WO2003080726A1 - Epoxy resin molding material for encapsulation and electronic components and devices - Google Patents

Epoxy resin molding material for encapsulation and electronic components and devices Download PDF

Info

Publication number
WO2003080726A1
WO2003080726A1 PCT/JP2002/012974 JP0212974W WO03080726A1 WO 2003080726 A1 WO2003080726 A1 WO 2003080726A1 JP 0212974 W JP0212974 W JP 0212974W WO 03080726 A1 WO03080726 A1 WO 03080726A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
molding material
resin molding
borate
zinc borate
Prior art date
Application number
PCT/JP2002/012974
Other languages
French (fr)
Japanese (ja)
Inventor
Ryouichi Ikezawa
Hidenori Abe
Masanobu Fujii
Tomohiro Hayashi
Tomohiro Miyata
Original Assignee
Hitachi Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co., Ltd. filed Critical Hitachi Chemical Co., Ltd.
Priority to AU2002354468A priority Critical patent/AU2002354468A1/en
Priority to JP2003578465A priority patent/JPWO2003080726A1/en
Publication of WO2003080726A1 publication Critical patent/WO2003080726A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/5399Phosphorus bound to nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • Epoxy resin molding compound for sealing and electronic component device This application is a Japanese patent application filed earlier by the same applicant, that is, Japanese Patent Application No. 2002-81347 (filing date: March 22, 2002), Japanese Patent Application These are accompanied by priority claims based on Japanese Patent Application No. 2002-81363 (filed on March 22, 2002) and Japanese Patent Application No. 2002-81386 (filed on March 22, 2002). Incorporated here for reference.
  • Technical field is a Japanese patent application filed earlier by the same applicant, that is, Japanese Patent Application No. 2002-81347 (filing date: March 22, 2002), Japanese Patent Application These are accompanied by priority claims based on Japanese Patent Application No. 2002-81363 (filed on March 22, 2002) and Japanese Patent Application No. 2002-81386 (filed on March 22, 2002). Incorporated here for reference. Technical field
  • the present invention relates to a sealing epoxy resin molding material, particularly a halogen-free, non-antimony, flame-retardant sealing epoxy resin molding material required from the viewpoint of environmental friendliness.
  • the present invention relates to a molding material suitable for stopping and an electronic component device provided with an element sealed with the molding material.
  • epoxy resin molding materials have been widely used.
  • epoxy resin balances various properties such as electrical properties, moisture resistance, heat resistance, mechanical properties, and adhesion to insert products.
  • the flame retardancy of these epoxy resin molding materials for sealing is mainly achieved by a combination of a brominated resin such as diglycidyl ether of tetrabromobisphenol A and antimony oxide.
  • JP-A-9-227765 red phosphorus
  • JP-A-9-227765 an ester phosphate compound
  • JP-A-235449 a method using a phosphazene compound
  • JP-A-8-225714 a method using a metal hydroxide
  • JP-A-9-241483 a method using a metal hydroxide and a metal oxide.
  • a method using a combination thereof Japanese Patent Application Laid-Open No.
  • these non-halogen and non-antimony flame retardants have not achieved moldability and reliability equivalent to those of sealing epoxy resin molding materials using both a brominated resin and antimony oxide.
  • the present invention has been made in view of such circumstances, and is a halogen-free and non-antimony epoxy resin material for encapsulation which has good flame retardancy without deteriorating reliability such as moldability, fluidity, moisture resistance, and the like.
  • the purpose of the present invention is to provide an electronic component device having an element sealed by the above.
  • the inventors of the present invention have studied the mechanism of flame retardation by zinc borate in order to solve the above-mentioned problems.
  • zinc borate has an endothermic It is said that the flame retardancy is achieved by the effect and the glass vitrification effect of boric acid.However, when a sufficient amount is used to secure the flame retardancy, the water of crystallization of zinc borate causes the hardening reaction. It has been found that it inhibits and lowers moldability.
  • zinc borate has an endothermic amount of about 600 J / g due to release (and thermal decomposition) of water of crystallization, and about 160 J / g of magnesium hydroxide and water. Low compared to about 180 J / g of aluminum oxide (2001: Issued by N.T.S. Inc., "Fire-retardant technology using non-halogen flame-retardant materials") The contribution of the endothermic effect of the release of water of crystallization to the combustion is small, and the contribution of the vitrification due to the melting of the boron oxide generated after decomposition is large. It has been found that flame retardancy can be achieved by using anhydrous zinc borate containing no water.
  • anhydrous borate obtained by treating anhydrous zinc borate with a predetermined amount of an inorganic or organic substance was used as a flame retardant. It has been found that in addition to the effect, the fluidity in the low shear region can be improved.
  • M represents a metal element
  • m, n, x, and y are each independently a positive number.
  • the amount of the boric acid-based flame retardant is less than that of the epoxy resin molding compound for encapsulation.
  • Y is a divalent organic group having a substituted or unsubstituted aromatic ring
  • R is a hydrogen atom or a substituted or unsubstituted organic group having 1 to 6 carbon atoms, and R is different even if all are the same.
  • M and n each represent an integer of 0 to 3.
  • R 1 , R 2 and R 3 represent a substituted or unsubstituted alkyl group, aryl group, aralkyl group and hydrogen atom having 1 to 10 carbon atoms, all of which may be the same or different. Except when it is an atom.)
  • the epoxy resin is a biphenyl type epoxy resin, a bisphenol F type epoxy tree J3, a stilbene type epoxy resin, a sulfur atom containing epoxy resin,
  • the epoxy resin (A) used in the present invention is not particularly limited as it is generally used for an epoxy resin molding material for encapsulation.
  • examples thereof include a phenol nopolak epoxy resin, an orthocresol nopolak epoxy resin, and a trif.
  • Phenols such as phenols, cresols, xylenols, resorcinols, phenols, such as epoxy resins having an enylmethane skeleton, and phenols such as bisphenol A and pisphenol F and / or ⁇ -naphthol and ⁇ -naphthol
  • Noplac resin obtained by condensation or co-condensation of naphthols such as dihydroxynaphthylene and a compound having an aldehyde group such as formaldehyde, acetoaldehyde, propionaldehyde, benzaldehyde and salicylaldehyde in the presence of an acidic catalyst.
  • Diglycidyl ethers such as bisphenol ⁇ , bisphenol F, bisphenol, alkyl-substituted or unsubstituted biphenol, stilbene-type epoxy resin, hydroquinone-type epoxy resin, polybasic acids such as phthalic acid, dimer acid and epichlor Daricidyl ester type epoxy resin obtained by the reaction of hydrin, glycidylamine type epoxy resin obtained by the reaction of polyamines such as diaminodiphenylmethane, isocyanuric acid and epichlorohydrin, dicyclopentene phenol and phenols Epoxy compound of co-condensation resin, Epoxy resin having naphthylene ring, epoxide of aralkyl-type phenol resin such as phenol-aralkyl resin, naphthol-aralkyl resin, trimethylolpropane-type epoxy resin, terpene Sex epoxy resin, Orefu fin coupling obtained by oxidizing with a peracid
  • biphenyl epoxy resin, bisphenol F epoxy resin, stilbene epoxy resin and sulfur atom-containing epoxy resin are preferable from the viewpoint of reflow resistance, and novolak epoxy resin is preferable from the viewpoint of curability.
  • a dicyclopentene-type epoxy resin is preferred.
  • a naphthalene-type epoxy resin and a triphenylmethyl-type epoxy resin are preferred, and at least one of these epoxy resins is contained. Is preferred.
  • bifunctional epoxy resins which are highly reliable and can be highly filled, are also advantageous in flame retardancy, are more preferable.
  • Examples of the biphenyl type epoxy resin include an epoxy resin represented by the following general formula (III), and examples of the bisphenol F type epoxy resin include an epoxy resin represented by the following general formula (XXXXXIV).
  • Examples of the type epoxy resin include an epoxy resin represented by the following general formula (IV), and examples of the sulfur atom-containing epoxy resin include an epoxy resin represented by the following general formula (V).
  • Ri to R 8 are selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, all of which may be the same or different; n is 0 to Indicates an integer of 3.
  • ⁇ - 8 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, and 6 to 10 carbon atoms Selected from 10 aralkyl groups, all of which may be the same or different, and n is an integer of 0 to 3. Indicates a number.
  • Ri to R8 are selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, all of which may be the same or different; n is 0
  • Ri to R 8 are selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, all of which may be the same or different; n is 0 to
  • biphenyl type epoxy resin represented by the general formula (III) examples include 4,4′-bis (2,3-epoxypropoxy) biphenyl and 4,4′-bis (2,3-epoxy). Propoxy) —3,3 ', 5,5'-tetramethylbiphenyl-based epoxy resin, epichlorohydrin and 4,4'-biphenol or 4,4,-(3,3' , 5,5'-tetramethyl) biphenol and an epoxy resin obtained by the reaction. Above all, 4, 4 'one screw
  • the stilbene-type epoxy resin represented by the general formula (IV) can be obtained by reacting styrene-based phenols, which are raw materials, and epichlorohydrin in the presence of a basic substance.
  • the stilbene phenols, which are the raw materials include For example, 3_t-butyl-4,4'-dihydroxy-3 ', 5,5'_trimethylstilbene, 3-t_butyl-4,4'dihydroxy-3', 5 ', 6-trimethylstilbene, 4,4 '-Dihydroxy-3,3', 5,5, -tetramethylstilbene, 4,4, -dihydroxy-3,3, di-t-butyl-5,5,1-dimethylstilbene, 4,4'- Dihydroxy-3,3, di-t-butyl-6,6'-dimethylstilbene, etc., among which 3-t-butyl-4,4'-dihydroxy-1-3 ', 5,5'-trimethylstilbene, and ⁇ 4,4'-dihydroxy-1,3,3,5,5'
  • Ri to R 8 are a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, and a substituted or unsubstituted carbon group having 1 to 10 carbon atoms.
  • Epoxy resins selected from alkoxy groups of 10 to 10 are preferred, and epoxy resins in which Ri, R 4 , R 5 and R 8 are hydrogen atoms and R 2 , R 3 , R 6 and R 7 are alkyl groups are preferred. More preferred is an epoxy resin in which RR 4 , R 5 and Rs are hydrogen atoms, R 2 and R 7 are methyl groups, and R 3 and R 6 are t-butyl groups.
  • YSLV-12TE manufactured by Toto Kasei Co., Ltd.
  • any of these epoxy resins may be used alone or in combination of two or more.
  • the amount of the epoxy resin is 20 to the total amount of the epoxy resin in order to exhibit its performance. %, More preferably at least 30% by weight, even more preferably at least 50% by weight.
  • Examples of the nopolak type epoxy resin include an epoxy resin represented by the following general formula (VI).
  • R is selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and n represents an integer of 0 to 10.
  • the nopolak-type epoxy resin represented by the general formula (VI) can be easily obtained by reacting nopolak-type phenol resin with epichlorohydrin.
  • R in the general formula (VI) is an alkyl group having 1 to 10 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, an isobutyl group, a methoxy group, an ethoxy group, a propoxy group.
  • n is preferably an integer of 0 to 3.
  • nopolak epoxy resins represented by the general formula (VI) orthocresol nopolak epoxy resins are preferred.
  • a nopolak type epoxy resin When a nopolak type epoxy resin is used, its amount is preferably at least 20% by weight, more preferably at least 30% by weight, based on the total amount of the epoxy resin in order to exhibit its performance.
  • Examples of the dicyclopentadiene type epoxy resin include an epoxy resin represented by the following general formula (VII).
  • Ri and R 2 are each independently selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, n represents an integer of 0 to 10, m Represents an integer of 0 to 6.
  • Ri in the above formula (VII) includes, for example, a hydrogen atom, an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group and a t-butyl group, a vinyl group, an aryl group, a butenyl group, and the like.
  • a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms such as an alkenyl group, a halogenated alkyl group, an amino group-substituted alkyl group, or a mercapto group-substituted alkyl group; Preferred are an alkyl group such as a methyl group and a hydrogen atom, and more preferred are a methyl group and a hydrogen atom.
  • R 2 includes, for example, a hydrogen atom, an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, and a t_butyl group; an alkenyl group such as a vinyl group, an aryl group and a butenyl group; Alkyl group, amino-substituted alkyl group, Examples thereof include a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, such as a mercapto group-substituted alkyl group, with a hydrogen atom being preferred.
  • an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, and a t_butyl group
  • an alkenyl group such as a vinyl group, an aryl group and a butenyl group
  • a dicyclopentadiene-type epoxy resin When a dicyclopentadiene-type epoxy resin is used, its amount is preferably at least 20% by weight, more preferably at least 30% by weight, based on the total amount of the epoxy resin in order to exhibit its performance.
  • Examples of the naphthalene type epoxy resin include an epoxy resin represented by the following general formula (VHI), and examples of the triphenylmethane type epoxy resin include an epoxy resin represented by the following general formula (IX).
  • the naphthalene type epoxy resin represented by the following general formula (VIII) includes a random copolymer containing one structural unit and m structural units at random, an alternating copolymer containing alternately, and a copolymer containing regularly. Examples thereof include block copolymers containing in a united or block form, and any one of these may be used alone, or two or more may be used in combination. Further, the triphenylmethane-type epoxy resin represented by the following general formula (IX) is not particularly limited, but a salicylaldehyde-type epoxy resin is preferable.
  • Ri to R 3 are selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 12 carbon atoms, all of which may be the same or different.
  • p is 1 or 0, 1 and m are integers from 0 to 11 respectively, (1 + m) is an integer from 1 to 11 and (1 + p) is an integer from 1 to 12 Is chosen.
  • i is an integer of 0-3, j is an integer of 0-2, and k is an integer of 0-4.
  • R is selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and n represents an integer of 1 to 10).
  • the amount of the epoxy resin is 20% by weight or more based on the total amount of the epoxy resin in order to exhibit its performance. It is preferably at least 30% by weight, more preferably at least 50% by weight.
  • the above biphenyl-type epoxy resin, stilbene-type epoxy resin, sulfur-atom-containing epoxy resin, nopolak-type epoxy resin, dicyclopentadiene-type epoxy resin, naphthylene-type epoxy resin and triphenylmethane-type epoxy resin are: Any one of them may be used alone or two or more of them may be used in combination. However, the compounding amount is preferably 50% by weight or more based on the total amount of epoxy resin, and 60% by weight or more. More preferably, the content is 80% by weight or more.
  • the curing agent (B) used in the present invention is not particularly limited, and is generally used for an epoxy resin molding material for sealing.
  • examples thereof include phenol, cresol, resorcinol, catechol, bisphenol A, and bisphenol.
  • F phenols such as phenylphenol and aminophenol, and / or naphthols such as ⁇ _naphthol, / 3-naphthol and dihydroxynaphthalene and compounds having an aldehyde group such as formaldehyde, benzaldehyde and salicylaldehyde.
  • Nopolak phenolic resin obtained by condensation or cocondensation in the presence of an acidic catalyst phenols and phenols synthesized from phenols and ⁇ ⁇ or naphthols and dimethoxyparaxylene or bis (methoxymethyl) biphenyl, naphthol aralkyl Resin-based aralkyl-type phenolic resins, phenols and / or naphthols and cyclopentadiene, and synthesized by copolymerization from cyclopentadiene, such as diclopen-phenol-type phenol nopolak resin and naphthol-no-polak resin, etc. And terbene-modified phenolic resins. These may be used alone or in combination of two or more.
  • biphenyl-type phenol resins are preferable from the viewpoint of flame retardancy, and aralkyl-type phenol resins are preferable from the viewpoint of reflow resistance and curability.
  • dispersing pen-type pen-type phenol resin is preferable.
  • triphenyl methane-type phenol resin is preferable, and from the viewpoint of curability. Therefore, a nopolak type phenol resin is preferable, and it is preferable to contain at least one of these phenol resins.
  • biphenyl type phenol resin examples include a phenol resin represented by the following general formula (X).
  • All R i ⁇ R 9 in the formula (X) is well be the same or different, a hydrogen atom, a methyl group, Echiru group, propyl group, butyl group, an isopropyl group, carbon number 1 to 1, such as an isobutyl group
  • An alkyl group having 0 to 10 carbon atoms such as an alkoxyl group having 1 to 10 carbon atoms such as a methoxy group, an ethoxy group, a propoxy group, and a butoxy group, a phenyl group, a tolyl group, and a aryl group having 6 to 10 carbon atoms such as a xylyl group; and
  • aralkyl groups having 6 to 10 carbon atoms, such as benzyl group and phenethyl group, and among them, a hydrogen atom and a methyl group are preferable.
  • n shows the integer of 0-10.
  • Examples of the biphenyl type phenolic resin represented by the general formula (X) include compounds in which all of Ri to R 9 are hydrogen atoms. Among them, from the viewpoint of melt viscosity, n is 1 or more. A mixture of the condensate containing 50% by weight or more of the condensate is preferable. As such a compound, MEH-7885 (trade name of Meiwa Kasei Co., Ltd.) is available as a commercial product.
  • its blending amount is preferably at least 30% by weight, more preferably at least 50% by weight, and more preferably at least 50% by weight, in order to exert its performance. % By weight or more is more preferable.
  • aralkyl-type phenolic resin examples include a phenol-aralkyl resin and a naphthol-aralkyl resin.
  • the phenol-aralkyl resin represented by the following general formula (XI) is preferable, and R in the general formula (XI) is a hydrogen atom.
  • the phenol aralkyl resin having an average value of n of 0 to 8 is more preferable.
  • Specific examples include p-xylylene-type phenol-aralkyl resin, m-xylylene Type phenols and aralkyl resins.
  • the compounding amount thereof is preferably at least 30% by weight, more preferably at least 50% by weight, based on the total amount of the curing agent in order to exhibit the performance. No.
  • R is selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and n represents an integer of 0 to 10.
  • dicyclopentene-type phenol resin examples include a phenol resin represented by the following general formula (XII).
  • Ri and R 2 are each independently selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, n represents an integer of 0 to 10, m Is
  • a dicyclopentene phenolic resin When a dicyclopentene phenolic resin is used, its amount is preferably at least 30% by weight, more preferably at least 50% by weight, based on the total amount of the curing agent in order to exhibit its performance.
  • triphenylmethane-type phenolic resins examples include, for example,
  • the triphenylmethane type phenolic resin represented by (XIII) is not particularly limited, and examples thereof include salicylaldehyde type phenolic resin, o-hydroxybenzaldehyde type phenolic resin, m-hydroxybenzaldehyde type phenolic resin and the like. These may be used alone or in combination of two or more. Among them, salicylaldehyde type phenol resins are preferred.
  • a triphenylmethane-type phenol resin represented by the following general formula (XIV) There is no particular limitation, but if necessary, a resin copolymerized with a P-xylylene type phenol-aralkyl resin may be used.
  • R is selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and n represents an integer of 1 to 10;
  • R is selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and n represents an integer of 1 to 10).
  • triphenylmethane-type phenol resin When a triphenylmethane-type phenol resin is used, its blending amount is preferably at least 30% by weight, more preferably at least 50% by weight, based on the total amount of the curing agent in order to exhibit its performance.
  • the nopolak-type phenol resin examples include a phenol nopolak resin, a cresol nopolak resin, and a naphthol nopolak resin. Among them, a phenol nopolak resin is preferable.
  • a nopolak type phenol resin when used, its amount is preferably at least 30% by weight, more preferably at least 50% by weight, based on the total amount of the curing agent in order to exhibit its performance.
  • biphenyl-type phenolic resin, aralkyl-type phenolic resin, dicyclopentene-type phenolic resin, triphenylmethane-type phenolic resin and nopolak-type phenolic resin can be used alone or in combination of two or more. May be used, but the compounding amount is 60 times the total amount of the curing agent. % Or more, more preferably 80% by weight or more.
  • the equivalent ratio of (A) the epoxy resin to (B) the curing agent is, the ratio of the number of hydroxyl groups in the curing agent to the number of epoxy groups in the epoxy resin (the number of hydroxyl groups in the curing agent and the number of epoxy groups in the epoxy resin) is Although there is no particular limitation, it is preferably set to a range of 0.5 to 2, and more preferably 0.6 to 1.3, in order to minimize the amount of each unreacted component. In order to obtain an epoxy resin molding material for sealing excellent in moldability and reflow resistance, it is more preferable to set the ratio in the range of 0.8 to 1.2.
  • (C) boric acid-based flame retardant used in the present invention (C 1) boric anhydride, (C2) zinc borate and (C3) zinc borate anhydride can be used.
  • the (C 1) anhydrous borate used in the present invention acts as a flame retardant, and is not particularly limited as long as the effects of the present invention can be obtained.
  • it is represented by the following formula (I) And metal salts of boric anhydride.
  • M represents a metal element
  • m, n, x, and y are each independently a positive number.
  • Examples of the metal borate anhydride represented by the composition formula (I) include, for example, organic acid salts of boric anhydride such as melamine anhydride borate, ammonium borate anhydride, and complex acid metal salts of anhydrous boric acid such as zinc phosphate.
  • One of these may be used alone, or two or more thereof may be used in combination.
  • boric anhydride in order to improve the properties of the extract when used as a sealing material, boric anhydride
  • the solubility of the salt in water at 25 ° C. is preferably lg or less, more preferably 0.1 g or less, per 100 g of water.
  • the solubility in water is determined by adding 10 g of anhydrous borate to 100 ml of pure water, stirring at 25 ° C for 30 minutes, sucking 10 cc of the supernatant with a pipette, and incubating at 100 ° C for 24 hours. This is the value obtained by weighing the residue and converting it to 10 Oml (100 g) of pure water.
  • a metal borate anhydride in which M in the composition formula (I) is a metal element selected from a group other than an alkali metal and an alkaline earth metal is preferable. If the solubility in water is high, the extraction liquid characteristics of the sealing material are deteriorated. In particular, since the electrical conductivity of the extract increases, there is a concern that the reliability of the semiconductor device in a bias test or the like may decrease.
  • the classification of metal elements is based on the long-period periodic table with the typical element being subgroup A and the transition element being subgroup B. (Source: Chemical Dictionary 4 by Kyoritsu Shuppan Co., Ltd., February 15, 1987) 30th printing).
  • the “metal element selected from other than the alkali metal and the alkaline earth metal” representing M in the composition formula (I) refers to the long-period type periodic table (Source: Kyoritsu Shuppan Co., Ltd.) Published “Chemical Encyclopedia 4”, a reduced edition of February 15, 1987, No. 30), a transition metal element belonging to Group ⁇ to Group IB and a typical metal element belonging to Group ⁇ to Group VIA.
  • a transition metal element belonging to Group ⁇ to Group IB and a typical metal element belonging to Group ⁇ to Group VIA.
  • elements other than the typical metal elements that is, alkali metals and alkaline earth metals belonging to. Specifically, it refers to a metal element having an atomic number of 13, 21 to 32, 39 to 51, 57 to 84, and 89 to 102.
  • a metal borate anhydride in which M in the composition formula (I) is a metal element selected from Co, Zn, A 1 and Bi is preferable.
  • Anhydrous zinc borate represented by (XXII), etc. anhydrous aluminum borate represented by the following composition formulas (XXIII), (XXIV), (XXV), etc., and anhydrous boron borate represented by the following composition formula (XXVI), etc.
  • Bismuth acid and the like.
  • anhydrous zinc borate represented by the following composition formula (II) is preferable from the viewpoints of economy, supplyability and boric acid content.
  • anhydrous bismuth borate represented by the following composition formula (XXVI) is preferable.
  • Commercial products include FB-500 (trade name, manufactured by BORAX) as anhydrous zinc borate represented by the following composition formula (II), and Shikoku Chemicals Corporation as aluminum borate anhydride, represented by the following composition formula (II): The name alpolite PF 08 T is available respectively.
  • the method for producing the anhydrous borate is not particularly limited, but a method in which boric acid is directly produced by reacting a carbonate or an oxide of a partner salt, or a method in which these materials are heated (fired). A method in which the hydrated borate is heated (calcined) to remove water of crystallization, and the like.
  • the (C 2) zinc borate used in the present invention acts as a flame retardant, and is not particularly limited as long as the effects of the present invention can be obtained.
  • zinc borate represented by the following composition formula (XXVII) And the like.
  • zinc borate represented by the composition formula (XIII) include the following composition formulas (XXVIII), (XXIX), (XXX), (XXXI), (XXXII), and one of these. May be used alone or in combination of two or more.
  • zinc borate represented by the following composition formula (XXVIII) is preferable from the viewpoint of flame retardancy.
  • ZB trade name of US BORAX
  • FRF-30 trade name of Mizusawa Chemical Industry Co., Ltd.
  • As the zinc borate represented by (XXXII), FB_415 (trade name, manufactured by US BORAX) is commercially available.
  • anhydrous zinc borate used in the present invention acts as a flame retardant, and is not particularly limited as long as the effects of the present invention can be obtained.
  • anhydrous boron represented by the following composition formula (XIX) Zinc acid and the like.
  • anhydrous zinc borate represented by the composition formula (XXXIII) include the following composition formulas (II), (XIX), (XX), (XXI), and (XXII). They may be used alone or in combination of two or more. It may be used in combination with zinc borate. Of these, anhydrous zinc borate represented by the following composition formula (II) is preferable from the viewpoint of flame retardancy.
  • FB-500 (trade name, manufactured by US BORA) is commercially available.
  • the method for producing anhydrous zinc borate is not particularly limited, but a method in which boric acid is directly produced by reacting a carbonate or oxide of a partner salt, or a method in which hydrated borate is heated to form water of crystallization. A removal method and the like can be mentioned.
  • (C) Boric acid-based flame retardants have improved flame retardancy or fluidity due to improved dispersibility.
  • D) At least one of an inorganic substance and an organic substance may be treated for the purpose of improving the quality. In that case, it is preferable that (D) the surface treatment is performed with at least one of an inorganic substance and an organic substance.
  • the boric acid-based flame retardant is used for the treatment.
  • the inorganic or organic substance is not particularly limited. For example, fused silica, crystalline silica, alumina, zircon, calcium silicate, calcium carbonate, potassium titanate, Silicon carbide, silicon nitride, aluminum nitride, boron nitride, beryllia, zirconia, zircon, fosterite, steatite, spinel, mullite, titania, zinc oxide, zinc stannate, iron oxide, molybdenum oxide, zinc molybdate, dicyclopentane
  • metal elements such as genenyl iron, composite metal hydroxides, metal hydroxides such as aluminum hydroxide, magnesium hydroxide, and zirconium hydroxide, talcites at the mouth, magnesium, aluminum, titanium, and zirconium Hydrogenation of elements selected from iron and bismuth Products, vinyltrichlorosilane, vinyltriethoxy
  • (D) As a method of treating at least one of an inorganic substance and an organic substance, for example, a method of treating a resin such as an acrylic resin, a phenol resin, an epoxy resin, and a melamine resin by a suspension emulsion polymerization method or a mechanochemical method; Examples thereof include a method of treating the surface with a silane-based, titanate-based, or aluminum-based coupling agent such as stearic acid, and a method of treating the surface with an inorganic substance such as aluminum hydroxide, magnesium hydroxide, or silica by a mechanochemical method. From the viewpoints of improving dispersibility and thermal stability, treatment with a metal hydroxide is preferable, and treatment with magnesium hydroxide is more preferable.
  • a resin such as an acrylic resin, a phenol resin, an epoxy resin, and a melamine resin by a suspension emulsion polymerization method or a mechanochemical method
  • a resin such as an acrylic resin, a
  • the processing may be performed alone or a plurality of processings may be performed.
  • the processing may be performed alone or a plurality of processings may be performed.
  • the effect of zinc borate or anhydrous zinc borate due to boric acid is reduced, the wettability with the resin is improved, the dispersibility of zinc borate or anhydrous zinc borate is improved, and the flame retardancy is improved. And the fluidity in the low shear region are improved.
  • the processing amount is increased, Not only does zinc borate or treated anhydrous zinc borate easily aggregate, but also the flame retardancy and curability decrease.
  • (C 1) anhydrous borate is used as the flame retardant
  • (D) The amount of inorganic or organic substances to be treated is ((CI) / ((C 1) + (D))) by weight. Is preferably less than 0.02, and more preferably less than 0.01. For the same reason, (C2) zinc borate or
  • (D) The amount of inorganic or organic material to be treated is ((C2) Z ((C2) + (D) :)) or ((C3) Z ((C 3) +
  • the average particle size of (C 1) anhydrous borate, (C 2) zinc borate or (C 3) zinc borate as the (C) boric acid flame retardant is not particularly limited. In light of the above, 0.01 to 50 im is preferable, 0.1 to 30 / m is more preferable, and 0.5 to 20 im is more preferable. Anhydroborate having an average particle size of less than 0.01 zm is difficult to produce, and if it exceeds 50 m, the flame retardant effect may be insufficient or the gate may be clogged during molding.
  • the amount of (C 1) anhydrous borate, (C 2) zinc borate or (C 3) zinc borate as the (C) boric acid flame retardant is not particularly limited. It is preferably 0.01 to 20% by weight, more preferably 0.05 to 5% by weight, and still more preferably 0.1 to 0.5% by weight, based on the resin molding material. If it is less than 0.01% by weight, the flame retardancy tends to be insufficient, and if it exceeds 20% by weight, the moldability tends to decrease.
  • the blending amount of (C2) zinc borate or (C 3) anhydrous zinc borate is preferably less than 0.5% by weight, more preferably less than 0.3% by weight, based on the epoxy resin molding material for sealing. . It has been found that even at a compounding amount of less than 0.5% by weight, the effect of vitrifying the charcoal is exhibited and flame retardancy can be achieved. Unless (C2) zinc borate or (C3) anhydrous zinc borate is blended, the flame retardancy tends to be insufficient. At 0.5% by weight or more, (C2) zinc borate However, the curability and fluidity in the low shear region tend to decrease, and (C 3) In the case of anhydrous zinc borate, the fluidity in the low shear region tends to decrease.
  • the compounding amount may be 0.5% by weight or more, but especially when untreated. Is preferably less than 0.5% by weight.
  • the epoxy resin molding material for sealing of the present invention uses (C) an anhydrous borate as the (C) boric acid-based flame retardant, it is added to the (C 1) anhydrous borate.
  • Conventionally known non-halogen and non-antimony flame retardants can be blended as required.
  • the epoxy resin molding material for encapsulation according to the present invention comprises: (C) zinc borate or (C 3) anhydrous zinc borate as a boric acid-based flame retardant; ) In addition to zinc borate or (C 3) anhydrous zinc borate, conventionally known non-halogen and non-antimony flame retardants can be blended as required.
  • coated or uncoated red phosphorus an ester compound having a phosphorus atom, triphenylphosphine oxide, 2- (diphenylphosphinyl) hydroquinone, 2,2-[(2- (diphenylphosphinyl) ) 1,1,4-phenylene) bis (oxymethylene)] bis-oxysilane, phosphine compounds such as tri-n-octylphosphine oxide, phosphorus and nitrogen-containing compounds such as cyclophosphazene, etc.
  • Phosphorus-based flame retardants melamine, melamine derivatives, melamine-modified phenolic resins, compounds having a triazine ring, nitrogen-containing compounds such as cyanuric acid derivatives, isocyanuric acid derivatives, zinc oxide, zinc stannate, iron oxide, molybdenum oxide, molybdic acid
  • nitrogen-containing compounds such as cyanuric acid derivatives, isocyanuric acid derivatives, zinc oxide, zinc stannate, iron oxide, molybdenum oxide, molybdic acid
  • metal elements such as zinc and dicyclopentene genenyl iron
  • metal hydroxides such as aluminum hydroxide, magnesium hydroxide, and zirconium hydroxide
  • those metal hydroxides as resins, coupling agents, stearic acid And the like, a composite metal hydroxide, and the like.
  • One of these may be used alone, or two or more may be used in combination.
  • (E) a phosphorus-based flame retardant is highly effective in combination, and (C 1) anhydrous borate, (C 2) zinc borate or When used in combination with a (C) boric acid-based flame retardant such as (C 3) anhydrous zinc borate, the amount required for flame retardancy can be reduced.
  • Examples of the composite metal hydroxide include a compound represented by the following composition formula (XXXIV).
  • Mi and M 2 indicate different metal elements, and a, b, c, d, m, n, and 1 indicate positive numbers.
  • Mi and M 2 in the above composition formula (XXXIV) are not particularly limited as long as they are different metal elements, but from the viewpoint of flame retardancy, Mi and M 2 are different from each other so that Element, selected from group IV alkaline earth metal elements, group IVB, IIB, VHI, IB, group ⁇ and IVA group metal elements, M 2 selected from ⁇ ⁇ : QB group transition metal elements
  • Mi is selected from magnesium, calcium, aluminum, tin, titanium, iron, cobalt, nickel, copper and zinc, and more preferably, M 2 is selected from iron, cobalt, nickel, copper and zinc.
  • magnesium Mi of preferably M 2 is zinc or nickel
  • the molar ratio of m and n is not particularly limited, it is preferable that mZn is from 99Z1 to 50/50.
  • the metal elements are classified according to the long-period type periodic table with the typical element being the A sub-group and the transition element being the B sub-group. (Source: Chemical Dictionary 4 j 1987 Two This was done on the 15th of March, the 30th edition.
  • the shape of the composite metal hydroxide is not particularly limited, but from the viewpoint of fluidity, a polyhedral shape having an appropriate thickness is preferable to a flat shape. In the composite metal hydroxide, polyhedral crystals are easily obtained as compared with the metal hydroxide.
  • the compounding amount of the composite metal hydroxide is not particularly limited, but is preferably 0.05 to 20% by weight, more preferably 0.01 to 15% by weight, based on the molding epoxy resin molding material. , 0.05 to 12% by weight. If it is less than 0.05% by weight, the flame retardancy tends to be insufficient, and if it exceeds 20% by weight, the fluidity and the reflow resistance tend to decrease.
  • the epoxy resin molding material for encapsulation of the present invention further comprises, as an optional component, (E) phosphorus in addition to (A) the epoxy resin, (B) a curing agent, and (C) a boric acid-based flame retardant.
  • a flame retardant, (F) an inorganic filler and (G) other components may be contained.
  • One of these optional components may be used alone, or two or more of them may be used in combination.
  • the phosphorus-based flame retardant is not particularly limited as long as the effects of the present invention can be obtained. Coated or uncoated red phosphorus, phosphorus and a nitrogen-containing compound such as cyclophosphazene, tricalcium ditrilotrismethylene phosphonate, etc.
  • Phosphonates such as methane-11-hydroxy-11,1-diphosphonic acid dicalcium salt, triphenylphosphine, 21- (diphenylphosphinyl) octahydroquinone, 2,2-1 ([2- (Diphenylphosphinyl) -1,4-phenylene) bis (oxomethylene)] bis-oxosilane, phosphine compounds such as tri-n-octylphosphinoxide, ester compounds having a phosphorus atom, cyclophosphazene And phosphorus- and nitrogen-containing compounds such as butane. One of these may be used alone, or two or more may be used in combination.
  • an ester compound having a phosphorus atom and a phosphine compound are preferable from the viewpoint of hydrolysis resistance and fluidity.
  • Red phosphorus acts as a flame retardant, and is not particularly limited as long as the effects of the present invention can be obtained.
  • examples of red phosphorus coated with a thermosetting resin red phosphorus coated with an inorganic compound and an organic compound, and the like. Coated red phosphorus is preferred.
  • the thermosetting resin used for the red phosphorus coated with the thermosetting resin is not particularly limited. Examples thereof include an epoxy resin, a phenol resin, a melamine resin, a urethane resin, a cyanate resin, and a urea-formalin resin.
  • ananiline-formalin resin furan resin, polyamide resin, polyamide-imide resin, polyimide resin, and the like. These may be used alone or in combination of two or more. Further, coating and polymerization may be performed simultaneously using monomers or oligomers of these resins, and the thermosetting resin produced by polymerization may be coated. The thermosetting resin may be cured after coating. Is also good. Above all, epoxy resin, phenolic resin and melamine resin are preferable from the viewpoint of compatibility with the base resin blended in the sealing epoxy resin molding material.
  • the inorganic compound used for the red phosphorus coated with the inorganic compound and the organic compound is not particularly limited.
  • examples thereof include aluminum hydroxide, magnesium hydroxide, calcium hydroxide, titanium hydroxide, zirconium hydroxide, and zirconium oxide.
  • examples include dimethyl, bismuth hydroxide, barium carbonate, calcium carbonate, zinc oxide, titanium oxide, nickel oxide, iron oxide, and the like.One of these may be used alone, or two or more may be used in combination. Is also good.
  • zirconium hydroxide, hydrous zirconium oxide, aluminum hydroxide and zinc oxide which are excellent in the effect of capturing phosphate ions, are preferred.
  • the organic compound used for the red phosphorus coated with the inorganic compound and the organic compound is not particularly limited.
  • a low molecular weight compound used for surface treatment such as a coupling agent or a chelating agent, or a thermoplastic resin And high molecular weight compounds such as thermosetting resins.
  • One of these compounds may be used alone, or two or more of them may be used in combination.
  • a thermosetting resin is preferable from the viewpoint of the coating effect, and an epoxy resin, a phenol resin, and a melamine resin are more preferable from the viewpoint of compatibility with the base resin blended in the epoxy resin molding material for sealing.
  • red phosphorus is coated with an inorganic compound and an organic compound
  • the order of the coating treatment is not particularly limited.Either coating with an inorganic compound and then coating with an organic compound, or coating with an organic compound and then coating with an inorganic compound can be used. However, using a mixture of both, Sometimes it may be coated.
  • the coating form is not particularly limited, and may be physically adsorbed, chemically bonded, or other forms. Further, the inorganic compound and the organic compound may be present separately after coating, or may be in a state where a part or the whole of both is bonded.
  • the amounts of the inorganic compound and the organic compound are not particularly limited as long as the effects of the present invention can be obtained.
  • the weight ratio of the inorganic compound and the organic compound may be as follows. Is preferably, 10/90 to 95Z5 is more preferable, and 30/70 to 90Z10 is more preferable, and an inorganic compound and an organic compound or a raw material thereof so as to have such a weight ratio. It is preferable to adjust the amount of the monomer or oligomer used.
  • the method for producing coated red phosphorus such as red phosphorus coated with a thermosetting resin and red phosphorus coated with an inorganic compound and an organic compound is not particularly limited.
  • the thickness of the coating film is not particularly limited as long as the effects of the present invention can be obtained, and the coating may be a uniform coating on the red phosphorus surface or a non-uniform coating.
  • the particle size of red phosphorus is not particularly limited as long as the effects of the present invention can be obtained, but the average particle size (the particle size at which 50% by weight is accumulated in the particle size distribution) is preferably from 1 to 100 m, and from 5 to 100 m. 50 m is more preferred. If the average particle size is less than 1 tm, the molded product has a high phosphate ion concentration and tends to have poor moisture resistance. If the average particle size exceeds 100 m, high integration of narrow pad pitch In such a case, there is a tendency that defects such as deformation, short-circuiting, and cutting of the wire are likely to occur.
  • Phosphorus and nitrogen-containing compounds act as flame retardants and are not particularly limited as long as the effects of the present invention can be obtained.
  • the following formula (XXXV) and Z or the following formula (XXXVI) may be repeated in the main chain skeleton.
  • m in the formulas (XXXV) and (XXXVII) is an integer of 1 to 10
  • R i to R 4 are an alkyl group having 1 to 12 carbon atoms and an aryl group which may have a substituent. And all may be the same or different, but at least one is a group having a hydroxyl group
  • A represents an alkylene group having 1 to 4 carbon atoms or an arylene group.
  • N in the formulas (XXXVI) and (XXXVIII) is an integer of 1 to L 0, and R 5 to R 8 are selected from an alkyl group or an aryl group having 1 to 12 carbon atoms which may have a substituent.
  • A represents an alkylene group or an arylene group having 1 to 4 carbon atoms.
  • m RR 2, R 3, and R 4 may all be the same or different, and n R 5 , R 6 , R 7 , and R 8 may be different even if all n are the same. May be.
  • XXXV alkyl group or aryl group having 1 to 12 carbon atoms which may have a substituent represented by a length of 1 to! ⁇ 8 .
  • alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group and tert-butyl group, phenyl group, aryl groups such as 11-naphthyl group and 2-naphthyl group , O-tolyl group, m-tolyl group, p-tolyl group, 2,3-xylyl group, 2,4-xylyl group, o—
  • alkyl-substituted aryl groups such as cumenyl group, m-cumenyl group, p-cumenyl group, and mesityl group
  • aryl-substituted alkyl groups such as benzyl group and phenethyl group.
  • an aryl group is preferable from the viewpoint of heat resistance and moisture resistance of the epoxy resin molding material, and a phenyl group or a hydroxyphenyl group is more preferable.
  • at least one of 1 to! ⁇ 4 is preferably a hydroxyphenyl group, and all of R i to R 8 may be a hydroxyphenyl group, but one of R i R 4 is a hydroxyphenyl group. The case is more preferred. !
  • ⁇ ⁇ 8 tends to be brittle Epokishi cured resin in the case of all hydro Kishifueniru group, because if R 1 - R 8 are all by phenyl group is not incorporated into the crosslinked structure of the epoxy resin, E port carboxymethyl resin curing The heat resistance of the material tends to decrease.
  • the alkylene or arylene group having 1 to 4 carbon atoms represented by ⁇ in the above formulas (XXXV) to (XXXVIII) is not particularly limited.
  • an arylene group is preferable. Groups are more preferred.
  • the cyclic phosphazene compound is a polymer of any one of the above formulas (XXXV) to (XXXVIII), a copolymer of the above formula (XXXV) and the above formula (XXXVI), or a mixture of the above formula (XXXVII) and the above formula (XXXVIII) ), But in the case of a copolymer, any of a random copolymer, a block copolymer, and an alternating copolymer may be used.
  • the copolymerization molar ratio mZn is not particularly limited, but is preferably 1/0 to 1 Z4, more preferably 1 Z0 to: 1 / 1.5 from the viewpoint of improving the heat resistance and strength of the epoxy resin cured product. . Further, the degree of polymerization m + n is 1 to 20, preferably 2 to 8, and more preferably 3 to 6.
  • Preferred examples of the cyclic phosphazene compound include a polymer represented by the following formula (XXXIX) and a copolymer represented by the following formula (XXXX).
  • m in the formula (XXXIX) is an integer of 0 to 9, and 1 to! ⁇ 4 each independently represent hydrogen or a hydroxyl group.
  • n is an an integer from 0 to 9
  • R 1! ⁇ 4 is at least one selected from hydrogen or hydroxyl in, respectively it independently is hydroxyl
  • R 5 ⁇ R 8 is independently selected from hydrogen or a hydroxyl group.
  • the cyclic phosphazene compound represented by the above formula (XXXX) can be a compound containing the following m repeating units (a) and n repeating units (b) alternately, a block containing it, and a random. Any of these may be included, but those that include randomly are preferred.
  • One of ⁇ to 4 is mainly composed of a polymer having a hydroxyl group and m of 3 to 6, or one of Ri to R 4 in the above formula (XXXX) is a hydroxyl group, and all of R 5 to R 8 are Hydrogen or one having a hydroxyl group, m / n of lZ2 to l / 3 and m + n of 3 to 6 as a main component is preferable.
  • SPE-100 trade name of Otsuka Chemical Co., Ltd.
  • ester compound having a phosphorus atom examples include phosphoric acid ester, o-ester, ester phosphite, hypophosphite, and the like. From the viewpoint of hydrolysis resistance, an ester compound having a phosphorus atom Is more preferably a compound having an aromatic ring.
  • the compound having an aromatic ring examples include a compound having a skeleton represented by the following general formula (XXXXI), and among them, a compound represented by the following general formula ( ⁇ ⁇ ⁇ ⁇ ) is preferable.
  • Y is a divalent organic group having a substituted or unsubstituted aromatic ring
  • R is a hydrogen atom or a substituted or unsubstituted organic group having 1 to 6 carbon atoms, and R is different even if all are the same.
  • M and n each represent an integer of 0 to 3.
  • ester compound having a phosphorus atom examples include trimethyl phosphate, triethyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, and xylendiphenyl.
  • the following structural formula ( ⁇ ) Compounds having an aromatic ring represented by (XXXXVI) are preferred, and compounds represented by structural formulas (XXXXVII) to (XXXXIX) are more preferred.
  • a phosphine oxide compound represented by the following general formula (XXXXXI ID) is preferable from the viewpoint of chemical stability.
  • R 1 R 2 and R 3 represent a substituted or unsubstituted alkyl group, aryl group, aralkyl group and hydrogen atom having 1 to 10 carbon atoms, all of which may be the same or different. Except when it is an atom.)
  • R to Sha 3 be a substituted or unsubstituted aryl group, and particularly preferable is phenyl. Group.
  • the amount of the phosphorus-based flame retardant such as an ester compound having a phosphorus atom and a phosphine compound is not particularly limited.However, (F) the amount of the phosphorus atom relative to all the other components except the inorganic filler is 0.1%. It is preferably from 0.1 to 50% by weight, more preferably from 0.1 to 10% by weight, even more preferably from 0.5 to 3% by weight. If the amount is less than 0.01% by weight, the flame retardancy tends to be insufficient, and if it exceeds 50% by weight, the moldability and the moisture resistance tend to decrease.
  • the epoxy resin molding material for sealing of the present invention may optionally contain (F) an inorganic filler.
  • F The inorganic filler is blended for the purpose of absorbing moisture, reducing the coefficient of linear expansion, improving the thermal conductivity and improving the strength, and is generally used in epoxy resin molding materials for sealing.
  • fused silica is preferred from the viewpoint of reducing the coefficient of linear expansion, while fused silica is preferred from the viewpoint of high thermal conductivity.
  • Is preferably alumina, and the shape of the filler is preferably spherical in terms of fluidity during molding and mold abrasion.
  • the mixing amount of the inorganic filler is 70 to 98 weight based on the epoxy resin molding material for sealing from the viewpoints of flame retardancy, moldability, hygroscopicity, reduction of linear expansion coefficient and improvement of strength. %, Preferably from 80 to 95% by weight, more preferably from 85 to 93% by weight. If the amount is less than 70% by weight, the flame retardancy and reflow resistance tend to decrease. If the amount exceeds 98% by weight, the fluidity tends to be insufficient.
  • a curing accelerator can be used if necessary.
  • the curing accelerator is not particularly limited, and is generally used in molding epoxy resin molding materials.
  • 1,8-diaza-visit (5,4,0) pendene-7,1,1, Cycloamidine compounds such as 5-diazabicyclo (4,3,0) nonene, 5,6dibutylamino-1,8-diazabicyclo (5,4,0) indene, and maleic anhydride, 1 , 4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylpenzoquinone, 2,6-dimethylpentazoquinone, 2,3-dimethoxy-1-5-methyl-1,4-benzoquinone Quinone compounds such as 2,3-dimethoxy-11,4-benzoquinone, phenyl_1,4-benzoquinone, and diazophenylmethane, phenolic resin
  • Tertiary amines such as benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, and derivatives thereof, 2-methylimidazole, 2-phenylimidazole, Imidazoles such as 2-phenyl-4-methylimidazole and derivatives thereof, phosphine compounds such as tributylphosphine, methyldiphenylphosphine, triphenylphosphine, tris (4-methylphenyl) phosphine, diphenylphosphine and phenylphosphine; A phosphorus compound having an intramolecular polarization obtained by adding a compound having a ⁇ bond such as maleic anhydride, the above quinone compound, diazophenylmethane, or phenol resin to these phosphine compounds; tetraphenylphosphonium tetra Phenylprolate, triphenylphosphinetetraphenyl
  • phosphine compounds and adducts of phosphine compounds with quinone compounds are preferable, and tertiary phosphine compounds such as triphenylphosphine and adducts of triphenylphosphine with quinone compounds are preferable. More preferred. When a tertiary phosphine compound is used, it is preferable to further contain a quinone compound.
  • an adduct of a cycloamidine compound and a phenol resin is preferable, and a phenolnopolak resin salt of diazapicicloundecene is more preferable.
  • the amount of the curing accelerator is not particularly limited as long as the curing acceleration effect is achieved, but is preferably 0.05 to 2% by weight based on the epoxy resin molding material for sealing. , 0.01 to 0.5% by weight is more preferable. If the amount is less than 0.05% by weight, the curability in a short time tends to be inferior. If the amount exceeds 2% by weight, the curing speed tends to be too fast to obtain a good molded product.
  • An ion trapping agent can be further added to the encapsulating epoxy resin molding material of the present invention, if necessary, from the viewpoint of improving the moisture resistance and high-temperature storage characteristics of semiconductor elements such as IC.
  • the ion trapping agent there is no particular limitation on the ion trapping agent, and any known ion trapping agent can be used. These may be used alone or in combination of two or more. Among them, the talcite at the mouth represented by the following composition formula (XXXXX) is preferable.
  • the compounding amount of the ion trapping agent is not particularly limited as long as it is a sufficient amount to capture anion such as octylogen ion.
  • the amount of the ion trapping agent relative to (A) epoxy resin It is preferably from 0.1 to 30% by weight, more preferably from 0.5 to 10% by weight, even more preferably from 1 to 5% by weight.
  • the epoxy resin molding material for encapsulation of the present invention may further include epoxy silane, mercapto silane, amino silane, alkyl silane, ureido silane, and vinyl silane, if necessary, in order to enhance the adhesion between the resin component and the inorganic filler.
  • coupling agents such as silane compounds, titanium compounds, aluminum chelates, and aluminum / zirconium compounds.
  • These include, for example, vinylyltrichlorosilane, vinyltriethoxysilane, pinyl tris (/ 3-methoxyethoxy) silane, acryloxypropyltrimethoxysilane,] 3- (3,4-epoxycyclohexyl) Ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, acrylicoxyfifoxypyrmethyldimethoxysilane, vinyltriacetoxysilane, amercaptopropyltrimethoxysilane, araminopropyltriethoxysilane, ⁇ - anilinopropyltrimethoxysilane, avalilinopropylmethyldimethoxysilane, 7- [bis (] 3-hydroxyethyl)] aminopropyltriethoxysilane, N-J3-
  • the amount of the coupling agent is preferably from 0.05 to 5% by weight, more preferably from 0.1 to 2.5% by weight, based on the inorganic filler (F). If it is less than 0.05% by weight, the adhesiveness to the frame tends to decrease, and if it exceeds 5% by weight, the moldability of the package tends to decrease.
  • the epoxy resin molding material for encapsulation according to the present invention may further comprise, as other additives, release agents such as higher fatty acids, higher fatty acid metal salts, ester waxes, polyolefin resins, polyethylene, and polyethylene oxide, and carbon black.
  • release agents such as higher fatty acids, higher fatty acid metal salts, ester waxes, polyolefin resins, polyethylene, and polyethylene oxide, and carbon black.
  • a coloring agent such as, a stress relieving agent such as silicone oil or silicone rubber powder and the like can be added as required.
  • the epoxy resin molding compound for encapsulation of the present invention can be prepared by any method as long as various raw materials can be uniformly dispersed and mixed, but as a general method, a predetermined amount of raw materials are mixed with a mixer. After sufficient mixing by mixing, etc., melt kneading with a mixing nozzle, an extruder or the like, then cooling and pulverizing may be mentioned. It is easy to use if it is made into a tablet with dimensions and weight that match the molding conditions. (Electronic component equipment)
  • the electronic component device provided with the element sealed with the sealing epoxy resin molding material obtained by the present invention includes a lead frame, a wired tape carrier, a wiring board, glass, a support member such as a silicon wafer, and a semiconductor chip. , Active elements such as transistors, diodes, thyristors, etc., and passive elements such as capacitors, resistors, coils, etc., were mounted, and the necessary parts were sealed with the sealing epoxy resin molding material of the present invention. And electronic component devices. As such an electronic component device, for example, a semiconductor element is fixed on a lead frame, and a terminal portion of an element such as a bonding pad and a lead portion are connected by wire bonding and bumps.
  • DIP Device Inline Package
  • PLCC Plastic Leaded Chip Carrier
  • epoxy resin molding material for General resin sealing such as QFP (Quad Flat Package), SOP (Small Outline Package), S ⁇ J (Small Outline J-lead package), TS ⁇ P (Thin Small Outline Package), TQFP (Thin Quad Flat Package)
  • QFP Quad Flat Package
  • SOP Small Outline Package
  • S ⁇ J Small Outline J-lead package
  • TS ⁇ P Thin Small Outline Package
  • TQFP Thin Quad Flat Package
  • the semiconductor chip connected by bumps to the fixed-type IC and tape carrier is connected to the TCP (Tape Carrier Package) sealed with the epoxy resin molding material for sealing of the present invention, and the wiring formed on the wiring board and glass.
  • Active elements such as semiconductor chips, transistors, diodes, thyristors and the like, and / or passive elements such as capacitors, resistors, coils, etc., connected by wire bonding, flip chip bonding, soldering, etc., are encapsulated with the epoxy resin molding material of the present invention.
  • the device is mounted on the surface of an encapsulated COB (Chip On Board) module, Hybrid I (:, multi-chip module, and an organic substrate with terminals for wiring board connection on the back, and bumps and BGA (Ball Grid Array), CSP (Chip Size Package) in which the device is connected to the wiring formed on the organic substrate by wire bonding and then the device is sealed with the epoxy resin molding material for sealing of the present invention.
  • COB Chip On Board
  • Hybrid I :, multi-chip module, and an organic substrate with terminals for wiring board connection on the back
  • bumps and BGA (Ball Grid Array), CSP (Chip Size Package) in which the device is connected to the wiring
  • a low pressure transfer molding method is the most common, but an injection molding method, a shrink molding method, or the like may be used.
  • Tables 4 and 5 show the evaluation results of the molded epoxy resin molding materials of the examples and comparative examples.
  • the molding of the sealing epoxy resin molding material was performed by a transfer molding machine under the conditions of a mold temperature of 180 ° (molding pressure of 6.9 MPa and a curing time of 90 seconds. 5 hours at C.
  • Table 4
  • Comparative Examples A1 to A6 in which a borate was used instead of the anhydrous borate of the component (CI) of the present invention had extremely low hardness when heated and were inferior in moldability. Comparative Examples A7 and A8, which used a phosphorus-based flame retardant alone, were inferior in flame retardancy.
  • the fluidity, the hardness at the time of heating, the reflow resistance, the moisture resistance, and the high-temperature storage characteristics were all good, and V-0 was achieved in the UL-94 test. It showed flame retardancy.
  • Examples A1 to A8 and A10 to A15 using a metal borate anhydride other than the alkaline earth metal the extract liquid conductivity was small and the reliability was good.
  • the evaluation results of the prepared epoxy resin molding materials for sealing in Examples ⁇ and Comparative Example ⁇ ⁇ are shown in Table 10, Table 11 and Table 12.
  • the molding of the sealing epoxy resin molding material was carried out using a transfer molding machine at a mold temperature of 180 ° (: molding pressure of 6.9 MPa, transfer time of 5 seconds, and curing time of 90 seconds. Post-curing was performed at 180 ° C. for 5 hours.
  • the treatment amount of (C2) zinc borate or (C 3) anhydrous zinc borate treated with the inorganic or organic substance (D) of the present invention is ((C2) / ((C2) + (D))) by weight ratio. ) Or ((C3) / ((C3) I (D)))) is 0.02 or more. Poor sex. Comparative Examples B2 B4 B5 also had reduced flame retardancy. (D) Comparative example using zinc borate or (C3) anhydrous zinc borate not treated with inorganic or organic substances B 6 B 9 B 11 has a large number of voids and is inferior in moldability. Was. Comparative Examples B12 and B13 using the phosphorus-based flame retardant alone had poor flame retardancy.
  • Example B 1 B 19 showed good fluidity, hot hardness, reflow resistance, moisture resistance, high-temperature storage characteristics and moldability, and a V-94 test in the UL-94 test. And achieved flame retardancy.
  • Treated anhydrous zinc borate 1 5.0 10.0 Triphenylphosphine 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
  • Trifenylphosphine oxide 10.0 Trifenylphosphine 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
  • the evaluation results of the epoxy resin molding materials for sealing of the produced examples and comparative examples are shown in Tables 16, 17 and 18.
  • the molding of the epoxy resin molding compound for sealing was performed using a transfer molding machine under the conditions of a mold temperature of 180 ° C, a molding pressure of 6.9 MPa, a transfer time of 5 seconds, and a curing time of 90 seconds. Post-curing was performed at 180 ° C for 5 hours. Table 16
  • Comparative Examples C1 to C4 containing (C 2) zinc borate of the present invention in an amount of 0.5% by weight or more based on the epoxy resin molding material for sealing have extremely low hardness and a large number of voids generated. Poor moldability.
  • Comparative Examples 5 and 6, in which (C 3) anhydrous zinc borate was contained in an amount of 0.5% by weight or more based on the epoxy resin molding compound for encapsulation the number of generated voids was large, and the moldability was high. Inferior.
  • Comparative Examples C7 and C8 using the phosphorus-based flame retardant alone had inferior flame retardancy.
  • Examples C1 to C22 showed good fluidity, hot hardness, reflow resistance, moisture resistance, high-temperature storage characteristics and moldability, and V-94 in the UL-94 test. Achieved 0, indicating flame retardancy.
  • Epoxy molding materials for sealing were prepared in Examples A, B, and C and Comparative Examples A, B, and C using the components listed below.
  • Biphenyl-type epoxy resin with an epoxy equivalent of 192 and a melting point of 105 ° C (Yuka Shell Epoxy Co., Ltd. Pico YX-4000H), an epoxy equivalent of 245 and a sulfur atom-containing epoxy with a melting point of 113 ° C
  • O-cresol nopolak type epoxy resin (trade name: ES CN-190, manufactured by Sumitomo Chemical Co., Ltd.) having an epoxy equivalent of 195 and a softening point of 65 ° C;
  • Aralkyl type phenol tree with a hydroxyl equivalent of 172 and a softening point of 70 ° C as a curing agent Fat (Mitsui Chemicals Co., Ltd. trade name MILEX XL-225), hydroxyl equivalent 198, biphenyl type phenolic resin with softening point 75 ° C (Meiwa Kasei Co., Ltd.
  • ME H-785 1), hydroxyl equivalent 104, softening Triphenylmethane type phenol resin with a point of 88 ° C (MEH-7500 manufactured by Meiwa Kasei Co., Ltd.), a hydroxyl equivalent of 154, and a triphenylmethane type phenol resin with a softening point of 73 ° C 2 (Sumikin Chemical Co., Ltd.)
  • Phenol nopolak resin brand name HE510
  • hydroxyl equivalent 103 softening point 83 ⁇ (brand name ⁇ -100 manufactured by Meiwa Kasei Co., Ltd.);
  • anhydrous borate As anhydrous borate, anhydrous borate 1 (composition formula (XV), average particle size 3 zm, solubility in water 0.668 water 1001111), anhydrous borate 2 (composition formula (XVI), average particle size) Diameter 12 m, solubility in water 0.08 g / water 100 m 1), anhydrous borate 3 (composition formula (II) below, average particle size 8 / im, solubility in water 0.Olg / water 100 ml, BORA brand name FB-500), anhydrous borate 6 (the following composition formula (XXIII), average particle size 7 im, solubility in water 0.02 g / water 100 ml, brand name from Shikoku Chemicals Co., Ltd.) Arborite PF 08T), anhydrous borate 7 (the following composition formula (XXVI), average particle size 8 ⁇ m, solubility in water 0.0200 ml), and anhydrous borate 8 (the following composition formula (XXXXX
  • zinc borate 1 zinc borate of the following composition formula (XXVIII), average particle size 3 m, FRF-30 manufactured by Mizusawa Chemical Industry Co., Ltd.
  • zinc borate 2 the following composition formula ( XXVIII) zinc borate, average particle size 8 / im, FR-50 manufactured by Mizusawa Chemical Industry Co., Ltd.
  • zinc borate 3 zinc borate of the following composition formula (XXVIII), average particle size 9 / im, US (BORA FB-ZB), zinc borate 4 (zinc borate of the following composition formula (XXXII), average particle size 5 / im, US BORAX FB—415)
  • anhydrous zinc borate 1 (zinc borate of the following composition formula (II), average particle size 8 ⁇ m, US BORA FB-500),
  • XXXIV composite metal hydroxides
  • Mi magnesium
  • M2 is zinc
  • m 0.8
  • n 0.2
  • 1 1, a, b
  • Triphenyl phosphine oxide as a phosphine compound
  • triphenyl phosphine as a hardening accelerator
  • Epoxy silane coupling agents Shin 'Koshi Chemical Industry Co., Ltd.
  • an epoxy resin molding material for sealing was molded under the above conditions and post-cured, and the flame retardancy was evaluated according to the UL-94 test method.
  • the epoxy resin molding material for sealing was molded into a disk having a diameter of 50111111 and a thickness of 3111111 under the above conditions, and measured immediately after molding using a Shore D hardness meter.
  • a package (QFP) is formed by molding and post-curing using the epoxy resin molding compound for sealing under the above conditions, and after performing pre-treatment, humidifying to prevent disconnection failure due to aluminum wiring corrosion every predetermined time. The humidification time when the ratio of defective packages to the number of test packages (10) reached 50% was evaluated.
  • the flat package was humidified at 85 ° C and 85% RH for 72 hours, and then subjected to vapor phase reflow treatment for 215 and 90 seconds. Subsequent humidification was performed under the conditions of 0.2 MPa and 121 ° C.
  • a 5 m m x 9 mm x 0.4 mm test silicon chip with a 10 m / m and 1 m thick aluminum wiring line on a 5 m thick oxide film is mounted on a 42 alloy lead frame with a partial silver plating.
  • a test piece for measuring impurities was finely pulverized, and a 5 g sample was put into an Acom-made Niseal (extraction jig) together with 50 ml of distilled water, and extracted in a thermostat at 12 l ° C / 20 hours. The extract was filtered to obtain a test solution. Using the test solution, electric conductivity was measured with an electric conductivity meter CM-115 manufactured by Kyoto Electronics Co., Ltd.
  • the epoxy resin molding material for encapsulation according to the present invention can achieve flame retardancy with non-halogen and non-antimony as shown in the examples, has excellent moldability such as curability, reflow resistance, moisture resistance and high temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

