WO2003087205A1 - Syntactic polyolefin composition for pipe coating - Google Patents

Syntactic polyolefin composition for pipe coating Download PDF

Info

Publication number
WO2003087205A1
WO2003087205A1 PCT/SE2003/000607 SE0300607W WO03087205A1 WO 2003087205 A1 WO2003087205 A1 WO 2003087205A1 SE 0300607 W SE0300607 W SE 0300607W WO 03087205 A1 WO03087205 A1 WO 03087205A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
microspheres
syntactic
polyolefin composition
syntactic polyolefin
Prior art date
Application number
PCT/SE2003/000607
Other languages
French (fr)
Inventor
Cecilia Rydin
Carl-Gustaf Ek
Original Assignee
Borealis Technology Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Borealis Technology Oy filed Critical Borealis Technology Oy
Priority to EA200401379A priority Critical patent/EA006305B1/en
Priority to AU2003224539A priority patent/AU2003224539A1/en
Priority to DE60314115T priority patent/DE60314115T2/en
Priority to EP03721202A priority patent/EP1495072B1/en
Priority to US10/510,396 priority patent/US7091277B2/en
Priority to DK03721202T priority patent/DK1495072T3/en
Priority to BRPI0309294-1A priority patent/BR0309294B1/en
Publication of WO2003087205A1 publication Critical patent/WO2003087205A1/en
Priority to NO20044044A priority patent/NO334324B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/32Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1376Foam or porous material containing

