FUSED AZABICYCLIC COMPOUNDS THAT INHIBIT VANILLOID RECEPTOR
SUBTYPE 1 (VRl) RECEPTOR
TECHNICAL BACKGROUND
The present invention relates to compounds of formula (I), which are useful for treating disorders caused by or exacerbated by vanilloid receptor activity, pharmaceutical compositions containing compounds of formula (I) and are useful in treating pain, bladder overactivity, and urinary incontinence.
BACKGROUND OF INVENTION
Nociceptors are primary sensory afferent (C and Aδ fibers) neurons that are activated by a wide variety of noxious stimuli including chemical, mechanical, thermal, and proton (pH < 6) modalities. The lipophillic vanilloid, capsaicin, activates primary sensory fibers via a specific cell surface capsaicin receptor, cloned as VRl . The intradermal administration of capsaicin is characterized by an initial burning or hot sensation followed by a prolonged period of analgesia. The analgesic component of VRl receptor activation is thought to be mediated by a capsaicin-induced desensitization of the primary sensory afferent terminal. Thus, the long lasting anti-nociceptive effects of capsaicin has prompted the clinical use of capsaicin analogs as analgesic agents. Further, capsazepine, a capsaicin receptor antagonist can reduce inflammation-induced hyperalgesia in animal models. VRl receptors are also localized on sensory afferents which innervate the bladder. Capsaicin or resiniferatoxin has been shown to ameliorate incontinence symptoms upon injection into the bladder.
The VRl receptor has been called a "polymodal detector" of noxious stimuli since it can be activated in several ways. The receptor channel is activated by capsaicin and other vanilloids and thus is classified as a ligand-gated ion channel. VRl receptor activation by capsaicin can be blocked by the competitive VRl receptor antagonist, capsazepine. The channel can also be activated by protons. Under mildly acidic conditions (pH 6-7), the affinity of capsaicin for the receptor is increased, whereas at pH <6, direct activation of the channel occurs. In addition, when membrane temperature reaches 43°C, the channel is opened. Thus heat can directly gate the channel in the absence of ligand. The capsaicin
analog, capsazepine, which is a competitive antagonist of capsaicin, blocks activation of the channel in response to capsaicin, acid, or heat.
The channel is a nonspecific cation conductor. Both extracellular sodium and calcium enter through the channel pore, resulting in cell membrane depolarization. This depolarization increases neuronal excitability, leading to action potential firing and transmission of a noxious nerve impulse to the spinal cord. In addition, depolarization of the peripheral terminal can lead to release of inflammatory peptides such as, but not limited to, substance P and CGRP, leading to enhanced peripheral sensitization of tissue.
Recently, two groups have reported the generation of a "knock-out" mouse lacking the VRl receptor. Electrophysiological studies of sensory neurons (dorsal root ganglia) from these animals revealed a marked absence of responses evoked by noxious stimuli including capsaicin, heat, and reduced pH. These animals did not display any overt signs of behavioral impairment and showed no differences in responses to acute non-noxious theπnal and mechanical stimulation relative to wild-type mice. The VRl (-/-) mice also did not show reduced sensitivity to nerve injury-induced mechanical or thermal nociception. However, the VRl knock-out mice were insensitive to the noxious effects of intradermal capsaicin, exposure to intense heat (50-55°C), and failed to develop thermal hyperalgesia following the intradermal administration of canageenan.
The compounds of the present invention are novel VRl antagonists and have utility in treating pain, bladder overactivity, and urinary incontinence.
SUMMARY OF THE PRESENT INVENTION The present invention discloses fused azabicyclic compounds, a method for inhibiting the VRl receptor in mammals using these compounds, a method for controlling pain in mammals, and pharmaceutical compositions including those compounds. More particularly, the present invention is directed to compounds of formula (I)
(I), or a phannaceutically acceptable salt or prodrag thereof, wherein
— is absent or a single bond;
X\ is selected from the group consisting of N and CR^
X2 is selected from the group consisting of N and CR2;
X3 is selected from the group consisting of N, NR3, and CR3;
X4 is a bond or selected from the group consisting of N and CR4;
X5 is selected from the group consisting of N and C; provided that at least one of Xls X , X3, and X is N;
Z\ is selected from the group consisting of O, NH, and S;
Z2 is a bond or selected from the group consisting of NH and O;
L is selected from the group consisting of alkenylene, alkylene, alkynylene,
cycloalkylene,
, -(CH )
mO(CH
2)
n-, and N(Rγ), wherein the left end of -(CH
