WO2003082148A1 - Enzyme disruption of bacterial biofilms - Google Patents
Enzyme disruption of bacterial biofilms Download PDFInfo
- Publication number
- WO2003082148A1 WO2003082148A1 PCT/US2003/009354 US0309354W WO03082148A1 WO 2003082148 A1 WO2003082148 A1 WO 2003082148A1 US 0309354 W US0309354 W US 0309354W WO 03082148 A1 WO03082148 A1 WO 03082148A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lysostaphin
- biofilm
- catheter
- antibiotics
- aureus
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/54—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N63/00—Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
- A01N63/50—Isolated enzymes; Isolated proteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/46—Hydrolases (3)
- A61K38/48—Hydrolases (3) acting on peptide bonds (3.4)
- A61K38/482—Serine endopeptidases (3.4.21)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/14—Materials characterised by their function or physical properties, e.g. lubricating compositions
- A61L29/16—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/20—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
- A61L2300/252—Polypeptides, proteins, e.g. glycoproteins, lipoproteins, cytokines
- A61L2300/254—Enzymes, proenzymes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/404—Biocides, antimicrobial agents, antiseptic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/404—Biocides, antimicrobial agents, antiseptic agents
- A61L2300/406—Antibiotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/45—Mixtures of two or more drugs, e.g. synergistic mixtures
Definitions
- This invention pertains to the disruption of bacterial biofilms with antibacterial enzymes. More specifically, this invention relates to the disruption of staphylococcal biofilms with lysostaphin.
- Biofilms pose a serious problem for public health because of the increased resistance of biofil -associated organisms to antimicrobial agents and the association of infections with these organisms in patients with indwelling medical devices or damaged tissue.
- Antibiotic resistance of bacteria growing in biofilms contributes to the persistence and chronic nature of infections such as those associated with implanted medical devices.
- the mechanisms of resistance in biofilms are different from the now familiar plasmids, transposons, and mutations that confer innate resistance to individual bacterial cells. In biofilms, resistance seems to depend on multicellular strategies.
- Biofilms are complex communities of microorganisms attached to surfaces or associated with interfaces or damaged tissue.
- planktonic (free-swimming) bacteria it is now widely recognized that most bacteria found in natural, clinical, and industrial settings persist in association with surfaces as biofilms.
- these microbial communities are often composed of multiple species that interact with each other and their environment.
- the determination of biofilm architecture particularly the spatial arrangement of microcolonies (clusters of cells) relative to one another, has profound implications for the function of these complex communities.
- the biofilm matrix is a dynamic environment in which the component microbial cells appear to reach homeostasis and are optimally organized to make use of all available nutrients.
- the matrix therefore shows great microheterogeneity, within which numerous microenvironments can exist.
- Biofilm formation is believed to be a two-step process in which the attachment of bacterial cells to a surface is followed by growth dependent accumulation of bacteria in multilayered cell clusters.
- exopolysaccharides provide the matrix framework, a wide range of enzyme activities can be found within the biofilm, some of which greatly affect structural integrity and stability.
- the fibrinogen and fibronectin of host plasma cover the surface of a medical implant or damaged tissue and are identified by constitutively expressed microbial surface components , which mediate the initial attachment of bacteria to the surface of the biomaterial or damaged tissue.
- microbial surface components which mediate the initial attachment of bacteria to the surface of the biomaterial or damaged tissue.
- a specific gene locus in the bacteria cells called the intracellular adhesion ⁇ ica locus, activates the adhesion of bacteria cells to each other, forming the secondary layers of the biofilm.
- the ica locus is responsible for the expression of the capsular polysaccharide operon, which in turn activates polysaccharide intercellular adhesion (PIA), via the sugar poly-N-succinylglucosamine (P ⁇ SG), a.-l,6-linked glucosaminoglycan.
- PIA polysaccharide intercellular adhesion
- P ⁇ SG sugar poly-N-succinylglucosamine
- glucosaminoglycan a.-l,6-linked glucosaminoglycan.
- Staphylococcus aureus is a highly virulent human pathogen. Both S. aureus and coagulase-negative staphylococci have emerged as major nosocomial pathogens associated with biofilm formation on implanted medical devices and damaged tissue. These organisms are among the normal carriage flora of human skin and mucous membranes, making them prevalent complications during and after invasive surgery or prolonged hospital stays. As bacteria carried on both healthy and sick people, staphylococci are considered opportunistic pathogens that invade patients via open wounds and via biomaterial implants.
- Biofilm infections associated with S. aureus are a significant cause of morbidity and mortality, particularly in settings such as hospitals, nursing homes and infirmaries. Patients at risk include infants, the elderly, the immuno-compromised, the immuno-suppressed, and those with chronic conditions requiring frequent hospital stays. Patients with intravascular and other implanted prosthetic devices are at even greater risk from staphylococcal infections because of compromised immune systems and the introduction of foreign bodies, which serve to damage tissue and/or act as a surface for the formation of biofilms. Such infections can have chronic, if not fatal, implications.
- Catheter related infections continue to be a significant source of morbidity and mortality in patients requiring catheterization.
- the reported incidence in the United States is 4%, which equates to 200,000 patients per year.
- catheter related infections have an attributable mortality of 14-24% and increase medical expenses by prolonging hospitalization. As a result, prevention or even reduction in the incidence of these catheter- related infections could have a significant healthcare benefit.
- Catheter infections are most commonly caused by staphylococci, either coagulase negative staphylococci (CoNS) or S. aureus. Infections caused by CoNS can be mild and some can be treated by either removing the catheter or a course of antibiotics with the catheter in place. S. aureus infections are usually more severe and require removal of the catheter or other prosthetic device in addition to extended antibiotic therapy.
- CoNS coagulase negative staphylococci
- S. aureus infections are usually more severe and require removal of the catheter or other prosthetic device in addition to extended antibiotic therapy.
- S. aureus is a prodigious toxin producer and a highly virulent human pathogen. It is the cause of a variety of human diseases, ranging from localized skin infections to life- threatening bacteremia and infections of vital organs. If not rapidly controlled, a S. aureus infection can spread quickly from the initial site of infection to other organs. Although the foci of infection may not be obvious, organs particularly susceptible to infection include the heart valves, kidneys, lungs, bones, meninges and the skin of burn patients. While effective antimicrobial agents against antibiotic-susceptible staphylococcal infections have been developed, agents are still needed that consistently and thoroughly kill antibiotic-resistant S.
- aureus especially those associated with biofilms, on implanted prosthetic devices and on damaged tissue, to eliminate this source of persistent and chronic staphylococcal infections.
- S. aureus in biofilms (even those which are antibiotic-susceptible in the planktonic state) tend to be less susceptible to antibiotics and thus a more difficult infection to clear.
- the causes of biofilm resistance to antibiotics may include, the failure of some antimicrobial agents to penetrate all the layers of a biofilm, the slow-growth rate of certain biofilm cells that make them less susceptible to antimicrobial agents requiring active bacterial growth, and the expression of gene patterns by the bacterial cells embedded in the biofilm that differ from the genes expressed in their planktonic (free-swimming) state. These differences in biofilm-associated bacteria render antimicrobial agents that work effectively to kill planktonic bacteria ineffective in killing biofilm-associated bacteria. Often the only way to treat catheters or prosthetic devices with associated biofilms is the removal of the contaminated device, which may require additional surgery and present further risks to patients.
- Coating catheters on other prosthetic devices with anti-microbial agents is a promising approach for the control and prevention of these foreign body related infections.
- cefazolin, teicoplanin, vancomycin, silver, chlorohexidine-silver sulfadiazine and minocycline-rifampin coated catheters are examples of antiseptic catheters.
- cefazolin cefazolin
- teicoplanin vancomycin
- silver chlorohexidine-silver sulfadiazine
- minocycline-rifampin coated catheters only the minocycline-rifampin coated catheters have been shown to reduce the incidence of catheter related bloodstream infections (CRBI's), and its long-term eff
- Lysostaphin is a potent antibacterial enzyme first identified in Staphylococcus simulans (formerly known as S. staphylolyticus).
- a bacterial glycylglycine endopeptidase, lysostaphin is capable of cleaving the specific cross-linking polyglycine bridges in the cell walls of staphylococci, and is therefore highly lethal to both actively growing and quiescent staphylococci.
- lysostaphin Expressed in a single polypeptide chain, lysostaphin has a molecular weight of approximately 27 kDa.
- Lysostaphin is particularly effective in lysing S. aureus because the cell wall bridges of S. aureus contain a high proportion of glycine. Lysostaphin has also demonstrated the ability to lyse Staphylococcus epidermidis, the most prevalent coagulase-negative bacterial infection found in hospital settings. However, because of the complexity of biofilm architecture and the mechanism by which lysostaphin lyses staphylococci, lysostaphin was not expected to be effective against staphylococci in established biofilms.
- U.S. Patent. No. 6,028,051 to Climo, et al. discloses a method for the treatment of staphylococcal disease with lysostaphin. Relatively high doses of lysostaphin, of at least 50, preferably 100, milligrams of lysostaphin per kilogram of body weight are used for treatment. Lysostaphin can be used in single dose treatments or multiple dose treatments, as well as singularly or in combination with additional antibiotic agents.
- the '051 patent also discloses that the cloning and sequencing of the lysostaphin gene permits the isolation of variant forms that can have properties similar to or different from those of wild type lysostaphin.
- U.S. Patent No. 6,315,996 to O'Callaghan discloses a method for using lysostaphin as an effective antibiotic for topical treatment of staphylococcus corneal infections.
- U.S. Patent No. 5,760,026 to Blackburn et al. discloses a method for using lysostaphin to eliminate and cure staphylococcal infections including the cure of mastitis in dairy cows by intramammary infusion.
- a method for treating a patient in whom damaged tissue or an indwelling prosthetic device or catheter has a bacterial biofilm growing thereon, to at least partially disrupt said biofilm thereon comprising administering to said patient at least one antibacterial enzyme that is lethal or damaging to the biofilm-forming bacteria in an amount that is effective to at least partially disrupt the biofilm upon contact therewith.
- at least one antibacterial enzyme that is lethal or damaging to the biofilm-forming bacteria in an amount that is effective to at least partially disrupt the biofilm upon contact therewith.
- lysostaphin and lysostaphin analogues have proven to be particularly effective in both preventing biofilm growth and eradicating biofilms that are already established.
- the present invention also includes the prophylactic administration of antibacterial enzymes to prevent biofilm growth in a susceptible patient with tissue damage or a prosthetic device or catheter. Therefore, according to another aspect of the present invention, a method is provided for preventing biofilm growth in a susceptible patient by administering a prophylactically effective amount of an antibacterial enzyme that is lethal or damaging to a biofilm-forming bacteria. For example, lysostaphin and lysostaphin analogues may be administered prophylactically to prevent the growth of staphylococcal biofilms in patients susceptible thereto.
- the present invention also includes the disinfection or sterilization of ex-vivo surfaces not necessarily intended for patient contact.
- the method of the present invention is suitable for disinfecting or sterilizing essentially any surface, including anything implantable into the body such as polymers and metals such as titanium, on which the growth of a biofilm has occurred, or on which the growth is possible but undesirable.
- the inventive method will be primarily used in those circumstances where more rigorous sterilization or disinfection conditions used for biofilm removal or prevention are unsuitable, including situations where residual traces of the harsh chemicals employed would be harmful.
- the method of the present invention is particularly useful for preventing biofilm growth on a surface intended for medical implants in a patient or eliminating contamination before biofilm formation begins.
- a method for disinfecting or sterilizing a surface ex-vivo, with a bacterial biofilm growing thereon, to at least partially remove the biofilm therefrom, in which the surface is contacted with at least one antibacterial enzyme that is lethal or damaging to the biofilm-forming bacteria in an amount that is effective to at least partially disrupt the biofilm upon contact therewith.
- This aspect of the present invention is particularly effective for disinfecting or sterilizing surfaces to prevent or remove the growth of a biofilm.
- the present invention also includes ex-vivo methods for preventing the growth of a biofilm on a susceptible surface. Therefore, according to another aspect of the present invention, a method is provided for disinfecting, protecting or sterilizing a surface ex-vivo to prevent biofilm-forming bacteria from growing thereon, by contacting the surface with a prophylactically effective amount of at least one antibacterial enzyme that is lethal or damaging to a biofilm-forming bacteria.
- the aspect of the present invention is particularly effective for disinfecting, protecting or sterilizing surfaces susceptible to biofilm growth and intended for medical implantation into a patient, such as catheters and prosthetic devices.
- Antibacterial enzymes such as lysostaphin are ionically charged in situ to the extent that they have a tendency to adhere to surfaces, especially polymeric surfaces.
- surfaces treated therewith retain a coating of the enzyme that serves to maintain the disinfected or sterile state in vivo and prevent biofilm formation thereon.
- the present invention therefore further includes prosthetic devices and catheters, implantable in a patient in need thereof and having at least one surface susceptible to the growth of a bacterial biofilm, that are coated with at least one antibacterial enzyme that is lethal to a biofilm-forming bacteria in an amount effective to prevent biofilm formation.
- the coating may be physically retained by the ionic charge of the enzyme.
- the coating may be retained by covalent attachment of the enzyme to the polymeric surface, or it may be blended with a surface polymer by techniques that result in presentation of the enzyme at the polymer surface without substantial release therefrom.
- the present invention thus further includes methods for preparing polymer compositions resistant to the growth of a bacteria biofilm on a surface formed therefrom by blending the polymer with an effective amount of at least one antibacterial enzyme that is lethal to a biofilm- forming bacteria.
- the invention also includes polymer compositions for fabrication of a prosthetic device or catheter in which the polymer is blended with at least one antibacterial enzyme that is lethal to a biofilm-forming bacteria in an amount that is effective to prevent biofilm formation on a surface formed therefrom.
- prosthetic devices include essentially any device intended for insertion into a body, which include, but are not limited to, shunts, stents, scaffolds for tissue construction, gastric feeding tubes, punctual plugs, artificial joints, pacemakers, artificial valves, and the like.
- the definition is intended to include essentially any surface on which there is a risk that the growth of a bacterial biofilm may occur.
- FIG. 1 is a SEM photograph at two levels of magnification (2000X on left and 660X on right) depicting S. aureus biofilm growth on tissue culture inserts that were not treated with lysostaphin;
- FIG.2 is a SEM photograph at 6,600X on left and 660X on right magnification depicting inserts that were treated with lysostaphin; all S. aureus biofilm has been eradicated.
- FIG. 3 depicts a scan of 16 wells of a tissue culture plate, in which S. aureus strain MBT 5040 biofilms were treated with (+) and without (-) 50 ⁇ g/ml lysostaphin, eight wells each;
- FIG. 4 depicts a scan of 30 wells of a tissue culture plate, in which biofilms of various
- S. aureus strains including two lysostaphin-resistant S. aureus (LysoR) variants are treated with (+) and without (-) 50 ⁇ g/ml lysostaphin for comparison purposes.
- LysoR lysostaphin-resistant S. aureus
- FIGS. 5A and 5B are SEM photographs at 4000x magnification depicting biofilms grown in vivo on a jugular vein catheter from a mouse infected with S. aureus prior to treatment with lysostaphin;
- FIGS. 6A and 6B are SEM photographs at 4000x magnification depicting clearance of the biofilms from catheters of S. aureus infected jugular vein catheterized mice (similar to FIG. 5) following treatment with lysostaphin;
- FIGS. 7 is a graph depicting lysostaphin (6.25 eg/ml) causing an immediate and continuous drop in the absorbance of S. aureus biofilms over time while vancomycin (800 eg/ml) and oxacillin (400Dcg/ml) have no effect, on the biofilms.
- FIGS. 8 A and B depicts a scan showing that oxacillin (1.6 cg/ml-400 eg/ml) or vancomycin (3.2 cg/ml-800 eg/ml) have no effect on S. aureus biofilms in PBS (A) or bacterial media (B) after twenty four hours incubation while lysostaphin in PBS cleared biofilm at 0.8 eg/ml (A) and at 12.5 eg/ml in TSB + 0.25% glucose (B).
- oxacillin 1.6 cg/ml-400 eg/ml
- vancomycin 3.2 cg/ml-800 eg/ml
- FIG. 9 depicts a scan showing that lysostaphin disrupts S. epidermidis biofilms, S. aureus SA113 as a control (A), S. epidermidis strain Hay (B), S. epidermidis strain
- ATCC35984 C
- S. epidermidis strain SEl 175 D
- the two enlarged sections reveal the multi-layered biofilm of S. epidermidis strain ATCC35984 (top) and the residual glycocalyx of the same strain with no intact staphylococci following lysostaphin treatment (bottom)
- FIG. 10 depicts the antimicrobial efficacy of catheters as a function of lysostaphin coating time
- FIG. 11 depicts the long-term antimicrobial effectiveness of lysostaphin-coated catheters against S. aureus
- FIG. 12 depicts the antimicrobial efficacy of lysostaphin-coated catheters in the presence of serum proteins.
- biofilm infection is defined as the formation of a biofilm upon damaged tissue or the surface of an indwelling catheter or prosthetic device susceptible thereto. This definition is in distinction to, and excludes, the persistent and chronic infections that are secondary to the formation of a biofilm within a patient. These secondary infections may respond temporarily to conventional treatment and to dosages of the antibacterial enzymes of the present invention that may not be effective to eliminate the biofilm completely.
- Antibacterial enzyme is defined according to the meaning given to this term by those of ordinary skill in the art, and refers to any proteolytic, pore-forming, degradative or inhibitory enzyme that kills or damages a bacterial species or particular strain thereof. The result may be achieved by damaging the cell wall of the bacteria, disrupting cell membranes associated with the cell wall or within the bacteria, inhibiting protein synthesis within the bacteria, disrupting the sugar backbone, or by any other mechanism attributed to a peptide or protein considered by those skilled in the art to be an antibacterial enzyme.
- the enzyme may be a natural, wild-type enzyme, modified by conventional techniques, conjugated to other molecules, recombinantly expressed, or synthetically constructed.
- lysostaphin is important because it is effective in the treatment of staphylococci and biofilms formed therefrom.
- Lysostaphin and “lysostaphin analogues” are defined as including lysostaphin (wild type), any lysostaphin mutant or variant, any recombinant, or related enzyme (analogue) or any synthetic version or fragment of lysostaphin (whether synthetic or otherwise) that retains the proteolytic ability, in vivo and in vitro, to cleave the cross-linked polyglycine bridges in the cell wall peptidoglycan of staphylococci.
- the enzymes may be generated by post-translational processing of the protein (either by enzymes present in a producer strain or by means of enzymes or reagents introduced at any stage of the process) or by mutation of the structural gene. Mutations may include site deletion, insertion, domain removal and replacement mutations.
- the lysostaphin of the present invention may be synthetically constructed, expressed in mammalian cells, insects, bacteria, yeast, reptiles or fungi, recombinantly expressed from a cell culture or higher recombinant species such as a mouse, or otherwise.
- Effective pharmaceutical formulations of the antimicrobial enzymes include aqueous solutions or dry preparations (e.g., lyophilized crystalline or amorphous, with or without additional solutes for osmotic balance) for reconstitution with liquids suitable for parenteral delivery of the active agent.
- Formulations may be in, or be reconstituted in, small volumes of liquids suitable for bolus iv, im or peripheral injection or by addition to a larger volume iv drip solution, or may be in, or reconstituted in, a larger volume to be administered by slow iv infusion.
- Delivery is preferably via intravenous (iv), intramuscular, subcutaneous or intraperitoneal routes or intrathecally or by inhalation, or by direct instillation into an infected site (or, for prevention purposes, the site of tissue damage or an indwelling catheter or prosthetic device susceptible to biofilm formation), so as to permit blood and tissue levels in excess of the minimum inhibitory concentration (MIC) or minimum bactericidal concentrations (MBC) of the active agent to be attained and thus to effect a reduction in bacterial titers, to disrupt a biofilm that has formed, or to inhibit potential biofilm formation.
- iv intravenous
- MIC minimum inhibitory concentration
- MMC minimum bactericidal concentrations
- the pharmaceutical preparations may contain a plurality of the enzymes to produce a broad spectrum activity against biofilm infections.
- the antimicrobial enzymes of the present invention may be administered alone to treat biofilm infections against which their efficacy under such circumstances has been demonstrated.
- Suitable dosages and regimes of the antimicrobial enzyme may vary with the species of the patient, the severity of the biofilm infection, the sensitivity of the infecting organism and, in the case of combination therapy, may depend on the particular antibacterial agent(s) used in combination.
- Candidate patient species are not limited to humans, but include essentially all cold- or warm-blooded vertebrate species suffering from or at risk for a biofilm infection that would benefit from treatment with an antimicrobial enzyme.
- Dosages may range from about 0.1 to about 100 mg/kg/day, and typically from about five to about 50 mg/kg/day, given as single or divided doses. The doses can be given by many means, including by continuous infusion or divided into a plurality of dosages per day. For the prevention of biofilm formation, lower dosages may be effective.
- the antibacterial enzymes can be coadministered, simultaneously or alternating, with other antimicrobial agents so as to more effectively disrupt the biofilm and prevent its reoccurrence.
- lysostaphin and its analogues can be administered in conjunction with antibiotics that interfere with or inhibit cell wall synthesis, such as penicil- lin, nafcillin, oxacillin, and other ⁇ -lactam antibiotics, cephalosporins such as cephalothin, glycopepetides such as vancomycin and other polypeptides.
- lysostaphin and its analogues can be administered in conjunction with antibiotics that inhibit protein synthesis such as aminoglycosides like streptomycin, tetracyclines and streptogramins. Lysostaphin and its analogues may also be administered with monoclonal antibodies; or other antibacterial enzymes such as lysozyme, mutanolysin, and cellozyl muramidase; peptides such as defensins; and lantibiotics such as nisin; or any other lanthione-containing molecules, such as subtilin.
- antibiotics that inhibit protein synthesis such as aminoglycosides like streptomycin, tetracyclines and streptogramins. Lysostaphin and its analogues may also be administered with monoclonal antibodies; or other antibacterial enzymes such as lysozyme, mutanolysin, and cellozyl muramidase; peptides such as defensins; and
- Anti-staphylococcal agents to be coadministered with lysostaphin and lysostaphin analogues may be formulated together therewith as a fixed combination or may be used extempor- aneously in whatever formulations are available and practical and by whatever routes of administration are known to provide adequate levels of these agents at the sites of infection.
- the antibacterial enzymes may also be coated on the surface of a metal or plastic catheter or prosthetic device for implantation having at least one surface susceptible to biofilm formation by immersion of the catheter or device in a solution of the enzyme for a length of time sufficient to form a biofilm-formation inhibiting coating of the enzyme on the susceptible surface. Even the most minimal concentration of enzyme will confer some protection. Typically, a concentration of from about 10 ⁇ g/ml to about 100 mg/ml can be used. With device surfaces, the coatings may also be formed by covalent attachment of the enzyme thereto. With polymeric devices, it may be blended with a surface polymer by techniques that result in sequestration or localization of the enzyme at the surface without substantial release therefrom.
- Lysostaphin and other inhibitory factors may also be directly introduced through catheters and indwelling devices, either before implantation or after implantation, at a rate that is conducive to lysostaphin and the other inhibitory factors coating the surface of the device or catheters to be protective against biofilm formation.
- This rate of introduction may include, filling the catheters with lysostaphin and other inhibitory factors and sealing the catheter to allow time for the lysostaphin and other factors to coat the catheter surface; or pumping lysostaphin and other factors through the catheter, either in an enclosed loop or through the implanted catheter at a rate which allows the lysostaphin and other factors to coat the catheter.
- Example 1 Disruption of S. aureus Biofilms with 100 ⁇ g/ml Lysostaphin in vitro Staphylococcal strains were stored in ⁇ 0.5mL Tryptic Soy Broth (TSB, Difco Bacto) aliquots at -70°C. Prior to each experiment, an aliquot was taken from the freezer, plated on sheep's blood agar (Remel), and incubated at 37°C overnight.
- TTB Tryptic Soy Broth
- TSB Supplemented with 0.25% glucose (Sigma- Aldrich) was inoculated with five isolated staphylococcal colonies. The cultures were incubated at 37°C overnight with shaking.
- the overnight cultures were adjusted to Abs 578 of 0.1 in ⁇ 3ml PBS (BioWhittaker) using a Spectronic 20D+.
- the wells or inserts were washed gently twice with PBS.
- the washed 96 well plate or the 24 inserts were air dried completely at room temperature.
- the 96-well plate was stained with safranin (Remel) to detect biofilms, while the inserts were fixed with a 3X glutaraldehyde buffer (0.7M NaCl, 0.014M KC1, 0.007M KH 2 PO , 0.039M Na 2 HPO 4 ⁇ IM OHC (CH 2 ) 3CH o) in preparation for scanning electron microscopy (SEM).
- SEM scanning electron microscopy
- FIG. 1 is a SEM photograph at two levels of magnification (2,000X and 660X) depicting biofilm growth on the inserts that were not treated with lysostaphin.
- FTG.2 is a SEM photograph at 6,600X and 660X magnification depicting insertsthat were treated with lysostaphin. The ability of lysostaphin to disrupt biofilm-formation after
- Methicillin-resistant S. aureus strain MBT 5040 was grown overnight in TSB plus glucose as in Example 1. Twenty four hours later, a 96 well tissue culture plate containing
- TSB plus glucose was inoculated with a 1:200 dilution of the overnight culture, also as in Example 1.
- the 96 well plate was incubated overnight at 37° C with shaking and transferred to a stationary 37° C incubator for an additional 24 hours. After the second incubation, the wells were washed twice with PBS to remove planktonic cells and incubated for three hours at room temperature with either PBS without lysostaphin (-) or PBS containing 50 ⁇ g/ml lysostaphin (+). Following another three hour incubation, the wells were washed twice with PBS and then fixed in Bouin's solution (Sigma-Aldrich) for five minutes.
- FIG. 3 demonstrates the biofilm disruption resulting from treatment with lysostaphin.
- the untreated wells contained biofilms, while in the treated wells the biofilms were completely disrupted.
- Example 3 Preparation of Biofilm-Formation Resistant Lysostaphin-Coated Catheters
- Six wells were incubated with 300 ⁇ l of either 10 mg/ml, 1 mg/ml or 100 ⁇ g/ml of lysostaphin diluted in PBS. All the samples were done in duplicates. The plate was allowed to incubate overnight at 4°C. The following morning the wells were washed with 1 ml of PBS ten times, using vacuum suction to clean out the wells. S. aureus strain SA5 was diluted in PBS to a percent transmittance of 40. A 1:10,000 dilution of this solution was made, and 300 ⁇ l was added to each well.
- the plates were put in a shaking incubator at 75 rpm for two hours at 37°C. After two hours, 40 ⁇ l from each well was taken out and plated onto a blood agar plate and put in the incubator overnight at 37°C. The colonies on the plates were counted the following morning.
- Lysostaphin was effectively able to kill bacteria (S. aureus SA5) on two different surfaces.
- the polystyrene surfaces were incubated with three different concentrations of lysostaphin, 10 mg/ml, 1 mg/ml and 100 ⁇ g/ml. In all three concentrations of lysostaphin, sufficient enzyme remained associated with the polymer surface to kill the added S. aureus in two hours at 37°C, whereas the uncoated control wells showed significantly higher bacterial counts.
- the interiors of the Angiocath catheters were incubated with 100 ⁇ g/ml of a lysostaphin solution.
- the lysostaphin-coated catheters were able to kill S. aureus in two hours at 37°C, whereas the uncoated control catheters were completely ineffective at killing the bacteria in the catheters. Comparative Example
- S. aureus strains were grown overnight in tryptic soy broth (TSB) plus glucose.
- a 96 well tissue culture plate containing 200 ⁇ l of TSB plus glucose was inoculated with a 1:200 dilution of the overnight culture.
- the 96 well plate was incubated overnight at 37°C with shaking and then transferred to a stationary 37°C incubator for an additional 24 hours.
- the wells were washed twice with PBS to remove planktonic cells and then incubated for three hours at room temperature with either PBS without lysostaphin (-) or PBS containing 50 ⁇ g/ml lysostaphin (+).
- the wells were washed twice with PBS and then fixed in Bouin's Solution for five minutes.
- lysostaphin acts on the actual bacterial cells in the biofilm and disruption of these biofilm- associated cells are sufficient to completely disrupt biofilms.
- Example 4 Lysostaphin disrupts S. aureus biofilms immediately and more effectively than other antibiotics:
- Oxacillin and vancomycin have often been used in antibiotic susceptibility studies of S. aureus biofilms. These antibiotics were compared to lysostaphin to determine whether lysostaphin was more effective in disrupting S. aureus strain ATCC 35556 biofilms than conventional antibiotics. Twenty four-hour biofilms in polystyrene 96-well tissue culture plates were treated with serial dilutions of lysostaphin, oxacillin, and vancomycin (Fig. 7).
- the absorbance of the lysostaphin-treated biofilms dropped from approximately 0.35 at time zero to 0.125 after 3hours of treatment and dropped to near base line (0.04) by 24hrs when treated with a dose of lysostaphin of 6.25 ⁇ g/ml in PBS (Fig. 7).
- the absorbance of the biofilms treated with oxacillin or vancomycin for twenty four hours showed minimal change with the absorbance remaining around 0.325, despite the fact that the biofilms were treated with as much as 400 ⁇ g/ml of oxacillin or 800 ⁇ g/ml of vancomycin in PBS (Fig 7).
- Fig. 8B appeared to clear biofilms from the transwells while 400 ⁇ g/ml of oxacillin or 800 ⁇ g/ml of vancomycin in PBS or TSB had no obvious effect on established biofilms even after 24 hours treatment (Fig. 8 A and B).
- S. epidermidis While lysostaphin demonstrated activity against S. aureus biofilms, it was of interest to explore whether biofilms of S. epidermidis, known to be less sensitive to lysostaphin, were also sensitive to the biofilm disrupting effect of lysostaphin.
- Example 6 Treatment of Established Infection in Mice
- Jugular vein catheterized mice (Charles River Labs) were used.
- the mice were challenged through the tail vein with S. aureus (10 3 -10 4 CFU, a much lower dose than the 5 x 10° CFU or greater typically necessary to establish an infection in mice not catheterized).
- Treatment began four days post challenge when infection was established.
- Lysostaphin was administered through the indwelling catheter in a volume of 200 ⁇ PBS (in the case of methicillin resistant S. aureus, nafcillin was added to the treatment).
- MRSA Methicillin-Resistant S. aureus TABLE 6
- mice To get clearance of an established catheter infection in mice required 20mg kg lysostaphin for methicillin sensitive S. aureus and 15mg/kg + 50mg kg nafcillin for methicillin-resistant S. aureus, t.i.d. for 4 days (Note: lysostaphin and nafcillin are known to have a synergistic killing affect on S. aureus).
- Lower doses of lysostaphin or different dosing regimens e.g., one dose of 40 mg/kg followed by 5 mg/kg there after, or 3 doses of 15 mg/kg the first day followed by 5 mg/kg thereafter) did not result in complete clearance of the S. aureus infection. Treating methicillin-resistant S.
- Jugular vein catheterized mice were pretreated with one or two doses of lysostaphin via catheter prior to being challenged with S. aureus as in Example 4.
- the mice received either one dose of lysostaphin (40mg/kg) 24 hours pre-challenge or two doses of lysostaphin (40mg/kg) 24 hours and 2 hours pre-challenge. Lysostaphin solutions were left in the catheters during challenge.
- Control mice received standard Phosphate Buffered Saline (PBS). The mice were sacrificed four days post-challenge.
- PBS Phosphate Buffered Saline
- mice Two of three control mice had infected catheters, livers and hearts. All eight treated mice were S. aureus free.
- lysostaphin can clear S. aureus biofilms from infected catheters in a mouse model of catheter infection.
- a minimum dose of 40 mg/kg administered three times a day for four days was necessary to clear catheters in mice.
- the above examples further demonstrate that a single dose of 40mg/kg lysostaphin pre- instilled in catheters in mice will protect the catheters from formation of S. aureus biofilms even when excess lysostaphin is rinsed out of the catheters.
- doses of lysostaphin necessary to clear or protect mice from biofilm infections may be different than those needed to treat humans and other animals.
- Example 3 depicting lysostaphin binding to catheters and maintaining its staphylocidal activity and suggest that the pretreatment of catheters may be more practical than using lysostaphin as a therapy for catheter infections.
- Polystyrene 24 well tissue culture plates were purchased from Costar (Acton, MA).
- the Angiocath catheters and Tryptic Soy Broth were purchased from Becton Dickinson (Sparks, MD).
- Phosphate buffered saline, pH 7.2, was purchased from Gibco Life Technologies (Rockville, MD).
- Blood agar plates were purchased from Remel (Lenexa, KS).
- Lysostaphin (Ambicin L) was obtained from AMBI, Inc. Bacterial Strains Staphylococcus aureus capsule type 5 (SA5) and 8 (clinical isolates); Methicillin-resistant Staphylococcus aureus MBT5040 (clinical isolate from WRAMC), Staphylococcus epidermidis SE 380 (clinical isolate), 1175 (clinical isolate), ATCC 35984 (purchased from ATCC) were used in the various assays.
- SA5 Bacterial Strains Staphylococcus aureus capsule type 5 (SA5) and 8 (clinical isolates); Methicillin-resistant Staphylococcus aureus MBT5040 (clinical isolate from WRAMC), Staphylococcus epidermidis SE 380 (clinical isolate), 1175 (clinical isolate), ATCC 35984 (purchased from ATCC) were used in the various assays.
- lysostaphin coated catheters were incubated with 100 ⁇ l PBS for 2 hours at 37°C. The PBS was then transferred into an Eppendorf tube and 10 5 CFU of SA5 was added to the effluent and incubated for 1 hour at 37°C. 40 ⁇ l from the samples were streaked onto blood agar plates and incubated overnight at 37°C. Alternatively, lysostaphin coated catheters were incubated with PBS overnight at 37°C.
- the catheters were inoculated with ⁇ 5 x 10 4 CFU/ml SA5 for 2 hours at 37°C.
- the effluent was then streaked onto blood agar plates and incubated at 37°C overnight.
- the wells were coated with 10, 1 and 0.1 mg/ml lysostaphin for 60 minutes.
- the wells were then washed, and 300 ⁇ l of PBS was added to the wells for 2 hours and then removed. 300 ⁇ l of a 5 x 10 4 CFU/ml solution of SA5 was added to the PBS wash and allowed to incubate for one hour at 37°C.
- Lysostaphin coated catheters were placed in 2 ml of a 0.1 mg/ml solution of lysostaphin for 2 hours with shaking at 37°C to coat the outside of the catheter. They were then washed and placed in a 5 x 10 4 CFU/ml solution of SA5 and incubated for 3 hours at 37°C. 40 ⁇ l of the bacterial solution was streaked on to blood agar plates and incubated at 37°C overnight. The catheters were incubated in 2 ml TSB overnight at 37°C and examined for growth.
- Untreated catheters were washed with 50 ml PBS and then inoculated with 120 ⁇ l of a 5 xlO 6 CFU/ml solution of bacteria and incubated for 2 or 24 hours. The catheter effluent was then streaked onto blood agar plates and placed at 37°C overnight. The catheters were washed with 50 ml PBS and the last ml of wash was collected, and 100 ⁇ l was streaked onto blood agar plates and incubated at 37°C overnight. The catheters were then incubated in 1 ml TSB at 37°C overnight and observed for growth.
- Lysostaphin activity in presence of serum proteins were coated with 0.1 mg/ml for 60 minutes at room temperature. Catheters were then washed and incubated with human serum or TSB for 24 hours at 37°C. Catheters were washed and then inoculated with
- the immobilized lysostaphin was able to effectively clear the bacteria from the polystyrene and catheter surfaces.
- 610 CFU's were recovered from the control wells whereas only 3 CFU's remained in the lysostaphin coated wells, a 99.5% reduction in bacterial counts.
- the killing was not concentration dependent in these ranges, as all three concentrations were extremely active against the bacteria.
- the lysostaphin-coated catheters were completely cleared of bacteria as compared to control catheters from which 493 CFU's were recovered.
- catheters were coated for 5, 10, or 15 minutes with 0.1 mg/ml lysostaphin and examined for their S. aureus killing potency. As shown in FIG. 10, catheters had high levels of killing activity even after just 5 minutes of coating with lysostaphin, but there was a trend for increased efficacy as the coating time was lengthened. Bacterial counts were reduced by 98.7% after coating for 5 minutes, 99.4% after 10 minutes, and completely cleared after just
- AngioCath 0.1 mg/ml 0
- FIG. 11 The effect of continuous leaching of lysostaphin on the killing activity of coated catheters is shown in FIG. 11.
- Catheters were incubated with PBS for up to 96 hours, with PBS being refreshed every 24 hours. The catheters were then challenged with bacteria to determine if they maintained their S. aureus killing activity.
- FIG. 11 after a two-hour incubation with PBS, there was a 2.8 log reduction in the bacteria recovered from the lysostaphin-coated catheters as compared to the uncoated catheters.
- At 24 hours there was a 1.8 log reduction in bacterial counts, a 1.5 log reduction at 48 hours, a .7 log reduction at 72 hours, and after 96 hours there was a .3 log reduction in bacterial counts.
- Table 15 depicts the susceptibility of several S. aureus and S. epidermidis strains tested in the in vitro catheter model, including an MRSA strain and an archetypical biofilm producing S. epidermidis strain.
- the number of bacteria in the uncoated catheter effluent were too numerous to count, however, the last ml of the wash was collected and streaked onto a blood agar plate.
- the amount of bacteria in the wash was proportional to the incubation time, with more bacteria adhering at twenty fours. On average, 1000 CFU's were recovered from the 24-hour washes, whereas about 30 CFU's were recovered from the 2-hour washes.
- the number of bacteria in the wash is likely to be indicative of the level of adherence of the bacteria in the catheter.
- the uncoated catheters were then cultured and examined for bacterial growth. An overnight incubation in media showed that the catheters were well colonized and the bacteria grew in the media.
- the 0.1 mg/ml lysostaphin coated catheters incubated with human serum showed a 99% reduction in bacterial counts, whereas the 10 and 1 mg/ml lysostaphin coated catheters incubated with human serum completely cleared the bacteria.
- Lysostaphin coated surfaces may become an important new therapy in the prevention of both catheter and implant related infections.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Zoology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Pharmacology & Pharmacy (AREA)
- Biotechnology (AREA)
- Virology (AREA)
- Environmental Sciences (AREA)
- Wood Science & Technology (AREA)
- Dentistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Immunology (AREA)
- Plant Pathology (AREA)
- Dermatology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Agronomy & Crop Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Pest Control & Pesticides (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Materials For Medical Uses (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Prostheses (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003579694A JP2006507850A (en) | 2002-03-26 | 2003-03-26 | Enzymatic destruction of bacterial biofilms |
EP03736447A EP1494614A4 (en) | 2002-03-26 | 2003-03-26 | Enzyme disruption of bacterial biofilms |
AU2003237789A AU2003237789A1 (en) | 2002-03-26 | 2003-03-26 | Enzyme disruption of bacterial biofilms |
BR0308285-7A BR0308285A (en) | 2002-03-26 | 2003-03-26 | Bacterial biofilm disruption by enzymes |
CA002476288A CA2476288A1 (en) | 2002-03-26 | 2003-03-26 | Enzyme disruption of bacterial biofilms |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US36781902P | 2002-03-26 | 2002-03-26 | |
US60/367,819 | 2002-03-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003082148A1 true WO2003082148A1 (en) | 2003-10-09 |
Family
ID=28675404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2003/009354 WO2003082148A1 (en) | 2002-03-26 | 2003-03-26 | Enzyme disruption of bacterial biofilms |
Country Status (8)
Country | Link |
---|---|
US (1) | US7572439B2 (en) |
EP (1) | EP1494614A4 (en) |
JP (1) | JP2006507850A (en) |
CN (1) | CN1642496A (en) |
AU (1) | AU2003237789A1 (en) |
BR (1) | BR0308285A (en) |
CA (1) | CA2476288A1 (en) |
WO (1) | WO2003082148A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110135703A1 (en) * | 2009-12-08 | 2011-06-09 | Shipp John I | Antimicrobial Coating for Surgical Implants and Method of Use |
EP2790514A1 (en) * | 2011-12-14 | 2014-10-22 | Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. | Process for degrading a biofilm on surfaces of objects |
WO2015175774A1 (en) | 2014-05-14 | 2015-11-19 | Trustees Of Dartmouth College | Deimmunized lysostaphin and methods of use |
WO2020056209A1 (en) * | 2018-09-14 | 2020-03-19 | Neomed, Inc | Systems and methods for biofilm inoculation |
US11078516B2 (en) | 2008-02-08 | 2021-08-03 | Prothera, Inc. | Inhibition and treatment of gastrointestinal biofilms |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2003241279A1 (en) * | 2002-03-26 | 2003-10-13 | Biosynexus Incorporated | Antimicrobial polymer conjugates |
US7488757B2 (en) * | 2003-03-24 | 2009-02-10 | Becton, Dickinson And Company | Invisible antimicrobial glove and hand antiseptic |
US20090191254A1 (en) * | 2004-12-06 | 2009-07-30 | The Govt. Of The U.S.A., Centers For Disease Control And Prevention | Inhibition of biofilm formation using bacteriophage |
CA2495138C (en) * | 2005-01-20 | 2012-10-23 | Alison Jane Basile | Multiplexed analysis for determining a serodiagnosis of viral infection |
US20070140990A1 (en) * | 2005-12-21 | 2007-06-21 | Nataly Fetissova | Oral Compositions Comprising Propolis |
US8512294B2 (en) * | 2006-07-28 | 2013-08-20 | Becton, Dickinson And Company | Vascular access device antimicrobial materials and solutions |
US8262645B2 (en) * | 2007-11-21 | 2012-09-11 | Actuated Medical, Inc. | Devices for clearing blockages in in-situ artificial lumens |
US20110044968A1 (en) * | 2008-03-10 | 2011-02-24 | Pharmal N Corporation | Compositions for treatment with metallopeptidases, methods of making and using the same |
US8821455B2 (en) * | 2009-07-09 | 2014-09-02 | Becton, Dickinson And Company | Antimicrobial coating for dermally invasive devices |
US20110065798A1 (en) * | 2009-09-17 | 2011-03-17 | Becton, Dickinson And Company | Anti-infective lubricant for medical devices and methods for preparing the same |
US20110135704A1 (en) * | 2009-12-08 | 2011-06-09 | Shipp John I | Infection Control for Surgical and Trauma Patients |
EP2680866A1 (en) | 2011-03-01 | 2014-01-08 | Quorum Innovations, LLC | Materials and methods for treating conditions associated with pathogenic biofilm |
US9750928B2 (en) | 2013-02-13 | 2017-09-05 | Becton, Dickinson And Company | Blood control IV catheter with stationary septum activator |
US9695323B2 (en) | 2013-02-13 | 2017-07-04 | Becton, Dickinson And Company | UV curable solventless antimicrobial compositions |
US9750927B2 (en) | 2013-03-11 | 2017-09-05 | Becton, Dickinson And Company | Blood control catheter with antimicrobial needle lube |
US9327095B2 (en) | 2013-03-11 | 2016-05-03 | Becton, Dickinson And Company | Blood control catheter with antimicrobial needle lube |
EP2996746B1 (en) | 2013-05-13 | 2020-09-30 | Ouyang, Yannan | Flushable catheter affixed to a wash line activated by a microfluidic pressure switch |
CA2934670A1 (en) * | 2013-12-28 | 2015-07-02 | StaphRx, LLC | Ultra-low dose lysostaphin for treating mrsa |
US9789279B2 (en) | 2014-04-23 | 2017-10-17 | Becton, Dickinson And Company | Antimicrobial obturator for use with vascular access devices |
US10376686B2 (en) | 2014-04-23 | 2019-08-13 | Becton, Dickinson And Company | Antimicrobial caps for medical connectors |
US9675793B2 (en) | 2014-04-23 | 2017-06-13 | Becton, Dickinson And Company | Catheter tubing with extraluminal antimicrobial coating |
US10232088B2 (en) | 2014-07-08 | 2019-03-19 | Becton, Dickinson And Company | Antimicrobial coating forming kink resistant feature on a vascular access device |
US10493244B2 (en) | 2015-10-28 | 2019-12-03 | Becton, Dickinson And Company | Extension tubing strain relief |
US20210112816A1 (en) * | 2017-04-26 | 2021-04-22 | Phagelux (Canada) Inc. | Plasma immobilization of bacteriophages and applications thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5820607A (en) * | 1995-06-05 | 1998-10-13 | Board Of Regents, University Of Texas Systems | Multipurpose anti-microbial silastic sheath system for the prevention of device-related infections |
US6028051A (en) * | 1997-07-23 | 2000-02-22 | Ambi Inc. | Method for the treatment of staphylococcal disease |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4179337A (en) | 1973-07-20 | 1979-12-18 | Davis Frank F | Non-immunogenic polypeptides |
US4931390A (en) | 1986-04-16 | 1990-06-05 | Public Health Research Institute Of The City Of New York, Inc. | Expression of the cloned lysostaphin gene |
US5858962A (en) | 1987-05-11 | 1999-01-12 | Ambi Inc. | Composition for treating mastitis and other staphylococcal infections |
US4847325A (en) | 1988-01-20 | 1989-07-11 | Cetus Corporation | Conjugation of polymer to colony stimulating factor-1 |
