WO2003093332A1 - Rotomoulding polyethylene and method for producing said rotomoulding polyethylene - Google Patents
Rotomoulding polyethylene and method for producing said rotomoulding polyethylene Download PDFInfo
- Publication number
- WO2003093332A1 WO2003093332A1 PCT/GB2003/001885 GB0301885W WO03093332A1 WO 2003093332 A1 WO2003093332 A1 WO 2003093332A1 GB 0301885 W GB0301885 W GB 0301885W WO 03093332 A1 WO03093332 A1 WO 03093332A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- density
- melt index
- comprised
- polyethylene
- minus
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F10/02—Ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/02—Ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/16—Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S526/00—Synthetic resins or natural rubbers -- part of the class 520 series
- Y10S526/901—Monomer polymerized in vapor state in presence of transition metal containing catalyst
Definitions
- the present invention relates to a method for producing rotomoulding polyethylene by fluidised bed gas phase polymerisation of ethylene.
- the present invention further relates to the improved rotomoulding polyethylene obtainable by the invention process.
- Processes for the co-polymerisation of olef ⁇ ns in the gas phase are well known in the art. Such processes can be conducted for example by introducing the gaseous monomer and comonomer into a stirred and/or gas fluidised bed comprising polyolefin and a catalyst for the polymerisation.
- the polymerisation is conducted in a fluidised bed reactor wherein a bed of polymer particles is maintained in a fluidised state by means of an ascending gas stream comprising the gaseous reaction monomer.
- the start-up of such a polymerisation generally employs a bed of polymer particles similar to the polymer, which it is desired to manufacture.
- fresh polymer is generated by the catalytic polymerisation of the monomer, and polymer product is withdrawn to maintain the bed at more or less constant volume.
- An industrially favoured process employs a fluidisation grid to distribute the fluidising gas to the bed, and to act as a support for the bed when the supply of gas is cut off.
- the polymer produced is generally withdrawn from the reactor via a discharge conduit arranged in the lower portion of the reactor, near the fluidisation grid.
- the fluidised bed consists in a bed of growing polymer particles. This bed is maintained in a fluidised condition by the continuous upward flow from the base of the reactor of a fluidising gas.
- the polymerisation of olef ⁇ ns is an exothermic reaction and it is therefore necessary to provide means to cool the bed to remove the heat of polymerisation. In the absence of such cooling the bed would increase in temperature and, for example, the catalyst becomes inactive or the bed commences to fuse.
- the preferred method for removing the heat of polymerisation is by supplying to the polymerisation reactor a gas, the fluidising gas, which is at a temperature lower than the desired polymerisation temperature, passing the gas through the fluidised bed to conduct away the heat of polymerisation, removing the gas from the reactor and cooling it by passage through an external heat exchanger, and recycling it to the bed.
- the temperature of the recycle gas can be adjusted in the heat exchanger to maintain the fluidised bed at the desired polymerisation temperature.
- the recycle gas generally comprises the monomer and comonomer olefins, optionally together with, for example, an inert diluent gas such as nitrogen or a gaseous chain transfer agent such as hydrogen.
- an inert diluent gas such as nitrogen or a gaseous chain transfer agent such as hydrogen.
- the recycle gas serves to supply the monomer to the bed, to fluidise the bed, and to maintain the bed at the desired temperature.
- Monomers consumed by the polymerisation reaction are normally replaced by adding make up gas or liquid to the polymerisation zone or reaction loop.
- a gas fluidised bed polymerisation reactor is typically controlled to achieve a desired melt index and density for the polymer at an optimum production.
- Conditions within the polymerisation reactor have to be carefully controlled to reduce the risk of agglomerate and/or sheet formation which may ultimately lead to bed instabilities and a need to terminate the reaction and shut down the reactor. This is the reason why commercial scale reactors are designed to operate well within proven stable operating zones and why the reactors are used in a carefully circumscribed fashion.
- the present invention relates to a process for producing rotomoulding polyethylene, having a density A comprised between 930 and 944 kg/m3 and a melt index B comprised between 3 and 7.8 , by (co-)polymerisation of ethylene in a fluidised bed gas phase reactor, said process comprising determining the instantaneous density d and melt index MI of the polyethylene powder exiting the reactor, allowing the density and melt index to vary around their A and B values by a value of plus or minus 3 kg/m3 for the density and plus or minus 30% for the melt index, characterised in that the operating temperature is controlled such that
- the RTSE factor is first maintained in the operating-enveloppe corresponding to the d and MI values of the polyethylene produced
- RTSE factor is maintained between 4.2 and 4.4.