2)
mO(CH
2)
n- is attached to Z
2 and the right end is attached to R ; m and n are each independently 0-6;
RY is selected from the group consisting of hydrogen and alkyl; R3, R5, R6, and R7 are each independently selected from the group consisting of hydrogen, alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkyl, alkylcarbonyl, alkylcarbonylalkyl, alkylcarbonyloxy, alkylthio, alkynyl, carboxy, carboxyalkyl, cyano, cyanoalkyl, cycloalkyl, cycloalkylalkyl, formyl, formylalkyl, haloalkoxy, haloalkyl, haloalkylthio, halogen, hydroxy, hydroxyalkyl, mercapto, mercaptoalkyl, nitro, (CF3)2(HO)C-, -NRAS(O)2RB, -S(O)2ORA, -S(O)2RB, -NZAZB,
(NZAZs)alkyl, (NZAZB)carbonyl, (NZAZB)carbonylalkyl and (NZAZB)sulfonyl, wherein ZA and ZB are each independently selected from the group consisting of hydrogen, alkyl, alkylcarbonyl, formyl, aryl, and arylalkyl;
R and R are each independently selected from the group consisting of hydrogen, alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkyl, alkylcarbonyl, alkylcarbonylalkyl, alkylcarbonyloxy, alkylthio, alkynyl, carboxy, carboxyalkyl, cyano, cyanoalkyl, cycloalkyl, cycloalkylalkyl, formyl, formylalkyl, haloalkoxy, haloalkyl, haloalkylthio, halogen, hydroxy, hydroxyalkyl, mercapto, mercaptoalkyl, nitro, (CF3)2(HO)C-, -NRAS(O)2RB, -S(O)2ORA, -S(O)2RB, -NZAZB, (NZAZB)alkyl, (NZAZB)alkylcarbonyl, (NZAZB)carbonyl, (NZAZB)carbonylalkyl, (NZAZB)sulfonyl, (NZAZB)C(=NH)-, (NZAZB)C(=NCN)NH-, and (NZAZB)C(=NH)NH-;
RA is selected from the group consisting of hydrogen and alkyl;
RB is selected from the group consisting of alkyl, aryl, and arylalkyl;
R8a is selected from the group consisting of hydrogen and alkyl;
R8b is absent when X5 is N or R8b is selected from the group consisting of hydrogen, alkoxy, alkoxycarbonylalkyl, alkyl, alkylcarbonyloxy, alkylsulfonyloxy, halogen, and hydroxy when X5 is C; and
R9 is selected from the group consisting of hydrogen, aryl, cycloalkyl, and heterocycle.
DETAILED DESCRIPTION OF THE PRESENT INVENTION
In the principle embodiment, compounds of foπnula (I) are disclosed
(I), or a phannaceutically acceptable salt or prodrag thereof, wherein — is absent or a single bond;
Xι is selected from the group consisting of N and CR^ X2 is selected from the group consisting of N and CR2; X3 is selected from the group consisting of N, NR3, and CR3; X4 is a bond or selected from the group consisting of N and CR4; X5 is selected from the group consisting of N and C; provided that at least one of Xl5 X2, X3, and is N; Zi is selected from the group consisting of O, NH, and S; Z2 is a bond or selected from the group consisting of NH and O; L is selected from the group consisting of alkenylene, alkylene, alkynylene,
cycloalkylene,
, -(CH
2)
mO(CH
2)
n-, and N(Rγ), wherein the left end of
-(CH2)mO(CH2)n- is attached to Z2 and the right end is attached to R9; m and n are each independently 0-6;
RY is selected from the group consisting of hydrogen and alkyl;
Ri, R , R5, e, and R7 are each independently selected from the group consisting of hydrogen, alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkyl, alkylcarbonyl, alkylcarbonylalkyl, alkylcarbonyloxy, alkylthio, alkynyl, carboxy, carboxyalkyl, cyano, cyanoalkyl, cycloalkyl, cycloalkylalkyl, formyl, formylalkyl, haloalkoxy, haloalkyl, haloalkylthio, halogen, hydroxy, hydroxyalkyl, mercapto, mercaptoalkyl, nitro, (CF3)2(HO)C-,
-NRAS(O)2RB, -S(O)2ORA, -S(O)2RB, -NZAZB, (NZAZB)alkyl, (NZAZB)carbonyl, (NZAZβ)carbonylalkyl and (NZAZB)sulfonyl, wherein ZA and ZB are each independently selected from the group consisting of hydrogen, alkyl, alkylcarbonyl, formyl, aryl, and arylalkyl;
R2 and R4 are each independently selected from the group consisting of hydrogen, alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkyl, alkylcarbonyl, alkylcarbonylalkyl, alkylcarbonyloxy, alkylthio, alkynyl, carboxy, carboxyalkyl, cyano, cyanoalkyl, cycloalkyl, cycloalkylalkyl, formyl, formylalkyl, haloalkoxy, haloalkyl, haloalkylthio, halogen, hydroxy, hydroxyalkyl, mercapto, mercaptoalkyl, nitro, (CF3)2(HO)C-, -NRAS(O)2RB, -S(O)2ORA, -S(O)2RB, -NZAZB, (NZAZB)alkyl, (NZAZB)alkylcarbonyl, (NZAZB)carbonyl, (NZAZB)carbonylalkyl, (NZAZB)sulfonyl, (NZAZB)C(=NH)-, (NZAZB)C(=NCN)NH-, and (NZAZB)C(=NH)NH-;
RA is selected from the group consisting of hydrogen and alkyl;
RB is selected from the group consisting of alkyl, aryl, and arylalkyl;
R8a is selected from the group consisting of hydrogen and alkyl;
R8b is absent when X5 is N or R8b is selected from the group consisting of hydrogen, alkoxy, alkoxycarbonylalkyl, alkyl, alkylcarbonyloxy, alkylsulfonyloxy, halogen, and hydroxy when X5 is C; and
R is selected from the group consisting of hydrogen, aryl, cycloalkyl, and heterocycle.
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; Xι is CRύ X2 is CR2; X3 is N; X4 is CR^ and Rls R2, R4, R5, Re, R , R8a, R8b, R9, X5, Zi, Z2, and L are as defined in formula (I).
