WO2003101996A2 - Esters in position 20 of camptothecins - Google Patents

Esters in position 20 of camptothecins Download PDF

Info

Publication number
WO2003101996A2
WO2003101996A2 PCT/IT2003/000329 IT0300329W WO03101996A2 WO 2003101996 A2 WO2003101996 A2 WO 2003101996A2 IT 0300329 W IT0300329 W IT 0300329W WO 03101996 A2 WO03101996 A2 WO 03101996A2
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
branched
straight
group
camptothecin
Prior art date
Application number
PCT/IT2003/000329
Other languages
French (fr)
Other versions
WO2003101996A3 (en
WO2003101996A8 (en
Inventor
Mauro Marzi
Domenico Alloatti
Claudio Pisano
Maria Ornella Tinti
Loredana Vesci
Franco Zunino
Original Assignee
Sigma-Tau Industrie Farmaceutiche Riunite S.P.A
Istituto Nazionale Per Lo Studio E La Cura Dei Tumori
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE60328777T priority Critical patent/DE60328777D1/en
Priority to CA2487252A priority patent/CA2487252C/en
Priority to MXPA04011681A priority patent/MXPA04011681A/en
Priority to AT03730481T priority patent/ATE439362T1/en
Application filed by Sigma-Tau Industrie Farmaceutiche Riunite S.P.A, Istituto Nazionale Per Lo Studio E La Cura Dei Tumori filed Critical Sigma-Tau Industrie Farmaceutiche Riunite S.P.A
Priority to SI200331685T priority patent/SI1509529T1/en
Priority to AU2003241161A priority patent/AU2003241161C1/en
Priority to EP03730481A priority patent/EP1509529B1/en
Priority to DK03730481T priority patent/DK1509529T3/en
Priority to US10/512,094 priority patent/US7452900B2/en
Priority to JP2004509687A priority patent/JP4593270B2/en
Publication of WO2003101996A2 publication Critical patent/WO2003101996A2/en
Publication of WO2003101996A3 publication Critical patent/WO2003101996A3/en
Publication of WO2003101996A8 publication Critical patent/WO2003101996A8/en
Priority to HK05111354A priority patent/HK1079206A1/en
Priority to US11/783,495 priority patent/US7498340B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/22Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains four or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the invention described herein relates to compounds useful as medicaments, and particularly to derivatives of camptothecin esters in position 20, to processes for their preparation, to their use as active ingredients with topoisomerase 1 inhibiting activity and to pharmaceutical compositions containing them as active ingredients.
  • Camptothecin is an alkaloid isolated by Wall et al. (J. Am. Chem. Soc, 88, 3888-3890 (1966)) for the first time from the tree Camptotheca acuminata, a plant native to China, belonging to the Nyssaceae family.
  • the molecule consists of a pentacyclic structure with a lactone in the E ring, which is essential for cytotoxicity.
  • camptothecins for a review of the camptothecins and the problems relating to their use as medicaments, as well as the resolution of a number of such problems, see European Patent EP 1044977, filed in the name of the applicants.
  • European Patent EP 1044977 filed in the name of the applicants.
  • 7-tert-butoxyiminomethyl-camptothecin which is active orally. Said compound, endowed with substantial activity, cannot be formulated in aqueous liquid compositions, particularly those suitable for the injectable administration route.
  • the problem of the solubility of the camptothecins is well known to experts in the field.
  • Soluble camptothecin prodrugs are disclosed in United States patent US 4,943,579, published on 24.07.1990, which provides esters in position 20 of camptothecins with amino acids directly bound to the hydroxyl of the lactone ring.
  • the problem of making camptothecin and its hydrosoluble derivatives is rendered more difficult by the fact that it is not possible to alter the lactone ring without a loss of therapeutic activity.
  • WO 97/21865 The Stehlin Foundation, published on 07.08.1997, provides camptothecin prodrugs for the purposes of prolonging the stability of the lactone ring, which is hydrolysed in vivo, giving rise to an inactive toxic metabolite.
  • the hydroxy group of the lactone ring is esterified with carboxylic acids of varying length, optionally bearing an epoxide group in the chain.
  • the compounds described in this reference are more liposoluble and are therefore going in a different direction as compared to the present invention.
  • WO 01/09139 The Stehlin Foundation, published on 08.02.2001, describes aryl esters of camptothecin in position 20, but does not address the problem of hydrosolubility, but rather that of the toxicity and prolonged stability of the lactone ring.
  • esters in position 20 of camptothecins particularly the camptothecins bearing an oxime group in position 7, as described in the above-mentioned European Patent EP 1044977, are endowed with substantial anticancer activity. These compounds have a better therapeutic index.
  • the object of the present invention therefore comprises compounds of general formula (I)
  • A is saturated or unsaturated straight or branched Ci-Cs alkyl, C3-C10 cycloalkyl, straight or branched C3-C10 cycloalkyl-Ci-Cs alkyl; when n and m are equal to 1, then Y is saturated or unsaturated straight or branched Ci-C ⁇ alkyl substituted with NR12R13 or N + Ri2Ri3Ri4, where R12, R13 and R ⁇ , which can be the same or different, are hydrogen or straight or branched C1-C4 alkyl, or Y is BCOOX, where B is a residue of an amino acid, X is H, straight or branched C1-C4 alkyl, benzyl or phenyl, substituted in the available positions with at least one group selected from C1-C4 alkoxy, halogen, nitro, amino, C1-C4 alkyl, or, if n and m are both 0;
  • Y is 4-trimethylammonium-3-hydroxybutanoyl, both in the form of inner salt and in the form of a salt with an anion of a pharmaceutically acceptable acid, or Y is N + Ri2Ri3Ri , as defined above;
  • Ri is hydrogen or group, in which R 4 is hydrogen or a straight or branched C1-C5 alkyl or C1-C5 alkenyl group, or a C3-C10 cycloalkyl group, or a straight or branched (C3-C10) cycloalkyl - (C 1 -C 5 ) alkyl group, or a CG-C I4 aryl group, or a straight or branched (C ⁇ -Cu) aryl - (C1-C5) alkyl group, or a heterocyclic group or a straight or branched heterocyclo - (C1-C5) alkyl group, said heterocyclic group containing at least one heteroatom selected from an atom of nitrogen, optional
  • the present invention comprises the use of the aforesaid formula (I) compounds as active ingredients for medicaments, and particularly for medicaments which are useful as topoisomerase I inhibitors.
  • medicaments which are useful as topoisomerase I inhibitors.
  • therapeutic applications deriving from the topoisomerase I inhibiting activity, tumours and parasitic or viral infections should be mentioned.
  • the present invention comprises pharmaceutical compositions containing formula (I) compounds as active ingredients, in admixture with pharmaceutically acceptable vehicles and excipients.
  • the present invention also includes the processes for the preparation of formula (I) compounds.
  • examples of the straight or branched Ci-Cs alkyl group are understood to include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl and octyl and their possible isomers, such as, for example, isopropyl, isobutyl, and ter- butyl.
  • Examples of the straight or branched C1-C5 alkenyl group are methylidene, ethylidene, vinyl, allyl, propargyl, butylene, and pentylene, where the double carbon-carbon bond may be situated in the various possible positions of the alkylene chain, which can also be branched in the context of the isomery allowed.
  • Examples of the C3-C10 cycloalkyl group are cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclooctyl, and polycyclic groups, such as, for example, adamantyl.
  • Examples of the straight or branched (C3-C10) cycloalkyl - (C1-C5) alkyl group are eyclopropylmethyl, 2-cyclopropylethyl, 1-cyclopropylethyl, 3- cyclopropylpropyl, 2-cyclopropylpropyl, 1-cyclopropylpropyl, cyclobutyl- methyl, 2-cyclobutylethyl, 1-cyclobutylethyl, 3-cyclobutylpropyl, 2- cyclobutylpropyl, 1-cyclobutylpropyl, cyclohexylmethyl, 2-cyclohexyl- ethyl, 1-cyclohexylethyl, 3-cyclohexylpropyl, 2-cyclohexylpropyl, 1- cyclohexylpropyl, 5-cyclohexylpentyl, 3-cyclohexylpentyl, 3-methyl-2- cyclohe
  • Examples of the straight or branched (GQ-C ) aryl or (C ⁇ -C ⁇ ) aryl - (Ci- C 5 ) alkyl group are phenyl, 1- or 2-naphthyl, anthracenyl, benzyl, 2- phenylethyl 1-phenylethyl, 3-phenylpropyl, 2-anthracenylpropyl, 1- anthracenylpropyl, naphthylmethyl, 2-naphthylethyl, 1-naphthylethyl, 3-naphthylpropyl, 2-naphthylpropyl, 1-naphthylpropyl, cyclohexyl- methyl, 5-phenylpentyl, 3-phenylpentyl, 3-methyl-2-phenylbutyl.
  • Examples of the straight or branched heterocyclic or heterocyclo - (Ci- C5) alkyl group are thienyl, quinolyl, pyridyl, N-methylpiperidinyl, 5- tetrazolyl, 2-(4,5-dihydroxazolyl), l,2,4-oxadiazolidin-3-yl-5-one, purine and pyrimidine bases, e.g. uracyl, optionally substituted as indicated in the general definitions above.
  • Examples of the (C ⁇ -Cio) aroyl groups are benzoyl and naphthoyl.
  • Examples of the (C ⁇ -Cio) arylsulphonyl groups are tosyl and benzoyl- sulphonyl.
  • halogen is fluorine, chlorine, bromine and iodine.
  • substituted groups are pentafhiorophenyl, 4-phenyl- benzyl, 2,4-difLuorobenzyl, 4-aminobutyl, 4-hydroxybutyl, dimethyl- aminoethyl, p-nitrobenzoyl, and p-cyanobenzoyl.
  • polyaminoalkyl residue is — (CH2)m-NRi5-(CH2) P - NR ⁇ -(CH2)q-NH2, where m, p and q are whole numbers from 2 to 6 inclusive and R15 and Ri ⁇ are a straight or branched (C1-C5) alkyl group, for example 4-aminobutyl-2-aminoethyl, 3-aminopropyl-4-ami- nobutyl, or 3-aminopropyl-4-aminobutyl-3-aminopropyl.