Definitions

  • the present invention relates to a syntactic polyolefin composition for pipe coating, to a method for the preparation thereof and to an off-shore pipe coated with the syntactic polyolefin composition.
  • Polyolefin coated pipes are used in off-shore applications for the transportation of hot fluids, e. g. crude oil, and are often installed at the sea-bottom, most often at depths of several hundred meters.
  • hot fluids e. g. crude oil
  • steel pipes are preferred but also fibre reinforced pipes, advanced multilayer pipe constructions made of metal and/or polymer based layers, may be used.
  • advanced multilayer pipe constructions made of metal and/or polymer based layers, may be used. At these depths the temperature of the surrounding water is close to 0°C which leads to extensive heat losses from the transported fluid and significantly reduces flow or causes blockage of the production lines.
  • the viscosity is sufficiently low, otherwise a higher pump efficiency or the installation of additional heating units along the pipeline will be necessary.
  • syntactic polyole- fins i. e. composite polyolefin/filler materials in which the filler comprises hollow microspheres.
  • syntactic polyole- fins i. e. composite polyolefin/filler materials in which the filler comprises hollow microspheres.
  • polyolefin e. g. linear low density polyethylene, blends of propylene polymers and olefin copolymer elastomers or syntactic polypropylene.
  • a disadvantage of such syntactic polyolefin coatings is the insufficient mechanical properties of pipes provided with such coatings.
  • the temperature difference between the surrounding water, often having a temperature as low as 0°C, and the inside of pipe, often having a temperature of 100-150°C put high demands on the mechanical properties.
  • the water pressure on the coating is substantial, and without sufficient compression strength the insulating coating will be compressed to a smaller thickness, thereby reducing its insulating capacity.
  • excellent mechanical properties are required for coated pipes in order to avoid cracking of the coating during installation handling and in service.
  • installation handling means any installation technique such as coiling and uncoiling of the ready made pipelines, welding and other jointing techniques and on-shore or off-shore installation, e. g. off-shore installation at the sea-bottom.
  • Installation of coated pipes, in particular for off-shore applications involves tough conditions for the protective coating layer, including high stress, substantial elongation, surface damages, notches, impact events, etc, both at low and high temperature conditions and at high hydrostatic pressure.
  • the coating layer is not only protecting the pipeline as such, but is also doing so in a state of high stress and/or at elevated temperatures and pressures, making the coating most sensitive to cracking, e. g. the stresses induced during coiling and uncoiling.
  • the coating has to protect the pipeline from damages and induced stress and crack formations at conditions close to 0°C, high hydro- static pressures where a small damage or notch in the coating could propagate into a large crack putting the pipeline as such at risk.
  • a high dynamic fracture toughness of the coating material no cracks will occur during installation handling and in service.
  • Another problem is the difficulties in producing syntactic polyolefins. In particular, it is difficult to compound glass microspheres and other hollow spherical fillers into a thermoplastic polymer matrix at low enough shear forces to avoid crushing of the spheres during the process. Also, the thermal conductivity of an effective off-shore pipe insulation needs to be low.
  • EP-A-473 215 discloses polyolefin syntactic foams for pipeline insulation use, wherein microspheres that have been treated with a chain scission agent are added to a fluid stream of short chain polypropylene or polybutylene to form a syntactic foam insulative material.
  • the object of the invention is to provide a syntactic polyolefin composition for pipe coating wherein the above mentioned drawbacks have been eliminated or alleviated.
  • this object is achieved by a syntactic polyolefin composition for pipe coating, characterised in that the composition comprises a ⁇ -nucleated propylene polymer and microspheres, said composition having a melt flow rate (MFR 2 ; ISO 1133, condition D) at 230°C/2.16 kg in the range of 0.05-30 g/10 min and in that the composition has an elongation at break of at least 3%.
  • MFR 2 melt flow rate
  • ISO 1133, condition D melt flow rate
  • a further object of the present invention is to provide a method for the preparation of a syntactic polyolefin composition for pipe coating, characterised in that microspheres are evenly distributed by melt mixing in a composition comprising a ⁇ -nucleated propylene polymer and hollow microspheres, said composition having a melt flow rate at 230°C/2.16 kg in the range of 0.05-30 g/10 min and in that the composition has an elongation at break of at least 3%.
  • Yet another object of the present invention is to provide an off-shore pipe coated with a syntactic polyolefin composition, characterised in that it is coated with a composition according to any one of claims 1-13.
  • syntactic polyolefin composition of the present invention it is possible to achieve a pipe coating for off-shore installations having low thermal conductivity and excellent mechanical properties.
  • a characterising feature of the composition of the present invention is the presence of a ⁇ -nucleated pro- pylene polymer
  • ⁇ -nucleated propylene polymers are iso- tactic propylene polymers composed of chains in a 3 ⁇ helical conformation having an internal microstructure of ⁇ - form spherulites being composed of radial arrays of par- allel stacked lamellae.
  • This microstructure can be realized by the addition of ⁇ -nucleating agents to the melt and subsequent crystallization.
  • the presence of the ⁇ - form can be detected through the use of wide angle X-ray diffraction (Moore, J. , Polypropylene Handbook, p 134- 135, Hanser Publishers Kunststoff, 1996) .
  • the ⁇ -nucleated propylene polymer is a (co) olymer (i. e. a homopolymer or copolymer) , characterised in that the ⁇ - nucleated propylene polymer is a (co) polymer which comp- rises at least 90.0 weight% of propylene and up to 10.0 weight% of ⁇ -olefins with 2 or 4 to 18 carbon atoms, and that the propylene polymer has a melt flow rate of 0.1-8 g/10 min at 230°C/2.16 kg.
  • the ⁇ -nucleated propylene polymer is a ⁇ - nucleated propylene block copolymer with 90.0 to 99.9 weight% of propylene and 0.1 to 10.0 weight % of ⁇ -olefins with 2 or 4 to 18 carbon atoms with a melt flow rate (MFR) of 0.1 to 40 g/10 min at 230°C/2.16 kg, preferably 0.1 to 8 g/10 min at 230°C/2.16 kg, whereby a test polyolefin pipe prepared from the ⁇ -nucleated propylene copolymer has a critical pressure of > 25 bars and a dynamic fracture toughness of > 3.5 MNm "3 2 in the hydrostatic small scale steady state (hydrostatic S 4 ) test at 3°C.
  • MFR melt flow rate
  • the ⁇ - nucleated propylene polymer is a ⁇ -nucleated propylene block copolymer having an IR ⁇ > 0.98, a tensile modulus of > 1100 MPa at 23°C and a Charpy impact strength, notched, of > 6kJ/m 2 at -20°C.
  • the IR ⁇ of the propylene polymer is measured by Infrared spectroscopy and calculated as described in EP 0 277 514 A2 , page 3.
  • the ⁇ -nucleated propylene polymer in the composition according to the present invention preferably has a melt flow rate of 0.1-70 g/10 min, more preferably 0.15-50 g/10 min, and most preferably 0.2-30 g/10 min at 230°C/2.16 kg.
  • the ⁇ - nucleated propylene polymer has a tensile modulus of preferably > 1300 MPa and most preferably > 1500 MPa at 23°C.
  • Charpy impact strength of the ⁇ -nucleated propylene polymer is preferably > 6kJ/m 2 at -20°C, more preferably > 9kJ/m 2 at -20°C, most preferably > 10 kJ/m 2 at -20°C.
  • the ⁇ -nucleated propylene polymers are propylene copolymers obtained by polymerization with a Ziegler-Natta catalyst system comprising titanium-containing solid components, an organo- alumina, magnesium or titanium compound as cocatalyst and an external donor according to the formula
  • R x R' y Si (MeO) 4 -x- y wherein R and R' are identical or different and are branched or cyclic aliphatic or aromatic hydrocarbon resi- dues, and y and x independently from each other are 0 or 1, provided that x + y are 1 or 2.
  • a preferred external donor in the Ziegler-Natta catalyst system for producing the ⁇ -nucleated propylene block copolymers is dicyclopentyldimethoxysilane .
  • the ⁇ -nucleated propylene copolymers contain 0,0001 to 2,0 wt%, based on the propylene copolymers used, of - dicarboxylic acid derivative type diamide compounds from C 5 -C 8 -cycloalkyl monoamines or C 6 -C ⁇ 2 -aromatic mono- amines and C 5 -C 8 -aliphatic, C 5 -C 8 -cycloaliphatic or C 6 - C ⁇ 2 -aromatic dicarboxylic acids, and/or - diamine derivative type diamide compounds from C 5 -C 8 - cycloalkyl monocarboxylic acids or C 6 -C ⁇ 2 -aromatic mono- carboxylic acids and C 5 -C 8 -cycloaliphatic or
  • quinacridone derivative compounds of the type quinacri- done compounds, quinacridone-quinone compounds, and/or dihydroquinacridone type compounds , and/or
  • dicarboxylic acid derivative type diamide compounds from C 5 -C 8 -cycloalkyl monoamines or C 6 - C ⁇ 2 -aromatic monoamines and C 5 -C 8 -aliphatic, C 5 -C 8 -cyclo- aliphatic dicarboxylic acids, optionally contained in the ⁇ -nucleated propylene copolymer, are
  • 6-naphtalene dicarboxamide compounds such as N,N' -dicyclohexyl -2 , 6-naphtalene dicarboxamide and N,N' -dicyclooctyl-2-6-naphtalene dicarboxamide, - N,N' -di-C 5 -C 8 -cycloalkyl-4 , 4-biphenyldicarboxamide compounds such as
  • N,N' -dicyclohexyl -4 4-biphenyldicarboxamide and N,N' -dicyclopentyl-4, 4-biphenyldicarboxamide, - N,N' -di-C 5 -C 8 -cycloalkyl-terephthalamide compounds such as
  • diamine derivative type diamide compounds from C 5 -C 8 -cycloalkyl mono-carboxylic acids or C 6 - C ⁇ 2 -aromatic monocarboxylic acids and C 5 -C 8 -cycloaliphatic or C 6 -Ci 2 -aromatic diamines, optionally contained in the ⁇ -nucleated propylene copolymer, are
  • N,N' -C 6 -C ⁇ 2 -arylene-bis-benzamide compounds such as N,N' -p-phenylene-bis-benzamide and N,N' -1, 5-naphtalene-bis-benzamide,
  • N,N' -C 5 -C 8 -cycloalkyl-bis-benzamide compounds such as N,N' -1 , 4-cyclopentane-bis-benzamide and
  • N,N' -1 5-naphtalene-bis-cyclohexanecarboxamide and N, N' -1, 4-phenylene-bis-cyclohexanecarboxamide .
  • N,N' -C 5 -C 8 -cycloalkyl-bis-cyclohexanecarboxamide compounds such as N,N' -1 , 4-cyclopentane-bis-cyclohexanecarboxamide and N,N' -1 , 4-cyclohexane-bis-cyclohexanecarboxamide .