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; Xi is CRi; X2 is CR ; X3 is N; X4 is CR^ X5 is N; R8b is absent; Z\ is O; Z2 is NH; L is alkylene; R9 is aryl; and Ri, R2, t, R5, R6, R7, and R8a are as defined in formula (I).
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; Xi is CRi; X2 is CR2; X3 is N; is C j; X5 is N; Ri, Rό and R7 are each hydrogen; R2 and R4 are independently selected from the group consisting of hydrogen, alkyl, halogen, hydroxy, and -NZAZB; R5 is selected from the group consisting of hydrogen and halogen; R8a is hydrogen; R8 is absent; Zi is O; Z2 is NH; L is alkylene; R9 is aryl wherein said aryl is phenyl substituted with 1 , 2, or 3 substituents independently selected from the group consisting of hydrogen, alkoxy, alkyl, alkylsulfonyl, 1-azepanyl, 1- azocanyl, cyano, haloalkoxy, haloalkyl, haloalkylthio, halogen, methylenedioxy, 4- morpholinyl, 2,6,-dimethyl-4-morpholinyl, phenyl, 1-piperidinyl, 4-methyl-l-piperidinyl, pyridinyl, 1-pynolidinyl, 4-thiomorpholinyl, and -NZCZD; and ZA, ZB, ZC, and ZD are independently selected from the group consisting of hydrogen and alkyl.
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; Xi is CRi; X2 is CR2; X3 is N; X4 is A X5 is N; Ri, R2, R , R5, R6 and R are each hydrogen; R8b is absent; Z\ is O; Z2 is NH; L is alkylene; R9 is aryl wherein said aryl is substituted with aryloxy; and R8a is as defined in formula (I).
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; X! is CR\; X2 is CR2; X3 is N; X4 is C i; X5 is N; Ri,
R2, Ri, R5, Re, R7, and R8a are each hydrogen; R8b is absent; Z\ is O; Z2 is NH; L is alkylene;
R9 is aryl wherein said aryl is phenyl substituted with aryloxy wherein said aryloxy is phenoxy substituted with 1, 2, or 3 substituents independently selected from the group consisting of hydrogen, alkoxy, alkyl, alkylsulfonyl, 1-azepanyl, 1-azocanyl, cyano, haloalkoxy, haloalkyl, haloalkylthio, halogen, methylenedioxy, 4-morpholinyl, 2,6,-dimethyl- 4-morpholinyl, phenyl, 1-piperidinyl, 4-methyl-l-piperidinyl, pyridinyl, 1-pynolidinyl, 4- thiomorpholinyl, and -NZcZp; and Zc and ZD are independently selected from the group consisting of hydrogen and alkyl.
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; Xi is CRi; X2 is CR2; X3 is N; is CR4; X5 is N; Ri, R2, R , R5, R6, R7, and R8a are each hydrogen; R8b is absent; Zi is O; Z2 is NH; L is alkylene; and R9 is aryl wherein said aryl is napthyl.
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; Xi is CRi; X2 is CR2; X3 is N; X is CRj; X5 is N; R8b is absent; Zi is O; Z2 is NH; L is alkylene; R9 is cycloalkyl; Ri, R2, R4, R5, Re, R7, and R8a is as defined in formula (I).
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; Xi is CRi; X2 is CR2; X3 is N; X4 is CRi; X5 is N; Ri, Re and R7 are each hydrogen; R2 and R4 are independently selected from the group consisting of hydrogen, alkyl, halogen, hydroxy, and -NZAZB; R5 is selected from the group consisting of hydrogen and halogen; R8a is hydrogen;R8b is absent; Zi is O; Z2 is NH; L is alkylene; R9 is cycloalkyl wherein said cyloalkyl is selected from the group consisting of adamantanyl, bicyclo[3.1.1]heptane, and cyclohexyl, wherein the cycloalkyl is substituted with 1 or 2 substituents selected from the group consisting of hydrogen and alkyl; and ZA and ZB are independently selected from the group consisting of hydrogen and alkyl.
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; Xi is CRi; X2 is CR2; X3 is N; X4 is C i; X5 is N; R8b is absent; Zi is O; Z2 is NH; L is alkylene; R9 is heterocycle; and Ri, R2, R4, R5, R6, R7, and R8a are as defined in formula (I).
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; Xi is CRi; X2 is CR2; X3 is N; X* is CR4; X5 is N; Ri,
R6 and R7 are each hydrogen; R2 and R are independently selected from the group consisting of hydrogen, alkyl, halogen, hydroxy, and -NZAZB; R5 is selected from the group consisting of hydrogen and halogen; R8a is hydrogen; R8b is absent; Zi is O; Z2 is NH; L is alkylene; R9
is heterocycle wherein said heterocycle is pyridinyl substituted with 1, 2, or 3 substituents independently selected from the group consisting of hydrogen, alkoxy, alkyl, alkylsulfonyl, 1-azepanyl, 1-azocanyl, cyano, haloalkoxy, haloalkyl, haloalkylthio, halogen, 4-morpholinyl, 2,6,-dimethyl-4-morpholinyl, phenyl, 1-piperidinyl, 4-methyl-l-piperidinyl, pyridinyl, 1-pynolidinyl, 4-thiomorpholinyl, and -NZcZD; and ZA, ZB, ZC, and ZD are independently selected from the group consisting of hydrogen and alkyl.