An epoxy resin molding material for encapsulation comprising (A) an epoxy resin, (B) a curing agent, and (C) a borate flame retardant as the essential components, wherein the borate flame retardant (C) is (C1) an anhydrous borate salt, (C2) zinc borate, or (C3) anhydrous zinc borate; and electronic components or devices comprising elements encapsulated with the material. The invention provides a non-halogen and non-antimony epoxy resin material for encapsulation which is improved in flame retardance without impairing the reliability of molding properties, fluidity, moisture resistance and so on; and electronic components or devices comprising elements encapsulated with the material.

Description

明 細 書  Specification
封止用エポキシ樹脂成形材料及び電子部品装置 本出願は、 同出願人により先にされた日本国特許出願、 すなわち、 特願 20 02— 81347号 (出願日 2002年 3月 22日) 、 特願 2002— 813 63号 (出願日 2002年 3月 22日) 及び特願 2002— 81386号 (出 願日 2002年 3月 22日) に基づく優先権主張を伴うものであって、 これら の明細書を参照のためにここに組み込むものとする。 技術分野 Epoxy resin molding compound for sealing and electronic component device This application is a Japanese patent application filed earlier by the same applicant, that is, Japanese Patent Application No. 2002-81347 (filing date: March 22, 2002), Japanese Patent Application These are accompanied by priority claims based on Japanese Patent Application No. 2002-81363 (filed on March 22, 2002) and Japanese Patent Application No. 2002-81386 (filed on March 22, 2002). Incorporated here for reference. Technical field
本発明は、 封止用エポキシ樹脂成形材料、 特に環境対応の観点から要求され るノンハロゲンかつノンアンチモンで難燃性の封止用エポキシ樹脂成形材料で、 厳しい信頼性を要求される VL S Iの封止用に好適な成形材料及びこの成形材 料で封止した素子を備えた電子部品装置に関する。  The present invention relates to a sealing epoxy resin molding material, particularly a halogen-free, non-antimony, flame-retardant sealing epoxy resin molding material required from the viewpoint of environmental friendliness. The present invention relates to a molding material suitable for stopping and an electronic component device provided with an element sealed with the molding material.
背景技術 Background art
従来から、 トランジスタ、 I C等の電子部品装置の素子封止の分野では生産 性、 コスト等の面から樹脂封止が主流となり、 エポキシ樹脂成形材料が広く用 いられている。 この理由としては、 エポキシ樹脂が電気特性、 耐湿性、 耐熱性、 機械特性、 ィンサート品との接着性などの諸特性にバランスがとれているため である。 これらの封止用ェポキシ樹脂成形材料の難燃化は主にテトラブロモビ スフエノ一ル Aのジグリシジルエーテル等のブロム化樹脂と酸化アンチモンの 組合せにより行われている。  Conventionally, in the field of element sealing of electronic components such as transistors and ICs, resin sealing has been the mainstream in terms of productivity and cost, and epoxy resin molding materials have been widely used. The reason for this is that epoxy resin balances various properties such as electrical properties, moisture resistance, heat resistance, mechanical properties, and adhesion to insert products. The flame retardancy of these epoxy resin molding materials for sealing is mainly achieved by a combination of a brominated resin such as diglycidyl ether of tetrabromobisphenol A and antimony oxide.
近年、 環境保護の観点からダイォキシン問題に端を発し、 デカブロムをはじ めとするハロゲン化榭脂ゃアンチモン化合物に量規制の動きがあり、 封止用ェ ポキシ樹脂成形材料についてもノンハロゲン化 (ノンブロム化) 及びノンアン チモン化の要求が出てきている。 また、 プラスチック封止 I Cの高温放置特性 にブロム化合物が悪影響を及ぼすことが知られており、 この観点からもブロム 化樹脂量の低減が望まれている。 In recent years, from the viewpoint of environmental protection, starting from the dioxin problem, there has been a movement to regulate the amount of halogenated resins and antimony compounds such as decabrom, and the use of halogen-free (non-brominated ) And non-antimony requirements are emerging. It is also known that bromine compounds have an adverse effect on the high-temperature storage characteristics of plastic-encapsulated ICs. It has been desired to reduce the amount of the activated resin.
そこで、 ブロム化樹脂や酸化アンチモンを用いずに難燃化を達成する手法と しては、 赤リンを用いる方法 (特開平 9— 227765号公報) 、 リン酸エス テル化合物を用いる方法 (特開平 9一 235449号公報) 、 ホスファゼン化 合物を用いる方法 (特開平 8— 225714号公報) 、 金属水酸化物を用いる 方法 (特開平 9— 241483号公報) 、 金属水酸化物と金属酸化物を併用す る方法 (特開平 9一 100337号公報) 、 フエ口セン等のシクロペン夕ジェ ニル化合物を用いる方法 (特開平 11-269349号公報) 、 ァセチルァセト ナート銅等の有機金属化合物を用いる方法 (加藤寛、 機能材料、 11 (6) 、 34 (1991) ) 、 ホウ酸亜鉛を用いる方法 (特開平 9— 151301、 特 開平 10— 77390、 特開 2000— 265040) 等のハロゲン、 アンチ モン以外の難燃剤を用いる方法、 充填剤の割合を高くする方法 (特開平 7— 8 2343号公報) 等が試みられている。  Therefore, as a method of achieving flame retardancy without using a brominated resin or antimony oxide, there are a method using red phosphorus (JP-A-9-227765) and a method using an ester phosphate compound (JP-A-9-227765). JP-A-235449), a method using a phosphazene compound (JP-A-8-225714), a method using a metal hydroxide (JP-A-9-241483), a method using a metal hydroxide and a metal oxide. A method using a combination thereof (Japanese Patent Application Laid-Open No. 9-1100337), a method using a cyclopentenyl compound such as Hue Sen (Japanese Patent Application Laid-Open No. 11-269349), a method using an organometallic compound such as acetyl acetylacetonate copper (Kato) (11) (6), 34 (1991)), methods using zinc borate (JP-A-9-151301, JP-A-10-77390, JP-A-2000-265040) and other difficulties other than halogen and antimony Method using flame retardant, filler (JP-A-7-82343) and the like have been attempted.
発明の開示 Disclosure of the invention
しかしながら、 封止用エポキシ樹脂成形材料に赤リンを用いた場合は耐湿性 の低下の問題、 リン酸エステル化合物ゃホスファゼン化合物を用いた場合は可 塑化による成形性の低下や耐湿性の低下の問題、 金属水酸化物や金属酸化物を 用いた場合や、 充填剤の割合を高くした場合は流動性の低下の問題がそれぞれ ある。 また、 ァセチルァセトナート銅等の有機金属化合物やホウ酸亜鉛を用い た場合は、 硬化反応を阻害し成形性が低下する問題がある。  However, when red phosphorus is used as the sealing epoxy resin molding material, there is a problem of a decrease in moisture resistance, and when a phosphoric ester compound / phosphazene compound is used, the moldability and moisture resistance decrease due to plasticization. The problem is that when metal hydroxide or metal oxide is used, or when the proportion of filler is increased, the fluidity is reduced. In addition, when an organometallic compound such as acetyl acetonate copper or zinc borate is used, there is a problem that a curing reaction is inhibited and moldability is reduced.
以上のようにこれらノンハロゲン、 ノンアンチモン系の難燃剤では、 いずれ の場合もブロム化樹脂と酸化アンチモンを併用した封止用エポキシ樹脂成形材 料と同等の成形性、 信頼性を得るに至っていない。  As described above, these non-halogen and non-antimony flame retardants have not achieved moldability and reliability equivalent to those of sealing epoxy resin molding materials using both a brominated resin and antimony oxide.
本発明はかかる状況に鑑みなされたもので、 ノンハロゲンかつノンアンチモ ンで、 成形性、 流動性、 耐湿性等の信頼性を低下させずに難燃性が良好な封止 用エポキシ樹脂材料、 及びこれにより封止した素子を備えた電子部品装置を提 供しょうとするものである。  The present invention has been made in view of such circumstances, and is a halogen-free and non-antimony epoxy resin material for encapsulation which has good flame retardancy without deteriorating reliability such as moldability, fluidity, moisture resistance, and the like. The purpose of the present invention is to provide an electronic component device having an element sealed by the above.
本発明者らは上記の課題を解決するために、 ホウ酸亜鉛による難燃化機構に ついて検討を重ねた結果、 ホウ酸亜鉛は、 燃焼時には結晶水の放出による吸熱 効果およびホウ酸によるチヤ一のガラス化効果によって難燃性を達成させると しているが、 難燃性を確保するための十分量用いた場合、 ホウ酸亜鉛の結晶水 は硬ィ匕反応を阻害し成形性を低下させることを見出した。 The inventors of the present invention have studied the mechanism of flame retardation by zinc borate in order to solve the above-mentioned problems. As a result, during combustion, zinc borate has an endothermic It is said that the flame retardancy is achieved by the effect and the glass vitrification effect of boric acid.However, when a sufficient amount is used to secure the flame retardancy, the water of crystallization of zinc borate causes the hardening reaction. It has been found that it inhibits and lowers moldability.
さらに検討を重ねた結果、 ホウ酸亜鉛では、 結晶水の放出 (及び熱分解) に よる吸熱量は約 6 0 0 J / gであり、 水酸化マグネシウムの約 1 6 0 0 J / g、 水酸化アルミニウムの約 1 8 0 0 J / gに比べ低い (2 0 0 1年 (株)ェヌ 'テ 'ィ一 ·エス発行 「ノンハロゲン系難燃材料による難燃化技術」 ) ことから、 難 燃化に対しては、 結晶水の放出による吸熱効果による寄与は少なく、 分解後生 成される酸化ホウ素が溶融してガラス化する効果による寄与が大きいことがわ かり、 ホウ酸亜鉛のかわりに結晶水を含有していない無水ホウ酸亜鉛を用いる ことで難燃化を達成できることを見出した。 その結果、 無水ホウ酸塩を配合す れば、 ノンハロゲンかつノンアンチモンで難燃化できるのみならず、 結晶水の 放出による硬化性の低下が起こらない為、 特に成形性に優れ、 耐湿性等の信頼 性を低下させずに封止用エポキシ樹脂材料、 及びこれにより封止した素子を備 えた電子部品装置を提供できることを見出し、 第 1の発明を完成するに至った。 そして、 前記第 1の発明のさらなる最適化を図るべく検討を加えた結果、 無 水ホウ酸亜鉛を所定量の無機物又は有機物によって処理した無水ホウ酸亜鉛を 難燃剤として用いたところ、 前記発明の効果に加えて低せん断領域での流動性 の向上が図られることを見出した。 また、 前記知見後の確認実験で水を含むホ ゥ酸亜鉛に同様の処理を行った場合にあっても、 前記と同様に低せん断領域で の流動性が向上することを見出した。 前記知見に基づいて本発明者らは、 規定 量以下の量の無機物又は有機物によって処理したホウ酸亜鉛又は無水ホウ酸亜 鉛を配合することにより、 ノンハロゲンかつノンアンチモンで難燃化できるの みならず、 特に成形性に優れ、 耐湿性等の信頼性を低下させずに封止用ェポキ シ樹脂材料、 及びこれにより封止した素子を備えた電子部品装置にかかる第 2 の発明を完成するに至った。  As a result of further study, it was found that zinc borate has an endothermic amount of about 600 J / g due to release (and thermal decomposition) of water of crystallization, and about 160 J / g of magnesium hydroxide and water. Low compared to about 180 J / g of aluminum oxide (2001: Issued by N.T.S. Inc., "Fire-retardant technology using non-halogen flame-retardant materials") The contribution of the endothermic effect of the release of water of crystallization to the combustion is small, and the contribution of the vitrification due to the melting of the boron oxide generated after decomposition is large. It has been found that flame retardancy can be achieved by using anhydrous zinc borate containing no water. As a result, when an anhydrous borate is blended, not only can it be made non-halogen and non-antimony flame-retardant, but the curability does not decrease due to the release of water of crystallization. The present inventors have found that it is possible to provide an epoxy resin material for sealing and an electronic component device provided with an element sealed with the sealing epoxy resin material without lowering the reliability, and have completed the first invention. Then, as a result of further study for further optimizing the first invention, anhydrous zinc borate obtained by treating anhydrous zinc borate with a predetermined amount of an inorganic or organic substance was used as a flame retardant. It has been found that in addition to the effect, the fluidity in the low shear region can be improved. In addition, in a confirmation experiment after the above-mentioned findings, it was found that even when zinc borate containing water was subjected to the same treatment, the fluidity in a low shear region was improved in the same manner as described above. Based on the above findings, the present inventors have found that by blending zinc borate or anhydrous zinc borate treated with an inorganic or organic substance in a specified amount or less, if flame retardancy can be achieved with non-halogen and non-antimony only, In order to complete the second invention relating to an epoxy resin material for encapsulation, and an electronic component device equipped with an element encapsulated thereby without particularly degrading the moldability and reliability such as moisture resistance. Reached.
また、 前記第 1の発明のさらなる最適化を図るべく検討を加えた結果、 規定 量以下のホウ酸亜鉛又は無水ホウ酸亜鉛を配合すれば、 ノンハロゲンかつノン アンチモンで難燃化できるのみならず、 特に成形性に優れ、 耐湿性等の信頼性 を低下させずに封止用エポキシ樹脂材料、 及びこれにより封止した素子を備え た電子部品装置を提供できることを見出し第 3の発明を完成するに至つた。 すなわち、 本願は以下の本発明に関する。 Further, as a result of investigations for further optimizing the first invention, if zinc borate or anhydrous zinc borate is blended in a specified amount or less, not only flame retardancy with non-halogen and non-antimony can be achieved, but also Equipped with epoxy resin material for encapsulation without deteriorating reliability such as moisture resistance, etc. It was found that an electronic component device could be provided, and completed the third invention. That is, the present application relates to the present invention described below.
(1) (A) エポキシ樹脂、 (B) 硬化剤及び (C) ホウ酸系難燃剤を必須 成分とし、 前記 (C) ホウ酸系難燃剤として (C 1) 無水ホウ酸塩を含有する 封止用エポキシ樹脂成形材料。  (1) An epoxy resin, (B) a curing agent and (C) a boric acid-based flame retardant as essential components, and (C) a boric acid-based flame retardant containing (C 1) anhydrous borate. Epoxy resin molding compound.
(2) (C 1) 無水ホウ酸塩が下記組成式 (I) で示される化合物である前 記 (1) 記載の封止用エポキシ榭脂成形材料。  (2) The epoxy resin molding material for sealing according to the above (1), wherein (C 1) the borate anhydride is a compound represented by the following composition formula (I).
m(MxOy) · n(B23) ( I ) m (MxOy) n (B 23 ) (I)
(ここで、 Mは金属元素を示し、 m、 n、 x、 yは、 それぞれ独立に正の数で ある。 )  (Here, M represents a metal element, and m, n, x, and y are each independently a positive number.)
(3) 組成式 (I) 中の Mがアルカリ金属及びアルカリ土類金属以外から選 ばれる金属元素である前記 (2) 記載の封止用エポキシ樹脂成形材料。  (3) The epoxy resin molding material for sealing according to the above (2), wherein M in the composition formula (I) is a metal element selected from other than alkali metals and alkaline earth metals.
(4) 組成式 (I) 中の Mが Co、 Zn、 A 1及び B iから選ばれる金属元 素である前記 (2) 記載の封止用エポキシ樹脂成形材料。  (4) The epoxy resin molding material for sealing according to (2), wherein M in the composition formula (I) is a metal element selected from Co, Zn, A1 and Bi.
(5) (C 1) 無水ホウ酸塩が、 下記組成式 (II) で示される無水ホウ酸亜 鉛である前記 (4) 記載の封止用エポキシ樹脂成形材料。  (5) The epoxy resin molding material for sealing according to the above (4), wherein (C 1) the anhydrous borate is an anhydrous zinc borate represented by the following composition formula (II).
2 Z ηθ · 3 B203 (II) 2 Z ηθ3 B 2 0 3 (II)
(6) (C I) 無水ホウ酸塩の 25 °Cにおける水に対する溶解度が、 水 10 0 gに対して 1 g以下である前記 (1) 〜 (5) のいずれかに記載の封止用ェ ポキシ樹脂成形材料。  (6) The sealing solution according to any one of (1) to (5), wherein the solubility of the (CI) anhydrous borate in water at 25 ° C. is 1 g or less per 100 g of water. Poxy resin molding material.
(7) (C 1) 無水ホウ酸塩が、 無機物及び有機物の少なくともいずれか一 方で処理されている前記 (1) 〜 (6) のいずれかに記載の封止用エポキシ樹 脂成形材料。  (7) The epoxy resin molding material for sealing according to any one of the above (1) to (6), wherein (C 1) the anhydrous borate is treated with at least one of an inorganic substance and an organic substance.
(8) (A) エポキシ樹脂、 (B) 硬化剤及び (C) ホウ酸系難燃剤を必須 成分とし、 前記 (C) ホウ酸系難燃剤として (D) 無機物及び有機物の少なく ともいずれか一方で処理された (C2) ホウ酸亜鉛又は (C 3) 無水ホウ酸亜 鉛を含有し、 その処理量が、 重量比で ( (C2) / ( (C2) + (D) ) ) X は ( (C3) Ζ ( (C 3) + (D) ) ) が 0. 02未満となる量である封止用 エポキシ樹脂成形材料。  (8) (A) an epoxy resin, (B) a curing agent, and (C) a boric acid-based flame retardant as essential components, and (D) at least one of inorganic and organic substances as the (C) boric acid-based flame retardant Containing (C2) zinc borate or (C 3) anhydrous zinc borate treated at a weight ratio of ((C2) / ((C2) + (D))) X (C3) An epoxy resin molding material for encapsulation wherein the amount of Ζ ((C3) + (D))) is less than 0.02.
(9) (C) ホウ酸系難燃剤の配合量が、 封止用エポキシ樹脂成形材料に対 して 0. 01〜20重量%である前記 (1) 〜 (8) のいずれかに記載の封止 用エポキシ樹脂成形材料。 (9) (C) The amount of the boric acid-based flame retardant is less than that of the epoxy resin molding compound for encapsulation. The epoxy resin molding material for sealing according to any one of the above (1) to (8), wherein the content is 0.01 to 20% by weight.
(10) (A) エポキシ樹脂、 (B) 硬化剤及び (C) ホウ酸系難燃剤を必 須成分とし、 前記 (C) ホウ酸系難燃剤として (C 2) ホウ酸亜鉛又は (C 3) 無水ホウ酸亜鉛を封止用エポキシ樹脂成形材料に対して 0. 5重量%未満 となる量含有する封止用エポキシ樹脂成形材料。  (10) (A) an epoxy resin, (B) a curing agent and (C) a boric acid-based flame retardant as essential components, and (C) zinc borate or (C 3) as the boric acid-based flame retardant. ) An epoxy resin molding compound for encapsulation containing anhydrous zinc borate in an amount of less than 0.5% by weight based on the epoxy resin molding compound for encapsulation.
(11) (C2) ホウ酸亜鉛又は (C3) 無水ホウ酸亜鉛の配合量が、 封止 用エポキシ樹脂成形材料に対して 0. 3重量%未満である前記 (10) 記載の 封止用エポキシ樹脂成形材料。  (11) The epoxy for encapsulation according to (10), wherein the compounding amount of (C2) zinc borate or (C3) anhydrous zinc borate is less than 0.3% by weight based on the epoxy resin molding material for encapsulation. Resin molding material.
(12) (C) ホウ酸系難燃剤の平均粒径が 0. 01〜50 mである前記 (1) 〜 (11) のいずれかに記載の封止用エポキシ樹脂成形材料。  (12) The epoxy resin molding material for sealing according to any one of the above (1) to (11), wherein the (C) boric acid-based flame retardant has an average particle size of 0.01 to 50 m.
(1 3) (C) ホウ酸系難燃剤が、 金属水酸化物で処理されている前記 (1) 〜 (12) のいずれかに記載の封止用エポキシ樹脂成形材料。  (13) The epoxy resin molding material for sealing according to any one of the above (1) to (12), wherein the (C) boric acid-based flame retardant is treated with a metal hydroxide.
(14) (C) ホウ酸系難燃剤が、 水酸化マグネシウムで処理されている前 記 (13) に記載の封止用エポキシ樹脂成形材料。  (14) The epoxy resin molding material for sealing according to the above (13), wherein the boric acid-based flame retardant is treated with magnesium hydroxide.
(15) (C) ホウ酸系難燃剤が、 カップリング剤で処理されている前記 (1) 〜 (14) のいずれかに記載の封止用エポキシ樹脂成形材料。  (15) The epoxy resin molding material for sealing according to any one of the above (1) to (14), wherein the (C) boric acid-based flame retardant is treated with a coupling agent.
(16) さらに (E) リン系難燃剤を含有する前記 (1) 〜 (15) のいず れかに記載の封止用エポキシ樹脂成形材料。  (16) The epoxy resin molding material for sealing according to any one of the above (1) to (15), further comprising (E) a phosphorus-based flame retardant.
(17) (E) リン系難燃剤がリン原子を有するエステル化合物を含有する 前記 (16) 記載の封止用エポキシ樹脂成形材料。  (17) The epoxy resin molding material for sealing according to (16), wherein (E) the phosphorus-based flame retardant contains an ester compound having a phosphorus atom.
(18) リン原子を有するエステル化合物が下記一般式 (ΧΧΧΧΠ) で示さ れる化合物である前記 (17) 記載の封止用エポキシ樹脂成形材料。 (18) The epoxy resin molding material for sealing according to (17), wherein the ester compound having a phosphorus atom is a compound represented by the following general formula (II).
(XXXXII)
Figure imgf000008_0001
(XXXXII)
Figure imgf000008_0001
(ここで、 Yは置換又は非置換の芳香環を有する 2価の有機基、 Rは水素原子 又は炭素数 1〜 6の置換又は非置換の有機基を示し、 Rは全てが同一でも異な つていてもよい。 m、 nは 0〜3の整数を示す。 )  (Where Y is a divalent organic group having a substituted or unsubstituted aromatic ring, R is a hydrogen atom or a substituted or unsubstituted organic group having 1 to 6 carbon atoms, and R is different even if all are the same. M and n each represent an integer of 0 to 3.)
(19) (E) リン系難燃剤が下記一般式 (ΧΧΧΧΧΙΠ) で示されるホスフ イン化合物を含有する前記 (16) 〜 (18) のいずれかに記載の封止用ェポ キシ樹脂成形材料。  (19) The epoxy resin molding material for sealing according to any one of the above (16) to (18), wherein (E) the phosphorus-based flame retardant contains a phosphine compound represented by the following general formula (II).
(XXXXXIII)
Figure imgf000008_0002
(XXXXXIII)
Figure imgf000008_0002
(ここで、 R1, R2及び R3は炭素数 1〜10の置換又は非置換のアルキル 基、 ァリール基、 ァラルキル基及び水素原子を示し、 すべて同一でも異なって もよい。 ただしすべてが水素原子である場合を除く。 ) (Here, R 1 , R 2 and R 3 represent a substituted or unsubstituted alkyl group, aryl group, aralkyl group and hydrogen atom having 1 to 10 carbon atoms, all of which may be the same or different. Except when it is an atom.)
(20) さらに (F) 無機充填剤を含有する前記 (1) 〜 (19) のいずれ かに記載の封止用エポキシ樹脂成形材料。  (20) The epoxy resin molding material for sealing according to any of (1) to (19), further comprising (F) an inorganic filler.
(21) (F) 無機充填剤の含有量が、 封止用エポキシ樹脂成形材料に対し て 70〜98重量%である前記 (20) 記載の封止用エポキシ樹脂成形材料。  (21) The epoxy resin molding material for sealing according to the above (20), wherein the content of (F) the inorganic filler is 70 to 98% by weight based on the epoxy resin molding material for sealing.
(22) (F) 無機充填剤の含有量が、 封止用エポキシ樹脂成形材料に対し て 80〜98重量%である前記 (20) 記載の封止用エポキシ樹脂成形材料。  (22) The epoxy resin molding material for sealing according to the above (20), wherein the content of the (F) inorganic filler is 80 to 98% by weight based on the epoxy resin molding material for sealing.
(23) (A) エポキシ樹脂が、 2官能エポキシ樹脂である前記 (1) 〜 (22) のいずれかに記載の封止用エポキシ樹脂成形材料。  (23) The epoxy resin molding material for sealing according to any one of the above (1) to (22), wherein the epoxy resin (A) is a bifunctional epoxy resin.
(24) (A) エポキシ樹脂がビフエニル型エポキシ樹脂、 ビスフエノ一ル F型エポキシ樹 J3旨、 スチルベン型エポキシ樹脂、 硫黄原子含有エポキシ樹脂、 ノポラック型エポキシ樹脂、 ジシクロペン夕ジェン型エポキシ樹脂、 ナフタレ ン型エポキシ樹脂及びトリフエニルメタン型エポキシ樹脂の少なくとも 1種を 含有する前記 (1 ) 〜 (2 3 ) のいずれかに記載の封止用エポキシ樹脂成形材 料。 (24) (A) The epoxy resin is a biphenyl type epoxy resin, a bisphenol F type epoxy tree J3, a stilbene type epoxy resin, a sulfur atom containing epoxy resin, The sealing epoxy according to any one of the above (1) to (23), comprising at least one of a nopolak epoxy resin, a dicyclopentene epoxy resin, a naphthalene epoxy resin and a triphenylmethane epoxy resin. Resin molding materials.
( 2 5 ) 前記 (1 ) 〜 (2 4 ) のいずれかに記載の封止用エポキシ樹脂成形 材料で封止された素子を備えた電子部品装置。 発明を実施するための好ましい形態  (25) An electronic component device comprising an element sealed with the sealing epoxy resin molding material according to any one of (1) to (24). BEST MODE FOR CARRYING OUT THE INVENTION
(A) エポキシ樹脂  (A) Epoxy resin
本発明において用いられる (A) エポキシ樹脂は、 封止用エポキシ樹脂成形 材料に一般に使用されているもので特に制限はないが、 たとえば、 フエノール ノポラック型エポキシ樹脂、 オルソクレゾ一ルノポラック型エポキシ樹脂、 ト リフエニルメタン骨格を有するエポキシ樹脂をはじめとするフエノール、 クレ ゾ一ル、 キシレノール、 レゾルシン、 力テコ一ル、 ビスフエノール A、 ピスフ エノ一ル F等のフエノール類及び/又は α—ナフトール、 β—ナフトール、 ジ ヒドロキシナフ夕レン等のナフトール類とホルムアルデヒド、 ァセトアルデヒ ド、 プロピオンアルデヒド、 ベンズアルデヒド、 サリチルアルデヒド等のアル デヒド基を有する化合物とを酸性触媒下で縮合又は共縮合させて得られるノポ ラック樹脂をエポキシ化したもの、 ビスフエノール Α、 ビスフエノール F、 ビ スフエノール 、 アルキル置換又は非置換のビフエノール等のジグリシジルェ 一テル、 スチルベン型エポキシ樹脂、 ハイドロキノン型エポキシ樹脂、 フタル 酸、 ダイマー酸等の多塩基酸とェピクロルヒドリンの反応により得られるダリ シジルエステル型エポキシ樹旨、 ジアミノジフエエルメタン、 イソシァヌル酸 等のポリアミンとェピクロルヒドリンの反応により得られるグリシジルァミン 型エポキシ樹脂、 ジシクロペン夕ジェンとフエノール類の共縮合樹脂のェポキ シ化物、 ナフ夕レン環を有するエポキシ樹脂、 フエノール ·ァラルキル樹脂、 ナフトール ·ァラルキル樹脂等のァラルキル型フエノール樹脂のエポキシ化物、 トリメチロールプロパン型エポキシ樹脂、 テルペン変性エポキシ樹脂、 ォレフ ィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂、 脂環 族エポキシ樹脂、 硫黄原子含有エポキシ樹脂などが挙げられ、 これらを単独で 用いても 2種以上を組み合わせて用いてもよい。 The epoxy resin (A) used in the present invention is not particularly limited as it is generally used for an epoxy resin molding material for encapsulation. Examples thereof include a phenol nopolak epoxy resin, an orthocresol nopolak epoxy resin, and a trif. Phenols such as phenols, cresols, xylenols, resorcinols, phenols, such as epoxy resins having an enylmethane skeleton, and phenols such as bisphenol A and pisphenol F and / or α-naphthol and β-naphthol Noplac resin obtained by condensation or co-condensation of naphthols such as dihydroxynaphthylene and a compound having an aldehyde group such as formaldehyde, acetoaldehyde, propionaldehyde, benzaldehyde and salicylaldehyde in the presence of an acidic catalyst. Turned Diglycidyl ethers such as bisphenol Α, bisphenol F, bisphenol, alkyl-substituted or unsubstituted biphenol, stilbene-type epoxy resin, hydroquinone-type epoxy resin, polybasic acids such as phthalic acid, dimer acid and epichlor Daricidyl ester type epoxy resin obtained by the reaction of hydrin, glycidylamine type epoxy resin obtained by the reaction of polyamines such as diaminodiphenylmethane, isocyanuric acid and epichlorohydrin, dicyclopentene phenol and phenols Epoxy compound of co-condensation resin, Epoxy resin having naphthylene ring, epoxide of aralkyl-type phenol resin such as phenol-aralkyl resin, naphthol-aralkyl resin, trimethylolpropane-type epoxy resin, terpene Sex epoxy resin, Orefu fin coupling obtained by oxidizing with a peracid such as peracetic acid and linear aliphatic epoxy resins, alicyclic Group epoxy resin, sulfur atom-containing epoxy resin and the like, and these may be used alone or in combination of two or more.
なかでも、 耐リフロー性の観点からはビフエニル型エポキシ樹脂、 ビスフエ ノール F型エポキシ樹脂、 スチルベン型エポキシ樹脂及び硫黄原子含有ェポキ シ樹脂が好ましく、 硬化性の観点からはノボラック型エポキシ樹脂が好ましく、 低吸湿性の観点からはジシクロペン夕ジェン型エポキシ樹脂が好ましく、 耐熱 性及び低反り性の観点からはナフタレン型エポキシ樹脂及びトリフエニルメ夕 ン型エポキシ樹脂が好ましく、 これらのエポキシ樹脂の少なくとも 1種を含有 していることが好ましい。 なかでも、 高信頼性で、 かつ高充填化できる為難燃 性にも有利な 2官能エポキシ樹脂がより好ましい。  Above all, biphenyl epoxy resin, bisphenol F epoxy resin, stilbene epoxy resin and sulfur atom-containing epoxy resin are preferable from the viewpoint of reflow resistance, and novolak epoxy resin is preferable from the viewpoint of curability. From the viewpoint of hygroscopicity, a dicyclopentene-type epoxy resin is preferred.From the viewpoint of heat resistance and low warpage, a naphthalene-type epoxy resin and a triphenylmethyl-type epoxy resin are preferred, and at least one of these epoxy resins is contained. Is preferred. Of these, bifunctional epoxy resins, which are highly reliable and can be highly filled, are also advantageous in flame retardancy, are more preferable.
ビフエニル型エポキシ樹脂としてはたとえば下記一般式 (III) で示されるェ ポキシ樹脂等が挙げられ、 ビスフエノール F型エポキシ樹脂としてはたとえば 下記一般式 (XXXXXIV) で示されるエポキシ樹脂等が挙げられ、 スチルベン 型エポキシ樹脂としてはたとえば下記一般式 (IV) で示されるエポキシ樹脂等 が挙げられ、 硫黄原子含有エポキシ樹脂としてはたとえば下記一般式 (V) で 示されるエポキシ樹脂等が挙げられる。  Examples of the biphenyl type epoxy resin include an epoxy resin represented by the following general formula (III), and examples of the bisphenol F type epoxy resin include an epoxy resin represented by the following general formula (XXXXXIV). Examples of the type epoxy resin include an epoxy resin represented by the following general formula (IV), and examples of the sulfur atom-containing epoxy resin include an epoxy resin represented by the following general formula (V).
Figure imgf000010_0001
Figure imgf000010_0001
(ここで、 Ri〜R8は水素原子及び炭素数 1〜1 0の置換又は非置換の一価の 炭化水素基から選ばれ、 これらは全てが同一でも異なっていてもよい。 nは 0 〜 3の整数を示す。 )
Figure imgf000010_0002
(Where Ri to R 8 are selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, all of which may be the same or different; n is 0 to Indicates an integer of 3.)
Figure imgf000010_0002
(XXXXXIV) (XXXXXIV)
(ここで、 !^〜 8は水素原子、 炭素数 1〜1 0のアルキル基、 炭素数 1〜1 0のアルコキシル基、 炭素数 6〜1 0のァリ一ル基、 及び炭素数 6〜1 0のァ ラルキル基から選ばれ、 全てが同一でも異なっていてもよい。 nは 0〜3の整 数を示す。 ) (Where ^^- 8 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, and 6 to 10 carbon atoms Selected from 10 aralkyl groups, all of which may be the same or different, and n is an integer of 0 to 3. Indicates a number. )
(IV))
Figure imgf000011_0001
(IV))
Figure imgf000011_0001
(ここで、 Ri〜R8は水素原子及び炭素数 1〜 10の置換又は非置換の一価の 炭化水素基から選ばれ、 これらは全てが同一でも異なっていてもよい。 nは 0  (Where Ri to R8 are selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, all of which may be the same or different; n is 0
〜 3の整数を示す。 ) Shows an integer of ~ 3. )
Figure imgf000011_0002
Figure imgf000011_0002
(ここで、 Ri〜R8は水素原子、 置換又は非置換の炭素数 1〜 10の一価の炭 化水素基から選ばれ、 これらは全てが同一でも異なっていてもよい。 nは 0〜 (Where Ri to R 8 are selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, all of which may be the same or different; n is 0 to
3の整数を示す。 )  Indicates an integer of 3. )