  • amino derivative type diamide compounds optionally contained in the ⁇ -nucleated propylene copolymer, are N-phenyl-5- (N-benzoylamino) pentaneamide and/or
  • N-cyclohexyl-4- (N-cyclohexylcarbonylamino) benz-amide examples include quinacridone, dimethylquinacridone and/or dimethoxy- quinacridone .
  • quinacridonequinone type compounds optionally contained in the ⁇ -nucleated propylene copolymer, are quinacridonequinone, a mixed crystal of 5,12-di- hydro (2 , 3b) acridine-7, 14-dione with quino (2 , 3b) acridine- 6,7, 13, 14- (5H, 12H) -tetrone as disclosed in EP-B 0 177 961 and/or dimethoxyquinacridonequinone .
  • dihydroquinacridone type compounds optionally contained in the ⁇ -nucleated propylene copolymer
  • dihydroquinacridone dimethoxydihydroquinacrido- ne and/or dibenzodihydroquinacridone
  • dicarboxylic acid salts of metals from group Ila of periodic system optionally contained in the ⁇ -nucleated propylene copolymer, are pimelic acid calcium salt and/or suberic acid calcium salt .
  • ⁇ -nucleated propylene copolymer optionally contained in the ⁇ -nucleated propylene copolymer, are the calcium salts of phtaloylglycine, hexahydro- phtaloylglycine, N-phtaloyl-alanine and/or N-4 -methyl - phtaloylglycine .
  • the ⁇ -nucleated propylene polymer is mixed with microspheres, which may be made of various organic and inorganic materials, such as glass, epoxy resin, phenolic resin or urea- formaldehyde resin.
  • the microspheres should be rigid, i. e. non-compressible, and should have a density of at most about 0.8 g/cm 3 , preferably at most about 0.4 g/cm 3 .
  • the outer diameter of the microspheres should be 1-500 ⁇ m, preferably 5-200 ⁇ m and preferably the microspheres are hollow.
  • a preferred material is an inorganic glass, preferably a silica based glass, or a polymer or ceramics, a rigid foam structure, etc .
  • the microspheres are pref- erably untreated, i. e. they do not need any pretreatment with chain scission agent in order to achieve an even distribution of the microspheres and excellent mechanical properties. This is an advantage compared to the prior art such as EP-A-473 215 mentioned above.
  • the density of the composition of ⁇ -nucleated propylene polymer mixed with hollow microspheres should preferably be 500-850 kg/m 3 and more preferably 600-800 kg/m 3 .
  • the microspheres are present in the com- position in an amount of from 10 to 50 weight%, preferably 15 to 35%, more preferably 20-30 weight% of the composition.
  • the MFR of the ⁇ -nucleated propylene polymer may be increased by the incorporation into the polymer matrix of a polyolefin, having a MFR of 100-1500, preferably 400-1200 g/10 min at 230°C/2.16 kg.
  • the amount of polyolefin, e. g. polyethylene or polypropylene should be 0-30 weight%, preferably 10-25 weight%.
  • syntactic polyolefin composition of the present invention may contain usual auxiliary materials, such as
  • stabilizers preferably mixtures of 0.01% to 0.6 wt% phenolic antioxidants, 0.01% to 0.6 wt% 3-arylbenzo- furanones, 0.01% to 0.6 wt% processing stabilizers based on phosphites, 0.01% to 0.6 wt% high temperature stabili- zers based on disulfides and thioethers and/or 0.01% to 0.8 wt% sterically hindered amines (HALS), are suitable.
  • HALS sterically hindered amines
  • the melt flow rate (MFR) which is equivalent to the term "melt index" previously used, is an important pro- perty of the syntactic polyolefin composition for pipe coating according to the invention.
  • the MFR is determined according to ISO 1133 and is indicated in g/10 min.
  • the MFR is an indication of the flowability, and hence the processability, of the polymer.
  • the MFR is determined at different loadings such as 2,16 kg (MFR 2 ; ISO 1133, condition D) .
  • the composition has an MFR 2 in the range of 0.05-30 g/10 min at 230°C/2.16 kg, more preferably in the range of 0.5-10 g/10 min at 230°C/2.16 kg and most preferably in the range of 1.0-5 g/10 min.
  • the syntactic polyolefin composition for pipe coating according to the invention is the elongation at break, which is determined according to ISO 527-2/5A, sample thickness 2 mm, 100 mm/min, at ambient temperature of 23°C.
  • the elongation at break is a measure of the flexibility of the material and consequently its ability to endure handling, such as coiling, reeling, etc without the formation of cracks.
  • the extension of the insulating layer may be up to about 5%, which requires a sufficiently ductile material.
  • the composition has an elongation at break of at least 3%, preferably at least 5%, and more preferably at least 10%.
  • the tensile modulus is a measurement of the rigidity of the material and its ability to withstand high water pressures.
  • the tensile modulus of the composition should preferably be at least 1500 MPa determined according to ISO 527-2/1B, sample thickness 4 mm, lmm/min, 23 °C.
  • Another property indicating the ability of the composition to endure high water pressures is the compression strength determined according to ASTM D 695. At the present invention this compression strength should preferably be >10 MPa and more preferably >15 MPa.
  • the thermal conductivity of an effective off-shore pipe insulation needs to be low in order to attain the desired low level of thermal conductivity.
  • the composition preferably has a K-value of less than 0.20 W/m°K, preferably less than 0.17 W/m°K.
  • the present invention also relates to a method for the preparation of a syntactic polyolefin composition for pipe coating, in which hollow microspheres are evenly distributed by melt mixing in a composition comprising a ⁇ -nucleated propylene polymer and hollow microspheres, said composition having a melt flow rate at 230°C/2.16kg in the range of 0.05-30 g/10 min, more preferably in the range of 0.5-10 g/10 min and most preferably in the range of 1.0-5 g/10 min, and in that the composition has an elongation at break of at least 3%, more preferably >5%, and most preferably >10%.
  • the method is generally carried out in a compounding or extruder unit, preferably in a co-rotating or counter- rotating twin screw extruder, or in an internal mixer such as a Banbury type mixer or in a single screw extruder such as a Buss Co-kneader or in a conventional single screw extruder.
  • Static mixers such as Kenics,
  • Koch, etc can also be used in addition to the compounding or extruder units mentioned in order to improve the distribution of the microspheres in the polymer matrix.
  • Pellets of ⁇ -nucleated propylene block (co) polymer and optionally a propylene homopolymer are fed into the extruder.
  • the hollow micro- spheres are added to the melted polymer, more preferably at a melt temperature of 30°C above the melt temperature of the polymer, most preferably 50°C above the melt tem- perature of the polymer in a ratio to achieve the desired K-value of the composition.
  • the microspheres and polymer are mixed in the extruder until the microspheres are evenly distributed in the molten polymer.
  • the molten and homogenised compound is then fed from the extruder and either pelletized for subsequent use or used directly to coat a pipe and prepare a syntactic polyolefin coated pipe according to the present invention.
  • Direct coating of the pipes is preferred and includes both the pipe coating process based on co-extrusion, i. e. coating the complete circumference at the same time or by extrusion of a tape or film wounded around the pipe in a continuous process.
  • the off-shore pipe coated with a syntactic polyolefin composition of the present invention is preferably prepared by extruding the syntactic polyolefin composition of the invention, e. g. in connection with the preparation thereof by melt mixing onto the pipe.
  • Such direct coating of the pipes in a continuous process has the advantages that intermediate processing steps involving cooling, pelletizing and remelting may be omitted. In this way the tough treatments of pelletizing and especially remelting in an extruder, which normally to a substantial extent is performed by friction forces, are avoided. The result of such treatments is inevitably a large amount of crushed microspheres with accompanying higher heat conductivity and loss in mechanical proper- ties.
  • the pipe may be pretreated by coating with an epoxy resin layer and an compatibilizing layer on the epoxy resin layer before the coating with the syntactic polyolefin composition.
  • the thickness of the coating preferably is at least about 1-100 mm, more preferably 20-50 mm.
  • the resulting propylene copolymer has a melt flow rate of 0.32 g/10 min at 230°C/2.16 kg, a tensile modulus of 1290 MPa and a Charpy impact strength, using notched test specimens, of 39 kj/m 2 at -20°C. Physical properties of microspheres
  • the used miccrospheres were ScotchliteTM Glass Bubbles having a density within the range of 0.35-0.41 g/cm 3 , measured in accordance with ASTM D284 (1976 edition) and a bulk density in the range of 0.19-0.28 g/cm 3 .
  • a composition comprising a ⁇ -nucleated propylene polymer, a propylene homopolymer and hollow microspheres .
  • Pellets of ⁇ -nucleated propylene block copolymer having a MFR of 0.3 g/10 min at 230°C/2.16 kg prepared as described above and pellets of a polypropylene homopolymer having a MFR of 400 g/10 min at 230°C/2.16 kg were fed into the first mixer inlet of a Buss Co-Kneader 100 MDK/E-llL/D, i. e. a single screw mixer with a downstream discharge single screw extruder with a pelletizing unit cutting pellets in the molten stage and cooled via water.
  • the mixer temperatures were set to 200-240°C, from first inlet to outlet, screw temperature to 210°C and the dis- charge extruder to around 230°C.
  • the mixer screw RPM was 170-190 rpm and the throughput 100-150 kg/h.
  • Untreated microspheres, as specified above, were fed into the molten polymer in the second mixer inlet downstream.
  • the compositions of the composite material are set forth in Table 1. The composite material was extruded and pellet- ized.
  • the composition according to the invention provides a composite material which is well suited for insulating purposes, having a K- value of 0.174 W/m°K and a density of 650-690 kg/m 3 .
  • the mechanical properties of the composition are excellent with a high elongation at break of 98% and a tensile modulus of 1900 MPa.
  • the pellets manufactured in example 1 were extruded in a labextruder through a tape die having a cross section of 30x2 mm.
  • the labextruder was a standard screw compression screw with a RPM of 30, a screw length L/D of 30 and a screw diameter of 30 mm.
  • the compression ratio was 1:3, the set temperature 220°C, and the melt temperature 225°C.
  • the resulting properties from plaques made of the tapes by compression moulding at 220°C, are presented in Table 3.
  • Pellets of propylene block copolymer were prepared as described above for examples 1-3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

