WO2003076038A1 - Method of enriching liquid phase inside micro chip by gas-liquid two-phase flow and micro chip device therefor - Google Patents

Method of enriching liquid phase inside micro chip by gas-liquid two-phase flow and micro chip device therefor Download PDF

Info

Publication number
WO2003076038A1
WO2003076038A1 PCT/JP2003/002337 JP0302337W WO03076038A1 WO 2003076038 A1 WO2003076038 A1 WO 2003076038A1 JP 0302337 W JP0302337 W JP 0302337W WO 03076038 A1 WO03076038 A1 WO 03076038A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid
phase
flow
microchip
Prior art date
Application number
PCT/JP2003/002337
Other languages
French (fr)
Japanese (ja)
Inventor
Takehiko Kitamori
Manabu Tokeshi
Akihide Hibara
Original Assignee
Kanagawa Academy Of Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Academy Of Science And Technology filed Critical Kanagawa Academy Of Science And Technology
Priority to JP2003574302A priority Critical patent/JP4424993B2/en
Publication of WO2003076038A1 publication Critical patent/WO2003076038A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0031Degasification of liquids by filtration

Definitions

  • the invention of this application relates to a method for concentration in a microchip by a gas-liquid two-phase flow and a microchip device therefor.
  • the invention of this application has an object to integrate a concentration method involving a volume change as an operation on a microchip, based on the development of a microchemical system by the inventors and their knowledge so far.
  • a liquid-phase two-phase flow is formed in the flow path to form a liquid-phase interface.
  • a method for concentrating in a microphone-mouth chip by gas-liquid two-phase flow which is characterized by performing concentration.
  • the invention of this application is characterized in that the above-mentioned enrichment method is characterized in that the flow rate ratio between the gas phase and the liquid phase in the flow path is controlled so that gas phase> liquid phase.
  • the fourth is a condensing method characterized by forming a gas-liquid interface in multiple stages by introducing gas into the flow path in multiple stages and discharging the gas. Fourth, a gas-liquid two-phase flow is used.
  • a concentration method characterized by heating at least a part of a formed flow path to evaporate a part of a liquid phase solvent.
  • the invention of this application is a device for concentrating a liquid phase by forming an interface by a gas-liquid two-phase flow in a flow channel in a microchip having a flow channel formed in a substrate.
  • a microchip device in which a gas and a liquid constituting a gas-liquid two-phase flow are respectively provided with an introduction path and a discharge path.
  • the above-mentioned microchip device is characterized in that a flow rate control mechanism for controlling the flow rate ratio in the flow path to be gas phase> liquid phase is provided.
  • a flow rate control mechanism for controlling the flow rate ratio in the flow path to be gas phase> liquid phase is provided.
  • On the bottom of the flow channel there is provided a ridge in the flow direction corresponding to the position of the gas-liquid interface, and the arrangement of the ridge is at least part of the flow control mechanism.
  • a micro flow path is provided in which a gas is introduced into the flow path in multiple stages to form a gas-liquid interface in the flow path in multiple stages, and the gas is discharged in accordance with the multi-stage flow.
  • the ninth is a microchip device characterized in that a heating mechanism for heating at least a part of a flow path in which a gas-liquid two-phase flow is formed is provided. In the case of 0, heat is applied to the back of the substrate on which the flow path is provided or to the surface of the upper plate.
  • the present invention
  • FIG. 1 is a schematic diagram showing the basic configuration of the invention of this application.
  • FIG. 2 is a cross-sectional view showing an example of an asymmetric microchannel having a ridge.
  • FIG. 3 is a schematic process diagram illustrating a method for forming a fine channel having a ridge.
  • FIG. 4 is a schematic process diagram illustrating a two-step etching method for forming an asymmetric fine channel.
  • Fig. 5 is a schematic diagram illustrating the arrangement of the Hi-Ichi Line.
  • FIG. 6 is a schematic process diagram illustrating a method for forming a line of heaters.
  • FIG. 7 is a schematic cross-sectional view of an asymmetric fine channel as an example.
  • FIG. 8 is a schematic perspective view of a microchip as an embodiment provided with a microheater.
  • FIG. 9 is a diagram illustrating the relationship between the concentration and the applied voltage in the example.
  • ⁇ FIG. 10 is a schematic diagram of a three-stage channel.
  • FIG. 11 is a diagram exemplifying a stable condition of a two-phase flow of ethyl acetate and air.
  • FIG. 12 is a diagram illustrating a stable condition of a two-phase flow of water and air.
  • symbol in a figure shows the following.
  • an interface is formed by a gas-liquid two-phase flow of gas and liquid in a fine channel (microchannel) formed on a substrate of a microchip to concentrate the liquid phase. It is fundamental to do.
  • This enrichment method is an enrichment operation in a small, limited space called a microchannel, which has a large specific interfacial area, a high evaporation rate of the solvent, and is performed under the restriction of gas-liquid equilibrium. It has a fundamental feature that control is easy because it is maintained.
  • FIG. 1 is a schematic diagram showing the basics of the enrichment method of the invention of this application.
  • a microchannel (2) formed by microfabrication such as etching is provided on a microchip substrate (1) made of glass, ceramics, silicon, resin, or the like.
  • a gas-liquid two-phase flow of a gas phase (3A) and a liquid phase (3B) is formed, and a solvent constituting the liquid phase (3B) is formed at the interface (3C). It is evaporated and concentrated.
  • the cover upper plate is placed in close contact to prevent the gas phase (3A) from dissipating the liquid phase (3B).