- the present invention further relates to a rotomoulding polyethylene grade having a density comprised between 930 and 944 kg/m3 and a melt index comprised between 3 and 7.8 characterised in an ESCR property equal or higher than 400 h and a Charpy property equal or higher than 10kJ/m2.
- the said polyethylene is a non-metallocene containing polymer.
- the ESCR can be measured according to ASTM-D-1693.
- the Charpy can be measured according to ISO 179-2.
- the Charpy value is equal or higher than 14kJ/m2.
- the densities can be measured according to ASTM-D-792 and defined as in ASTM-D- 1248-84.
- the rotomoulding polyethylene of the present invention has a density comprised between 930 and 944, preferably between 933 and 941 kg/m3.
- the melt index can be measured according to ASTM-D- 1238, condition A (2.16kg).
- the rotomoulding polyethylene of the present invention has a melt index comprised between 3 and 7.8, preferably between 3 and 7 g/lOmin.
- the RTSE factor is indicated in the attached tables (figure 1 to 20).
- a RTSE value comprised between 4.2 and 4.4 corresponds to each density/melt index couple.
- To every RTSE corresponds an operating temperature.
- the corresponding operating temperature enveloppe can easily be calculated by making linear interpolations. For example, in figure 1, for a 932 / 3.7 density /melt index couple, the operating temperature at an RTSE of 4.3 is the average between 96.2°C (i.e. operating temperature for a 932 / 3.8 density /melt index couple at RTSE of 4.3) and 96.6°C (i.e.
- the invention is characterised in that the operating temperature is controlled such that the RTSE factor is first maintained in the operating-enveloppe corresponding to the D and MI values of the polyethylene produced, and the RTSE factor is maintained between 4.2 and 4.4.
- the RTSE factor is allowed to vary only by plus or minus 0.07, preferably 0.05 across the operating enveloppes, said variation occurring within a minimum of 4 hours of operation, preferably within a minimum of 8 hours of operation.
- This process is preferably applied during the fluidised bed gas phase polymerisation of olef ⁇ ns, and may also advantagesouly be used during start-up and especially during product grade transition between two rotomoulding polyethyene.
- the instantaneous density and melt index properties correspond to the properties of the resin formed instantaneously in the reacting conditions at a given time.
- the "instantaneous properties" are different from the pellet properties which correspond to a mixture of different resins formed continuously in the fluidised bed (averaging effect).
- the process according to the present invention is particularly suitable for the manufacture of copolymers of ethylene.
- Preferred alpha-olef ⁇ ns used in combination with ethylene in the process of the present invention are those having from 4 to 8 carbon atoms.
- the preferred alpha-olefms are but-1-ene, pent-1-ene, hex-1-ene, 4-methylpent-I- ene, oct-1-ene and butadiene, the most preferred comonomer being the hex-1-ene.
- liquid condenses out of the recycle gaseous stream it can be a condensable monomer, e.g. but-1-ene, hex-1-ene, 4-methylpent-l-ene or octene used as a comonomer, and or an optional inert condensable liquid, e.g. inert hydrocarbon(s), such as C_j.-Cg alkane(s) or cycloalkane(s), particularly butane, pentane or hexane.
- condensable monomer e.g. but-1-ene, hex-1-ene, 4-methylpent-l-ene or octene used as a comonomer
- an optional inert condensable liquid e.g. inert hydrocarbon(s), such as C_j.-Cg alkane(s) or cycloalkane(s), particularly butane, pentane or hexane.
- the process is particularly suitable for polymerising olefins at an absolute pressure of between 0.5 and 6 MPa and at a temperature of between 85 and 115°C, preferably between 90°C and 110°C.
- the polymerisation is preferably carried out continuously in a vertical fluidised bed reactor according to techniques known in themselves and in equipment such as that described in European patent application EP-0 855 411, French Patent No. 2,207,145 or French Patent No. 2,335,526.
- the process of the invention is particularly well suited to industrial-scale reactors of very large size.
- the polymerisation reaction may be carried out in the presence of a catalyst system of the Ziegler-Natta type, consisting of a solid catalyst essentially comprising a compound of a transition metal and of a cocatalyst comprising an organic compound of a metal (i.e. an organometallic compound, for example an alkylaluminium compound).
- a catalyst system of the Ziegler-Natta type consisting of a solid catalyst essentially comprising a compound of a transition metal and of a cocatalyst comprising an organic compound of a metal (i.e. an organometallic compound, for example an alkylaluminium compound).
- high-activity catalyst systems have already been known for a number of years and are capable of producing large quantities of polymer in a relatively short time, and thus make it possible to avoid a step of removing catalyst residues from the polymer.