The invention relates to a syntactic polyolefin composition for pipe coating, wherein the composition comprises a β-nucleated propylene polymer and microspheres. The invention also relates to a method for the preparation of the composition for pipe coating and to an off-shore pipe coated with the syntactic polyolefin composition.

Description

SYNTACTIC POLYOLEFIN COMPOSITION FOR PIPE COATING
Field of the invention
The present invention relates to a syntactic polyolefin composition for pipe coating, to a method for the preparation thereof and to an off-shore pipe coated with the syntactic polyolefin composition. Background of the invention
Polyolefin coated pipes are used in off-shore applications for the transportation of hot fluids, e. g. crude oil, and are often installed at the sea-bottom, most often at depths of several hundred meters. For these applications steel pipes are preferred but also fibre reinforced pipes, advanced multilayer pipe constructions made of metal and/or polymer based layers, may be used. At these depths the temperature of the surrounding water is close to 0°C which leads to extensive heat losses from the transported fluid and significantly reduces flow or causes blockage of the production lines. In order to efficiently pump, e. g. crude oil, it is required that the viscosity is sufficiently low, otherwise a higher pump efficiency or the installation of additional heating units along the pipeline will be necessary.
To meet the insulation requirements on off-shore pipes it has previously been suggested to coat the pipes with an insulating layer of so called syntactic polyole- fins, i. e. composite polyolefin/filler materials in which the filler comprises hollow microspheres. As examples of the polyolefin used mention may be made of e. g. linear low density polyethylene, blends of propylene polymers and olefin copolymer elastomers or syntactic polypropylene.
A disadvantage of such syntactic polyolefin coatings is the insufficient mechanical properties of pipes provided with such coatings. At the depths in question the temperature difference between the surrounding water, often having a temperature as low as 0°C, and the inside of pipe, often having a temperature of 100-150°C, put high demands on the mechanical properties. The water pressure on the coating is substantial, and without sufficient compression strength the insulating coating will be compressed to a smaller thickness, thereby reducing its insulating capacity. Also, excellent mechanical properties are required for coated pipes in order to avoid cracking of the coating during installation handling and in service.
The term installation handling used herein means any installation technique such as coiling and uncoiling of the ready made pipelines, welding and other jointing techniques and on-shore or off-shore installation, e. g. off-shore installation at the sea-bottom. Installation of coated pipes, in particular for off-shore applications, involves tough conditions for the protective coating layer, including high stress, substantial elongation, surface damages, notches, impact events, etc, both at low and high temperature conditions and at high hydrostatic pressure. The coating layer is not only protecting the pipeline as such, but is also doing so in a state of high stress and/or at elevated temperatures and pressures, making the coating most sensitive to cracking, e. g. the stresses induced during coiling and uncoiling. During the service life of the coated pipeline, the coating has to protect the pipeline from damages and induced stress and crack formations at conditions close to 0°C, high hydro- static pressures where a small damage or notch in the coating could propagate into a large crack putting the pipeline as such at risk. With a high dynamic fracture toughness of the coating material no cracks will occur during installation handling and in service. Another problem is the difficulties in producing syntactic polyolefins. In particular, it is difficult to compound glass microspheres and other hollow spherical fillers into a thermoplastic polymer matrix at low enough shear forces to avoid crushing of the spheres during the process. Also, the thermal conductivity of an effective off-shore pipe insulation needs to be low. When about 15% or more of the spheres in the matrix are crushed, it is difficult to maintain the necessary low level of thermal conductivity. Furthermore, the structural properties of the syntactic polyolefin are also adversely affected. This problem cannot be avoided by adding a larger amount of microspheres since an excessive amount will cause additionally crushed microspheres due to higher forces involved during homogenisation, i. e. > 15%, initiates cracks and further deteriorates the mechanical properties . European Patent Application no EP-A-473 215 discloses polyolefin syntactic foams for pipeline insulation use, wherein microspheres that have been treated with a chain scission agent are added to a fluid stream of short chain polypropylene or polybutylene to form a syntactic foam insulative material. This method is taught as useful for producing material of a low thermal conductivity. However, the plastic starting materials taught for use therein are generally not optimal for submarine pipe insulation, because while the short chain polypropylene or polybutylene affords low breakage of the microspheres, the method requires the presence of a chain scission agent, coated on the microspheres. The chain-scission agent is employed to cause a narrowing of the molecular weight distribution of the polyolefin. Without the pres- ence of this agent, the finished insulation would be unacceptable for use as off-shore pipe insulation, because it would not be hydrostatic pressure resistant, abuse resistant, or creep resistant. Summary of the invention The object of the invention is to provide a syntactic polyolefin composition for pipe coating wherein the above mentioned drawbacks have been eliminated or alleviated.
Thus, it is an object of the present invention to provide a syntactic polyolefin composition having supe- rior thermal and mechanical properties which may be prepared on a large scale on currently available equipment.
According to the present invention this object is achieved by a syntactic polyolefin composition for pipe coating, characterised in that the composition comprises a β-nucleated propylene polymer and microspheres, said composition having a melt flow rate (MFR2; ISO 1133, condition D) at 230°C/2.16 kg in the range of 0.05-30 g/10 min and in that the composition has an elongation at break of at least 3%. A further object of the present invention is to provide a method for the preparation of a syntactic polyolefin composition for pipe coating, characterised in that microspheres are evenly distributed by melt mixing in a composition comprising a β-nucleated propylene polymer and hollow microspheres, said composition having a melt flow rate at 230°C/2.16 kg in the range of 0.05-30 g/10 min and in that the composition has an elongation at break of at least 3%.
Yet another object of the present invention is to provide an off-shore pipe coated with a syntactic polyolefin composition, characterised in that it is coated with a composition according to any one of claims 1-13.
By the syntactic polyolefin composition of the present invention it is possible to achieve a pipe coating for off-shore installations having low thermal conductivity and excellent mechanical properties.
Other distinguishing features and advantages of the invention will appear from the following specification and the appended claims . Detailed description of preferred embodiments
A characterising feature of the composition of the present invention is the presence of a β-nucleated pro- pylene polymer, β-nucleated propylene polymers are iso- tactic propylene polymers composed of chains in a 3ι helical conformation having an internal microstructure of β- form spherulites being composed of radial arrays of par- allel stacked lamellae. This microstructure can be realized by the addition of β-nucleating agents to the melt and subsequent crystallization. The presence of the β- form can be detected through the use of wide angle X-ray diffraction (Moore, J. , Polypropylene Handbook, p 134- 135, Hanser Publishers Munich, 1996) .
In a preferred embodiment of the present invention the β-nucleated propylene polymer is a (co) olymer (i. e. a homopolymer or copolymer) , characterised in that the β- nucleated propylene polymer is a (co) polymer which comp- rises at least 90.0 weight% of propylene and up to 10.0 weight% of α-olefins with 2 or 4 to 18 carbon atoms, and that the propylene polymer has a melt flow rate of 0.1-8 g/10 min at 230°C/2.16 kg.
According to a more preferred embodiment of the pre- sent invention the β-nucleated propylene polymer is a β- nucleated propylene block copolymer with 90.0 to 99.9 weight% of propylene and 0.1 to 10.0 weight % of α-olefins with 2 or 4 to 18 carbon atoms with a melt flow rate (MFR) of 0.1 to 40 g/10 min at 230°C/2.16 kg, preferably 0.1 to 8 g/10 min at 230°C/2.16 kg, whereby a test polyolefin pipe prepared from the β-nucleated propylene copolymer has a critical pressure of > 25 bars and a dynamic fracture toughness of > 3.5 MNm"3 2 in the hydrostatic small scale steady state (hydrostatic S4) test at 3°C.
The method of determining the dynamic fracture toughness is disclosed in Plastics, Rubber and Composites Processing and Applications, Vol. 26, No. 9, pp. 387 ff . According to another advantageous embodiment, the β- nucleated propylene polymer is a β-nucleated propylene block copolymer having an IRτ > 0.98, a tensile modulus of > 1100 MPa at 23°C and a Charpy impact strength, notched, of > 6kJ/m2 at -20°C. The IRτ of the propylene polymer is measured by Infrared spectroscopy and calculated as described in EP 0 277 514 A2 , page 3.