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; Xi is CRΪ; X is CR2; X3 is N; X4 is C t; X5 is N; Z\ is O; Z2 is NH; R8b is absent; R9 is hydrogen; and L, Rls R2, R4, R5, R6, R , and R8a are as defined in formula (I).
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; X\ is CR^ X2 is CR2; X3 is N; X4 is CRi; X5 is N; Ri, R , R4, R5, R6, R7, and R8a are each hydrogen; R8b is absent; Zi is O; Z2 is NH; L is alkylene; and R9 is hydrogen.
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; X\ is CRΪ; X2 is CR2; X3 is N; X4 is CRj; X5 is N; Z\ is O; Z2 is NH; L is cycloalkylene; R8b is absent; R is aryl; and R\, R2, i, R5, R6, R7, and R8a are as defined in formula (I).
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; X\ is OR]; X2 is CR2; X3 is N; X4 is CRj; X5 is N; Ri, R2, i, R5, R6, R , and R8a are each hydrogen; R8b is absent; Zi is O; Z is NH; L is cycloalkylene; R9 is aryl wherein said aryl is phenyl substituted with 1, 2, or 3 substituents independently selected from the group consisting of hydrogen, alkoxy, alkyl, alkylsulfonyl, 1-azepanyl, 1-azocanyl, cyano, haloalkoxy, haloalkyl, haloalkylthio, halogen, methylenedioxy, 4-morpholinyl, 2,6,-dimethyl-4-morpholinyl, phenyl, 1-piperidinyl, 4- methyl- 1-piperidinyl, pyridinyl, 1-pynolidinyl, 4-thiomorpholinyl, and -NZCZD; and Zc and ZD are independently selected from the group consisting of hydrogen and alkyl.
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; Xi is CRi; X2 is CR2; X3 is N; X4 is CRi; X5 is N; Zi is O; Z2 is a bond; L is cycloalkylene; R8b is absent; R9 is aryl; and Ri, R2, R , R5, R6, R7, and R8a are as defined in formula (I).
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; Xi is CRi; X is CR2; X3 is N; X4 is CR4; X5 is N; Ri,
R2, R4, R5, Re, R7, and R8a are each hydrogen; R8b is absent; Z\ is O; Z2 is a bond; L is cycloalkylene; R9 is aryl wherein said aryl is phenyl substituted with 1, 2, or 3 substituents independently selected from the group consisting of hydrogen, alkoxy, alkyl, alkylsulfonyl, 1-azepanyl, 1-azocanyl, cyano, haloalkoxy, haloalkyl, haloalkylthio, halogen, methylenedioxy, 4-morpholinyl, 2,6,-dimethyl-4-morpholinyl, phenyl, 1-piperidinyl, 4- methyl- 1-piperidinyl, pyridinyl, 1-pynolidinyl, 4-thiomorpholinyl, and -NZCZD; and Zc and ZD are independently selected from the group consisting of hydrogen and alkyl.
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; Xi is CRi; X2 is CR2; X3 is N; X4 is CR4; X5 is N; Z\ is O; Z2 is NH; L is -(CH )mO(CH2)n- wherein the left end is attached to Z2 and the right end is attached to R9; R8b is absent; R9 is aryl; and m, n, Ri, R2, R4, R5, R6, R7, and R8a are as defined in formula (I).
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; X\ is CRi; X2 is CR ; X is N; 4 is CR4; X5 is N; R\, R2, R4, R5, R6, R , and R8a are each hydrogen; R8b is absent; Zi is O; Z2 is NH; L is -(CH2)mO(CH2)n- wherein the left end is attached to Z2 and the right end is attached to R ; m is 0-2; n is 0-2; R is aryl wherein said aryl is phenyl substituted with 1, 2, or 3 substituents independently selected from the group consisting of hydrogen, alkoxy, alkyl, alkylsulfonyl, 1-azepanyl, 1-azocanyl, cyano, haloalkoxy, haloalkyl, haloalkylthio, halogen, methylenedioxy, 4-morpholinyl, 2,6,-dimethyl-4-morpholinyl, phenyl, 1-piperidinyl, 4- methyl- 1-piperidinyl, pyridinyl, 1-pynolidinyl, 4-thiomorpholinyl, and -NZCZD; and Zc and ZD are independently selected from the group consisting of hydrogen and alkyl.
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; Xi is CR\; X2 is CR2; X3 is N; X4 is CRt; X5 is N; Z\ is O; Z2 is NH; L is N(Rγ); R8b is absent; R9 is aryl; and Ry, Ri, R , R4, R5, Re, R , and R8a are as defined in formula (I).
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; Xi is CRi; X is CR2; X3 is N; X4 is CRt; X5 is N; Rγ5
Ri, R2, R , R5, R6, R7, and R8a are each hydrogen; R8b is absent; Zi is O; Z2 is NH; L is
N(Rγ); R is aryl wherein said aryl is phenyl substituted with 1, 2, or 3 substituents independently selected from the group consisting of hydrogen, alkoxy, alkyl, alkylsulfonyl,
1-azepanyl, 1-azocanyl, cyano, haloalkoxy, haloalkyl, haloalkylthio, halogen, methylenedioxy, 4-morpholinyl, 2,6,-dimethyl-4-morpholinyl, phenyl, 1-piperidinyl, 4-
methyl- 1-piperidinyl, pyridinyl, 1-pynolidinyl, 4-thiomorpholinyl, and -NZcZD; and Zc and ZD are independently selected from the group consisting of hydrogen and alkyl.