  • the gas introduction path (4 A) and the liquid introduction path (4 B) for forming the gas-liquid two-phase flow, and the gas discharge path (5A) and the liquid discharge path (5 B) are the same. It is arranged on the substrate (1) by fine processing.
  • the size and length of the microchannel (2) are not particularly limited, but are appropriately set for configuring a microchemical system on a microchip.
  • a practical guideline is that the width is 500 / xm or less and the depth is about 300 im or less.
  • the fine channel Since it is necessary to form an interface due to gas-liquid two-phase flow in the channel, the cross-sectional area of the microchannel and the types of substances constituting each of the gas phase and the liquid phase are taken into consideration. A suitable gas-phase and liquid-phase flow ratio for interface formation will be set.
  • the flow rate ratio between the gas phase (3A) and the liquid phase (3B) in the microchannel (2) is set so that the flow rate of the gas phase is larger than the flow rate of the liquid phase. It is desirable to control. However, if the flow rate of the gas phase is excessive or excessive with respect to the flow rate of the liquid phase, liquid phase substances are mixed in the gas phase, and an interface as a gas-liquid two-phase flow is not formed. Of course, conversely, even when the gas flow rate is too small, the formation of the interface becomes difficult.
  • the flow rate ratio between the gas phase and the liquid phase is gas phase> liquid phase.
  • the microchip is provided with a mechanism as an auxiliary means for controlling the flow ratio with high accuracy.
  • a ridge (6) in the flow direction corresponding to the position of the gas-liquid interface is provided at the bottom of the microchannel (2), as shown in the cross-section in Fig. 2. It is considered that the flow rate ratio between the gas phase (3A) and the liquid phase (3B) can be controlled by selecting the location of the ridge (6).
  • the ridge (6) plays the role of a guide, and not only when it is strictly located at the gas-liquid interface (3C), but also a gas-liquid two-phase flow and a predetermined flow rate ratio are ensured. It goes without saying that, under the condition, there may be a deviation from the gas-liquid interface (3 C) position at an allowable position as shown in FIG.
  • a microchannel (2) having an asymmetrical cross section is one of the effective means for increasing the gas flow rate.
  • a photoresist is disposed on a metal deposition film on the surface of a glass substrate, and UV light is irradiated through a mask. Transfer and then metal etching ⁇ hydrofluoric acid etching and development ⁇ photolithography and etching
  • FIG. 5 shows an example in which such a heater line (7) is provided.
  • FIG. 6 it can be easily formed by etching a Cr vapor deposition film.
  • a plurality of interfaces by gas-liquid two-phase flow as described above may be provided intermittently so that concentration operation can be performed in multiple stages.
  • it is considered to provide multiple gas flow paths for introducing and discharging the gas at each stage.
  • the invention of the present application as described above enables highly efficient concentration operation on a microchip.
  • a Co-DMAP complex in ethyl acetate was introduced from one of the double Y-type microchannels, and air was introduced from the other inlet to create a gas-liquid two-layer structure in the microchannel.
  • a flow is formed, and the organic phase is measured along a microchannel with a thermal lens microscope, and concentrated as a change in the concentration of Co-DMAP complex per unit volume based on the relationship between the measurement position of the thermal lens microscope and the signal intensity. The efficiency was evaluated. And increase the concentration efficiency from the viewpoint of vapor-liquid equilibrium.
  • a chip with asymmetric microchannel cross section (Fig. 7) was used.
  • a micro-hidden was prepared on the back of the microchip and concentrated by heating.
  • an asymmetric microchannel having the cross section shown in FIG. 7 was prepared by using the two-step etching method illustrated in FIG. 4, and the flow rate ratio was set to 1: 200 using this channel to perform measurement. In this case, a concentration of about 2 times was obtained, and evaporation in the microchip was confirmed. Furthermore, in order to increase the concentration efficiency, a micro-heater was fabricated by patterning a Cr thin film on the back surface of the microchip by etching as shown in Fig. 6 (Fig. 8), and the chip was locally heated. Fig. 9 shows the results of concentration measurement at a point of 30 mm after two-phase merging using this chip.
  • the heat lens signal intensity increases with an increase in applied voltage, that is, a rise in temperature, indicating that the enrichment is improved by heating. From the signal intensity, the enrichment was more than 4 times (75% of the solvent evaporated) by volume change.
  • Fig. 11 shows the case of air and ethyl acetate
  • Fig. 12 shows the case of air and water
  • region A in the figure shows the stable condition
  • region B shows the unstable condition due to excess air.
  • the C region indicates that the liquid is excessive and unstable.
  • the enrichment method can be integrated on a microchip, and highly efficient enrichment can be achieved. This is very useful for the detection, measurement, and separation / recovery of environmentally regulated substances in the liquid phase, biologically related substances, biological substances, and trace substances such as reaction intermediates and reagents. Concentration on a microchip becomes possible.

Abstract

A method of enriching liquid phase inside a micro chip having a flow passage formed in the substrate thereof, comprising the steps of forming a boundary face in the flow passage by a gas-liquid two phase flow for enriching the liquid phase, wherein an enriching method followed by a volumetric change is integrated in the micro chip, whereby the liquid phase can be enriched at a high efficiency.