The β-nucleated propylene polymer in the composition according to the present invention preferably has a melt flow rate of 0.1-70 g/10 min, more preferably 0.15-50 g/10 min, and most preferably 0.2-30 g/10 min at 230°C/2.16 kg.
According to a further preferred embodiment the β- nucleated propylene polymer has a tensile modulus of preferably > 1300 MPa and most preferably > 1500 MPa at 23°C.
Charpy impact strength of the β-nucleated propylene polymer is preferably > 6kJ/m2 at -20°C, more preferably > 9kJ/m2 at -20°C, most preferably > 10 kJ/m2 at -20°C.
According to a further embodiment, the β-nucleated propylene polymers are propylene copolymers obtained by polymerization with a Ziegler-Natta catalyst system comprising titanium-containing solid components, an organo- alumina, magnesium or titanium compound as cocatalyst and an external donor according to the formula
RxR'ySi (MeO)4-x-y, wherein R and R' are identical or different and are branched or cyclic aliphatic or aromatic hydrocarbon resi- dues, and y and x independently from each other are 0 or 1, provided that x + y are 1 or 2.
A preferred external donor in the Ziegler-Natta catalyst system for producing the β-nucleated propylene block copolymers is dicyclopentyldimethoxysilane . According to an advantageous embodiment the β-nucleated propylene copolymers contain 0,0001 to 2,0 wt%, based on the propylene copolymers used, of - dicarboxylic acid derivative type diamide compounds from C5-C8-cycloalkyl monoamines or C6-Cι2-aromatic mono- amines and C5-C8-aliphatic, C5-C8-cycloaliphatic or C6- Cι2-aromatic dicarboxylic acids, and/or - diamine derivative type diamide compounds from C5-C8- cycloalkyl monocarboxylic acids or C6-Cι2-aromatic mono- carboxylic acids and C5-C8-cycloaliphatic or C6-Cι2 aromatic diamines, and/or - amino acid derivative type diamide compounds from ami- dation reaction of C5-C8-alkyl- , C5-C8-cycloalkyl- or C6- Cι2-arylamino acids, C5-C8-alkyl- , C5-C8-cycloalkyl- or C6-Cι2-aromatic monocarboxylic acid chlorides and C5-C8- alkyl-, C5-C8-cycloalkyl- or C6-C12-aromatic mono-amines, and/or
- quinacridone derivative compounds of the type quinacri- done compounds, quinacridone-quinone compounds, and/or dihydroquinacridone type compounds , and/or
- dicarboxylic acid salts of metals from group Ila of pe- riodic system and/or mixtures of dicarboxylic acids and metals from group Ila of periodic system, and/or
- salts of metals from group Ila of periodic system and imido acids of the formula
Figure imgf000008_0001
wherein x = 1 to 4; R = H, -COOH, Cι-C12-alkyl , C5-C8- cycloalkyl or C6-Cι2-aryl, and Y = Cx-C^-alkyl , C5-C8- cycloalkyl or C6-Cι2-aryl - substituted bivalent Ce-Cι2- aromatic residues, as β-nucleating agent.
Examples of the dicarboxylic acid derivative type diamide compounds from C5-C8-cycloalkyl monoamines or C6- Cχ2-aromatic monoamines and C5-C8-aliphatic, C5-C8-cyclo- aliphatic dicarboxylic acids, optionally contained in the β-nucleated propylene copolymer, are
- N,N' -di-C5-C8-cycloalkyl - 2 , 6-naphtalene dicarboxamide compounds such as N,N' -dicyclohexyl -2 , 6-naphtalene dicarboxamide and N,N' -dicyclooctyl-2-6-naphtalene dicarboxamide, - N,N' -di-C5-C8-cycloalkyl-4 , 4-biphenyldicarboxamide compounds such as
N,N' -dicyclohexyl -4 , 4-biphenyldicarboxamide and N,N' -dicyclopentyl-4, 4-biphenyldicarboxamide, - N,N' -di-C5-C8-cycloalkyl-terephthalamide compounds such as
N,N' -dicyclohexylterephtalamide and N,N' -dicyclopentylterephtalamide,
- N,N' -di-C5-C8-cycloalkyl-l , 4-cyclohexanedicarboxamide compounds such as
N,N' -dicyclo-hexyl-1 , 4-cyclohexanedicarboxamide and N,N' -dicyclohexyl-1 , 4-cyclopentanedicarboxamide .
Examples of the diamine derivative type diamide compounds from C5-C8-cycloalkyl mono-carboxylic acids or C6- Cι2-aromatic monocarboxylic acids and C5-C8-cycloaliphatic or C6-Ci2-aromatic diamines, optionally contained in the β-nucleated propylene copolymer, are
- N,N' -C6-Cι2-arylene-bis-benzamide compounds such as N,N' -p-phenylene-bis-benzamide and N,N' -1, 5-naphtalene-bis-benzamide,
- N,N' -C5-C8-cycloalkyl-bis-benzamide compounds such as N,N' -1 , 4-cyclopentane-bis-benzamide and
N,N' -1 , 4-cyclohexane-bis-benzamide .
- N, N' -p- C6 -C12 - arylene -bis -C5 - C8 - cycloalkylcarboxamide compounds such as
N,N' -1, 5-naphtalene-bis-cyclohexanecarboxamide and N, N' -1, 4-phenylene-bis-cyclohexanecarboxamide .
- N, N' -C5-C8-cycloalkyl-bis-cyclohexanecarboxamide compounds such as N,N' -1 , 4-cyclopentane-bis-cyclohexanecarboxamide and N,N' -1 , 4-cyclohexane-bis-cyclohexanecarboxamide .
Examples of the amino derivative type diamide compounds, optionally contained in the β-nucleated propylene copolymer, are N-phenyl-5- (N-benzoylamino) pentaneamide and/or
N-cyclohexyl-4- (N-cyclohexylcarbonylamino) benz-amide . Examples of the quinacridone type compounds, optionally contained in the β-nucleated propylene copolymer, are quinacridone, dimethylquinacridone and/or dimethoxy- quinacridone . Examples of the quinacridonequinone type compounds, optionally contained in the β-nucleated propylene copolymer, are quinacridonequinone, a mixed crystal of 5,12-di- hydro (2 , 3b) acridine-7, 14-dione with quino (2 , 3b) acridine- 6,7, 13, 14- (5H, 12H) -tetrone as disclosed in EP-B 0 177 961 and/or dimethoxyquinacridonequinone .
Examples of the dihydroquinacridone type compounds, optionally contained in the β-nucleated propylene copolymer, are dihydroquinacridone, dimethoxydihydroquinacrido- ne and/or dibenzodihydroquinacridone . Examples of the dicarboxylic acid salts of metals from group Ila of periodic system, optionally contained in the β-nucleated propylene copolymer, are pimelic acid calcium salt and/or suberic acid calcium salt .
Examples of salts of metals from group Ila of perio- die system and imido acids of the formula
Figure imgf000010_0001
optionally contained in the β-nucleated propylene copolymer, are the calcium salts of phtaloylglycine, hexahydro- phtaloylglycine, N-phtaloyl-alanine and/or N-4 -methyl - phtaloylglycine .
According to the invention the β-nucleated propylene polymer is mixed with microspheres, which may be made of various organic and inorganic materials, such as glass, epoxy resin, phenolic resin or urea- formaldehyde resin. The microspheres should be rigid, i. e. non-compressible, and should have a density of at most about 0.8 g/cm3, preferably at most about 0.4 g/cm3. The outer diameter of the microspheres should be 1-500 μm, preferably 5-200 μm and preferably the microspheres are hollow. A preferred material is an inorganic glass, preferably a silica based glass, or a polymer or ceramics, a rigid foam structure, etc .
In the present invention the microspheres are pref- erably untreated, i. e. they do not need any pretreatment with chain scission agent in order to achieve an even distribution of the microspheres and excellent mechanical properties. This is an advantage compared to the prior art such as EP-A-473 215 mentioned above. The density of the composition of β-nucleated propylene polymer mixed with hollow microspheres should preferably be 500-850 kg/m3 and more preferably 600-800 kg/m3.
Preferably, the microspheres are present in the com- position in an amount of from 10 to 50 weight%, preferably 15 to 35%, more preferably 20-30 weight% of the composition.
In order to improve the distribution of microspheres within the polymer matrix, to reduce the amount of micro- spheres crushed during processing, and to improve the processability, the MFR of the β-nucleated propylene polymer may be increased by the incorporation into the polymer matrix of a polyolefin, having a MFR of 100-1500, preferably 400-1200 g/10 min at 230°C/2.16 kg. The amount of polyolefin, e. g. polyethylene or polypropylene should be 0-30 weight%, preferably 10-25 weight%.
The syntactic polyolefin composition of the present invention may contain usual auxiliary materials, such as
0.01 to 2.5 wt% stabilizers and/or 0.01 to 1 wt% proces- sing aids, and/or 0.1 to 1 wt% antistatic agents and/or
0.2 to 3 wt% pigments, in each case based on the polymers used.
As stabilizers, preferably mixtures of 0.01% to 0.6 wt% phenolic antioxidants, 0.01% to 0.6 wt% 3-arylbenzo- furanones, 0.01% to 0.6 wt% processing stabilizers based on phosphites, 0.01% to 0.6 wt% high temperature stabili- zers based on disulfides and thioethers and/or 0.01% to 0.8 wt% sterically hindered amines (HALS), are suitable.
The melt flow rate (MFR) , which is equivalent to the term "melt index" previously used, is an important pro- perty of the syntactic polyolefin composition for pipe coating according to the invention. The MFR is determined according to ISO 1133 and is indicated in g/10 min. The MFR is an indication of the flowability, and hence the processability, of the polymer. The higher the melt flow rate, the lower the viscosity of the polymer composition. The MFR is determined at different loadings such as 2,16 kg (MFR2; ISO 1133, condition D) . In the present invention the composition has an MFR2 in the range of 0.05-30 g/10 min at 230°C/2.16 kg, more preferably in the range of 0.5-10 g/10 min at 230°C/2.16 kg and most preferably in the range of 1.0-5 g/10 min.