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; Xi is CRi; X2 is CR2; X3 is N; X4 is CRt; X5 is N; Zi is O; Z is a bond;
L is
R
9 is aryl; and Ry, R
ls R
2, R , R
5, Re, R , and R
8a are as defined in formula (I).
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; Xi is CR^ X is CR2; X3 is N; X4 is CRt; X5 is N; Rl5
R5, R6, R , and R8a are each hydrogen; R8b is absent; R2 is selected from the group consisting of hydrogen and alkyl; Zi is O; Z2 is a bond;
L is ^ — ; R
9 is aryl wherein said aryl is phenyl substituted with 1, 2, or 3 substituents independently selected from the group consisting of hydrogen, alkoxy, alkyl, alkylsulfonyl, 1-azepanyl, 1-azocanyl, cyano, haloalkoxy, haloalkyl, haloalkylthio, halogen, methylenedioxy, 4-morpholinyl, 2,6,-dimethyl-4-morpholinyl, phenyl, 1-piperidinyl, 4- methyl- 1-piperidinyl, pyridinyl, 1-pynolidinyl, 4-thiomorpholinyl, and -NZ
CZD; and Ry, Zc, and Z
D are independently selected from the group consisting of hydrogen and alkyl.
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; X\ is CR^ X2 is CR2; X3 is N; X4 is CRt; X5 is N; Ri, R2, R4, R5 and R6 are each hydrogen; R7 is (CF3)2(HO)C-; R8b is absent; Zi is O; Z2 is NH; L is alkylene; R9 is aryl wherein said aryl is phenyl substituted with 1, 2, or 3 substituents independently selected from the group consisting of hydrogen, alkoxy, alkyl, alkylsulfonyl, 1-azepanyl, 1-azocanyl, cyano, haloalkoxy, haloalkyl, haloalkylthio, halogen, methylenedioxy, 4-morpholinyl, 2,6,-dimethyl-4-morpholinyl, phenyl, 1-piperidinyl, 4- methyl- 1-piperidinyl, pyridinyl, 1-pynolidinyl, 4-thiomorpholinyl, and -NZCZD; and R8a, Zc, and ZD are independently selected from the group consisting of hydrogen and alkyl.
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; Xi is CRi; X2 is CR2; X3 is N; X4 is C t; X5 is N; Zi is
O; Z2 is O; L is alkylene; R8b is absent; R9 is aryl; Rl5 R2, R , R5, Re, R7, and R8a are as defined in formula (I).
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; Xi is CRt; X2 is CR2; X3 is N; X4 is CRt; X5 is N; Rl5 R2, R4, R5, Re, R , and R8a are each hydrogen; R8b is absent; Zi is O; Z2 is O; L is alkylene; R is aryl wherein said aryl is phenyl substituted with 1, 2, or 3 substituents independently selected from the group consisting of hydrogen, alkoxy, alkyl, alkylsulfonyl, 1-azepanyl, 1- azocanyl, cyano, haloalkoxy, haloalkyl, haloalkylthio, halogen, methylenedioxy, 4- morpholinyl, 2,6,-dimethyl-4-morpholinyl, phenyl, 1-piperidinyl, 4-methyl- 1-piperidinyl, pyridinyl, 1-pyπolidinyl, 4-thiomorpholinyl, and -NZCZD; and Zc and ZD are independently selected from the group consisting of hydrogen and alkyl.
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; Xi is CRi; X2 is CR2; X3 is N; X4 is CRt; X5 is N; Rl5 R2, R4, R5, R6 and R7 are each hydrogen; Zi is O; Z2 is O; L is alkylene; R8b is absent; R9 is aryl wherein said aryl is naphthyl; and R8a is as defined in formula (I).
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; Xi is CRi; X2 is CR2; X3 is N; X4 is CRt; X5 is N; R8b is absent; Z\ is O; Z2 is a bond; L is alkenylene; R9 is aryl; and Ri, R2, Rt, R , R6, R7, and R8a are as defined in formula (I).
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; X\ is.CRi; X2 is CR2; X3 is N; X4 is C t; X5 is N; Rl5 Re and R7 are each hydrogen; R2 and R4 are independently selected from the group consisting of hydrogen, alkyl, halogen, hydroxy, and -NZAZB; R5 is selected from the group consisting of hydrogen and halogen; R8a is hydrogen; R8b is absent; Z\ is O; Z2 is a bond; L is alkenylene; R is aryl wherein said aryl is phenyl substituted with 1, 2, or 3 substituents independently selected from the group consisting of hydrogen, alkoxy, alkyl, alkylsulfonyl, 1-azepanyl, 1-azocanyl, cyano, haloalkoxy, haloalkyl, haloalkylthio, halogen, methylenedioxy, 4-morpholinyl, 2,6,-dimethyl-4-morpholinyl, phenyl, 1-piperidinyl, 4- methyl- 1-piperidinyl, pyridinyl, 1-pynolidinyl, 4-thiomorpholinyl, and -NZcZD; and ZA, ZB, Zc and ZD are independently selected from the group consisting of hydrogen and alkyl.