- These high-activity catalyst systems generally comprise a solid catalyst consisting essentially of atoms of transition metal, of magnesium and of halogen. The
- the process is also especially suitable for use with metallocene catalysts in view of the particular affinity and reactivity experienced with comonomers and hydrogen.
- the process can also be advantageously applied with a late transition metal catalyst, i.e. a metal from Groups Vmb or lb (Groups 8-11) of the Periodic Table.
- a late transition metal catalyst i.e. a metal from Groups Vmb or lb (Groups 8-11) of the Periodic Table.
- the metals Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, and Pt are preferred, especially Fe, Co and Ni.
- the late transition metal complex may comprise bidentate or tridentate ligands, preferably coordinated to the metal through nitrogen atoms. As examples are those complexes disclosed in WO96/23010. Suitable iron and/or cobalt complexes catalysts can also be found in WO98/27124 or in WO99/12981.
- a high-activity catalyst consisting essentially of a chromium oxide activated by a heat treatment and associated with a granular support based on a refractory oxide.
- the catalyst may suitably be employed in the form of a prepolymer powder prepared beforehand during a prepolymerisation stage with the aid of a catalyst as described above.
- the prepolymerisation may be carried out by any suitable process, for example, polymerisation in a liquid hydrocarbon diluent or in the gas phase using a batch process, a semi -continuous process or a continuous process.
- the catalyst is a Ziegler-Natta catalyst (i.e., non-metallocene) containing magnesium and titanium; the magnesium is preferably acting as the support; the catalyst is thus preferably non supported on silica.
- the catalyst is subjected to a prepolymerisation stage.
- a most preferred catalyst corresponds to the catalysts disclosed in WO9324542.
- the polyethylene has a density comprised between 930 and 944 kg/m3 and a melt index comprised between 3 and 7.8.
- the polyethylene is preferably an hex-1-ene copolymer of ethylene. It has preferably an ESCR property equal or higher than 400 h, more preferably higher than 500 h. It has preferably a Charpy property equal or higher than 10kJ/m2, more preferably equal or higher than 15kJ/m2.
- the molecular weight distribution is preferably comprised between 3 and 8, more preferably 3.5 and 5.
- the polyethylene has a density comprised between 930 and 944 kg/m3 and a melt index • comprised between 5 and 7.8.
- the polyethylene is preferably an hex-1-ene copolymer of ethylene. It has preferably an ESCR property equal or higher than 750 h. It has preferably a Charpy property equal or higher than 15kJ/m2.
- the molecular weight distribution is preferably comprised between 3 and 8, more preferably 3.5 and 5.
- the said polyethylene is preferably a non-metallocene containing polymer.
- the polymerisations are carried out continuously in a vertical fluidised bed reactor as described in the example of European patent application EP-0 855 411.
- the catalyst (prepolymerised Ziegler-Natta catalyst) used in all the following examples is prepared according to the procedure disclosed in example 1 of WO9324542.
- Comparative examples 1 to 3 correspond to non RTSE polymerisation conditions.
- Examples 4 to 9 correspond to RTSE polymerisations conditions.
- the data are given in the below table.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Polymerisation Methods In General (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/513,173 US7511109B2 (en) | 2002-05-03 | 2003-05-01 | Rotomoulding polyethylene and method for producing said rotomoulding polyethylene |
EP03722809A EP1507810A1 (en) | 2002-05-03 | 2003-05-01 | Rotomoulding polyethylene and method for producing said rotomoulding polyethylene |
KR10-2004-7017709A KR20050007379A (en) | 2002-05-03 | 2003-05-01 | Rotomoulding polyethylene and method for producing said rotomoulding polyethylene |
CA002485372A CA2485372A1 (en) | 2002-05-03 | 2003-05-01 | Rotomoulding polyethylene and method for producing said rotomoulding polyethylene |
AU2003229970A AU2003229970A1 (en) | 2002-05-03 | 2003-05-01 | Rotomoulding polyethylene and method for producing said rotomoulding polyethylene |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP02358009.5 | 2002-05-03 | ||