Another important property of the syntactic polyolefin composition for pipe coating according to the invention is the elongation at break, which is determined according to ISO 527-2/5A, sample thickness 2 mm, 100 mm/min, at ambient temperature of 23°C. The elongation at break is a measure of the flexibility of the material and consequently its ability to endure handling, such as coiling, reeling, etc without the formation of cracks. During coiling of the pipe the extension of the insulating layer may be up to about 5%, which requires a sufficiently ductile material. According to the invention the composition has an elongation at break of at least 3%, preferably at least 5%, and more preferably at least 10%. The tensile modulus is a measurement of the rigidity of the material and its ability to withstand high water pressures. The tensile modulus of the composition should preferably be at least 1500 MPa determined according to ISO 527-2/1B, sample thickness 4 mm, lmm/min, 23 °C. Another property indicating the ability of the composition to endure high water pressures is the compression strength determined according to ASTM D 695. At the present invention this compression strength should preferably be >10 MPa and more preferably >15 MPa.
As previously stated the thermal conductivity of an effective off-shore pipe insulation needs to be low in order to attain the desired low level of thermal conductivity. According to the invention the composition preferably has a K-value of less than 0.20 W/m°K, preferably less than 0.17 W/m°K.
The present invention also relates to a method for the preparation of a syntactic polyolefin composition for pipe coating, in which hollow microspheres are evenly distributed by melt mixing in a composition comprising a β-nucleated propylene polymer and hollow microspheres, said composition having a melt flow rate at 230°C/2.16kg in the range of 0.05-30 g/10 min, more preferably in the range of 0.5-10 g/10 min and most preferably in the range of 1.0-5 g/10 min, and in that the composition has an elongation at break of at least 3%, more preferably >5%, and most preferably >10%. The method is generally carried out in a compounding or extruder unit, preferably in a co-rotating or counter- rotating twin screw extruder, or in an internal mixer such as a Banbury type mixer or in a single screw extruder such as a Buss Co-kneader or in a conventional single screw extruder. Static mixers such as Kenics,
Koch, etc can also be used in addition to the compounding or extruder units mentioned in order to improve the distribution of the microspheres in the polymer matrix. Pellets of β-nucleated propylene block (co) polymer and optionally a propylene homopolymer are fed into the extruder. When the polymer is melted the hollow micro- spheres are added to the melted polymer, more preferably at a melt temperature of 30°C above the melt temperature of the polymer, most preferably 50°C above the melt tem- perature of the polymer in a ratio to achieve the desired K-value of the composition. The microspheres and polymer are mixed in the extruder until the microspheres are evenly distributed in the molten polymer. The molten and homogenised compound is then fed from the extruder and either pelletized for subsequent use or used directly to coat a pipe and prepare a syntactic polyolefin coated pipe according to the present invention. Direct coating of the pipes is preferred and includes both the pipe coating process based on co-extrusion, i. e. coating the complete circumference at the same time or by extrusion of a tape or film wounded around the pipe in a continuous process.
As indicated above the off-shore pipe coated with a syntactic polyolefin composition of the present invention is preferably prepared by extruding the syntactic polyolefin composition of the invention, e. g. in connection with the preparation thereof by melt mixing onto the pipe. Such direct coating of the pipes in a continuous process has the advantages that intermediate processing steps involving cooling, pelletizing and remelting may be omitted. In this way the tough treatments of pelletizing and especially remelting in an extruder, which normally to a substantial extent is performed by friction forces, are avoided. The result of such treatments is inevitably a large amount of crushed microspheres with accompanying higher heat conductivity and loss in mechanical proper- ties. The pipe may be pretreated by coating with an epoxy resin layer and an compatibilizing layer on the epoxy resin layer before the coating with the syntactic polyolefin composition. The thickness of the coating preferably is at least about 1-100 mm, more preferably 20-50 mm.
The present invention will now be illustrated by way of non- limiting examples of preferred embodiments in order to further facilitate the understanding of the invention. Examples Preparation of a β-nucleated propylene block copolymer.
A mixture of 90 weight% of a propylene block copolymer, obtained by combined bulk and gas phase polymeriza- tion using a Ziegler-Natta catalyst system with dicyclo- pentyldimethoxysilane as external donor, having an ethy- lene content of 8.3 weight%, an IRτ of the propylene homo- polymer block of 0.985 and a melt flow rate of 0.30 g/10 min at 230°C/2.16 kg, 10 weight% of a master batch comp- rising 99 parts by weight of a propylene block copolymer having an ethylene content of 8.3% by weight, an IRτ of the propylene homopolymer block of 0.985 and a melt flow rate of 0.30 g/10 min at 230°C/2.16 kg, and 1 part by weight pimelic acid calcium salt, and 0.1 weight% calcium stearate, 0.1 weight% tetrakis[methylene (3 , 5-di-t-butyl - hydroxyhydrocinnamate) ]methane and 0.1 weight% tris-(2,4- di-t-butylphenyl) phosphite, based on the sum of the propylene polymers used, is melted in a twin screw extruder with a temperature profile of 100/145/185/210/220/225/ 225/225/220/200/185 °C, homogenized, discharged and pel- letized. The resulting propylene copolymer has a melt flow rate of 0.32 g/10 min at 230°C/2.16 kg, a tensile modulus of 1290 MPa and a Charpy impact strength, using notched test specimens, of 39 kj/m2 at -20°C. Physical properties of microspheres
The used miccrospheres were Scotchlite™ Glass Bubbles having a density within the range of 0.35-0.41 g/cm3, measured in accordance with ASTM D284 (1976 edition) and a bulk density in the range of 0.19-0.28 g/cm3. Isostatic test pressure evaluation, at a test pressure of 38.5 MPa, calculated from the change in density of a sample (mixed with talc) after exposure to dry nitrogen, resulted in % of survival of at least 80% and typically 90%. Floatation, % by bulk volume, was typically 94%. Test values were typical when material was sampled in accordance with ASTM D2841 (1988 edition) . Example 1-3
Preparation of a composition comprising a β-nucleated propylene polymer, a propylene homopolymer and hollow microspheres . Pellets of β-nucleated propylene block copolymer having a MFR of 0.3 g/10 min at 230°C/2.16 kg prepared as described above and pellets of a polypropylene homopolymer having a MFR of 400 g/10 min at 230°C/2.16 kg, were fed into the first mixer inlet of a Buss Co-Kneader 100 MDK/E-llL/D, i. e. a single screw mixer with a downstream discharge single screw extruder with a pelletizing unit cutting pellets in the molten stage and cooled via water. The mixer temperatures were set to 200-240°C, from first inlet to outlet, screw temperature to 210°C and the dis- charge extruder to around 230°C. The mixer screw RPM was 170-190 rpm and the throughput 100-150 kg/h. Untreated microspheres, as specified above, were fed into the molten polymer in the second mixer inlet downstream. The compositions of the composite material are set forth in Table 1. The composite material was extruded and pellet- ized.
Table 1
Figure imgf000016_0001
The resulting properties from plaques compression moulded at 220°C are presented in Table 2. Table 2
Figure imgf000017_0001
From Table 2 it can be seen that the composition according to the invention provides a composite material which is well suited for insulating purposes, having a K- value of 0.174 W/m°K and a density of 650-690 kg/m3. The mechanical properties of the composition are excellent with a high elongation at break of 98% and a tensile modulus of 1900 MPa. The compounding of the β-nucleated propylene polymer of MFR 0.3 g/10 min at 230°C/2.16 kg and the propylene homopolymer of MFR 400 g/10 min at 230°C/2.16 kg results in a composition having a MFR of 0.55-0.9 g/10 min at 230°C/2.16 kg, and thus makes it possible to incorporate the hollow microspheres into the composition without any significant breakage of the microspheres. These values correspond to the values attained in the ready made pipe coating, wherein com- pounding/homogenisation and pipe extrusion is performed in a continuous step, i. e. without extrusion remelting which causes an additional amount of crushed micro- spheres . Example 4
In order to simulate a two step procedure, wherein melt compounding and/or homogenisation and palletising and/or solidification is accomplished in a first step and pipe extrusion including remelting in a subsequent second step, the pellets manufactured in example 1 were extruded in a labextruder through a tape die having a cross section of 30x2 mm. The labextruder was a standard screw compression screw with a RPM of 30, a screw length L/D of 30 and a screw diameter of 30 mm. The compression ratio was 1:3, the set temperature 220°C, and the melt temperature 225°C. The resulting properties from plaques made of the tapes by compression moulding at 220°C, are presented in Table 3.
Table 3
Figure imgf000018_0001
From the resulting properties presented in Table 3 it can be concluded that a second extrusion step includ- ing remelting by extrusion still gives suitable values for the application, e. g. a K-value of 0.18 W/m°K and an elongation at break of 79%.
Comparative Examples 5 and 6
Pellets of propylene block copolymer were prepared as described above for examples 1-3.
Table 4
Figure imgf000019_0001
The resulting properties from plaques compression moulded at 220°C are presented in Table 5.
Table 5
Figure imgf000019_0002
From the resulting properties presented in Table 5 it is evident that compositions without the addition of a β-nucleating agent have inferior mechanical properties in comparison to the compositions according to the invention given in examples 1-4.