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; Xi is CRi; X2 is CR2; X3 is N; X is CRt; X5 is C; Zi is
O; Z2 is NH; L is alkylene; R9 is heterocycle; and Rl3 R2, Rt, R5, R6, R7, R8a, and R8b are as defined in formula (I).
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; Xi is CR^ X2 is CR2; X3 is N; X4 is CRt; X5 is C; R1? R6 and R7 are each hydrogen; R2 and R4 are independently selected from the group consisting of hydrogen, alkyl, halogen, hydroxy, and -NZAZB; R5 is selected from the group consisting of hydrogen and halogen; R8a and R8b are hydrogen; Zi is O; Z2 is NH; L is alkylene; R9 is heterocycle wherein said heterocycle is selected from the group consisting of imidazolyl, pyridinyl, pynolidinyl, and thienyl, wherein the heterocycle is substituted with 1 or 2 substituents independently selected from the group consisting of hydrogen, alkoxy, alkyl, alkylsulfonyl, 1-azepanyl, 1-azocanyl, cyano, haloalkoxy, haloalkyl, haloalkylthio, halogen, oxo, 4-morpholinyl, 2,6,-dimethyl-4-morpholinyl, phenyl, 1-piperidinyl, 4-methyl-l- piperidinyl, pyridinyl, 1-pynolidinyl, 4-thiomorpholinyl, and -NZCZD; and ZA, ZB, ZC and ZD are independently selected from the group consisting of hydrogen and alkyl.
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; Xi is CRi; X2 is CR2; X3 is N; X is CRt; X5 is C; Z\ is O; Z2 is NH; L is -(CH2)mO(CH2)n- wherein the left end is attached to Z2 and the right end is attached to R9; R9 is hydrogen; and m, n, R1; R2, R4, R5, R6, R , R8a, and R8b are as defined in formula (I).
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; Xi is CRi; X2 is CR2; X3 is N; X4 is CRt; X5 is C; Rl5 R6 and R7 are each hydrogen; R2 and R4 are independently selected from the group consisting of hydrogen, alkyl, halogen, hydroxy, and -NZAZB; R5 is selected from the group consisting of hydrogen and halogen; R8a and R8b are hydrogen; Zi is O; Z2 is NH; L is -(CH2)mO(CH2)n- wherein the left end is attached to Z2 and the right end is attached to R9; m is 0-4; n is 0-4; R9 is hydrogen; and ZA and ZB are independently selected from the group consisting of hydrogen and alkyl.
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; Xi is CRi; X2 is CR2; X3 is N; X is CRt; X5 is C; Zi is O; Z2 is NH; L is alkylene; R9 is aryl; and R1? R2, R4, R5, R6, R7, R8a, and R8b are as defined in formula (I).
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; Xi is CRi; X is CR2; X3 is N; X4 is CRt; X5 is C; Rls
Rβ, R7, R8a and R8b are each hydrogen; R2 and R4 are independently selected from the group consisting of hydrogen, alkyl, halogen, hydroxy, and -NZAZB; R5 is selected from the group consisting of hydrogen and halogen; Z\ is O; Z2 is NH; L is alkylene; R is aryl wherein said aryl is phenyl substituted with 1, 2, or 3 substituents independently selected from the group consisting of hydrogen, alkoxy, alkyl, alkylsulfonyl, 1-azepanyl, 1-azocanyl, cyano, haloalkoxy, haloalkyl, haloalkylthio, halogen, methylenedioxy, 4-morpholinyl, 2,6,-dimethyl- 4-morpholinyl, phenyl, 1-piperidinyl, 4-methyl- 1-piperidinyl, pyridinyl, 1-pynolidinyl, 4- thiomorpholinyl, and -NZCZD; and ZA, ZB, ZC and ZD are independently selected from the group consisting of hydrogen and alkyl.
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; Xi is CRi; X2 is CR2; X3 is N; X4 is CRt; X5 is C; Rl5 Re, and R7 are each hydrogen; R2 and R are independently selected from the group consisting of hydrogen, alkyl, halogen, hydroxy, and -NZAZB; R5 is selected from the group consisting of hydrogen and halogen; R8a is selected from the group consisting of hydrogen and alkyl; R8b is alkyl; Zi is O; Z2 is NH; L is alkylene; R is aryl wherein said aryl is phenyl substituted with 1, 2, or 3 substituents independently selected from the group consisting of hydrogen, alkoxy, alkyl, alkylsulfonyl, 1-azepanyl, 1-azocanyl, cyano, haloalkoxy, haloalkyl, haloalkylthio, halogen, methylenedioxy, 4-morpholinyl, 2,6,-dimethyl-4-morpholinyl, phenyl, 1-piperidinyl, 4-methyl- 1-piperidinyl, pyridinyl, 1-pynolidinyl, 4-thiomorpholinyl, and -NZCZD; and ZA, ZB, Zc and ZD are independently selected from the group consisting of hydrogen and alkyl.