Description

明 細 書 気液二相流でのマイクロチップ内濃縮方法と  Description Method of concentration in microchip by gas-liquid two-phase flow and
そのためのマイクロチップデパイス 技術分野  Microchip devices for that purpose
この出願の発明は、 気液二相流でのマイクロチップ内での濃縮方法とそ のためのマイクロチップデバイスに関するものである。 背景技術  The invention of this application relates to a method for concentration in a microchip by a gas-liquid two-phase flow and a microchip device therefor. Background art
近年、 微小空間の特徴を生かしたマイクロ化学システムの検討が各種の 領域において進められている。 この出願の発明者らも、すでにこれまでに、 複雑な化学システムを実現する方法として、 ミクロ単位操作と多相流ネッ トワークを組み合わせた連続流体化学プロセスという方法を確立してき ている。 この連続流体化学プロセスは、 混合 ·抽出,相分離などの複数の ミクロ単位操作を組み合わせ、 非常に高効率なマイク口化学システムが構 築できるという特徴を有している。 ただ、 これまでのマイクロシステムで は、 プロセスを濃度をパラメ一夕に設定しており、 体積変化という概念が 入っていなかった。 そのため、 体積変化を伴う濃縮法 '凝縮法などは実現 していない。  In recent years, studies on microchemical systems that take advantage of the characteristics of microspaces have been advanced in various fields. The inventors of this application have already established a method called a continuous fluid chemical process that combines micro-unit operation and a multi-phase flow network as a method to realize a complex chemical system. This continuous fluid chemistry process is characterized by the ability to construct a very efficient microphone-mouth chemistry system by combining multiple micro-unit operations such as mixing / extraction and phase separation. However, in conventional microsystems, the concentration of the process was set to a parameter, and the concept of volume change was not included. For this reason, the concentration method with volume change and the condensation method have not been realized.
そこで、 この出願の発明は、 これまでの発明者らによるマイクロ化学シ ステムの開発とそこでの知見を踏まえ、 体積変化を伴う濃縮法をマイクロ チップ上に操作として集積化することを課題としている。  Thus, the invention of this application has an object to integrate a concentration method involving a volume change as an operation on a microchip, based on the development of a microchemical system by the inventors and their knowledge so far.
より具体的には、 この出願の発明は、 マイクロチップのチャンネル内で の気液二層流における溶媒の蒸発を利用した新しい濃縮方法とそのため のマイクロチップデバイスを提供することを課題としている。 発明の開示 More specifically, it is an object of the invention of the present application to provide a new concentration method using evaporation of a solvent in a gas-liquid two-layer flow in a channel of a microchip, and a microchip device therefor. Disclosure of the invention
この出願の発明は、 上記の課題を解決するものとして、 第 1には、 基板 に流路を形成したマイクロチップにおいて、 流路内に気液二相流による界 面を形成して液相の濃縮を行うことを特徵とする気液二相流でのマイク 口チップ内濃縮方法を提供する。  The invention of this application solves the above problems. First, in a microchip having a flow path formed in a substrate, a liquid-phase two-phase flow is formed in the flow path to form a liquid-phase interface. Provided is a method for concentrating in a microphone-mouth chip by gas-liquid two-phase flow, which is characterized by performing concentration.
また、 この出願の発明は、 第 2には、 流路内における気相と液相の流量 比を気相 >液相となるように制御することを特徴とする上記の濃縮方法 を、 第 3には、 流路内への多段階での気体の導入とそれに伴う排出によつ て気液界面を多段形成することを特徴とする濃縮方法を、 第 4には、 気液 二相流が形成される流路の少くとも一部を加熱して液相溶媒の一部を蒸 発させることを特徴とする濃縮方法を提供する。  Secondly, the invention of this application is characterized in that the above-mentioned enrichment method is characterized in that the flow rate ratio between the gas phase and the liquid phase in the flow path is controlled so that gas phase> liquid phase. The fourth is a condensing method characterized by forming a gas-liquid interface in multiple stages by introducing gas into the flow path in multiple stages and discharging the gas. Fourth, a gas-liquid two-phase flow is used. Provided is a concentration method characterized by heating at least a part of a formed flow path to evaporate a part of a liquid phase solvent.
そしてこの出願の発明は、 第 5には、 基板に流路を形成したマイクロチ ップにおいて流路内に気液二相流による界面を形成して液相の濃縮を行 うためのデバイスであって、 気液二相流を構成する気体と液体の各々の導 入路と排出路とが配設されていることを特徴とするマイクロチップデバ イスを提供する。  Fifth, the invention of this application is a device for concentrating a liquid phase by forming an interface by a gas-liquid two-phase flow in a flow channel in a microchip having a flow channel formed in a substrate. Thus, a microchip device is provided, in which a gas and a liquid constituting a gas-liquid two-phase flow are respectively provided with an introduction path and a discharge path.
第 6には、 流路内における流量比が気相 >液相となるように制御する流 量制御機構が配設されていることを特徵とする上記のマイクロチップデ パイスを、 第 7には、 流路底部には気液界面位置に相当する流れ方向の突 条が設けられ、 この突条の配置が流量制御機構の少くとも一部とされてい ることを特徵とするマイクロチップデバイスを、 第 8には、 流路内で気液 界面を多段形成するための流路内への多段階での気体の導入とそれに伴 う排出を行う流路が設けられていることを特徴とするマイクロチップデ バイスを、 第 9には、 気液二相流が形成される流路の少くとも一部を加熱 する加熱機構が配設されていることを特徴とするマイクロチップデバイ スを、 第 1 0には、 流路を設けた基板の背面部もしくはカパ一上板の表面 部にヒーター線もしくは面状ヒーターが配設されていることを特徴とす るマイクロチップデバイスを提供する。  Sixth, the above-mentioned microchip device is characterized in that a flow rate control mechanism for controlling the flow rate ratio in the flow path to be gas phase> liquid phase is provided. On the bottom of the flow channel, there is provided a ridge in the flow direction corresponding to the position of the gas-liquid interface, and the arrangement of the ridge is at least part of the flow control mechanism. Eighth, a micro flow path is provided in which a gas is introduced into the flow path in multiple stages to form a gas-liquid interface in the flow path in multiple stages, and the gas is discharged in accordance with the multi-stage flow. The ninth is a microchip device characterized in that a heating mechanism for heating at least a part of a flow path in which a gas-liquid two-phase flow is formed is provided. In the case of 0, heat is applied to the back of the substrate on which the flow path is provided or to the surface of the upper plate. The present invention provides a microchip device characterized in that a heater or a planar heater is provided.