上記一般式 (III) で示されるビフエ二ル型エポキシ樹脂としては、 たとえば、 4, 4' 一ビス (2, 3—エポキシプロボキシ) ビフエニル又は 4, 4' —ビ ス (2, 3—エポキシプロボキシ) —3, 3 ' , 5, 5 ' ーテトラメチルビフ ェニルを主成分とするエポキシ樹脂、 ェピクロルヒドリンと 4, 4' —ビフエ ノール又は 4, 4, - (3, 3 ' , 5, 5 ' —テトラメチル) ビフエノールと を反応させて得られるエポキシ樹脂等が挙げられる。 なかでも 4, 4' 一ビス  Examples of the biphenyl type epoxy resin represented by the general formula (III) include 4,4′-bis (2,3-epoxypropoxy) biphenyl and 4,4′-bis (2,3-epoxy). Propoxy) —3,3 ', 5,5'-tetramethylbiphenyl-based epoxy resin, epichlorohydrin and 4,4'-biphenol or 4,4,-(3,3' , 5,5'-tetramethyl) biphenol and an epoxy resin obtained by the reaction. Above all, 4, 4 'one screw
(2, 3—エポキシプロボキシ) —3, 3' , 5, 5 ' ーテトラメチルビフエ ニルを主成分とするエポキシ樹脂が好ましい。  (2,3-Epoxypropoxy) —Epoxy resin containing 3,3 ′, 5,5′-tetramethylbiphenyl as a main component is preferred.
上記一般式 (XXXXXIV) で示されるビスフエノール F型エポキシ樹脂はとし ては、 たとえば、 R1, R3、 R6及び R8がメチル基で、 R2、 R4、 R5及び R7 が水素原子であり、 n=0を主成分とする YSLV— 80XY (東都化成株式 会社製) が市販品として入手可能である。 The bisphenol F-type epoxy resin represented by the general formula (XXXXXIV) may be, for example, a compound in which R 1 , R 3 , R 6 and R 8 are methyl groups and R 2 , R 4 , R 5 and R 7 are YSLV-80XY (manufactured by Toto Kasei Co., Ltd.), which is a hydrogen atom and whose main component is n = 0, is available as a commercial product.
上記一般式 (IV) で示されるスチルベン型エポキシ樹脂は、 原料であるスチ ルペン系フエノール類とェピクロルヒドリンとを塩基性物質存在下で反応させ て得ることができる。 この原料であるスチルベン系フエノール類としては、 た とえば 3 _ t—プチルー 4, 4 ' —ジヒドロキシ— 3 ' , 5 , 5 ' _トリメチ ルスチルベン、 3— t _ブチル—4 , 4 ' ージヒドロキシー 3 ' , 5 ' , 6 - トリメチルスチルベン、 4, 4 ' —ジヒドロキシ— 3, 3 ' , 5 , 5, —テト ラメチルスチルベン、 4, 4, —ジヒドロキシー 3, 3, ージ— t—ブチル— 5, 5, 一ジメチルスチルベン、 4, 4 ' —ジヒドロキシ— 3 , 3, ージ— t 一プチルー 6, 6 ' —ジメチルスチルベン等が挙げられ、 なかでも 3— tーブ チルー 4, 4 ' ージヒドロキシ一 3 ' , 5 , 5 ' 一トリメチルスチルベン、 及 ぴ 4, 4 ' —ジヒドロキシ一 3 , 3 ' , 5 , 5 ' ーテトラメチルスチルベンが 好ましい。 これらのスチルベン型フエノール類は単独で用いても 2種以上を組 み合わせて用いてもよい。 The stilbene-type epoxy resin represented by the general formula (IV) can be obtained by reacting styrene-based phenols, which are raw materials, and epichlorohydrin in the presence of a basic substance. The stilbene phenols, which are the raw materials, include For example, 3_t-butyl-4,4'-dihydroxy-3 ', 5,5'_trimethylstilbene, 3-t_butyl-4,4'dihydroxy-3', 5 ', 6-trimethylstilbene, 4,4 '-Dihydroxy-3,3', 5,5, -tetramethylstilbene, 4,4, -dihydroxy-3,3, di-t-butyl-5,5,1-dimethylstilbene, 4,4'- Dihydroxy-3,3, di-t-butyl-6,6'-dimethylstilbene, etc., among which 3-t-butyl-4,4'-dihydroxy-1-3 ', 5,5'-trimethylstilbene, andぴ 4,4'-dihydroxy-1,3,3,5,5'-tetramethylstilbene is preferred. These stilbene-type phenols may be used alone or in combination of two or more.
上記一般式 (V) で示される硫黄原子含有エポキシ樹脂のなかでも、 Ri〜R 8が水素原子、 置換又は非置換の炭素数 1〜 1 0のアルキル基及び置換又は非置 換の炭素数 1〜1 0のアルコキシ基から選ばれるエポキシ樹脂が好ましく、 Ri、 R4、 R5及び R8が水素原子で、 R2、 R3、 R6及び R7がアルキル基であるェポ キシ樹脂がより好ましく、 R R4、 R5及び Rsが水素原子で、 R2及び R7がメ チル基で、 R3及び R6が t一ブチル基であるエポキシ樹脂がさらに好ましい。 このような化合物としては、 Y S L V— 1 2 0 T E (東都化成株式会社製)等が 市販品として入手可能である。 Among the sulfur atom-containing epoxy resins represented by the general formula (V), Ri to R 8 are a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, and a substituted or unsubstituted carbon group having 1 to 10 carbon atoms. Epoxy resins selected from alkoxy groups of 10 to 10 are preferred, and epoxy resins in which Ri, R 4 , R 5 and R 8 are hydrogen atoms and R 2 , R 3 , R 6 and R 7 are alkyl groups are preferred. More preferred is an epoxy resin in which RR 4 , R 5 and Rs are hydrogen atoms, R 2 and R 7 are methyl groups, and R 3 and R 6 are t-butyl groups. As such a compound, YSLV-12TE (manufactured by Toto Kasei Co., Ltd.) and the like are commercially available.
これらのエポキシ樹脂はいずれか 1種を単独で用いても 2種以上を組み合わ せて用いてもよいが、 その配合量は、 その性能を発揮するためにエポキシ樹脂 全量に対して合わせて 2 0重量%以上とすることが好ましく、 3 0重量%以上 がより好ましく、 5 0重量%以上とすることがさらに好ましい。  Any of these epoxy resins may be used alone or in combination of two or more. However, the amount of the epoxy resin is 20 to the total amount of the epoxy resin in order to exhibit its performance. %, More preferably at least 30% by weight, even more preferably at least 50% by weight.
ノポラック型エポキシ樹脂としては、 たとえば下記一般式 (VI) で示される エポキシ樹脂等が挙げられる。
Figure imgf000012_0001
Examples of the nopolak type epoxy resin include an epoxy resin represented by the following general formula (VI).
Figure imgf000012_0001
(ここで、 Rは水素原子及び炭素数 1〜 1 0の置換又は非置換の一価の炭化水 素基から選ばれ、 nは 0〜1 0の整数を示す。 ) 上記一般式 (VI) で示されるノポラック型エポキシ樹脂は、 ノポラック型フ エノ一ル榭脂にェピクロルヒドリンを反応させることによって容易に得られる。 なかでも、 一般式 (VI) 中の Rとしては、 メチル基、 ェチル基、 プロピル基、 ブチル基、 イソプロピル基、 イソブチル基等の炭素数 1〜1 0のアルキル基、 メトキシ基、 エトキシ基、 プロポキシ基、 ブトキシ基等の炭素数 1〜1 0のァ ルコキシル基が好ましく、 水素原子又はメチル基がより好ましい。 nは 0〜3 の整数が好ましい。 上記一般式 (VI) で示されるノポラック型エポキシ樹脂の なかでも、 オルトクレゾ一ルノポラック型エポキシ樹脂が好ましい。 (Here, R is selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and n represents an integer of 0 to 10.) The nopolak-type epoxy resin represented by the general formula (VI) can be easily obtained by reacting nopolak-type phenol resin with epichlorohydrin. Among them, R in the general formula (VI) is an alkyl group having 1 to 10 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, an isobutyl group, a methoxy group, an ethoxy group, a propoxy group. Alkoxyl groups having 1 to 10 carbon atoms, such as butoxy and butoxy, are preferred, and hydrogen and methyl are more preferred. n is preferably an integer of 0 to 3. Among the nopolak epoxy resins represented by the general formula (VI), orthocresol nopolak epoxy resins are preferred.
ノポラック型エポキシ樹脂を使用する場合、 その配合量は、 その性能を発揮 するためにエポキシ樹脂全量に対して 2 0重量%以上とすることが好ましく、 3 0重量%以上がより好ましい。  When a nopolak type epoxy resin is used, its amount is preferably at least 20% by weight, more preferably at least 30% by weight, based on the total amount of the epoxy resin in order to exhibit its performance.
ジシクロペンタジェン型エポキシ樹脂としては、 たとえば下記一般式 (VII) で示されるエポキシ樹脂等が挙げられる。  Examples of the dicyclopentadiene type epoxy resin include an epoxy resin represented by the following general formula (VII).
Figure imgf000013_0001
Figure imgf000013_0001
(ここで、 Ri及び R2は水素原子及び炭素数 1〜 1 0の置換又は非置換の一価 の炭化水素基からそれぞれ独立して選ばれ、 nは 0〜1 0の整数を示し、 mは 0〜 6の整数を示す。 ) (Where Ri and R 2 are each independently selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, n represents an integer of 0 to 10, m Represents an integer of 0 to 6.)
上記式 (VII) 中の Riとしては、 たとえば、 水素原子、 メチル基、 ェチル基、 プロピル基、 ブチル基、 イソプロピル基、 t _ブチル基等のアルキル基、 ビニ ル基、 ァリル基、 ブテニル基等のアルケニル基、 ハロゲン化アルキル基、 アミ ノ基置換アルキル基、 メルカプト基置換アルキル基などの炭素数 1〜1 0の置 換又は非置換の一価の炭化水素基が挙げられ、 なかでもメチル基、 ェチル基等 のアルキル基及び水素原子が好ましく、 メチル基及び水素原子がより好ましい。 R2としては、 たとえば、 水素原子、 メチル基、 ェチル基、 プロピル基、 ブチル 基、 イソプロピル基、 t _ブチル基等のアルキル基、 ビニル基、 ァリル基、 ブ テニル基等のアルケニル基、 ハロゲン化アルキル基、 アミノ基置換アルキル基、 メルカプト基置換アルキル基などの炭素数 1〜 1 0の置換又は非置換の一価の 炭化水素基が挙げられ、 なかでも水素原子が好ましい。 Ri in the above formula (VII) includes, for example, a hydrogen atom, an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group and a t-butyl group, a vinyl group, an aryl group, a butenyl group, and the like. A substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, such as an alkenyl group, a halogenated alkyl group, an amino group-substituted alkyl group, or a mercapto group-substituted alkyl group; Preferred are an alkyl group such as a methyl group and a hydrogen atom, and more preferred are a methyl group and a hydrogen atom. R 2 includes, for example, a hydrogen atom, an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, and a t_butyl group; an alkenyl group such as a vinyl group, an aryl group and a butenyl group; Alkyl group, amino-substituted alkyl group, Examples thereof include a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, such as a mercapto group-substituted alkyl group, with a hydrogen atom being preferred.
ジシクロペンタジェン型エポキシ樹脂を使用する場合、 その配合量は、 その 性能を発揮するためにエポキシ樹脂全量に対して 2 0重量%以上とすることが 好ましく、 3 0重量%以上がより好ましい。  When a dicyclopentadiene-type epoxy resin is used, its amount is preferably at least 20% by weight, more preferably at least 30% by weight, based on the total amount of the epoxy resin in order to exhibit its performance.
ナフタレン型エポキシ樹脂としてはたとえば下記一般式 (VHI) で示される エポキシ樹脂等が挙げられ、 トリフエニルメタン型エポキシ樹脂としてはたと えば下記一般式 (IX) で示されるエポキシ樹脂等が挙げられる。  Examples of the naphthalene type epoxy resin include an epoxy resin represented by the following general formula (VHI), and examples of the triphenylmethane type epoxy resin include an epoxy resin represented by the following general formula (IX).
下記一般式 (VIII) で示されるナフタレン型エポキシ樹脂としては、 1個の 構成単位及び m個の構成単位をランダムに含むランダム共重合体、 交互に含む 交互共重合体、 規則的に含む共重合体、 ブロック状に含むブロック共重合体が 挙げられ、 これらのいずれか 1種を単独で用いても、 2種以上を組み合わせて 用いてもよい。 また、 下記一般式 (IX) で示されるトリフヱニルメタン型ェポ キシ樹脂としては特に制限はないが、 サリチルアルデヒド型エポキシ樹脂が好 ましい。  The naphthalene type epoxy resin represented by the following general formula (VIII) includes a random copolymer containing one structural unit and m structural units at random, an alternating copolymer containing alternately, and a copolymer containing regularly. Examples thereof include block copolymers containing in a united or block form, and any one of these may be used alone, or two or more may be used in combination. Further, the triphenylmethane-type epoxy resin represented by the following general formula (IX) is not particularly limited, but a salicylaldehyde-type epoxy resin is preferable.
Figure imgf000014_0001
Figure imgf000014_0001
ここで、 Ri〜R3は水素原子及び置換又は非置換の炭素数 1〜1 2の一価の 炭化水素基から選ばれ、 これらは全てが同一でも異なっていてもよい。 pは 1 又は 0で、 1、 mはそれぞれ 0〜1 1の整数であって、 (1 +m) が 1〜1 1 の整数でかつ ( 1 + p ) が 1〜1 2の整数となるよう選ばれる。 iは 0〜3の 整数、 jは 0〜2の整数、 kは 0〜4の整数を示す。 ) Here, Ri to R 3 are selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 12 carbon atoms, all of which may be the same or different. p is 1 or 0, 1 and m are integers from 0 to 11 respectively, (1 + m) is an integer from 1 to 11 and (1 + p) is an integer from 1 to 12 Is chosen. i is an integer of 0-3, j is an integer of 0-2, and k is an integer of 0-4. )
Figure imgf000014_0002
(ここで、 Rは水素原子及び炭素数 1〜 1 0の置換又は非置換の一価の炭化水 素基から選ばれ、 nは 1〜1 0の整数を示す。 )
Figure imgf000014_0002
(Where R is selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and n represents an integer of 1 to 10).
これらのエポキシ樹脂はいずれか 1種を単独で用いても両者を組み合わせて 用いてもよいが、 その配合量は、 その性能を発揮するためにエポキシ樹脂全量 に対して合わせて 2 0重量%以上とすることが好ましく、 3 0重量%以上がょ り好ましく、 5 0重量%以上とすることがさらに好ましい。  One of these epoxy resins may be used alone or in combination of the two. However, the amount of the epoxy resin is 20% by weight or more based on the total amount of the epoxy resin in order to exhibit its performance. It is preferably at least 30% by weight, more preferably at least 50% by weight.
上記のビフエ二ル型エポキシ樹脂、 スチルベン型エポキシ樹脂、 硫黄原子含 有エポキシ樹脂、 ノポラック型エポキシ樹脂、 ジシクロペンタジェン型ェポキ シ樹脂、 ナフ夕レン型エポキシ樹脂及びトリフエニルメタン型エポキシ樹脂は、 いずれか 1種を単独で用いても 2種以上を組み合わせて用いてもよいが、 その 配合量はエポキシ樹脂全量に対して合わせて 5 0重量%以上とすることが好ま しく、 6 0重量%以上がより好ましく、 8 0重量%以上がさらに好ましい。  The above biphenyl-type epoxy resin, stilbene-type epoxy resin, sulfur-atom-containing epoxy resin, nopolak-type epoxy resin, dicyclopentadiene-type epoxy resin, naphthylene-type epoxy resin and triphenylmethane-type epoxy resin are: Any one of them may be used alone or two or more of them may be used in combination. However, the compounding amount is preferably 50% by weight or more based on the total amount of epoxy resin, and 60% by weight or more. More preferably, the content is 80% by weight or more.
(B) 硬化剤  (B) Curing agent
本発明において用いられる (B ) 硬化剤は、 封止用エポキシ樹脂成形材料に 一般に使用されているもので特に制限はないが、 たとえば、 フエノール、 クレ ゾール、 レゾルシン、 カテコール、 ビスフエノール A、 ビスフエノール F、 フ ェニルフエノール、 ァミノフエノール等のフエノール類及び/又は α _ナフト ール、 /3—ナフトール、 ジヒドロキシナフタレン等のナフトール類とホルムァ ルデヒド、 ベンズアルデヒド、 サリチルアルデヒド等のアルデヒド基を有する 化合物とを酸性触媒下で縮合又は共縮合させて得られるノポラック型フエノー ル樹脂、 フエノール類及び Ζ又はナフトール類とジメトキシパラキシレン又は ビス (メトキシメチル) ビフエニルから合成されるフエノール ·ァラルキル樹 脂、 ナフトール ·ァラルキル樹脂等のァラルキル型フエノール樹脂、 フエノー ル類及び 又はナフトール類とシクロペンタジェンから共重合により合成され る、 ジクロペン夕ジェン型フエノールノポラック樹脂、 ナフトールノポラック 樹脂等のジクロペン夕ジェン型フエノ一ル樹脂、 テルべン変性フエノ一ル樹脂 などが挙げられ、 これらを単独で用いても 2種以上を組み合わせて用いてもよ い。  The curing agent (B) used in the present invention is not particularly limited, and is generally used for an epoxy resin molding material for sealing. Examples thereof include phenol, cresol, resorcinol, catechol, bisphenol A, and bisphenol. F, phenols such as phenylphenol and aminophenol, and / or naphthols such as α_naphthol, / 3-naphthol and dihydroxynaphthalene and compounds having an aldehyde group such as formaldehyde, benzaldehyde and salicylaldehyde. Nopolak phenolic resin obtained by condensation or cocondensation in the presence of an acidic catalyst, phenols and phenols synthesized from phenols and 及 び or naphthols and dimethoxyparaxylene or bis (methoxymethyl) biphenyl, naphthol aralkyl Resin-based aralkyl-type phenolic resins, phenols and / or naphthols and cyclopentadiene, and synthesized by copolymerization from cyclopentadiene, such as diclopen-phenol-type phenol nopolak resin and naphthol-no-polak resin, etc. And terbene-modified phenolic resins. These may be used alone or in combination of two or more.
なかでも、 難燃性の観点からはビフエニル型フエノール樹脂が好ましく、 耐 リフロー性及び硬化性の観点からはァラルキル型フエノ一ル樹脂が好ましく、 低吸湿性の観点からはジシク口ペン夕ジェン型フエノ一ル樹脂が好ましく、 耐 熱性、 低膨張率及び低そり性の観点からはトリフエニルメタン型フエノ一ル樹 脂が好ましく、 硬化性の観点からはノポラック型フエノール樹脂が好ましく、 これらのフエノール樹脂の少なくとも 1種を含有していることが好ましい。 Among them, biphenyl-type phenol resins are preferable from the viewpoint of flame retardancy, and aralkyl-type phenol resins are preferable from the viewpoint of reflow resistance and curability. From the viewpoint of low hygroscopicity, dispersing pen-type pen-type phenol resin is preferable.From the viewpoint of heat resistance, low expansion coefficient and low warpage, triphenyl methane-type phenol resin is preferable, and from the viewpoint of curability. Therefore, a nopolak type phenol resin is preferable, and it is preferable to contain at least one of these phenol resins.
ビフエ二ル型フエノール樹脂としては、 たとえば下記一般式 (X) で示され るフエノ一ル樹脂等が挙げられる。  Examples of the biphenyl type phenol resin include a phenol resin represented by the following general formula (X).
Figure imgf000016_0001
Figure imgf000016_0001
上記式 (X) 中の R i〜R 9は全てが同一でも異なっていてもよく、 水素原子、 メチル基、 ェチル基、 プロピル基、 ブチル基、 イソプロピル基、 イソブチル基 等の炭素数 1〜1 0のアルキル基、 メトキシ基、 エトキシ基、 プロポキシ基、 ブトキシ基等の炭素数 1〜1 0のアルコキシル基、 フエニル基、 トリル基、 キ シリル基等の炭素数 6〜1 0のァリール基、 及び、 ベンジル基、 フエネチル基 等の炭素数 6〜1 0のァラルキル基から選ばれ、 なかでも水素原子とメチル基 が好ましい。 nは 0〜1 0の整数を示す。 All R i~R 9 in the formula (X) is well be the same or different, a hydrogen atom, a methyl group, Echiru group, propyl group, butyl group, an isopropyl group, carbon number 1 to 1, such as an isobutyl group An alkyl group having 0 to 10 carbon atoms such as an alkoxyl group having 1 to 10 carbon atoms such as a methoxy group, an ethoxy group, a propoxy group, and a butoxy group, a phenyl group, a tolyl group, and a aryl group having 6 to 10 carbon atoms such as a xylyl group; and And aralkyl groups having 6 to 10 carbon atoms, such as benzyl group and phenethyl group, and among them, a hydrogen atom and a methyl group are preferable. n shows the integer of 0-10.
上記一般式 (X) で示されるビフエ二ル型フエノール樹脂としては、 たとえ ば Ri〜R 9が全て水素原子である化合物等が挙げられ、 なかでも溶融粘度の観 点から、 nが 1以上の縮合体を 5 0重量%以上含む縮合体の混合物が好ましい。 このような化合物としては、 M E H— 7 8 5 1 (明和化成株式会社製商品名) が市販品として入手可能である。 Examples of the biphenyl type phenolic resin represented by the general formula (X) include compounds in which all of Ri to R 9 are hydrogen atoms. Among them, from the viewpoint of melt viscosity, n is 1 or more. A mixture of the condensate containing 50% by weight or more of the condensate is preferable. As such a compound, MEH-7885 (trade name of Meiwa Kasei Co., Ltd.) is available as a commercial product.
ビフエニル型フエノール樹脂を使用する場合、 その配合量は、 その性能を発 揮するために硬化剤全量に対して 3 0重量%以上とすることが好ましく、 5 0 重量%以上がより好ましく、 6 0重量%以上がさらに好ましい。  When a biphenyl-type phenol resin is used, its blending amount is preferably at least 30% by weight, more preferably at least 50% by weight, and more preferably at least 50% by weight, in order to exert its performance. % By weight or more is more preferable.
ァラルキル型フエノール樹脂としては、 たとえばフエノール ·ァラルキル樹 脂、 ナフトール ·ァラルキル樹脂等が挙げられ、 下記一般式 (XI) で示される フエノール ·ァラルキル樹脂が好ましく、 一般式 (XI) 中の Rが水素原子で、 nの平均値が 0〜8であるフエノール ·ァラルキル樹脂がより好ましい。 具体 例としては、 p—キシリレン型フエノール ·ァラルキル樹脂、 m—キシリレン 型フエノール ·ァラルキル樹脂等が挙げられる。 これらのァラルキル型フエノ ール樹脂を用いる場合、 その配合量は、 その性能を発揮するために硬化剤全量 に対して 3 0重量%以上とすることが好ましく、 5 0重量%以上がより好まし い。 Examples of the aralkyl-type phenolic resin include a phenol-aralkyl resin and a naphthol-aralkyl resin.The phenol-aralkyl resin represented by the following general formula (XI) is preferable, and R in the general formula (XI) is a hydrogen atom. The phenol aralkyl resin having an average value of n of 0 to 8 is more preferable. Specific examples include p-xylylene-type phenol-aralkyl resin, m-xylylene Type phenols and aralkyl resins. When these aralkyl-type phenol resins are used, the compounding amount thereof is preferably at least 30% by weight, more preferably at least 50% by weight, based on the total amount of the curing agent in order to exhibit the performance. No.
(XI)
Figure imgf000017_0001
(XI)
Figure imgf000017_0001
(ここで、 Rは水素原子及び炭素数 1〜 1 0の置換又は非置換の一価の炭化水 素基から選ばれ、 nは 0〜1 0の整数を示す。 )  (Here, R is selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and n represents an integer of 0 to 10.)
ジシクロペン夕ジェン型フエノール樹脂としては、 たとえば下記一般式 (XII) で示されるフエノール樹脂等が挙げられる。  Examples of the dicyclopentene-type phenol resin include a phenol resin represented by the following general formula (XII).
Figure imgf000017_0002
Figure imgf000017_0002
(ここで、 Ri及び R2は水素原子及び炭素数 1〜1 0の置換又は非置換の一価 の炭化水素基からそれぞれ独立して選ばれ、 nは 0〜1 0の整数を示し、 mは(Where Ri and R 2 are each independently selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, n represents an integer of 0 to 10, m Is
0〜6の整数を示す。 ) Indicates an integer from 0 to 6. )
ジシクロペン夕ジェン型フエノール樹脂を用いる場合、 その配合量は、 その 性能を発揮するために硬化剤全量に対して 3 0重量%以上とすることが好まし く、 5 0重量%以上がより好ましい。  When a dicyclopentene phenolic resin is used, its amount is preferably at least 30% by weight, more preferably at least 50% by weight, based on the total amount of the curing agent in order to exhibit its performance.
トリフエニルメタン型フエノール樹脂としては、 たとえば下記一般式 Examples of triphenylmethane-type phenolic resins include, for example,
(XIII) や (XIV) で示されるフエノール樹脂等が挙げられる。 下記一般式And phenolic resins represented by (XIII) and (XIV). The following general formula
(XIII) で示されるトリフエニルメタン型フエノール樹脂としては特に制限は ないが、 たとえば、 サリチルアルデヒド型フエノール樹脂、 o—ヒドロキシべ ンズアルデヒド型フエノール樹脂、 m—ヒドロキシベンズアルデヒド型フエノ ール樹脂等が挙げられ、 これらの 1種を単独で用いても 2種以上を組み合わせ て用いてもよい。 なかでもサリチルアルデヒド型フエノール樹脂が好ましい。 下記一般式 (XIV) で示されるトリフエニルメタン型フエノール樹脂としては 特に制限はないが、 必要に応じて、 P—キシリレン型フエノール ·ァラルキル 樹脂と共重合したものを用いてもよい。 The triphenylmethane type phenolic resin represented by (XIII) is not particularly limited, and examples thereof include salicylaldehyde type phenolic resin, o-hydroxybenzaldehyde type phenolic resin, m-hydroxybenzaldehyde type phenolic resin and the like. These may be used alone or in combination of two or more. Among them, salicylaldehyde type phenol resins are preferred. As a triphenylmethane-type phenol resin represented by the following general formula (XIV), There is no particular limitation, but if necessary, a resin copolymerized with a P-xylylene type phenol-aralkyl resin may be used.
Figure imgf000018_0001
Figure imgf000018_0001
(ここで、 Rは水素原子及び炭素数 1〜 1 0の置換又は非置換の一価の炭化水 素基から選ばれ、 nは 1〜 1 0の整数を示す。 - (Where R is selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and n represents an integer of 1 to 10;
Figure imgf000018_0002
Figure imgf000018_0002
(ここで、 Rは水素原子及び炭素数 1〜 1 0の置換又は非置換の一価の炭化水 素基から選ばれ、 nは 1〜 1 0の整数を示す。 )  (Where R is selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and n represents an integer of 1 to 10).
トリフエニルメタン型フエノール樹脂を用いる場合、 その配合量は、 その性 能を発揮するために硬化剤全量に対して 3 0重量%以上とすることが好ましぐ 5 0重量%以上がより好ましい。  When a triphenylmethane-type phenol resin is used, its blending amount is preferably at least 30% by weight, more preferably at least 50% by weight, based on the total amount of the curing agent in order to exhibit its performance.
ノポラック型フエノール樹脂としては、 たとえばフエノールノポラック樹脂、 クレゾールノポラック樹脂、 ナフトールノポラック樹脂等が挙げられ、 なかで もフエノールノポラック樹脂が好ましい。 ノポラック型フエノール榭脂を用い る場合、 その配合量は、 その性能を発揮するために硬化剤全量に対して 3 0重 量%以上とすることが好ましく、 5 0重量%以上がより好ましい。  Examples of the nopolak-type phenol resin include a phenol nopolak resin, a cresol nopolak resin, and a naphthol nopolak resin. Among them, a phenol nopolak resin is preferable. When a nopolak type phenol resin is used, its amount is preferably at least 30% by weight, more preferably at least 50% by weight, based on the total amount of the curing agent in order to exhibit its performance.
上記のビフエ二ル型フエノール樹脂、 ァラルキル型フエノール樹脂、 ジシク 口ペンタジェン型フエノール樹脂、 トリフエニルメタン型フエノール樹脂及び ノポラック型フエノール樹脂は、 いずれか 1種を単独で用いても 2種以上を組 合わせて用いてもよいが、 その配合量は硬化剤全量に対して合わせて 6 0重 量%以上とすることが好ましく、 80重量%以上がより好ましい。 The above-mentioned biphenyl-type phenolic resin, aralkyl-type phenolic resin, dicyclopentene-type phenolic resin, triphenylmethane-type phenolic resin and nopolak-type phenolic resin can be used alone or in combination of two or more. May be used, but the compounding amount is 60 times the total amount of the curing agent. % Or more, more preferably 80% by weight or more.
(A) エポキシ樹脂と (B) 硬化剤との当量比、 すなわち、 エポキシ樹脂中 のエポキシ基数に対する硬化剤中の水酸基数の比 (硬化剤中の水酸基数ノェポ キシ樹脂中のエポキシ基数) は、 特に制限はないが、 それぞれの未反応分を少 なく抑えるために 0. 5〜2の範囲に設定されることが好ましく、 0. 6〜1. 3がより好ましい。 成形性及び耐リフロ一性に優れる封止用エポキシ樹脂成形 材料を得るためには 0. 8〜1. 2の範囲に設定されることがさらに好ましい。  The equivalent ratio of (A) the epoxy resin to (B) the curing agent, that is, the ratio of the number of hydroxyl groups in the curing agent to the number of epoxy groups in the epoxy resin (the number of hydroxyl groups in the curing agent and the number of epoxy groups in the epoxy resin) is Although there is no particular limitation, it is preferably set to a range of 0.5 to 2, and more preferably 0.6 to 1.3, in order to minimize the amount of each unreacted component. In order to obtain an epoxy resin molding material for sealing excellent in moldability and reflow resistance, it is more preferable to set the ratio in the range of 0.8 to 1.2.
(C) ホウ酸系難燃剤  (C) Boric acid flame retardant
本発明において用いられる (C) ホウ酸系難燃剤としては、 (C 1) 無水ホ ゥ酸塩、 (C2) ホウ酸亜鉛及び (C3) 無水ホウ酸亜鉛を用いることができ る。  As the (C) boric acid-based flame retardant used in the present invention, (C 1) boric anhydride, (C2) zinc borate and (C3) zinc borate anhydride can be used.
本発明において用いられる (C 1) 無水ホウ酸塩としては、 難燃剤として作 用するもので、 本発明の効果が得られれば特に制限はなく、 たとえば、 下記組 成式 (I) で示される無水ホウ酸金属塩等が挙げられる。  The (C 1) anhydrous borate used in the present invention acts as a flame retardant, and is not particularly limited as long as the effects of the present invention can be obtained. For example, it is represented by the following formula (I) And metal salts of boric anhydride.
m(MxOy) · n(B23) (I) m (MxOy) n (B 23 ) (I)
(ここで、 Mは金属元素を示し、 m、 n、 x、 yは、 それぞれ独立に正の数で ある。 )  (Here, M represents a metal element, and m, n, x, and y are each independently a positive number.)
組成式 (I) で示される無水ホウ酸金属塩としては、 たとえば、 無水ホウ酸 メラミン、 無水ペン夕ホウ酸アンモニゥム等の無水ホウ酸有機塩、 無水ホウ酸 リン酸亜鉛等の無水複合酸金属塩、 無水ホウ酸リチウム、 無水ホウ酸ナトリウ ム、 無水ホウ酸カリウム、 無水ホウ酸ルビジウム、 無水ホウ酸べリウム、 無水 ホウ酸マグネシウム、 無水ホウ酸カルシウム、 無水ホウ酸ストロンチウム、 無 水ホウ酸バリウム、 無水ホウ酸チタン、 無水ホウ酸クロム、 無水ホウ酸モリブ デン、 無水ホウ酸鉄、 無水ホウ酸コバルト、 無水ホウ酸ニッケル、 無水ホウ酸 パラジウム、 無水ホウ酸銅、 無水ホウ酸銀、 無水ホウ酸金、 無水ホウ酸亜鉛、 無水ホウ酸カドミウム、 無水ホウ酸アルミニウム、 無水ホウ酸ガリウム、 無水 ホウ酸ゲルマニウム、 無水ホウ酸スズ、 無水ホウ酸鉛、 無水ホウ酸アンチモン、 無水ホウ酸ビスマス等が挙げられ、 これらの 1種を単独で用いても、 2種以上 を併用してもよい。  Examples of the metal borate anhydride represented by the composition formula (I) include, for example, organic acid salts of boric anhydride such as melamine anhydride borate, ammonium borate anhydride, and complex acid metal salts of anhydrous boric acid such as zinc phosphate. , Anhydrous lithium borate, anhydrous sodium borate, anhydrous potassium borate, anhydrous rubidium borate, anhydrous beryllium, anhydrous magnesium borate, anhydrous calcium borate, anhydrous strontium borate, anhydrous barium borate, anhydrous Titanium borate, anhydrous chromium borate, anhydrous molybdenum borate, anhydrous iron borate, anhydrous cobalt borate, anhydrous nickel borate, anhydrous palladium borate, anhydrous copper borate, anhydrous silver borate, anhydrous gold borate, Anhydrous zinc borate, anhydrous cadmium borate, anhydrous aluminum borate, anhydrous gallium borate, anhydrous germanic borate And anhydrous tin borate, anhydrous lead borate, anhydrous antimony borate, anhydrous bismuth borate, and the like. One of these may be used alone, or two or more thereof may be used in combination.
なかでも、 封止材にした際の抽出液特性を良好にするためには、 無水ホウ酸 塩の 25 °Cにおける水に対する溶解度が、 水 100gに対して lg以下であるこ とが好ましく、 0. 1 g以下であることがさらに好ましい。 ここで、 水に対す る溶解度は、 純水 100m 1に無水ホウ酸塩 10 gを投入し、 25 Όで 30分 攪拌した後、 上澄み液 10 c cをピペットで吸い取り、 100°C/24h恒温 槽に放置し乾燥させ、 残留物を秤量し、 純水 10 Oml (100 g) あたりに 換算して求めた値をいう。 Above all, in order to improve the properties of the extract when used as a sealing material, boric anhydride The solubility of the salt in water at 25 ° C. is preferably lg or less, more preferably 0.1 g or less, per 100 g of water. Here, the solubility in water is determined by adding 10 g of anhydrous borate to 100 ml of pure water, stirring at 25 ° C for 30 minutes, sucking 10 cc of the supernatant with a pipette, and incubating at 100 ° C for 24 hours. This is the value obtained by weighing the residue and converting it to 10 Oml (100 g) of pure water.
水に対する溶解度の観点から、 組成式 (I) 中の Mがアルカリ金属及びアル カリ土類金属以外から選ばれる金属元素である無水ホウ酸金属塩が好ましい。 水に対する溶解度が高いと、 封止材の抽出液特性が悪化する。 特に抽出液電気 伝導度が上昇する為、 半導体装置のバイアステスト等での信頼性低下が懸念さ れる。 なお、 金属元素の分類は、 典型元素を A亜族、 遷移元素を B亜族とする 長周期型の周期率表 (出典:共立出版株式会社発行 「化学大辞典 4」 1987 年 2月 15日縮刷版第 30刷) に基づいて行った。  From the viewpoint of solubility in water, a metal borate anhydride in which M in the composition formula (I) is a metal element selected from a group other than an alkali metal and an alkaline earth metal is preferable. If the solubility in water is high, the extraction liquid characteristics of the sealing material are deteriorated. In particular, since the electrical conductivity of the extract increases, there is a concern that the reliability of the semiconductor device in a bias test or the like may decrease. The classification of metal elements is based on the long-period periodic table with the typical element being subgroup A and the transition element being subgroup B. (Source: Chemical Dictionary 4 by Kyoritsu Shuppan Co., Ltd., February 15, 1987) 30th printing).
また、 本発明において組成式 (I) 中の Mを表わす 「アルカリ金属及びアル カリ土類金属以外から選ばれる金属元素」 とは、 上記の長周期型の周期率表 (出典:共立出版株式会社発行 「化学大辞典 4」 1987年 2月 15日縮刷版 第 30刷) における ΙΠΒ族〜 IB族に属する遷移金属元素及び ΠΒ族〜 VIA族 に属する典型金属元素であって、 IA族及び IIA族に属する典型金属元素 (すな わちアルカリ金属及びアルカリ土類金属) を除く元素をいう。 具体的には、 原 子番号 13、 21〜32、 39〜51、 57〜 84及び 89〜; 102の金属元 素をいう。  In the present invention, the “metal element selected from other than the alkali metal and the alkaline earth metal” representing M in the composition formula (I) refers to the long-period type periodic table (Source: Kyoritsu Shuppan Co., Ltd.) Published “Chemical Encyclopedia 4”, a reduced edition of February 15, 1987, No. 30), a transition metal element belonging to Group ΙΠΒ to Group IB and a typical metal element belonging to Group 〜 to Group VIA. Refers to elements other than the typical metal elements (that is, alkali metals and alkaline earth metals) belonging to. Specifically, it refers to a metal element having an atomic number of 13, 21 to 32, 39 to 51, 57 to 84, and 89 to 102.
さらに、 入手しやすさの観点から、 組成式 (I) 中の Mが Co、 Zn、 A 1 及び B iから選ばれる金属元素である無水ホウ酸金属塩が好ましい。 具体的に は、 下記組成式 (XV) 、 (XVI) 、 (XVII) 、 (XVIII) 等で示される無水ホ ゥ酸コバルト、 下記組成式 (II) 、 (XIX) 、 (XX) 、 (XXI) 、 (XXII) 等 で示される無水ホウ酸亜鉛、 下記組成式 (XXIII) 、 (XXIV) 、 (XXV) 等で 示される無水ホウ酸アルミニウム、 下記組成式 (XXVI) 等で示される無水ホ ゥ酸ビスマス等が挙げられ、 なかでも、 経済性、 供給性及びホウ酸含有量の観 点からは下記組成式 (II) で示される無水ホウ酸亜鉛が好ましい。 安全性の観 点からは下記組成式 (XXVI) で示される無水ホウ酸ビスマスが好ましい。 巿 販品としては、 下記組成式 (II) で示される無水ホウ酸亜鉛として BORAX社 製商品名 FB— 500が、 下記組成式 (ΧΧΠΙ) で示される無水ホウ酸アルミ ニゥムとして四国化成株式会社製商品名ァルポライト PF 08 Tが、 それぞれ 入手可能である。 Further, from the viewpoint of availability, a metal borate anhydride in which M in the composition formula (I) is a metal element selected from Co, Zn, A 1 and Bi is preferable. Specifically, anhydrous cobalt borate represented by the following composition formulas (XV), (XVI), (XVII), (XVIII), etc., and the following composition formulas (II), (XIX), (XX), (XXI) ), Anhydrous zinc borate represented by (XXII), etc., anhydrous aluminum borate represented by the following composition formulas (XXIII), (XXIV), (XXV), etc., and anhydrous boron borate represented by the following composition formula (XXVI), etc. Bismuth acid; and the like. Among them, anhydrous zinc borate represented by the following composition formula (II) is preferable from the viewpoints of economy, supplyability and boric acid content. From the viewpoint of safety, anhydrous bismuth borate represented by the following composition formula (XXVI) is preferable.巿 Commercial products include FB-500 (trade name, manufactured by BORAX) as anhydrous zinc borate represented by the following composition formula (II), and Shikoku Chemicals Corporation as aluminum borate anhydride, represented by the following composition formula (II): The name alpolite PF 08 T is available respectively.
3 C o O · B 203 (XV) 3 C o OB 2 0 3 (XV)
C οΟ · 2B203 (XVI) C οΟ2B 2 0 3 (XVI)
CoO · B2O3 (XVII) CoO · B 2 O 3 (XVII )
2 CoO · B203 (XVIII) 2 CoO · B 2 0 3 ( XVIII)
2 ZnO · 3B203 (II) 2 ZnO · 3B 2 0 3 ( II)
4 Z nO · B203 (XIX) 4 Z nOB 2 0 3 (XIX)
Z nO · 2B203 (XX) Z nO2B 2 0 3 (XX)
Z nO - B2O3 (XXI) Z nO-B 2 O 3 (XXI)
3ZnO - 2B203 (XXII) 3ZnO-2B 2 0 3 (XXII)
9 A 1203 · 2B203 (XXIII) 9 A 1 2 0 3 2B 2 0 3 (XXIII)
2 A 1203 · B2O3 (XXIV) 2 A 1 2 0 3 · B 2 O 3 (XXIV)
A 12O3 · B203 (XXV) A 1 2 O 3 · B 2 0 3 (XXV)
B i 2O3 · B203 (XXVI) B i 2 O 3 · B 2 0 3 (XXVI)
無水ホウ酸塩の製造法は特に制限はないが、 ホウ酸と、 相手となる塩の炭酸 塩あるいは酸化物等を反応させて直接生成する方法、 これらの原料を加熱 (焼 成) してから反応させて生成する方法、 含水ホウ酸塩を加熱 (焼成) し結晶水 を除去する方法等が挙げられる。  The method for producing the anhydrous borate is not particularly limited, but a method in which boric acid is directly produced by reacting a carbonate or an oxide of a partner salt, or a method in which these materials are heated (fired). A method in which the hydrated borate is heated (calcined) to remove water of crystallization, and the like.
本発明において用いられる (C 2) ホウ酸亜鉛としては、 難燃剤として作用 するもので、 本発明の効果が得られれば特に制限はなく、 たとえば、 下記組成 式 (XXVII) で示されるホウ酸亜鉛等が挙げられる。  The (C 2) zinc borate used in the present invention acts as a flame retardant, and is not particularly limited as long as the effects of the present invention can be obtained. For example, zinc borate represented by the following composition formula (XXVII) And the like.
1 (Z n〇) · m(B23) · n(H2〇) (XXVII) 1 (Z N_〇) · m (B 23) · n (H 2 〇) (XXVII)
(ここで、 し m、 nは、 それぞれ独立に正の数である。 )  (Here, m and n are each independently positive numbers.)
組成式 (XIII) で示されるホウ酸亜鉛として、 具体的には下記組成式 (XXVIII) 、 (XXIX) 、 (XXX) 、 (XXXI) 、 (XXXII) 等が挙げられ、 こ れらの 1種を単独で用いても、 2種以上を併用してもよい。 なかでも、 難燃性 の観点からは、 下記組成式 (XXVIII) で示されるホウ酸亜鉛が好ましい。 下記 組成式 (XXVIII) で示されるホウ酸亜鉛としては、 ZB (US BORAX社製商 品名) 又は FRF— 30 (水澤化学工業株式会社製商品名) が市販品として入 手可能であり、 下記組成式 (XXXII) で示されるホウ酸亜鉛としては、 FB_ 415 (US BORAX社製商品名) が市販品として入手可能である。 Specific examples of the zinc borate represented by the composition formula (XIII) include the following composition formulas (XXVIII), (XXIX), (XXX), (XXXI), (XXXII), and one of these. May be used alone or in combination of two or more. Among them, zinc borate represented by the following composition formula (XXVIII) is preferable from the viewpoint of flame retardancy. following As zinc borate represented by the composition formula (XXVIII), ZB (trade name of US BORAX) or FRF-30 (trade name of Mizusawa Chemical Industry Co., Ltd.) is available as a commercial product. As the zinc borate represented by (XXXII), FB_415 (trade name, manufactured by US BORAX) is commercially available.
2 Z ηθ 3 Β
Figure imgf000022_0001
3, · 3 5H2〇 (XXVIII)
2 Z ηθ 3 Β
Figure imgf000022_0001
3, · 3 5H 2 〇 (XXVIII)
2 Z ηθ 3 B 9 O ^ 4H20 (XXIX) 2 Z ηθ 3 B 9 O ^ 4H 20 (XXIX)
2 Ζ ηθ 3B203 5. 5H20 (XXX) 2 Ζ ηθ 3B 2 0 3 5.5H 2 0 (XXX)
2 Z ηθ 2 B203 · 3H2〇 (XXXI) 2 Z ηθ 2 B 2 0 3 · 3H 2 〇 (XXXI)
4 Z nO B23 · H20 (XXXII) 4 Z nO B 23 · H 2 0 (XXXII)
本発明において用いられる (C 3) 無水ホウ酸亜鉛としては、 難燃剤として 作用するもので、 本発明の効果が得られれば特に制限はなく、 たとえば、 下記 組成式 (XIX) で示される無水ホウ酸亜鉛等が挙げられる。  The (C 3) anhydrous zinc borate used in the present invention acts as a flame retardant, and is not particularly limited as long as the effects of the present invention can be obtained. For example, anhydrous boron represented by the following composition formula (XIX) Zinc acid and the like.
1 (Z ηθ) · m(B203) (XXXIII) 1 (Z ηθ) · m ( B 2 0 3) (XXXIII)
(ここで、 1、 mは、 それぞれ独立に正の数である。 )  (Here, 1 and m are each independently positive numbers.)
組成式 (XXXIII) で示される無水ホウ酸亜鉛として、 具体的には下記組成式 (II) 、 (XIX) 、 (XX) 、 (XXI) 、 (XXII) 等が挙げられ、 これらの 1種 を単独で用いても、 2種以上を併用してもよい。 また、 ホウ酸亜鉛と併用して も良い。 なかでも、 難燃性の観点からは、 下記組成式 (II) で示される無水ホ ゥ酸亜鉛が好ましい。 下記組成式 (II) で示される無水ホウ酸亜鉛としては、 FB- 500 (US BORA 社製商品名) が市販品として入手可能である。 無水 ホウ酸亜鉛の製造法は特に制限はないが、 ホウ酸と、 相手となる塩の炭酸塩あ るいは酸化物等を反応させて直接生成する方法、 含水ホウ酸塩を加熱し結晶水 を除去する方法等が挙げられる。  Specific examples of the anhydrous zinc borate represented by the composition formula (XXXIII) include the following composition formulas (II), (XIX), (XX), (XXI), and (XXII). They may be used alone or in combination of two or more. It may be used in combination with zinc borate. Of these, anhydrous zinc borate represented by the following composition formula (II) is preferable from the viewpoint of flame retardancy. As the anhydrous zinc borate represented by the following composition formula (II), FB-500 (trade name, manufactured by US BORA) is commercially available. The method for producing anhydrous zinc borate is not particularly limited, but a method in which boric acid is directly produced by reacting a carbonate or oxide of a partner salt, or a method in which hydrated borate is heated to form water of crystallization. A removal method and the like can be mentioned.
2 Z nO · 3 B203 (II) 2 Z nO · 3 B 2 0 3 (II)
4 Z nO · B203 (XIX)4 Z nOB 2 0 3 (XIX)
Figure imgf000022_0002
Figure imgf000022_0002
Z nO · B23 (XXI) Z nOB 23 (XXI)
3 ZnO · 2 B203 (XXII) 3 ZnO · 2 B 2 0 3 (XXII)
(D) 無機物又は有機物  (D) Inorganic or organic substances
(C) ホウ酸系難燃剤は、 分散性の向上による難燃性の向上あるいは流動性 の向上を目的として (D) 無機物及び有機物の少なくともいずれか一方で処理 されてもよい。 その場合、 (D ) 無機物及び有機物の少なくともいずれか一方 で表面処理されていることが好ましい。 (C) Boric acid-based flame retardants have improved flame retardancy or fluidity due to improved dispersibility. (D) At least one of an inorganic substance and an organic substance may be treated for the purpose of improving the quality. In that case, it is preferable that (D) the surface treatment is performed with at least one of an inorganic substance and an organic substance.
( C ) ホウ酸系難燃剤の処理に用いられる (D) 無機物又は有機物としては、 特に制限はないが、 たとえば、 溶融シリカ、 結晶シリカ、 アルミナ、 ジルコン、 珪酸カルシウム、 炭酸カルシウム、 チタン酸カリウム、 炭化珪素、 窒化珪素、 窒化アルミ、 窒化ホウ素、 ベリリア、 ジルコニァ、 ジルコン、 フォステライト、 ステアタイト、 スピネル、 ムライト、 チタニア、 酸化亜鉛、 錫酸亜鉛、 酸化鉄、 酸化モリブデン、 モリブデン酸亜鉛、 ジシクロペンタジェニル鉄等の金属元素 を含む化合物、 複合金属水酸化物、 水酸化アルミニウム、 水酸化マグネシウム、 水酸化ジルコニウム等の金属水酸化物、 ハイド口タルサイト類や、 マグネシゥ ム、 アルミニウム、 チタン、 ジルコニウム及びビスマスから選ばれる元素の含 水酸化物、 ビニルトリクロロシラン、 ビニルトリエトキシシラン、 ビニルトリ ス (/3—メトキシエトキシ) シラン、 ァ一メ夕クリロキシプロピルトリメトキ シシラン、 /3— ( 3 , 4—エポキシシクロへキシル) ェチルトリメトキシシラ ン、 ァーグリシドキシプロビルトリメトキシシラン、 ァ一グリシドキシプロピ ルメチルジメトキシシラン、 ビニルトリァセトキシシラン、 ァーメルカプトプ 口ピルトリメトキシシラン、 ァ一ァミノプロピルトリエトキシシラン、 ァ-ァ二 リノプロピルトリメトキシシラン、 ァ-ァ二リノプロピルメチルジメトキシシラ ン、 γ— [ビス (j3—ヒドロキシェチル) ] ァミノプロピルトリエトキシシラ ン、 N— j8— (アミノエチル) 一ァ一アミノプロピルトリメトキシシラン、 了 一 ( 3 _アミノエチル) ァミノプロピルジメトキシメチルシラン、 N— (トリ メトキシシリルプロピル) エチレンジァミン、 N— (ジメトキシメチルシリル イソプロピル) エチレンジァミン、 メチルトリメトキシシラン、 ジメチルジメ トキシシラン、 メチルトリエトキシシラン、 N— 0— (N _ビニルベンジルァ ミノェチル) —ァ一ァミノプロピルトリメトキシシラン、 アークロロプロピル トリメトキシシラン、 へキサメチルジシラン、 ビニルトリメトキシシラン、 ァ 一メルカプトプロピルメチルジメトキシシラン等のシラン系カップリング剤、 イソプロピルトリイソステアロイルチタネート、 イソプロピルトリス (ジォク チルバイロホスフエ一卜) チタネート、 イソプロピルトリ (N—アミノエチル 一アミノエチル) チタネート、 テトラオクチルビス (ジトリデシルホスフアイ ト) チタネート、 テトラ (2, 2—ジァリルォキシメチル一 1—プチル) ビス (ジトリデシル) ホスファイトチタネート、 ビス (ジォクチルパイロホスフエ —ト) ォキシアセテートチタネート、 ビス (ジォクチルパイロホスフェート) エチレンチタネート、 イソプロピルトリオクタノィルチタネート、 イソプロピ ルジメタクリルイソステアロイルチ夕ネート、 イソプロピルトリドデシルペン 一卜、 イソプロピル卜リ (ジォクチルホスフエ一卜) チタネート、 イソプロピ ルトリクミルフエ二ルチ夕ネート、 テトライソプロピルビス (ジォクチルホス ファイト) チタネート等のチタネート系カップリング剤、 アルミニウムキレー ト類、 アルミニウム /ジルコニウム系化合物、 アクリル樹脂、 エポキシ樹脂、 フエノール樹脂、 メラミン樹脂、 ステアリン酸等の脂肪酸、 高級脂肪酸金属塩、 エステル系ワックス、 ポリオレフィン系ワックス、 ポリエチレン、 酸化ポリェ チレン、 力一ポンプラック等の着色剤、 シリコーンオイル、 シリコーンゴム粉 末等の応力緩和剤等が挙げられ、 これらを単独で用いても 2種以上を組み合わ せて用いてもよい。 (C) The boric acid-based flame retardant is used for the treatment. (D) The inorganic or organic substance is not particularly limited. For example, fused silica, crystalline silica, alumina, zircon, calcium silicate, calcium carbonate, potassium titanate, Silicon carbide, silicon nitride, aluminum nitride, boron nitride, beryllia, zirconia, zircon, fosterite, steatite, spinel, mullite, titania, zinc oxide, zinc stannate, iron oxide, molybdenum oxide, zinc molybdate, dicyclopentane Compounds containing metal elements such as genenyl iron, composite metal hydroxides, metal hydroxides such as aluminum hydroxide, magnesium hydroxide, and zirconium hydroxide, talcites at the mouth, magnesium, aluminum, titanium, and zirconium Hydrogenation of elements selected from iron and bismuth Products, vinyltrichlorosilane, vinyltriethoxysilane, vinyltris (/ 3-methoxyethoxy) silane, acryloxypropyltrimethoxysilane, / 3- (3,4-epoxycyclohexyl) ethyltrimethoxy Silane, aglycidoxypropyl trimethoxysilane, aglycidoxypropylmethyldimethoxysilane, vinyltriacetoxysilane, amercaptopyl propyltrimethoxysilane, aminaminopropyltriethoxysilane, afar Dilinopropyltrimethoxysilane, α-arilinopropylmethyldimethoxysilane, γ- [bis (j3-hydroxyethyl)] aminopropyltriethoxysilane, N—j8- (aminoethyl) monoamino Propyltrimethoxysilane, Ryoichi (3_aminoethyl) amino Ropirdimethoxymethylsilane, N— (trimethoxysilylpropyl) ethylenediamine, N— (dimethoxymethylsilylisopropyl) ethylenediamine, methyltrimethoxysilane, dimethyldimethoxysilane, methyltriethoxysilane, N-0— (N_vinylbenzylaminominethyl) ) —Silane-based coupling agents such as α-aminopropyltrimethoxysilane, archloropropyltrimethoxysilane, hexamethyldisilane, vinyltrimethoxysilane, and α-mercaptopropylmethyldimethoxysilane, isopropyl triisostearoyl titanate, and isopropyl Tris (dioctyl phosphophosphate) titanate, isopropyl tri (N-aminoethyl) 1-aminoethyl) titanate, tetraoctylbis (ditridecylphosphite) titanate, tetra (2,2-diaryloxymethyl-11-butyl) bis (ditridecyl) phosphite titanate, bis (dioctylpyrophos) Phenol) oxyacetate titanate, bis (dioctylpyrophosphate) ethylene titanate, isopropyltrioctanoyl titanate, isopropyldimethacrylisostearoyl titanate, isopropyl tridodecyl pen, isopropyl tridodecyl (dioctyl) Phosphate) Titanate coupling agents such as titanate, isopropyltricumylphenyl nitrate, tetraisopropylbis (dioctylphosphite) titanate, aluminum chelates, aluminum / Colorants such as zirconium compounds, acrylic resins, epoxy resins, phenolic resins, melamine resins, fatty acids such as stearic acid, higher fatty acid metal salts, ester waxes, polyolefin waxes, polyethylene, polyethylene oxide, and power pump racks And a stress relieving agent such as silicone oil and silicone rubber powder. These may be used alone or in combination of two or more.
(D) 無機物及び有機物の少なくともいずれか一方で処理する方法としては、 例えば、 アクリル樹脂、 フエノール樹脂、 エポキシ樹脂、 メラミン樹脂などの 樹脂を、 けん濁乳化重合法またはメカノケミカル法によって処理する方法、 シ ラン系又はチタネート系又はアルミニウム系のカツプリング剤ゃステアリン酸 などで表面処理する方法、 メカノケミカル法によって水酸化アルミニウム、 水 酸化マグネシウム、 シリカなどの無機物を表面に処理する方法などが挙げられ る。 分散性向上および熱安定性の観点からは、 金属水酸化物で処理することが 好ましく、 水酸化マグネシウムで処理することがさらに好ましい。 また、 分散 性向上の観点から、 カップリング剤で処理することが好ましい。 処理は単独で 行っても、 複数行ってもよい。 例えば、 最初に水酸化マグネシウムを処理し、 その後カップリング剤で処理するといつた方法が挙げられる。 処理を行うこと によって、 ホウ酸亜鉛又は無水ホウ酸亜鉛のホウ酸による影響が緩和され、 樹 脂との濡れ性が向上し、 ホウ酸亜鉛又は無水ホウ酸亜鉛の分散性が向上し、 難 燃性及び低せん断領域での流動性が向上する。 一方、 処理量を多くすると、 処 理ホウ酸亜鉛又は処理無水ホウ酸亜鉛が凝集しやすくなるのみならず、 難燃性、 硬化性が低下する。 そのため、 難燃剤として、 (C 1) 無水ホウ酸塩を使用す る場合、 (D) 無機物又は有機物の処理量は、 重量比で ( (C I) / ( (C 1) + (D) ) ) が 0. 02未満となる量にすることが好ましく、 0. 01未 満がさらに好ましい。 同様の理由より、 難燃剤として (C2) ホウ酸亜鉛又は(D) As a method of treating at least one of an inorganic substance and an organic substance, for example, a method of treating a resin such as an acrylic resin, a phenol resin, an epoxy resin, and a melamine resin by a suspension emulsion polymerization method or a mechanochemical method; Examples thereof include a method of treating the surface with a silane-based, titanate-based, or aluminum-based coupling agent such as stearic acid, and a method of treating the surface with an inorganic substance such as aluminum hydroxide, magnesium hydroxide, or silica by a mechanochemical method. From the viewpoints of improving dispersibility and thermal stability, treatment with a metal hydroxide is preferable, and treatment with magnesium hydroxide is more preferable. Further, from the viewpoint of improving the dispersibility, it is preferable to treat with a coupling agent. The processing may be performed alone or a plurality of processings may be performed. For example, there is a method in which magnesium hydroxide is treated first, and then treated with a coupling agent. By performing the treatment, the effect of zinc borate or anhydrous zinc borate due to boric acid is reduced, the wettability with the resin is improved, the dispersibility of zinc borate or anhydrous zinc borate is improved, and the flame retardancy is improved. And the fluidity in the low shear region are improved. On the other hand, if the processing amount is increased, Not only does zinc borate or treated anhydrous zinc borate easily aggregate, but also the flame retardancy and curability decrease. Therefore, when (C 1) anhydrous borate is used as the flame retardant, (D) The amount of inorganic or organic substances to be treated is ((CI) / ((C 1) + (D))) by weight. Is preferably less than 0.02, and more preferably less than 0.01. For the same reason, (C2) zinc borate or
(C 3) 無水ホウ酸亜鉛を使用する場合、 (D) 無機物又は有機物の処理量は、 重量比で ( (C2) Z ( (C 2) + (D) :) ) 又は ( (C 3) Z ( (C 3) +When (C 3) anhydrous zinc borate is used, (D) The amount of inorganic or organic material to be treated is ((C2) Z ((C2) + (D) :)) or ((C3) Z ((C 3) +
(D) ) ) が 0. 02未満となる量にすることが好ましく、 0. 01未満がさ らに好ましい。 (D)))) is preferably less than 0.02, more preferably less than 0.01.
(C) ホウ酸系難燃剤としての、 (C 1) 無水ホウ酸塩、 (C2) ホウ酸亜 鉛又は (C 3) 無水ホウ酸亜鉛の平均粒径は特に制限はないが、 難燃性の観点 からは、 0. 01〜50 imが好ましく、 0. 1〜30 /mがさらに好ましく、 0. 5〜20 imがさらに好ましい。 平均粒径が 0. 01 zm未満の無水ホウ 酸塩は製造が困難であり、 50 mを超えると難燃効果が不十分となったり、 成形時にゲート詰まりを引き起こす可能性がある。  The average particle size of (C 1) anhydrous borate, (C 2) zinc borate or (C 3) zinc borate as the (C) boric acid flame retardant is not particularly limited. In light of the above, 0.01 to 50 im is preferable, 0.1 to 30 / m is more preferable, and 0.5 to 20 im is more preferable. Anhydroborate having an average particle size of less than 0.01 zm is difficult to produce, and if it exceeds 50 m, the flame retardant effect may be insufficient or the gate may be clogged during molding.
(C) ホウ酸系難燃剤としての、 (C 1) 無水ホウ酸塩、 (C2) ホウ酸亜 鉛又は (C 3) 無水ホウ酸亜鉛の配合量は特に制限はないが、 封止用エポキシ 樹脂成形材料に対して 0. 01〜20重量%が好ましく、 0. 05〜5重量% がより好ましく、 0. 1〜0. 5重量%がさらに好ましい。 0. 01重量%未 満では難燃性が不十分となる傾向があり、 20重量%を超えると成形性が低下 する傾向がある。  The amount of (C 1) anhydrous borate, (C 2) zinc borate or (C 3) zinc borate as the (C) boric acid flame retardant is not particularly limited. It is preferably 0.01 to 20% by weight, more preferably 0.05 to 5% by weight, and still more preferably 0.1 to 0.5% by weight, based on the resin molding material. If it is less than 0.01% by weight, the flame retardancy tends to be insufficient, and if it exceeds 20% by weight, the moldability tends to decrease.
(C2) ホウ酸亜鉛又は (C 3) 無水ホウ酸亜鉛の配合量は、 封止用ェポキ シ樹脂成形材料に対して 0. 5重量%未満が好ましく、 0. 3重量%未満がよ り好ましい。 0. 5重量%未満の配合量でも、 チヤ一をガラス化させる効果が 発現し、 難燃化可能であることを見出した。 (C2) ホウ酸亜鉛又は (C3) 無水ホウ酸亜鉛を配合しないと、 難燃性が不十分となる傾向があり、 0. 5重 量%以上では、 (C2) ホウ酸亜鉛の場合には、 硬化性及び低せん断領域の流 動性が低下する傾向があり、 (C 3) 無水ホウ酸亜鉛の場合には、 低せん断領 域の流動性が低下する傾向がある。 上述のとおり、 ホウ酸系難燃剤を無機物及 び有機物の少なくともいずれか一方で処理を行うことによって、 ホウ酸亜鉛又 は無水ホウ酸亜鉛のホウ酸による影響が緩和され、 樹脂との濡れ性が向上し、 ホウ酸亜鉛又は無水ホウ酸亜鉛の分散性が向上し、 難燃性及び低せん断領域で の流動性が向上するので、 (C 2 ) ホウ酸亜鉛又は (C 3 ) 無水ホウ酸亜鉛を 処理して用いる場合は、 その配合量は、 0 . 5重量%以上でもさしつかえない が、 特に未処理で用いる場合には、 0 . 5重量%未満が好ましい。 The blending amount of (C2) zinc borate or (C 3) anhydrous zinc borate is preferably less than 0.5% by weight, more preferably less than 0.3% by weight, based on the epoxy resin molding material for sealing. . It has been found that even at a compounding amount of less than 0.5% by weight, the effect of vitrifying the charcoal is exhibited and flame retardancy can be achieved. Unless (C2) zinc borate or (C3) anhydrous zinc borate is blended, the flame retardancy tends to be insufficient. At 0.5% by weight or more, (C2) zinc borate However, the curability and fluidity in the low shear region tend to decrease, and (C 3) In the case of anhydrous zinc borate, the fluidity in the low shear region tends to decrease. As described above, by treating a boric acid-based flame retardant with at least one of an inorganic substance and an organic substance, zinc borate or Reduces the effect of anhydrous zinc borate due to boric acid, improves wettability with resin, improves dispersibility of zinc borate or anhydrous zinc borate, improves flame retardancy and fluidity in low shear regions When (C 2) zinc borate or (C 3) anhydrous zinc borate is treated and used, the compounding amount may be 0.5% by weight or more, but especially when untreated. Is preferably less than 0.5% by weight.
なお、 本発明の封止用エポキシ榭脂成形材料には、 (C) ホウ酸系難燃剤と して (C 1 ) 無水ホウ酸塩を使用した場合、 (C 1 ) 無水ホウ酸塩に加えて従 来公知のノンハロゲン、 ノンアンチモンの難燃剤を必要に応じて配合すること ができる。 たとえば、 被覆又は無被覆の赤リン、 リン原子を有するエステル化 合物、 トリフエニルフォスフィンオキサイド、 2— (ジフエニルフォスフイエ ル) ハイドロキノン、 2,2— [ ( 2— (ジフエニルフォスフィエル) 一 1 , 4— フエ二レン) ビス (ォキシメチレン) ]ビス一ォキシラン、 トリ一 n—ォクチル フォスフィンォキサイド等のホスフィン化合物、 シクロホスファゼン等のリン 及び窒素含有化合物などのリン系難燃剤、 メラミン、 メラミン誘導体、 メラミ ン変性フエノール樹脂、 トリアジン環を有する化合物、 シァヌル酸誘導体、 ィ ソシァヌル酸誘導体等の窒素含有化合物、 酸化亜鉛、 錫酸亜鉛、 酸化鉄、 酸化 モリブデン、 モリブデン酸亜鉛、 ジシクロペン夕ジェニル鉄等の金属元素を含 む化合物、 水酸化アルミニウム、 水酸化マグネシウム、 水酸化ジルコニウム等 の金属水酸化物及びそれら金属水酸化物を樹脂、 カップリング剤、 ステアリン 酸等で処理したもの、 複合金属水酸化物などが挙げられ、 これらの 1種を単独 で用いても 2種以上を組合わせて用いてもよい。  When the epoxy resin molding material for sealing of the present invention uses (C) an anhydrous borate as the (C) boric acid-based flame retardant, it is added to the (C 1) anhydrous borate. Conventionally known non-halogen and non-antimony flame retardants can be blended as required. For example, coated or uncoated red phosphorus, ester compounds having a phosphorus atom, triphenylphosphine oxide, 2- (diphenylphosphine) hydroquinone, 2,2- [(2- (diphenylphosphiel) A) 1,4-phenylene) bis (oxymethylene)] phosphine compounds such as bis-oxosilane, tri-n-octyl phosphine oxide, phosphorus-based flame retardants such as phosphorus and nitrogen-containing compounds such as cyclophosphazene, Melamine, melamine derivatives, melamine-modified phenolic resins, compounds having a triazine ring, nitrogen-containing compounds such as cyanuric acid derivatives, isocyanuric acid derivatives, zinc oxide, zinc stannate, iron oxide, molybdenum oxide, zinc molybdate, dicyclopentene Compounds containing metal elements such as genil iron, aluminum hydroxide Metal hydroxides such as magnesium hydroxide, zirconium hydroxide, and the like, and those metal hydroxides treated with a resin, a coupling agent, stearic acid, and the like; and composite metal hydroxides. They may be used alone or in combination of two or more.
また、 本発明の封止用エポキシ樹脂成形材料には、 (C) ホウ酸系難燃剤と して (C 2 ) ホウ酸亜鉛又は (C 3 ) 無水ホウ酸亜鉛を使用した場合、 (C 2 ) ホウ酸亜鉛又は (C 3 ) 無水ホウ酸亜鉛に加えて従来公知のノンハロゲン、 ノンアンチモンの難燃剤を必要に応じて配合することができる。 たとえば、 被 覆又は無被覆の赤リン、 リン原子を有するエステル化合物、 トリフエ二ルフォ スフインオキサイド、 2— (ジフエニルフォスフィニル) ハイドロキノン、 2 , 2 - [ ( 2 - (ジフエニルフォスフィニル) 一 1,4一フエ二レン) ビス (ォキ シメチレン) ]ビス一ォキシラン、 トリー n—才クチルフォスフィンオキサイド 等のホスフィン化合物、 シクロホスファゼン等のリン及び窒素含有化合物など のリン系難燃剤、 メラミン、 メラミン誘導体、 メラミン変性フエノール樹脂、 トリアジン環を有する化合物、 シァヌル酸誘導体、 イソシァヌル酸誘導体等の 窒素含有化合物、 酸化亜鉛、 錫酸亜鉛、 酸化鉄、 酸化モリブデン、 モリブデン 酸亜鉛、 ジシクロペン夕ジェニル鉄等の金属元素を含む化合物、 水酸化アルミ 二ゥム、 水酸化マグネシウム、 水酸化ジルコニウム等の金属水酸化物及びそれ ら金属水酸化物を樹脂、 カップリング剤、 ステアリン酸等で処理したもの、 複 合金属水酸化物などが挙げられ、 これらの 1種を単独で用いても 2種以上を組 合わせて用いてもよい。 The epoxy resin molding material for encapsulation according to the present invention comprises: (C) zinc borate or (C 3) anhydrous zinc borate as a boric acid-based flame retardant; ) In addition to zinc borate or (C 3) anhydrous zinc borate, conventionally known non-halogen and non-antimony flame retardants can be blended as required. For example, coated or uncoated red phosphorus, an ester compound having a phosphorus atom, triphenylphosphine oxide, 2- (diphenylphosphinyl) hydroquinone, 2,2-[(2- (diphenylphosphinyl) ) 1,1,4-phenylene) bis (oxymethylene)] bis-oxysilane, phosphine compounds such as tri-n-octylphosphine oxide, phosphorus and nitrogen-containing compounds such as cyclophosphazene, etc. Phosphorus-based flame retardants, melamine, melamine derivatives, melamine-modified phenolic resins, compounds having a triazine ring, nitrogen-containing compounds such as cyanuric acid derivatives, isocyanuric acid derivatives, zinc oxide, zinc stannate, iron oxide, molybdenum oxide, molybdic acid Compounds containing metal elements such as zinc and dicyclopentene genenyl iron; metal hydroxides such as aluminum hydroxide, magnesium hydroxide, and zirconium hydroxide; and those metal hydroxides as resins, coupling agents, stearic acid And the like, a composite metal hydroxide, and the like. One of these may be used alone, or two or more may be used in combination.
なかでも、 (E ) リン系難燃剤との併用効果が高く、 (E) リン系難燃剤を 単独で用いた場合に比べ、 (C 1 ) 無水ホウ酸塩、 (C 2 ) ホウ酸亜鉛又は ( C 3 ) 無水ホウ酸亜鉛といった (C) ホウ酸系難燃剤と併用すると、 難燃化 に必要な添加量を低減できる。  Among them, (E) a phosphorus-based flame retardant is highly effective in combination, and (C 1) anhydrous borate, (C 2) zinc borate or When used in combination with a (C) boric acid-based flame retardant such as (C 3) anhydrous zinc borate, the amount required for flame retardancy can be reduced.
複合金属水酸化物としては、 例えば、 下記組成式 (XXXIV) で示される化合 物が挙げられる。  Examples of the composite metal hydroxide include a compound represented by the following composition formula (XXXIV).
m(MiaOb) · n(M2cOd) · 1 (H20) (XXXIV) m (MiaOb) · n (M2 c Od) · 1 (H 2 0) (XXXIV)
(ここで、 Mi及び M2は互いに異なる金属元素を示し、 a、 b、 c、 d、 m、 n及 び 1は正の数を示す。 ) (Here, Mi and M 2 indicate different metal elements, and a, b, c, d, m, n, and 1 indicate positive numbers.)
上記組成式 (XXXIV) 中の Mi及び M2は互いに異なる金属元素であれば特に 制限はないが、 難燃性の観点からは、 Miと M2は互いに異なるように Miが第 3 周期の金属元素、 ΠΑ族のアルカリ土類金属元素、 IVB族、 IIB族、 VHI族、 I B族、 ΙΠΑ族及び IVA族に属する金属元素から選ばれ、 M2が ΠΙΒ〜: QB族 の遷移金属元素から選ばれることが好ましく、 Miがマグネシウム、 カルシウム、 アルミニウム、 スズ、 チタン、 鉄、 コバルト、 ニッケル、 銅及び亜鉛から選ば れ、 M2が鉄、 コバルト、 ニッケル、 銅及び亜鉛から選ばれることがより好まし い。 流動性の観点からは、 Miがマグネシウム、 M2が亜鉛又はニッケルである ことが好ましく、 Miがマグネシゥムで M2が亜鉛であることがより好ましい。 m及び nのモル比は特に制限はないが、 mZ nが 9 9 Z 1〜5 0 / 5 0である ことが好ましい。 Mi and M 2 in the above composition formula (XXXIV) are not particularly limited as long as they are different metal elements, but from the viewpoint of flame retardancy, Mi and M 2 are different from each other so that Element, selected from group IV alkaline earth metal elements, group IVB, IIB, VHI, IB, group 、 and IVA group metal elements, M 2 selected from 遷移 ~: QB group transition metal elements Preferably, Mi is selected from magnesium, calcium, aluminum, tin, titanium, iron, cobalt, nickel, copper and zinc, and more preferably, M 2 is selected from iron, cobalt, nickel, copper and zinc. No. From the viewpoint of fluidity, magnesium Mi of preferably M 2 is zinc or nickel, Mi it is more preferably M 2 is zinc in Maguneshiumu. Although the molar ratio of m and n is not particularly limited, it is preferable that mZn is from 99Z1 to 50/50.
なお、 金属元素の分類は、 典型元素を A亜族、 遷移元素を B亜族とする長周 期型の周期率表 (出典:共立出版株式会社発行 「化学大辞典 4 j 1 9 8 7年 2 月 1 5日縮刷版第 3 0刷) に基づいて行った。 The metal elements are classified according to the long-period type periodic table with the typical element being the A sub-group and the transition element being the B sub-group. (Source: Chemical Dictionary 4 j 1987 Two This was done on the 15th of March, the 30th edition.
複合金属水酸化物の形状は特に制限はないが、 流動性の観点からは、 平板状 より、 適度の厚みを有する多面体形状が好ましい。 複合金属水酸化物は、 金属 水酸化物と比較して多面体状の結晶が得られやすい。 複合金属水酸化物の配合 量は特に制限はないが、 封止用エポキシ樹脂成形材料に対して 0 . 0 0 5〜2 0重量%が好ましく、 0 . 0 1〜 1 5重量%がより好ましく、 0 . 0 5〜1 2 重量%がさらに好ましい。 0 . 0 0 5重量%未満では難燃性が不十分となる傾 向があり、 2 0重量%を超えると流動性及び耐リフロー性が低下する傾向があ る。  The shape of the composite metal hydroxide is not particularly limited, but from the viewpoint of fluidity, a polyhedral shape having an appropriate thickness is preferable to a flat shape. In the composite metal hydroxide, polyhedral crystals are easily obtained as compared with the metal hydroxide. The compounding amount of the composite metal hydroxide is not particularly limited, but is preferably 0.05 to 20% by weight, more preferably 0.01 to 15% by weight, based on the molding epoxy resin molding material. , 0.05 to 12% by weight. If it is less than 0.05% by weight, the flame retardancy tends to be insufficient, and if it exceeds 20% by weight, the fluidity and the reflow resistance tend to decrease.