In another embodiment of the present invention, compounds of foπnula (I) are disclosed wherein — is a single bond; Xi is CR\; X is CR ; X3 is N; is CRt; X5 is C; Rl5 R6, and R7 and are each hydrogen; R2 and R are independently selected from the group consisting of hydrogen, alkyl, halogen, hydroxy, and -NZAZB; R5 is selected from the group consisting of hydrogen and halogen; R8a is hydrogen; R8 is selected from the group consisting of alkoxy, alkoxycarbonylalkyl, alkylcarbonyloxy, alkylsulfonyl, halogen, and hydroxy; Z\ is O; Z2 is NH; L is alkylene; R is aryl wherein said aryl is phenyl substituted with 1, 2, or 3 substituents independently selected from the group consisting of hydrogen, alkoxy, alkyl, alkylsulfonyl, 1-azepanyl, 1-azocanyl, cyano, haloalkoxy, haloalkyl, haloalkylthio, halogen, methylenedioxy, 4-morpholinyl, 2,6,-dimethyl-4-morpholinyl, phenyl, 1-piperidinyl, 4-methyl- 1-piperidinyl, pyridinyl, 1-pynolidinyl, 4-thiomorpholinyl,
and -NZCZD; and ZA, ZB, ZC and ZD are independently selected from the group consisting of hydrogen and alkyl.
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; Xi is CRi; X2 is CR2; X3 is N; * is CRt; X5 is C; R1? R6, R , and R7 are each hydrogen; R2 and R4 are independently selected from the group consisting of hydrogen, alkyl, halogen, hydroxy, and -NZAZB; R5 is selected from the group consisting of hydrogen and halogen; R8a is selected from the group consisting of hydrogen and alkyl; R8b is selected from the group consisting of hydrogen, alkoxycarbonylalkyl, alkyl, and hydroxy; Z\ is O; Z2 is O; L is alkylene; R9 is hydrogen; and ZA and ZB are independently selected from the group consisting of hydrogen and alkyl.
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; Xi is CRi; X2 is CR2; X3 is N; X4 is N; and Ri, R2, R5, Re, R7, R8a, R8b, R9, Xs, Zi, Z2, and L are as defined in formula (I).
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; Xi is CRi; X2 is CR2; X3 is N; X4 is N; X5 is N; R8b is absent; Zi is O; Z2 is NH; L is alkylene; R9 is aryl; and Ri, R2, R5, Re, R , R8a, and R8b are as defined in formula (I).
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; Xi is CRi; X2 is CR2; X3 is N; is N; X5 is N; Ri, R5, R6 and R are each hydrogen; R8b is absent; R2 is selected from the group consisting of alkyl and halogen; Zi is O; Z2 is NH; L is alkylene; R is aryl wherein said aryl is phenyl substituted with 1, 2, or 3 substituents independently selected from the group consisting of hydrogen, alkoxy, alkyl, alkylsulfonyl, 1-azepanyl, 1-azocanyl, cyano, haloalkoxy, haloalkyl, haloalkylthio, halogen, methylenedioxy, 4-morpholinyl, 2,6,-dimethyl-4-morpholinyl, phenyl, 1-piperidinyl, 4-methyl- 1-piperidinyl, pyridinyl, 1-pynolidinyl, 4-thiomorpholinyl, and -NZCZD; and R8a, Zc, and ZD are independently selected from the group consisting of hydrogen and alkyl.
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; Xi is CRi; X2 is N; X3 is CR3; X is CR4; and Ri, R3, R5, R6, R7, R8a, R8b, R9, X5, Zi, Z2, and L are as defined in formula (I).
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; Xi is CRi; X2 is N; X3 is CR3; X4 is CR ; X5 is N; R8b
is absent; Zi is O; Z2 is NH; L is alkylene; R9 is aryl; and Rl5 R3, R5, R6, R7, and R8a are as defined in formula (I).
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is a single bond; Xi is CRt; X2 is N; X3 is CR3; X4 is CRt; X5 is N; R1? R3, R4, R5, R and R are each hydrogen; R8b is absent; Zi is O; Z2 is NH; L is alkylene; R9 is aryl wherein said aryl is phenyl substituted with 1, 2, or 3 substituents independently selected from the group consisting of hydrogen, alkoxy, alkyl, alkylsulfonyl, 1-azepanyl, 1-azocanyl, cyano, haloalkoxy, haloalkyl, haloalkylthio, halogen, methylenedioxy, 4-morpholinyl, 2,6,- dimethyl-4-morpholinyl, phenyl, 1-piperidinyl, 4-methyl- 1-piperidinyl, pyridinyl, 1-pynolidinyl, 4-thiomorpholinyl, and -NZCZD; and R8a, Zc, and ZD are independently selected from the group consisting of hydrogen and alkyl.
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is absent; Xi is CRi; X2 is CR2; X3 is N; X4 is a bond; and R1? R2, R5, R6, R7, R8a, R8b, R9, X5, Zi, Z2, and L are as defined in formula (I).
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is absent; Xi is CRi; X2 is CR2; X3 is N; X4 is a bond; X5 is N; R8b is absent; Z\ is O; Z2 is NH; L is alkylene; R9 is aryl; and Rls R2, R5, R6, R7, and R8a are as defined in formula (I).
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is absent; Xi is CR^ X2 is CR2; X3 is N; X4 is a bond; X5 is N; Rl5 R2, R5, R6 and R7 are each hydrogen; R8b is absent; Zi is O; Z2 is NH; L is alkylene; R9 is aryl wherein said aryl is phenyl substituted with 1, 2, or 3 substituents independently selected from the group consisting of hydrogen, alkoxy, alkyl, alkylsulfonyl, 1-azepanyl, 1-azocanyl, cyano, haloalkoxy, haloalkyl, haloalkylthio, halogen, methylenedioxy, 4-morpholinyl, 2,6,- dimethyl-4-morpholinyl, phenyl, 1-piperidinyl, 4-methyl- 1-piperidinyl, pyridinyl, 1-pyπolidinyl, 4-thiomorpholinyl, and -NZCZD; and R8a, Zc, and ZD are independently selected from the group consisting of hydrogen and alkyl.