1 図面の簡単な説明 1 BRIEF DESCRIPTION OF THE FIGURES
図 1は、 この出願の発明の基本構成を示した概要図である。  FIG. 1 is a schematic diagram showing the basic configuration of the invention of this application.
図 2は、 突条をもつ非対称微細流路の例を示した断面図である。  FIG. 2 is a cross-sectional view showing an example of an asymmetric microchannel having a ridge.
図 3は、 突条をもつ微細流路の形成方法を例示した工程概要図である。 図 4は、 非対称微細流路の形成のための 2段エッチング法を例示したェ 程概要図である。  FIG. 3 is a schematic process diagram illustrating a method for forming a fine channel having a ridge. FIG. 4 is a schematic process diagram illustrating a two-step etching method for forming an asymmetric fine channel.
図 5は、 ヒ一夕一線の配設を例示した概要図である。  Fig. 5 is a schematic diagram illustrating the arrangement of the Hi-Ichi Line.
図 6は、 ヒータ一線の形成方法を例示した工程概要図である。  FIG. 6 is a schematic process diagram illustrating a method for forming a line of heaters.
図 7は、 実施例としての非対称微細流路の概要断面図である。  FIG. 7 is a schematic cross-sectional view of an asymmetric fine channel as an example.
図 8は、 マイクロヒータ一を配設した実施例としてのマイクロチップの 概要斜視図である。  FIG. 8 is a schematic perspective view of a microchip as an embodiment provided with a microheater.
図 9は、 実施例における濃縮度と印加電圧との関係を例示した図である < 図 1 0は、 3段階チャンネルの模式図である。  FIG. 9 is a diagram illustrating the relationship between the concentration and the applied voltage in the example. <FIG. 10 is a schematic diagram of a three-stage channel.
図 1 1は、 酢酸ェチルと空気との二相流の安定条件について例示した図 である。  FIG. 11 is a diagram exemplifying a stable condition of a two-phase flow of ethyl acetate and air.
図 1 2は、 水と空気との二相流の安定条件について例示した図である。 なお、 図中の符号は次のものを示す。  FIG. 12 is a diagram illustrating a stable condition of a two-phase flow of water and air. In addition, the code | symbol in a figure shows the following.
1 マイクロチップ基板  1 Microchip substrate
2 微細流路  2 Micro channel
3 A 気相  3 A gas phase
3 B 液相  3 B liquid phase
4 A 気体の導入路  4 A gas inlet
4 B 液体の導入路  4 B liquid introduction path
5 A 気体の排出路  5 A gas discharge path
5 B 液体の排出路  5 B liquid discharge path
6 突条  6 ridge
7 ヒーター線 発明を実施するための最良の形態 7 Heater wire BEST MODE FOR CARRYING OUT THE INVENTION
この出願の発明は上記のとおりの特徴をもつものであるが、 以下にその 実施の形態について説明する。  The invention of this application has the features as described above, and embodiments thereof will be described below.
まず、 この出願の発明の濃縮方法においては、 マイクロチップの基板上 に形成した微細流路 (マイクロチャンネル) 内に気体と液体とによる気液 二相流による界面を形成して液相の濃縮を行うことが基本とされている。  First, in the enrichment method of the invention of this application, an interface is formed by a gas-liquid two-phase flow of gas and liquid in a fine channel (microchannel) formed on a substrate of a microchip to concentrate the liquid phase. It is fundamental to do.
この濃縮の方法は、 マイクロチャンネルという微小な限定空間内での濃 縮操作となり、 比界面積が大きく、 溶媒の蒸発速度が速く、 また、 気液平 衡の制限下に行われ、 液体のまま維持されることから制御が容易であると いう原理的な特徴を有している。  This enrichment method is an enrichment operation in a small, limited space called a microchannel, which has a large specific interfacial area, a high evaporation rate of the solvent, and is performed under the restriction of gas-liquid equilibrium. It has a fundamental feature that control is easy because it is maintained.
図 1は、 この出願の発明の濃縮方法の基本を示した概要図である。 たと えばガラスやセラミックス、 あるいはシリコン、 樹脂等のマイクロチップ 基板(1)上には、エッチング等の微細加工によって形成した微細流路(2) が設けられている。 この微細流路(2) において、 気相 (3A) と液相 (3 B) との気液二相流が形成され、 その界面 (3 C) において液相 (3 B) を構成する溶媒が蒸発されて濃縮が行われるようにしている。 もちろん、 微細流路 (2) が形成されている基板 (1) 上には、 カバー上板が密着配 置されて、 気相 (3A) が液相 (3 B) が散逸されないようにしている。 そして、 気液二相流の形成のための気体の導入路 (4 A) と液体の導入 路 (4 B)、 並びに気体の排出路 (5A) と液体の排出路 (5 B) が、 同 様に微細加工によって基板 (1) 上に配設されている。  FIG. 1 is a schematic diagram showing the basics of the enrichment method of the invention of this application. For example, a microchannel (2) formed by microfabrication such as etching is provided on a microchip substrate (1) made of glass, ceramics, silicon, resin, or the like. In the fine channel (2), a gas-liquid two-phase flow of a gas phase (3A) and a liquid phase (3B) is formed, and a solvent constituting the liquid phase (3B) is formed at the interface (3C). It is evaporated and concentrated. Of course, on the substrate (1) on which the fine channels (2) are formed, the cover upper plate is placed in close contact to prevent the gas phase (3A) from dissipating the liquid phase (3B). . The gas introduction path (4 A) and the liquid introduction path (4 B) for forming the gas-liquid two-phase flow, and the gas discharge path (5A) and the liquid discharge path (5 B) are the same. It is arranged on the substrate (1) by fine processing.
微細流路 (2) の大きさや長さについては特に限定はないが、 マイクロ チップ上でのマイクロ化学システムを構成するための適宜な設定とする。 たとえば微細流路の流れ方向に直交する断面について見ると、 その幅は、 500 /xm以下、 深さは 300 im以下程度を実際的な目安とすることが できる。  The size and length of the microchannel (2) are not particularly limited, but are appropriately set for configuring a microchemical system on a microchip. For example, looking at a cross section orthogonal to the flow direction of the microchannel, a practical guideline is that the width is 500 / xm or less and the depth is about 300 im or less.