  • glycosyl residue examples are 6-D-galactosyl and 6-D-glucosyl.
  • amino acid is the generic definition of an organic compound bearing at least one carboxyl residue and at least one amine residue.
  • amino acid residues are the natural amino acids, in the possible enantiomeric forms; among these, the ones preferred are glycine, alanine, phenylalanine, valine, leucine, isoleucine, aspartic acid, glutamic acid, lysine, arginine, tyrosine, and ⁇ -aminobutyric acid; all the amino acids can be salified, if necessary, on the free carboxyl and/or on the free basic group with pharmaceutically acceptable bases or acids.
  • salts with pharmaceutically acceptable acids are, in the case of atoms of nitrogen of a basic nature, salts with pharmaceutically acceptable acids, both inorganic and organic, such as, for example, hydrochloric acid, sulphuric acid, acetic acid, or, in the case of an acid group, such as carboxyl, salts with pharmaceutically acceptable bases, both organic and inorganic, such as, for example, alkaline and alkaline -hearth hydroxides, ammonium hydroxide, and amines, including heterocyclic amines.
  • Y equal to 4-trimethyl- ammonium-3-hydroxy-butanoyl
  • pharmaceutically acceptable salts are known and amply described, for example in WO 00/06134.
  • a first group of preferred compounds comprises formula (I) compounds in which n and m are equal to 1.
  • a second group of preferred compounds comprises formula (I) compounds in which n and m are both 0.
  • R 4 is different from hydrogen, and particularly a straight or branched C1-C5 alkyl or C1-C5 alkenyl group or a C3-C10 cycloalkyl group, or a straight or branched (C3-C10) cycloalkyl - (C1-C5) alkyl group, or a C ⁇ -C aryl group, or a straight or branched (C ⁇ -Cu) aryl - (C1-C5) alkyl group, or a straight or branched heterocyclic or heterocyclo - (C1-C5) alkyl group, said heterocyclic group containing at least one heteroatom selected from an atom of nitrogen, optionally substituted with a (C1-C5) alkyl group, and/or an atom of oxygen and/or sulphur; said alkyl, alkenyl, cycloalkyl, aryl
  • One group of particularly preferred compounds includes:
  • the formula (I) compounds, where n and m are 1, are obtained by a process consisting of: a) reaction of the camptothecin, optionally substituted with the R_., R 2 and R3 groups defined above, with a bicarboxylic acid with 3 to 11 carbon atoms, to obtain the respective hemiester in position 20; b) transformation of the free carboxyl group of said hemiester to the respective amide -NH-Y.
  • the products described in the synthesis scheme are obtained by reaction of camptothecin la,b dissolved in a mixture of an aprotic solvent, such as, for example, DMF or halogenated or ether solvents, and in the presence of non-aqueous organic or inorganic bases, such as tertiary amines or K2CO3 or in the presence of only the base in those cases in which the latter is liquid at the reaction temperature, at a temperature between -10 and +80°C, are added from 2 to 30 equivalents of variously activated carboxylic acids, all bearing a leaving group such as OTs, CI, Br, or I in ⁇ .
  • an aprotic solvent such as, for example, DMF or halogenated or ether solvents
  • camptothecin la,b dissolved in a mixture of an aprotic solvent such as, for example, DMF or halogenated or ether solvents, and in the presence of non-aqueous organic or inorganic bases, such as tertiary amines or K2CO3, or in the presence of the base alone in those cases in which the latter is liquid at the reaction temperature, at a temperature between —10 and +80°C, are added from 2 to 30 equivalents of carboxylic acid activated as acyl halogenide or as anhydride or mixed anhydride or imidazolide.
  • an aprotic solvent such as, for example, DMF or halogenated or ether solvents
  • non-aqueous organic or inorganic bases such as tertiary amines or K2CO3
  • the solvent is removed in vacuo and the product purified by chromatography or by crystallisation.
  • the solvent is removed in vacuo and the product purified by chromatography or by crystallisation.
  • the intermediate product 7a,b is dissolved in an aprotic solvent such as, for example, DMF, halogenated solvents or ether solvents.
  • an aprotic solvent such as, for example, DMF, halogenated solvents or ether solvents.
  • To the solution thus obtained are added from 2 to 20 equivalents of an aliphatic or aromatic alcohol, from 2 to 10 equivalents of base and an excess from 2 to 10 equivalents of condensing agent such as, for example, DCC, or EDC.
  • the reaction is held at a temperature ranging from 25 to 50°C for a time period ranging from 4 to 24 h.
  • the product is purified by chromatography.
  • the product 8a,b is also obtained directly from 3a,b using an esterified amino acid. Pharmaceutically acceptable salts are obtained with conventional methods reported in the literature and do not require any further description.
  • the compounds described in the present invention are topoisomerase I inhibitors and therefore are useful as medicaments, particularly for the treatment of diseases that benefit from the inhibition of said topoisomerase.
  • the compounds according to the present invention display antiproliferative activity and are therefore used on account of their therapeutic activity and possess physicochemical properties that make them suitable for formulation in pharmaceutical compositions.
  • compositions contain at least one formula (I) compound as an active ingredient, in an amount such as to produce a significant therapeutic effect.
  • the compositions covered by the present invention are wholly conventional and are obtained with methods which are common practice in the pharmaceutical industry. According to the administration route opted for, the compositions will be in solid or liquid form, suitable for the oral, parenteral, or intravenous administration.
  • the compositions according to the present invention contain, along with the active ingredient, at least one pharmaceutically acceptable vehicle or excipient. Particularly useful may be formulation coadjuvants, such as, for example, solubilisers, dispersant agents, suspension agents and emulsifiers. Aqueous compositions are indicated.
  • formula (I) compounds can also be used in combination with other active ingredients, such as, for example, other anticancer drugs or other drugs with antiparasitic or antiviral activity, both in separate and in single dosage forms.
  • the compounds according to the present invention are useful as medicaments with anticancer activity, for example, in lung cancers, such as non-microcytoma lung cancer, or in colorectal or prostate tumours or gliomas.
  • the cytotoxic activity of the compounds according to the present invention has been assayed in cell systems of human tumour cells, using the antiproliferative activity test as the method of evaluating the cytotoxic potential.
  • the cell line used is a non-microcytoma pulmonary adenocarcinoma called NCI H460, belonging to the NSCLC (non small cell lung cancer) class.
  • NCI-H460 non-microcytoma lung cancer cell line
  • the cells were seeded in a volume of 250 ⁇ l in 96-well plates and incubated for 24 h at 37°C. The next day, the study compounds were added at scalar concentrations from 1 ⁇ M to 0.004 ⁇ M, and the cells were incubated for another 2 h at 37°C in a humidified atmosphere containing 5% CO2. The cells were washed 3 times, overturning the plates each time and adding PBS. 200 ⁇ l/well of RPMI 1640 medium containing 10% FCS were added and the plates were incubated at 37°C for a further 72 h. On day 5, the growth medium was removed by overturning the plates, and 200 ⁇ l/well of PBS and 50 ⁇ l of 80% cold TCA were added.
  • the plates were then incubated in ice for at least 1 h.
  • the TCA was removed by overturning; the plates were washed 3 times by immersion in distilled water and dried first on blotting paper and then under a hot air jet.
  • 200 ⁇ l of 0.4% sulforodamine B in 1% acetic acid were added to all wells.
  • the plates were incubated at room temperature for a further 30 minutes.
  • the sulforodamine B was removed by overturning; the plates were washed by immersion 3 times in 1% acetic acid and then dried first on blotting paper and then with a jet of hot air.
  • 200 ⁇ l of Tris base 10 mM were added to all wells and the plates were subjected to stirring for at least 20 minutes.
  • the optical density was measured using a Multiskan spectrophotometer at 540 nm.
  • Table 1 presents the IC50 values, that is to say the concentration capable of inhibiting 50% of cell survival, for each compound examined, processed using ALLFIT software.
  • Rf 0.38 (CH2CI2/CH3OH 7:3).
  • the crude reaction product was purified by chromatography on silica gel with CH2CI2/CH3OH 95:5 ⁇ 9:1 to obtain 5.3 g (9.7 mmol, 72.4%) of product.
  • the intermediate product 3a (3 g, 5.48 mmol) was dissolved in 60 ml of anhydrous CH2CI2 (60 ml). To the solution, cooled in an ice bath, were added 22 ml of oxalyl chloride. On completing the addition, the cooling bath was removed and the reaction was left at room temperature for 8 h. After this, the reaction was processed by removing the solvent and excess oxalyl chloride and then by washing, repeatedly adding and evaporating the anhydrous CH2CI2. (Any oxalic acid remaining is decomposed).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Hydrogenated Pyridines (AREA)