Claims

1. A syntactic polyolefin composition for pipe coating, c h a r a c t e r i s e d in that the composition comprises a β-nucleated propylene polymer comprising a β- nucleating agent and microspheres, said composition having a melt flow rate (MFR2; ISO 1133, condition D) at 230°C/2.16kg in the range of 0.05-30 g/10 min and in that the composition has an elongation at break of at least 3%.
2. A syntactic polyolefin composition according to claim 1, c h a r a c t e r i s e d in that said composition has a melt flow rate (MFR2; ISO 1133, condition D) at 230°C/2.16kg in the range of 0.5-10 g/10 min and pref- erably in the range of 1.0-5 g/10 min.
3. A syntactic polyolefin composition according to claim 1 or 2, c h a r a c t e r i s e d in that said composition has an elongation at break of >5% and preferably >10%. 4. A syntactic polyolefin composition according to any one of claims 1 to 3 , c h a r a c t e r i s e d in that the β-nucleated propylene polymer is a (co) polymer which comprises at least 90.0 weight% of propylene and up to 10.0 weight% of α-olefins with 2 or 4 to 18 carbon atoms, and that the propylene polymer has a melt flow rate of 0.1-8 g/10 min at 230°C/2.16 kg.
5. A syntactic polyolefin composition according to any one of claims 1 to 4 , c h a r a c t e r i s e d in that the composition further comprises a polyolefin homopolymer having a melt flow rate of 100-1500 g/10 min at 230°C/2.16 kg.
6. A syntactic polyolefin composition according to any one of claims 1 to 5 , c h a r a c t e r i s e d in that the amount of polyolefin is 0-20 weight%, preferably 15-20 weight%.
7. A syntactic polyolefin composition according to any one of claims 1 to 6 , c h a r a c t e r i s e d in that the tensile modulus of the composition is at least 1500 MPa determined according to ISO 527.
8. A syntactic polyolefin composition according to any one of claims 1 to 7, c h a r a c t e r i s e d in that the compression strength at 20 MPa/80° determined according to ASTM D695, is > 10 MPa, preferably >15 MPa.
9. A syntactic polyolefin composition according to any one of claims 1 to 8 , c h a r a c t e r i s e d in that the K-value of the composition is less than 0.190 W/m°K.
10. A syntactic polyolefin composition according to any one of claims 1 to 9, c h a r a c t e r i s e d in that the density of the composition is 500-850 kg/m3.
11. A syntactic polyolefin composition according to any of claims 1 to 10, c h a r a c t e r i s e d in that said microspheres are made of glass, ceramics, epoxy resin, phenolic resin or urea- formaldehyde resin.
12. A syntactic polyolefin composition according to any one of claims 1 to 11, c h a r a c t e r i s e d in that said microspheres are untreated microspheres.
13. A syntactic polyolefin composition according to any one of claims 1 to 12, c h a r a c t e r i s e d in that said microspheres have an outer diameter of 1-500 μm, preferably 5-200 μm. 1 . A syntactic polyolefin composition according to any one of claims 1 to 13, c h a r a c t e r i s e d in that said microspheres are hollow.
15. A syntactic polyolefin composition according to any one of claims 1 to 14 , c h a r a c t e r i s e d in that said microspheres are present in an amount of 10-50 weight%, preferably 20-30 weight% of the composition.
16. A method for the preparation of a syntactic polyolefin composition for pipe coating according to any one of claims 1-15, c h a r a c t e r i s e d in that microspheres are evenly distributed by melt mixing in a composition comprising a β-nucleated propylene polymer and microspheres, said composition having a melt flow rate at 230°C/2.16kg in the range 0.05-30 g/lOmin and in that the composition has an elongation at break of at least 3%.
17. A method according to claim 16, c h a r a c- t e r i s e d in that said microspheres are added to the molten polymer.
18. A method according to claim 16 or 17, c h a r a c t e r i s e d in that the composition is compounded/homogenised and extruded as a coating on an off-shore pipe in one continuous step.
19. A method according to claim 16 or 17, c h a r a c t e r i s e d in that the composition is pelletized in a first step and in a subsequent step extruded as a coating on an off-shore pipe. 20. An off-shore pipe coated with a syntactic polyolefin composition, c h a r a c t e r i s e d in that the pipe is coated with a composition according to any one of claims 1-15.
PCT/SE2003/000607 2002-04-16 2003-04-16 Syntactic polyolefin composition for pipe coating WO2003087205A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EA200401379A EA006305B1 (en) 2002-04-16 2003-04-16 Syntactic polyolefin composition for pipe coating
AU2003224539A AU2003224539A1 (en) 2002-04-16 2003-04-16 Syntactic polyolefin composition for pipe coating
DE60314115T DE60314115T2 (en) 2002-04-16 2003-04-16 SYNTACTIC POLYOLEFIN COMPOSITION FOR COATING PIPES
EP03721202A EP1495072B1 (en) 2002-04-16 2003-04-16 Syntactic polyolefin composition for pipe coating
US10/510,396 US7091277B2 (en) 2002-04-16 2003-04-16 Syntactic polyolefin composition for pipe coating
DK03721202T DK1495072T3 (en) 2002-04-16 2003-04-16 Syntactic polyolefin composition for pipe coating
BRPI0309294-1A BR0309294B1 (en) 2002-04-16 2003-04-16 Synthetic polyolefin composition for pipe lining, its method of preparation and marine pipe lined with it.
NO20044044A NO334324B1 (en) 2002-04-16 2004-09-24 Syntactic polyolefin mixture for coating pipes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE0201129A SE0201129L (en) 2002-04-16 2002-04-16 Syntactic polyolefin composition for pipe coating g
SE0201129-4 2002-04-16

Publications (1)

Publication Number Publication Date
WO2003087205A1 true WO2003087205A1 (en) 2003-10-23

Family

ID=20287578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE2003/000607 WO2003087205A1 (en) 2002-04-16 2003-04-16 Syntactic polyolefin composition for pipe coating

Country Status (13)

Country Link
US (1) US7091277B2 (en)
EP (1) EP1495072B1 (en)
CN (1) CN1284819C (en)
AT (1) ATE363510T1 (en)
AU (1) AU2003224539A1 (en)
BR (1) BR0309294B1 (en)
DE (1) DE60314115T2 (en)
DK (1) DK1495072T3 (en)
EA (1) EA006305B1 (en)
ES (1) ES2283766T3 (en)
NO (1) NO334324B1 (en)
SE (1) SE0201129L (en)
WO (1) WO2003087205A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006055612A1 (en) * 2004-11-16 2006-05-26 3M Innovative Properties Company Microsphere filled polymer composites
US8522829B2 (en) 2006-11-29 2013-09-03 3M Innovative Properties Company Microphere-containing insulation
WO2014169358A1 (en) * 2013-04-17 2014-10-23 Braskem S.A. Synthetic polypropylene composition, use of the composition and pipe
EP3059485A1 (en) 2015-02-17 2016-08-24 J. van Beugen Beheer B.V. Metal pipes with anticorrosive polyolefin covering layer
US10745579B2 (en) 2018-08-31 2020-08-18 International Business Machines Corporation Extrudable poly(propylene) compositions