そして、 この出願の発明の濃縮方法においては、 微細流路 (マイクロチ ャンネル) 内での気液二相流による界面が形成される必要があることから、 微細流路の断面積や気相および液相の各々を構成する物質の種類等を考 慮して、 この界面形成のための好適な気相および液相の流量比が設定され ることになる。 And in the enrichment method of the invention of this application, the fine channel Since it is necessary to form an interface due to gas-liquid two-phase flow in the channel, the cross-sectional area of the microchannel and the types of substances constituting each of the gas phase and the liquid phase are taken into consideration. A suitable gas-phase and liquid-phase flow ratio for interface formation will be set.
一般的には、 微細流路 (2 ) 内における気相 (3 A) と液相 (3 B ) と の単位時間当りの流量比を気相の流量が液相の流量よりも大きくなるよ うに制御することが望ましい。 ただ、 液相流量に対して気相流量を過剰、 過大とすると、 気相には液相物質が混入して気液二相流としての界面が形 成されないことになる。 もちろん、 逆に、 気相流量が過少にする場合にも 界面の形成は難しくなる。  In general, the flow rate ratio between the gas phase (3A) and the liquid phase (3B) in the microchannel (2) is set so that the flow rate of the gas phase is larger than the flow rate of the liquid phase. It is desirable to control. However, if the flow rate of the gas phase is excessive or excessive with respect to the flow rate of the liquid phase, liquid phase substances are mixed in the gas phase, and an interface as a gas-liquid two-phase flow is not formed. Of course, conversely, even when the gas flow rate is too small, the formation of the interface becomes difficult.
ただ、 一般的には前記のとおり、 気相と液相の流量比を気相 >液相とす ることが好ましい。 そして、 このような流量比の制御を高精度で行うため の補助的手段としての機構をマイクロチップに具備することも考慮され る。 たとえばこのような制御機構の一つとして、 図 2にその断面を例示し たように、 微細流路 (2 ) の底部に、 気液の界面位置に相当する流れ方向 の突条(6 ) を設け、 この突条(6 ) の配設位置を選択することによって、 気相(3 A) と液相(3 B )の流量比を制御可能とすることが考慮される。  However, in general, as described above, it is preferable that the flow rate ratio between the gas phase and the liquid phase is gas phase> liquid phase. It is also considered that the microchip is provided with a mechanism as an auxiliary means for controlling the flow ratio with high accuracy. For example, as one of such control mechanisms, a ridge (6) in the flow direction corresponding to the position of the gas-liquid interface is provided at the bottom of the microchannel (2), as shown in the cross-section in Fig. 2. It is considered that the flow rate ratio between the gas phase (3A) and the liquid phase (3B) can be controlled by selecting the location of the ridge (6).
もちろん、 突条 (6 ) は、 ガイドの役割を果たすのであって、 厳密に気 液界面 (3 C ) 位置にある場合だけでなく、 気液二相流と所定の流量比が 確保されることを条件に、図 2のように、許容される位置での気液界面(3 C ) 位置とのズレがあってもよいことは言うまでもない。  Of course, the ridge (6) plays the role of a guide, and not only when it is strictly located at the gas-liquid interface (3C), but also a gas-liquid two-phase flow and a predetermined flow rate ratio are ensured. It goes without saying that, under the condition, there may be a deviation from the gas-liquid interface (3 C) position at an allowable position as shown in FIG.
突条 (6 ) の位置選択によって、 たとえば図 2の例のように、 非対称の 断面を有する微細流路 (2 ) は、 気体の流量増加のために有効な手段の一 つである。  Depending on the position of the ridge (6), a microchannel (2) having an asymmetrical cross section, as shown in the example of Fig. 2, is one of the effective means for increasing the gas flow rate.
微細流路 (2 )、 そして突条 (6 ) の形成については、 たとえば図 3の ように、 ガラス基板の表面上の金属蒸着膜にフォトレジストを配設し、 マ スクを通して U V光を照射して転写を行い、 次いで金属エッチングゃフッ 酸エッチングして現像するといぅフォトリソグラフィ一とエッチングに  As for the formation of the microchannel (2) and the ridge (6), for example, as shown in Fig. 3, a photoresist is disposed on a metal deposition film on the surface of a glass substrate, and UV light is irradiated through a mask. Transfer and then metal etching ゃ hydrofluoric acid etching and development ぅ photolithography and etching
5 Five
¾ΓϊΕきれた ffl紙 (規鄉 9 より形成することができる。 この方法に沿って、 図 4のように、 転写とェ ツチングを繰り返す 2段エッチングを行うことで突条 (6 ) をもつ図 2の ような非対称な微細流路 (2 ) を形成することができる。 Clear ffl paper (Rule 9 Can be formed. According to this method, as shown in Fig. 4, by performing two-stage etching in which transfer and etching are repeated, an asymmetric fine channel (2) having ridges (6) as shown in Fig. 2 can be formed. it can.
また、 この出願の発明においては、 気液二相流の少くとも一部を加熱し て液相溶媒の一部をこの加熱で発生させることも有効である。 このような 加熱のための機構としては各種のものが考慮されるが、 デバイス構成並び に加熱操作性の観点からは、 微細流路を設けた基板の背面部あるいはカバ In the invention of this application, it is also effective to heat at least a part of the gas-liquid two-phase flow to generate a part of the liquid phase solvent by this heating. Various mechanisms can be considered for such a heating mechanism. However, from the viewpoint of the device configuration and the heating operability, the back surface or the cover of the substrate provided with the fine flow path is considered.
—上板の表面部等に、 抵抗加熱によるヒ一夕一線や面状ヒーターを設ける ことが好適なものとして例示される。 図 5はこのようなヒータ一線 (7 ) を設けた例を示したものであって、 たとえば図 6に例示したように、 C r 蒸着膜のエッチングによって形成することが容易に可能である。 -It is exemplified that it is preferable to provide a line heater or a plane heater by resistance heating on the surface of the upper plate or the like. FIG. 5 shows an example in which such a heater line (7) is provided. For example, as shown in FIG. 6, it can be easily formed by etching a Cr vapor deposition film.
さらに、 この出願の発明の濃縮方法とそのためのデバイスについては、 たとえば以上のような気液二相流による界面を断続的に複数個所設け、 多 段で濃縮操作ができるようにしてもよい。 このためには、 各段階での気体 の導入とそれに伴う排出を行うための気体流路が複数個所設けることが 考慮される。  Further, with respect to the concentration method of the invention of the present application and a device therefor, for example, a plurality of interfaces by gas-liquid two-phase flow as described above may be provided intermittently so that concentration operation can be performed in multiple stages. For this purpose, it is considered to provide multiple gas flow paths for introducing and discharging the gas at each stage.
たとえば以上のとおりのこの出願の発明によって、 マイクロチップ上で の高効率での濃縮操作が可能とされる。  For example, the invention of the present application as described above enables highly efficient concentration operation on a microchip.
そこで以下に実施例を示し、 さらに詳しく説明する。 もちろん、 以下の 例によって発明が限定されることはない。 実 施 例  Therefore, an embodiment will be shown below and will be described in more detail. Of course, the invention is not limited by the following examples. Example
図 1に例示したとおりのダブル Y型マイクロチャンネルの一方から、 C o— D MA P錯体の酢酸ェチル溶液を導入し、 もう一方の導入口から空気 を導入してマイクロチャンネル内に気液二層流を形成、 マイクロチャンネ ルに沿って有機相を熱レンズ顕微鏡で測定して、 熱レンズ顕微鏡の測定位 置と信号強度の関係から単位体積当りの C o— D M A P錯体の濃度の変 化として濃縮効率を評価した。 そして、 気液平衡の観点から濃縮効率を上 げるため、マイクロチヤンネルの断面が非対称な形状を持つチップ(図 7 ) を用いた。 また、 マイクロチップの裏面にマイクロヒ一夕一を作製し、 加 熱濃縮した。 As shown in Fig. 1, a Co-DMAP complex in ethyl acetate was introduced from one of the double Y-type microchannels, and air was introduced from the other inlet to create a gas-liquid two-layer structure in the microchannel. A flow is formed, and the organic phase is measured along a microchannel with a thermal lens microscope, and concentrated as a change in the concentration of Co-DMAP complex per unit volume based on the relationship between the measurement position of the thermal lens microscope and the signal intensity. The efficiency was evaluated. And increase the concentration efficiency from the viewpoint of vapor-liquid equilibrium. For this purpose, a chip with asymmetric microchannel cross section (Fig. 7) was used. In addition, a micro-hidden was prepared on the back of the microchip and concentrated by heating.
すなわち、 まず、 図 4に例示した二段階エッチング法を用いて図 7の断 面を有する非対称型のマイクロチヤンネルを作製し、 このチヤンネルを用 いて流量比を 1 : 2 0 0 0にして測定をした場合、 2倍程度の濃縮が得ら れ、 マイクロチップ内での蒸発が確認された。 さらに、 濃縮効率を上げる ため、 図 6のようなエッチングによってマイクロチップの裏面に C r薄膜 をパターニングしてマイクロヒーターを作製し (図 8 )、 チップを局所的 に加熱した。 このチップを用いて二相合流後、 3 0 mmの地点で濃度測定 した結果を図 9に示した。 印加電圧の増加すなわち温度上昇とともに熱レ ンズ信号強度が増加していることから、 加熱により濃縮度が向上している ことが分かる。 信号強度より、 体積変化によって 4倍 (7 5 %の溶媒が蒸 発) 以上の濃縮度が得られた。  That is, first, an asymmetric microchannel having the cross section shown in FIG. 7 was prepared by using the two-step etching method illustrated in FIG. 4, and the flow rate ratio was set to 1: 200 using this channel to perform measurement. In this case, a concentration of about 2 times was obtained, and evaporation in the microchip was confirmed. Furthermore, in order to increase the concentration efficiency, a micro-heater was fabricated by patterning a Cr thin film on the back surface of the microchip by etching as shown in Fig. 6 (Fig. 8), and the chip was locally heated. Fig. 9 shows the results of concentration measurement at a point of 30 mm after two-phase merging using this chip. The heat lens signal intensity increases with an increase in applied voltage, that is, a rise in temperature, indicating that the enrichment is improved by heating. From the signal intensity, the enrichment was more than 4 times (75% of the solvent evaporated) by volume change.
1 : 2 0 0 0の流量比において 4倍の濃縮が得られるとすると、 図 1 0 に例示したとおりの 3段階での操作では、 実に 6 4倍の濃縮率が実現され ることになる。  Assuming that a four-fold concentration can be obtained at a flow rate of 1: 20000, a three-stage operation as illustrated in FIG. 10 will actually achieve a 64-fold concentration rate.
なお、 気液二相流による界面形成のための安定条件を定めるために、 上 記マイクロチップにおいて、 気相と液相の組合わせの種類と流量比を変え て実験的に検討した。 その結果を図 1 1および図 1 2に例示した。  In order to determine the stable conditions for the formation of an interface by gas-liquid two-phase flow, the above microchip was experimentally examined by changing the combination of gas and liquid phases and the flow rate ratio. The results are illustrated in FIGS. 11 and 12.
図 1 1は、 空気と酢酸ェチルの場合、 図 1 2は、 空気と水との場合を示 しており、 図中の A領域は安定条件を、 B領域は空気過剰で不安定なこと を、 C領域は液体過剰で不安定なことを示している。  Fig. 11 shows the case of air and ethyl acetate, Fig. 12 shows the case of air and water, and region A in the figure shows the stable condition, and region B shows the unstable condition due to excess air. The C region indicates that the liquid is excessive and unstable.
たとえばこのような検討に基づいて、 各種の濃縮対象について、 好適な 安定流量比条件が具体的に定められることになる。 産業上の利用可能性  For example, based on such studies, suitable stable flow rate ratio conditions will be specifically determined for various types of enrichment targets. Industrial applicability
以上詳しく説明したとおり、 この出願の発明によって、 体積変化を伴う  As described in detail above, the invention of this application involves volume change
7 濃縮法をマイクロチップ上に集積化することが可能とされ、 高効率での濃 縮が実現される。これによつて、液相中の環境規制物質や、生体関連物質、 生物物質、 さらには反応中間体や反応剤等の微量物質についての検出、 測 定、 さらには分離回収等にとって大変に有益なマイクロチップ上での濃縮 が可能となる。 7 The enrichment method can be integrated on a microchip, and highly efficient enrichment can be achieved. This is very useful for the detection, measurement, and separation / recovery of environmentally regulated substances in the liquid phase, biologically related substances, biological substances, and trace substances such as reaction intermediates and reagents. Concentration on a microchip becomes possible.