Abstract

Formula (I) compounds are described: (I) where the groups are as defined in the description here below, the racemic mixtures, their individual enantiomers, their individual diastereoisomers, their mixtures, and their pharmaceutically acceptable salts. Said compounds are topoisomerase I inhibitors.

Description

Esters in position 20 of camptothecins
The invention described herein relates to compounds useful as medicaments, and particularly to derivatives of camptothecin esters in position 20, to processes for their preparation, to their use as active ingredients with topoisomerase 1 inhibiting activity and to pharmaceutical compositions containing them as active ingredients.
Background to the invention
Camptothecin is an alkaloid isolated by Wall et al. (J. Am. Chem. Soc, 88, 3888-3890 (1966)) for the first time from the tree Camptotheca acuminata, a plant native to China, belonging to the Nyssaceae family.
The molecule consists of a pentacyclic structure with a lactone in the E ring, which is essential for cytotoxicity.
For a review of the camptothecins and the problems relating to their use as medicaments, as well as the resolution of a number of such problems, see European Patent EP 1044977, filed in the name of the applicants. Among the preferred compounds of this latter patent we should mention 7-tert-butoxyiminomethyl-camptothecin, which is active orally. Said compound, endowed with substantial activity, cannot be formulated in aqueous liquid compositions, particularly those suitable for the injectable administration route. The problem of the solubility of the camptothecins is well known to experts in the field.
Soluble camptothecin prodrugs are disclosed in United States patent US 4,943,579, published on 24.07.1990, which provides esters in position 20 of camptothecins with amino acids directly bound to the hydroxyl of the lactone ring. As discussed in this reference, the problem of making camptothecin and its hydrosoluble derivatives is rendered more difficult by the fact that it is not possible to alter the lactone ring without a loss of therapeutic activity. At the same time, there is, in any event, the problem of reducing the typical toxicity of the camptothecins, particularly at intestinal level. WO 97/21865, The Stehlin Foundation, published on 07.08.1997, provides camptothecin prodrugs for the purposes of prolonging the stability of the lactone ring, which is hydrolysed in vivo, giving rise to an inactive toxic metabolite. To this end, the hydroxy group of the lactone ring is esterified with carboxylic acids of varying length, optionally bearing an epoxide group in the chain. The compounds described in this reference are more liposoluble and are therefore going in a different direction as compared to the present invention. Conoυer CD., et al., Anti-Cancer Drug Design (1999), 14, 499-506 describe a camptothecin-polyethylene glycol hydrosoluble macromolecular transport system, in which various spacers of an amino acid nature affect its pharmacokinetic and anticancer activity characteristics. WO 00/08033, The University of Kansas, published on 17.02.2000, describes hydrosoluble prodrugs with a sterically hindered hydroxy group, which is esterified with a phosphono-oxymethyl group. Singer J. W., et al., Journal of Controlled Release, 74 (2001), 243-247, describe hydrosoluble conjugates of camptothecin with polyglutamic acid-glycine. Matsumoto H., et al., Bioorganic & Medicinal Chemistry Letters 11 (2001), 605-609 describe hydrosoluble prodrugs of an HIV virus protease inhibitor (molecule of a dipeptide nature, differing enormously from the molecular structure of camptothecin) and to that end functionalise a hydroxyl group with a portion formed by a spacer part and a solubilising part. The spacer part is provided by a bicarboxylic acid, whereas the solubilising part is provided by a diamine. WO 01/09139, The Stehlin Foundation, published on 08.02.2001, describes aryl esters of camptothecin in position 20, but does not address the problem of hydrosolubility, but rather that of the toxicity and prolonged stability of the lactone ring.
However, much in the design of new drugs various problems are encountered of a physicochemical nature, such as the stability of the molecule in plasma or its hydrosolubility for formulatory purposes, there is a constant search for a better therapeutic index. Summary of the invention
It has now surprisingly been found that esters in position 20 of camptothecins, particularly the camptothecins bearing an oxime group in position 7, as described in the above-mentioned European Patent EP 1044977, are endowed with substantial anticancer activity. These compounds have a better therapeutic index.
The object of the present invention therefore comprises compounds of general formula (I)
Figure imgf000004_0001
where:
A is saturated or unsaturated straight or branched Ci-Cs alkyl, C3-C10 cycloalkyl, straight or branched C3-C10 cycloalkyl-Ci-Cs alkyl; when n and m are equal to 1, then Y is saturated or unsaturated straight or branched Ci-Cβ alkyl substituted with NR12R13 or N+Ri2Ri3Ri4, where R12, R13 and Rι , which can be the same or different, are hydrogen or straight or branched C1-C4 alkyl, or Y is BCOOX, where B is a residue of an amino acid, X is H, straight or branched C1-C4 alkyl, benzyl or phenyl, substituted in the available positions with at least one group selected from C1-C4 alkoxy, halogen, nitro, amino, C1-C4 alkyl, or, if n and m are both 0;
Y is 4-trimethylammonium-3-hydroxybutanoyl, both in the form of inner salt and in the form of a salt with an anion of a pharmaceutically acceptable acid, or Y is N+Ri2Ri3Ri , as defined above; Ri is hydrogen or
Figure imgf000005_0001
group, in which R4 is hydrogen or a straight or branched C1-C5 alkyl or C1-C5 alkenyl group, or a C3-C10 cycloalkyl group, or a straight or branched (C3-C10) cycloalkyl - (C1-C5) alkyl group, or a CG-CI4 aryl group, or a straight or branched (Cβ-Cu) aryl - (C1-C5) alkyl group, or a heterocyclic group or a straight or branched heterocyclo - (C1-C5) alkyl group, said heterocyclic group containing at least one heteroatom selected from an atom of nitrogen, optionally substituted with a (C1-C5) alkyl group, and/or an atom of oxygen and/or of sulphur; said alkyl, alkenyl, cycloalkyl, cyclo- alkylalkyl, aryl, aryl-alkyl, heterocyclic or heterocyclo -alkyl groups may optionally be substituted with one or more groups selected from: halogen, hydroxy, C1-C5 alkyl, C1-C5 alkoxy, phenyl, cyano, nitro, - NReRϊ, where Re and R7, which may be the same or different, are hydrogen, straight or branched (C1-C5) alkyl, the — COOH group or one of its pharmaceutically acceptable esters; or the -CONR8R9 group, where Rs and R9, which may be the same or different, are hydrogen, straight or branched (C1-C5) alkyl; or R4 is a (Cβ-Cio) aroyl or (Cβ-Cio) arylsulphonyl residue, optionally substituted with one or more groups selected from: halogen, hydroxy, straight or branched C1-C5 alkyl, straight or branched C1-C5 alkoxy, phenyl, cyano, nitro, -NR10R11, where Rio and Rn, which may be the same or different, are hydrogen, straight or branched C1-C5 alkyl; or R4 is a polyaminoalkyl residue; or R4 is a glycosyl residue; R5 is hydrogen, straight or branched C1-C5 alkyl, straight or branched C1-C5 alkenyl, C3-C10 cycloalkyl, straight or branched (C3-C10) cycloalkyl - (C1-C5) alkyl, Cβ-C aryl, straight or branched (Cβ-C ) aryl - (C1-C5) alkyl; R2 and R3, which may be the same or different, are hydrogen, hydroxy, straight or branched C1-C5 alkoxy; the Nl-oxides, the racemic mixtures, their individual enantiomers, their individual diastereoisomers, their mixtures, and their pharmaceutically acceptable salts.
The present invention comprises the use of the aforesaid formula (I) compounds as active ingredients for medicaments, and particularly for medicaments which are useful as topoisomerase I inhibitors. Among the therapeutic applications deriving from the topoisomerase I inhibiting activity, tumours and parasitic or viral infections should be mentioned.
The present invention comprises pharmaceutical compositions containing formula (I) compounds as active ingredients, in admixture with pharmaceutically acceptable vehicles and excipients.
The present invention also includes the processes for the preparation of formula (I) compounds.
Detailed description of the invention
Within the framework of the present invention, examples of the straight or branched Ci-Cs alkyl group, are understood to include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl and octyl and their possible isomers, such as, for example, isopropyl, isobutyl, and ter- butyl.
Examples of the straight or branched C1-C5 alkenyl group are methylidene, ethylidene, vinyl, allyl, propargyl, butylene, and pentylene, where the double carbon-carbon bond may be situated in the various possible positions of the alkylene chain, which can also be branched in the context of the isomery allowed.
Examples of the C3-C10 cycloalkyl group are cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclooctyl, and polycyclic groups, such as, for example, adamantyl.
Examples of the straight or branched (C3-C10) cycloalkyl - (C1-C5) alkyl group are eyclopropylmethyl, 2-cyclopropylethyl, 1-cyclopropylethyl, 3- cyclopropylpropyl, 2-cyclopropylpropyl, 1-cyclopropylpropyl, cyclobutyl- methyl, 2-cyclobutylethyl, 1-cyclobutylethyl, 3-cyclobutylpropyl, 2- cyclobutylpropyl, 1-cyclobutylpropyl, cyclohexylmethyl, 2-cyclohexyl- ethyl, 1-cyclohexylethyl, 3-cyclohexylpropyl, 2-cyclohexylpropyl, 1- cyclohexylpropyl, 5-cyclohexylpentyl, 3-cyclohexylpentyl, 3-methyl-2- cyclohex lbutyl, 1-adamantylethyl, 2-adamantylethyl, and adamantyl- methyl.
Examples of the straight or branched (GQ-C ) aryl or (Cβ-Cι ) aryl - (Ci- C5) alkyl group are phenyl, 1- or 2-naphthyl, anthracenyl, benzyl, 2- phenylethyl 1-phenylethyl, 3-phenylpropyl, 2-anthracenylpropyl, 1- anthracenylpropyl, naphthylmethyl, 2-naphthylethyl, 1-naphthylethyl, 3-naphthylpropyl, 2-naphthylpropyl, 1-naphthylpropyl, cyclohexyl- methyl, 5-phenylpentyl, 3-phenylpentyl, 3-methyl-2-phenylbutyl.
Examples of the straight or branched heterocyclic or heterocyclo - (Ci- C5) alkyl group are thienyl, quinolyl, pyridyl, N-methylpiperidinyl, 5- tetrazolyl, 2-(4,5-dihydroxazolyl), l,2,4-oxadiazolidin-3-yl-5-one, purine and pyrimidine bases, e.g. uracyl, optionally substituted as indicated in the general definitions above.
Examples of the (Cβ-Cio) aroyl groups are benzoyl and naphthoyl.
Examples of the (Cβ-Cio) arylsulphonyl groups are tosyl and benzoyl- sulphonyl.
What is meant by halogen is fluorine, chlorine, bromine and iodine.
Examples of substituted groups are pentafhiorophenyl, 4-phenyl- benzyl, 2,4-difLuorobenzyl, 4-aminobutyl, 4-hydroxybutyl, dimethyl- aminoethyl, p-nitrobenzoyl, and p-cyanobenzoyl.
An example of the polyaminoalkyl residue is — (CH2)m-NRi5-(CH2)P- NRιβ-(CH2)q-NH2, where m, p and q are whole numbers from 2 to 6 inclusive and R15 and Riβ are a straight or branched (C1-C5) alkyl group, for example 4-aminobutyl-2-aminoethyl, 3-aminopropyl-4-ami- nobutyl, or 3-aminopropyl-4-aminobutyl-3-aminopropyl.
Examples of the glycosyl residue are 6-D-galactosyl and 6-D-glucosyl. What is meant by amino acid is the generic definition of an organic compound bearing at least one carboxyl residue and at least one amine residue. Examples of amino acid residues are the natural amino acids, in the possible enantiomeric forms; among these, the ones preferred are glycine, alanine, phenylalanine, valine, leucine, isoleucine, aspartic acid, glutamic acid, lysine, arginine, tyrosine, and γ-aminobutyric acid; all the amino acids can be salified, if necessary, on the free carboxyl and/or on the free basic group with pharmaceutically acceptable bases or acids.
Examples of pharmaceutically acceptable salts are, in the case of atoms of nitrogen of a basic nature, salts with pharmaceutically acceptable acids, both inorganic and organic, such as, for example, hydrochloric acid, sulphuric acid, acetic acid, or, in the case of an acid group, such as carboxyl, salts with pharmaceutically acceptable bases, both organic and inorganic, such as, for example, alkaline and alkaline -hearth hydroxides, ammonium hydroxide, and amines, including heterocyclic amines. In the case of Y equal to 4-trimethyl- ammonium-3-hydroxy-butanoyl, pharmaceutically acceptable salts are known and amply described, for example in WO 00/06134.
A first group of preferred compounds comprises formula (I) compounds in which n and m are equal to 1.
A second group of preferred compounds comprises formula (I) compounds in which n and m are both 0.
In the context of the above-mentioned two preferred groups, those preferred are the formula (I) compounds, in which R4 is different from hydrogen, and particularly a straight or branched C1-C5 alkyl or C1-C5 alkenyl group or a C3-C10 cycloalkyl group, or a straight or branched (C3-C10) cycloalkyl - (C1-C5) alkyl group, or a Cβ-C aryl group, or a straight or branched (Cβ-Cu) aryl - (C1-C5) alkyl group, or a straight or branched heterocyclic or heterocyclo - (C1-C5) alkyl group, said heterocyclic group containing at least one heteroatom selected from an atom of nitrogen, optionally substituted with a (C1-C5) alkyl group, and/or an atom of oxygen and/or sulphur; said alkyl, alkenyl, cycloalkyl, aryl, aryl-alkyl, heterocyclic or heterocylo-alkyl groups, which may be substituted with one or more groups selected from: halogen, hydroxy, C1-C5 alkyl, C1-C5 alkoxy, phenyl, cyano, nitro, - N 6R7, where e and R7, which may be the same or different, are straight or branched (C1-C5) alkyl; the -COOH group or one of its pharmaceutically acceptable esters; or the — CONRSRΘ group, where Rs and R9, which may be the same or different, are hydrogen, straight or branched (C1-C5) alkyl, according to the definitions outlined above as examples.
One group of particularly preferred compounds includes:
(E)-7-tert-butoxyiminomethyl-20-O-(4-trimethyl-ammonium-3- hydroxy)butanoyl-camptothecin bromide (ST2204); (E)-7-tert-butoxyiminomethyl-20-O-(4-trimethyl-ammonium)butanoyl- camptothecin bromide (ST2200);
(E)-7-tert-butoxyiminomethyl-20-O-hemisuccinyl-camptothecin; (E)-7-tert-butoxyiminomethyl-20-O-[2-(dimethylamino)ethylamino] succinyl-camptothecin hydrochloride (ST1657); 20-O-(benzylglycyl)succinyl-camptothecin (ST1451); 20-O-(tert-butylglycyl)succinyl-camptothecin bromide (ST1453); 7-tert-butoxyiminomethyl-20-O-(tert-butylglycyl)succinyl-campto- thecin (ST1616);
20-O-(glycyl)succinyl-camptothecin (ST1452); 20-O-(2-methoxyphenylglycyl)succinyl-camptothecin (ST1454); 7-tert-butoxyiminomethyl-20-O-(2-methoxyphenylglycyl)succinyl- camptothecin (ST1617).
The formula (I) compounds can be prepared with the process described here below and exemplified for the preferred compounds of the invention.
Figure imgf000010_0001
la, b
Figure imgf000010_0002
a) R3 = R2 = H, R, = CHNOC(CH3)3 b) R3 = R2 = R, = H Z = CH; -o-p- C(CH3)3
CH,0 p = 1-8 It is quite obvious to the person having ordinary experience in the field that the process scheme applies to all the compounds covered by formula (I), since the method for obtaining the starting compounds is fully described in the above-mentioned patent EP 1044997.
In general terms, the formula (I) compounds, where n and m are 0, are obtained by means of a process comprising:
a) reaction of the camptothecin, optionally substituted with the Ri , R2 and R3 groups defined above, with a carboxylic acid bearing a leaving group in ω, to obtain the respective ester in position 20; b) substitution of the leaving group with the Y group.
In general terms the formula (I) compounds, where n and m are 1, are obtained by a process consisting of: a) reaction of the camptothecin, optionally substituted with the R_., R2 and R3 groups defined above, with a bicarboxylic acid with 3 to 11 carbon atoms, to obtain the respective hemiester in position 20; b) transformation of the free carboxyl group of said hemiester to the respective amide -NH-Y.
General procedure
Preparation of the intermediate product 2a,b
The products described in the synthesis scheme are obtained by reaction of camptothecin la,b dissolved in a mixture of an aprotic solvent, such as, for example, DMF or halogenated or ether solvents, and in the presence of non-aqueous organic or inorganic bases, such as tertiary amines or K2CO3 or in the presence of only the base in those cases in which the latter is liquid at the reaction temperature, at a temperature between -10 and +80°C, are added from 2 to 30 equivalents of variously activated carboxylic acids, all bearing a leaving group such as OTs, CI, Br, or I in ω. Preparation of the intermediate product 3a,b
To a mixture of camptothecin la,b dissolved in a mixture of an aprotic solvent such as, for example, DMF or halogenated or ether solvents, and in the presence of non-aqueous organic or inorganic bases, such as tertiary amines or K2CO3, or in the presence of the base alone in those cases in which the latter is liquid at the reaction temperature, at a temperature between —10 and +80°C, are added from 2 to 30 equivalents of carboxylic acid activated as acyl halogenide or as anhydride or mixed anhydride or imidazolide.
The solvent is removed in vacuo and the product purified by chromatography.
Preparation of the intermediate products 4a,b and 5a,b
To the intermediate product 2a,b dissolved in a mixture of an aprotic solvent, such as, for example, DMF or THF or halogenated or ether solvents, and in the presence of non-aqueous organic or inorganic bases such as tertiary amines or K2CO3, or in the presence of the base alone in those cases in which the latter is liquid at the reaction temperature, at a temperature between +20 and +80°C, are added from 2 to 30 equivalents of suitably substituted alkyl carboxylates or suitably substituted NR12R13R14 amines and the reaction continues for time periods ranging from 15 to 36 h.
The solvent is removed in vacuo and the product purified by chromatography or by crystallisation.
Preparation of the intermediate product 6a,b
To the intermediate product 3a,b, activated as acyl halogenide or as anhydride or mixed anhydride or imidazolide, dissolved in a mixture of an aprotic solvent, such as, for example, DMF or THF or halogenated or etheral solvents, and in the presence of non-aqueous organic or inorganic bases such as tertiary amines or K2CO3 or in the presence of the base alone in those cases in which the latter is liquid at the reaction temperature, at a temperature between +20 and +80°C, are added from 2 to 30 equivalents of suitably substituted alkyl amines and the reaction continues for time periods ranging from 15 to 36 h.
The solvent is removed in vacuo and the product purified by chromatography or by crystallisation.
Preparation of the intermediate product 7a,b
To the intermediate product 3a,b, activated as acyl halogenide or as anhydride or as mixed anhydride or imidazolide, dissolved in a mixture of an aprotic solvent, such as, for example, DMF or THF or halogenated or ether solvents, and in the presence of non-aqueous organic or inorganic bases, such as tertiary amines or K2CO3, or in the presence of the base alone in those cases in which the latter is liquid at the reaction temperature, at a temperature between +20 and +80°C, are added from 2 to 30 equivalents of amino acids and the reaction continues for time periods ranging from 15 to 36 h. The solvent is removed in vacuo and the product purified by chromatography or by crystallisation.
Preparation of 8a,b
The intermediate product 7a,b is dissolved in an aprotic solvent such as, for example, DMF, halogenated solvents or ether solvents. To the solution thus obtained are added from 2 to 20 equivalents of an aliphatic or aromatic alcohol, from 2 to 10 equivalents of base and an excess from 2 to 10 equivalents of condensing agent such as, for example, DCC, or EDC. The reaction is held at a temperature ranging from 25 to 50°C for a time period ranging from 4 to 24 h. The product is purified by chromatography. The product 8a,b is also obtained directly from 3a,b using an esterified amino acid. Pharmaceutically acceptable salts are obtained with conventional methods reported in the literature and do not require any further description.
The compounds described in the present invention are topoisomerase I inhibitors and therefore are useful as medicaments, particularly for the treatment of diseases that benefit from the inhibition of said topoisomerase. In particular, the compounds according to the present invention display antiproliferative activity and are therefore used on account of their therapeutic activity and possess physicochemical properties that make them suitable for formulation in pharmaceutical compositions.
The pharmaceutical compositions contain at least one formula (I) compound as an active ingredient, in an amount such as to produce a significant therapeutic effect. The compositions covered by the present invention are wholly conventional and are obtained with methods which are common practice in the pharmaceutical industry. According to the administration route opted for, the compositions will be in solid or liquid form, suitable for the oral, parenteral, or intravenous administration. The compositions according to the present invention contain, along with the active ingredient, at least one pharmaceutically acceptable vehicle or excipient. Particularly useful may be formulation coadjuvants, such as, for example, solubilisers, dispersant agents, suspension agents and emulsifiers. Aqueous compositions are indicated.
The formula (I) compounds can also be used in combination with other active ingredients, such as, for example, other anticancer drugs or other drugs with antiparasitic or antiviral activity, both in separate and in single dosage forms.
The compounds according to the present invention are useful as medicaments with anticancer activity, for example, in lung cancers, such as non-microcytoma lung cancer, or in colorectal or prostate tumours or gliomas.
The cytotoxic activity of the compounds according to the present invention has been assayed in cell systems of human tumour cells, using the antiproliferative activity test as the method of evaluating the cytotoxic potential.
The cell line used is a non-microcytoma pulmonary adenocarcinoma called NCI H460, belonging to the NSCLC (non small cell lung cancer) class.
Anticancer activity
To evaluate the effect of the compounds according to the present invention, their cytotoxocity against the non-microcytoma lung cancer cell line (NCI-H460) was evaluated. Cells from the American Type Culture Collection (ATCC) were maintained in culture in RPMI 1640 (GIBCO) containing 10% foetal calf serum and gentamicin sulphate at a concentration of 50 μg/ml.
The cells were seeded in a volume of 250 μl in 96-well plates and incubated for 24 h at 37°C. The next day, the study compounds were added at scalar concentrations from 1 μM to 0.004 μM, and the cells were incubated for another 2 h at 37°C in a humidified atmosphere containing 5% CO2. The cells were washed 3 times, overturning the plates each time and adding PBS. 200 μl/well of RPMI 1640 medium containing 10% FCS were added and the plates were incubated at 37°C for a further 72 h. On day 5, the growth medium was removed by overturning the plates, and 200 μl/well of PBS and 50 μl of 80% cold TCA were added. The plates were then incubated in ice for at least 1 h. The TCA was removed by overturning; the plates were washed 3 times by immersion in distilled water and dried first on blotting paper and then under a hot air jet. 200 μl of 0.4% sulforodamine B in 1% acetic acid were added to all wells. The plates were incubated at room temperature for a further 30 minutes. The sulforodamine B was removed by overturning; the plates were washed by immersion 3 times in 1% acetic acid and then dried first on blotting paper and then with a jet of hot air. 200 μl of Tris base 10 mM were added to all wells and the plates were subjected to stirring for at least 20 minutes. The optical density was measured using a Multiskan spectrophotometer at 540 nm.
Table 1 presents the IC50 values, that is to say the concentration capable of inhibiting 50% of cell survival, for each compound examined, processed using ALLFIT software.
Table 1
Product NCI-H460
IC50 (μM)
ST1451 0.15
ST1452 1.6
ST1453 0.26
ST1 54 0.16
ST1616 0.004
ST1617 0.029
ST1657 0.012
ST2200 0.017
ST2204 0.041
The following examples further illustrate the invention, with reference to the scheme outlined above
Example 1
(E)-7-tert-butoxyiminomethyl-20-O-(4-bromo)-butyryl-camptothecin (2a) (ST2599)
In a flask, kept sheltered from the light, were loaded 2 g (4.5 mmol) of 7-tert-butoxyiminomethyl-camptothecin (la) and 25 mL of pyridine; the mixture was cooled in an ice bath and 4.5 mL (38.9 mmol, 8.6 eq.) of 4-bromobutyryl chloride were added dropwise. After 3 h the reaction mixture was brought to dryness and then purified by flash chromatography on a column (CH2Cl2/acetone 98:2) to obtain 1.26 g (2.1 mmol, 46.7%) of product (Tdec = 212°C).
0.61 (CH2Cl2/dioxane 95:5).
MS (IS): [MH]+ = 596.2, 598.2; M+Na]+ = 618.2, 620.2; [M-1]- = 594.0,
596.0
Elemental analysis: calculated: C 58.29, H 5.19, N 7.04; found: C
58.25, H 5.18, N 7.03.
Η NMR (300 MHz, DMSO, δ): 0.95-1.00 (t, 3H, CH3), 1.50 (s, 9H, t-
Bu), 1.95-2.20 (m, 4H, 2xCH2), 2.65-2.75 (t, 2H, CH2), 3.50-3.60 (t, 2H,
CH2), 5.30 (s, 2H, CH2), 5.50 (s, 2H, CH2), 7.10 (s, 1H, CH), 7.65-7.75
(t, 1H, CH), 7.85-7.95 (t, 1H, CH), 8.10-8.20 (d, 1H, CH), 8.50-8.60 (d,
1H, CH), 9.20 (s, 1H, CH).
18C NMR (75.4 MHz, DMSO, δ): 8.1; 28.4; 28.2; 28.1; 31.0; 31.5; 33.8;
34.2; 45.9; 53.6; 65.4; 77.8; 82.1; 96.4; 120.4; 125.8, 126.5; 129.8; 130.4;
131.2; 133.0; 144.5; 146.3; 147.7; 149.4; 153.8; 157.0; 168.0; 172.5.
Cytotoxicity test on H460 cells: IC5o = 42 nM ± 6
Example 2
(E)-7-tert-butoxyiminomethyl-20-O-(4-trimethyl-ammonium-3- hydroxy)butanoyl-camptothecin bromide (4a) (ST2204)
To a solution of 510 mg (0.86 mmol) of (E)-7-tert-butoxyiminomethyl- 20-O-(4-bromo)-butyryl-camptothecin (2a) in 10 mL of anhydrous DMF were added 906 mg (5.6 mmol, 6.5 eq.) of L-carnitine inner salt. The mixture thus obtained was stirred at room temperature and sheltered from the light. After 16 h the reaction showed 40% conversion and 600 mg (3.7 mmol, 4.3 eq.) of L-carnitine inner salt were then added. After another 20 h the excess carnitine was eliminated after diluting the mixture with 15 mL of CH2CI2, with an aqueous washing (4 mL). The resulting organic phase was shaken with 10 mL of H2O to extract the product and eliminate the lipophilic impurities in CH2CI2. 161 mg (0.21 mmol, 24%) of a yellow solid were obtained (Tdec. = 189°C). Rf = 0.38 (CH2CI2/CH3OH 7:3).
MS (IS): M+ = 677.4
Elemental analysis: calculated: C 57.02, H 5.93, N 7.39; found: C
56.98, H 5.92, N 7.38. (2%H20).
Η NMR (300 MHz, DMSO, δ): 0.90-1.00 (t, 3H, CH3), 1.50 (s, 9H, t-
Bu), 1.80-1.95 (quintet, 2H, CH2), 2.10-2.20 (q, 2H, CH2), 2.60-2.70 (t,
2H, CH2), 3.10 (s, 9H, NMe3), 3.20-3.40 (t, 4H, 2x CH2), 4.05-4.15 (t,
2H, CH2), 4.35-4.45 (m, IH, CH), 5.30 (s, 2H, CH2), 5.50 (s, 2H, CH2),
7.10 (s, IH, CH), 7.70-7.80 (t, IH, CH), 7.85-7.95 (t, IH, CH), 8.15-8.20
(d, IH, CH), 8.55-8.65 (d, IH, CH), 9.30 (s, IH, CH).
13C NMR (75.4 MHz, DMSO, δ): 8.2; 24.4; 28.0; 28.2; 30.5; 31.0; 53.3;
54.1; 62.9; 63.7; 67.0; 69.9; 76.6; 81.3; 95.3; 119.7, 125.0; 125.8; 127.3;
129.0; 130.4; 131.2; 132.6; 144.3; 146.0; 146.0; 149.4; 153.0; 157.1;
168.0; 170.7; 172.3.
Example 3
(E) - 7 -tert-b utoxy iminomethy 1- 20 - O - (4-trimethylammonium) -b ut anoyl- camptothecin bromide (5a) (ST2200)
In a solution of 500 mg (0.84 mmol) of (E)-7-tert-butoxyiminomethyl- 20-O-(4-bromo)-butyryl-camptothecin (2a) in 10 mL of THF, gaseous trimethylamine was bubbled for 15 h at room temperature and sheltered from the light. The THF was then removed by evaporation and the product was purified by re-precipitation with ethyl ether from a methanol solution. 300 mg (0.46 mmol, 54.7%) of product were obtained as a yellow solid (Tdec = 212°C).
Rf = 0.38 (CH2CI2/CH3OH 7:3).
MS (IS): M+ = 575,4.
Elemental analysis: calculated: C 58.57, H 5.95, N 8.54; found: C
58.53, H 5.94, N 8.53. (1%H20). NMR (300 MHz, DMSO, δ): 0.95-1.00 (t, 3H, CH3), 1.50 (s, 9H, t-
Bu), 1.90-2.00 (m, 2H, CH2), 2.15-2.25 (q, 2H, CH2), 2.60-2.80 (m, 2H,
CHs , 3.00 (s, 9H, NMe3), 3.25 (m, 2H, CH2), 5.40 (s, 2H, CH2), 5.50- 6.00 (d, 2H, CH2), 7.10 (s, IH, CH), 7.70-7.80 (t, IH, CH), 7.85-7.95 (t, IH, CH), 8.10-8.20 (d, IH, CH), 8.55-8.65 (d, IH, CH), 9.30 (s, IH, CH). 13C NMR (75.4 MHz, DMSO, δ): 8.1; 18.4; 28.6; 20.2; 21.3; 53.6; 54.8; 65.4; 67.2; 77.3; 79.0; 82.1; 96.5; 120.2, 125.8; 126.0; 128.0; 129.5; 130.1; 133.2; 144.2; 146.1; 147.0; 149.5; 153.0; 157.9; 168.0; 172.9.
Example 4
(E)-7-tert-butoxyiminomethyl-20-O-hemisuccinyl-camptothecin (3a)
In a flask kept sheltered from the light were dissolved 6 g (13.4 mmol) of 7-tert-butoxyiminomethyl-camptothecin (la), 26.82 g (268 mmol) of succinic anhydride and 600 mg (4.9 mol) of 4-dimethylaminopyridine in 60 mL of anhydrous pyridine; the mixture thus obtained was stirred at T = 60°C. After 22 h the solvent was removed by evaporation and the residue extracted with CH2CI2. The organic phase was shaken with HC1 0.5% (2x20 mL) and dried on anhydrous Na2S04.
The crude reaction product was purified by chromatography on silica gel with CH2CI2/CH3OH 95:5 →9:1 to obtain 5.3 g (9.7 mmol, 72.4%) of product.
MS (IS): [M+H]+ = 548.3.
Elemental analysis: calculated: C 63.62, H 5.30, N 7.68; found: C
63.59, H 5.29, N 7.67. NMR (300 MHz, CDCI3, δ): 0.95-1.05 (t, 3H, CH3), 1.50 (s, 9H, t-Bu),
2.10-2.30 (m, 4H, 2x CH2), 2.90-3.10 (m, 2H, CH2), 5.35-5.45 (d, 2H,
CH2), 5.70-5.80 (d, 2H, CH2), 7.40 (s, IH, CH), 7.65-7.75 (d, 2H, 2xCH),
8.10-8.20 (d, 2H, 2xCH), 8.90 (s, IH, CH). isC NMR (75.4 MHz, DMSO, δ): 8.1; 28.0; 30.2; 32.0; 52.1; 67.0; 82.4;
120.6, 122.1; 124.7; 125.5; 128.2; 129.1; 142.7; 144.0; 146.4; 147.3;
151.5; 156.8; 172.9; 174.4. 18C NMR (75.4 MHz, CDCls, δ): 8.1; 28.0; 30.2; 32.0; 52.1; 67.0; 82.4; 120.6; 122.1; 124.7; 125.5; 128.2; 129.1; 142.7; 144.0; 146.4; 147.3; 151.5; 156.8; 167.2; 172.9; 174.4.
Example 5
(E)-7-tert-butoxyiminomethyl-20-O-[2-(dimethylamino)ethylamino1 succinyl-camptothecin hydrochloride (6a) (ST1657)
The intermediate product 3a (3 g, 5.48 mmol) was dissolved in 60 ml of anhydrous CH2CI2 (60 ml). To the solution, cooled in an ice bath, were added 22 ml of oxalyl chloride. On completing the addition, the cooling bath was removed and the reaction was left at room temperature for 8 h. After this, the reaction was processed by removing the solvent and excess oxalyl chloride and then by washing, repeatedly adding and evaporating the anhydrous CH2CI2. (Any oxalic acid remaining is decomposed).
The crude reaction product (a red solid) (3.1 g) was used as is in the next reaction without any further purification.
In a flask fitted with a drip funnel were dissolved 3.4 g (6 mmol) of the crude acid chloride described previously in 80 ml of anhydrous CH2C12. To the resulting solution, held at 0°C, was added dropwise a solution of 1 ml of N,N-dimethyl-ethylenediamine and 1.25 ml of TEA in 10 ml of CH2CI2. Two hours after the addition, the reaction was checked. The reaction was processed by adding a further aliquot of CH2CI2 and then shaking it with several portions of water. The resulting organic phase was dried on anhydrous Na2S04 and concentrated, obtaining 4.6 g of a red solid which was then purified. To the solid redissolved in CH2CI2 was added gaseous HC1 dissolved in THF. After a 10-minute stirring the solution was concentrated on the Rotavapor until all the solvent and excess hydrochloric acid was removed. The crude reaction product was dissolved in a minimal quantity of CH2C12 and filtered to remove any dispersed solid. ST1657 was precipitated from the solution by adding acetone (1.5 g of crude product yielded 1 g of precipitated solid). The total yield of ST1657 from 3a was 25%.
Rf = 0.2 (CH2CI2/CH3OH 8:2).
Figure imgf000021_0001
Elemental analysis: calculated: C 60.60, H 6.12, N 10.71; found: C
60.56, H 6.11, N 10.70.(2%H2O). iH NMR (300 MHz, DMSO, δ): 0.90-1.00 (t, 3H, CH3), 1.50 (s, 9H, tBu)
2.05-2.20 (q, 2H, CH2), 2.40-2.50 (q, 2H, CH2), 2.60-2.70 (s, 6H, 2xCH3)
2.70-2.90 (m, 4H, 2xCH2), 3.00-3.10 (q, 2H, CH2), 5.30 (s, 2H, CH2)
5.50 (s, 2H, CH2), 7.10 (s, IH, CH), 7.70-7.80 (t, IH, CH), 7.85-7,95 (t
IH, CH), 8,15-8,20 (d, IH, CH), 8,20-8,30 (t, IH, NH), 8.55-8.60 (d, IH
CH), 9.30 (s, IH, CH). i3C NMR (75.4 MHz, DMSO, δ): 8.3; 27.9; 29.4; 30.4; 31.0; 34.6; 42.9
53.2; 56.6; 66.9; 71.0; 76.6; 81.3; 95;7;119.6; 124.9; 125.7; 127.7; 128.9
130.4; 131.2; 132.5; 144.3; 146.4; 149.4; 153.1; 157.0; 168.0; 171.8
172.2.
Example 6
20-O-(benzylglycyl)succinyl-camptothecin (7b) (ST1451)
500 mg (1.44 mmol) of camptothecin (lb), 4 g (40 mmol; 28 eq.) of succinic anhydride and dimethylaminopyridine in a catalytic amount were suspended in 5 ml of pyridine; the mixture was stirred at 50°C for 48 h. On completion of the reaction, 50 mL of HC1 6N were added and the solid thus obtained was recrystallised by MeOH to yield 452 mg (1 mmol; 70%) of a product with Rf = 0.2 in CH2Cl2/MeOH 95:5.
To a suspension of 1 mmol of the acid thus obtained in 10 mL of anhydrous CH2C12, cooled to T = 0°C, were added 1.27 g (10 mmol; 10 eq.) of oxalyl chloride. The mixture was left to stir for 3 h until complete formation of the acid chloride was achieved; after bringing the reaction product to dryness, extraction was done with 10 mL of anhydrous CH2CI2 and 1.65 g (10 mmol; 10 eq.) of glycine-benzyl-ester and 1.5 mL (15 mmol; 15 eq.) of triethylamine were added. After 3 h the mixture was brought to dryness, the residue was extracted with CH2CI2 and the organic phase thus obtained was washed with HC1 IN and then with H2O. The crude product thus obtained was purified by chromatography on an Siθ2 column with CH2Cl2 eOH 95:5 to obtain 400 mg (0.67 mmol; 67%) of the desired product. Rf = 0.38 in CH2CI2 92:8.
M.P. = 189°C.
COD = -5.2° (c = 0,44 in CHCl3/MeOH 8:2).
MS (IS): [M+l]+ = 597.
Elemental analysis: calculated: C 66.55, H 4.87, N 7.06; found: C
66.52, H 4.86, N 7.05. iH NMR (300 MHz, DMSO, δ): 0.95-1.00 (t, 3H, CH3), 2.10-2.20 (q, 2H,
CH2), 2.40-2.60 (m, 2H, CH2), 2.65-2.85 (m, 2H, CH2), 3.90-4.10 (m, 2H,
CH2), 5.00 (s, 2H, CH2), 5.30 (s, 2H, CH2), 5.50 (s, 2H, CH2), 7.10 (s,
IH, CH), 7.25-7.35 (m, 5H, Ph), 7.65-7.80 (m, 2H, 2CH), 8.10-8.20 (q,
2H, 2CH), 8.40-8.50 (t, IH, NH), 8.70 (s, IH, CH). i3C NMR (75.4 MHz, DMSO, δ): 7.5; 28.8; 29.4; 30.2; 40.6; 40.7; 50.0;
65.7; 66.1; 75.8; 95;3;118.6; 127.5; 127.7; 127.8; 127.9; 128.2; 128.4;
128.9; 129.6; 130.2; 131.4; 135.7; 145.4; 145.7; 147.8; 152.3; 156.4;
167.1; 169.7; 170.9; 171.1.
Example 7
20-O-(terbutylglvcyl)succinyl-camptothecin bromide (8b) (ST1453)
500 mg (1.44 mmol) of camptothecin (lb), 4 g (40 mmol; 28 eq.) of succinic anhydride and dimethylaminopyridine in a catalytic amount were suspended in 5 ml of pyridine; the mixture was stirred at 50°C for 48 h. On completion of the reaction, 50 mL of HC1 6N were added and the solid thus obtained was recrystallised by MeOH to yield 452 mg (1 mmol; 70%) of a product with Rf = 0.2 in CH2Cl2/MeOH 95:5.
To a suspension of 1 mmol of the acid thus obtained in 10 mL of anhydrous CH2CI2, cooled to T = 0°C, were added 1.27 g (10 mmol; 10 eq.) of oxalyl chloride. The mixture was left to stir for 3 h until complete formation of the acid chloride was achieved; after bringing the reaction product to dryness, extraction was done with 10 mL of anhydrous CH2CI2 and 1.31 g (10 mmol; 10 eq.) of glycine-tert-butyl- ester and 1.5 mL (15 mmol; 15 eq.) of triethylamine were added. After 3 h the mixture was brought to dryness, the residue was extracted with CH2CI2 and the organic phase thus obtained was washed with HC1 IN and then with H2O. The crude product thus obtained was purified by chromatography on an Si02 column with CH2Cl2/MeOH 95:5 to yield 390 mg (0.7 mmol; 70%) of the desired product. Rf = 0.4 in
Figure imgf000023_0001
ctD = -52.1° (c = 0.41 in CHCls/MeOH 8:2).
MS (IS): [M+l]+ = 562; M + Na+ =584; [M-1]- = 560.
Elemental analysis: calculated: C 64.17, H 5.53, N 7.49; found: C
64.12, H 5.51, N 7.46. iH NMR (300 MHz, DMSO, δ): 0.90-1.00 (t, 3H, CH8), 1.40 (s, 9H, tBu),
2.10-2.20 (q, 2H, CH2), 2.35-2.55 (m, 2H, CH2), 2.60-2.85 (m, 2H, CH2),
3.75-4.00 (m, 2H, CH2), 5.30 (s, 2H, CH2), 5.50 (s, 2H, CH2), 7.20 (s,
IH, CH), 7.70-7.80 (t, IH, CH), 7.85-7.95 (t, IH, CH), 8.10-8.15 (d, IH,
CH), 8.20-8.25 (d, IH, CH), 8.30-8.35 (t, IH, NH), 8.70 (s, IH, CH). isC NMR (75.4 MHz, DMSO, δ): 7.5; 27.5; 28.9; 29.4; 30.2; 40.3; 41.2;
50.0; 66.1; 75.8; 80.4; 95;4;118.6; 127.6; 127.9; 128.4; 128.9; 129.7;
130.2; 131.4; 145.4; 145.7; 147.8; 152.3; 156.5; 167.1; 169.0; 170.7;
171.2.
Example 8 7-ter-butoxyiminomethyl-20-O-(terbutylglycyl)succinyl-camptothecin (8a) (ST1616)
387 mg (0.71 mmol) of 3a were dissolved in 100 mL of anhydrous CH2C12. The solution was cooled in an ice bath, and 3 mL of oxalyl chloride were then added. On completion of the addition, the ice bath was removed and the reaction was left at room temperature for 6 h. On completion of the reaction, the mixture was brought to dryness and washed several times with CH C12. To the acid chloride thus obtained was added a solution of glycine tert-butyl ester in CH2C12, obtained by releasing with NaOH 2N 1.6 g (9.6 mmol; 13 eq. compared to the starting 3a) of the corresponding hydrochloride, and 1.6 mL of triethylamine. After 3 h the reaction mixture was diluted with CH2C12 and washed with HC1 IN, NaOH 2N and with NaClsat. The organic phase was then dried on anhydrous sodium sulphate and purified on a preparative column (CH2Cl2/MeOH 9:1) to yield 360 mg (0.54 mmol; 76%) of end product.
Rf = 0.47 in CH2Cl2/MeOH 95:5.
M.P. = 190°C.
[M-1]- = 659.
Elemental analysis: calculated: C 63.64, H 6.06, N 8.48; found: C
63.67, H 6.09, N 8.51.
Η NMR (300 MHz, DMSO, δ): 0.95-1.00 (t, 3H, CH3), 1.40 (s, 9H, tBu),
1.50 (s, 9H, tBu), 2.10-2.30 (q, 2H, CH2), 2.40-2.60 (m, 2H, CH2), 2.70-
2.90 (m, 2H, CH2), 3.70-4.00 ( , 2H, CH2), 5.40 (s, 2H, CH2), 5.50 (s,
2H, CH2), 7.20 (s, IH, CH), 7.70-7.80 (t, IH, CH), 7.90-8.00 (t, IH, CH),
8.20-8.25 (d, IH, CH), 8.30-8.40 (t, IH, NH), 8.60-8.65 (d, IH, CH), 9.30
(s, IH, CH). ι»C NMR (75.4 MHz, DMSO, δ): 8.3; 28.0; 28.3; 29.6; 30.1; 31.0; 42.0
53.1; 66.9; 76.6; 81.2; 81;3; 96.0; 119.5; 124.9; 125.7; 127.2; 128.9
130.5; 131.0; 132.4; 144.3; 146.1; 146.2; 149.4; 153.1; 157.0; 167.9
171.5; 171.2.
Example 9 20-O-(glycyl)succinyl-camptothecin (7b) (ST1452)
200 mg (0.34 mmol) of ST1451 were dissolved in 3 L of a mixture of DMF/EtOH 1:1; the solution was added with Pd-BaS04 cat. and subjected to hydrogenation at 60 psi. After 1 h the reaction was complete, with formation of a product with Rf = 0.2 in CH2Cl2/Me0H 8:2. The product was purified on an Si02 column with CH2Cl2/Me0H 7:3 to yield 157 mg (0.31 mmol; 90%) of the expected product.
Idee — 255 C
OOD = -62° (c = 0.4 in CHCVMeOH 8:2)
MS (IS): [M-1]- = 504.
Elemental analysis: calculated: C 61.78, H 4.87, N 7.06; found: C
61.74, H 4.82, N 7.10.
Η NMR (300 MHz, DMSO, δ): 0.90-1.00 (t, 3H, CH3), 2.10-2.20 (q, 2H,
CH2), 2.35-2.55 (m, 2H, CH2), 2.65-2.85 ( , 2H, CH2), 3.75-3.90 ( , 2H,
CH2), 5.30 (s, 2H, CH2), 5.50 (s, 2H, CH2), 7.20 (s, IH, CH), 7.70-7.80
(t, IH, CH), 7.85-7.95 (t, IH, CH), 8.10-8.15 (d, IH, CH), 8.20-8.25 (d,
IH, CH), 8.25-8.30 (t, IH, NH), 8.70 (s, IH, CH). i C NMR (75.4 MHz, DMSO, δ): 8.5; 29.9; 30.4; 31.3; 51.1; 67.2; 76.8;
96.3; 119.7; 128.6; 128.9; 129.4; 130.0; 130.7; 131.2; 132.4; 146.8;
149.9; 153.3; 157.7; 168.1; 171.6; 172.2.
Example 10
20-O-(2-methoxyphenylglycyl)succinyl-camptothecin (8b) (ST1454)
To 55 mg of (7b) ST1452 dissolved in 3 mL of CH2CI2, were added 27 mg (0.22 mmol; 1.8 eq.) of dimethylaminopyridine, 150 mg (1.2 mmol; 10 eq.) of guaiacol and 150 mg (0.73 mmol; 7 eq.) of DCC. The mixture was stirred at room temperature overnight. The reaction was diluted with 10 ml of CH2CI2, washed with HC1 IN and dried on Na2S04. The crude product was purified on a preparative column with CH2Cl2/MeOH 98/2. 49 mg of product (0.08 mmol; 67 %) were obtained. Tf = 180°C.
CXD = -41.1° (c = 0.41 in CHCl3/MeOH 8:2).
MS (IS): [M+l]+ = 612; M + Na+ = 634; M + K+ = 650.
Elemental analysis: calculated: C 64.81, H 4.75, N 6.87; found: C
64.87, H 4.79, N 6.83. iH NMR (300 MHz, DMSO, δ): 0.90-1.00 (t, 3H, CH8), 2.10-2.20 (q, 2H,
CH2), 2.40-2.60 (m, 2H, CH2), 2.65-2.85 (m, 2H, CH2), 3.70 (s, 3H,
CHs), 4.10-4.30 (m, 2H, CH2), 5.30 (s, 2H, CH2), 5.50 (s, 2H, CH2), 6.85-
7.00 (m, 2H, 2xCHar), 7.05-7.25 (m, 3H, 2xCHar + CHoief), 7.60-7.70 (t,
IH, CH), 7.75-7.85 (t, IH, CH), 8.05-8.10 (d, IH, CH), 8.20-8.25 (d, IH,
CH), 8.45-8.55 (t, IH, NH), 8.70 (s, IH, CH). i3C NMR (75.4 MHz, DMSO, δ): 8.5; 25.4; 26.3; 29.8; 30.4; 31.2; 34.3
48.4; 51.1; 52.7; 67.2; 76.8; 96.3; 113.9; 119.7; 121.5; 123.5; 127.9
128.6; 128.9; 129.4; 130.0; 130.7; 131.2; 132.4; 146.4; 146.8; 148.9
151.7; 153.4; 157.5; 169.3; 171.9; 172.2.
Example 11
7-ter-butoxyiminomethyl-20-O-(2-methoxy-phenyl-glvcyl)succinyl- camptothecin (8a) (ST1617)
180 mg (0.27 mmol) of ST1616 were dissolved in 3 mL of anhydrous CH2C12, and 1.5 mL of trifluoro acetic acid were added to the solution. After 3 h at room temperature the reaction was complete and the mixture was brought to dryness and the residue thus obtained washed several times to eliminate the excess trifluoroacetic acid.
The product was then dissolved in 6 mL of anhydrous CH2CI2, and 0.82 mL (7.5 mmol; 28 eq.) of guaiacol, 80 mg (0.65 mmol; 2.4 eq.) of dimethylaminopyridine and 410 mg (2 mmol; 7.4 eq.) of DCC were added to the solution. After 24 h the reaction mixture was filtered through celite and the crude product was purified by chromatography on an Si02 column with CH2Cl2/MeOH 92:8 to yield 85 mg (0.12 mmol; 44%) of yellow solid. Rf = 0.24 in CH2Cl2/MeOH 95:5.
Figure imgf000027_0001
[M+l]+ = 711; M + Na+ = 733;
Elemental analysis: calculated: C 64.23, H 5.35, N 7.89; found: C
64.29, H 5.39, 7.84. iH NMR (300 MHz, DMSO, δ): 0.95-1.00 (t, 3H, CH8), 1.50 (s, 9H, tBu),
2.10-2.30 (q, 2H, CH2), 2.40-2.65 (m, 2H, CH2), 2.70-2.95 (m, 2H, CH2),
3.80 (s, 3H, CH8), 4.15-4.35 (m, 2H, CH2), 5.40 (s, 2H, CH2), 5.60 (s,
2H, CH2), 6.90-7.05 (m, 2H, 2xCH), 7.10-7.30 ( , 3H, 2xCHar + CH0_ef),
7.75-7.80 (t, IH, CH), 7.85-7.90 (t, IH, CH), 8.30-8.35 (d, IH, CH),
8.55-8.70 (m, 2H, CH + NH), 9.30 (s, IH, CH). i C NMR (75.4 MHz, DMSO, δ): 8.3; 25.1; 26.0; 27.0; 28.7; 29.6; 30.1;
31.0; 34.0; 48.2; 56.4; 76.6; 81.3; 96.0; 113.6; 119.5; 121.2; 123.3; 124.9;
125.7; 127.2; 127.7; 128.9; 130.5; 131.0; 132.4; 144.3; 146.2; 149.4;
151.4; 157.0; 157.3; 167.9; 169.0; 171.7; 172.0.

Claims

Formula (I) compounds
Figure imgf000028_0001
where:
A is saturated or unsaturated straight or branched Ci-Cβ alkyl, C3-C10 cycloalkyl, straight or branched C3-C10 cycloalkyl- Ci-Cβ alkyl; when n and m are equal to 1, then Y is saturated or unsaturated straight or branched Ci-Cs alkyl substituted with NR12Ri3 or N+2 i3Ri4, where R12, R13 and R14, which can be the same or different, are hydrogen or straight or branched C1-C4 alkyl, or Y is BCOOX, where B is a residue of an amino acid, X is H, straight or branched Ci- C4 alkyl, benzyl or phenyl, substituted in the available positions with at least one group selected from C1-C4 alkoxy, halogen, nitro, amino, C1-C4 alkyl, or, if n and m are both 0; Y is 4-trimethylammonium-3-hydroxybutanoyl, both in the form of inner salt and in the form of a salt with an anion of a pharmaceutically acceptable acid, or Y is N+ ι2Ri3Ri4, as defined above;
Ri is hydrogen or
Figure imgf000028_0002
group, in which R4 is hydrogen or a straight or branched C1-C5 alkyl or C1-C5 alkenyl group, or a C3-C10 cycloalkyl group, or a straight or branched (C3-C10) cycloalkyl - (C1-C5) alkyl group, or a Cβ-Ci4 aryl group, or a straight or branched (Cβ-Cu) aryl - (C1-C5) alkyl group, or a heterocyclic group or a straight or branched heterocyclo - (C1-C5) alkyl group, said heterocyclic group containing at least one heteroatom selected from an atom of nitrogen, optionally substituted with a (C1-C5) alkyl group, and/or an atom of oxygen and/or of sulphur; said alkyl, alkenyl, cycloalkyl, cycloalkylalkyl, aryl, aryl- alkyl, heterocyclic or heterocyclo-alkyl groups may optionally be substituted with one or more groups selected from: halogen, hydroxy, Ci-Cδ alkyl, C1-C5 alkoxy, phenyl, cyano, nitro, -NR6R7, where Re and R7, which may be the same or different, are hydrogen, straight or branched (C1-C5) alkyl, the -COOH group or one of its pharmaceutically acceptable esters; or the — CONRsRg group, where s and R9, which may be the same or different, are hydrogen, straight or branched (Ci-Cδ) alkyl; or R4 is a (Cβ-Cio) aroyl or (Cβ-Cio) arylsulphonyl residue, optionally substituted with one or more groups selected from: halogen, hydroxy, straight or branched C1-C5 alkyl, straight or branched C1-C5 alkoxy, phenyl, cyano, nitro, -NR10R11, where Rio and Rn, which may be the same or different, are hydrogen, straight or branched Ci-Cδ alkyl; or R is a polyaminoalkyl residue; or R4 is a glycosyl residue; R is hydrogen, straight or branched C1-C5 alkyl, straight or branched C1-C5 alkenyl, C3-C10 cycloalkyl, straight or branched (C3-C10) cycloalkyl - (C1-C5) alkyl, CG-C aryl, straight or branched (Cβ-Cu) aryl - (C1-C5) alkyl; R2 and R3, which may be the same or different, are hydrogen, hydroxyl, straight or branched C_.-Cδ alkoxy; the Nl-oxides, the racemic mixtures, their individual enantiomers, their individual diastereoisomers, their mixtures, and pharmaceutically acceptable salts.
2. Compounds according to claim 1, in which, in formula (I), n and are 1.
3. Compounds according to claim 1, in which, in formula (I), n and m are 0.
4. Compounds according to claim 1, selected from the group consisting of:
(E)-7-tert-butoxyiminomethyl-20-O-(4-trimethyl-ammonium-3- hydroxy)butanoyl-camptothecin bromide;
(E)-7-tert-butoxyiminomethyl-20-O-(4-trimethyl-ammonium)butanoyl- camptothecin bromide;
(E)-7-tert-butoxyiminomethyl-20-O-hemisuccinyl-camptothecin; (E)-7-tert-butoxyiminomethyl-20-O-[2-(dimethylamino) ethylamino] succinylcamptothecin h drochloride ;
20-O-(benzylglicyl)succinyl-camptothecin;
20-O-(terbutylglycyl)succinyl-camptothecin bromide;
7-ter-butoxyiminomethyl-20-O-(terbutylglycyl)succinyl-camptothecin;
20-O-(glycyl)succinyl-camptothecin;
20-O-(2-methoxyphenylglycyl)succinyl-camptothecin;
7-ter-butoxyiminomethyl-20-O-(2-methoxy-phenylglycyl) succinyl-camptothecin.
5. Process for the preparation of compounds according to claim 1, where n and m are 0, comprising: a) reaction of the camptothecin, optionally substituted with the Ri, and R3 groups defined above, with a carboxylic acid bearing a leaving group in ω to obtain the respective ester in position 20; b) substitution of said leaving group with the Y group.
6. Process for the preparation of compounds according to claim 1, where n and m are 1, comprising: a) reaction of the camptothecin, optionally substituted with the Ri, R2 and R3 groups defined above, with a carboxylic acid with 3 to 11 carbon atoms, to obtain the respective hemiester in position 20; b) transformation of the free carboxylic group of said hemiester to the respective amide -NH-Y.
7. Compounds according to any of claims 1-4, as medicaments.
8. Pharmaceutical composition containing a therapeutically effective amount of at least one compound according to claims 1-4, in admixture with pharmaceutically acceptable vehicles and excipients.
9. Pharmaceutical composition containing a therapeutically effective amount of at least one compound according to claims 1-4, in admixture with pharmaceutically acceptable vehicles and excipients and optionally in combination with another active ingredient.
10. Pharmaceutical composition according to claim 9, in which the other active ingredient is an anticancer agent.
11. Use of a compound according to claims 1-4, for the preparation of a medicament endowed with topoisomerase I inhibiting activity.
12. Use according to claim 11, for the preparation of a medicament useful for the treatment of tumours.
13. Use according to claim 11, for the preparation of a medicament useful for the treatment of parasitic or viral infections.
PCT/IT2003/000329 2002-05-31 2003-05-28 Esters in position 20 of camptothecins WO2003101996A2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
AU2003241161A AU2003241161C1 (en) 2002-05-31 2003-05-28 Esters in position 20 of camptothecins
MXPA04011681A MXPA04011681A (en) 2002-05-31 2003-05-28 Esters in position 20 of camptothecins.
AT03730481T ATE439362T1 (en) 2002-05-31 2003-05-28 ESTERS IN POSITION 20 OF CAMPTOTHECINES
DK03730481T DK1509529T3 (en) 2002-05-31 2003-05-28 Esters at camptotheciners position 20
SI200331685T SI1509529T1 (en) 2002-05-31 2003-05-28 Esters in position 20 of camptothecins
CA2487252A CA2487252C (en) 2002-05-31 2003-05-28 Esters in position 20 of camptothecins
EP03730481A EP1509529B1 (en) 2002-05-31 2003-05-28 Esters in position 20 of camptothecins
DE60328777T DE60328777D1 (en) 2002-05-31 2003-05-28 Ester in position 20 von camptothecinen
US10/512,094 US7452900B2 (en) 2002-05-31 2003-05-28 Esters in position 20 of camptothecins
JP2004509687A JP4593270B2 (en) 2002-05-31 2003-05-28 20th ester of camptothecin
HK05111354A HK1079206A1 (en) 2002-05-31 2005-12-12 Esters in position 20 of camptothecins
US11/783,495 US7498340B2 (en) 2002-05-31 2007-04-10 Esters in position 20 of camptothecins

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT2002RM000306A ITRM20020306A1 (en) 2002-05-31 2002-05-31 ESTERS IN POSITION 20 OF CAMPTOTECINE.
ITRM2002A000306 2002-05-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10512094 A-371-Of-International 2003-05-28
US11/783,495 Division US7498340B2 (en) 2002-05-31 2007-04-10 Esters in position 20 of camptothecins

Publications (3)

Publication Number Publication Date
WO2003101996A2 true WO2003101996A2 (en) 2003-12-11
WO2003101996A3 WO2003101996A3 (en) 2004-01-29
WO2003101996A8 WO2003101996A8 (en) 2004-04-29

Family

ID=11456339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IT2003/000329 WO2003101996A2 (en) 2002-05-31 2003-05-28 Esters in position 20 of camptothecins

Country Status (22)