本発明の封止用エポキシ樹脂成形材料は、 前記した (A) エポキシ樹脂、 (B) 硬化剤及び (C) ホウ酸系難燃剤に加えて、 さらに任意成分として以下 に説明する (E) リン系難燃剤、 (F ) 無機充填剤及び (G) その他の成分を 含有してもよい。 これらの任意成分は 1種を単独で用いても 2種以上を組み合 わせて用いてもよい。  The epoxy resin molding material for encapsulation of the present invention further comprises, as an optional component, (E) phosphorus in addition to (A) the epoxy resin, (B) a curing agent, and (C) a boric acid-based flame retardant. A flame retardant, (F) an inorganic filler and (G) other components may be contained. One of these optional components may be used alone, or two or more of them may be used in combination.
(E) リン系難燃剤  (E) Phosphorus flame retardant
(E) リン系難燃剤としては、 本発明の効果が得られれば特に制限はなく、 被覆又は無被覆の赤リン、 シクロホスファゼン等のリン及び窒素含有化合物、 二トリロトリスメチレンホスホン酸三カルシウム塩、 メタン一 1—ヒドロキシ 一 1, 1—ジホスホン酸二カルシウム塩等のホスホン酸塩、 トリフエ二ルフォ スフィンォキサイド、 2一 (ジフエニルフォスフィニル) 八ィドロキノン、 2, 2一 [ ( 2 - (ジフエニルフォスフィニル) 一 1,4—フエ二レン) ビス (ォキ シメチレン) ]ビス一ォキシラン、 トリー n—ォクチルフォスフィンォキサイド 等のホスフィン化合物、 リン原子を有するエステル化合物、 シクロホスファゼ ン等のリン及び窒素含有化合物などが挙げられ、 これらの 1種を単独で用いて も 2種以上を組み合わせて用いてもよい。 なかでも、 耐加水分解性及び流動性 の観点から、 リン原子を有するエステル化合物、 ホスフィン化合物が好ましい。 赤リンは難燃剤として作用するもので、 本発明の効果が得られれば特に制限 はないが、 熱硬化性樹脂で被覆された赤リン、 無機化合物及び有機化合物で被 覆された赤リン等の被覆赤リンが好ましい。 熱硬化性樹脂で被覆された赤リンに用いられる熱硬ィ匕性樹脂としては特に制 限はないが、 たとえば、 エポキシ樹脂、 フエノール樹脂、 メラミン樹脂、 ウレ タン樹脂、 シアナート樹脂、 尿素—ホルマリン樹脂、 ァニリン一ホルマリン樹 脂、 フラン樹脂、 ポリアミド樹脂、 ポリアミドイミド樹脂、 ポリイミド樹脂等 が挙げられ、 これらの 1種を単独で用いても 2種以上組み合わせて用いてもよ い。 また、 これらの樹脂のモノマ一又はオリゴマーを用いて被覆と重合を同時 に行い、 重合によって製造された熱硬化樹脂が被覆されるものでもよく、 熱硬 化性樹脂は、 被覆後に硬化されていてもよい。 なかでも、 封止用エポキシ樹脂 成形材料に配合されるベース樹脂との相溶性の観点からは、 エポキシ樹脂、 フ エノ一ル樹脂及びメラミン樹脂が好ましい。 (E) The phosphorus-based flame retardant is not particularly limited as long as the effects of the present invention can be obtained. Coated or uncoated red phosphorus, phosphorus and a nitrogen-containing compound such as cyclophosphazene, tricalcium ditrilotrismethylene phosphonate, etc. , Phosphonates such as methane-11-hydroxy-11,1-diphosphonic acid dicalcium salt, triphenylphosphine, 21- (diphenylphosphinyl) octahydroquinone, 2,2-1 ([2- (Diphenylphosphinyl) -1,4-phenylene) bis (oxomethylene)] bis-oxosilane, phosphine compounds such as tri-n-octylphosphinoxide, ester compounds having a phosphorus atom, cyclophosphazene And phosphorus- and nitrogen-containing compounds such as butane. One of these may be used alone, or two or more may be used in combination. Among them, an ester compound having a phosphorus atom and a phosphine compound are preferable from the viewpoint of hydrolysis resistance and fluidity. Red phosphorus acts as a flame retardant, and is not particularly limited as long as the effects of the present invention can be obtained. Examples of red phosphorus coated with a thermosetting resin, red phosphorus coated with an inorganic compound and an organic compound, and the like. Coated red phosphorus is preferred. The thermosetting resin used for the red phosphorus coated with the thermosetting resin is not particularly limited. Examples thereof include an epoxy resin, a phenol resin, a melamine resin, a urethane resin, a cyanate resin, and a urea-formalin resin. And ananiline-formalin resin, furan resin, polyamide resin, polyamide-imide resin, polyimide resin, and the like. These may be used alone or in combination of two or more. Further, coating and polymerization may be performed simultaneously using monomers or oligomers of these resins, and the thermosetting resin produced by polymerization may be coated.The thermosetting resin may be cured after coating. Is also good. Above all, epoxy resin, phenolic resin and melamine resin are preferable from the viewpoint of compatibility with the base resin blended in the sealing epoxy resin molding material.
無機化合物及び有機化合物で被覆された赤リンに用いられる無機化合物とし ては特に制限はないが、 たとえば、 水酸化アルミニウム、 水酸化マグネシウム 、 水酸化カルシウム、 水酸化チタン、 水酸化ジルコニウム、 含水酸化ジルコ二 ゥム、 水酸化ビスマス、 炭酸バ.リウム、 炭酸カルシウム、 酸化亜鉛、 酸化チタ ン、 酸化ニッケル、 酸化鉄等が挙げられ、 これらの 1種を単独で用いても 2種 以上組み合わせて用いてもよい。 なかでも、 リン酸イオン補足効果に優れる水 酸化ジルコニウム、 含水酸化ジルコニウム、 水酸化アルミニウム及び酸化亜鉛 が好ましい。  The inorganic compound used for the red phosphorus coated with the inorganic compound and the organic compound is not particularly limited. Examples thereof include aluminum hydroxide, magnesium hydroxide, calcium hydroxide, titanium hydroxide, zirconium hydroxide, and zirconium oxide. Examples include dimethyl, bismuth hydroxide, barium carbonate, calcium carbonate, zinc oxide, titanium oxide, nickel oxide, iron oxide, and the like.One of these may be used alone, or two or more may be used in combination. Is also good. Among them, zirconium hydroxide, hydrous zirconium oxide, aluminum hydroxide and zinc oxide, which are excellent in the effect of capturing phosphate ions, are preferred.
また、 無機化合物及び有機化合物で被覆された赤リンに用いられる有機化合 物としては特に制限はないが、 たとえば、 カップリング剤ゃキレート剤など表 面処理に用いられる低分子量の化合物、 熱可塑性樹脂、 熱硬化性樹脂等の比較 的高分子量の化合物などが挙げられ、 これらの 1種を単独で用いても 2種以上 組み合わせて用いてもよい。 なかでも、 被覆効果の観点から熱硬化性樹脂が好 ましく、 封止用ェポキシ樹脂成形材料に配合されるベース樹脂との相溶性の観 点からエポキシ樹脂、 フエノール樹脂及びメラミン樹脂がより好ましい。  The organic compound used for the red phosphorus coated with the inorganic compound and the organic compound is not particularly limited. For example, a low molecular weight compound used for surface treatment such as a coupling agent or a chelating agent, or a thermoplastic resin And high molecular weight compounds such as thermosetting resins. One of these compounds may be used alone, or two or more of them may be used in combination. Above all, a thermosetting resin is preferable from the viewpoint of the coating effect, and an epoxy resin, a phenol resin, and a melamine resin are more preferable from the viewpoint of compatibility with the base resin blended in the epoxy resin molding material for sealing.
赤リンを無機化合物及び有機化合物で被覆する場合、 その被覆処理の順序は 特に制限はなく、 無機化合物で被覆した後に有機化合物で被覆しても、 有機化 合物で被覆した後に無機化合物で被覆しても、 両者の混合物を用いて両者を同 時に被覆してもよい。 また、 被覆形態は特に制限はなく、 物理的に吸着したも のでも、 化学的に結合したものでも、 その他の形態であってもよい。 また、 無 機化合物と有機化合物は、 被覆後に別個に存在していても、 両者の一部又は全 部が結合した状態であつてもよい。 When red phosphorus is coated with an inorganic compound and an organic compound, the order of the coating treatment is not particularly limited.Either coating with an inorganic compound and then coating with an organic compound, or coating with an organic compound and then coating with an inorganic compound can be used. However, using a mixture of both, Sometimes it may be coated. The coating form is not particularly limited, and may be physically adsorbed, chemically bonded, or other forms. Further, the inorganic compound and the organic compound may be present separately after coating, or may be in a state where a part or the whole of both is bonded.
無機化合物及び有機化合物の量は、 本発明の効果が得られれば特に制限はな いが、 無機化合物と有機化合物の重量比 (無機化合物 Z有機化合物) は、 1ノ 9 9 - 9 9 / 1が好ましく、 1 0 / 9 0〜9 5 Z 5がより好ましく、 3 0 / 7 0〜9 0 Z 1 0がさらに好ましく、このような重量比となるように無機化合物 及び有機化合物又はその原料となるモノマ一、 オリゴマ一の使用量を調整する ことが好ましい。  The amounts of the inorganic compound and the organic compound are not particularly limited as long as the effects of the present invention can be obtained. However, the weight ratio of the inorganic compound and the organic compound (inorganic compound Z organic compound) may be as follows. Is preferably, 10/90 to 95Z5 is more preferable, and 30/70 to 90Z10 is more preferable, and an inorganic compound and an organic compound or a raw material thereof so as to have such a weight ratio. It is preferable to adjust the amount of the monomer or oligomer used.
熱硬化性樹脂で被覆された赤リン、 無機化合物及び有機化合物で被覆された 赤リン等の被覆赤リンの製造方法は特に制限はなく、 たとえば、 特開昭 6 2— The method for producing coated red phosphorus such as red phosphorus coated with a thermosetting resin and red phosphorus coated with an inorganic compound and an organic compound is not particularly limited.
2 1 7 0 4号公報、 特開昭 5 2 - 1 3 1 6 9 5号公報等に記載された公知の被 覆方法を用いることができる。 また、 被覆膜の厚さは本発明の効果が得られれ ば特に制限はなく、 被覆は、 赤リン表面に均一に被覆されたものでも、 不均一 であってもよい。 Known covering methods described in, for example, Japanese Patent Application Laid-Open No. 217004 and Japanese Patent Application Laid-Open No. 52-131695 can be used. The thickness of the coating film is not particularly limited as long as the effects of the present invention can be obtained, and the coating may be a uniform coating on the red phosphorus surface or a non-uniform coating.
赤リンの粒径は本発明の効果が得られれば特に制限はないが、 平均粒径 (粒 度分布で累積 5 0重量%となる粒径) は 1〜 1 0 0 mが好ましく、 5〜 5 0 mがより好ましい。 平均粒径が 1 t m未満では、 成形品のリン酸イオン濃度 が高くなつて耐湿性に劣る傾向があり、 1 0 0 mを超えると、 狭いパッドピ ツチの高集積 ·高密度化半導体装置の用いた場合、 ワイヤの変形、 短絡、 切断 等による不良が生じやすくなる傾向がある。  The particle size of red phosphorus is not particularly limited as long as the effects of the present invention can be obtained, but the average particle size (the particle size at which 50% by weight is accumulated in the particle size distribution) is preferably from 1 to 100 m, and from 5 to 100 m. 50 m is more preferred. If the average particle size is less than 1 tm, the molded product has a high phosphate ion concentration and tends to have poor moisture resistance. If the average particle size exceeds 100 m, high integration of narrow pad pitch In such a case, there is a tendency that defects such as deformation, short-circuiting, and cutting of the wire are likely to occur.
リン及び窒素含有化合物は、 難燃剤として作用するもので、 本発明の効果が 得られれば特に制限はないが、 主鎖骨格中に次式 (XXXV) 及び Z又は次式 ( XXXVI) を繰り返し単位として含む環状ホスファゼン化合物、 あるいはホスフ ァゼン環中の燐原子に対する置換位置が異なる次式 (XXXVII) 及び/又は次 式 (XXXVIII) を繰り返し単位として含む化合物等が挙げられる。 (XXXVI) Phosphorus and nitrogen-containing compounds act as flame retardants and are not particularly limited as long as the effects of the present invention can be obtained. However, the following formula (XXXV) and Z or the following formula (XXXVI) may be repeated in the main chain skeleton. And a compound containing the following formula (XXXVII) and / or the following formula (XXXVIII) having different substitution positions with respect to the phosphorus atom in the phosphazene ring as a repeating unit. (XXXVI)
(XXXVI I I)
Figure imgf000031_0001
ここで、 式 (XXXV) 及び式 (XXXVII) 中の mは 1〜1 0の整数で、 R i〜R 4は置換基を有しても良い炭素数 1〜1 2のアルキル基及びァリール基から選 ばれ、 全て同一でも異なっていても良いが少なくとも 1つは水酸基を有する基 であり、 Aは炭素数 1〜4のアルキレン基又はァリレン基を示す。 式 (XXXVI ) 及び式 (XXXVIII) 中の nは 1〜: L 0の整数で、 R 5〜R 8は置換基を有して も良い炭素数 1〜1 2のアルキル基又はァリール基から選ばれ、 全て同一でも 異なっていても良く、 Aは炭素数 1〜4のアルキレン基又はァリレン基を示す 。 また、 式中 m個の R R 2、 R 3、 R 4は m個全てが同一でも異なっていても 良く、 n個の R 5、 R 6、 R 7、 R 8は n個全てが同一でも異なっていても良い。 上記式 (XXXV) 〜式 (XXXVIII) において、 尺1〜!^ 8で示される置換基を有 しても良い炭素数 1〜 1 2のアルキル基又はァリール基としては特に制限はな いが、 例えばメチル基、 ェチル基、 プロピル基、 イソプロピル基、 ブチル基、 イソブチル基、 s e c一ブチル基、 t e r t—プチル基等のアルキル基、 フエ ニル基、 1一ナフチル基、 2—ナフチル基等のァリール基、 o—トリル基、 m —トリル基、 p—トリル基、 2 , 3—キシリル基、 2 , 4—キシリル基、 o— クメニル基、 m—クメニル基、 p—クメニル基、 メシチル基等のアルキル碁置 換ァリール基、 ベンジル基、 フエネチル基等のァリール基置換アルキル基など が挙げられ、 さらにこれらに置換する置換基としては、 アルキル基、 アルコキ シル基、 ァリール基、 水酸基、 アミノ基、 エポキシ基、 ビニル基、 ヒドロキシ アルキル基、 アルキルアミノ基等が挙げられる。
(XXXVI II)
Figure imgf000031_0001
Here, m in the formulas (XXXV) and (XXXVII) is an integer of 1 to 10, and R i to R 4 are an alkyl group having 1 to 12 carbon atoms and an aryl group which may have a substituent. And all may be the same or different, but at least one is a group having a hydroxyl group, and A represents an alkylene group having 1 to 4 carbon atoms or an arylene group. N in the formulas (XXXVI) and (XXXVIII) is an integer of 1 to L 0, and R 5 to R 8 are selected from an alkyl group or an aryl group having 1 to 12 carbon atoms which may have a substituent. And all may be the same or different, and A represents an alkylene group or an arylene group having 1 to 4 carbon atoms. In the formula, m RR 2, R 3, and R 4 may all be the same or different, and n R 5 , R 6 , R 7 , and R 8 may be different even if all n are the same. May be. In the above formulas (XXXV) to (XXXVIII), there is no particular limitation on the alkyl group or aryl group having 1 to 12 carbon atoms which may have a substituent represented by a length of 1 to! ^ 8 . For example, alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group and tert-butyl group, phenyl group, aryl groups such as 11-naphthyl group and 2-naphthyl group , O-tolyl group, m-tolyl group, p-tolyl group, 2,3-xylyl group, 2,4-xylyl group, o— Examples include alkyl-substituted aryl groups such as cumenyl group, m-cumenyl group, p-cumenyl group, and mesityl group, and aryl-substituted alkyl groups such as benzyl group and phenethyl group. , An alkyl group, an alkoxy group, an aryl group, a hydroxyl group, an amino group, an epoxy group, a vinyl group, a hydroxyalkyl group, and an alkylamino group.
これらの中で、 エポキシ樹脂成形材料の耐熱性、 耐湿性の観点からはァリ一 ル基が好ましく、 より好ましくはフエ二ル基もしくはヒドロキシフエニル基で ある。 中でも、 1〜!^ 4のうち少なくとも 1っはヒドロキシフエニル基である ことが好ましく、 R i〜R 8全てがヒドロキシフエニル基でも良いが、 R i R 4 の 1つがヒドロキシフエニル基の場合がより好ましい。 !^〜 8が全てヒドロ キシフエニル基の場合はェポキシ樹脂硬化物が脆くなりやすく、 R 1〜 R 8が全 てフエニル基の場合にはエポキシ樹脂の架橋構造に取り込まれないため、 ェポ キシ樹脂硬化物の耐熱性が低下しやすい。 Among them, an aryl group is preferable from the viewpoint of heat resistance and moisture resistance of the epoxy resin molding material, and a phenyl group or a hydroxyphenyl group is more preferable. Among them, at least one of 1 to! ^ 4 is preferably a hydroxyphenyl group, and all of R i to R 8 may be a hydroxyphenyl group, but one of R i R 4 is a hydroxyphenyl group. The case is more preferred. ! ^ ~ 8 tends to be brittle Epokishi cured resin in the case of all hydro Kishifueniru group, because if R 1 - R 8 are all by phenyl group is not incorporated into the crosslinked structure of the epoxy resin, E port carboxymethyl resin curing The heat resistance of the material tends to decrease.
また、 上記式 (XXXV) 〜式 (XXXVIII) 中の Αで示される炭素数 1〜4の アルキレン基又はァリレン基としては特に制限はないが、 例えばメチレン基、 エチレン基、 プロピレン基、 イソプロピレン基、 ブチレン基、 イソブチレン基 、 フエ二レン基、 トリレン基、 キシリレン基、 ナフチレン基等が挙げられ、 ェ ポキシ樹脂成形材料の耐熱性、 耐湿性の観点からはァリレン基が好ましく、 中 でもフエ二レン基がより好ましい。  The alkylene or arylene group having 1 to 4 carbon atoms represented by Α in the above formulas (XXXV) to (XXXVIII) is not particularly limited. For example, a methylene group, an ethylene group, a propylene group, or an isopropylene group Butylene group, isobutylene group, phenylene group, tolylene group, xylylene group, naphthylene group and the like. From the viewpoints of heat resistance and moisture resistance of the epoxy resin molding material, an arylene group is preferable. Groups are more preferred.
環状ホスファゼン化合物は、 上記式 (XXXV) 〜式 (XXXVIII) のいずれか の重合物、 上記式 (XXXV) と上記式 (XXXVI) との共重合物、 又は上記式 ( XXXVII) と上記式 (XXXVIII) との共重合物であるが、 共重合物の場合、 ラ ンダム共重合物でも、 ブロック共重合物でも、 交互共重合物のいずれでも良い The cyclic phosphazene compound is a polymer of any one of the above formulas (XXXV) to (XXXVIII), a copolymer of the above formula (XXXV) and the above formula (XXXVI), or a mixture of the above formula (XXXVII) and the above formula (XXXVIII) ), But in the case of a copolymer, any of a random copolymer, a block copolymer, and an alternating copolymer may be used.
。 その共重合モル比 mZnは特に限定するものではないが、 エポキシ樹脂硬化 物の耐熱性や強度向上の観点から 1 / 0〜1 Z4が好ましく、 1 Z 0〜: 1 / 1 . 5がより好ましい。 また、 重合度 m+ nは 1〜2 0であり、 好ましくは 2〜 8、 より好ましくは 3〜6である。 環状ホスファゼン化合物として好ましいものを例示すると、 次式 (XXXIX) の重合物、 次式 (XXXX)の共重合物等が挙げられる。 . The copolymerization molar ratio mZn is not particularly limited, but is preferably 1/0 to 1 Z4, more preferably 1 Z0 to: 1 / 1.5 from the viewpoint of improving the heat resistance and strength of the epoxy resin cured product. . Further, the degree of polymerization m + n is 1 to 20, preferably 2 to 8, and more preferably 3 to 6. Preferred examples of the cyclic phosphazene compound include a polymer represented by the following formula (XXXIX) and a copolymer represented by the following formula (XXXX).
(XXXIX)
Figure imgf000033_0001
(XXXIX)
Figure imgf000033_0001
(ここで、 式 (XXXIX)中の mは、 0〜9の整数で、 1〜!^ 4はそれぞれ独立に 水素又は水酸基を示す。 ) (Here, m in the formula (XXXIX) is an integer of 0 to 9, and 1 to! ^ 4 each independently represent hydrogen or a hydroxyl group.)
Figure imgf000033_0002
Figure imgf000033_0002
ここで、 上記式 (XXXX)中の m、 nは、 0〜9の整数で、 R 1 !^ 4はそれぞ れ独立に水素または水酸基から選ばれ少なくとも 1つは水酸基であり、 R 5〜 R 8はそれぞれ独立に水素または水酸基から選ばれる。 また、 上記式 (XXXX) で示される環状ホスファゼン化合物は、 次に示す m個の繰り返し単位 (a) と n個の繰り返し単位 (b) を交互に含むもの、 ブロック状に含むもの、 ランダ ムに含むもののいずれであってもかまわないが、 ランダムに含むものが好まし い。 Here, m in the formula (XXXX), n is an an integer from 0 to 9, R 1! ^ 4 is at least one selected from hydrogen or hydroxyl in, respectively it independently is hydroxyl, R 5 ~ R 8 is independently selected from hydrogen or a hydroxyl group. In addition, the cyclic phosphazene compound represented by the above formula (XXXX) can be a compound containing the following m repeating units (a) and n repeating units (b) alternately, a block containing it, and a random. Any of these may be included, but those that include randomly are preferred.
X X
o  o
o (a) pぐ0 Λ ° (b)
Figure imgf000034_0001
中でも、 上記式 (XXXIX)で!^〜 4のうちの 1つが水酸基で mが 3〜6の 重合体を主成分とするものや、 上記式 (XXXX)で Ri〜R4のうち 1つが水酸基 で、 R5〜R 8が全て水素又は 1つが水酸基であり、 m/nが lZ2〜l/3で 、 m+nが 3〜 6の共重合体を主成分とするものが好ましい。 また、 市販のホ スファゼン化合物としては、 SPE— 100 (大塚化学製商品名) が入手可能
o (a) p 0 0 Λ ° (b)
Figure imgf000034_0001
Above all, in the above formula (XXXIX)! One of ^ to 4 is mainly composed of a polymer having a hydroxyl group and m of 3 to 6, or one of Ri to R 4 in the above formula (XXXX) is a hydroxyl group, and all of R 5 to R 8 are Hydrogen or one having a hydroxyl group, m / n of lZ2 to l / 3 and m + n of 3 to 6 as a main component is preferable. As a commercially available phosphazene compound, SPE-100 (trade name of Otsuka Chemical Co., Ltd.) is available.
、o , O
である。 ,、 It is. ,,
リン原子を有するエステル化合物としては、 リン酸エス、 oテNル、 亜リン酸エス テル、 次亜リン酸エステル等が挙げられ、 耐加水分解性の観点からは、 リン原 子を有するエステル化合物が芳香環を有する化合物であることがより好ましい。 芳香環を有する化合物としては、 たとえば、 下記一般式式 (XXXXI) で示さ れる骨格を有する化合物等が挙げられ、 なかでも下記一般式 (ΧΧΧΧΠ) で示 される化合物が好ましい。  Examples of the ester compound having a phosphorus atom include phosphoric acid ester, o-ester, ester phosphite, hypophosphite, and the like. From the viewpoint of hydrolysis resistance, an ester compound having a phosphorus atom Is more preferably a compound having an aromatic ring. Examples of the compound having an aromatic ring include a compound having a skeleton represented by the following general formula (XXXXI), and among them, a compound represented by the following general formula (好 ま し い) is preferable.
(XXXXI) (ここで、 Xは水素原子又は置換又は非置換の芳香環を有する有機基を示し、 同一でも異なっていてもよい。 ただし、 全てが水素原子の場合を除く。 ) (XXXXI I)
Figure imgf000035_0001
(XXXXI) (where X represents a hydrogen atom or an organic group having a substituted or unsubstituted aromatic ring, which may be the same or different, except when all are hydrogen atoms.) (XXXXI I)
Figure imgf000035_0001
(ここで、 Yは置換又は非置換の芳香環を有する 2価の有機基、 Rは水素原子 又は炭素数 1〜 6の置換又は非置換の有機基を示し、 Rは全てが同一でも異な つていてもよい。 m、 nは 0〜3の整数を示す。 )  (Where Y is a divalent organic group having a substituted or unsubstituted aromatic ring, R is a hydrogen atom or a substituted or unsubstituted organic group having 1 to 6 carbon atoms, and R is different even if all are the same. M and n each represent an integer of 0 to 3.)
このようなリン原子を有するエステル化合物としては、 たとえば、 トリメチ ルホスフェート、 トリェチルホスフェート、 トリフエニルホスフェート、 トリ クレジルホスフェート、 トリキシレニルホスフエ一ト、 クレジルジフエニルホ スフェート、 キシレニルジフエニルホスフエ一ト、 トリス ( 2 , 6—ジメチル フエニル) ホスフエ一卜、 ジメチルメチルホスホネート、 ジェチルー N, N— ビス (2—ヒドロキシェチル) メチルホスホネート等が挙げられ、 なかでも下 記構造式 (ΧΧΧΧΠΙ) 〜 (XXXXVI) で示される芳香族環を有する化合物が好 ましく、 構造式 (XXXXVII) 〜 (XXXXIX) で示される化合物がより好ましい。 Examples of such an ester compound having a phosphorus atom include trimethyl phosphate, triethyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, and xylendiphenyl. Enylphosphonate, tris (2,6-dimethylphenyl) phosphonate, dimethylmethylphosphonate, getyl-N, N-bis (2-hydroxyethyl) methylphosphonate and the like. Among them, the following structural formula ( ΧΧΧΧΠΙ) Compounds having an aromatic ring represented by (XXXXVI) are preferred, and compounds represented by structural formulas (XXXXVII) to (XXXXIX) are more preferred.
H3C、 H 3 C,
(XXXXIV)
Figure imgf000036_0001
(XXXXIV)
Figure imgf000036_0001
(XXXXVIl)  (XXXXVIl)
(XXXXVIII) XXXIX)
Figure imgf000036_0002
ホスフィン化合物としては下記一般式 (XXXXXI I D で示されるホスフィンォ キサイド化合物が化学的安定性の観点から好ましい。
(XXXXVIII) XXXIX)
Figure imgf000036_0002
As the phosphine compound, a phosphine oxide compound represented by the following general formula (XXXXXI ID) is preferable from the viewpoint of chemical stability.
Figure imgf000037_0001
Figure imgf000037_0001
(ここで、 R 1 R 2及び R 3は炭素数 1〜1 0の置換又は非置換のアルキル 基、 ァリール基、 ァラルキル基及び水素原子を示し、 すべて同一でも異なって もよい。 ただしすべてが水素原子である場合を除く。 ) (Here, R 1 R 2 and R 3 represent a substituted or unsubstituted alkyl group, aryl group, aralkyl group and hydrogen atom having 1 to 10 carbon atoms, all of which may be the same or different. Except when it is an atom.)
上記一般式 (XXXXXI I I) で示されるホスフィンオキサイド化合物の中でも、 耐加水分解性の観点からは Rェ〜尺 3が置換又は非置換のァリ一ル基であること が好ましく、 特に好ましくはフエニル基である。 Among the phosphine oxide compounds represented by the above general formula (XXXXXI II), from the viewpoint of hydrolysis resistance, it is preferable that R to Sha 3 be a substituted or unsubstituted aryl group, and particularly preferable is phenyl. Group.
リン原子を有するエステル化合物、 ホスフィン化合物等のリン系難燃剤の配 合量は特に制限はないが、 (F ) 無機充填剤を除く他の全配合成分に対して、 リン原子の量で 0 . 0 1〜5 0重量%が好ましく、 0 . 1〜1 0重量%がょり 好ましく、 0 . 5〜3重量%がさらに好ましい。 配合量が 0 . 0 1重量%未満 では難燃性が不十分となる傾向があり、 5 0重量%を超えると成形性、 耐湿性 が低下する傾向がある。  The amount of the phosphorus-based flame retardant such as an ester compound having a phosphorus atom and a phosphine compound is not particularly limited.However, (F) the amount of the phosphorus atom relative to all the other components except the inorganic filler is 0.1%. It is preferably from 0.1 to 50% by weight, more preferably from 0.1 to 10% by weight, even more preferably from 0.5 to 3% by weight. If the amount is less than 0.01% by weight, the flame retardancy tends to be insufficient, and if it exceeds 50% by weight, the moldability and the moisture resistance tend to decrease.
(F) 無機充填剤  (F) Inorganic filler
本発明の封止用エポキシ樹脂成形材料には、 必要に応じて (F) 無機充填剤 を配合することができる。 (F ) 無機充填剤は、 吸湿性、 線膨張係数低減、 熱 伝導性向上及び強度向上のために配合されるものであり、 封止用エポキシ樹脂 成形材料に一般に使用されるもので特に制限はないが、 たとえば、 たとえば、 溶融シリカ、 結晶シリカ、 アルミナ、 ジルコン、 珪酸カルシウム、 炭酸カルシ ゥム、 チタン酸カリウム、 炭化珪素、 窒化珪素、 窒化アルミ、 窒化ホウ素、 ベ リリア、 ジルコニァ、 ジルコン、 フォステライト、 ステアタイト、 スピネル、 ムライト、 チタニア等の粉体、 又はこれらを球形化したビーズ、 ガラス繊維な どが挙げられ、 これらを単独で用いても 2種以上を組み合わせて用いてもよい。 なかでも、 線膨張係数低減の観点からは溶融シリカが、 高熱伝導性の観点から はアルミナが好ましく、 充填剤形状は成形時の流動性及び金型摩耗性の点から 球形が好ましい。 The epoxy resin molding material for sealing of the present invention may optionally contain (F) an inorganic filler. (F) The inorganic filler is blended for the purpose of absorbing moisture, reducing the coefficient of linear expansion, improving the thermal conductivity and improving the strength, and is generally used in epoxy resin molding materials for sealing. But not, for example, fused silica, crystalline silica, alumina, zircon, calcium silicate, calcium carbonate, potassium titanate, silicon carbide, silicon nitride, aluminum nitride, boron nitride, verilia, zirconia, zircon, fosterite , Steatite, spinel, mullite, titania, etc., or spherical beads or glass fiber thereof, etc., and these may be used alone or in combination of two or more. Among them, fused silica is preferred from the viewpoint of reducing the coefficient of linear expansion, while fused silica is preferred from the viewpoint of high thermal conductivity. Is preferably alumina, and the shape of the filler is preferably spherical in terms of fluidity during molding and mold abrasion.
( F ) 無機充填剤の配合量は、 難燃性、 成形性、 吸湿性、 線膨張係数低減及 び強度向上の観点から、 封止用エポキシ樹脂成形材料に対して 7 0〜9 8重 量%が好ましく、 8 0〜9 5重量%がさらに好ましく、 8 5〜9 3重量%がさ らに好ましく。 7 0重量%未満では難燃性及び耐リフロー性が低下する傾向が あり、 9 8重量%を超えると流動性が不足する傾向がある。  (F) The mixing amount of the inorganic filler is 70 to 98 weight based on the epoxy resin molding material for sealing from the viewpoints of flame retardancy, moldability, hygroscopicity, reduction of linear expansion coefficient and improvement of strength. %, Preferably from 80 to 95% by weight, more preferably from 85 to 93% by weight. If the amount is less than 70% by weight, the flame retardancy and reflow resistance tend to decrease. If the amount exceeds 98% by weight, the fluidity tends to be insufficient.
(G) その他の成分  (G) Other ingredients
本発明の封止用エポキシ樹脂成形材料には、 必要に応じて硬化促進剤を用い ることができる。 硬化促進剤としては、 封止用エポキシ樹脂成形材料に一般に 使用されているもので特に制限はないが、 たとえば、 1, 8—ジァザ—ビシク 口 (5, 4 , 0 ) ゥンデセン— 7、 1, 5—ジァザ一ビシクロ (4, 3 , 0 ) ノネン、 5、 6一ジブチルァミノ— 1, 8—ジァザービシクロ ( 5 , 4 , 0 ) ゥンデセン一 7等のシクロアミジン化合物及びこれらの化合物に無水マレイン 酸、 1, 4—ベンゾキノン、 2 , 5—トルキノン、 1 , 4—ナフトキノン、 2, 3—ジメチルペンゾキノン、 2, 6 _ジメチルペンゾキノン、 2 , 3—ジメト キシ一 5—メチルー 1 , 4 _ベンゾキノン、 2 , 3—ジメトキシ一 1, 4一べ ンゾキノン、 フエニル _ 1, 4—ベンゾキノン等のキノン化合物、 ジァゾフエ ニルメタン、 フエノ一ル樹脂等の 7T結合をもつ化合物を付加してなる分子内分 極を有する化合物、 ベンジルジメチルァミン、 トリエタノールァミン、 ジメチ ルアミノエタノ一ル、 トリス (ジメチルアミノメチル) フエノール等の 3級ァ ミン類及びこれらの誘導体、 2—メチルイミダゾール、 2—フエ二ルイミダゾ ール、 2—フエ二ルー 4ーメチルイミダゾ一ル等のィミダゾール類及びこれら の誘導体、 トリブチルホスフィン、 メチルジフエニルホスフィン、 トリフエ二 ルホスフィン、 トリス (4一メチルフエニル) ホスフィン、 ジフエニルホスフ ィン、 フエニルホスフィン等のホスフィン化合物及びこれらのホスフィン化合 物に無水マレイン酸、 上記キノン化合物、 ジァゾフエニルメタン、 フエノール 樹脂等の π結合をもつ化合物を付加してなる分子内分極を有するリン化合物、 テトラフェニルホスホニゥムテトラフエ二ルポレート、 トリフエニルホスフィ ンテトラフエ二ルポレート、 2—ェチル _ 4ーメチルイミダゾールテトラフエ 二ルポレート、 N—メチルモルホリンテトラフエ二ルポレート等のテトラフエ 二ルポ口ン塩及びこれらの誘導体などが挙げられ、 これらを単独で用いても 2 種以上を組み合わせて用いてもよい。 In the epoxy resin molding material for sealing of the present invention, a curing accelerator can be used if necessary. The curing accelerator is not particularly limited, and is generally used in molding epoxy resin molding materials. For example, 1,8-diaza-visit (5,4,0) pendene-7,1,1, Cycloamidine compounds such as 5-diazabicyclo (4,3,0) nonene, 5,6dibutylamino-1,8-diazabicyclo (5,4,0) indene, and maleic anhydride, 1 , 4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylpenzoquinone, 2,6-dimethylpentazoquinone, 2,3-dimethoxy-1-5-methyl-1,4-benzoquinone Quinone compounds such as 2,3-dimethoxy-11,4-benzoquinone, phenyl_1,4-benzoquinone, and diazophenylmethane, phenolic resins, etc. Have Tertiary amines such as benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, and derivatives thereof, 2-methylimidazole, 2-phenylimidazole, Imidazoles such as 2-phenyl-4-methylimidazole and derivatives thereof, phosphine compounds such as tributylphosphine, methyldiphenylphosphine, triphenylphosphine, tris (4-methylphenyl) phosphine, diphenylphosphine and phenylphosphine; A phosphorus compound having an intramolecular polarization obtained by adding a compound having a π bond such as maleic anhydride, the above quinone compound, diazophenylmethane, or phenol resin to these phosphine compounds; tetraphenylphosphonium tetra Phenylprolate, triphenylphosphinetetraphenylporate, 2-ethyl-4-methylimidazoletetraphen Examples thereof include tetraphenylpropane salts such as dirupolate and N-methylmorpholinetetraphenylporate, and derivatives thereof, and these may be used alone or in combination of two or more.