EP02358009A EP1359168A1 (en) | 2002-05-03 | 2002-05-03 | Rotomoulding polyethylene and method for producing same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003093332A1 true WO2003093332A1 (en) | 2003-11-13 |
Family
ID=28799753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2003/001885 WO2003093332A1 (en) | 2002-05-03 | 2003-05-01 | Rotomoulding polyethylene and method for producing said rotomoulding polyethylene |
Country Status (7)
Country | Link |
---|---|
US (1) | US7511109B2 (en) |
EP (2) | EP1359168A1 (en) |
KR (1) | KR20050007379A (en) |
CN (1) | CN100491422C (en) |
AU (1) | AU2003229970A1 (en) |
CA (1) | CA2485372A1 (en) |
WO (1) | WO2003093332A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008002379A2 (en) * | 2006-06-27 | 2008-01-03 | Univation Technologies, Llc | Polymers made with metallocene catalysts, for use in rotomolding and injection molding products |
US7875690B2 (en) | 2006-06-27 | 2011-01-25 | Univation Technologies, Llc | Ethylene-alpha olefin copolymers and polymerization processes for making the same |
US8084560B2 (en) | 2006-06-27 | 2011-12-27 | Univation Technologies, Llc | Polymerization processes using metallocene catalysts, their polymer products and end uses |
EP2465877A1 (en) | 2010-12-20 | 2012-06-20 | Ineos Commercial Services UK Limited | Process |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100500707C (en) | 2003-07-11 | 2009-06-17 | 英尼奥斯欧洲有限公司 | Process for the (co-)polymerisation of ethylene in the gas phase |
ATE347568T1 (en) * | 2003-07-11 | 2006-12-15 | Ineos Europe Ltd | METHOD FOR POLYMERIZATION AND COPOLYMERIZATION OF ETHYLENE IN THE GAS PHASE |
EP2133367A1 (en) * | 2008-06-09 | 2009-12-16 | INEOS Manufacturing Belgium NV | Novel Copolymers |
CA3079202A1 (en) | 2017-10-27 | 2019-05-02 | Univation Technologies, Llc | Selectively transitioning polymerization processes |
CN111886261A (en) | 2017-10-27 | 2020-11-03 | 尤尼威蒂恩技术有限责任公司 | Polyethylene copolymer resin and film |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995004761A1 (en) * | 1993-08-06 | 1995-02-16 | Exxon Chemical Patents Inc. | Polymerization catalysts, their production and use |
US5530055A (en) * | 1994-12-09 | 1996-06-25 | Needham; Donald G. | Nucleated polyolefin-based composition for rotational molding |
WO1996034898A1 (en) * | 1995-05-02 | 1996-11-07 | Borealis A/S | Polyethylene having a controlled particle size ad morphology |
EP0905145A1 (en) * | 1997-09-27 | 1999-03-31 | Fina Research S.A. | Production of polyethylene having improved crack resistance |
US5922778A (en) * | 1996-05-24 | 1999-07-13 | Equistar Chemicals, Lp | Rotational molding compositions and process for producing foamed articles therefrom |
EP1041085A1 (en) * | 1999-04-01 | 2000-10-04 | Japan Polyolefins Co., Ltd. | Catalyst for the production of ethylene polymer and process for producing ethylene polymer |
US6144897A (en) * | 1995-06-09 | 2000-11-07 | Solvay Polyolefins Europe-Belgium (Societe Anonyme) | Control method for processes of synthesis of chemical products |
WO2000069919A1 (en) * | 1999-05-18 | 2000-11-23 | Basell Polyolefine Gmbh | Method for drying and degassing polyolefins |
WO2001049751A1 (en) * | 1999-12-30 | 2001-07-12 | Opp Química S.A. | Process for the controlled production of polyethylene and its copolymers |
EP1172381A1 (en) * | 2000-07-07 | 2002-01-16 | Japan Polyolefins Co., Ltd. | Ethylene polymers and method for producing the same |
EP1236770A1 (en) * | 2001-03-01 | 2002-09-04 | Borealis Technology Oy | Polyethylene compositions for rotomolding |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10025292A1 (en) * | 2000-05-22 | 2001-11-29 | Basell Polyolefine Gmbh | Polymerization catalyst for the production of polyolefins with excellent combinations of properties |
-
2002
- 2002-05-03 EP EP02358009A patent/EP1359168A1/en not_active Withdrawn
-
2003
- 2003-05-01 KR KR10-2004-7017709A patent/KR20050007379A/en active IP Right Grant
- 2003-05-01 EP EP03722809A patent/EP1507810A1/en not_active Ceased
- 2003-05-01 CN CNB038100096A patent/CN100491422C/en not_active Expired - Fee Related
- 2003-05-01 AU AU2003229970A patent/AU2003229970A1/en not_active Abandoned
- 2003-05-01 CA CA002485372A patent/CA2485372A1/en not_active Abandoned
- 2003-05-01 WO PCT/GB2003/001885 patent/WO2003093332A1/en not_active Application Discontinuation
- 2003-05-01 US US10/513,173 patent/US7511109B2/en not_active Expired - Fee Related
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995004761A1 (en) * | 1993-08-06 | 1995-02-16 | Exxon Chemical Patents Inc. | Polymerization catalysts, their production and use |