US4980163A (en) | 1989-03-01 | 1990-12-25 | Public Health Research Institute Of The City Of New York | Novel bacteriocin compositions for use as enhanced broad range bactericides and methods of preventing and treating microbial infection |
EP0388115A1 (en) * | 1989-03-13 | 1990-09-19 | Nalco Chemical Company | Controlling industrial slime |
JPH02299663A (en) * | 1989-05-15 | 1990-12-11 | Unitika Ltd | Anti-infectious catheter |
US5234903A (en) | 1989-11-22 | 1993-08-10 | Enzon, Inc. | Chemically modified hemoglobin as an effective, stable non-immunogenic red blood cell substitute |
US5219564A (en) | 1990-07-06 | 1993-06-15 | Enzon, Inc. | Poly(alkylene oxide) amino acid copolymers and drug carriers and charged copolymers based thereon |
EP1001804B1 (en) * | 1997-07-23 | 2006-02-01 | AMBI Inc. | Pharmaceutical compositions containing lysostaphin alone or in combination with an antibiotic for the treatment of staphylococcal infections |
US20020037260A1 (en) * | 1997-10-16 | 2002-03-28 | Budny John A. | Compositions for treating biofilm |
US6315996B1 (en) | 1999-04-09 | 2001-11-13 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Topical lysostaphin therapy for staphylococcus ocular infections |
EP1198565A1 (en) | 1999-07-07 | 2002-04-24 | Maxygen Aps | A method for preparing modified polypeptides |
US7151139B2 (en) * | 2001-04-23 | 2006-12-19 | Massachusetts Institute Of Technology | Antimicrobial polymeric surfaces |
AU2003241279A1 (en) * | 2002-03-26 | 2003-10-13 | Biosynexus Incorporated | Antimicrobial polymer conjugates |
US7427408B2 (en) * | 2002-06-06 | 2008-09-23 | The Regents Of The University Of California | Quorum sensing and biofilm formation |
-
2003
- 2003-03-26 JP JP2003579694A patent/JP2006507850A/en active Pending
- 2003-03-26 US US10/401,342 patent/US7572439B2/en not_active Expired - Fee Related
- 2003-03-26 AU AU2003237789A patent/AU2003237789A1/en not_active Abandoned
- 2003-03-26 CA CA002476288A patent/CA2476288A1/en not_active Abandoned
- 2003-03-26 BR BR0308285-7A patent/BR0308285A/en not_active IP Right Cessation
- 2003-03-26 CN CNA038071274A patent/CN1642496A/en active Pending
- 2003-03-26 EP EP03736447A patent/EP1494614A4/en not_active Withdrawn
- 2003-03-26 WO PCT/US2003/009354 patent/WO2003082148A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5820607A (en) * | 1995-06-05 | 1998-10-13 | Board Of Regents, University Of Texas Systems | Multipurpose anti-microbial silastic sheath system for the prevention of device-related infections |
US6028051A (en) * | 1997-07-23 | 2000-02-22 | Ambi Inc. | Method for the treatment of staphylococcal disease |
Non-Patent Citations (1)
Title |
---|
See also references of EP1494614A4 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11078516B2 (en) | 2008-02-08 | 2021-08-03 | Prothera, Inc. | Inhibition and treatment of gastrointestinal biofilms |
US20110135703A1 (en) * | 2009-12-08 | 2011-06-09 | Shipp John I | Antimicrobial Coating for Surgical Implants and Method of Use |
EP2790514A1 (en) * | 2011-12-14 | 2014-10-22 | Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. | Process for degrading a biofilm on surfaces of objects |
WO2015175774A1 (en) | 2014-05-14 | 2015-11-19 | Trustees Of Dartmouth College | Deimmunized lysostaphin and methods of use |
US10358636B2 (en) | 2014-05-14 | 2019-07-23 | Stealth Biologics, Llc | Deimmunized lysostaphin and methods of use |
US11091749B2 (en) | 2014-05-14 | 2021-08-17 | Trustees Of Dartmouth College | Deimmunized lysostaphin and methods of use |
US12104186B2 (en) | 2014-05-14 | 2024-10-01 | Insmed Incorporated | Deimmunized lysostaphin and methods of use |
WO2020056209A1 (en) * | 2018-09-14 | 2020-03-19 | Neomed, Inc | Systems and methods for biofilm inoculation |
CN112955108A (en) * | 2018-09-14 | 2021-06-11 | 尼莫德公司 | Systems and methods for biofilm inoculation |
US11524098B2 (en) | 2018-09-14 | 2022-12-13 | Avent, Inc. | Systems and methods for biofilm inoculation |
Also Published As
Publication number | Publication date |
---|---|
US7572439B2 (en) | 2009-08-11 |
CN1642496A (en) | 2005-07-20 |
EP1494614A4 (en) | 2010-08-11 |
BR0308285A (en) | 2005-04-12 |
JP2006507850A (en) | 2006-03-09 |
EP1494614A1 (en) | 2005-01-12 |
CA2476288A1 (en) | 2003-10-09 |
AU2003237789A1 (en) | 2003-10-13 |
US20030215433A1 (en) | 2003-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7572439B2 (en) | Enzyme disruption of bacterial biofilms | |
Von Eiff et al. | Infections associated with medical devices: pathogenesis, management and prophylaxis | |
O'GARA et al. | Staphylococcus epidermidis biofilms: importance and implications | |
CA2297083C (en) | Pharmaceutical compositions containing lysostaphin alone or in combination with an antibiotic for the treatment of staphylococcal infections | |
AU2017324655B2 (en) | New use of triazolo(4,5-d)pyrimidine derivatives for prevention and treatment of bacterial infection | |
US20100221237A1 (en) | Enzyme disruption of bacterial biofilms | |
Cirioni et al. | Pre-treatment of central venous catheters with the cathelicidin BMAP-28 enhances the efficacy of antistaphylococcal agents in the treatment of experimental catheter-related infection | |
EP1871409A2 (en) | Improved method and apparatus for treating bacterial infections in devices | |
CN105963680B (en) | Inhibitor for inhibiting/disrupting biofilm and application thereof | |
Ghiselli et al. | Prophylaxis against Staphylococcus aureus vascular graft infection with mupirocin-soaked, collagen-sealed Dacron | |
US10905691B2 (en) | Use of triazolo(4,5-d)pyrimidine derivatives for prevention and treatment of bacterial infection | |
Zakaria et al. | In vitro and in vivo studies of antibacterial effect of ceftriaxone moxifloxacin combination against methicillin resistant Staphylococcus aureus biofilms formed on biomedical implants | |
Schinabeck et al. | Biofilm-related indwelling medical device infections | |
US20240115773A1 (en) | Fibrinogen as adjuvant for antimicrobial agents and therapy | |
EP1671644A2 (en) | Pharmaceutical compositions containing Lysostaphin alone or in combination with an antibiiotic for the treatment of Staphylococcal infections | |
Rose et al. | In Vitro Activity of Nisin and Evaluation of Guar Gum as A Potential Drug Delivery System against Methicillin-Resistant Staphylococcus aureus Isolated from Diabetic Foot Ulcers | |
NZ523982A (en) | Combinations of dalfopristine / quinupristine with cefpirome useful in bactericidal or bacteriostatic treatment | |
CZ2000144A3 (en) | Pharmaceutical compositions containing lysostafin per se or in combination with antibiotic and intended for treating staphylococcal infections |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2476288 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003579694 Country of ref document: JP Ref document number: 2099/CHENP/2004 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20038071274 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003736447 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2003736447 Country of ref document: EP |