なかでも、 硬化性及び流動性の観点からは、 ホスフィン化合物及びホスフィ ン化合物とキノン化合物との付加物が好ましく、 トリフエニルホスフィン等の 第三ホスフィン化合物及びトリフエニルホスフィンとキノン化合物との付加物 がより好ましい。 第三ホスフィン化合物を用いる場合にはキノン化合物をさら に含有することが好ましい。  Among them, from the viewpoints of curability and fluidity, phosphine compounds and adducts of phosphine compounds with quinone compounds are preferable, and tertiary phosphine compounds such as triphenylphosphine and adducts of triphenylphosphine with quinone compounds are preferable. More preferred. When a tertiary phosphine compound is used, it is preferable to further contain a quinone compound.
また、 保存安定性の観点からは、 シクロアミジン化合物とフエノール樹脂と の付加物が好ましく、 ジァザピシクロウンデセンのフエノ一ルノポラック樹脂 塩がより好ましい。  Further, from the viewpoint of storage stability, an adduct of a cycloamidine compound and a phenol resin is preferable, and a phenolnopolak resin salt of diazapicicloundecene is more preferable.
硬化促進剤の配合量は、 硬化促進効果が達成される量であれば特に制限され るものではないが、 封止用エポキシ樹脂成形材料に対して 0 . 0 0 5〜2重 量%が好ましく、 0 . 0 1〜0 . 5重量%がより好ましい。 0 . 0 0 5重量% 未満では短時間での硬化性に劣る傾向があり、 2重量%を超えると硬化速度が 速すぎて良好な成形品を得ることが困難になる傾向がある。  The amount of the curing accelerator is not particularly limited as long as the curing acceleration effect is achieved, but is preferably 0.05 to 2% by weight based on the epoxy resin molding material for sealing. , 0.01 to 0.5% by weight is more preferable. If the amount is less than 0.05% by weight, the curability in a short time tends to be inferior. If the amount exceeds 2% by weight, the curing speed tends to be too fast to obtain a good molded product.
本発明の封止用エポキシ樹脂成形材料には、 I C等の半導体素子の耐湿性及 び高温放置特性を向上させる観点から、 必要に応じてイオントラップ剤をさら に配合することができる。 イオントラップ剤としては特に制限はなく、 従来公 知のものを用いることができるが、 たとえば、.ハイド口タルサイト類や、 マグ ネシゥム、 アルミニウム、 チタン、 ジルコニウム及びビスマスから選ばれる元 素の含水酸化物等が挙げられ、 これらを単独で用いても 2種以上を組み合わせ て用いてもよい。 なかでも、 下記組成式 (XXXXX) で示されるハイド口タル サイトが好ましい。  An ion trapping agent can be further added to the encapsulating epoxy resin molding material of the present invention, if necessary, from the viewpoint of improving the moisture resistance and high-temperature storage characteristics of semiconductor elements such as IC. There is no particular limitation on the ion trapping agent, and any known ion trapping agent can be used. These may be used alone or in combination of two or more. Among them, the talcite at the mouth represented by the following composition formula (XXXXX) is preferable.
M g i - χ A 1 χ (OH) 2 ( C 03 ) x/2 · mH2 O …… (XXXXX)M gi-χ A 1 χ (OH) 2 (C 0 3 ) x / 2 · mH 2 O …… (XXXXX)
( 0 <X≤0 . 5、 mは正の数) (0 <X≤0.5, m is a positive number)
イオントラップ剤の配合量は、 八ロゲンイオンなどの陰ィォンを捕捉できる 十分量であれば特に制限はないが、 成形性、 耐湿性及び高温放置特性の観点か ら、 (A) エポキシ樹脂に対して 0 . 1〜3 0重量%が好ましく、 0 . 5〜1 0重量%がより好ましく、 1〜5重量%がさらに好ましい。 また、 本発明の封止用エポキシ樹脂成形材料には、 樹脂成分と無機充填剤と の接着性を高めるために、 必要に応じて、 エポキシシラン、 メルカプトシラン、 アミノシラン、 アルキルシラン、 ウレイドシラン、 ビニルシラン等の各種シラ ン系化合物、 チタン系化合物、 アルミニウムキレート類、 アルミニウム/ジル コニゥム系化合物等の公知のカップリング剤を添加することができる。 これら を例示すると、 ビニリレトリクロロシラン、 ビニルトリエトキシシラン、 ピニル トリス (/3—メトキシェトキシ) シラン、 ァ一メ夕クリロキシプロピルトリメ トキシシラン、 ]3— ( 3, 4一エポキシシクロへキシル) ェチルトリメトキシ シラン、 ァ一グリシドキシプロピ レ卜リメ卜キシシラン、 アークリシドキシフ 口ピルメチルジメトキシシラン、 ビニルトリァセトキシシラン、 ァーメルカプ トプロビルトリメトキシシラン、 ァーァミノプロピルトリエトキシシラン、 Ύ - ァニリノプロピルトリメトキシシラン、 ァ-ァ二リノプロピルメチルジメトキシ シラン、 7— [ビス (]3—ヒドロキシェチル) ] ァミノプロピルトリエトキシ シラン、 N—J3— (アミノエチル) ーァ一ァミノプロビルトリメトキシシラン、 Ύ - ( )3—アミノエチル) ァミノプロピルジメトキシメチルシラン、 N— (ト リメトキシシリルプロピル) エチレンジァミン、 N— (ジメトキシメチルシリ ルイソプロピル) エチレンジァミン、 メチルトリメトキシシラン、 ジメチルジ メトキシシラン、 メチルトリエトキシシラン、 N— ;3— (N—ビニルベンジル アミノエチル) 一ァーァミノプロビルトリメトキシシラン、 アークロロプロピ ルトリメトキシシラン、 へキサメチルジシラン、 ビニルトリメトキシシラン、 ァーメルカプトプロピルメチルジメトキシシラン等のシラン系力ップリング剤、 イソプロピルトリイソステアロイルチタネート、 イソプロピルトリス (ジォク チルバイロホスフェート) チタネート、 イソプロピルトリ (N—アミノエチル 一アミノエチル) チタネート、 テトラオクチルビス (ジトリデシルホスフアイ ト) チタネート、 テトラ (2 , 2—ジァリルォキシメチル— 1一プチル) ビス (ジトリデシル) ホスファイトチタネート、 ビス (ジォクチルパイロホスフエ —ト) ォキシアセテートチタネート、 ビス (ジォクチルパイロホスフェート) エチレンチタネート、 イソプロピルトリオクタノィルチタネート、 イソプロピ ルジメタクリルイソステアロイルチ夕ネート、 イソプロピルトリドデシルペン ゼンスルホニルチ夕ネート、 イソプロ ート、 イソプロピルトリ (ジォクチルホスフェート) チタネート、 イソプロピ ルトリクミルフエ二ルチ夕ネート、 テトライソプロピルビス (ジォクチルホス ファイト) チタネート等のチタネ一ト系カップリング剤などが挙げられ、 これ らを単独で用いても 2種以上を組み合わせて用いてもよい。 The compounding amount of the ion trapping agent is not particularly limited as long as it is a sufficient amount to capture anion such as octylogen ion. However, from the viewpoint of moldability, moisture resistance and high-temperature storage characteristics, the amount of the ion trapping agent relative to (A) epoxy resin It is preferably from 0.1 to 30% by weight, more preferably from 0.5 to 10% by weight, even more preferably from 1 to 5% by weight. The epoxy resin molding material for encapsulation of the present invention may further include epoxy silane, mercapto silane, amino silane, alkyl silane, ureido silane, and vinyl silane, if necessary, in order to enhance the adhesion between the resin component and the inorganic filler. And other known coupling agents such as silane compounds, titanium compounds, aluminum chelates, and aluminum / zirconium compounds. These include, for example, vinylyltrichlorosilane, vinyltriethoxysilane, pinyl tris (/ 3-methoxyethoxy) silane, acryloxypropyltrimethoxysilane,] 3- (3,4-epoxycyclohexyl) Ethyltrimethoxysilane, α-glycidoxypropyltrimethoxysilane, acrylicoxyfifoxypyrmethyldimethoxysilane, vinyltriacetoxysilane, amercaptopropyltrimethoxysilane, araminopropyltriethoxysilane, Ύ- anilinopropyltrimethoxysilane, avalilinopropylmethyldimethoxysilane, 7- [bis (] 3-hydroxyethyl)] aminopropyltriethoxysilane, N-J3- (aminoethyl) a Monoaminopropyl trimethoxysilane, Ύ- () 3-amino Ethyl) aminopropyldimethoxymethylsilane, N- (trimethoxysilylpropyl) ethylenediamine, N- (dimethoxymethylsilylisopropyl) ethylenediamine, methyltrimethoxysilane, dimethyldimethoxysilane, methyltriethoxysilane, N—; 3— (N-vinylbenzyl aminoethyl) Silane-based coupling agents such as monoaminopropyl trimethoxysilane, chloropropyltrimethoxysilane, hexamethyldisilane, vinyltrimethoxysilane and amercaptopropylmethyldimethoxysilane , Isopropyl triisostearoyl titanate, isopropyl tris (dioctyl borophosphate) titanate, isopropyl tri (N-aminoethyl monoaminoethyl) titanate, tetraoctane Rubis (ditridecyl phosphite) titanate, tetra (2,2-diaryloxymethyl-1 butyl) bis (ditridecyl) phosphite titanate, bis (dioctyl pyrophosphate) oxyacetate titanate , Bis (dioctyl pyrophosphate) ethylene titanate, isopropyl trioctanoyl titanate, isopropyl dimethacryl isostearyl titanate, isopropyl tridodecyl pen zensulfonyl titanate, isopro And titanate-based coupling agents such as isopropyl tri (dioctyl phosphate) titanate, isopropyl tricumyl phenyl nitrate, tetraisopropyl bis (dioctyl phosphite) titanate, and the like. Two or more kinds may be used in combination.
上記カップリング剤の配合量は、 (F ) 無機充填剤に対して 0 . 0 5〜5重 量%であることが好ましく、 0 . 1〜2 . 5重量%がより好ましい。 0 . 0 5 重量%未満ではフレ一ムとの接着性が低下する傾向があり、 5重量%を超える とパッケージの成形性が低下する傾向がある。  The amount of the coupling agent is preferably from 0.05 to 5% by weight, more preferably from 0.1 to 2.5% by weight, based on the inorganic filler (F). If it is less than 0.05% by weight, the adhesiveness to the frame tends to decrease, and if it exceeds 5% by weight, the moldability of the package tends to decrease.
さらに、 本発明の封止用エポキシ樹脂成形材料には、 その他の添加剤として、 高級脂肪酸、 高級脂肪酸金属塩、 エステル系ワックス、 ポリオレフイン系ヮッ クス、 ポリエチレン、 酸化ポリエチレン等の離型剤、 カーボンブラック等の着 色剤、 シリコーンオイル、 シリコーンゴム粉末等の応力緩和剤などを必要に応 じて配合することができる。  Further, the epoxy resin molding material for encapsulation according to the present invention may further comprise, as other additives, release agents such as higher fatty acids, higher fatty acid metal salts, ester waxes, polyolefin resins, polyethylene, and polyethylene oxide, and carbon black. A coloring agent such as, a stress relieving agent such as silicone oil or silicone rubber powder and the like can be added as required.
(調製法)  (Preparation method)
本発明の封止用エポキシ樹脂成形材料は、 .各種原材料を均一に分散混合でき るのであれば、 いかなる手法を用いても調製できるが、 一般的な手法として、 所定の配合量の原材料をミキサー等によって十分混合した後、 ミキシング口一 ル、 押出機等によって溶融混練した後、 冷却、 粉砕する方法を挙げることがで きる。 成形条件に合うような寸法及び重量でタブレツト化すると使いやすい。 (電子部品装置)  The epoxy resin molding compound for encapsulation of the present invention can be prepared by any method as long as various raw materials can be uniformly dispersed and mixed, but as a general method, a predetermined amount of raw materials are mixed with a mixer. After sufficient mixing by mixing, etc., melt kneading with a mixing nozzle, an extruder or the like, then cooling and pulverizing may be mentioned. It is easy to use if it is made into a tablet with dimensions and weight that match the molding conditions. (Electronic component equipment)
本発明で得られる封止用エポキシ樹脂成形材料により封止した素子を備えた 電子部品装置としては、 リードフレーム、 配線済みのテープキャリア、 配線板、 ガラス、 シリコンウェハ等の支持部材に、 半導体チップ、 トランジスタ、 ダイ ォ一ド、 サイリス夕等の能動素子、 コンデンサ、 抵抗体、 コイル等の受動素子 等の素子を搭載し、 必要な部分を本発明の封止用エポキシ樹脂成形材料で封止 した、 電子部品装置などが挙げられる。 このような電子部品装置としては、 た とえば、 リードフレーム上に半導体素子を固定し、 ボンディングパッド等の素 子の端子部とリード部をワイヤボンディングゃバンプで接続した後、 本発明の 封止用エポキシ樹脂成形材料を用いてトランスファ成形等により封止してなる、 D I P (Dual Inline Package) 、 P L C C (Plastic Leaded Chip Carrier) 、 QFP (Quad Flat Package) , SOP (Small Outline Package) 、 S〇 J ( Small Outline J-lead package ) 、 T S 〇 P ( Thin Small Outline Package) 、 TQFP (Thin Quad Flat Package) 等の一般的な樹脂封止型 I C, テープキャリアにバンプで接続した半導体チップを、 本発明の封止用ェポ キシ樹脂成形材料で封止した TCP (Tape Carrier Package) 、 配線板ゃガラ ス上に形成した配線に、 ワイヤボンディング、 フリップチップボンディング、 はんだ等で接続した半導体チップ、 トランジスタ、 ダイオード、 サイリス夕等 の能動素子及び 又はコンデンサ、 抵抗体、 コイル等の受動素子を、 本発明の 封止用エポキシ樹脂成形材料で封止.した COB (Chip On Board) モジュール、 ハイプリッド I (:、 マルチチップモジュール、 裏面に配線板接続用の端子を形 成した有機基板の表面に素子を搭載し、 バンプまたはワイヤボンディングによ り素子と有機基板に形成された配線を接続した後、 本発明の封止用エポキシ樹 脂成形材料で素子を封止した BG A (Ball Grid Array) 、 CSP (Chip Size Package) などが挙げられる。 また、 プリント回路板にも本発明の封止用ェポ キシ樹脂成形材料は有効に使用できる。 The electronic component device provided with the element sealed with the sealing epoxy resin molding material obtained by the present invention includes a lead frame, a wired tape carrier, a wiring board, glass, a support member such as a silicon wafer, and a semiconductor chip. , Active elements such as transistors, diodes, thyristors, etc., and passive elements such as capacitors, resistors, coils, etc., were mounted, and the necessary parts were sealed with the sealing epoxy resin molding material of the present invention. And electronic component devices. As such an electronic component device, for example, a semiconductor element is fixed on a lead frame, and a terminal portion of an element such as a bonding pad and a lead portion are connected by wire bonding and bumps. DIP (Dual Inline Package), PLCC (Plastic Leaded Chip Carrier), sealed by transfer molding etc. using epoxy resin molding material for General resin sealing such as QFP (Quad Flat Package), SOP (Small Outline Package), S〇J (Small Outline J-lead package), TS〇P (Thin Small Outline Package), TQFP (Thin Quad Flat Package) The semiconductor chip connected by bumps to the fixed-type IC and tape carrier is connected to the TCP (Tape Carrier Package) sealed with the epoxy resin molding material for sealing of the present invention, and the wiring formed on the wiring board and glass. Active elements such as semiconductor chips, transistors, diodes, thyristors and the like, and / or passive elements such as capacitors, resistors, coils, etc., connected by wire bonding, flip chip bonding, soldering, etc., are encapsulated with the epoxy resin molding material of the present invention. The device is mounted on the surface of an encapsulated COB (Chip On Board) module, Hybrid I (:, multi-chip module, and an organic substrate with terminals for wiring board connection on the back, and bumps and BGA (Ball Grid Array), CSP (Chip Size Package) in which the device is connected to the wiring formed on the organic substrate by wire bonding and then the device is sealed with the epoxy resin molding material for sealing of the present invention. The epoxy resin molding material for encapsulation of the present invention can also be effectively used for printed circuit boards.
本発明の封止用エポキシ樹脂成形材料を用いて素子を封止する方法としては、 低圧トランスファ成形法が最も一般的であるが、 インジェクション成形法、 縮成形法等を用いてもよい。 実施例  As a method of sealing an element using the sealing epoxy resin molding material of the present invention, a low pressure transfer molding method is the most common, but an injection molding method, a shrink molding method, or the like may be used. Example
次に実施例により本発明を説明するが、 本発明の範囲はこれらの実施例に限 定されるものではない。  Next, the present invention will be described with reference to examples, but the scope of the present invention is not limited to these examples.
尚、 作製した実施例及び比較例の封止用エポキシ樹脂成形材料の評価は、 後 に説明する評価基準に従つた。  In addition, evaluation of the produced epoxy resin molding materials for encapsulation in Examples and Comparative Examples was performed in accordance with evaluation criteria described later.
<実施例 A1〜A16、 比較例 A1〜A8> <Examples A1 to A16, Comparative Examples A1 to A8>
成分の欄にある成分を表 1、 表 2及び表 3に示す重量部で配合し、 混練温度 80°C、 混練時間 10分の条件でロール混練を行って、 実施例 A1〜A1 6及 び比較例 A 1〜 A 8の封止用エポキシ樹脂成形材料を作製した。 1 The components listed in the component column were blended in parts by weight as shown in Tables 1, 2 and 3, and kneaded in a roll at a kneading temperature of 80 ° C and a kneading time of 10 minutes to obtain Examples A1 to A16 and Epoxy molding compounds for sealing of Comparative Examples A1 to A8 were produced. 1
Figure imgf000043_0002
Figure imgf000043_0002
Figure imgf000043_0001
Figure imgf000044_0001
作製した実施例及び比較例の封止用エポキシ樹脂成形材料の評価結果を表 4 表 5及び表 6に示す。 尚、 封止用エポキシ樹脂成形材料の成形は、 トランスフ ァ成形機により、 金型温度 180° (、 成形圧力 6. 9MP a、 硬化時間 90秒 の条件で行った。 また、 後硬化は 180°Cで 5時間行った。 表 4
Figure imgf000043_0001
Figure imgf000044_0001
Tables 4 and 5 show the evaluation results of the molded epoxy resin molding materials of the examples and comparative examples. The molding of the sealing epoxy resin molding material was performed by a transfer molding machine under the conditions of a mold temperature of 180 ° (molding pressure of 6.9 MPa and a curing time of 90 seconds. 5 hours at C. Table 4
実 i例 A  Actual i example A
項 目  Items
1 2 3 4 5 6 7 8  1 2 3 4 5 6 7 8
ス / イラレフロー cm 145 89 117 112 119 127 112 130 / Ira reflow cm 145 89 117 112 119 127 112 130
熱時硬度 81 75 76 83 83 83 70 83 Hot hardness 81 75 76 83 83 83 70 83
72h 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5  72h 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5
耐りフロー 96h 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 96h 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5
性 168h 1/5 3/5 3/5 0/5 0/5 0/5 4/5 0/5 168h 1/5 3/5 3/5 0/5 0/5 0/5 4/5 0/5
336h 2/5 4/5 5/5 2/5 2/5 2/5 5/5 2/5  336h 2/5 4/5 5/5 2/5 2/5 2/5 5/5 2/5
抽出液電気伝導度 uS/crr 45 40 44 32 38 31 47 35 Extract electric conductivity uS / crr 45 40 44 32 38 31 47 35
耐湿性 h 3000 2500 2000 3000 3000 3000 2000 3000 Humidity h 3000 2500 2000 3000 3000 3000 2000 3000
高温放置特性 h 1500 1250 1500 1500 1500 1500 1250 1500 High temperature storage characteristics h 1500 1250 1500 1500 1500 1500 1250 1500
28 24 25 28 27 30 38 25  28 24 25 28 27 30 38 25
難燃性 Flame retardance
判定 V - 0 V— 0 v-o V-0 V-0 V-0 V-0 V-0 表 5 Judgment V-0 V-0 vo V-0 V-0 V-0 V-0 V-0 Table 5
Figure imgf000045_0001
本発明の (C I) 成分の無水ホウ酸塩のかわりにホウ酸塩を用いた比較例 A 1〜A 6は熱時硬度が著しく低く、 成形性に劣っていた。 またリン系難燃剤を 単独で使用した比較例 A 7、 A 8は難燃性が劣っていた。 これに対して、 実施 例 A1〜A16は、 流動性、 熱時硬度、 耐リフロー性、 耐湿性及び高温放置特 性のいずれも良好であり、 かつ、 UL-94試験で V— 0を達成し難燃性を示し た。 特に、 アルカリ土類金属以外の無水ホウ酸金属塩を用いた実施例 A 1〜A 8、 A10〜A15は、 抽出液電気伝導度が小さく信頼性が良好であった。
Figure imgf000045_0001
Comparative Examples A1 to A6 in which a borate was used instead of the anhydrous borate of the component (CI) of the present invention had extremely low hardness when heated and were inferior in moldability. Comparative Examples A7 and A8, which used a phosphorus-based flame retardant alone, were inferior in flame retardancy. On the other hand, in Examples A1 to A16, the fluidity, the hardness at the time of heating, the reflow resistance, the moisture resistance, and the high-temperature storage characteristics were all good, and V-0 was achieved in the UL-94 test. It showed flame retardancy. In particular, in Examples A1 to A8 and A10 to A15 using a metal borate anhydride other than the alkaline earth metal, the extract liquid conductivity was small and the reliability was good.
<実施例 B 1〜B 21、 比較例 B 1〜; B 13 > <Examples B1 to B21, Comparative Examples B1 to B13>
前記した成分を表 7、 表 9及び表 9に示す重量部で配合し、 混練温度 80 ° (:、 混練時間 10分の条件でロール混練を行って、 実施例 B 1〜B 21及び比較例 B 1〜B 13の封止用エポキシ樹脂成形材料を作製した。 表 7 (重量部) The components described above were blended in parts by weight shown in Tables 7, 9 and 9, and kneading was performed at a temperature of 80 ° (roll kneading under the conditions of a kneading time of 10 minutes. Examples B1 to B21 and Comparative Examples Epoxy molding compounds for sealing of B1 to B13 were prepared. Table 7 (parts by weight)
Figure imgf000046_0002
Figure imgf000046_0002
Figure imgf000046_0001
表 9 (重量部)
Figure imgf000046_0001
Table 9 (parts by weight)
Figure imgf000047_0001
作製した実施例 Β及び比較例 Βの封止用エポキシ樹脂成形材料の評価結果を 表 1 0、 表 1 1及び表 1 2に示す。 尚、 封止用エポキシ樹脂成形材料の成形は、 トランスファ成形機により、 金型温度 1 8 0 ° (:、 成形圧力 6 . 9 M P a、 移送 時間 5秒、 硬化時間 9 0秒の条件で行った。 また、 後硬化は 1 8 0 °Cで 5時間 行った。
Figure imgf000047_0001
The evaluation results of the prepared epoxy resin molding materials for sealing in Examples Β and Comparative Example 示 す are shown in Table 10, Table 11 and Table 12. The molding of the sealing epoxy resin molding material was carried out using a transfer molding machine at a mold temperature of 180 ° (: molding pressure of 6.9 MPa, transfer time of 5 seconds, and curing time of 90 seconds. Post-curing was performed at 180 ° C. for 5 hours.
表 10  Table 10
実施例 B  Example B
項 目  Items
1 2 3 4 5 6 7 8 9 10 スパイラルフロー cm 145 135 138 132 139 135 143 133 140 142 熱時硬度 81 80 76 75 83 83 85 83 78 78  1 2 3 4 5 6 7 8 9 10 Spiral flow cm 145 135 138 132 139 135 143 133 140 142 Hot hardness 81 80 76 75 83 83 85 83 78 78
72h 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 耐リフロー 96h 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 性 1 68h 1 /5 3/5 2/5 4/5 0/5 2/5 3/5 3/5 2/5 2/5  72h 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 Reflow resistance 96h 0/5 0/5 0/5 0/5 0/5 0 / 5 0/5 0/5 0/5 0/5 Sex 1 68h 1/5 3/5 2/5 4/5 0/5 2/5 3/5 3/5 2/5 2/5
336h 2/5 4/5 5/5 5/5 2/5 4/5 5/5 5/5 3/5 3/5 成形性 (0.3mm以上) 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10 成形性(0.1mm以上) 0/10 3/10 5/10 3/10 0/10 5/10 3/10 7/10 3/10 3/10 耐湿性 h 3000 2500 2500 2500 3000 3000 2500 2500 3000 2500 高温放置特性 h 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500  336h 2/5 4/5 5/5 5/5 2/5 4/5 5/5 5/5 3/5 3/5 Formability (0.3mm or more) 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10 Formability (0.1mm or more) 0/10 3/10 5/10 3/10 0/10 5/10 3/10 7/10 3 / 10 3/10 Moisture resistance h 3000 2500 2500 2500 3000 3000 2500 2500 3000 2500 High temperature storage characteristics h 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500
41 35 24 43 38 32 29 33 34 31 難燃性  41 35 24 43 38 32 29 33 34 31 Flame retardant
判定 v-o v-o V-O v-o v-o v-o v-o v-o v-o v-o
Figure imgf000048_0001
12
Judgment vo vo VO vo vo vo vo vo vo vo
Figure imgf000048_0001
12
Figure imgf000048_0002
本発明の (D) 無機物又は有機物で処理された (C2) ホウ酸亜鉛又は (C 3) 無水ホウ酸亜鉛の処理量が、 重量比で ( (C2) / ( (C2) + (D) ) ) 又は ( (C 3) / ( (C 3) I (D) ) ) が 0. 02以上となる量である比 較例 B 1 B 5及び比較例 B 10は熱時硬度が著しく低く、 成形性に劣る。 ま た、 比較例 B2 B4 B 5は難燃性も低下した。 (D) 無機物又は有機物で 処理されていない (C 2) ホウ酸亜鉛又は (C3) 無水ホウ酸亜鉛を用いた比 較例 B 6 B 9 B 11は、 ポイドの発生数が多く成形性に劣った。 またリン 系難燃剤を単独で使用した比較例 B 12 B 13は難燃性が劣っていた。 これ に対して、 実施例 B 1 B 19は、 流動性、 熱時硬度、 耐リフロー性、 耐湿性 、 高温放置特性及び成形性のいずれも良好であり、 かつ、 UL-94試験で V 一 0を達成し難燃性を示した。 く実施例 C 1〜C 2 3、 比較例 C 1〜C 8 >
Figure imgf000048_0002
The treatment amount of (C2) zinc borate or (C 3) anhydrous zinc borate treated with the inorganic or organic substance (D) of the present invention is ((C2) / ((C2) + (D))) by weight ratio. ) Or ((C3) / ((C3) I (D)))) is 0.02 or more. Poor sex. Comparative Examples B2 B4 B5 also had reduced flame retardancy. (D) Comparative example using zinc borate or (C3) anhydrous zinc borate not treated with inorganic or organic substances B 6 B 9 B 11 has a large number of voids and is inferior in moldability. Was. Comparative Examples B12 and B13 using the phosphorus-based flame retardant alone had poor flame retardancy. In contrast, Example B 1 B 19 showed good fluidity, hot hardness, reflow resistance, moisture resistance, high-temperature storage characteristics and moldability, and a V-94 test in the UL-94 test. And achieved flame retardancy. Examples C1 to C23, Comparative Examples C1 to C8>
前記した成分を表 1 3、 表 1 4及び表 1 5に示す重量部で配合し、 混練温度 8 0 °C、 混練時間 1 0分の条件でロール混練を行って、 実施例 C 1〜C 2 3及 び比較例 C 1〜C 8の封止用エポキシ樹脂成形材料を作製した。  The components described above were blended in parts by weight shown in Tables 13, 14 and 15 and kneaded with a roll at a kneading temperature of 80 ° C and a kneading time of 10 minutes to obtain Examples C1 to C. Epoxy molding materials for sealing of 23 and Comparative Examples C1 to C8 were produced.
実施例 C Example C
項 目 1 2 3 4 5 6 7 8 9 10 11 12 ビフエニル型エポキシ樹脂 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 ァラルキル型フエノール樹脂 89.0 89.0 89.0 89.0 89.0 89.0 89.0 89.0 89.0 89.0 89.0 89.0 ホウ酸亜 isi 5.0  Item 1 2 3 4 5 6 7 8 9 10 11 12 Biphenyl epoxy resin 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 Aralkyl phenol resin 89.0 89.0 89.0 89.0 89.0 89.0 89.0 89.0 89.0 89.0 89.0 89.0 Boric acid isi 5.0
ホウ酸亜鉛 3 3.0 5.0 10.0 Zinc borate 3 3.0 5.0 10.0
ホウ酸亜鉛 4 10.0 Zinc borate 4 10.0
処理ホウ酸亜鉛 1 5.0 Treated zinc borate 1 5.0
無水ホウ酸亜鉛 1 1.0 3.0 5.0 10.0 Anhydrous zinc borate 1 1.0 3.0 5.0 10.0
処理無水ホウ酸亜鉛 1 5.0 10.0 トリフエニルホスフィン 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Treated anhydrous zinc borate 1 5.0 10.0 Triphenylphosphine 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 カルナバワックス 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 ポリエチレンワックス 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 カーボンブラック 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 溶融シリカ 1850 1850 1850 1850 1850 1850 1850 1850 1850 1850 1850 1850 処理又は未処理ホウ酸亜鉛、ま  7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 Carnauba wax 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 Polyethylene wax 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 Carbon black 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 Fused silica 1850 1850 1850 1850 1850 1850 1850 1850 1850 1850 1850 1850 Treated or untreated zinc borate,
たは処理又は未処理無水ホウ酸 0.24 0.15 0.24 0.48 0.48 0.24 0.05 0.15 0.24 0.48 0.24 0.48 亜鉛(wt%) Or treated or untreated boric anhydride 0.24 0.15 0.24 0.48 0.48 0.24 0.05 0.15 0.24 0.48 0.24 0.48 Zinc (wt%)
溶融シリカ (wt%) 89.7 89.8 89.7 89.5 89.5 89.7 89.9 89.8 89.7 89.5 89.7 89.5 Fused silica (wt%) 89.7 89.8 89.7 89.5 89.5 89.7 89.9 89.8 89.7 89.5 89.7 89.5
14 14
Figure imgf000050_0001
表 15
Figure imgf000050_0001
Table 15
比較例 C  Comparative Example C
項 目  Items
1 2 3 4 5 6 7 8 ビフエニル型エポキシ樹脂 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 ァラルキル型 フ Iノール樹脂 89.0 89.0 89.0 89.0 89.0 89.0 89.0 89.0 ホウ酸亜鉛 3 30.0 200.0  1 2 3 4 5 6 7 8 Biphenyl type epoxy resin 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 Aralkyl type resin 89.0 89.0 89.0 89.0 89.0 89.0 89.0 89.0 Zinc borate 3 30.0 200.0
ホウ酸亜鉛 4 100.0 200.0  Zinc borate 4 100.0 200.0
無水ホウ酸亜鉛 1 30.0 200.0  Anhydrous zinc borate 1 30.0 200.0
リン原子を有するエステル化合物 10.0 トリフエニルホスフィンオキサイド 10.0 トリフエニルホスフィン 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0  Ester compound having phosphorus atom 10.0 Trifenylphosphine oxide 10.0 Trifenylphosphine 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 カルナバワックス 1.5 1.5 1.5 1 .5 1 .5 1 .5 1.5 1.5 ポリエチレンワックス 1.5 1.5 1 .5 1 .5 1.5 1.5 1.5 1.5 カーボンブラック 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 溶融シリカ 1850 1850 1850 1850 1850 1850 1850 1850 ホウ酸亜鉛、または無水ホウ酸亜  7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 Carnauba wax 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 Polyethylene wax 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 Carbon black 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 Fused silica 1850 1850 1850 1850 1850 1850 1850 1850 Zinc borate or anhydrous borate
1.44 8.86 4.64 8.86 1.44 8.86 0.00 0.00 鉛 (wt%)  1.44 8.86 4.64 8.86 1.44 8.86 0.00 0.00 Lead (wt%)
溶融シリカ (wt%) 88.6 82.0 85.8 82.0 88.6 82.0 89.5 89.5 TJP02/12974 Fused silica (wt%) 88.6 82.0 85.8 82.0 88.6 82.0 89.5 89.5 TJP02 / 12974
作製した実施例及び比較例の封止用ェポキシ樹脂成形材料の評価結果を表 1 6、 表 17及び表 18に示す。 尚、 封止用エポキシ樹脂成形材料の成形は、 ト ランスファ成形機により、 金型温度 180°C、 成形圧力 6. 9MP a、 移送時 間 5秒、 硬化時間 90秒の条件で行った。 また、 後硬化は 180°Cで 5時間行 つた。 表 16 The evaluation results of the epoxy resin molding materials for sealing of the produced examples and comparative examples are shown in Tables 16, 17 and 18. The molding of the epoxy resin molding compound for sealing was performed using a transfer molding machine under the conditions of a mold temperature of 180 ° C, a molding pressure of 6.9 MPa, a transfer time of 5 seconds, and a curing time of 90 seconds. Post-curing was performed at 180 ° C for 5 hours. Table 16
Figure imgf000051_0002
Figure imgf000051_0001
表 18
Figure imgf000051_0002
Figure imgf000051_0001
Table 18
Figure imgf000052_0001