US5530055A (en) * | 1994-12-09 | 1996-06-25 | Needham; Donald G. | Nucleated polyolefin-based composition for rotational molding |
WO1996034898A1 (en) * | 1995-05-02 | 1996-11-07 | Borealis A/S | Polyethylene having a controlled particle size ad morphology |
US6144897A (en) * | 1995-06-09 | 2000-11-07 | Solvay Polyolefins Europe-Belgium (Societe Anonyme) | Control method for processes of synthesis of chemical products |
US5922778A (en) * | 1996-05-24 | 1999-07-13 | Equistar Chemicals, Lp | Rotational molding compositions and process for producing foamed articles therefrom |
EP0905145A1 (en) * | 1997-09-27 | 1999-03-31 | Fina Research S.A. | Production of polyethylene having improved crack resistance |
EP1041085A1 (en) * | 1999-04-01 | 2000-10-04 | Japan Polyolefins Co., Ltd. | Catalyst for the production of ethylene polymer and process for producing ethylene polymer |
WO2000069919A1 (en) * | 1999-05-18 | 2000-11-23 | Basell Polyolefine Gmbh | Method for drying and degassing polyolefins |
WO2001049751A1 (en) * | 1999-12-30 | 2001-07-12 | Opp Química S.A. | Process for the controlled production of polyethylene and its copolymers |
EP1172381A1 (en) * | 2000-07-07 | 2002-01-16 | Japan Polyolefins Co., Ltd. | Ethylene polymers and method for producing the same |
EP1236770A1 (en) * | 2001-03-01 | 2002-09-04 | Borealis Technology Oy | Polyethylene compositions for rotomolding |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008002379A2 (en) * | 2006-06-27 | 2008-01-03 | Univation Technologies, Llc | Polymers made with metallocene catalysts, for use in rotomolding and injection molding products |
WO2008002379A3 (en) * | 2006-06-27 | 2008-03-13 | Univation Tech Llc | Polymers made with metallocene catalysts, for use in rotomolding and injection molding products |
US7875690B2 (en) | 2006-06-27 | 2011-01-25 | Univation Technologies, Llc | Ethylene-alpha olefin copolymers and polymerization processes for making the same |
US8067518B2 (en) | 2006-06-27 | 2011-11-29 | Univation Technologies, Llc | Polymers made with metallocene catalysts, for use in rotomolding and injection molding products |
US8084560B2 (en) | 2006-06-27 | 2011-12-27 | Univation Technologies, Llc | Polymerization processes using metallocene catalysts, their polymer products and end uses |
US8378043B2 (en) | 2006-06-27 | 2013-02-19 | Univation Technologies, Llc | Ethylene alpha olefin copolymers and polymerization processes for making the same |
US8476392B2 (en) | 2006-06-27 | 2013-07-02 | Univation Technologies, Llc | Polymerization processes using metallocene catalysts, their polymer products and end uses |
EP2465877A1 (en) | 2010-12-20 | 2012-06-20 | Ineos Commercial Services UK Limited | Process |
WO2012084628A1 (en) | 2010-12-20 | 2012-06-28 | Ineos Commercial Services Uk Limited | Process and apparatus for the polymerisation of olefins |
Also Published As
Publication number | Publication date |
---|---|
US20050181932A1 (en) | 2005-08-18 |
KR20050007379A (en) | 2005-01-17 |
EP1359168A1 (en) | 2003-11-05 |
CN100491422C (en) | 2009-05-27 |
CN1649915A (en) | 2005-08-03 |
AU2003229970A1 (en) | 2003-11-17 |
US7511109B2 (en) | 2009-03-31 |
EP1507810A1 (en) | 2005-02-23 |
CA2485372A1 (en) | 2003-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7511109B2 (en) | Rotomoulding polyethylene and method for producing said rotomoulding polyethylene | |
AU722190B2 (en) | Improved method of fluidized bed temperature control | |
EP1322679B1 (en) | Process for the gas-phase (co-)polymerisation of olefins in a fluidised bed reactor | |
EP1688444B1 (en) | Method for reducing sheeting and agglomerates during olefin polymerisation | |
US7705094B2 (en) | Polymerisation control process | |
EP1644422B1 (en) | Process for the (co-)polymerisation of ethylene in the gas phase | |
US6884856B2 (en) | Polymerization control process | |
EP1644423B1 (en) | Process for the (co-)polymerisation of ethylene in the gas phase |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2003722809 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2485372 Country of ref document: CA Ref document number: 10513173 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20038100096 Country of ref document: CN Ref document number: 1020047017709 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 1020047017709 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2003722809 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |