阻害するものではなく、 使用する樹脂 や使用するシリコーンゴムの種類、加硫活性剤の種類やその使用量、 成形条件などにより、湿式シリカであっても使用できる場合がある。 乾式シリカと湿式シリカとの混合使用なども許容される。 If the rubber is silicone rubber, the most common filler added as a reinforcing agent is silica powder. Generally, silica powders used for silicone rubber are roughly classified into wet silica produced by a wet process and dry silica produced by a dry process. Silicium powder suitable for silicone rubber is dry silica. When dry silica is used, high bonding strength between the resin member and the rubber member can be easily obtained. In the case of wet-type silica, it is considered that the water contained in the silica powder inhibits crosslinking between the resin member and the rubber member. Even if wet silica is fatal If it does not hinder the bonding between the rubber member and the resin member, depending on the type of resin used, the type of silicone rubber used, the type and amount of vulcanizing activator used and the molding conditions, etc., even when wet silica can be used There is. Mixed use of dry silica and wet silica is also acceptable.
可塑剤としては、 ゴム組成物に可塑性を付与可能である限り特に 制限されず、 慣用の軟化剤 (リノール酸、 ォレイン酸、 ひまし油、 パーム油などの植物油 ;パラフィン、 プロセスオイル、 エキステン ダーなどの鉱物油など)、 可塑剤 (フタル酸エステル、 脂肪族ジカル ボン酸エステル、 硫黄含有可塑剤、 ポリエステル系高分子可塑剤な ど) などが使用できる。  The plasticizer is not particularly limited as long as it can impart plasticity to the rubber composition. Conventional softeners (eg, vegetable oils such as linoleic acid, oleic acid, castor oil, and palm oil; minerals such as paraffin, process oil, and extender) Oils, etc.), and plasticizers (phthalate esters, aliphatic dicarbonate esters, sulfur-containing plasticizers, polyester polymer plasticizers, etc.) can be used.
フィラーの含有量は、 ゴム 1 0 0重量部に対して、 例えば、 0〜 3 0 0重量部程度、 好ましくは 0〜 2 0 0重量部程度、 さらに好ま しくは 0〜 1 0 0重量部程度であってもよい。 可塑剤又は軟化剤の 含有量は、 ゴム 1 0 0重量部に対して、 例えば、 0〜 2 0 0重量部 程度、 好ましくは 0〜 1 5 0重量部程度、 さらに好ましくは 0〜 1 2 0重量部程度であってもよい。 また、 共加硫剤、 老化防止剤、 加 ェ剤又は滑剤、 着色剤などの含有量は、 有効量であればよく、 例え ば、 共加硫剤の含有量は、 ゴム 1 0 0重量部に対して、 0〜 2 0重 量部程度、 好ましくは 0 . 5〜 1 5重量部程度、 さらに好ましくは 1〜 1 0重量部程度であってもよい。  The content of the filler is, for example, about 0 to 300 parts by weight, preferably about 0 to 200 parts by weight, and more preferably about 0 to 100 parts by weight, based on 100 parts by weight of the rubber. It may be. The content of the plasticizer or the softener is, for example, about 0 to 200 parts by weight, preferably about 0 to 150 parts by weight, and more preferably 0 to 120 parts by weight with respect to 100 parts by weight of the rubber. It may be about parts by weight. The content of the co-vulcanizing agent, anti-aging agent, vulcanizing agent or lubricant, coloring agent, etc. may be any effective amount. For example, the content of the co-vulcanizing agent is 100 parts by weight of rubber. To about 0 to 20 parts by weight, preferably about 0.5 to 15 parts by weight, and more preferably about 1 to 10 parts by weight.
さらに、 加硫活性剤などの活性成分を含む系 (中間層用未加硫ゴ ム組成物、 加硫ゴム部材用未加硫ゴム組成物、 樹脂部材用組成物、 特に樹脂部材用組成物) では、 安定剤と組み合わせることにより、 加熱混合過程 (例えば、 樹脂と加硫活性剤との混練過程など) にお いて重合性不飽和結合を有する加硫活性剤を用いてもゲル (又はブ ッ) の発生を抑制又は阻止できる。 そのため、 前記複合体の強度低 下や外観を損ねることなく、 加硫活性剤を有効に機能させて樹脂と ゴムとを確実にかつ強固に接合又は接着できる。このような点から、 前記安定剤は、 樹脂又はゴムを安定化してもよいが、 少なくとも加 硫活性剤を安定化するのが好ましい。 Furthermore, a system containing an active ingredient such as a vulcanization activator (unvulcanized rubber composition for an intermediate layer, unvulcanized rubber composition for a vulcanized rubber member, composition for a resin member, particularly a composition for a resin member) In this case, by using a vulcanization activator having a polymerizable unsaturated bond in a heating and mixing process (for example, a kneading process of a resin and a vulcanization activator) by combining with a stabilizer, a gel (or a block) can be obtained. ) Can be suppressed or prevented. For this reason, the vulcanization activator can be made to function effectively and the resin and the rubber can be securely and firmly bonded or adhered without lowering the strength or deteriorating the appearance of the composite. From such a point, the stabilizer may stabilize the resin or rubber. It is preferred to stabilize the sulfur activator.
安定剤としては、 酸化防止剤 (耐熱加工安定剤を含む)、 光安定剤 などが使用でき、 熱重合禁止剤 (ヒドロキノン、 メチルヒドロキノ ンなどのヒドロキノン類など) であってもよい。 酸化防止剤には、 例えば、 フエノール系酸化防止剤、 アミン系酸化防止剤、 リン系酸 化防止剤、 ィォゥ系酸化防止剤、 ヒドロキノン系酸化防止剤、 キノ リン系酸化防止剤、 ケトンアミン樹脂などが含まれる。  As the stabilizer, an antioxidant (including a heat-resistant processing stabilizer) and a light stabilizer can be used, and a thermal polymerization inhibitor (hydroquinones such as hydroquinone and methylhydroquinone) may be used. Antioxidants include, for example, phenolic antioxidants, amine antioxidants, phosphorus antioxidants, zeotype antioxidants, hydroquinone antioxidants, quinoline antioxidants, and ketone amine resins. included.
フエノール系酸化防止剤には、 ヒンダ一ドフエノール系酸化防止 剤、 例えば、 モノフエノール類、 ビスフエノール類、 多価フエノ一 ル類などが含まれる。 モノフエノール類としては、 置換基を有して いてもよいモノ又はジー t —ブチルフエノール [例えば、 2 , 6 - ジ— t 一ブチル— p—クレゾール、 2, 6—ジ一 t —ブチル一 4— ェチルフエノールなどの C i— 4 アルキルージ一 t 一ブチルフエノー ル; 2 — t—プチルー 4—メトキシフエノール、 3― tーブチルー 4—メ トキシフエノールなどの アルコキシ—モノ又はジー t —ブチルフエノール; ステアリル— /3— ( 3, 5—ジ— t —ブチル — 4—ヒドロキシフエニル) プロピオネートなどの C10_2()アルキル - (ジー t —ブチル—ヒドロキシフエニル) C 26 力ルポキシレー ト ; 2—ェチルへキシルー ( 2, 6 —ジー t —ブチル— 4—ヒドロ キシベンジルチオ) アセテートなどの C31() アルキル一 (ジ _ t 一 ブチル—ヒドロキシベンジルチオ) C2_6カルポキシレート;ジステ ァリル一 ( 3, 5—ジ— t —ブチル— 4—ヒドロキシベンジル) ホ スホネ一トなどのジ(31()— アルキル— (ジー分岐 C2_6 アルキル一 ヒドロキシベンジル) ホスホネートなど]、 C4_10アルキルチオ基を 有するフエノール [ 2, 4ージ (ォクチルチオ) メチル一 6—メチ ルフヱノール (Irganox 1520 チバガイギ一 (株) 製) など]、 ビス フエノール類と (メタ) アクリル酸とのモノエステル [例えば、 2 ― ( 2 —ヒドロキシ— 3 — t 一ブチル— 5 —メチルベンジル) — 4 —メチルー 6 ― t—プチルフエ二ルァクリレート (スミライザ一 G M 住友化学工業 (株) 製)、 2— [ 1— (2—ヒドロキシー 3— t 一プチルー 5—メチルフエニル) ェチル] — 4ーメチルー 6— t— プチルフエニルァクリレート、 2— [ 1 - (2—ヒドロキシー 3 ,The phenolic antioxidants include hindered phenolic antioxidants, for example, monophenols, bisphenols, polyvalent phenols and the like. Examples of the monophenols include mono- or di-tert-butylphenol which may have a substituent [for example, 2,6-di-t-butyl-p-cresol, 2,6-di-t-butyl-1 4 — Ci- 4 alkyldi-t-butylphenol such as ethyl phenol; 2-alkoxy-mono or di-t-butylphenol such as t-butyl-4-methoxy-phenol, 3-tert-butyl-4-methoxyphenol; stearyl- / 3 - (3, 5-di - t - butyl - 4-hydroxyphenyl) propionate C 10 _ 2 () alkyl, such as - (di t - butyl - hydroxyphenyl) C 2 - 6 force Rupokishire DOO; 2- Echiru Hexyl (2,6-di-tert-butyl-4-hydroxybenzylthio) acetate and other C 3 —1 () alkyl- (di-t-butyl-hydroxybenzylthio) C 2 _ 6 Karupokishireto; Jisute Ariru one (3, 5-di - t - butyl - 4-hydroxybenzyl) di such host Suhone one preparative (3 1 () - alkyl - (Gee branched C 2 _ 6 alkyl one etc. hydroxybenzyl) phosphonate], such as phenol having a C 4 _ 10 alkylthio group [2, 4-di (Okuchiruchio) methyl one 6- methylcarbamoyl Rufuwenoru (Irganox 1520 Ciba Geigy one Ltd.)], bis phenols and (meth ) Monoester with acrylic acid [for example, 2- (2-hydroxy-3- 3-t-butyl-5-methylbenzyl)-4-methyl-6-t-butyl phenyl acrylate (Sumilyzer-G M Sumitomo Chemical Co., Ltd.), 2— [1— (2-hydroxy-3-t-butyl-5-methylphenyl) ethyl] —4-methyl-6—t—butylphenyl acrylate, 2-—1— ( 2-hydroxy-3,
5—ジ— t一ペンチルフエ二ル) ェチル] 一 4, 6—ジ ( t 一ペン チル)フエニルァクリレート(スミライザ一 G S 住友化学工業(株) 製) などの C! アルキレンビス (モノ又はジ— t—ブチルフエノー ル) と (メタ) アクリル酸とのモノエステルなど] などが例示でき る。 C! Alkylene bis (mono or mono) such as 1,4-, 6-di (t-pentyl) phenyl acrylate (Sumilyzer-1 GS, manufactured by Sumitomo Chemical Co., Ltd.) Monoester of di-t-butylphenol) and (meth) acrylic acid, etc.].
ビスフエノール類としては、 2, 2 ' —メチレンビス (4—メチ ルー 6— t—ブチルフエノール)、 2, 2 ' ーメチレンビス (4ーェ チル— 6 - t一ブチルフエノール)、 2, 2 ' —ェチリデンビス (4, Bisphenols include 2,2'-methylenebis (4-methyl-6-t-butylphenol), 2,2'-methylenebis (4-ethyl-6-t-butylphenol), 2,2'-ethylidenebis (Four,
6—ジ— t—プチルフエノール)、 2 , 2 ' ーェチリデンビス [4, 6—ジ( t一ペンチル) フエノール〕、 4, 4 ' —ブチリデンビス ( 3 ーメチルー 6 - t—ブチルフエノ一ル)、 4, 4 ' —メチレンビス(2, 6—ジ一 t一ブチルフエノール) などの C !_6アルキレンビス (モノ 又はジー t—ブチルフエノール); 4, 4 ' ーチォビス ( 3一メチル — 6— t一ブチルフエノール) などのチォビス (モノ又はジー t 一 ブチルフエノール); ビス [ 3— (3 , 5—ジ一 t—ブチルー 4—ヒ ドロキシフエニル) プロピオン酸] 一 1, 6—へキサンジオールェ ステル、 ビス [ 3— ( 3— t—プチルー 5—メチルー 4ーヒドロキ シフエ二ル) プロピオン酸] 一 トリエチレングリコールエステル (Irganox 245 チバガイギ一 (株) 製) などの (モノ又はジ— t一 ブチル—ヒドロキシフエニル) C2_6カルボン酸—モノ乃至テトラ C 2_4アルキレンダリコールエステル; ヒドラゾビス ( 3 , 5—ジ一 t —ブチルー 4ーヒドロキシーヒドロシンナモイル) (Irganox MD - 1024 チバガイギ一 (株) 製)、 Ν, Ν' ートリメチレンビス ( 3 , 5—ジー t—プチルー 4—ヒドロキシーヒドロシンナムアミ ド)、 N, N ' 一へキサメチレンビス (3 , 5—ジ一 t—ブチル— 4ーヒドロ キシ—ヒドロシンナムアミ ド) などの (モノ又はジ一 t—プチルー ヒドロキシフエニル) c36カルボン酸と c08アルキレンジァミン とのジアミ ド ; 3, 9 一ビス { 1 , 1 一ジメチルー 2— [ β - ( 3 ― t一ブチル— 4ーヒドロキシー 5—メチルフエニル) プロピオ二 ルォキシ] ェチル } 一 2, 4 , 8, 1 0—テトラオキサスピロ [ 5, 5 ] ゥンデカン (スミライザ一 GA 8 0 住友化学工業 (株) 製) などの (モノ又はジ一 t—ブチルーヒドロキシフエニル) C36カル ボン酸とジヒドロキシヘテロ環式スピロ化合物とのジエステルなど が例示できる。 6-di-t-butylphenol), 2,2'-ethylidenebis [4,6-di (t-pentyl) phenol], 4,4'-butylidenebis (3-methyl-6-t-butylphenol), 4,4 '- methylenebis (2, 6-di-one t one-butylphenol) C _ 6 alkylene bis (such as mono- or di-t- butylphenol); 4, 4' Chiobisu (three to methyl - 6 t one-butylphenol) Thiobis (mono- or di-t-butylphenol); bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionic acid] 1,6-hexanediolester, bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionic acid] triethylene glycol ester (Irganox 245 manufactured by Ciba-Geigy Corporation) and other (mono- or di-t-butyl-hydroxy) Enyl) C 2 _ 6-carboxylic acid - mono- to tetra C 2 _ 4 alkyl render recall ester; Hidorazobisu (3, 5-di one t - butyl-4-hydroxy-hydro cinnamoyl) (Irganox MD - 1024 Ciba Geigy one Corporation ), Ν, Ν'-trimethylenebis (3,5-di-t-butyl-4-hydroxyhydrocinnamide), N, N'-hexamethylenebis (3,5-di-t-butyl) (Mono- or di-tert-butyl) such as 4-hydroxy-hydrocinnamamide Hydroxyphenyl) c 3 - - 6 carboxylic acid and c 0 8 diamine de with alkylene § Min; 3, 9 one bis {1, 1 one dimethyl 2- [β - (3 - t one-butyl - 4-hydroxy-5 —Methylphenyl) propionyloxy] ethyl} 1,2,4,8,10-tetraoxaspiro [5,5] indecan (Sumilyzer-1 GA80, manufactured by Sumitomo Chemical Co., Ltd.) - butyl chromatography hydroxyphenyl) C 3 - such as 6 Cal Bonn acid and diester of dihydroxy heterocyclic spiro compounds can be exemplified.
多価フエノール類には、 トリスフエノ一ル類 {例えば、 1, 3, 5—トリメチルー 2 , 4, 6—トリス (3 , 5—ジ— t—ブチルー 4—ヒドロキシベンジル) ベンゼン (アデカスタブ AO- 330 旭電化 工業 (株) 製) などのトリス (モノ又はジー t一ブチル—ヒドロキ シベンジル) C6_10 ァレーン; 1, 1 , 3—トリス ( 2—メチル— 4—ヒドロキシー 5— t—プチルフエニル)ブ夕ンなどのトリス(モ ノ又はジ一 t一プチル-ヒドロキシフエニル) CHアル力ン; トリ ス [ 3— (3, 5—ジ— t—ブチル— 4ーヒドロキシフエニル) プ 口ピオン酸] ダリセリンエステルなどのモノ又はジ— t一ブチルー ヒドロキシフエニル C2_6カルボン酸と C3_6アル力ントリオールと のトリエステル; 1, 3, 5—トリス (3 ', 5, ージ— t一ブチル — 4, 一ヒドロキシベンジル) — S—トリアジンー 2, 4, 6 - ( 1 H, 3 H, 5 H) トリオン (アデカスタブ AO- 20 旭電化工業 (株) 製)、 1, 3, 5—トリス (2,, 6 ' 一ジメチルー 3, —ヒドロキ シ— 4, — t一ブチルベンジル) — S—トリアジン— 2, 4, 6— ( 1 H, 3 H, 5 H) トリオンなどのトリス (モノ又はジ一 t—ブ チル一ヒドロキシベンジル) 一 S—トリアジン一トリオンなど }、 テ トラフエノール類 {例えば、 テトラキス [メチレン一 3— ( 3 ', 5 ' —ジ一 tーブチルー 4 ' —ヒドロキシフエニル) プロピオネート] メタン (Irganox 1010 チパ ·スペシャルティ · ケミカルズ (株) 製)などのモノ又はジー t一プチルーヒドロキシフエニル C3_6カル ボン酸と C 6アルカンテトラオールとのテトラエステル;ビス [ 3 : 3 ' —ビス (4 ' —ヒドロキシ— 3, - t 一ブチルフエニル) 酪酸] ダリコールエステルなどのジ (モノ又はジ— t—ブチルーヒドロキ シフエニル) C 36力ルボン酸一モノ乃至テトラ C 24アルキレング リコールエステル } などが含まれる。 Polyhydric phenols include trisphenols {for example, 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene (ADK STAB AO-330 Asahi) tris (mono or di t one-butyl, such as Denka Kogyo Co., Ltd.) - hydroxy Shibenjiru) C 6 _ 10 Aren; 1, 1, 3- tris (2-methyl - 4-hydroxy-5-t-Puchirufueniru) Bed evening Tris (mono or di-t-butyl-hydroxyphenyl) CH alkane; tris [3- (3,5-di-t-butyl-4-hydroxyphenyl) propyl ionic acid] mono- or di-like Dali serine ester - triesters of t one-butyl-hydroxyphenyl C 2 _ 6 carboxylic acids with C 3 _ 6 Al force Ntorioru; 1, 3, 5-tris (3 ', 5, over-di — T-butyl — 4, monohydroxybenzyl ) — S-triazine-2,4,6- (1H, 3H, 5H) trione (ADK STAB AO-20 manufactured by Asahi Denka Kogyo Co., Ltd.), 1,3,5-tris (2,6 ′ Dimethyl-3, -hydroxy-4, -t-butylbenzyl)-S-triazine-2,4,6- (1H, 3H, 5H) trione such as trione (mono or di-t-butyl) Hydroxybenzyl) -S-triazine-trione, etc.}, tetrafenols {eg, tetrakis [methylene-13- (3 ', 5'-di-tert-butyl-4'-hydroxyphenyl) propionate] methane (Irganox 1010 Tipa Specialty Chemicals Ltd. Co.) mono- or di-t one Petit root hydroxyphenyl C 3 _ 6 Cal such Tetraester of boric acid and C 6 alkanetetraol; bis (3: 3'-bis (4'-hydroxy-3, -t-butylphenyl) butyric acid) di (mono- or di-t-butyl) such as dalicol ester Ruhidoroki Shifueniru) C 3 - 6 force carboxylic monobasic mono- to tetra C 2 - 4 Arukirengu recall ester} and the like.
アミン系酸化防止剤には、 芳香族ァミン類、 例えば、 フエ二ルー 1—ナフチルァミン、 フエ二ルー 2—ナフチルァミン、 N, N ' - ジフエ二ルー 1, 4 一フエ二レンジァミン、 N—フエニル一 N ' — シクロへキシル一 1 , 4—フエ二レンジアミンなどが含まれる リン系酸化防止剤には、 例えば、 トリイソデシルホスファイ ト、 フエ二ルジィソデシルホスフアイト、 ジフエ二ルイソデシルホスフ アイ ト、 トリフエニルホスファイ ト、 トリス (2, 4ージ _ t—ブ チルフエニル) ホスファイト (アデカスタブ 2112旭電化工業 (株) 製)、 トリス (ノエルフエニル) ホスファイ ト、 ジノニルフエ二ルビ ス (ノニルフエニル) ホスファイ ト、 2, 2—メチレンビス (4, 6—ジ— t —ブチルフエニル) ォクチルホスファイ ト (アデカス夕 ブ HP- 10 旭電化工業 (株) 製)、 4 , 4 ' ーブチリデンビス (3— メチルー 6 _ t _ブチルフエニル) ジトリデシルホスファイト、 ト リス (2, 4 —ジ— t—ブチルフエニル) ホスフアイ ト、 トリス (2 一 t 一プチルー 4 _メチルフエニル) ホスファイ ト、 トリス (2, 4ージ一 t —ァミルフエ二ル) ホスファイ ト、 トリス (2— t—ブ チルフエニル) ホスファイ ト、 ビス ( 2— t —ブチルフエニル) フ ェニルホスファイト、 トリス [ 2— ( 1, 1—ジメチルプロピル) フエニル] ホスファイ ト、 トリス [ 2 , 4— ( 1, 1ージメチルプ 口ピル) フエニル] ホスファイ ト、 トリス ( 2—シクロへキシルフ ェニル) ホスファイ ト、 トリス ( 2— t —ブチル— 4 一フエニルフ ェニル) ホスファイ ト、 ジイソデシルペン夕エリスリ 卜一ルジホス ファイ ト、 サイクリックネオペンタンテトライルビス (ォク夕デシ ル) ホスファイ ト (アデカスタブ PEP- 8 旭電化工業 (株) 製)、 サ イクリックネオペンタンテトライルビス ( 2, 4ージ— t _ブチル フエニル) ホスファイ ト (アデカスタブ PEP- 24G 旭電化工業 (株) 製)、 サイクリックネオペンタンテトライルビス ( 2, 6 —ジー t 一 プチル— 4 一メチルフエニル) ホスフアイ ト (アデカスタブ PEP-36 旭電化工業 (株) 製) などのホスファイ ト化合物; トリェチルホス フィン、 トリプロピルホスフィン、 トリブチルホスフィン、 トリシ クロへキシルホスフィン、 ジフエ二ルビニルホスフィン、 ァリルジ フエニルホスフィン、 トリフエニルホスフィン、 メチルフエ二ルー P—ァニシルホスフィン、 p —ァニシルジフエニルホスフィン、 p —トリルジフエニルホスフィン、 ジー p —ァニシルフェニルホスフ イン、 ジ一 p —トリルフエニルホスフィン、 トリ一 m—ァミノフエ ニルホスフィン、 トリ— 2, 4 —ジメチルフエニルホスフィン、 ト リー 2 , 4, 6 —トリメチルフエニルホスフィン、 トリー o —トリ ルホスフィン、 トリ— m—トリルホスフィン、 トリ一 p —トリルホ スフイン、 トリ— o —ァニシルホスフィン、 トリ— p—ァニシルホ スフイン、 1, 4—ビス (ジフエニルホスフイノ) ブタンなどのホ スフィン化合物などが含まれる。 Amine-based antioxidants include aromatic amines, for example, phenyl-1-naphthylamine, phenyl-2-naphthylamine, N, N'-diphenyl-1,4-phenylenediamine, N-phenyl-1-N '— Phosphorus antioxidants, including cyclohexyl-1,4-phenylenediamine, etc., include, for example, triisodecyl phosphite, phenyldisodecyl phosphite, diphenyl isodecyl phosphite Ait, trifenyl phosphite, tris (2,4-di-t-butylphenyl) phosphite (ADEKA STAB 2112 made by Asahi Denka Kogyo Co., Ltd.), tris (noelphenyl) phosphite, dinonylphenylbis (nonylphenyl) Phosphite, 2,2-methylenebis (4,6-di-t-butylphenyl) octyl phosphite (Adekas HP-1 0, manufactured by Asahi Denka Kogyo Co., Ltd.), 4,4'butylidenebis (3-methyl-6_t_butylphenyl) ditridecyl phosphite, tris (2,4-di-t-butylphenyl) phosphite, tris (2 t-Phtyl-4-methylphenyl) phosphite, tris (2,4-di-t-amylphenyl) phosphite, tris (2-t-butylphenyl) phosphite, bis (2-t-butylphenyl) phenylphosphite Phyto, tris [2- (1,1-dimethylpropyl) phenyl] phosphite, tris [2,4- (1,1-dimethylpropyl) phenyl] phosphite, tris (2-cyclohexylphenyl) phosphite, Tris (2-t-butyl-4-phenylphenyl) phosphite, diisodecyl pentaerythritol diphosphine Wells, (manufactured by ADEKA STAB PEP-8 manufactured by Asahi Denka Co.) cyclic neopentanetetraylbis (O click evening deci Le) Hosufai bets, Sa Cyclic neopentanetetraylbis (2,4-di-t_butylphenyl) phosphite (ADK STAB PEP-24G manufactured by Asahi Denka Kogyo Co., Ltd.), cyclic neopentanetetraylbis (2,6-g Phosphite compounds such as butyl-4-methylphenyl) phosphite (ADEKA STAB PEP-36 manufactured by Asahi Denka Kogyo Co., Ltd.); triethylphosphine, tripropylphosphine, tributylphosphine, tricyclohexylphosphine, diphenylvinylphosphine, arylyl phosphine Phenylphosphine, triphenylphosphine, methylphenyl p-anisylphosphine, p-anisyldiphenylphosphine, p-tolyldiphenylphosphine, G-p-anisylphenylphosphine, di-p-tolylphenylphosphine, Bird m Aminophenylphosphine, tri-2,4-dimethylphenylphosphine, tri2,4,6-trimethylphenylphosphine, tree o-tolylphosphine, tri-m-tolylphosphine, tri-p-tolylphosphine, tri — Includes phosphine compounds such as —o—anisylphosphine, tri-p-anisylphosphine, and 1,4-bis (diphenylphosphine) butane.
ィォゥ系酸化防止剤には、 例えば、 ジラウリル 3 , 3—チォジブ 口ピオネート、 ジ (トリデシル) 3, 3—チォジプロピオネート、 ジミリスチル 2 , 2—チォジアセテート、 ジミリスチル 3 , 3—チ ォジプロピオネート、 ラウリルステアリル 3 , 3—チォジプロピオ ネート、 ジステアリル 3, 3—チォジプロピオネー卜などのチォジ Examples of the zwitterion-based antioxidants include dilauryl 3,3-thiodibution pionate, di (tridecyl) 3,3-thiodipropionate, dimyristyl 2,2-thiodiacetate, dimyristyl 3,3-thiodipropion Thiol, laurylstearyl 3,3-thiodipropionate, distearyl 3,3-thiodipropionate
C 24 力ルポン酸ジ C 1 0— 20 アルキルエステル; 3 , 9—ジ (ラウリ ルチオェチル) 一 2 , 4, 8 , 1 0—テトラオキサスピロ [ 5 . 5 ] ゥンデカンなどが含まれる。 C 2 - 4 force Rupon di C 1 0 - 20 alkyl ester; 3, and the like 9- di (lauryl Ruchioechiru) one 2, 4, 8, 1 0-tetraoxaspiro [5 5.] Undekan.
ヒドロキノン系酸化防止剤には、 例えば、 2 , 5—ジー t 一プチ ルヒドロキノン、 2, 5 —ジー t —アミルヒドロキノンなどが含ま れ、 キノリン系酸化防止剤には、 例えば、 6 —エトキシー 2 , 2, 4—トリメチルー 1, 2—ジヒドロキノリンなどが含まれる。 光安定剤には、 ヒンダードアミン系光安定剤 (HAL S)、 クェン チヤ一などが含まれる。 ヒンダードアミン系光安定剤 (HAL S) には、 例えば、 置換基を有していてもよいテトラメチルピペリジン (例えば、 4—メトキシー 2 , 2, 6, 6—テトラメチルピベリジ ンなどの C !-4アルコキシーテトラメチルピぺリジン; 4 _フエノキ シ一 .2, 2, 6, 6—テトラメチルピペリジンなどの C610 ァリー ルォキシーテトラメチルピペリジン; 4一ベンゾィルォキシ一 2,Hydroquinone-based antioxidants include, for example, 2,5-di-tert-butylhydroquinone, 2,5-di-t-amylhydroquinone, and quinoline-based antioxidants include, for example, 6-ethoxy 2, Includes 2,4-trimethyl-1,2-dihydroquinoline. Light stabilizers include hindered amine light stabilizers (HAL S), quenchers and the like. Hindered amine light stabilizers (HAL S) include, for example, optionally substituted tetramethylpiperidine (eg, C !! such as 4-methoxy-2,2,6,6-tetramethylpiberidine). - 4 alkoxycarbonyl Kishi tetramethyl piperidine; 4 _ Fuenoki shea one .2, 2, 6, 6-tetramethylpiperidine C, such as 6 - 10 Ari Ruo Kishi tetramethylpiperidine; 4 one Benzoiruokishi one 2,
2 , 6, 6—テトラメチルピペリジンなどの C6_10 ァロイルォキシ —テトラメチルピぺリジン ; 4—メタクリロイルォキシ一 2, 2, 6 , 6—テトラメチルピペリジン (アデカスタブ LA- 87 旭電化工 業 (株) 製)、 4ーメタクリロイルォキシ一 N—メチル— 2, 2 , 6 , 6—テトラメチルピペリジン(アデカスタブ LA- 82旭電化工業(株) 製) などの (メタ) ァクリロイルォキシ一テトラメチルピペリジン など)、置換基を有していてもよいアル力ンニ酸ジピペリジルエステ ル [例えば、 ビス (2, 2, 6, 6—テトラメチル一 4—ピベリジ ル) ォキサレート、 ビス (2, 2 , 6, 6—テトラメチル一 4—ピ ペリジル) マロネート、 ビス (2 , 2 , 6 , 6—テトラメチル— 4 —ピペリジル) アジペート、 ビス (2 , 2, 6 , 6—テトラメチル — 4ーピペリジル) セパゲート (アデカスタブ LA- 77 旭電化工業 (株) 製)、 ビス ( 1 , 2, 2, 6 , 6—ペン夕メチルー 4ーピペリ ジル) セバゲート、 ビス (N—メチルー 2, 2 , 6 , 6—テトラメ チル— 4ーピペリジル) セパケ一ト (サノール LS - 765 三共 (株) 製) などの C21() アルカン二酸ビス (テトラメチルピペリジル) ェ ステルなど]、置換基を有していてもよい芳香族ジ力.ルボン酸ジピぺ リジルエステル [例えば、 ビス ( 2, 2, 6 , 6—テトラメチル—2, 6, 6-tetramethylpiperidine C 6 _ 10 Aroiruokishi such - Tetoramechirupi Bae lysine; 4-methacryloyloxy Ruo carboxymethyl one 2, 2, 6, 6-tetramethylpiperidine (ADK STAB LA- 87 Asahi Denka Industry Co., (Meth) acryloyloxy-1-tetramethyl such as 4-methacryloyloxy-N-methyl-2,2,6,6-tetramethylpiperidine (ADEKA STAB LA-82 manufactured by Asahi Denka Kogyo KK) Piperidine, etc.), dipiperidyl ester of arnic acid optionally having a substituent [for example, bis (2,2,6,6-tetramethyl-14-piberidyl) oxalate, bis (2,2, 6,6-tetramethyl-1-piperidyl) malonate, bis (2,2,6,6-tetramethyl-4-4-piperidyl) adipate, bis (2,2,6,6-tetramethyl-4-4-piperidyl) Sepagate (ADEKA STAB LA-77, manufactured by Asahi Denka Kogyo Co., Ltd.), bis (1,2,2,6,6-pentanomethyl-4-piperidyl) sebagate, bis (N-methyl-2,2,6,6-tetrame C 2 -1 () bis (tetramethylpiperidyl) ester such as tyl-4-piperidyl) packet (Sanol LS-765 manufactured by Sankyo Co., Ltd.), etc., and may have a substituent. Aromatic dicarboxylic acid dipyridyl ester [for example, bis (2,2,6,6-tetramethyl-
4 -ピペリジル) テレフ夕レートなどの C61Q芳香族ジカルボン酸 ビス (テトラメチルピペリジル) エステルなど]、 置換基を有してい てもよぃジ (ピペリジルォキシ) アルカン [ 1, 2—ビス ( 2 , 2 , 6 , 6—テトラメチル一 4 -ピペリジルォキシ)ェ夕ンなどのジ(テ トラメチルビペリジルォキシ) (: 4アルカンなど] ; ジ (ピベリジ ルォキシカルポニル) ヒドロキシフエ二ルアルカン {例えば、 1—C 6 —1Q aromatic dicarboxylic acid bis (tetramethylpiperidyl) ester such as 4-piperidyl) terephthalate, etc., and di (piperidyloxy) alkane [1,2-bis (2 Di (te), such as 2,2,6,6-tetramethyl-1-piperidyloxy) Tramethylbiperidyloxy) (: 4 alkanes, etc.); di (piveridioxycarbonyl) hydroxyphenylalkane {for example, 1—