本発明の (C 2) ホウ酸亜鉛を封止用エポキシ樹脂成形材料に対して 0. 5 重量%以上となる量含有する比較例 C 1〜C4は硬度が著しく低く、 ボイドの 発生数が多く、 成形性に劣る。 また、 (C 3) 無水ホウ酸亜鉛を封止用ェポキ シ樹脂成形材料に対して 0. 5重量%以上となる量含有する比較例 5、 6はポ イドの発生数が多く、 成形性に劣る。 またリン系難燃剤を単独で使用した比較 例 C 7、 C 8は難燃性が劣っていた。 これに対して、 実施例 C 1〜C 22は、 流動性、 熱時硬度、 耐リフロー性、 耐湿性、 高温放置特性及び成形性のいずれ も良好であり、 かつ、 UL-94試験で V— 0を達成し難燃性を示す。
Figure imgf000052_0001
Comparative Examples C1 to C4 containing (C 2) zinc borate of the present invention in an amount of 0.5% by weight or more based on the epoxy resin molding material for sealing have extremely low hardness and a large number of voids generated. Poor moldability. In Comparative Examples 5 and 6, in which (C 3) anhydrous zinc borate was contained in an amount of 0.5% by weight or more based on the epoxy resin molding compound for encapsulation, the number of generated voids was large, and the moldability was high. Inferior. Further, Comparative Examples C7 and C8 using the phosphorus-based flame retardant alone had inferior flame retardancy. On the other hand, Examples C1 to C22 showed good fluidity, hot hardness, reflow resistance, moisture resistance, high-temperature storage characteristics and moldability, and V-94 in the UL-94 test. Achieved 0, indicating flame retardancy.
<成分 > <Ingredients>
以下に挙げる成分を用いて実施例 A、 B、 C、 及び比較例 A、 B、 Cにおい てそれぞれ封止用エポキシ樹脂成形材料を作製した。  Epoxy molding materials for sealing were prepared in Examples A, B, and C and Comparative Examples A, B, and C using the components listed below.
(1) エポキシ樹脂  (1) Epoxy resin
エポキシ樹脂としてエポキシ当量 192、 融点 105 °Cのビフエニル型ェポ キシ樹脂 (油化シェルエポキシ株式会社製商品名工ピコ一ト YX— 4000 H) 、 エポキシ当量 245、 融点 113 °Cの硫黄原子含有エポキシ樹脂 (東都化 成株式会社商品名 YSLV— 120TE)、 エポキシ当量 195、 軟化点 65°C の o—クレゾールノポラック型エポキシ樹脂 (住友化学工業株式会社製商品名 ES CN- 190) ;  Biphenyl-type epoxy resin with an epoxy equivalent of 192 and a melting point of 105 ° C (Yuka Shell Epoxy Co., Ltd. Pico YX-4000H), an epoxy equivalent of 245 and a sulfur atom-containing epoxy with a melting point of 113 ° C O-cresol nopolak type epoxy resin (trade name: ES CN-190, manufactured by Sumitomo Chemical Co., Ltd.) having an epoxy equivalent of 195 and a softening point of 65 ° C;
(2) 硬化剤  (2) Curing agent
硬化剤として水酸基当量 172、 軟化点 70°Cのァラルキル型フエノ一ル樹 脂 (三井化学株式会社製商品名ミレックス XL— 225) 、 水酸基当量 1 98、 軟化点 75 °Cのビフエニル型フエノール樹脂 (明和化成株式会社製商品名 ME H- 785 1) 、 水酸基当量 104、 軟化点 88°Cのトリフエニルメタン型フ エノール榭脂 (明和化成株式会社製商品名 ME H— 7 500) 、 水酸基当量 1 54、 軟化点 73°Cのトリフエニルメタン型フエノール樹脂 2 (住金ケミカル 株式会社製商品名 HE 510) 、 水酸基当量 103、 軟化点 83Όのフエノー ルノポラック樹脂 (明和化成株式会社製商品名 Η— 100) ; Aralkyl type phenol tree with a hydroxyl equivalent of 172 and a softening point of 70 ° C as a curing agent Fat (Mitsui Chemicals Co., Ltd. trade name MILEX XL-225), hydroxyl equivalent 198, biphenyl type phenolic resin with softening point 75 ° C (Meiwa Kasei Co., Ltd. trade name ME H-785 1), hydroxyl equivalent 104, softening Triphenylmethane type phenol resin with a point of 88 ° C (MEH-7500 manufactured by Meiwa Kasei Co., Ltd.), a hydroxyl equivalent of 154, and a triphenylmethane type phenol resin with a softening point of 73 ° C 2 (Sumikin Chemical Co., Ltd.) Phenol nopolak resin (brand name HE510), hydroxyl equivalent 103, softening point 83Ό (brand name 明 -100 manufactured by Meiwa Kasei Co., Ltd.);
(3) 無水ホウ酸塩  (3) anhydrous borate
無水ホウ酸塩として無水ホウ酸塩 1 (下記組成式 (XV) 、 平均粒径 3 zm、 水に対する溶解度 0. 068 水1001111、 ) 、 無水ホウ酸塩 2 (下記組成 式 (XVI) 、 平均粒径 1 2 m、 水に対する溶解度 0. 0 8 g/水 1 00m 1) 、 無水ホウ酸塩 3 (下記組成式 (II) 、 平均粒径 8 /im、 水に対する溶解 度 0. O l g/水 100m l、 BORA 社製商品名 F B— 500 ) 、 無水ホウ 酸塩 6 (下記組成式 (XXIII) 、 平均粒径 7 im、 水に対する溶解度 0. 02 g/水 100ml、 四国化成株式会社製商品名アルボライト PF 08T) 、 無 水ホウ酸塩 7 (下記組成式 (XXVI) 、 平均粒径 8 ^m、 水に対する溶解度 0. 02 00ml) 、 及び無水ホウ酸塩 8 (下記組成式 (XXXXXI) 、 平 均粒径 12 urn, 水に対する溶解度 0. 3 g /水 100 m 1 ) ;  As anhydrous borate, anhydrous borate 1 (composition formula (XV), average particle size 3 zm, solubility in water 0.668 water 1001111), anhydrous borate 2 (composition formula (XVI), average particle size) Diameter 12 m, solubility in water 0.08 g / water 100 m 1), anhydrous borate 3 (composition formula (II) below, average particle size 8 / im, solubility in water 0.Olg / water 100 ml, BORA brand name FB-500), anhydrous borate 6 (the following composition formula (XXIII), average particle size 7 im, solubility in water 0.02 g / water 100 ml, brand name from Shikoku Chemicals Co., Ltd.) Arborite PF 08T), anhydrous borate 7 (the following composition formula (XXVI), average particle size 8 ^ m, solubility in water 0.0200 ml), and anhydrous borate 8 (the following composition formula (XXXXXI), Average particle size 12 urn, solubility in water 0.3 g / water 100 m 1);
(4) 処理された無水ホウ酸塩  (4) Treated anhydrous borate
処理された無水ホウ酸塩として無水ホウ酸塩 4 (下記組成式 (II) の無水ホ ゥ酸亜鉛を水酸化マグネシウムで表面処理したもの、 水酸化マグネシウム Z (水酸化マグネシウム +ホウ酸亜鉛) =0. 007、 平均粒径 1 0 /zm、 水に 対する溶解度 0. 08 g Z水 100 mし 水澤化学工業株式会社製商品名 F R Z- 500 C) 、 及び無水ホウ酸塩 5 (下記組成式 (II) の無水ホウ酸亜鉛 (BORAX社製商品名 F B— 500 ) をエポキシシラン力ップリング剤 (信越 化学工業株式会社製商品名 KBM403) で表面処理したもの、 エポキシシラ ンカップリング剤 Z (エポキシシランカップリング剤 +ホウ酸亜鉛) =0. 0 14 (重量比) 、 平均粒径 8 fim、 水に対する溶解度 0. 05 gZ水 1 00m 1) ;  As the treated anhydrous borate, anhydrous borate 4 (anhydrous zinc borate of the following composition formula (II) surface-treated with magnesium hydroxide, magnesium hydroxide Z (magnesium hydroxide + zinc borate) = 0.007, average particle size 10 / zm, solubility in water 0.08 g Z water 100 m, manufactured by Mizusawa Chemical Industry Co., Ltd.FR Z-500 C), and anhydrous borate 5 (the following composition formula) (II) Anhydrous zinc borate (BORAX product name FB-500) surface-treated with epoxy silane coupling agent (Shin-Etsu Chemical Co., Ltd. product name KBM403), epoxy silane coupling agent Z (epoxy silane) Coupling agent + zinc borate) = 0.014 (weight ratio), average particle size 8 fim, solubility in water 0.05 gZ water 100m 1);
(5) ホウ酸塩 (結晶水含有) 比較例 Aのホウ酸塩 (結晶水含有) として、 ホウ酸塩 1 (下記組成式 (XXVIII) 、 平均粒径 9 um, 水に対する溶解度 0. 02 g/水 100m 1、 BORAX社製商品名 ZB) 、 ホウ酸塩 2 (下記組成式 (XXXII) 、 平均粒径 5 m、 水に対する溶解度 0. 03 gZ水 100ml、 BORAX社製商品名 F B —415) 、 ホウ酸塩 3 (下記組成式 (XXXXXII) 、 平均粒径 15 m、 水 に対する溶解度 0. 6 g ^ l 00m l、 富田製薬株式会社製ホウ酸塩 (Ca) ) 、 及びホウ酸塩 4 (下記組成式 (ΧΧΧΧΧΠΙ) 、 平均粒径 6 m、 水 に対する溶解度 2. 9 gZ水 1 0 0mし 富田製薬株式会社製ホウ酸塩 (Mg) ) ; (5) Borate (containing water of crystallization) As the borate of Comparative Example A (containing water of crystallization), borate 1 (the following composition formula (XXVIII), average particle size 9 um, solubility in water 0.02 g / water 100m1, BORAX brand name ZB) ), Borate 2 (the following formula (XXXII), average particle size 5 m, solubility in water 0.03 gZ, 100 ml of water, BORAX brand name FB-415), borate 3 (the following formula (XXXXXII) ), Average particle size 15 m, solubility in water 0.6 g ^ l 00 ml, borate (Ca) manufactured by Tomita Pharmaceutical Co., Ltd., and borate 4 (composition formula (ΧΧΧΧΧΠΙ) below, average particle size 6) m, solubility in water 2.9 gZ water 100m3, borate (Mg) manufactured by Tomita Pharmaceutical Co., Ltd.);
(6) 処理されたホウ酸亜鉛  (6) treated zinc borate
処理されたホウ酸亜鉛として処理ホウ酸亜鉛 1 (下記組成式 (XXVHI) のホ ゥ酸亜鉛を水酸化マグネシウムで表面処理したもの、 水酸化マグネシウム Ζ (水酸化マグネシウム +ホウ酸亜鉛) =0. 007、 平均粒径 3 /m、 水澤化 学工業株式会社製 F R F— 3 0 C) 、 処理ホウ酸亜鉛 2 (下記組成式 (XXVIII) のホウ酸亜鉛を水酸化マグネシウムで表面処理したもの、 水酸化マ グネシゥム / (水酸化マグネシウム +ホウ酸亜鉛) =0. 007、 平均粒径 8 rn, 水澤化学工業株式会社製 FR— 50 C) 、 処理ホウ酸亜鉛 3 (下記組成 式 (XXXII) のホウ酸亜鉛を水酸化マグネシウムで表面処理したもの、 水酸化 マグネシウム/ (水酸化マグネシウム +ホウ酸亜鉛) =0. 007、 平均粒径 6 m) 、 処理ホウ酸亜鉛 4 (下記組成式 (XXVIII) のホウ酸亜鉛を水酸化ァ ルミ二ゥムで表面処理したもの、 水酸化アルミニウム/ (水酸化アルミニウム +ホウ酸亜鉛) =0. 007、 平均粒径 3 m) 、 処理ホウ酸亜鉛 5 (下記組 成式 (XXVIII) のホウ酸亜鉛を水酸化マグネシウムで表面処理したもの、 水酸 化マグネシウム Z (水酸化マグネシウム +ホウ酸亜鉛) =0. 094、 平均粒 径 3 m、 水澤化学工業株式会社製 FRC - 500) 、 処理ホウ酸亜鉛 6 (下 記組成式 (XXVIII) のホウ酸亜鉛を水酸化マグネシウムで表面処理したもの、 水酸化マグネシウム Z (水酸化マグネシウム +ホウ酸亜鉛) =0. 188、 平 均粒径 3 ΠΙ、 水澤化学工業株式会社製 FRC— 600) 、 処理ホウ酸亜鉛 7 (下記組成式 (XXVIII) のホウ酸亜鉛を水酸化マグネシウムで表面処理したも の、 水酸化マグネシウム Z (水酸化マグネシウム +ホウ酸亜鉛) =0. 094、 平均粒径 8 zm、 水澤化学工業株式会社製 FRC— 150) 、 処理ホウ酸亜鉛 8 (下記組成式 (XXVin) のホウ酸亜鉛を水酸化マグネシウムで表面処理した もの、 水酸化マグネシウム Ζ (水酸化マグネシウム +ホウ酸亜鉛) =0. 18 8、 平均粒径 8 ^m、 水澤化学工業株式会社製 F R C— 250 ) 、 処理ホウ酸 亜鉛 9 (下記組成式 (XXXII) のホウ酸亜鉛を水酸化マグネシウムで表面処理 したもの、 水酸化マグネシウム/ (水酸化マグネシウム +ホウ酸亜鉛) =0. 094、 平均粒径 6 zm) 、 Treated zinc borate 1 (zinc borate of the following formula (XXVHI) treated with magnesium hydroxide as the treated zinc borate; magnesium hydroxide Ζ (magnesium hydroxide + zinc borate) = 0. 007, average particle size 3 / m, FRF-30C manufactured by Mizusawa Chemical Industry Co., Ltd., treated zinc borate 2 (a zinc borate of the following composition formula (XXVIII) treated with magnesium hydroxide, water Magnesium oxide / (magnesium hydroxide + zinc borate) = 0.007, average particle size 8 rn, FR-50C manufactured by Mizusawa Chemical Industry Co., Ltd., treated zinc borate 3 (borough of the following formula (XXXII)) Zinc oxide surface treated with magnesium hydroxide, magnesium hydroxide / (magnesium hydroxide + zinc borate) = 0.007, average particle size 6 m, treated zinc borate 4 (of the following composition formula (XXVIII)) Zinc borate surface treated with aluminum hydroxide, Aluminum oxide / (aluminum hydroxide + zinc borate) = 0.007, average particle size 3 m), treated zinc borate 5 (zinc borate of the following formula (XXVIII) treated with magnesium hydroxide) , Magnesium hydroxide Z (magnesium hydroxide + zinc borate) = 0.094, average particle size 3 m, FRC-500 manufactured by Mizusawa Chemical Co., Ltd., treated zinc borate 6 (composition formula (XXVIII) below) The surface treatment of zinc borate with magnesium hydroxide, magnesium hydroxide Z (magnesium hydroxide + zinc borate) = 0.188, average particle size 3 mm, FRC-600 manufactured by Mizusawa Chemical Industry Co., Ltd. Treated zinc borate 7 (zinc borate of the following composition formula (XXVIII), surface-treated with magnesium hydroxide; magnesium hydroxide Z (magnesium hydroxide + zinc borate) = 0.094; Average particle size 8 zm, FRC-150 manufactured by Mizusawa Chemical Industry Co., Ltd., treated zinc borate 8 (zinc borate of the following composition formula (XXVin) surface-treated with magnesium hydroxide, magnesium hydroxide Ζ Magnesium + zinc borate) = 0.188, average particle size 8 ^ m, FRC-250 manufactured by Mizusawa Chemical Industry Co., Ltd., treated zinc borate 9 (zinc borate of the following composition formula (XXXII) is converted to magnesium hydroxide Magnesium hydroxide / (magnesium hydroxide + zinc borate) = 0.094, average particle size 6 zm),
(7) ホウ酸亜鉛  (7) Zinc borate
無処理のホウ酸亜鉛としてホウ酸亜鉛 1 (下記組成式 (XXVIII) のホウ酸亜 鉛、 平均粒径 3 m、 水澤化学工業株式会社製 F R F— 30 ) 、 ホゥ酸亜鉛 2 (下記組成式 (XXVIII) のホウ酸亜鉛、 平均粒径 8/i m、 水澤化学工業株式会 社製 FR— 50) 、 ホウ酸亜鉛 3 (下記組成式 (XXVIII) のホウ酸亜鉛、 平均 粒径 9 /im、 US BORA 社製 F B - Z B) 、 ホウ酸亜鉛 4 (下記組成式 (XXXII) のホウ酸亜鉛、 平均粒径 5/im、 US BORAX社製 FB— 415) 、 (8) 処理された無水ホウ酸亜鉛  As untreated zinc borate, zinc borate 1 (zinc borate of the following composition formula (XXVIII), average particle size 3 m, FRF-30 manufactured by Mizusawa Chemical Industry Co., Ltd.), zinc borate 2 (the following composition formula ( XXVIII) zinc borate, average particle size 8 / im, FR-50 manufactured by Mizusawa Chemical Industry Co., Ltd., zinc borate 3 (zinc borate of the following composition formula (XXVIII), average particle size 9 / im, US (BORA FB-ZB), zinc borate 4 (zinc borate of the following composition formula (XXXII), average particle size 5 / im, US BORAX FB—415), (8) treated anhydrous zinc borate
処理された無水ホウ酸亜鉛として処理無水ホウ酸亜鉛 1 (下記組成式 (Π) のホウ酸亜鉛を水酸化マグネシウムで表面処理したもの、 水酸化マグネシゥム / (水酸化マグネシウム +無水ホウ酸亜鉛) =0. 007、 平均粒径 10 m) 、 処理無水ホウ酸亜鉛 2 (下記組成式 (II) のホウ酸亜鉛をァーグリシド キシプロビルトリメトキシシランで表面処理したもの、 ァ—グリシドキシプロ ピルトリメトキシシラン Z (ァーグリシドキシプロピルトリメトキシシラン + 無水ホウ酸亜鉛) =0. 014、 平均粒径 8 ΠΙ) 、 処理無水ホウ酸亜鉛 3 (下記組成式 (II) のホウ酸亜鉛を N—フエ二ルーァ―ァミノプロビルトリメ トキシシランで表面処理したもの、 N—フエ二ルーァーァミノプロピルトリメ トキシシラン Z (N—フエ二ルーァ一ァミノプロピルトリメトキシシラン +無水 ホウ酸亜鉛) =0. 015、 平均粒径 8 im) 、 処理無水ホウ酸亜鉛 4 (下記 組成式 (II) のホウ酸亜鉛をメチルトリメトキシシランで表面処理したもの、 メチルトリメトキシシラン Z (メチルトリメトキシシラン +無水ホウ酸亜鉛) =0. 008、 平均粒径 8 m) 、 処理無水ホウ酸亜鉛 5 (下記組成式 (II) のホウ酸亜鉛をメ夕クリロキシプロピルトリエトキシシランで表面処理したも の、 メタクリロキシプロピルトリエトキシシラン/ (メタクリロキシプロピル トリエトキシシラン +無水ホウ酸亜鉛) =0. 017、 平均粒径 8 m) 、 処 理無水ホウ酸亜鉛 6 (下記組成式 (II) のホウ酸亜鉛をテトライソプロピルビ ス (ジォクチルホスファイト) チタネートで表面処理したもの、 テトライソプ 口ピルビス (ジォクチルホスファイト) チタネート Z (テトライソプロピルビ ス (ジォクチルホスフアイ卜) チタネート +無水ホウ酸亜鉛) =0. 010、 平均粒径 8 xm) 、 処理無水ホウ酸亜鉛 7 (下記組成式 (II) のホウ酸亜鉛を 水酸化マグネシウムで表面処理したもの (水酸化マグネシウム Z (水酸化マグ ネシゥム +無水ホウ酸亜鉛) =0. 007) をさらにァ―グリシドキシプロピ ルトリメトキシシランで表面処理したもの、 τ—グリシドキシプロビルトリメ トキシシラン Z (ァーグリシドキシプロピルトリメトキシシラン +水酸化マグ ネシゥム +無水ホウ酸亜鉛) =0. 014、 平均粒径 10 m) 、 処理無水ホ ゥ酸亜鉛 8 (下記組成式 (II) のホウ酸亜鉛を水酸化マグネシウムで表面処理 したもの (水酸化マグネシウム/ (水酸化マグネシウム +無水ホウ酸亜鉛) = 0. 007) をさらに N—フエ二ルー了一ァミノプロビルトリメトキシシラン で表面処理したもの、 N—フエ二ルーァーァミノプロピルトリメトキシシラン / (N—フエニル—ァ―ァミノプロビルトリメトキシシラン +水酸化マグネシゥ ム +無水ホウ酸亜鉛) =0. 015、 平均粒径 1 O^m) 、 処理無水ホウ酸亜 鉛 9 (下記組成式 (II) のホウ酸亜鉛を水酸化マグネシウムで表面処理したも の (水酸化マグネシウム (水酸化マグネシウム +無水ホウ酸亜鉛) =0. 0 07) をさらにメチルトリメトキシシランで表面処理したもの、 メチルトリメ トキシシラン (メチルトリメトキシシラン +水酸化マグネシウム +無水ホウ酸 亜鉛) =0. 008、 平均粒径 10 m) 、 処理無水ホウ酸亜鉛 10 (下記組 成式 (II) のホウ酸亜鉛を水酸化マグネシウムで表面処理したもの (水酸化マ グネシゥム Z (水酸化マグネシウム +無水ホウ酸亜鉛) =0. 007) をさら にメタクリロキシプロピルトリエトキシシランで表面処理したもの、 メタクリ ロキシプロピルトリエトキシシラン Z (メタクリロキシプロピルトリエトキシ シラン +水酸化マグネシウム +無水ホウ酸亜鉛) =0. 017、 平均粒径 10 m) 、 処理無水ホウ酸亜鉛 11 (下記組成式 (Π) のホウ酸亜鉛を水酸化マグ ネシゥムで表面処理したもの (水酸化マグネシウム/ (水酸化マグネシウム + 無水ホウ酸亜鉛) =0. 007) をさらにテトライソプロピルビス (ジォクチ ルホスファイト) チタネートで表面処理したもの、 テトライソプロピルビスTreated anhydrous zinc borate as treated anhydrous zinc borate 1 (Zinc borate of the following composition formula (Π) surface-treated with magnesium hydroxide, magnesium hydroxide / (magnesium hydroxide + anhydrous zinc borate) = 0.007, average particle size 10 m), treated anhydrous zinc borate 2 (a zinc borate of the following composition formula (II) surface-treated with aglycidoxypropyltrimethoxysilane), aglycidoxypropyltrimethoxysilane Z (Α-glycidoxypropyltrimethoxysilane + anhydrous zinc borate) = 0.014, average particle size 8 mm), treated anhydrous zinc borate 3 (Zinc borate of the following composition formula (II) is Surface-treated with L-aminopropyltrimethoxysilane, N-phenylaminopropyltrimethoxysilane Z (N-phenylaminopropyltrimethoxysilane + none Zinc borate = 0.015, average particle size 8 im), treated anhydrous zinc borate 4 (zinc borate of the following composition formula (II) surface-treated with methyltrimethoxysilane, methyltrimethoxysilane Z ( Methyltrimethoxysilane + anhydrous zinc borate) = 0.008, average particle size 8 m), treated anhydrous zinc borate 5 (the surface of zinc borate of the following composition formula (II) is treated with methacryloxypropyltriethoxysilane) Also processed Methacryloxypropyltriethoxysilane / (methacryloxypropyltriethoxysilane + anhydrous zinc borate) = 0.017, average particle diameter 8 m), treated anhydrous zinc borate 6 (boron of the following formula (II)) Zinc acid surface-treated with tetraisopropyl bis (dioctyl phosphite) titanate, tetraisopropyl pyrbis (dioctyl phosphite) titanate Z (tetraisopropyl bis (dioctyl phosphite) titanate + anhydrous borane Zincate) = 0.010, average particle size 8 xm, treated anhydrous zinc borate 7 (zinc borate of the following composition formula (II) surface-treated with magnesium hydroxide (magnesium hydroxide Z (magnesium hydroxide Nesidum + anhydrous zinc borate) = 0.007), further treated with α-glycidoxypropyltrimethoxysilane, τ-glycidoxypropyl Trimethoxysilane Z (aglycidoxypropyltrimethoxysilane + magnesium hydroxide + anhydrous zinc borate) = 0.014, average particle size 10 m), treated anhydrous zinc borate 8 (composition formula (II) below) Of zinc borate (surface treated with magnesium hydroxide) (magnesium hydroxide / (magnesium hydroxide + anhydrous zinc borate) = 0.007) is further treated with N-phenylaminopropyl trimethoxysilane. Surface treated, N-phenylaminopropyltrimethoxysilane / (N-phenylaminopropyltrimethoxysilane + magnesium hydroxide + zinc anhydrous borate) = 0.015, average Particle size 1 O ^ m), treated with anhydrous zinc borate 9 (zinc borate of the following composition formula (II) surface-treated with magnesium hydroxide (magnesium hydroxide (magnesium hydroxide + anhydrous zinc borate)) = 0.0 07) further treated with methyltrimethoxysilane, methyltrimethoxysilane (methyltrimethoxysilane + magnesium hydroxide + zinc borate anhydrous) = 0.008, average particle size 10 m), treated anhydrous zinc borate 10 ( Surface treatment of magnesium borate of the following formula (II) with magnesium hydroxide (magnesium hydroxide Z (magnesium hydroxide + anhydrous zinc borate) = 0.007) was added to methacryloxypropyltriethoxysilane Methacryloxypropyltriethoxysilane Z (methacryloxypropyltriethoxysilane + magnesium hydroxide + anhydrous zinc borate) = 0.017, average particle size 10 m), treated anhydrous zinc borate 11 (see below) Zinc borate of the composition formula (Π) surface treated with magnesium hydroxide (magnesium hydroxide / (magnesium hydroxide + Anhydrous zinc borate) = 0.007) further treated with tetraisopropyl bis (dioctyl phosphite) titanate
(ジォクチルホスフアイト) チタネート Z (テトライソプロピルビス (ジォク チルホスファイト) チタネート +水酸化マグネシウム +無水ホウ酸亜鉛) =0. 0 1 0、 平均粒径 10 //m) 、 処理無水ホウ酸亜鉛 12 (下記組成式 (II) の ホゥ酸亜鉛を水酸化マグネシゥムで表面処理したもの、 水酸化マグネシゥム Z(Dioctyl phosphite) titanate Z (tetraisopropyl bis (dioctyl phosphite) titanate + magnesium hydroxide + anhydrous zinc borate) = 0.010, average particle size 10 // m), treated boric anhydride Zinc 12 (Zinc borate of the following composition formula (II) surface-treated with magnesium hydroxide, magnesium hydroxide Z
(水酸化マグネシウム +無水ホウ酸亜鉛) =0. 094、 平均粒径 9 m) 、(Magnesium hydroxide + anhydrous zinc borate) = 0.094, average particle size 9 m),
(9) 無水ホウ酸亜鉛 (9) Anhydrous zinc borate
無処理の無水ホウ酸亜鉛として無水ホウ酸亜鉛 1 (下記組成式 (II) のホウ 酸亜鉛、 平均粒径 8 ^m、 US BORA 社製 F B— 500 ) 、  As untreated anhydrous zinc borate, anhydrous zinc borate 1 (zinc borate of the following composition formula (II), average particle size 8 ^ m, US BORA FB-500),
(10) その他  (10) Other
その他の難燃剤として複合金属水酸化物 (下記組成式 (XXXIV) で示され、 Miがマグネシウム、 M2が亜鉛で、 mが 0. 8、 nが 0. 2、 1が 1で、 a、 b、 c及び dが 1である水酸化マグネシウム ·亜鉛固溶体、 夕テホ化学工業株 式会社製商品名エコーマグ Z 10) ; リン原子を有するエステル化合物として 下記構造式 (XXXXVI) で示される縮合リン酸エステル;ホスフィン化合物と してトリフエニルホスフィンォキサイド;無機充填剤として平均粒子径 1 7. 5 m, 比表面積 3. 8m2/gの球状溶融シリ力;硬化促進剤としてトリフ ェニルホスフィン;その他の添加剤としてエポキシシランカップリング剤 (信 ' 越化学工業株式会社製商品名 KBM403) 、 カルナバワックス (クラリアン ト社製) 、 ポリエチレンワックス (クラリアントジャパン株式会社製商品名 P ED- 19 1) 及び力一ポンプラック (三菱化学株式会社製商品名 M A— 10 0) を使用した。  Other flame retardants are composite metal hydroxides (shown by the following composition formula (XXXIV), where Mi is magnesium, M2 is zinc, m is 0.8, n is 0.2, 1 is 1, a, b A magnesium hydroxide-zinc solid solution wherein c, d are 1; trade name, Echomag Z 10), manufactured by Yu-Teho Chemical Industry Co., Ltd .; a condensed phosphate represented by the following structural formula (XXXXVI) as an ester compound having a phosphorus atom Triphenyl phosphine oxide as a phosphine compound; spherical molten silicic acid with an average particle diameter of 17.5 m and a specific surface area of 3.8 m2 / g as an inorganic filler; triphenyl phosphine as a hardening accelerator; Epoxy silane coupling agents (Shin 'Koshi Chemical Industry Co., Ltd. product name KBM403), carnauba wax (Clariant Co., Ltd.), polyethylene wax (Clariant Japan Co., Ltd. product name PED-1) 9 1) and a power pump rack (trade name: M A-100 manufactured by Mitsubishi Chemical Corporation) were used.
3 C οθ · B203 (XV) 3 C οθB 2 0 3 (XV)
C oO ' 2B203 (XVI) C oO '2B 2 0 3 (XVI)
2 Z ηθ · 3B2O3 (II) 2 Z ηθ3B 2 O 3 (II)
9 A 1203 · 2B203 (XXIII) 9 A 1 2 0 3 2B 2 0 3 (XXIII)
B i 2O3 · B203 (XXVI) B i 2 O 3 · B 2 0 3 (XXVI)
MgO · 2B203 (XXXXXI) MgO · 2B 2 0 3 (XXXXXI )
2 ZnO · 3B2O3 - 3. 5H20 (XXVIII) 4 Z ηθ · B2O3 - H20 (XXXII) 2 ZnO · 3B 2 O 3 - 3. 5H 2 0 (XXVIII) 4 Z ηθB 2 O 3 -H 2 0 (XXXII)
C aO - B203 - 3. 5 H20 (XXXXXII) C aO - B 2 0 3 - 3. 5 H 2 0 (XXXXXII)
2MgO · 3B203 · 6H20 (XXXXXIII) 2MgO · 3B 2 0 3 · 6H 2 0 (XXXXXIII)
m(MiaOb) · n(M2cOd) · 1 (H20) (XXXIV) m (MiaOb) · n (M2 c Od) · 1 (H 2 0) (XXXIV)
(XXXXVI)(XXXXVI)
Figure imgf000058_0001
Figure imgf000058_0001
<評価基準 >  <Evaluation criteria>
(1) 難燃性  (1) Flame retardant
厚さ 1ノ16インチの試験片を成形する金型を用いて、 封止用エポキシ樹脂 成形材料を上記条件で成形して後硬化を行い、 UL— 94試験法に従って難燃 性を評価した。  Using a mold for molding a test piece having a thickness of 1 to 16 inches, an epoxy resin molding material for sealing was molded under the above conditions and post-cured, and the flame retardancy was evaluated according to the UL-94 test method.
(2) スパイラルフロー (流動性の指標)  (2) Spiral flow (liquidity index)
EMM 1 -1 -66に準じたスパイラルフロー測定用金型を用いて、 封止用 エポキシ樹脂成形材料を上記条件で成形し、 流動距離 (cm) を求めた。  Using a mold for spiral flow measurement according to EMM 1-1-66, an epoxy resin molding material for sealing was molded under the above conditions, and the flow distance (cm) was determined.
(3) 熱時硬度  (3) Hot hardness
封止用エポキシ樹脂成形材料を上記条件で直径 50111111 厚さ3111111の円板 に成形し、 成形後直ちにショァ D型硬度計を用いて測定した。  The epoxy resin molding material for sealing was molded into a disk having a diameter of 50111111 and a thickness of 3111111 under the above conditions, and measured immediately after molding using a Shore D hardness meter.
(4) 耐リフロー性  (4) Reflow resistance
8mmX 1 OmmX 0. 4 mmのシリコーンチップを搭載した外形寸法 20 mmX 14mmX 2mmの 80ピンフラットパッケージ (QFP) (リ一ドフ レームの材質:銅、 タブ:十字スリット加工) を、 封止用エポキシ樹脂成形材 料を用いて上記条件で成形、 後硬化して作製し、 85°C、 85%RHの条件で 加湿して所定時間毎に 260°C、 10秒の条件でリフロー処理を行い、 クラッ クの有無を観察し、 試験パッケージ数 (5) に対する発生パッケージ数で評価 した。  8mmX 1 OmmX 0.4mm silicone chip mounted external dimensions 20mmX 14mmX 2mm 80-pin flat package (QFP) (lead frame material: copper, tab: cross slit processing), epoxy resin for sealing It is molded using a molding material under the above conditions and post-cured to make it, humidified at 85 ° C and 85% RH, reflowed at 260 ° C for 10 seconds at predetermined intervals, and cracked. The number of generated packages was evaluated against the number of test packages (5) by observing the presence or absence of cracks.
(5) 耐湿性 5 m厚の酸化膜上に線幅 10 _im、 厚さ 1 のアルミ配線を施した 6 m mX 6mmx 0. 4mmのテスト用シリコーンチップを搭載した外形寸法 20 mmx 14mmX 2. 7 mmの 80ピンフラットパッケージ (QFP) を、 封 止用エポキシ樹脂成形材料を用いて上記条件で成形、 後硬化して作製し、 前処 理を行った後、 加湿して所定時間毎にアルミ配線腐食による断線不良を調べ、 試験パッケージ数 (10) に対する不良パッケージの割合が 50%に達する加 湿時間で評価した。 (5) Moisture resistance 80 mm flat, 20 mm x 14 mm x 2.7 mm, with a 6 mm x 6 mm x 0.4 mm test silicon chip with aluminum wiring of 10 _im line width and 1 thickness on a 5 m thick oxide film A package (QFP) is formed by molding and post-curing using the epoxy resin molding compound for sealing under the above conditions, and after performing pre-treatment, humidifying to prevent disconnection failure due to aluminum wiring corrosion every predetermined time. The humidification time when the ratio of defective packages to the number of test packages (10) reached 50% was evaluated.
なお、 前処理は 85°C、 85%RH、 72時間の条件でフラットパッケージ を加湿後、 215 、 90秒間のベーパーフェーズリフロー処理を行った。 そ の後の加湿は 0. 2MPa、 121°Cの条件で行った。  In the pretreatment, the flat package was humidified at 85 ° C and 85% RH for 72 hours, and then subjected to vapor phase reflow treatment for 215 and 90 seconds. Subsequent humidification was performed under the conditions of 0.2 MPa and 121 ° C.
(6) 高温放置特性  (6) High temperature storage characteristics
5 m厚の酸化膜上に線幅 10 /m、 厚さ 1 mのアルミ配線を施した 5 m mX 9mmX 0. 4mmのテスト用シリコーンチップを、 部分銀メツキを施し た 42ァロイのリードフレーム上に銀ペーストを用いて搭載し、 サーモニック 型ワイヤボンダにより、 200°Cでチップのボンディングパッドとインナリー ドを Au線にて接続した 16ピン型 D I P (Dual Inline Package) を、 封止用 エポキシ樹脂成形材料を用いて上記条件で成形、 後硬化して作製して、 20 0°Cの高温槽中に保管し、 所定時間毎に取り出して導通試験を行い、 試験パッ ケージ数 (10) に対する導通不良パッケージの割合が 50%に達する放置時 間で、 高温放置特性を評価した。  A 5 m m x 9 mm x 0.4 mm test silicon chip with a 10 m / m and 1 m thick aluminum wiring line on a 5 m thick oxide film is mounted on a 42 alloy lead frame with a partial silver plating. A 16-pin DIP (Dual Inline Package) in which the bonding pad of the chip and the inner lead are connected by an Au wire at 200 ° C using a thermonic wire bonder, and molded with epoxy resin for sealing The material is molded and post-cured under the above conditions, and is stored in a high-temperature bath at 200 ° C, taken out at predetermined time intervals, and subjected to a continuity test. The continuity failure with respect to the number of test packages (10) The high-temperature storage characteristics were evaluated when the package ratio reached 50%.
(7) 抽出液電気伝導度  (7) Extract conductivity
不純物測定用の試験片を微粉砕し、 試料 5 gをアコム製ュ二シール (抽出治 具) に蒸留水 50 mlと共に入れ、 恒温槽中にて 12 l°C/20時間抽出した 。 抽出液をろ過し、 試験液とした。 その試験液を用いて、 京都エレクトロニク ス社製電気伝導度計 CM— 1 15にて、 電気伝導度を測定した。  A test piece for measuring impurities was finely pulverized, and a 5 g sample was put into an Acom-made Niseal (extraction jig) together with 50 ml of distilled water, and extracted in a thermostat at 12 l ° C / 20 hours. The extract was filtered to obtain a test solution. Using the test solution, electric conductivity was measured with an electric conductivity meter CM-115 manufactured by Kyoto Electronics Co., Ltd.
(8) 成形性  (8) Formability
8. 6mmx 15. OmmXO. 28 mmのテスト用シリコーンチップを搭 載した外形寸法 7. 56mmX 17. 08mmX 1. 0 mmの 24ピン T SO P (LOC構造) を、 封止用エポキシ樹脂成形材料を用いて上記条件で成形し、 外観検査を行い、 試験パッケージ数 (10) に対して、 0. 3mm以上のボイ ドの発生するパッケージ数及び 0. 1mm以上のボイドが発生するパッケージ 数を評価した。 産業上の利用可能性 8.6mmx 15. OmmXO. External dimensions with 28mm test silicone chip 7.56mmX 17.08mmX 1.0mm 24-pin TSOP (LOC structure), epoxy resin molding compound for encapsulation Molded under the above conditions using A visual inspection was performed to evaluate the number of packages with voids of 0.3 mm or more and the number of packages with voids of 0.1 mm or more against the number of test packages (10). Industrial applicability
本発明になる封止用ェポキシ樹脂成形材料は実施例で示したようにノンハロ ゲンかつノンアンチモンで難燃性が達成でき、 硬化性等の成形性に優れ、 耐リ フロー性、 耐湿性及び高温放置特性等の信頼性も良好な封止用エポキシ樹脂材 料により封止した素子を備えた電子部品装置製品を得ることができ、 その工業 的価値は大である。  The epoxy resin molding material for encapsulation according to the present invention can achieve flame retardancy with non-halogen and non-antimony as shown in the examples, has excellent moldability such as curability, reflow resistance, moisture resistance and high temperature. An electronic component device product having an element encapsulated with an epoxy resin material for encapsulation, which has good reliability such as standing characteristics, can be obtained, and its industrial value is great.