Country Link
US (2) US7452900B2 (en)
EP (2) EP2112154B1 (en)
JP (1) JP4593270B2 (en)
KR (1) KR101000963B1 (en)
CN (1) CN100376583C (en)
AR (1) AR040140A1 (en)
AT (1) ATE439362T1 (en)
AU (1) AU2003241161C1 (en)
CA (1) CA2487252C (en)
CY (2) CY1109581T1 (en)
DE (1) DE60328777D1 (en)
DK (2) DK2112154T3 (en)
ES (2) ES2331569T3 (en)
HK (1) HK1079206A1 (en)
IT (1) ITRM20020306A1 (en)
MX (1) MXPA04011681A (en)
PE (1) PE20040533A1 (en)
PL (1) PL374009A1 (en)
PT (2) PT2112154E (en)
SI (2) SI1509529T1 (en)
TW (1) TWI331151B (en)
WO (1) WO2003101996A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004083365A2 (en) * 2003-03-18 2004-09-30 INSERM (Institut National de la Santé et de la Recherche Médicale) Compounds and their use for specific and simultaneous inhibition of genes involved in diseases and related drugs
WO2005113018A2 (en) 2004-04-27 2005-12-01 Wellstat Biologics Corporation Cancer treatment using viruses and camptothecins
US7589099B2 (en) * 2004-05-13 2009-09-15 Sigma-Tau Industrie Farmaceutiche Reunite S.p.A. 7-t-butoxyiminomethylcamptothecin conjugated in position 20 with integrin antagonists
US7767200B2 (en) 2005-07-14 2010-08-03 Wellstat Biologics Corporation Cancer treatment using viruses, fluoropyrimidines and camptothecins
WO2017053920A1 (en) 2015-09-25 2017-03-30 Zy Therapeutics Inc. Drug formulation based on particulates comprising polysaccharide-vitamin conjugate

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103864811A (en) * 2012-12-13 2014-06-18 天津科技大学 Novel 10-hydroxy camptothecin site-20 derivative preparation method, and application of 10-hydroxy camptothecin site 20 derivative in anti-tumor drugs
US9962452B2 (en) * 2013-02-04 2018-05-08 Zhuhai Beihai Biotech Co., Ltd. Soluble complexes of drug analogs and albumin
WO2015200837A1 (en) 2014-06-27 2015-12-30 Fl Therapeutics Llc Abiraterone derivatives and non-covalent complexes with albumin
WO2016065139A1 (en) 2014-10-24 2016-04-28 Fl Therapeutics Llc 3-substituted piperidine-2, 6-diones and non-covalent complexes with albumin
CN106279286B (en) * 2016-08-12 2018-11-30 华中科技大学 A kind of camptothecine phosphonate ester compound, preparation method and application
CN110577551A (en) * 2018-06-08 2019-12-17 遵义医学院 Camptothecin-glycine-5, 6-dibromo norcantharidin conjugate and application thereof
PE20221005A1 (en) 2019-07-11 2022-06-15 Sun Pharma Advanced Res Co Ltd CAMPTOTHECIN DERIVATIVES
CN113788839A (en) * 2020-08-21 2021-12-14 诺茗(北京)生物医药有限公司 Water-soluble anti-tumor prodrug, and pharmaceutical composition and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943579A (en) 1987-10-06 1990-07-24 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Water soluble prodrugs of camptothecin
WO1997021865A1 (en) 1995-12-15 1997-06-19 The Dexter Corporation Abrasive nonwoven web and method of manufacture
WO2000006134A2 (en) 1998-07-30 2000-02-10 Sigma-Tau Industrie Farmaceutiche Riunite S.P.A. Use of l-carnitine and its alkanoyl derivatives in the preparation of medicaments with anticancer activity
WO2000008033A1 (en) 1998-08-07 2000-02-17 The University Of Kansas Water soluble prodrugs of hindered alcohols or phenols
EP1044977A1 (en) 1999-03-09 2000-10-18 Sigma-Tau Industrie Farmaceutiche Riunite S.p.A. Camptothecin derivatives having antitumor activity
EP1044997A2 (en) 1999-04-15 2000-10-18 Clariant GmbH Aromatic aldehyde resins and their use as demulsifier
WO2001009139A1 (en) 1999-08-03 2001-02-08 The Stehlin Foundation For Cancer Research Aromatic esters of camptothecins and methods to treat cancers
WO2001049691A1 (en) 1999-12-29 2001-07-12 Research Triangle Institute CAMPTOTHECIN β-ALANINE ESTERS WITH TOPOISOMERASE I INIBHITION

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5004758A (en) * 1987-12-01 1991-04-02 Smithkline Beecham Corporation Water soluble camptothecin analogs useful for inhibiting the growth of animal tumor cells
JP3186166B2 (en) * 1992-02-10 2001-07-11 ロンザ リミテッド Salicyloyl-carnitine and method for producing the same
US5646159A (en) * 1994-07-20 1997-07-08 Research Triangle Institute Water-soluble esters of camptothecin compounds
US6629995B1 (en) 2000-03-31 2003-10-07 Super Gen, Inc. Camptothecin conjugates

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943579A (en) 1987-10-06 1990-07-24 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Water soluble prodrugs of camptothecin
WO1997021865A1 (en) 1995-12-15 1997-06-19 The Dexter Corporation Abrasive nonwoven web and method of manufacture
WO2000006134A2 (en) 1998-07-30 2000-02-10 Sigma-Tau Industrie Farmaceutiche Riunite S.P.A. Use of l-carnitine and its alkanoyl derivatives in the preparation of medicaments with anticancer activity
WO2000008033A1 (en) 1998-08-07 2000-02-17 The University Of Kansas Water soluble prodrugs of hindered alcohols or phenols
EP1044977A1 (en) 1999-03-09 2000-10-18 Sigma-Tau Industrie Farmaceutiche Riunite S.p.A. Camptothecin derivatives having antitumor activity
EP1044997A2 (en) 1999-04-15 2000-10-18 Clariant GmbH Aromatic aldehyde resins and their use as demulsifier
WO2001009139A1 (en) 1999-08-03 2001-02-08 The Stehlin Foundation For Cancer Research Aromatic esters of camptothecins and methods to treat cancers
WO2001049691A1 (en) 1999-12-29 2001-07-12 Research Triangle Institute CAMPTOTHECIN β-ALANINE ESTERS WITH TOPOISOMERASE I INIBHITION

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CONOVER C.D. ET AL., ANTI-CANCER DRUG DESIGN, vol. 14, 1999, pages 499 - 506
MATSUMOTO H. ET AL., BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 11, 2001, pages 605 - 609
SINGER J.W ET AL., JOURNAL OF CONTROLLED RELEASE, vol. 74, 2001, pages 243 - 247

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004083365A2 (en) * 2003-03-18 2004-09-30 INSERM (Institut National de la Santé et de la Recherche Médicale) Compounds and their use for specific and simultaneous inhibition of genes involved in diseases and related drugs
WO2004083365A3 (en) * 2003-03-18 2005-08-18 Inst Nat Sante Rech Med Compounds and their use for specific and simultaneous inhibition of genes involved in diseases and related drugs
WO2005113018A2 (en) 2004-04-27 2005-12-01 Wellstat Biologics Corporation Cancer treatment using viruses and camptothecins
US9844574B2 (en) 2004-04-27 2017-12-19 Wellstat Biologics Corporation Cancer treatment using viruses and camptothecins
US7589099B2 (en) * 2004-05-13 2009-09-15 Sigma-Tau Industrie Farmaceutiche Reunite S.p.A. 7-t-butoxyiminomethylcamptothecin conjugated in position 20 with integrin antagonists
US7767200B2 (en) 2005-07-14 2010-08-03 Wellstat Biologics Corporation Cancer treatment using viruses, fluoropyrimidines and camptothecins
WO2017053920A1 (en) 2015-09-25 2017-03-30 Zy Therapeutics Inc. Drug formulation based on particulates comprising polysaccharide-vitamin conjugate

Also Published As

Publication number Publication date
ES2331569T3 (en) 2010-01-08
ITRM20020306A1 (en) 2003-12-01
TW200403246A (en) 2004-03-01
SI1509529T1 (en) 2009-12-31
TWI331151B (en) 2010-10-01
CA2487252A1 (en) 2003-12-11
US7452900B2 (en) 2008-11-18
PT1509529E (en) 2009-11-13
CY1109581T1 (en) 2014-08-13
ES2432379T3 (en) 2013-12-03
KR101000963B1 (en) 2010-12-13
ATE439362T1 (en) 2009-08-15
WO2003101996A3 (en) 2004-01-29
PT2112154E (en) 2013-10-02
KR20050036910A (en) 2005-04-20
US20070213353A1 (en) 2007-09-13
AR040140A1 (en) 2005-03-16
EP1509529B1 (en) 2009-08-12
JP2005529935A (en) 2005-10-06
WO2003101996A8 (en) 2004-04-29
AU2003241161C1 (en) 2010-03-04
AU2003241161A1 (en) 2003-12-19
CA2487252C (en) 2010-08-10
ITRM20020306A0 (en) 2002-05-31
EP1509529A2 (en) 2005-03-02
DK1509529T3 (en) 2009-12-14
MXPA04011681A (en) 2005-03-31
US20050256148A1 (en) 2005-11-17
CN1656101A (en) 2005-08-17
SI2112154T1 (en) 2013-12-31
AU2003241161B2 (en) 2009-10-22
US7498340B2 (en) 2009-03-03
DK2112154T3 (en) 2013-10-21
HK1079206A1 (en) 2006-03-31
EP2112154B1 (en) 2013-07-24
CN100376583C (en) 2008-03-26
DE60328777D1 (en) 2009-09-24
PE20040533A1 (en) 2004-08-26
EP2112154A1 (en) 2009-10-28
JP4593270B2 (en) 2010-12-08
PL374009A1 (en) 2005-09-19
CY1114692T1 (en) 2016-10-05

Similar Documents

Publication Publication Date Title
US7498340B2 (en) Esters in position 20 of camptothecins
KR100191193B1 (en) Hexa-cyclic compound
US5049668A (en) 10,11-methylenedioxy-20(RS)-camptothecin analogs
EP0418099A2 (en) 10, 11-Methylenedioxy-20 (RS) camptothecin and 10, 11-methylenedioxy-20 (S) - camptothecin analog
US5340817A (en) Method of treating tumors with anti-tumor effective camptothecin compounds
AU2009236044A8 (en) Camptothecins with a modified lactone ring
US6268375B1 (en) 10, 11-difluoromethylenedioxycamptothecin compounds with topoisomerase I inhibition
WO1996041806A1 (en) Novel water-soluble fluoroethylcamptothecin derivative and process for production thereof
ES2373172B1 (en) PROCESS OF OBTAINING SOLUBLE DERIVATIVES IN WATER OF 20 (S) CAMPTOTECHINA AS ANTITUMOR AGENTS.
KR100266743B1 (en) A process of manufacturing camptothecin derivatives
KR20020093090A (en) (5R)-(Methylamino)-5,6-dihydro-4H-imidazo[4,5,1-ij]quinoline-2(1H)-thione
JP5863846B2 (en) Method for producing irinotecan

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WR Later publication of a revised version of an international search report
WWE Wipo information: entry into national phase

Ref document number: 1020047016881

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10512094

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2487252

Country of ref document: CA

Ref document number: 2003730481

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003241161

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 374009

Country of ref document: PL

WWE Wipo information: entry into national phase

Ref document number: PA/a/2004/011681

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2004509687

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038125447

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003730481

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020047016881

Country of ref document: KR