( 3, 5—ジ一 t—ブチル一 4—ヒドロキシフエニル) 一 1, 1一 ビス (2, 2 , 6, 6—テトラメチル— 4—ピペリジルォキシカル ポニル) ペンタン (Tinuvin 144 チバガイギー (株) 製) などのジ(3,5-di-t-butyl-1-hydroxyphenyl) 1,1,1-bis (2,2,6,6-tetramethyl-4-piperidyloxycarponyl) pentane (Tinuvin 144 Ciba-Geigy ) Made
(テ卜ラメチルピペリジルォキシカルボニル) —ヒドロキシフエ二 ルアルカンなど }、テトラ力ルポン酸ジ乃至テトラピペリジルエステ ル [例えば、 1, 2, 3, 4—ブタンテトラ力ルポン酸テトラキス(Tetramethylpiperidyloxycarbonyl) —hydroxyphenylalkane, etc.}, di- or tetrapiperidyl ester of tetrapyruponic acid [for example, 1,2,3,4-butanetetrapyrutonic acid tetrakis
(2, 2, 6, 6—テトラメチルー 4ーピペリジル) エステル (ァ デカスタブ LA- 57 旭電化工業 (株) 製) などのテトラカルボン酸 テトラキス (テトラメチルピペリジル) エステル; 1 , 2 , 3 , 4 一ブタンテトラカルボン酸ビス ( 2 , 2 , 6, 6—テトラメチル一 4―ピペリジル)一ビス(卜リデシル)エステル(アデカスタブ LA-67 旭電化工業 (株) 製)、 1, 2 , 3, 4—ブタンテトラ力ルポン酸ビ ス (N—メチル— 2, 2 , 6, 6—テトラメチルー 4ーピペリジル) 一ビス (トリデシル) エステル (アデカスタブ LA- 62 旭電化工業1,2,3,4-butane tetracarboxylic acid tetrakis (tetramethylpiperidyl) ester such as (2,2,6,6-tetramethyl-4-piperidyl) ester (Adecastab LA-57 manufactured by Asahi Denka Kogyo Co., Ltd.) Bis (2,2,6,6-tetramethyl-1-piperidyl) -bis (tridecyl) ester tetracarboxylate (ADEKA STAB LA-67, manufactured by Asahi Denka Kogyo Co., Ltd.), 1,2,3,4-butanetetra Bis (tridecyl) ester bis (tridecyl) ester (Adecastab LA-62 Asahi Denka Kogyo Co., Ltd.) (N-methyl-2,2,6,6-tetramethyl-4-piperidyl)
(株) 製) などのテトラカルボン酸ビス (テトラメチルピペリジル)Bis (tetramethylpiperidyl)
―ビス (トリ C8_20アルキル) エステル]、 C卜 4アルキレンビス (テ トラアルキルピペラジノン) [ 1, 1, 一エチレンビス ( 3 , 3 , 3 ', 3 ', 5, 5, 5,, 5 ' —ォクタメチルピペラジン一 2, 2, ージ オン) (Goodrite UV-3034 Goodrich (株) 製) などの 4アルキ レンビス(テ卜ラメチルピペラジノン)など]、高分子型 HAL S [例 えば、 Chimassorb 944LD (チパ 'スペシャルティ ·ケミカルズ (株) 製)、 Tinuvin 622LD (チバ ·スペシャルティ ·ケミカルズ (株) 製)、 アデカスタブ LA- 63 (旭電化工業(株) 製)、 アデカスタブ LA- 68 (旭 電化工業 (株) 製) など] が含まれる。 - bis (tri C 8 _ 20 alkyl) ester], C Bok 4 alkylene bis (Te tiger alkyl piperazinone) [1, 1, One ethylenebis (3, 3, 3 ', 3', 5, 5, 5 ,, 5'-octamethylpiperazine-1,2, dione) (Goodrite UV-3034 manufactured by Goodrich Co., Ltd.), etc., 4 alkylenebis (tetramethylpiperazinone), etc.] S [For example, Chimassorb 944LD (Chipa Specialty Chemicals Co., Ltd.), Tinuvin 622LD (Chiba Specialty Chemicals Co., Ltd.), ADK STAB LA-63 (Asahi Denka Kogyo Co., Ltd.), ADK STAB LA- 68 (manufactured by Asahi Denka Kogyo Co., Ltd.).
クェンチヤ一としては、 ニッケルビス (ォクチルフエ二ル) スル フイ ド、 [ 2 , 2, 一チォビス (4一 t一才クチルフエノラ一卜)] — n—ブチルァミンニッケル、 ニッケルコンプレックス一 3, 5 - ジ— t—ブチルー 4ーヒドロキシベンジル—リン酸モノエチレ一ト. ニッケルジブチルチオカーパメ一ト、 1一フエニル— 3—メチルー 4—デカノニルピラゾレートニッケルなどの有機ニッケル錯体; コ パルトジシクロへキシルジチォホスフエ一トなどの有機コバルト錯 体などが例示できる。 Quenchers include nickel bis (octylphenol) sulphide, [2,2,1-chobis (4,1 t, 1 year old octylphenol)] — n-butylamine nickel, nickel complex 1,3,5- Di-t-butyl-4-hydroxybenzyl-monoethyl phosphate. Organic nickel complexes such as nickel dibutyl thiocarbamate and 1-phenyl-3-methyl-4-decanoylpyrazolate nickel; cobalt dicyclohexyldithio. Examples thereof include organic cobalt complexes such as phosphate.
これらの安定剤は、 単独で又は 2種以上組み合わせて使用しても よい。 好ましい安定剤には、 フエノール系酸化防止剤、 HAL Sな どのラジカル捕捉能を有する安定剤が含まれる。 また、 このような ラジカル捕捉能を有する安定剤と他の安定剤とを組み合わせて使用 してもよく、 このような組合せには、 例えば、 フエノール系酸化防 止剤とィォゥ系酸化防止剤との組合せ、 フエノール系酸化防止剤と リン系酸化防止剤との組合せなどが含まれる。  These stabilizers may be used alone or in combination of two or more. Preferred stabilizers include phenolic antioxidants and stabilizers having radical scavenging ability, such as HALS. Further, a stabilizer having such a radical scavenging ability and another stabilizer may be used in combination. Such a combination includes, for example, a phenol-based antioxidant and a zeolite-based antioxidant. Combinations, combinations of phenolic antioxidants and phosphorus antioxidants, etc. are included.
安定剤の使用量は、 例えば、樹脂又はゴム 1 0 0重量部に対して、 0. 0 1〜 1 5重量部 (例えば、 0. 0 1〜 1 0重量部)、 好ましく は 0. 0 5〜 1 0重量部 (例えば、 0. 0 5〜 8重量部)、 さらに好 ましくは 0. 1〜 7重量部 (例えば、 0. 1〜 5重量部) 程度であ つてもよい。  The amount of the stabilizer used is, for example, 0.01 to 15 parts by weight (for example, 0.01 to 10 parts by weight), preferably 0.05 to 10 parts by weight, based on 100 parts by weight of the resin or rubber. It may be about 10 to 10 parts by weight (for example, 0.05 to 8 parts by weight), more preferably about 0.1 to 7 parts by weight (for example, 0.1 to 5 parts by weight).
また、 ラジカル捕捉能を有する安定剤(フエノール系酸化防止剤、 HAL Sなど) と、 他の安定剤 (リン系酸化防止剤、 硫黄系酸化防 止剤など) とを組み合わせて使用する場合、 これらの安定剤の割合 は、 前者 後者 (重量比) = 99Z1〜 2 0/ 8 0 (例えば、 9 5 5〜40Z60) 程度であってもよい。  When a stabilizer having a radical scavenging ability (phenolic antioxidant, HALS, etc.) is used in combination with another stabilizer (phosphorous antioxidant, sulfur-based antioxidant, etc.), The ratio of the stabilizer may be about the former (the weight ratio) = 99Z1 to 20/80 (for example, 9555 to 40Z60).
また、 加硫活性剤と安定剤との割合は、 加硫活性剤又は安定剤の 種類、 混合混練温度などに応じて選択でき、 前者 Z後者 (重量比) = 9 9/ 1〜 2 5 7 5、 好ましくは9 8 //2〜 3 5 6 5、 さら に好ましくは 9 7ノ 3〜4 5 / 5 5 (例えば、 9 7ノ3〜 6 0/4 0) 程度であってもよい。 The ratio between the vulcanizing activator and the stabilizer can be selected according to the type of the vulcanizing activator or the stabilizer, the mixing and kneading temperature, and the like. The former Z The latter (weight ratio) = 99/1 to 2557 5, preferably 9 8 / / 2-3 5 6 5, preferably a further 9 7 Bruno 3-4 5/5 5 (e.g., 9 7 Bruno 3-6 0/4 0) may be about.
[樹脂部材と加硫ゴム部材との組合せ]  [Combination of resin member and vulcanized rubber member]
本発明では、 樹脂部材と加硫ゴム部材との間に前記加硫ゴム層が 介在するので、 樹脂部材と加硫ゴム部材とを広い範囲で組み合わせ ても、 確実かつ強固に接合でき、 一体性の高い複合体を得ることが できる。 また、 加硫系が硫黄加硫系であっても非硫黄加硫系であつ ても、 樹脂部材と加硫ゴム部材との接合強度を向上できる。 そのた め、 樹脂部材と加硫ゴム部材との組合せは特に制限されず、 前記樹 脂とゴムとを適当に組み合わせることができる。 In the present invention, the vulcanized rubber layer is provided between the resin member and the vulcanized rubber member. Because of the interposition, even when the resin member and the vulcanized rubber member are combined in a wide range, the composite can be reliably and firmly joined, and a highly integrated composite can be obtained. Also, whether the vulcanization system is a sulfur vulcanization system or a non-sulfur vulcanization system, the bonding strength between the resin member and the vulcanized rubber member can be improved. Therefore, the combination of the resin member and the vulcanized rubber member is not particularly limited, and the resin and the rubber can be appropriately combined.
樹脂部材と加硫ゴム部材との接合において、 接合強度を高めるた めには、 .加硫ゴム層、 加硫ゴム部材および樹脂部材の少なくとも 1 つを、 加硫活性剤を含む組成物で形成するのが有利である。 例えば、 加硫ゴム層を、 加硫剤および加硫活性剤を含有する未加硫ゴム組成 物で形成し、 加硫ゴム部材および樹脂部材の少なくとも一方の部材 (特に少なくとも樹脂部材) を、 加硫活性剤を含む組成物で形成す ると、 極めて高い接合強度で樹脂部材と加硫ゴム部材とを接合でき る。  In order to increase the bonding strength when joining the resin member and the vulcanized rubber member, at least one of the vulcanized rubber layer, the vulcanized rubber member and the resin member is formed of a composition containing a vulcanizing activator. Advantageously. For example, the vulcanized rubber layer is formed of an unvulcanized rubber composition containing a vulcanizing agent and a vulcanizing activator, and at least one of the vulcanized rubber member and the resin member (particularly at least the resin member) is vulcanized. When formed from a composition containing a sulfur activator, the resin member and the vulcanized rubber member can be joined with extremely high joining strength.
なお、 樹脂部材の熱可塑性樹脂又はその組成物がポリフエ二レン ェ一テル系樹脂で構成され、 加硫ゴム層の未加硫ゴム又はその組成 物がスチレン一ジェン共重合ゴムで構成されている場合、 加硫ゴム 層は、 ラジカル発生剤 (有機過酸化物など) で加硫しても硫黄系加 硫剤で加硫しても、 高い接合強度で加硫ゴム部材と接合できる。 こ の場合、 ポリフエ二レンエーテル系樹脂はスチレン系樹脂で変性又 は改質されていてもよい。  The thermoplastic resin of the resin member or the composition thereof is composed of a polyphenylene-based resin, and the unvulcanized rubber of the vulcanized rubber layer or the composition thereof is composed of a styrene-gen copolymer rubber. In this case, the vulcanized rubber layer can be bonded to the vulcanized rubber member with a high bonding strength regardless of whether it is vulcanized with a radical generator (such as an organic peroxide) or a sulfur-based vulcanizing agent. In this case, the polyphenylene ether-based resin may be modified or modified with a styrene-based resin.
また、 硫黄系加硫剤でスチレン—ジェン共重合ゴムを加硫する場 合、 硫黄系加硫剤の使用量は、 ゴム成分 1 0 0重量部に対して、 1 〜 1 0重量部、 好ましくは 2〜 7重量部、 さらに好ましくは 3〜 5 重量部程度である。  When vulcanizing a styrene-gen copolymer rubber with a sulfur vulcanizing agent, the amount of the sulfur vulcanizing agent to be used is preferably 1 to 10 parts by weight, more preferably 100 to 100 parts by weight of the rubber component. Is about 2 to 7 parts by weight, more preferably about 3 to 5 parts by weight.
[複合体の製造方法]  [Method for producing composite]
本発明では、 加硫剤を含有する未加硫ゴム層を介して、 ゴムエレ メントと樹脂エレメントとを接触させ、 未加硫ゴム又は半加硫ゴム を加硫するとともに、 ゴムエレメントと樹脂エレメントとを成形す ることにより、 前記複合体 (すなわち、 前記未加硫ゴム層が加硫し た加硫ゴム層を介して、 前記ゴムエレメン卜の加硫ゴム部材と樹脂 エレメントの樹脂部材とが接合した樹脂 Zゴム複合体) を製造する。 代表的には、 加硫剤を含有する未加硫ゴム層を介して加硫ゴム部材 と樹脂部材を接触させ、 前記未加硫ゴム層を加熱などの手段を用い て加硫することにより加硫ゴム部材と樹脂部材とが接合した複合体 を得ることができる。 In the present invention, the rubber element and the resin element are brought into contact with each other via an unvulcanized rubber layer containing a vulcanizing agent, and the unvulcanized rubber or semi-vulcanized rubber is vulcanized. Mold Thereby, the resin Z rubber in which the vulcanized rubber member of the rubber element and the resin member of the resin element are joined via the composite (that is, the vulcanized rubber layer obtained by vulcanizing the unvulcanized rubber layer) Complex). Typically, a vulcanized rubber member is brought into contact with a resin member via an unvulcanized rubber layer containing a vulcanizing agent, and the unvulcanized rubber layer is vulcanized by heating or other means. A composite in which the vulcanized rubber member and the resin member are joined can be obtained.