Claims

請 求 の 範 囲 The scope of the claims
1. (A) エポキシ樹脂、 (B) 硬化剤及び (C) ホウ酸系難燃剤を必須成 分とし、 前記 (C) ホウ酸系難燃剤として (C 1) 無水ホウ酸塩を含有する封 止用エポキシ樹脂成形材料。 1. An epoxy resin, (B) a curing agent, and (C) a boric acid-based flame retardant as essential components, and a seal containing (C 1) anhydrous borate as the (C) boric acid-based flame retardant. Epoxy resin molding compound.
2. (C 1) 無水ホウ酸塩が下記組成式 (I) で示される化合物である請求 項 1記載の封止用エポキシ樹脂成形材料。  2. The epoxy resin molding material for sealing according to claim 1, wherein (C 1) the anhydrous borate is a compound represented by the following composition formula (I).
m(MxOy) - n(B203) (I) m (MxOy) - n (B 2 0 3) (I)
(ここで、 Mは金属元素を示し、 m、 n、 x、 yは、 それぞれ独立に正の数で ある。 )  (Here, M represents a metal element, and m, n, x, and y are each independently a positive number.)
3. 組成式 (I) 中の Mがアルカリ金属及びアルカリ土類金属以外から選ば れる金属元素である請求項 2記載の封止用エポキシ樹脂成形材料。  3. The molding epoxy resin molding material according to claim 2, wherein M in the composition formula (I) is a metal element selected from other than alkali metals and alkaline earth metals.
4. 組成式 (I) 中の Mが Co、 Zn、 A 1及ぴ B iから選ばれる金属元素 である請求項 2記載の封止用エポキシ樹脂成形材料。  4. The molding epoxy resin molding material according to claim 2, wherein M in the composition formula (I) is a metal element selected from Co, Zn, A1 and Bi.
5. (C 1) 無水ホウ酸塩が、 下記組成式 (II) で示される無水ホウ酸亜鉛 である請求項 4記載の封止用ェポキシ樹脂成形材料。  5. The epoxy resin molding material for sealing according to claim 4, wherein (C 1) the anhydrous borate is anhydrous zinc borate represented by the following composition formula (II).
2 ZnO · 3 B203 (II) 2 ZnO · 3 B 2 0 3 (II)
6. (C I) 無水ホウ酸塩の 25 °Cにおける水に対する溶解度が、 水 100 gに対して 1 g以下である請求項 1〜 5のいずれかに記載の封止用エポキシ樹 脂成形材料。  6. The epoxy resin molding material for sealing according to any one of claims 1 to 5, wherein (C I) the solubility of anhydrous borate in water at 25 ° C is 1 g or less per 100 g of water.
7. (C 1) 無水ホウ酸塩が、 無機物及び有機物の少なくともいずれか一方 で処理されている請求項 1〜 6のいずれかに記載の封止用エポキシ樹脂成形材 料。  7. The epoxy resin molding material for sealing according to any one of claims 1 to 6, wherein (C1) the anhydrous borate is treated with at least one of an inorganic substance and an organic substance.
8. (A) エポキシ樹脂、 (B) 硬化剤及び (C) ホウ酸系難燃剤を必須成 分とし、 前記 (C) ホウ酸系難燃剤として (D) 無機物及び有機物の少なくと もいずれか一方で処理された (C 2) ホウ酸亜鉛又は (C 3) 無水ホウ酸亜鉛 を含有し、 その処理量が、 重量比で ( (C 2) / ( (C 2) + (D) ) ) 又は ( (C 3) Z ( (C 3) + (D) ) ) が 0. 02未満となる量である封止用ェ ポキシ樹脂成形材料。 8. (A) Epoxy resin, (B) curing agent and (C) boric acid-based flame retardant are essential components, and (D) at least one of inorganic and organic substances as (C) boric acid-based flame retardant On the other hand, it contains treated (C 2) zinc borate or (C 3) anhydrous zinc borate, and the treatment amount is ((C 2) / ((C 2) + (D))) Or an epoxy resin molding material for sealing, in which ((C3) Z ((C3) + (D))) is less than 0.02.
9. (C) ホウ酸系難燃剤の配合量が、 封止用エポキシ樹脂成形材料に対し て 0. 01〜20重量%である請求項 1〜8のいずれかに記載の封止用ェポキ シ樹脂成形材料。 9. The sealing epoxy according to any one of claims 1 to 8, wherein the amount of the (C) boric acid-based flame retardant is 0.01 to 20% by weight based on the epoxy molding compound for sealing. Resin molding material.
10. (A) エポキシ樹脂、 (B) 硬化剤及び (C) ホウ酸系難燃剤を必須 成分とし、 前記 (C) ホウ酸系難燃剤として (C2) ホウ酸亜鉛又は (C3) 無水ホウ酸亜鉛を封止用エポキシ樹脂成形材料に対して 0. 5重量%未満とな る量含有する封止用エポキシ樹脂成形材料。  10. (A) Epoxy resin, (B) curing agent and (C) boric acid-based flame retardant as essential components, (C) zinc borate or (C3) boric anhydride as (C) boric acid-based flame retardant An epoxy resin molding compound for encapsulation containing zinc in an amount of less than 0.5% by weight based on the epoxy resin molding compound for encapsulation.
11. (C2) ホウ酸亜鉛又は (C3) 無水ホウ酸亜鉛の配合量が、 封止用 エポキシ樹脂成形材料に対して 0. 3重量%未満である請求項 10記載の封止 用エポキシ樹脂成形材料。  11. The molding epoxy resin for sealing according to claim 10, wherein the amount of (C2) zinc borate or (C3) anhydrous zinc borate is less than 0.3% by weight based on the molding epoxy resin molding material. material.
12. (C) ホウ酸系難燃剤の平均粒径が 0. 01〜50 である請求項 1〜 11のいずれかに記載の封止用エポキシ樹脂成形材料。  12. The epoxy resin molding material for sealing according to any one of claims 1 to 11, wherein the (C) boric acid-based flame retardant has an average particle size of 0.01 to 50.
13. (C) ホウ酸系難燃剤が、 金属水酸化物で処理されている請求項 1〜 12のいずれかに記載の封止用エポキシ樹脂成形材料。  13. The molding epoxy resin molding material according to claim 1, wherein the (C) boric acid-based flame retardant is treated with a metal hydroxide.
14. (C) ホウ酸系難燃剤が、 水酸化マグネシウムで処理されている請求 項 13に記載の封止用エポキシ榭脂成形材料。  14. The epoxy resin molding material for sealing according to claim 13, wherein the (C) boric acid-based flame retardant is treated with magnesium hydroxide.
15. (C) ホウ酸系難燃剤が、 カップリング剤で処理されている請求項 1 〜 14のいずれかに記載の封止用エポキシ樹脂成形材料。  15. The epoxy resin molding material for sealing according to any one of claims 1 to 14, wherein the (C) boric acid-based flame retardant is treated with a coupling agent.
16. さらに (E) リン系難燃剤を含有する請求項 1〜 15のいずれかに記 載の封止用エポキシ樹脂成形材料。  16. The epoxy resin molding material for sealing according to any one of claims 1 to 15, further comprising (E) a phosphorus-based flame retardant.
17. (E) リン系難燃剤がリン原子を有するエステル化合物を含有する請 求項 16記載の封止用エポキシ樹脂成形材料。  17. The epoxy resin molding material for sealing according to claim 16, wherein (E) the phosphorus-based flame retardant contains an ester compound having a phosphorus atom.
18. リン原子を有するエステル化合物が下記一般式 (ΧΧΧΧΠ) で示され る化合物である請求項 17記載の封止用エポキシ樹脂成形材料。 (ΧΧΧΧΠ)
Figure imgf000063_0001
18. The epoxy resin molding material for sealing according to claim 17, wherein the ester compound having a phosphorus atom is a compound represented by the following general formula (II). (ΧΧΧΧΠ)
Figure imgf000063_0001
(ここで、 Yは置換又は非置換の芳香環を有する 2価の有機基、 Rは水素原子 又は炭素数 1〜 6の置換又は非置換の有機基を示し、 Rは全てが同一でも異な つていてもよい。 m、 nは 0〜3の整数を示す。 )  (Where Y is a divalent organic group having a substituted or unsubstituted aromatic ring, R is a hydrogen atom or a substituted or unsubstituted organic group having 1 to 6 carbon atoms, and R is different even if all are the same. M and n each represent an integer of 0 to 3.)
1 9 . (E) リン系難燃剤が下記一般式 (ΧΧΧΧΧΠΙ) で示されるホスフィン 化合物を含有する請求項 1 6〜1 8のいずれかに記載の封止用エポキシ樹脂成 形材料。  19. The epoxy resin molding material for sealing according to any one of claims 16 to 18, wherein (E) the phosphorus-based flame retardant contains a phosphine compound represented by the following general formula (II).
0 0
(XXXXXI I I)  (XXXXXI I I)
R • p. -R、  R • p. -R,
(ここで、 R R 2及び R 3は炭素数 1〜1 0の置換又は非置換のアルキル基、 ァリール基、 ァラルキル基及び水素原子を示し、 すべて同一でも異なってもよ い。 ただしすべてが水素原子である場合を除く。 ) (Here, RR 2 and R 3 represent a substituted or unsubstituted alkyl group, aryl group, aralkyl group and hydrogen atom having 1 to 10 carbon atoms, all of which may be the same or different. However, all of them are hydrogen atoms. Except when.)
2 0 . さらに (F) 無機充填剤を含有する請求項 1〜1 9のいずれかに記載 の封止用ェポキシ樹脂成形材料。  20. The epoxy resin molding material for sealing according to any one of claims 1 to 19, further comprising (F) an inorganic filler.
2 1 . ( F) 無機充填剤の含有量が、 封止用エポキシ樹脂成形材料に対して 2 1. (F) The content of the inorganic filler is
7 0〜9 8重量%である請求項 2 0記載の封止用エポキシ樹脂成形材料。 The epoxy resin molding material for sealing according to claim 20, wherein the amount is 70 to 98% by weight.
2 2 . (F) 無機充填剤の含有量が、 封止用エポキシ樹脂成形材料に対して 22. (F) The content of the inorganic filler is in proportion to the epoxy resin molding material for sealing.
8 0〜9 8重量%である請求項 2 0記載の封止用エポキシ樹脂成形材料。 The epoxy resin molding material for sealing according to claim 20, wherein the amount is 80 to 98% by weight.
2 3 . (A) エポキシ樹脂が、 2官能エポキシ樹脂である請求項 1〜2 2の いずれかに記載の封止用エポキシ樹脂成形材料。  23. The epoxy resin molding material for sealing according to any one of claims 1 to 22, wherein the epoxy resin (A) is a bifunctional epoxy resin.
2 4. (A) エポキシ樹脂がビフエニル型エポキシ樹脂、 ビスフエノール F 型エポキシ樹脂、 スチルベン型エポキシ樹脂、 硫黄原子含有エポキシ樹脂、 ノ ポラック型エポキシ樹 J^、 ジシクロペン夕ジェン型エポキシ樹 J3旨、 ナフタレン 型エポキシ樹脂及びトリフエニルメタン型エポキシ樹脂の少なくとも 1種を含 有する請求項 1〜 2 3のいずれかに記載の封止用エポキシ樹脂成形材料。 2 4. (A) Epoxy resin is biphenyl type epoxy resin, bisphenol F Type epoxy resin, stilbene type epoxy resin, sulfur atom containing epoxy resin, nopolak type epoxy tree J ^, dicyclopentene type epoxy tree J3, naphthalene type epoxy resin and triphenylmethane type epoxy resin The epoxy resin molding material for sealing according to any one of claims 1 to 23.
2 5 . 請求項 1〜 2 4のいずれかに記載の封止用エポキシ榭脂成形材料で封 止された素子を備えた電子部品装置。  25. An electronic component device comprising an element sealed with the epoxy resin molding material for sealing according to any one of claims 1 to 24.
PCT/JP2002/012974 2002-03-22 2002-12-11 Epoxy resin molding material for encapsulation and electronic components and devices WO2003080726A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2002354468A AU2002354468A1 (en) 2002-03-22 2002-12-11 Epoxy resin molding material for encapsulation and electronic components and devices
JP2003578465A JPWO2003080726A1 (en) 2002-03-22 2002-12-11 Epoxy resin molding material for sealing and electronic component device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002-081386 2002-03-22
JP2002081363 2002-03-22
JP2002-081347 2002-03-22
JP2002081386 2002-03-22
JP2002081347 2002-03-22
JP2002-081363 2002-03-22

Publications (1)

Publication Number Publication Date
WO2003080726A1 true WO2003080726A1 (en) 2003-10-02

Family

ID=28457572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/012974 WO2003080726A1 (en) 2002-03-22 2002-12-11 Epoxy resin molding material for encapsulation and electronic components and devices

Country Status (4)

Country Link
JP (1) JPWO2003080726A1 (en)
AU (1) AU2002354468A1 (en)
TW (2) TW200304472A (en)
WO (1) WO2003080726A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052391A (en) * 2004-07-13 2006-02-23 Hitachi Chem Co Ltd Epoxy resin molding material for encapsulation and electronic device
JP2007099808A (en) * 2005-09-30 2007-04-19 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2007177150A (en) * 2005-12-28 2007-07-12 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2012025964A (en) * 2004-07-13 2012-02-09 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic component device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116598054B (en) * 2023-07-18 2023-09-12 创进电缆有限公司 High-flame-retardance fireproof cable and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5342553A (en) * 1991-11-22 1994-08-30 U. S. Borax Inc. Process of making zinc borate and fire-retarding compositions thereof
EP0812883A1 (en) * 1995-12-28 1997-12-17 Toray Industries, Inc. Epoxy resin composition
JPH11124480A (en) * 1997-10-24 1999-05-11 Matsushita Electric Works Ltd Resin composition for sealing semiconductor and its production, and semiconductor system using the resin composition for sealing semiconductor
JP2001131393A (en) * 1999-10-29 2001-05-15 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic part device
JP2001181522A (en) * 1999-12-28 2001-07-03 Matsushita Electric Works Ltd Thermoplastic resin composition, its production method, and molded article
JP2001335708A (en) * 2000-05-26 2001-12-04 Matsushita Electric Works Ltd Thermoplastic resin composition, method for producing the same, and package for enclosing semiconductor element
JP2002038005A (en) * 2000-07-26 2002-02-06 Matsushita Electric Works Ltd Thermoplastic resin composition, method for manufacturing the same, and semiconductor element housing package

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5342553A (en) * 1991-11-22 1994-08-30 U. S. Borax Inc. Process of making zinc borate and fire-retarding compositions thereof
EP0812883A1 (en) * 1995-12-28 1997-12-17 Toray Industries, Inc. Epoxy resin composition
JPH11124480A (en) * 1997-10-24 1999-05-11 Matsushita Electric Works Ltd Resin composition for sealing semiconductor and its production, and semiconductor system using the resin composition for sealing semiconductor
JP2001131393A (en) * 1999-10-29 2001-05-15 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic part device
JP2001181522A (en) * 1999-12-28 2001-07-03 Matsushita Electric Works Ltd Thermoplastic resin composition, its production method, and molded article
JP2001335708A (en) * 2000-05-26 2001-12-04 Matsushita Electric Works Ltd Thermoplastic resin composition, method for producing the same, and package for enclosing semiconductor element
JP2002038005A (en) * 2000-07-26 2002-02-06 Matsushita Electric Works Ltd Thermoplastic resin composition, method for manufacturing the same, and semiconductor element housing package

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052391A (en) * 2004-07-13 2006-02-23 Hitachi Chem Co Ltd Epoxy resin molding material for encapsulation and electronic device
JP2012025964A (en) * 2004-07-13 2012-02-09 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic component device
JP2007099808A (en) * 2005-09-30 2007-04-19 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2007177150A (en) * 2005-12-28 2007-07-12 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Also Published As

Publication number Publication date
TW200304472A (en) 2003-10-01
TW200615325A (en) 2006-05-16
AU2002354468A1 (en) 2003-10-08
JPWO2003080726A1 (en) 2005-07-21

Similar Documents

Publication Publication Date Title
KR100870809B1 (en) Encapsulation epoxy resin material and electronic component
WO2007007843A1 (en) Epoxy resin composition for encapsulation and electronic part device
WO2006006593A1 (en) Epoxy resin molding material for sealing and electronic component device
JP5205907B2 (en) Epoxy resin composition for sealing and electronic component device
JP2008045086A (en) Epoxy resin composition for sealant and electronic component device
JP2008239983A (en) Epoxy resin composition for sealing and electronic parts device
KR102127589B1 (en) Epoxy resin composition and electronic component device
JP2003321532A (en) Epoxy resin molding material for sealing and electronic part apparatus
JP2008214433A (en) Epoxy resin composition for sealing and electronic part device
JP4265187B2 (en) Electronic component apparatus provided with epoxy resin molding material and element for sealing
WO2003080726A1 (en) Epoxy resin molding material for encapsulation and electronic components and devices
JP2003105094A (en) Manufacturing method of epoxy resin-molded material, epoxy resin-molded material, manufacturing method of molded product and apparatus of electronic parts
JP2010100678A (en) Epoxy resin composition for sealing and electronic part device
JP2010095709A (en) Epoxy resin composition for sealing and electronic parts device
JP2002302593A (en) Epoxy resin molding material for sealing and electronic part device
JP4849290B2 (en) Epoxy resin molding material for sealing and electronic component device
JP2011207944A (en) Epoxy resin composition and electronic component device
JP4000838B2 (en) Epoxy resin molding material for sealing and electronic component device
JP2002212392A (en) Epoxy resin molding material for sealing and electronic part device
JP2003321533A (en) Epoxy resin molding material for sealing and electronic part apparatus
JP2002220514A (en) Epoxy resin molding material for sealing and electronic part device
JP2004331677A (en) Epoxy resin composition for sealing and electronic part device
JP2003253092A (en) Epoxy resin molding material for sealing and electronic part device using the same
JP2010090300A (en) Epoxy resin composition for sealing, and electronic part device
JP3736408B2 (en) Epoxy resin composition for sealing and electronic component device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003578465

Country of ref document: JP

122 Ep: pct application non-entry in european phase