Claims

請求の範囲 The scope of the claims
1 . 基板に流路を形成したマイクロチップにおいて、 流路内に気液二相 流による界面を形成して液相の濃縮を行うことを特徴とする気液二相流 でのマイクロチップ内濃縮方法。 1. Concentration in a microchip with gas-liquid two-phase flow characterized by forming an interface by gas-liquid two-phase flow in the flow channel and concentrating the liquid phase in a microchip with a flow path formed in the substrate Method.
2 . 流路内における気相と液相の流量比を気相 >液相となるように制御 することを特徴とする請求項 1の濃縮方法。  2. The enrichment method according to claim 1, wherein the flow rate ratio between the gas phase and the liquid phase in the flow path is controlled so as to be gas phase> liquid phase.
3 . 流路内への多段階での気体の導入とそれに伴う排出によって気液界 面を多段形成することを特徴とする請求項 1または 2の濃縮方法。  3. The method according to claim 1, wherein a gas-liquid interface is formed in multiple stages by introducing gas into the flow channel in multiple stages and discharging the gas in the multiple stages.
4 . 気液二相流が形成される流路の少くとも一部を加熱して液相溶媒の 一部を蒸発させることを特徵とする請求項 1ないし 3のいずれかの濃縮 方法。  4. The method according to any one of claims 1 to 3, wherein at least a part of the flow path in which the gas-liquid two-phase flow is formed is heated to evaporate a part of the liquid phase solvent.
5 . 基板に流路を形成したマイクロチップにおいて流路内に気液二相流 による界面を形成して液相の濃縮を行うためのデバイスであって、 気液二 相流を構成する気体と液体の各々の導入路と排出路とが配設されている ことを特徵とするマイクロチップデバイス。  5. A device for concentrating a liquid phase by forming an interface by a gas-liquid two-phase flow in a flow channel in a microchip having a flow channel formed on a substrate. A microchip device characterized in that a liquid introduction path and a liquid discharge path are provided.
6 . 流路内における流量比が気相 >液相となるように制御する流量制御 機構が配設されていることを特徴とする請求項 5のマイクロチップデパ イス。  6. The microchip device according to claim 5, wherein a flow rate control mechanism for controlling a flow rate ratio in the flow path to be a gas phase> a liquid phase is provided.
7 . 流路底部には気液界面位置に相当する流れ方向の突条が設けられ、 この突条の配置が流量制御機構の少くとも一部とされていることを特徴 とする請求項 6のマイクロチップデバイス。  7. The flow path according to claim 6, wherein a protrusion in the flow direction corresponding to the gas-liquid interface position is provided at the bottom of the flow path, and the arrangement of the protrusion is at least a part of the flow control mechanism. Microchip device.
8 . 流路内で気液界面を多段形成するための流路内への多段階での気体 の導入とそれに伴う排出を行う流路が設けられていることを特徴とする 請求項 5ないし 7のいずれかのマイクロチップデパイス。  8. A flow path for introducing gas into the flow path in multiple steps and discharging the gas in the flow path for forming a gas-liquid interface in multiple steps in the flow path is provided. Any of Microchip Devis.
9 . 気液二相流が形成される流路の少くとも一部を加熱する加熱機構が 配設されていることを特徵とする請求項 5ないし 8のいずれかのマイク 口チップデバイス。 9. The microphone chip device according to any one of claims 5 to 8, further comprising a heating mechanism for heating at least a part of the flow path in which the gas-liquid two-phase flow is formed.
10. 流路を設けた基板の背面部もしくは力パー上板の表面部にヒーター 線もしくは面状ヒーターが配設されていることを特徴とする請求項 9の マイクロチップデバイス。 10. The microchip device according to claim 9, wherein a heater wire or a planar heater is provided on a back surface portion of the substrate provided with the flow path or on a surface portion of the upper surface of the force plate.
PCT/JP2003/002337 2002-03-14 2003-02-28 Method of enriching liquid phase inside micro chip by gas-liquid two-phase flow and micro chip device therefor WO2003076038A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003574302A JP4424993B2 (en) 2002-03-14 2003-02-28 Microchip concentration method in gas-liquid two-phase flow and microchip device therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-070986 2002-03-14
JP2002070986 2002-03-14