前記加硫ゴム部材を構成するゴムエレメント (ゴム材) は、 加硫 を完了したゴム材であってもよく、 未加硫ゴム材 (未加硫ゴム組成 物) 又は半加硫ゴム材 (半加硫ゴム部材) であってもよい。 ゴムェ レメント (ゴム材) が未加硫ゴム組成物や半加硫ゴム部材である場 合には、 未加硫ゴム層の加硫工程で共に加硫される。 また、 樹脂部 材を構成する樹脂エレメント (樹脂材) も、 未成形樹脂組成物、 半 成形樹脂部材又は成形樹脂部材であってもよい。  The rubber element (rubber material) constituting the vulcanized rubber member may be a rubber material which has been vulcanized, and may be an unvulcanized rubber material (unvulcanized rubber composition) or a semi-vulcanized rubber material (half) (Vulcanized rubber member). When the rubber element (rubber material) is an unvulcanized rubber composition or a semi-vulcanized rubber member, both are vulcanized in the vulcanizing step of the unvulcanized rubber layer. Further, the resin element (resin material) constituting the resin member may be an unformed resin composition, a semi-molded resin member, or a molded resin member.
なお、 「加硫ゴム部材」 「ゴム部材」 「樹脂部材」 とは、 最終部 材としての所定形状に成形された部材を意味し、 「未加硫ゴム組成 物」 「未成形樹脂組成物」 とは、 特定の形状を備えていない組成物 を意味する。 さらに、 「半加硫ゴム材」 「半加硫ゴム部材」 「半成 形樹脂部材」 とは、 加工処理が施されているものの形状及び Z又は 成分が最終部材の形態を備えていない部材を意味し、 未加硫ゴム、 活性な加硫剤、 加硫活性剤や未架橋樹脂などを含んでいてもよい予 備成形体も含む。  The terms “vulcanized rubber member”, “rubber member” and “resin member” mean a member formed into a predetermined shape as a final component, and include “unvulcanized rubber composition” and “unformed resin composition”. By means a composition that does not have a particular shape. Furthermore, “semi-vulcanized rubber material”, “semi-vulcanized rubber member”, and “semi-formed resin member” refer to a member that has been processed but does not have the shape and Z or component of the form of the final member. It means unvulcanized rubber, active vulcanizing agents, and preforms which may contain vulcanizing activators and uncrosslinked resins.
前記のように、 ゴムエレメント (特に未加硫組成物及び半加硫ゴ ム部材) は、 少なくとも加硫剤 (特にラジカル発生剤系加硫剤) を 含んでいる。 さらに、 中間層との接合強度を高めるため、 ゴムエレ メント (特に未加硫組成物及ぴ半加硫ゴム部材) は、 加硫活性剤 (複 数の重合性不飽和結合を有する多官能重合性化合物) を含んでいて もよい。 各成分の割合は前記の通りである。  As described above, the rubber element (particularly, the unvulcanized composition and the semi-vulcanized rubber member) contains at least a vulcanizing agent (particularly, a radical generator-based vulcanizing agent). Further, in order to increase the bonding strength with the intermediate layer, the rubber element (particularly, the unvulcanized composition and the semi-vulcanized rubber member) is made of a vulcanization activator (a polyfunctional polymer having a plurality of polymerizable unsaturated bonds). Compound). The proportion of each component is as described above.
樹脂エレメント (特に架橋性基を有する樹脂) は、 前記のように、 架橋促進剤を含んでいてもよい。 さらに樹脂エレメント (熱可塑性 樹脂や架橋性基を有する樹脂) は、 前記のように、 加硫活性剤 (複 数の重合性不飽和結合を有する重合性化合物) を含んでいてもよい。 なお、 加硫ゴム部材と樹脂部材との接合強度を高めるため、 複数の 重合性基を有する多官能重合性化合物は、 ゴムエレメント及び樹脂 エレメントのうち少なくとも一方に含有させるのが好ましく、 双方 に含有させてもよい。 これらの成分の割合も前記の通りである。 前記未加硫ゴム層を形成するための未加硫ゴム組成物は、 少なく とも加硫剤 (特に有機過酸化物などのラジカル発生剤系加硫剤) を 含んでいればよいが、 好ましくはさらに加硫活性剤 (複数の重合性 基を有する多官能重合性化合物) を含んでいる。 未加硫ゴム組成物 において、 加硫剤、 加硫活性剤の含有量は前記の通りである。 As described above, the resin element (particularly, a resin having a crosslinkable group) A crosslinking accelerator may be included. Further, the resin element (a thermoplastic resin or a resin having a crosslinkable group) may contain a vulcanization activator (a polymerizable compound having a plurality of polymerizable unsaturated bonds) as described above. In order to increase the bonding strength between the vulcanized rubber member and the resin member, the polyfunctional polymerizable compound having a plurality of polymerizable groups is preferably contained in at least one of the rubber element and the resin element, and is contained in both. You may let it. The proportions of these components are also as described above. The unvulcanized rubber composition for forming the unvulcanized rubber layer may contain at least a vulcanizing agent (particularly a radical generator-based vulcanizing agent such as an organic peroxide). In addition, it contains a vulcanizing activator (a polyfunctional polymerizable compound having a plurality of polymerizable groups). In the unvulcanized rubber composition, the contents of the vulcanizing agent and the vulcanizing activator are as described above.
好ましい態様では、 (i) 樹脂部材を構成する樹脂は前記特定の活 性原子 (活性水素原子及びノ又は活性硫黄原子) を有する樹脂で構 成される。 (i i ) 未加硫ゴム組成物及び樹脂部材のうち少なくとも 一方の成分が、 複数の重合性基を有する多官能重合性化合物を含有 する。 さらに、 (i i i) 樹脂部材が、 熱硬化性樹脂、 又は分子中に不 飽和結合を有する樹脂で構成され、 未加硫ゴム組成物が複数の重合 性基を有する多官能重合性化合物を含有する。  In a preferred embodiment, (i) the resin constituting the resin member is a resin having the specific active atom (active hydrogen atom and hydrogen or active sulfur atom). (Ii) At least one of the unvulcanized rubber composition and the resin member contains a polyfunctional polymerizable compound having a plurality of polymerizable groups. Further, (iii) the resin member is composed of a thermosetting resin or a resin having an unsaturated bond in a molecule, and the unvulcanized rubber composition contains a polyfunctional polymerizable compound having a plurality of polymerizable groups. .
前記未加硫ゴム層は、 ゴムエレメント及び樹脂エレメントの接合 面のうち少なくとも一方の接合面に形成すればよい。 なお、 未加硫 ゴム層は、 ほぼ均一な層である場合が多いが、 加硫ゴム部材と樹脂 部材との接合を損なわない限り、 実質的に均一である必要はない。 例えば、 未加硫ゴム層は厚みが不均一な層 (例えば、 凹凸な層や点 在した層など) であってもよい。  The unvulcanized rubber layer may be formed on at least one of the bonding surfaces of the rubber element and the resin element. Although the unvulcanized rubber layer is often a substantially uniform layer, it is not necessary that the unvulcanized rubber layer be substantially uniform unless the bonding between the vulcanized rubber member and the resin member is impaired. For example, the unvulcanized rubber layer may be a layer having an uneven thickness (for example, an uneven layer or a dotted layer).
加硫成形は、 通常、 前記未加硫ゴム層を介してゴムエレメントと 樹脂エレメントとを加圧接触下で、 光照射、 特に加熱することによ り行われる。 この過程で、 未加硫ゴム組成物の加硫とともに、 加硫 ゴム部材用のゴム組成物や半加硫ゴム部材も加硫される。 また、 加 熱に伴って、 未成形樹脂組成物や半成形樹脂部材も成形され、 架橋 性基を有する榭脂は架橋し硬化させることができる。 . Vulcanization molding is usually performed by irradiating light, in particular, heating the rubber element and the resin element through the unvulcanized rubber layer under pressure contact. In this process, the rubber composition for the vulcanized rubber member and the semi-vulcanized rubber member are vulcanized together with the vulcanization of the unvulcanized rubber composition. In addition, With the heat, the unformed resin composition and the semi-formed resin member are also formed, and the resin having a crosslinkable group can be crosslinked and cured. .
前記未加硫ゴム層は、 ゴムエレメント及び/又は樹脂エレメント の接合面に介在する未加硫ゴム組成物のフィルム (シート) に限ら ず、 塗布剤により形成された塗布層であってもよい。 例えば、 塗布 剤としての液状未加硫ゴム組成物 (例えば、 未加硫ゴム組成物の溶 液、 分散液 (ェマルジヨン、 サスペンジョン) など) を、 ゴムエレ メント及び Z又は樹脂エレメントの接合面に塗布し、 必要に応じて 乾燥することにより未加硫ゴム層を形成できる。 なお、 未加硫ゴム 組成物のフィルムやシートは、 前記のように、 成形方法に応じて、 予め形成していてもよく、 加硫ゴム部材用の組成物や樹脂部材用の 組成物とともに、 未加硫ゴム組成物の共押し出しにより形成しても よい。  The unvulcanized rubber layer is not limited to a film (sheet) of the unvulcanized rubber composition interposed on the bonding surface of the rubber element and / or the resin element, and may be a coating layer formed by a coating agent. For example, a liquid unvulcanized rubber composition (for example, a solution or dispersion of an unvulcanized rubber composition (emulsion, suspension), etc.) as a coating agent is applied to the bonding surface of the rubber element and the Z or resin element. An unvulcanized rubber layer can be formed by drying if necessary. In addition, the film or sheet of the unvulcanized rubber composition may be formed in advance according to the molding method as described above, and together with the composition for the vulcanized rubber member or the composition for the resin member, It may be formed by co-extrusion of an unvulcanized rubber composition.
より具体的には、 本発明の方法には、 樹脂組成物と中間層の未加 硫ゴム組成物と加硫ゴム部材の未加硫ゴム組成物とをそれぞれ成形 しながら、 成形過程で樹脂組成物と中間層と未加硫ゴム組成物とを 接触又は合流させて、 中間層を介して樹脂部材と加硫ゴム部材とを 接合又は接着する方法(一段階法)、樹脂エレメント及びゴムエレメ ントのうち一方のエレメントを成形し (例えば、 前記樹脂部材及び 加硫ゴム部材のうち一方の部材を予め予備成形又は最終部材の形態 に成形し)、成形された一方の成形エレメントと、 中間層の未加硫ゴ ム組成物と、 他方の未成形エレメント (未成形樹脂組成物又は未加 硫ゴム組成物) とを接触させ、 未加硫ゴム組成物を成形しながら架 橋又は加硫させて、 中間層を介して樹脂部材と加硫ゴム部材とを接 合又は接着する方法(二段階法)、 中間層用未加硫ゴム組成物を介在 させた状態で、 成形樹脂エレメント (予め予備成形又は最終部材の 形態に成形された成形樹脂部材) と、 成形ゴムエレメント (予め予 備成形又は最終部材の形態に成形された成形ゴム部材) とを接触さ せ、 架橋又は加硫させて、 中間層を介して樹脂部材と加硫ゴム部材 とを接合又は接着する方法 (三段階法) などが含まれる。 More specifically, the method of the present invention includes the steps of molding a resin composition, an unvulcanized rubber composition of an intermediate layer, and an unvulcanized rubber composition of a vulcanized rubber member, respectively. Contacting or merging a material, an intermediate layer and an unvulcanized rubber composition, and joining or bonding the resin member and the vulcanized rubber member via the intermediate layer (one-step method); One of the elements is molded (for example, one of the resin member and the vulcanized rubber member is preliminarily molded or formed into a final member), and the other molded element and the intermediate layer are unformed. The vulcanized rubber composition is brought into contact with the other unmolded element (unmolded resin composition or unvulcanized rubber composition), and the uncured rubber composition is bridged or vulcanized while being molded. Resin member and vulcanized rubber via intermediate layer A method of joining or adhering to a member (two-stage method), a molding resin element (a molded resin member previously formed into a preformed or final member form) with an unvulcanized rubber composition for an intermediate layer interposed therebetween. ) And a molded rubber element (a molded rubber member preliminarily molded or formed into a final member form), cross-linked or vulcanized to form a resin member and a vulcanized rubber member via an intermediate layer. And a method of joining or bonding them (three-step method).