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1260546A1 (en) * 2001-05-21 2002-11-27 Borealis Technology OY Polyolefin multilayer pipe
US7700707B2 (en) 2002-10-15 2010-04-20 Exxonmobil Chemical Patents Inc. Polyolefin adhesive compositions and articles made therefrom
WO2004046214A2 (en) 2002-10-15 2004-06-03 Exxonmobil Chemical Patents Inc. Multiple catalyst system for olefin polymerization and polymers produced therefrom
US20090239429A1 (en) 2007-03-21 2009-09-24 Kipp Michael D Sound Attenuation Building Material And System
WO2008116188A1 (en) 2007-03-21 2008-09-25 Ash Tech Industries, L.L.C. Utility materials incorporating a microparticle matrix
US8445101B2 (en) 2007-03-21 2013-05-21 Ashtech Industries, Llc Sound attenuation building material and system
US8916250B2 (en) * 2008-10-01 2014-12-23 Borealis Ag Sewage pipe comprising beta nucleated polypropylene material with improved properties
US8591677B2 (en) 2008-11-04 2013-11-26 Ashtech Industries, Llc Utility materials incorporating a microparticle matrix formed with a setting agent
WO2010116401A1 (en) * 2009-03-30 2010-10-14 株式会社フジクラ Method for manufacture of expanded electric wire
CN102672843B (en) * 2012-05-16 2014-10-01 奇瑞汽车股份有限公司 Method for preparing high-performance hollow-glass-microsphere-filled modified resin-based composite material
DK3063198T3 (en) * 2013-10-30 2019-11-11 Dow Global Technologies Llc Syntactic polyurethane elastomers based on low unsaturation polyols for use in insulation of underwater pipes
SG11201603259WA (en) * 2013-10-30 2016-05-30 Dow Global Technologies Llc Syntactic polyurethane elastomers having distinct morphology for use in subsea pipeline insulation
WO2015065769A1 (en) * 2013-10-30 2015-05-07 Dow Global Technologies Llc Syntactic polyurethane elastomers for use in subsea pipeline insulation
EP3063196B1 (en) * 2013-10-30 2018-01-31 Dow Global Technologies LLC Syntactic polyurethane elastomer based on soft segment prepolymer and non-mercury catalyst for use in subsea pipeline insulation
DE102015207110B4 (en) * 2015-04-20 2021-06-02 Volkswagen Aktiengesellschaft Adhesive composition with improved delta-alpha tolerance, associated joining method and use of the adhesive composition
US10450491B2 (en) 2016-08-08 2019-10-22 Ticona Llc Thermally conductive polymer composition for a heat sink

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0521582A1 (en) * 1991-07-05 1993-01-07 Shell Internationale Researchmaatschappij B.V. Insulated flowline system
US5218016A (en) * 1986-05-16 1993-06-08 Institut Francais Du Petrole Filler and floatability material manufacturing process and tubular units that incorporate this material
EP0557807A1 (en) * 1992-02-13 1993-09-01 Mitsubishi Chemical Corporation Process for producing molded products of propylene resin compositions
WO1993019927A1 (en) * 1992-03-31 1993-10-14 W.R. Grace & Co.-Conn. Thermoplastic syntactic foam pipe insulation
EP0575012A1 (en) * 1992-06-19 1993-12-22 Shell Internationale Researchmaatschappij B.V. Polyolefin/filler composite materials and their use
WO1997028213A1 (en) * 1996-01-31 1997-08-07 Montell North America Inc. Polyolefin composition suited for metal coating by flame spraying
WO1999005447A1 (en) * 1997-07-23 1999-02-04 Cuming Corporation Subsea pipeline insulation
US6251995B1 (en) * 1998-04-03 2001-06-26 Borealis Gmbh Polyolefin sheets and polyolefin coatings of substrates

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9017203D0 (en) 1990-08-06 1990-09-19 Shell Int Research Polyolefin/filler composite materials and their preparation and use
EP1174261A1 (en) * 2000-07-20 2002-01-23 Borcalis GmbH Single and multilayer polyolefin foam pipes

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5218016A (en) * 1986-05-16 1993-06-08 Institut Francais Du Petrole Filler and floatability material manufacturing process and tubular units that incorporate this material
EP0521582A1 (en) * 1991-07-05 1993-01-07 Shell Internationale Researchmaatschappij B.V. Insulated flowline system
EP0557807A1 (en) * 1992-02-13 1993-09-01 Mitsubishi Chemical Corporation Process for producing molded products of propylene resin compositions
WO1993019927A1 (en) * 1992-03-31 1993-10-14 W.R. Grace & Co.-Conn. Thermoplastic syntactic foam pipe insulation
EP0575012A1 (en) * 1992-06-19 1993-12-22 Shell Internationale Researchmaatschappij B.V. Polyolefin/filler composite materials and their use
WO1997028213A1 (en) * 1996-01-31 1997-08-07 Montell North America Inc. Polyolefin composition suited for metal coating by flame spraying
WO1999005447A1 (en) * 1997-07-23 1999-02-04 Cuming Corporation Subsea pipeline insulation
US6251995B1 (en) * 1998-04-03 2001-06-26 Borealis Gmbh Polyolefin sheets and polyolefin coatings of substrates

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006055612A1 (en) * 2004-11-16 2006-05-26 3M Innovative Properties Company Microsphere filled polymer composites
US8522829B2 (en) 2006-11-29 2013-09-03 3M Innovative Properties Company Microphere-containing insulation
WO2014169358A1 (en) * 2013-04-17 2014-10-23 Braskem S.A. Synthetic polypropylene composition, use of the composition and pipe
EP3059485A1 (en) 2015-02-17 2016-08-24 J. van Beugen Beheer B.V. Metal pipes with anticorrosive polyolefin covering layer
US11346490B2 (en) 2015-02-17 2022-05-31 Winn & Coales International Limited Metal pipes with anticorrosive polyolefin covering layer
US10745579B2 (en) 2018-08-31 2020-08-18 International Business Machines Corporation Extrudable poly(propylene) compositions

Also Published As

Publication number Publication date
US7091277B2 (en) 2006-08-15
DE60314115D1 (en) 2007-07-12
NO334324B1 (en) 2014-02-03
SE0201129L (en) 2003-10-17
CN1643046A (en) 2005-07-20
DK1495072T3 (en) 2007-07-09
EA006305B1 (en) 2005-10-27
SE0201129D0 (en) 2002-04-16
NO20044044L (en) 2004-10-19
EA200401379A1 (en) 2005-02-24
ATE363510T1 (en) 2007-06-15
DE60314115T2 (en) 2007-09-13
CN1284819C (en) 2006-11-15
EP1495072B1 (en) 2007-05-30
BR0309294A (en) 2005-02-01
EP1495072A1 (en) 2005-01-12
US20050165156A1 (en) 2005-07-28
BR0309294B1 (en) 2012-12-11
AU2003224539A1 (en) 2003-10-27
ES2283766T3 (en) 2007-11-01

Similar Documents

Publication Publication Date Title
EP1495072B1 (en) Syntactic polyolefin composition for pipe coating
US8415447B2 (en) Polyolefin coated steel pipes
EP1509566B1 (en) Polypropylene compositions especially for pipes
EP2014715B1 (en) ß-Nucleated polypropylene composition
PL204334B1 (en) Polyolefin multilayer pipe
US8389089B2 (en) Propylene polymer pipes for pipelines
EP2055739B1 (en) ß-nucleated Propylene Copolymer
AU2002346828A1 (en) Pressure pipes
EP1448631A1 (en) Pressure pipes
WO2013029699A1 (en) Polypropylene blend for pipes
AU2002338997A1 (en) Propylene polymer pipes for pipelines
WO2016192960A1 (en) Propylene copolymer composition

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003721202

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038063301

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10510396

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200401379

Country of ref document: EA

WWP Wipo information: published in national office

Ref document number: 2003721202

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP

WWG Wipo information: grant in national office

Ref document number: 2003721202

Country of ref document: EP