Publications (1)

Publication Number Publication Date
WO2003076038A1 true WO2003076038A1 (en) 2003-09-18

Family

ID=27800357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/002337 WO2003076038A1 (en) 2002-03-14 2003-02-28 Method of enriching liquid phase inside micro chip by gas-liquid two-phase flow and micro chip device therefor

Country Status (2)

Country Link
JP (1) JP4424993B2 (en)
WO (1) WO2003076038A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005169386A (en) * 2003-11-17 2005-06-30 Kanagawa Acad Of Sci & Technol Method of partial-chemical-modifying microchannel inner surface and microchannel structure
JP2005285577A (en) * 2004-03-30 2005-10-13 Casio Comput Co Ltd Vaporizer, reactor, and power generating device
JP2007260858A (en) * 2006-03-29 2007-10-11 Sumitomo Bakelite Co Ltd Forming method of micro channel to plastic and plastic-made biochip or micro analyzing chip manufactured by using this method
WO2009057693A1 (en) 2007-11-01 2009-05-07 Jfe Engineering Corporation Micro chip, micro chip device, and evaporation operation method using the micro chip

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997047390A1 (en) * 1996-06-14 1997-12-18 University Of Washington Absorption-enhanced differential extraction device
JP2001137613A (en) * 1999-11-11 2001-05-22 Kawamura Inst Of Chem Res Fine chemical device having extraction structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997047390A1 (en) * 1996-06-14 1997-12-18 University Of Washington Absorption-enhanced differential extraction device
JP2001137613A (en) * 1999-11-11 2001-05-22 Kawamura Inst Of Chem Res Fine chemical device having extraction structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005169386A (en) * 2003-11-17 2005-06-30 Kanagawa Acad Of Sci & Technol Method of partial-chemical-modifying microchannel inner surface and microchannel structure
JP4523386B2 (en) * 2003-11-17 2010-08-11 財団法人神奈川科学技術アカデミー Method of partial chemical modification of inner surface of microchannel and microchannel structure
JP2005285577A (en) * 2004-03-30 2005-10-13 Casio Comput Co Ltd Vaporizer, reactor, and power generating device
JP2007260858A (en) * 2006-03-29 2007-10-11 Sumitomo Bakelite Co Ltd Forming method of micro channel to plastic and plastic-made biochip or micro analyzing chip manufactured by using this method
WO2009057693A1 (en) 2007-11-01 2009-05-07 Jfe Engineering Corporation Micro chip, micro chip device, and evaporation operation method using the micro chip
JP2009106916A (en) * 2007-11-01 2009-05-21 Jfe Engineering Corp Microchip, microchip device, and method for evaporation operation using microchip
US9120032B2 (en) 2007-11-01 2015-09-01 Jfe Engineering Corporation Microchip, microchip device, and evaporation operation method using the microchip

Also Published As

Publication number Publication date
JP4424993B2 (en) 2010-03-03
JPWO2003076038A1 (en) 2005-06-30

Similar Documents

Publication Publication Date Title
US8475626B2 (en) Multiple connected channel micro evaporator
KR101306214B1 (en) Microchip device
EP2218499B1 (en) Micro chip, micro chip device, and evaporation operation method using the micro chip
US9387478B2 (en) Micro-fluidic modules on a chip for diagnostic applications
KR101664201B1 (en) Micro fluid device
US6710311B2 (en) Process for manufacturing integrated chemical microreactors of semiconductor material
Aota et al. Parallel multiphase microflows: fundamental physics, stabilization methods and applications
Maruyama et al. Intermittent partition walls promote solvent extraction of metal ions in a microfluidic device
TW200911375A (en) A microfluidic chip for and a method of handling fluidic droplets
Lam et al. Towards an understanding of the effects of operating conditions on separation by microfluidic distillation
US6649078B2 (en) Thin film capillary process and apparatus
JP2007139782A (en) Device and method using fluid-transporting feature of differing dwell time
Constantinou et al. Stripping of acetone from water with microfabricated and membrane gas–liquid contactors
JP4481859B2 (en) Micro channel
WO2003076038A1 (en) Method of enriching liquid phase inside micro chip by gas-liquid two-phase flow and micro chip device therefor
Zhang et al. Study on stair-step liquid triggered capillary valve for microfluidic systems
Foerster et al. In situ monitoring of microfluidic distillation
Ziemecka et al. Hydrogen peroxide concentration by pervaporation of a ternary liquid solution in microfluidics
WO2006056219A1 (en) Process for separation of dispersions and an apparatus
JP2004113967A (en) Micromixer
JP2005211708A (en) Liquid-liquid extraction apparatus
KR20020058609A (en) Microchannel Array Structure Embedded In Silicon Substrate And Its Fabrication Method
JP2009090164A (en) Microchip device
Namasivayam et al. Microfabricated valveless pump for delivering nonpulsatile flow
de Mas et al. Scalable microfabricated multiphase reactors for direct fluorination reactions

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003574302

Country of ref document: JP