より具体的には、 一段階法では、 例えば、 慣用の多色成形機 (多 色射出成形機、 多層押出機など) を利用し、 樹脂組成物と中間層の 未加硫ゴム組成物と加硫ゴム部材の未加硫ゴム組成物とをそれぞれ 溶融混練しつつ所定形状の成形型に射出又は押出成形し、 樹脂組成 物及び未加硫ゴムを成形過程又は成形後に架橋又は加硫することに より複合成形体を得ることができる。 なお、 樹脂組成物と未加硫ゴ ム組成物との接触界面領域では、 樹脂組成物と未加硫ゴム組成物と が混在していてもよい。  More specifically, in the one-step method, for example, a conventional multicolor molding machine (multicolor injection molding machine, multilayer extruder, etc.) is used, and the resin composition and the unvulcanized rubber composition of the intermediate layer are vulcanized. Injecting or extruding the unvulcanized rubber composition of the vulcanized rubber member into a mold having a predetermined shape while melt-kneading the resin composition and crosslinking or vulcanizing the resin composition and the unvulcanized rubber after or during the molding process. A more composite molded article can be obtained. In the contact interface region between the resin composition and the unvulcanized rubber composition, the resin composition and the unvulcanized rubber composition may be mixed.
また、 二段階法において、 成形樹脂エレメントの成形には、 慣用 の成形機 (射出成形機、 押出成形機、 熱プレス成形機など) が使用 でき、 成形ゴムエレメントの成形には、 慣用の成形機 (射出成形機、 プレス成形機、 トランスファ成形機、 押出成形機など) が使用でき る。 例えば、 複合体の形状に対応する型 (又はキヤピティー) に成 形樹脂エレメントを収容し、 この樹脂エレメントに対して中間層用 未加硫ゴム組成物と加硫ゴム部材用未加硫ゴム組成物を射出又は押 出し、 未加硫ゴム組成物を架橋又は加硫することにより、 加硫ゴム 部材と樹脂部材とを中間層を介して接着してもよい。 また、 複合体 が二次元的な拡がりを有する板状又はシート状部材である場合、 前 記型 (又はキヤビティ一) を用いることなく、 成形樹脂エレメント に対して、 中間層用の未加硫ゴム組成物のフィルムやシートと、 加 硫ゴム部材を形成するための板状又はシート状未加硫ゴム組成物を 積層し、 架橋又は加硫させることにより複合体を製造してもよい。 なお、 成形樹脂エレメントと未加硫ゴム組成物とを接触(密着など) させる場合、 未加硫ゴム組成物中の揮発性分やガス成分を除去する ため、 熱プレス成形や射出成形などを利用して、 適宜加圧してもよ く、 減圧雰囲気下で加圧成形してもよい。  In the two-step method, a conventional molding machine (such as an injection molding machine, an extrusion molding machine, or a hot press molding machine) can be used for molding the molded resin element, and a conventional molding machine can be used for molding the molded rubber element. (Injection molding machine, press molding machine, transfer molding machine, extrusion molding machine, etc.) can be used. For example, a molded resin element is accommodated in a mold (or capty) corresponding to the shape of the composite, and the unvulcanized rubber composition for the intermediate layer and the unvulcanized rubber composition for the vulcanized rubber member are placed on the resin element. The vulcanized rubber member and the resin member may be bonded via an intermediate layer by injecting or extruding the vulcanized rubber composition and crosslinking or vulcanizing the unvulcanized rubber composition. Further, when the composite is a plate-like or sheet-like member having a two-dimensional spread, the unvulcanized rubber for the intermediate layer can be formed on the molded resin element without using the mold (or the cavity). A composite may be produced by laminating a film or sheet of the composition and a plate-shaped or sheet-shaped unvulcanized rubber composition for forming a vulcanized rubber member, followed by crosslinking or vulcanization. When the molded resin element is brought into contact with the unvulcanized rubber composition (such as close contact), hot press molding or injection molding is used to remove volatile components and gas components in the unvulcanized rubber composition. Then, pressure may be appropriately applied, or pressure molding may be performed in a reduced-pressure atmosphere.
三段階法では、 未加硫ゴム組成物のフィルム (シート) を介して、 成形樹脂エレメントと成形ゴムエレメントとを接触させ、 架橋又は 加硫させることにより複合体を得てもよく、 成形樹脂エレメント及 び成形ゴムエレメントの少なくとも一方のエレメントの接合面に未 加硫ゴム組成物の塗布液を塗布して未加硫ゴム層を形成し、 成形樹 脂エレメントと成形ゴムエレメントとを未加硫ゴム層を介して加圧 して加熱成形することにより複合体を得てもよい。 In the three-step method, a molded resin element and a molded rubber element are brought into contact with each other via a film (sheet) of an unvulcanized rubber composition, and the crosslinked or A composite may be obtained by vulcanization, and an unvulcanized rubber layer is formed by applying a coating liquid of an unvulcanized rubber composition to a bonding surface of at least one of a molded resin element and a molded rubber element. Then, the composite may be obtained by pressurizing and molding the molded resin element and the molded rubber element via the unvulcanized rubber layer.
未加硫ゴム組成物のフィルム (シート) の厚みは特に制限されず、 例えば、 0. 1〜 1 0 mm、 好ましくは 0. 5〜 5 mm、 さらに好 ましくは 0. 5〜3mm程度であってもよい。 また、 接触面又は接 合面での塗布剤の塗布量 (固形分換算) は、 例えば、 0. 1〜 5 0 0 gZm2程度、 好ましくは 1 0〜 3 0 0 gZm2程度、 特に 5 0〜 1 0 0 gZm2程度であってもよい。 The thickness of the film (sheet) of the unvulcanized rubber composition is not particularly limited, and is, for example, about 0.1 to 10 mm, preferably about 0.5 to 5 mm, and more preferably about 0.5 to 3 mm. There may be. The coating amount (in terms of solid content) of the coating agent on the contact surface or the bonding surface is, for example, about 0.1 to 500 gZm 2 , preferably about 10 to 300 gZm 2 , particularly about 50 gZm 2. It may be about 100 gZm 2 .
成形樹脂材及び成形ゴム材の架橋 (又は加硫) 温度 (又はゴム部 材と樹脂部材との接合温度) は、 例えば、 7 0〜 2 5 0 、 好まし くは 1 0 0〜 2 30 °C、 さらに好ましくは 1 50〜 2 00 °C程度の 範囲から選択できる。 ゴム Z樹脂間に作用する圧力は、 例えば、 0. l〜 3 5 0MP a、 好ましくは 1〜; 1 5 0MP a、 さらに好ましく は 2〜 1 0 OMP a程度の範囲から選択できる。  The crosslinking (or vulcanization) temperature (or the joining temperature between the rubber member and the resin member) of the molded resin material and the molded rubber material is, for example, 70 to 250, preferably 100 to 230 °. C, more preferably in the range of about 150 to 200 ° C. The pressure acting between the rubber Z resins can be selected, for example, from the range of about 0.1 to 350 MPa, preferably 1 to 150 MPa, and more preferably about 2 to 10 OMPa.
なお、 塗布剤の溶媒は、 低分子量のゴム (例えば、 液状ゴム) を 用いる場合必ずしも必要ではないが、溶剤としては、炭化水素類(脂 肪族炭化水素、 脂環族炭化水素、 芳香族炭化水素)、 アルコール類、 エステル類、 ケトン類、 エーテル類、 スルホキシド類、 アミド類ゃ これらの混合溶剤などから適当に選択できる。  The solvent of the coating agent is not always necessary when a low molecular weight rubber (for example, liquid rubber) is used, but the solvent may be a hydrocarbon (aliphatic hydrocarbon, alicyclic hydrocarbon, aromatic hydrocarbon). Hydrogen), alcohols, esters, ketones, ethers, sulfoxides, amides, and the like.
本発明では、 樹脂部材と加硫ゴム部材との間に、 加硫剤を含む未 加硫ゴム組成物の加硫層を介在させるので、 広範囲の組合せにおい て樹脂成形体と加硫ゴム成形体とが強固に接合した複合体を得るこ とができる。 また、 樹脂成形体の表面を易接着処理することなく、 榭脂成形体と加硫ゴム成形体とが強固に接合できる。 さらに、 ゴム 処方を変更することなく、 硫黄加硫系のゴム部材であっても樹脂部 材と強固に接合できる。 また、 樹脂部材と加硫ゴム部材との間に前 記未加硫ゴム組成物の加硫層が介在するので、 三次元的構造であつ ても樹脂部材と加硫ゴム部材とを強固に接合できる。 産業上の利用可能性 In the present invention, since a vulcanized layer of an unvulcanized rubber composition containing a vulcanizing agent is interposed between the resin member and the vulcanized rubber member, the resin molded body and the vulcanized rubber molded body can be used in a wide range of combinations. Thus, a complex can be obtained in which the and are firmly joined. Further, the resin molded article and the vulcanized rubber molded article can be firmly joined without subjecting the surface of the resin molded article to an easy adhesion treatment. Furthermore, it is possible to strongly bond a sulfur-vulcanized rubber member with a resin member without changing the rubber formulation. In addition, a space between the resin member and the vulcanized rubber member is provided. Since the vulcanized layer of the unvulcanized rubber composition is interposed, the resin member and the vulcanized rubber member can be firmly joined even in a three-dimensional structure. Industrial applicability
このようにして得られた複合体は、 加硫によりゴム部材と樹脂部 材とが著しく高い強度で接着している。 そのため、 樹脂の特性とゴ ムの特性とを有効に発現でき、 種々の用途、 例えば、 自動車用部品 (振動吸収ブッシュ、 スプリングプレート、 ドアロック部材、 ラジ エタ一マウントなど)、 防振ゴム、 バルブ、 電気プラグなどの種々の 部材として有利に利用できる。 実施例  In the composite thus obtained, the rubber member and the resin member are bonded with extremely high strength by vulcanization. As a result, the properties of resin and rubber can be effectively expressed, and used in various applications, such as automotive parts (vibration absorbing bushes, spring plates, door lock members, radiator mounts, etc.), anti-vibration rubber, valves It can be advantageously used as various members such as electric plugs. Example
以下に、 実施例に基づいて本発明をより詳細に説明するが、 本発 明はこれらの実施例によって限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
[樹脂部材の組成]  [Composition of resin member]
P A 6 1 2 (A 1 ) : ポリアミ ド 6 1 2 (NH2末端 ZCOOH末 端 = 1 1 (モル比)) 単独 PA 6 12 (A 1): Polyamide 6 12 (NH 2 terminal ZCOOH terminal = 1 1 (molar ratio))
P A 6 1 2 (A 1 ) の調製: へキサメチレンジァミンとドデカン ジカルボン酸の塩 8 0重量%水溶液を窒素置換したォートクレーブ 中で加圧 ( 1 7. 5 k g / c m2) 下で加熱 (2 2 0T ) し、 窒素ガ スと共に系内の水分を 4時間を要して系外に排出した。 その後 1時 間を要して徐々に昇温 (2 7 5 ) し水分を系外に排除した後、 ォ 一トクレーブの内圧を常圧に戻し、 冷却することによりポリアミ ド 6 1 2を得た。 得られたポリマーは、 数平均分子量 (Μη) 2 0 0 0 0〜 2 5 0 00、 アミノ基末端と力ルポキシル基末端の比率 = 1 / 1 (モル比) であった。 このポリマーを単独で樹脂組成物 P A 6 1 2 (A 1) として用いた。 加硫剤を有機過酸化物とした場合、 P A 6 1 2 (A 1) の活性水素の数は 1分子当たり 4個である。 PA 6 1 2 Preparation of (A 1): hexamethylene di § Min and pressurizing the salt 8 0% by weight aqueous solution in Otokurebu purged with nitrogen dodecanoic dicarboxylic acid (1 7. 5 kg / cm 2 ) heating under (220 T), and the water in the system was discharged to the outside of the system along with the nitrogen gas in 4 hours. After one hour, the temperature was gradually raised (275) to remove water out of the system, and then the internal pressure of the autoclave was returned to normal pressure, followed by cooling to obtain polyamide 612. . The obtained polymer had a number average molecular weight (Δη) of 2000 to 2500 and a ratio of an amino group terminal to a lipoxyl group terminal = 1/1 (molar ratio). This polymer was used alone as a resin composition PA612 (A1). When the vulcanizing agent is an organic peroxide, the number of active hydrogens in PA612 (A1) is four per molecule.
P A 6 1 2 (A 2 ) :ポリアミド 6 1 2 ( N H 2末端 C〇 O H末 端 = 3Z7 (モル比)) 単独 PA 6 12 (A 2): polyamide 6 1 2 (NH 2 terminal C〇OH powder Edge = 3Z7 (molar ratio) alone
PA 6 1 2 (A 2) の調製: 上記樹脂組成物 PA 6 1 2 (A 1 ) と下記樹脂組成物 (A 3 ) とを 1 Z 1の重量比で 2軸押出機を用い て混練した。 これを樹脂組成物 P A 6 1 2 (A 2) として単独で用 いた。 P A 6 1 2 (A 2 ) の活性水素の数は 1分子当たり 2. 4個 である。  Preparation of PA 6 12 (A 2): The above resin composition PA 6 12 (A 1) and the following resin composition (A 3) were kneaded at a weight ratio of 1 Z 1 using a twin screw extruder. . This was used alone as the resin composition PA 612 (A 2). The number of active hydrogen atoms in P A612 (A2) is 2.4 per molecule.
P A 6 1 2 (A 3) :ポリアミ ド 6 1 2 (NH2末端ノ COOH末 端 = 1 Z 9 (モル比)) 単独 PA 6 12 (A 3): Polyamide 6 12 (NH 2 terminal COOH terminal = 1 Z 9 (molar ratio)) alone
P A 6 1 2 (A 3) の調製: へキサメチレンジァミンとドデカン ジカルボン酸の塩 8 0重量%水溶液に所定量のドデカンジカルボン 酸を添加し、 窒素置換したォートクレーブ中で加圧 ( 1 7. 5 k Zc m2) 下に加熱 (2 2 0 ) し、 窒素ガスと共に系内の水分を 4 時間を要して系外に排出した。その後 1時間を要して徐々に昇温( 2 7 5°C) し水分を系外に排除した後、 オートクレープの内圧を常圧 に戻した。 冷却後、 ポリアミ ド 6 1 2を得た。 得られたポリマーは、 数平均分子量 (Mn) 約 2 0 0 0 0、 アミノ基末端とカルボキシル 基末端の比率 = 1 9であった。 このポリマーを単独で樹脂組成物 P A 6 1 2 (A 3) として用いた。 P A 6 1 2 (A 3) の活性水素 の数は 1分子当たり 0. 8である。 Preparation of PA612 (A3): A predetermined amount of dodecanedicarboxylic acid was added to an 80% by weight aqueous solution of hexamethylenediamine and dodecanedicarboxylic acid, and the mixture was pressurized in a nitrogen-purged autoclave (17). The system was heated under a pressure of 5 kZcm 2 ), and the water in the system was discharged together with nitrogen gas to the outside of the system in 4 hours. After one hour, the temperature was gradually increased (275 ° C) to remove water from the system, and the internal pressure of the autoclave was returned to normal pressure. After cooling, polyamide 612 was obtained. The obtained polymer had a number average molecular weight (Mn) of about 20000, and the ratio of amino terminal to carboxyl terminal = 19. This polymer was used alone as the resin composition PA612 (A3). The number of active hydrogens in PA612 (A3) is 0.8 per molecule.
P P E (B 1 ) : ポリフエ二レンエーテル樹脂  P P E (B 1): Polyphenylene ether resin
デグサ (D e g u s s a) 社製の V e s t o r a n l 9 0 0を使 用した。 1分子当たりの活性水素の数は 6個以上である。  Vestorannl900 manufactured by Degussa (Degusa) was used. The number of active hydrogens per molecule is 6 or more.
P P S (C 1 ) : ポリフエ二レンスルフイ ド樹脂  P P S (C 1): Polyphenylene sulfide resin
ポリプラスチックス (株) 製 フォートロン 0 2 2 0 A 9を使用 した。 1分子当たりの活性硫黄の数は 6以上である。  Fortron 0220 A9 manufactured by Polyplastics Co., Ltd. was used. The number of active sulfur per molecule is 6 or more.
m— P B T (0 1 ) :変性? 8丁樹脂  m— P B T (0 1): Denatured? 8 resin
m— P B T (D 1 ) の調製:蒸留精製したジメチルテレフ夕レー ト 8 8 3 gおよびブタンジオール 7 4 7 gとプチレンジオール 7 0. 4 gに酢酸カルシウム 1. 8 2 g、 酸化アンチモン 3. 64 gを加 え、 攪拌機、 窒素ガス導入管、 蒸留用側管を有し、 且つ真空系に連 結された重合管に入れた。 この重合管を油浴により 1 80 に加熱 し、 ゆっくりと窒素ガスを通しながら、 留出するメタノール量が理 論値に達したところで攪拌を開始し、 徐々に系の温度を 2 50〜2 60 °Cにまで高めると共に真空度を徐々に上げ 1 00 P a以下にま で到達させた。生成するブタンジオールを少量ずっ留出させながら、 2〜 3時間を要して縮合反応を進め、 適宜テトラクロロェタン Zフ ェノール =40Z60の混合溶媒中の相対粘度を測定し、 数平均分 子量が 1 0000に達した時点で反応を終結させた。 得られたポリ マー中の不飽和結合の濃度はポリマー 1分子当たり平均 4個、 0. 4mo l Zk gであった。 このポリマーを単独で変性 P B T樹脂組 成物 (D 1) として用いた。 m—Preparation of PBT (D 1): 883 g of distilled and purified dimethyl terephthalate, 74.7 g of butanediol and 70.4 g of butylenediol, 1.82 g of calcium acetate, 30.0 g of antimony oxide Add 64 g The mixture was placed in a polymerization tube having a stirrer, a nitrogen gas introduction tube, a distillation side tube, and connected to a vacuum system. The polymerization tube was heated to 180 in an oil bath, and while slowly passing nitrogen gas, stirring was started when the amount of methanol distilled out reached the theoretical value, and the temperature of the system was gradually increased to 250 to 260. ° C and the degree of vacuum was gradually increased to reach 100 Pa or less. The condensation reaction takes 2 to 3 hours to proceed while distilling a small amount of butanediol to be formed, and the relative viscosity in a mixed solvent of tetrachloroethane Z phenol = 40Z60 is measured as appropriate. The reaction was stopped when the volume reached 10,000. The concentration of unsaturated bonds in the polymer obtained was an average of 4 per polymer molecule, 0.4 mol Zkg. This polymer was used alone as the modified PBT resin composition (D1).
不飽和 PES (E 1):不飽和ポリエステル樹脂  Unsaturated PES (E 1): unsaturated polyester resin
不飽和 PE S (E l) の調製:無水マレイン酸 604 g、 プロピ レンダリコール 507 gをハイ ドロキノンモノメチルエーテル 0. 22 g及びエステル化触媒ジブチル錫ォキサイド 0.6 gの存在下、 常圧の窒素気流中、 180〜 1 90 °Cで脱水縮合させ、 重量平均分 子量 5800の不飽和ポリエステルを得た。 この不飽和ポリエステ ルにナフテン酸コバルト 3. 4 gを加え、 600 gのェチルメタク リレート及ぴ 1 00 gのスチレンで溶解希釈した。 この希釈液 1 0 0重量部に対し、 有機過酸化物 (日本油脂 (株) パーブチルオー) 3重量部を加えて攪拌した後、 80 条件下で硬化させ、 厚み 3m mの平板を得た。 これを不飽和ポリエステル樹脂組成物 (E 1) の 試料として用いた。  Preparation of unsaturated PE S (El): 604 g of maleic anhydride, 507 g of propylene blend, and 0.22 g of hydroquinone monomethyl ether and 0.6 g of esterification catalyst dibutyltin oxide in a nitrogen stream at normal pressure The resulting mixture was dehydrated and condensed at 180 to 190 ° C. to obtain an unsaturated polyester having a weight average molecular weight of 5,800. 3.4 g of cobalt naphthenate was added to this unsaturated polyester, and dissolved and diluted with 600 g of ethyl methacrylate and 100 g of styrene. To 100 parts by weight of the diluted solution, 3 parts by weight of an organic peroxide (Nippon Oil & Fats Co., Ltd., Perbutyl O) was added, stirred, and then cured under 80 conditions to obtain a flat plate having a thickness of 3 mm. This was used as a sample of the unsaturated polyester resin composition (E1).
メラミン (F 1 ) : メラミン樹脂  Melamine (F 1): Melamine resin
住友ベークライ ト (株) 製 「スミコン MMC— 50」 (黒着色品) を用い、 厚み 4mmの平板を作製し、 メラミン樹脂組成物 (F 1) の試料として用いた。  A flat plate having a thickness of 4 mm was prepared using "Sumicon MMC-50" (black colored product) manufactured by Sumitomo Bakelite Co., Ltd. and used as a sample of the melamine resin composition (F1).
TR I M : トリメチロールプロパントリメタクリレート [加硫ゴム層の組成] TR IM: Trimethylolpropane trimethacrylate [Composition of vulcanized rubber layer]
S B R: J S R株式会社製 「 J S R 0 2 0 2」 (スチレン含有量 4 6 )  SBR: "JSR0202" (styrene content 46) manufactured by JSR Corporation
E PDM : D SM社製 「ケルタン 5 0 9 X 1 0 0」  E PDM: D SM Company `` Keltan 509 X100 ''
NR : タイ国産 # 3  NR: Thai domestic # 3
N B R : 日本ゼオン (株) 製 「N i p o 1 1 0 4 2」  NBR: “Nipo 1 1 0 4 2” manufactured by Zeon Corporation
VMQ - 1  VMQ-1
(A) ジメチルクロロシラン (CH3) 2S i C 12と (B) メチル ビニルクロロシラン (CH3) CH2= CH- S i C 12とをモル比率 9 9. 9 8 : 0. 0 2で用い、 (C I ) 環状ジメチルシロキサン—メ チルビニルシロキサン 4量体を得た。 この (C 1 ) 4量体 1 0 0モ ルに対して、 水酸化力リウム 0. 0 0 1 1モルを添加し、 1 5 5 ° (:、 窒素雰囲気下で重合を行った。 得られた重合体 (シロキサン A) の 極限粘度 [ 7] ] (2 5 °C、 c S t ) が l o g ?7 = 7. 7であり、 この 極限粘度の値から平均分子量 2 9 0 0 0 0、 重合度 4 0 0 0程度の ポリシロキサンであると判断した。 また、 得られた重合体中のビニ ル量については、 — NMRにより定量したところ、 1 0 0繰り返 し単位のうち平均 0. 0 2個のビニル基、 すなわち、 平均して 1分 子あたり 0. 8個の二重結合を有していた。 (A) dimethylchlorosilane (CH 3) 2 S i C 12 (B) and methyl vinyl chlorosilane (CH 3) CH 2 = CH- S i C 1 2 and the molar ratio 9 9.9 8: 0.0 2 Using this, a (CI) cyclic dimethylsiloxane-methylvinylsiloxane tetramer was obtained. To 100 moles of this (C 1) tetramer, 0.0011 moles of lithium hydroxide was added, and the polymerization was carried out at a temperature of 150 ° (: nitrogen atmosphere. The intrinsic viscosity of the polymer (siloxane A) [7]] (25 ° C, c St) is log? 7 = 7.7. From the value of the intrinsic viscosity, the average molecular weight is 290,000, It was determined to be a polysiloxane having a degree of polymerization of about 400. The amount of vinyl in the obtained polymer was determined by —NMR, and it was determined that the average of 100 repeating units was 0.1%. It had 0.2 vinyl groups, ie, 0.8 double bonds per molecule on average.
また、 (A) ジメチルクロロシランと (B) メチルビニルクロロシ ランとのモル比率を、 5 0 : 5 0として (C 2) 環状ジメチルシロ キサン—メチルビニルシロキサン 4量体を得た。 この (C 2) 4量 体 1 0 0モルに対して、 水酸化カリウム 0. 4 5モルを添加して重 合した。 得られた重合体 (シロキサン B) をガスクロマトグラフィ 一(キヤピラリーカラム: J &W社 DURABONDDB_1701、注入温度: クールオンカラム方式 5 0 °C/ 3 0秒で 2 7 0 °Cまで昇温、 キヤリ ァーガス : ヘリウム 3 0 m l / i n、 検出器: F I D) により分 析したところ、 重合度は約 1 0であり、 — NMRによる分析から、 1 0 0繰り返し単位のうち平均 5 0個のビニル基、 すなわち平均し て 1分子当たり 5個の二重結合を有していた。 The molar ratio of (A) dimethylchlorosilane to (B) methylvinylchlorosilane was 50:50 to obtain (C 2) cyclic dimethylsiloxane-methylvinylsiloxane tetramer. To 100 mol of the (C 2) tetramer, 0.445 mol of potassium hydroxide was added and polymerized. The obtained polymer (siloxane B) was subjected to gas chromatography (Capillary column: DURABONDDB_1701 from J & W, injection temperature: Cool-on column method) The temperature was raised to 270 ° C in 50 ° C / 30 seconds, and the carrier gas was: Analysis by helium (30 ml / in, detector: FID) revealed a degree of polymerization of about 10. — NMR analysis showed that an average of 50 vinyl groups out of 100 repeating units, And Had 5 double bonds per molecule.
これらシロキサン Aとシロキサン Bをモル比で 47 : 5 3の比率 で混合し、 平均して 1分子当たりの二重結合量が 3個の VMQ— 1 として用いた。  Siloxane A and Siloxane B were mixed at a molar ratio of 47:53, and used as VMQ-1 having an average of three double bonds per molecule.
FKM : フッ素ゴム ダイキン工業株式会社製 Dai EL G 902 D C P : ジクミルバ一ォキサイ ド 日本油脂 (株) 製 「パークミ ル D」  FKM: Fluororubber Daikin G Daikin Co., Ltd. Dai EL G902 DCP: Dicumylvanoxide Nippon Yushi Co., Ltd. “Parkmill D”
S :硫黄粉末 鶴見化学工業 (株) 製 「# 3 2 5」  S: Sulfur powder “# 32 5” manufactured by Tsurumi Chemical Industry Co., Ltd.
[ゴム部材の組成]  [Composition of rubber member]
E P DM:上記 E P DM 1 0 0重量部、 Ves tenamer8012 (Degussa 社製) 3重量部、 カーボンブラック [N 5 8 2] (旭力一ボン (株) 製) 3重量部、 珪酸マグネシウム 「ミストロンべ一パー」 (日本ミス トロン (株) 製) 25重量部、 ナフテン系オイル 「ダイアナプロセ スオイル N S 1 0 0」 (出光興産 (株) 製) 5重量部、 パラフィンォ ィル 「ダイアナプロセスオイル PW 3 8 0」 (出光興産 (株) 製) 1 4重量部、 ポリエチレンダリコ一ル (4 0 0 0) 1重量部、 ステ アリン酸 0. 5重量部、 酸化亜鉛 3重量部。  EP DM: 100 parts by weight of EP DM, 3 parts by weight of Ves tenamer8012 (manufactured by Degussa), 3 parts by weight of carbon black [N582] (manufactured by Asahi Rikibon Co., Ltd.), 3 parts by weight of magnesium silicate One part "(manufactured by Nippon Mistron Co., Ltd.) 25 parts by weight, naphthenic oil" Diana Process Oil NS100 "(manufactured by Idemitsu Kosan Co., Ltd.) 5 parts by weight, paraffin oil" Diana Process Oil PW 3 " 800 ”(manufactured by Idemitsu Kosan Co., Ltd.) 14 parts by weight, 1 part by weight of polyethylene diol (400), 0.5 part by weight of stearic acid, 3 parts by weight of zinc oxide.
S B R 6 0/NBR 40 :上記 S B R 6 0重量部、 上記 NBR 4 0重量部、 力一ボンブラック 「N 5 8 2」 (旭カーボン (株) 製) 5 0重量部、ナフテン系オイル「ダイアナプロセスオイル N S 1 0 0」 (出光興産 (株) 製) 1 0重量部、 ステアリン酸 1重量部、 酸化亜 鉛 5重量部、 安定剤 「ノンフレックス RD」 (精ェ化学 (株) 製) 1 重量部、 安定剤 「サンタイ ト 2」 (精ェ化学 (株) 製) 1重量部、 安 定剤 「サントガード PV I」 (フレキシス (株) 製) 0. 2重量部、 加硫促進剤 「ノクセラー C Zj (大内新興化学 (株) 製) 1重量部、 加硫促進剤 「ノクセラ— T S」 (大内新興化学 (株) 製) 0. 3重量 部。  SBR 60 / NBR 40: 60 parts by weight of the above SBR, 40 parts by weight of the above NBR, 50 parts by weight of Ribon Bon Black "N582" (manufactured by Asahi Carbon Co., Ltd.), Diana Process Naphthenic oil Oil NS 100 "(manufactured by Idemitsu Kosan Co., Ltd.) 10 parts by weight, stearic acid 1 part by weight, zinc oxide 5 parts by weight, stabilizer" Nonflex RD "(manufactured by Seikagaku Co., Ltd.) 1 weight 1 part by weight, Stabilizer "Santite 2" (manufactured by Seikagaku Co., Ltd.) 0.2 part by weight of stabilizer "Santogard PV I" (manufactured by Flexis Co., Ltd.), Noxeller vulcanization accelerator C Zj (Ouchi Shinko Chemical Co., Ltd.) 1 part by weight, vulcanization accelerator "Noxera-TS" (Ouchi Shinko Chemical Co., Ltd.) 0.3 part by weight.
S B R 6 0 ZNR4 0 : 上記 S B R 6 0重量部、 上記 NR 40重 量部、 力一ボンブラック 「旭 # 7 0」 (旭カーボン (株) 製) 4 5重 量部、 ナフテン系オイル 「ダイアナプロセスオイル N S 1 0 0」 (出 光興産 (株) 製) 1 0重量部、 安定剤 「ノクラック ODA」 (大内新 興化学 (株) 製) 1. 5重量部、 安定剤 「ノクラック 2 24」 (大内 新興化学(株)製) 1. 5重量部、 加硫促進剤「ノクセラー DM」 (大 内新興化学 (株) 製) 0. 6重量部、 加硫促進剤 「ノクセラー C Z」 (大内新興化学 (株) 製) 0. 3重量部、 加硫促進剤 「ノクセラ— TS」 (大内新興化学 (株) 製) 0. 3重量部、 ステアリン酸 1. 5 重量部、 酸化亜鉛 5重量部。 SBR 60 ZNR40: SBR 60 parts by weight above, NR 40 parts by weight above, Ribon Bon Black "Asahi # 70" (made by Asahi Carbon Co., Ltd.) 4 5 layers Amount, naphthenic oil "Diana Process Oil NS 100" (made by Idemitsu Kosan Co., Ltd.) 10 parts by weight, stabilizer "Nocrack ODA" (made by Ouchi Shinko Chemical Co., Ltd.) 1.5 weight Parts, stabilizer “Nocrack 224” (Ouchi Shinko Chemical Co., Ltd.) 1.5 parts by weight, vulcanization accelerator “Noxeller DM” (Ouchi Shinko Chemical Co., Ltd.) 0.6 parts by weight 0.3 parts by weight of vulcanization accelerator "NOXELLA CZ" (manufactured by Ouchi Shinko Chemical Co., Ltd.) 0.3 parts by weight of stearic acid 1.5 parts by weight, zinc oxide 5 parts by weight.
VMQ- 2 :東レダウコ一ニング (株) 製 「シリコーンゴム S H 8 5 1」  VMQ-2: "Silicone rubber SH851" manufactured by Toray Dow Corning Co., Ltd.
F KM : フッ素ゴム 「D a i E L G 9 0 2」 (ダイキン工業 (株) 製) 1 0 0重量部、 力一ポンプラック 「T h e rma x N 9 90」 C a n c a r b社製 1 0重量部  FKM: Fluoro rubber “DaiELG902” (manufactured by Daikin Industries, Ltd.) 100 parts by weight, power pump rack “Thermax x N990” Cancarb 10 parts by weight
BR : ブタジエンゴム 「BUNA C B 1 0 0」 (バイエル社製) 1 00重量部、 ナフテン系オイル 「ダイアナプロセスオイル N S— 24」 (出光興産 (株) 製) 1 0重量部、 力一ポンプラック 「ショウ ブラック N 3 3 0 T」 (昭和キヤポッ ト (株) 製) 5 0重量部、 安定 剤 「V u 1 k a η ο X 40 1 0 Ν Α」 (バイエル社製) 1. 5重量 部、 加硫促進剤 「ノクセラー C Z」 (大内新興化学 (株) 製) 1重量 部、 ステアリン酸 2重量部、 酸化亜鉛 5重量部。  BR: Butadiene rubber “BUNA CB 100” (manufactured by Bayer) 100 parts by weight, naphthenic oil “Diana Process Oil NS-24” (manufactured by Idemitsu Kosan Co., Ltd.) 100 parts by weight, power pump rack Shaw Black N330T (manufactured by Showa Kyapot Co., Ltd.) 50 parts by weight, Stabilizer "Vu1 kaηοX4010 Ν Α" (manufactured by Bayer AG) 1.5 parts by weight Sulfur accelerator Accelerator Noxeller CZ (Ouchi Shinko Chemical Co., Ltd.) 1 part by weight, stearic acid 2 parts by weight, zinc oxide 5 parts by weight.
DC P : ジクミルパ一ォキサイド 日本樹脂 (株) 製 「パークミ ル DJ  DCP: Jikmil Parkside Nippon Resin Co., Ltd. “Parkmill DJ”
S : 硫黄粉末 鶴見化学工業 (株) 製 「# 3 2 5」  S: Sulfur powder “# 32 5” manufactured by Tsurumi Chemical Industry Co., Ltd.
TA I C : トリァリルイソシァヌレート  TA I C: Triaryl isocyanurate
[試験方法]  [Test method]
上記各樹脂組成物を射出成形法又は圧縮成形法により成形し、 肉 厚 4mmの平板を得た。  Each of the above resin compositions was molded by an injection molding method or a compression molding method to obtain a flat plate having a thickness of 4 mm.
この平板の一方の面に下記方法により調製したゴム溶液をバーコ 一夕一を利用して厚み 1 0 0 に塗布した。 ゴム溶液を塗布した 後、 1時間放置し、 溶剤を風乾させ、 未加硫ゴム層を形成した。 こ の未加硫ゴム層を有する樹脂平板を、 未加硫ゴム層を上面として 1 7 0 に温調された金型に入れ、 未加硫ゴム層の上に上記ゴム部材 を構成する未加硫ゴム組成物を所定量乗せ、 ゴム部材の肉厚が 3 m mとなるように圧縮成形しながら、 未加硫ゴム層と未加硫のゴム部 材を加硫接着させた。 加熱時間はおおよそ 1 5分であった。 A rubber solution prepared by the following method was applied to one surface of the flat plate to a thickness of 100 using Barco overnight. Rubber solution applied Thereafter, the mixture was left for 1 hour, and the solvent was air-dried to form an unvulcanized rubber layer. The resin flat plate having the unvulcanized rubber layer is placed in a mold whose temperature is controlled at 170 with the unvulcanized rubber layer as an upper surface, and the unvulcanized rubber constituting the rubber member is placed on the unvulcanized rubber layer. The unvulcanized rubber layer and the unvulcanized rubber member were bonded by vulcanization while a predetermined amount of the vulcanized rubber composition was loaded and compression-molded so that the thickness of the rubber member became 3 mm. The heating time was approximately 15 minutes.
なお、 樹脂平板と未加硫ゴム層と加硫ゴム部材との組合せを表 1 に示す。表中、 実施例 2, 3及び実施例 1 0及び 1 1において、 「* J は、 樹脂平板に未加硫ゴム層を形成した後、 この未加硫ゴム層を一 旦加硫した後に、 加硫ゴム層の上部にゴム部材用未加硫ゴム組成物 を乗せて 1 7 0 °Cで加硫したことを示す。  Table 1 shows the combinations of the resin flat plate, the unvulcanized rubber layer, and the vulcanized rubber member. In the table, in Examples 2, 3 and Examples 10 and 11, "* J indicates that after forming an unvulcanized rubber layer on a resin plate, and then vulcanizing this unvulcanized rubber layer, This shows that the unvulcanized rubber composition for a rubber member was put on the vulcanized rubber layer and vulcanized at 170 ° C.
[ゴム溶液の調製]  [Preparation of rubber solution]
表に示す成分割合 (重量部) のゴム層用ゴム 1 0 0重量部を、 酢 酸ェチルと M E Kとトルエンとを 1 : 1 : 1の割合で含む混合溶媒 4 0 0重量部に溶解し、 この溶液に、 表に示す割合で加硫剤及びト リメチロールプロパントリメ夕クリレート (T R I M ) を加え、 ゴ ム溶液を調製した。  100 parts by weight of the rubber for the rubber layer having the component ratio (parts by weight) shown in the table was dissolved in 400 parts by weight of a mixed solvent containing ethyl acetate, MEK, and toluene in a ratio of 1: 1: 1. To this solution, a vulcanizing agent and trimethylolpropane trimethacrylate (TRIM) were added in the proportions shown in the table to prepare a rubber solution.
[接着性の評価]  [Evaluation of adhesiveness]
上記方法で得られた樹脂/ゴム層 Zゴム部材の平板状複合体を幅 3 O m mに切断し、 得られた試験片を 1 8 0 ° 剥離試験に供した。 この剥離試験において、 接着性を次のような基準で評価した。  The resin / rubber layer obtained by the above method, the flat composite of the Z rubber member was cut into a width of 3 Om m, and the obtained test piece was subjected to a 180 ° peel test. In this peel test, the adhesiveness was evaluated according to the following criteria.
「A」:剥離界面が、ゴム層又はゴム部材内で発生し(凝集破壊し)、 その破壊が 1 0 0 %凝集破壊である  "A": A peeling interface occurs in the rubber layer or the rubber member (cohesive failure), and the destruction is 100% cohesive failure.
「B J : 5 0 %以上が凝集破壊である  "B J: 50% or more is cohesive failure
「C」:充分な粘着性が認められる、 剥離の 5 0 %以上が、 樹脂 Z ゴム層界面、 若しくはゴム層 ゴム部材界面で発生する  "C": Sufficient tackiness is observed. 50% or more of peeling occurs at the interface of resin Z rubber layer or rubber layer rubber member.
「D」:樹脂 Zゴム層、若しくはゴム層ノゴム部材界面で容易に剥 離する  "D": easily peels off at the interface between the resin Z rubber layer and the rubber layer
結果を表 1に示す。 なお、 表中、 各成分の割合は重量部である。 表 1から明らかなように、 実施例で得られた複合体は高い接合強 度を示す。 Table 1 shows the results. In the table, the ratio of each component is part by weight. As is clear from Table 1, the composites obtained in the examples show high bonding strength.
表 1 table 1
樹脂部材組成 加硫ゴム層維 L成 ゴム部材組成  Resin component composition Vulcanized rubber layer fiber rubber component composition
樹脂 活性原子数 V.A. ゴム 加硫剤 V.A. ゴム 加硫剤 その他 接着性 実施例 1 PA612(A1) 4 TRIM 5 EPDM DCP2 0 EPDM DCP 2.5 一 A 実施例 2 PA612(A1) 4 TRIM 5 SBR DCP 0.2* 0 SBR60/NBR40 S 2 ― B 実施例 3 PA612(A1) 4 TRIM 5 SBR DCP 0.2* 0 SBR60/NR40 S 2 一 B 実施例 4 PA612(A1) 4 0 VMQ-1 DCP 2 TRIM 0.5 職 - 2 DCP 2.5 ― A 実施例 5 PA612(A1) 4 0 EPDM DCP 2 TRIM 3 FKM DCP 2.5 TAIC 4 A 実施例 6 PA612(A1) 4 0 EPDM DCP 2 TRIM 3 EPDM DCP 2.5 ― A 実施例 7 PA612CA1) 4 0 EPDM DCP 2 0 EPDM DCP 2.5 ― B 比較例 1 PA612(A1) 4 TRIM 5 EPDM DCP 2.5 一 D 実施例 8 PA612(A2) 2.4 0 EPDM DCP 2 0 EPDM DCP 2.5 ― C 実施例 9 PA612(A2) 2.4 TRIM 5 EPDM DCP 2 0 EPDM DCP 2.5 - A 比較例 2 PA612(A2) 2.4 TRIM 5 EPDM DCP 2.5 D 比較例 3 PA612(A3) 0.8 0 EPDM DCP 2 0 EPDM DCP 2.5 D 比較例 4 PA612CA3) 0.8 TRIM 5 EPDM DCP 2.5 D 実施例 10 PPE(Bl) >6 0 EPDM DCP 2* TRIM 3 EPDM S 2 A 実施例 11 PPE (Bl) >6 0 SBR DCP 0.2* 0 SBR60/NBR40 S 2 A 実施例 12 PPE(Bl) >6 0 SBR S 2 0 SBR60/NR40 S 2 A 実施例 13 PPE(Bl) >6 0 SBR/EPDM S 2 0 EPDM S 2 A 実施例 14 PPE (Bl) >6 0 SBR S 2 0 BR S 2 A 実施例 15 PPS(Cl) >6 0 VMQ-1 DCP 2 TRIM 0.5 VMQ-2 DCP 2.5 A 実施例 16 m-PBT (Dl) 、一皇糸口□ノ EPDM DCP 2 TRIM 3 EPDM DCP 2.5 A 実施例 17 不飽和 PES (El) FKM DCP 2 TRIM 3 FKM DCP 2.5 TAIC 4 A 実施例 18 ミン (Fl) VMQ-1 DCP 2 TRIM 0.5 VMQ-2 DCP 2.5 B  Resin Number of active atoms VA rubber Vulcanizing agent VA rubber Vulcanizing agent Others Adhesive Example 1 PA612 (A1) 4 TRIM 5 EPDM DCP2 0 EPDM DCP 2.5 1 A Example 2 PA612 (A1) 4 TRIM 5 SBR DCP 0.2 * 0 SBR60 / NBR40 S 2 ― B Example 3 PA612 (A1) 4 TRIM 5 SBR DCP 0.2 * 0 SBR60 / NR40 S 2-1B Example 4 PA612 (A1) 4 0 VMQ-1 DCP 2 TRIM 0.5 Job-2 DCP 2.5 ― A Example 5 PA612 (A1) 4 0 EPDM DCP 2 TRIM 3 FKM DCP 2.5 TAIC 4 A Example 6 PA612 (A1) 4 0 EPDM DCP 2 TRIM 3 EPDM DCP 2.5 ― A Example 7 PA612CA1) 4 0 EPDM DCP 2 0 EPDM DCP 2.5 ― B Comparative Example 1 PA612 (A1) 4 TRIM 5 EPDM DCP 2.5 1D Example 8 PA612 (A2) 2.4 0 EPDM DCP 2 0 EPDM DCP 2.5 ― C Example 9 PA612 (A2) 2.4 TRIM 5 EPDM DCP 2 0 EPDM DCP 2.5-A Comparative Example 2 PA612 (A2) 2.4 TRIM 5 EPDM DCP 2.5 D Comparative Example 3 PA612 (A3) 0.8 0 EPDM DCP 2 0 EPDM DCP 2.5 D Comparative Example 4 PA612CA3) 0.8 TRIM 5 EPDM DCP 2.5 D Example 10 PPE (Bl)> 6 0 EPDM DCP 2 * TRIM 3 EPDM S 2 A Example 11 PPE (Bl)> 6 0 SBR DCP 0.2 * 0 SBR60 / NBR40 S 2 A Example 12 PPE (Bl) > 6 0 SBR S 2 0 SBR60 / NR40 S 2 A Example 13 PPE (Bl)> 6 0 SBR / EPDM S 2 0 EPDM S 2 A Example 14 PPE (Bl)> 6 0 SBR S 2 0 BR S 2 A Example 15 PPS (Cl)> 6 0 VMQ-1 DCP 2 TRIM 0.5 VMQ-2 DCP 2.5 A Example 16 m-PBT (Dl), Ichiko Itoguchi EPDM DCP 2 TRIM 3 EPDM DCP 2.5 A Example 17 Unsaturated PES (El) FKM DCP 2 TRIM 3 FKM DCP 2.5 TAIC 4 A Example 18 Min (Fl) VMQ-1 DCP 2 TRIM 0.5 VMQ-2 DCP 2.5 B

Claims

請求の範囲 The scope of the claims
1. 加硫剤により加硫した加硫ゴム層を介して、 加硫ゴム部材 と樹脂部材とが接合している樹脂 zゴム複合体。 1. A resin-rubber composite in which a vulcanized rubber member and a resin member are joined via a vulcanized rubber layer vulcanized with a vulcanizing agent.
2. 加硫剤が、 硫黄系加硫剤又は過酸化物系加硫剤である請求 項 1記載の複合体。  2. The composite according to claim 1, wherein the vulcanizing agent is a sulfur vulcanizing agent or a peroxide vulcanizing agent.
3. 加硫剤が、 有機過酸化物である請求項 1記載の複合体。 3. The composite according to claim 1, wherein the vulcanizing agent is an organic peroxide.
4. 樹脂部材が、 熱可塑性樹脂および架橋性基を有する樹脂か ら選択された少なくとも一種で構成されている請求項 1記載の複合 体。 4. The composite according to claim 1, wherein the resin member is composed of at least one selected from a thermoplastic resin and a resin having a crosslinkable group.
5. 架橋性基を有する樹脂が、 熱硬化性樹脂及び不飽和結合を 有する熱可塑性樹脂から選択された少なくとも一種である請求項 4 記載の複合体。  5. The composite according to claim 4, wherein the resin having a crosslinkable group is at least one selected from a thermosetting resin and a thermoplastic resin having an unsaturated bond.
6. 加硫ゴム層を形成するための未加硫ゴム組成物と樹脂部材 とが、 下記条件 (i) 〜 (iii) のうち少なくとも一つの条件を満足 する請求項 1記載の複合体。  6. The composite according to claim 1, wherein the unvulcanized rubber composition and the resin member for forming the vulcanized rubber layer satisfy at least one of the following conditions (i) to (iii).
( i ) 樹脂部材が、 下記式 ( 1 ) で表される軌道相互作用ェネル ギー係数 Sが 0. 0 0 6以上であり、 かつ水素原子及び硫黄原子か ら選択された少なくとも一種の活性原子を一分子中に少なくとも平 均 2つ有する熱可塑性樹脂で構成されている  (i) The resin member has an orbital interaction energy coefficient S represented by the following formula (1) of not less than 0.006 and at least one active atom selected from a hydrogen atom and a sulfur atom. Consists of a thermoplastic resin with at least two in one molecule
° = 、し HOMO, n) / I E C"~ EH0M0,n I + ( C LUM0,n) / I Ec— E LUMO, n I ( 1 ) ° = , then HOMO, n) / I E C "~ E H0M0, n I + ( C LUM0, n) / IE c — E LUMO, n I ( 1 )
(式中、 Ec、 CH0M0,n、 EH0M0,n、 CLUM0,n、 ELUM0,nは、 いずれも半 経験的分子軌道法 M〇 P AC PM 3により算出された値であって、 (Wherein, E c, C H 0M0, n, E H0M0, n, C LUM0, n, E LUM0, n is either also calculated by a semiempirical molecular orbital method M_〇 P AC PM 3 values hand,
Ecは加硫剤としてのラジカル発生剤のラジカルの軌道エネルギー (e V) を示し、 じ!^ ^は熱可塑性樹脂の基本単位を構成する第 n 番目の活性原子の最高被占分子軌道 (HOMO) の分子軌道係数を 示し、 EH0M0,nは前記 HOMOの軌道エネルギー (e V) を示し、 C LUM0, nは前記 n番目の活性原子の最低空分子軌道 (LUMO) の分子 軌道係数を示し、 ELUM0,nは前記 L UMOの軌道エネルギー (e V) を示す) E c indicates the orbital energy (e V) of the radical of the radical generator as a vulcanizing agent. ^ ^ Indicates the molecular orbital coefficient of the highest occupied molecular orbital (HOMO) of the nth active atom constituting the basic unit of the thermoplastic resin, and E H0M0 , n indicates the orbital energy (e V) of the HOMO. , C LUM0, n is the molecule of the lowest unoccupied molecular orbital (LUMO) of the nth active atom Orbital coefficient, and E LUM0 , n indicate the orbital energy (eV) of the L UMO
(ii) 未加硫ゴム組成物及び樹脂部材のうち少なくとも一方の成 分が、 複数の重合性基を有する多官能重合性化合物を含有する  (ii) at least one of the unvulcanized rubber composition and the resin member contains a polyfunctional polymerizable compound having a plurality of polymerizable groups.
(iii) 榭脂部材が、 熱硬化性樹脂、 又は分子中に不飽和結合を有 する樹脂で構成され、 未加硫ゴム組成物が複数の重合性基を有する 多官能重合性化合物を含有する  (iii) The resin member is composed of a thermosetting resin or a resin having an unsaturated bond in a molecule, and the unvulcanized rubber composition contains a polyfunctional polymerizable compound having a plurality of polymerizable groups.
7. 加硫ゴム層、 加硫ゴム部材および樹脂部材の少なくとも 1 つが、 加硫活性剤を含む組成物で形成されている請求項 1記載の複 合体。  7. The composite according to claim 1, wherein at least one of the vulcanized rubber layer, the vulcanized rubber member and the resin member is formed of a composition containing a vulcanization activator.
8. 加硫活性剤が、 複数の重合性基を有する多官能重合性化合 物で構成されている請求項 7記載の複合体。  8. The composite according to claim 7, wherein the vulcanization activator comprises a polyfunctional polymerizable compound having a plurality of polymerizable groups.
9. 加硫ゴム層が、 加硫剤および加硫活性剤を含有する未加硫 ゴム組成物で形成され、 加硫ゴム部材および樹脂部材の少なくとも —方の部材が、 加硫活性剤を含む組成物で形成されている請求項 1 記載の複合体。  9. The vulcanized rubber layer is formed of an unvulcanized rubber composition containing a vulcanizing agent and a vulcanizing activator, and at least one of the vulcanized rubber member and the resin member contains the vulcanizing activator The composite according to claim 1, wherein the composite is formed of a composition.
1 0. 樹脂部材が、 加硫活性剤を含む組成物で形成されている 請求項 7記載の複合体。  10. The composite according to claim 7, wherein the resin member is formed of a composition containing a vulcanization activator.
1 1. 加硫活性剤の量が、 樹脂及びゴムから選択された少なく とも一種の成分 1 0 0重量部に対して 0. 1〜 1 0重量部である請 求項 7記載の複合体。  11. The composite according to claim 7, wherein the amount of the vulcanization activator is 0.1 to 10 parts by weight based on 100 parts by weight of at least one component selected from resin and rubber.
1 2. 加硫活性剤の量が、 ゴム 1 0 0重量部に対して 2重量部 以下である請求項 7記載の複合体。  12. The composite according to claim 7, wherein the amount of the vulcanizing activator is 2 parts by weight or less based on 100 parts by weight of the rubber.
1 3. 樹脂部材がさらに加硫活性剤に対する安定剤を含み、 前 記安定剤が酸化防止剤、 光安定剤及び熱重合禁止剤から選択された 少なくとも一種で構成されている請求項 1 0記載の複合体。  10. The resin member according to claim 10, wherein the resin member further comprises a stabilizer for the vulcanization activator, and the stabilizer is at least one selected from an antioxidant, a light stabilizer and a thermal polymerization inhibitor. Complex.
1 4. 加硫活性剤と安定剤との割合が、 前者/後者 (重量比) = 9 9 1〜 2 5ノ 7 5である請求項 1 3記載の複合体。  14. The composite according to claim 13, wherein the ratio between the vulcanizing activator and the stabilizer is former / latter (weight ratio) = 991 to 25 to 75.
1 5. 樹脂部材が、 ポリアミ ド系樹脂、 ポリエステル樹脂、 ポ リアセタール系樹脂、 ポリフエ二レンエーテル系樹脂、 ポリスルフ ィ ド系樹脂、 ポリエーテルケトン系樹脂、 ポリカーボネート系榭脂、 ポリイミ ド系樹脂、 ポリスルホン系榭脂、 ポリウレタン系樹脂、 ポ リオレフイン系樹脂、 ハロゲン含有ビニル系樹脂、 スチレン系樹脂、 (メタ) アクリル系樹脂、 熱可塑性エラストマ一、 フエノール樹脂、 アミノ系樹脂、 エポキシ樹脂、 熱硬化性ポリイミ ド系樹脂、 熱硬化 性ポリウレタン系樹脂、 シリコーン樹脂、 不飽和ポリエステル系樹 脂、 ビニルエステル樹脂、 ジァリルフタレート樹脂及び熱硬化性(メ 夕) ァクリル系樹脂から選択された少なくとも一種の樹脂で構成さ れている請求項 1記載の複合体。 1 5. The resin member is made of polyamide resin, polyester resin, Riacetal resin, Polyphenylene ether resin, Polysulfide resin, Polyetherketone resin, Polycarbonate resin, Polyimide resin, Polysulfone resin, Polyurethane resin, Polyolefin resin, Halogen-containing Vinyl resin, styrene resin, (meth) acrylic resin, thermoplastic elastomer, phenol resin, amino resin, epoxy resin, thermosetting polyimide resin, thermosetting polyurethane resin, silicone resin, unsaturated 2. The composite according to claim 1, wherein the composite is composed of at least one resin selected from a polyester resin, a vinyl ester resin, a diaryl phthalate resin, and a thermosetting (meth) acrylic resin.
1 6 . 加硫ゴム層が硫黄系加硫剤で加硫される請求項 1記載の 複合体。  16. The composite according to claim 1, wherein the vulcanized rubber layer is vulcanized with a sulfur-based vulcanizing agent.
1 7 . 加硫ゴム層がジェン系ゴムで構成されている請求項 1記 載の複合体。  17. The composite according to claim 1, wherein the vulcanized rubber layer is composed of a gen-based rubber.
1 8 . 加硫ゴム層が硫黄系加硫剤で加硫されたスチレン—ジェ ン系ゴムで構成され、 樹脂部材がポリフエ二レンエーテル系樹脂で 構成されている請求項 1記載の複合体。  18. The composite according to claim 1, wherein the vulcanized rubber layer is composed of a styrene-gen-based rubber vulcanized with a sulfur-based vulcanizing agent, and the resin member is composed of a polyphenylene ether-based resin.
1 9 . 加硫剤を含有する未加硫ゴム組成物層を介して、 未加硫 ゴム組成物、 半加硫ゴム部材および加硫ゴム部材から選択されたゴ ムエレメントと、 未成形樹脂組成物、 半成形樹脂部材および成形樹 脂部材から選択された樹脂エレメントとを接触させ、 未加硫ゴム又 は半加硫ゴムを加硫し、 加硫ゴム層を介して、 加硫ゴム部材と樹脂 部材とが接合した樹脂 Zゴム複合体を製造する方法。  1 9. A rubber element selected from an unvulcanized rubber composition, a semi-vulcanized rubber member and a vulcanized rubber member via an unvulcanized rubber composition layer containing a vulcanizing agent, and an unformed resin composition Object, a semi-molded resin member and a resin element selected from a molded resin member, and vulcanizes the unvulcanized rubber or semi-vulcanized rubber. A method for producing a resin Z rubber composite in which a resin member is joined.
2 0 . ゴムエレメント及ぴ樹脂エレメントの接合面のうち少な くとも一方の接合面に、 加硫剤を含有する未加硫ゴム組成物層を形 成し、 この未加硫ゴム組成物層を介して前記ゴムエレメントと樹脂 エレメントとを加圧接触下で加熱する請求項 1 9記載の方法。  20. An unvulcanized rubber composition layer containing a vulcanizing agent is formed on at least one of the bonding surfaces of the rubber element and the resin element, and this unvulcanized rubber composition layer is formed. 10. The method according to claim 19, wherein the rubber element and the resin element are heated under pressure contact via the rubber element.
2 1 . 加硫剤を含有する未加硫ゴム組成物層を、 未加硫ゴム組 成物のフィルム又は塗布剤で形成する請求項 2 0記載の方法。 21. The method according to claim 20, wherein the unvulcanized rubber composition layer containing the vulcanizing agent is formed of a film or coating agent of the unvulcanized rubber composition.
2 2 . 中間層の未加硫ゴム組成物を、 成形樹脂部材と、 未加硫 ゴム組成物及び半加硫ゴム部材から選択されたゴムエレメントとの 間に介在させ、 未加硫ゴム及び Z又は半加硫ゴムを成形しながら架 橋又は加硫させる請求項 1 9記載の方法。 2 2. The unvulcanized rubber composition of the intermediate layer is interposed between the molded resin member and a rubber element selected from the unvulcanized rubber composition and the semi-vulcanized rubber member, and the unvulcanized rubber and Z 10. The method according to claim 19, wherein the crosslinking or vulcanization is performed while molding the semi-vulcanized rubber.
2 3 . 未加硫ゴム組成物層、 ゴムエレメントおよび樹脂エレメ ントの少なくとも 1つが、加硫活性剤を含む請求項 1 9記載の方法。  23. The method according to claim 19, wherein at least one of the unvulcanized rubber composition layer, the rubber element and the resin element contains a vulcanization activator.
2 4 . ゴムエレメントと、 樹脂エレメントとの間に、 有機過酸 化物と、 複数の重合性基を有する多官能重合性化合物とを含有する 未加硫ゴム組成物の層を介在させて加圧下で加熱して成形する請求 項 1 9記載の方法。  24. A layer of an unvulcanized rubber composition containing an organic peroxide and a polyfunctional polymerizable compound having a plurality of polymerizable groups is interposed between the rubber element and the resin element, under pressure. 10. The method according to claim 19, wherein the molding is carried out by heating.
2 5 . ゴムエレメント及ぴ樹脂エレメントのうち少なくとも一 方が、 複数の重合性基を有する多官能重合性化合物を含む請求項 2 4記載の方法。  25. The method according to claim 24, wherein at least one of the rubber element and the resin element contains a polyfunctional polymerizable compound having a plurality of polymerizable groups.
2 6 . 樹脂エレメントが加硫活性剤を含み、 前記加硫活性剤の 量が、 樹脂エレメント 1 0 0重量部に対して 0 . 1〜 5重量部であ る請求項 1 9記載の方法。  26. The method according to claim 19, wherein the resin element contains a vulcanization activator, and the amount of the vulcanization activator is 0.1 to 5 parts by weight based on 100 parts by weight of the resin element.
PCT/JP2003/008569 2002-07-12 2003-07-04 Composite and process for producing the same WO2004007194A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003252471A AU2003252471A1 (en) 2002-07-12 2003-07-04 Composite and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002204295A JP2004042486A (en) 2002-07-12 2002-07-12 Composite and its manufacturing method
JP2002-204295 2002-07-12

Publications (1)

Publication Number Publication Date
WO2004007194A1 true WO2004007194A1 (en) 2004-01-22

Family

ID=30112706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008569 WO2004007194A1 (en) 2002-07-12 2003-07-04 Composite and process for producing the same

Country Status (5)

Country Link
JP (1) JP2004042486A (en)
CN (1) CN1678453A (en)
AU (1) AU2003252471A1 (en)
TW (1) TW200404878A (en)
WO (1) WO2004007194A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7875975B2 (en) 2000-08-18 2011-01-25 Polyic Gmbh & Co. Kg Organic integrated circuit completely encapsulated by multi-layered barrier and included in RFID tag
CN103525349A (en) * 2013-09-23 2014-01-22 株洲时代新材料科技股份有限公司 Heat vulcanization adhesive and preparation method thereof
EP2915664A4 (en) * 2012-11-01 2016-07-13 Nok Corp Resin-rubber composite
CN106641482A (en) * 2016-09-26 2017-05-10 中国科学院兰州化学物理研究所 Compound pipeline and preparation process thereof

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3839015B2 (en) * 2003-10-10 2006-11-01 電気化学工業株式会社 Vulcanized adhesive body of chloroprene rubber composition and nylon
JP3839014B2 (en) * 2003-10-10 2006-11-01 電気化学工業株式会社 Vulcanized adhesive body of chloroprene rubber composition and nylon
JP4754341B2 (en) * 2005-12-06 2011-08-24 株式会社クラレ Hydrogenated styrene elastomer molded product for diene rubber bonding
KR100662539B1 (en) * 2005-12-30 2006-12-28 제일모직주식회사 Composition for fuel cell bipolar plate
JP4978425B2 (en) * 2007-10-29 2012-07-18 宇部興産株式会社 Polyamide laminate
CN102610353A (en) * 2011-01-24 2012-07-25 北京中科三环高技术股份有限公司 Preparation method of anisotropic flexible magnet with high degree of orientation and high performance
CN102673056B (en) * 2012-05-24 2014-07-09 北京化工大学 Laminated net-shaped thermoplastic elastomer and preparation method thereof
CN105269899B (en) * 2014-12-17 2018-03-30 刘瑾 A kind of beverage machine cushion pad and the method for preparing the beverage machine cushion pad
CN105684725A (en) * 2016-01-23 2016-06-22 中山安荞生物科技有限公司 Expanding culture device for high-quality antrodia camphorate strain
DE102016211368A1 (en) * 2016-06-24 2017-12-28 Continental Reifen Deutschland Gmbh Sulfur crosslinkable rubber compound and vehicle tires
JP7181727B2 (en) 2018-08-10 2022-12-01 ポリプラ・エボニック株式会社 Composite compact and manufacturing method thereof
CN110067293A (en) * 2019-04-25 2019-07-30 广东景源建设工程有限公司 Sewage conduct engineering construction process
CN111923529A (en) * 2020-09-23 2020-11-13 歌尔股份有限公司 Composite diaphragm, preparation method thereof and sound production device
CN113214524B (en) * 2021-06-11 2022-06-07 四川大学 Friction-resistant high-shear-resistant composite rubber sealing material
CN114350098A (en) * 2022-03-03 2022-04-15 上海起帆电线电缆技术有限公司 Heat-resistant environment-friendly cable material and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928683A (en) * 1972-07-12 1974-03-14
JPH06126895A (en) * 1992-10-21 1994-05-10 Yokohama Rubber Co Ltd:The Composite adhesive of nylon resin and rubber and manufacture thereof
JPH06128390A (en) * 1992-10-19 1994-05-10 Yokohama Rubber Co Ltd:The Production of bonded composite comprising epoxy resin composition and rubber
JPH08244068A (en) * 1995-03-15 1996-09-24 Mitsubishi Chem Corp Manufacture of combined injection molding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928683A (en) * 1972-07-12 1974-03-14
JPH06128390A (en) * 1992-10-19 1994-05-10 Yokohama Rubber Co Ltd:The Production of bonded composite comprising epoxy resin composition and rubber
JPH06126895A (en) * 1992-10-21 1994-05-10 Yokohama Rubber Co Ltd:The Composite adhesive of nylon resin and rubber and manufacture thereof
JPH08244068A (en) * 1995-03-15 1996-09-24 Mitsubishi Chem Corp Manufacture of combined injection molding

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7875975B2 (en) 2000-08-18 2011-01-25 Polyic Gmbh & Co. Kg Organic integrated circuit completely encapsulated by multi-layered barrier and included in RFID tag
EP2915664A4 (en) * 2012-11-01 2016-07-13 Nok Corp Resin-rubber composite
CN103525349A (en) * 2013-09-23 2014-01-22 株洲时代新材料科技股份有限公司 Heat vulcanization adhesive and preparation method thereof
CN106641482A (en) * 2016-09-26 2017-05-10 中国科学院兰州化学物理研究所 Compound pipeline and preparation process thereof

Also Published As

Publication number Publication date
TW200404878A (en) 2004-04-01
AU2003252471A1 (en) 2004-02-02
CN1678453A (en) 2005-10-05
JP2004042486A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
WO2004007194A1 (en) Composite and process for producing the same
US8029910B2 (en) Resin composition and composite using the composition and production process thereof
JP4502569B2 (en) Rubber reinforcement structure
JP5205507B2 (en) Composite and production method thereof
US6800372B2 (en) Composite and process for producing the same
WO2004007617A1 (en) Composite dispersion and process for producing the same
JP3986825B2 (en) Composite and production method thereof
WO2000078542A1 (en) Polyacetal composite and process for producing the same
WO2002098985A1 (en) Composite dispersion and process for production thereof
JP4452292B2 (en) Composite and production method thereof
KR20050018991A (en) Composite and Process for Producing the Same
JP2002284902A (en) Compound material and method for producing the same
KR20050018993A (en) Composite Dispersion and Process for Producing the Same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AU BA BB BR BZ CA CN CO CR CU DM DZ EC GD GE HR ID IL IN IS KR LC LK LR LT LV MA MG MK MN MX NI NO NZ OM PG PH PL SC SG SY TN TT UA US UZ VC VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057000498

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057000498

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038207850

Country of ref document: CN

122 Ep: pct application non-entry in european phase