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is absent; X] is CR^ X2 is CR2; X3 is N; is a bond; X5 is N; R\ and
R2 are each independently alkyl; R5, R6 and R7 are each hydrogen; R8b is absent; Zi is O; Z2 is
NH; L is alkylene; R9 is aryl wherein said aryl is phenyl substituted with 1, 2, or 3 substituents independently selected from the group consisting of hydrogen, alkoxy, alkyl, alkylsulfonyl, 1-azepanyl, 1-azocanyl, cyano, haloalkoxy, haloalkyl, haloalkylthio, halogen,
methylenedioxy, 4-morpholinyl, 2,6,-dimethyl-4-moφholinyl, phenyl, 1-piperidinyl, 4- methyl- 1-piperidinyl, pyridinyl, 1-pynolidinyl, 4-thiomorpholinyl, and -NZCZD; and R8a, Zc, and ZD are independently selected from the group consisting of hydrogen and alkyl.
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is absent; Xi is CRi; X is CR2; X3 is N; X4 is a bond; X5 is N; R8b is absent; Zi is O; Z2 is O; L is alkylene; R9 is aryl; and Rl5 R2, R5, R6, R , R8a, and R9 are as defined in formula (I).
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is absent; Xi is CRi; X
2 is CR
2; X
3 is N; X
4 is a bond; X
5 is N; R
ls R
2, R
5, Re and R
7 are each hydrogen; R
8b is absent;
is O; Z
2 is O; L is alkylene; R
9 is aryl wherein said aryl is phenyl substituted with 1, 2, or 3 substituents independently selected from the group consisting of hydrogen, alkoxy, alkyl, alkylsulfonyl, 1-azepanyl, 1-azocanyl, cyano, haloalkoxy, haloalkyl, haloalkylthio, halogen, methylenedioxy, 4-morpholinyl, 2,6,- dimethyl-4-morpholinyl, phenyl, 1-piperidinyl, 4-methyl- 1-piperidinyl, pyridinyl, 1-pynolidinyl, 4-thiomorpholinyl, and -NZ
CZ
D; and R
8a, Zc, and Z
D are independently selected from the group consisting of hydrogen and alkyl.
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is absent; Xi is CRi; X2 is N; X3 is NR3; X4 is a bond; and Ri, R3, R5, Re, R7, R8a, R8b, R9, X5, Zi, Z2, and L are as defined in formula (I).
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is absent; Xi is CRi; X2 is N; X3 is NR3; X is a bond; X5 is N; R8b is absent; Zi is O; Z2 is NH; L is alkylene; R9 is aryl; and Rl5 R3, R5, R6, R7, and R8a are as defined in formula (I).
In another embodiment of the present invention, compounds of formula (I) are disclosed wherein — is absent; Xi is CRi; X is N; X3 is NR3; X4 is a bond; X5 is N; R\, R5, Re and R7 are each hydrogen; R8b is absent; Zi is O; Z is NH; L is alkylene; R9 is aryl wherein said aryl is phenyl substituted with 1, 2, or 3 substituents independently selected from the group consisting of hydrogen, alkoxy, alkyl, alkylsulfonyl, 1-azepanyl, 1-azocanyl, cyano, haloalkoxy, haloalkyl, haloalkylthio, halogen, methylenedioxy, 4-morpholinyl, 2,6,- dimethyl-4-morpholinyl, phenyl, 1-piperidinyl, 4-methyl- 1-piperidinyl, pyridinyl, 1-pynolidinyl, 4-thiomorpholinyl, and -NZCZD; and R8a, Zc, and ZD are independently selected from the group consisting of hydrogen and alkyl.
Another embodiment of the present invention relates to pharmaceutical compositions comprising a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof.
Another embodiment of the present invention relates to a method of treating a disorder wherein the disorder is ameliorated by inhibiting vanilloid receptor subtype 1 (VRl) receptor in a host mammal in need of such treatment comprising administering a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof.
Another embodiment of the present invention relates to a method for controlling pain in a host mammal in need of such treatment comprising administering a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof.
Another embodiment of the present invention relates to a method of treating urinary incontinence in a host mammal in need of such treatment comprising administering a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof.
Another embodiment of the present invention relates to a method of treating bladder overactivity in a host mammal in need of such treatment comprising administering a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof.
Another embodiment of the present invention relates to a method of treating inflammatory thermal hyperalgesia in a host mammal in need of such treatment comprising administering a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof.
Definition of Terms
As used throughout this specification and the appended claims, the following terms have the following meanings:
The term "alkenyl" as used herein, means a straight or branched chain hydrocarbon containing from 2 to 10 carbons and containing at least one carbon-carbon double bond formed by the removal of two hydrogens. Representative examples of alkenyl include, but are not limited to, ethenyl, 2-propenyl, 2-methyl-2-propenyl, 3-butenyl, 4-pentenyl, 5- hexenyl, 2-heptenyl, 2-methyl-l-heptenyl, and 3-decenyl.
The term "alkenylene" means a divalent group derived from a straight or branched chain hydrocarbon of from 2 to 10 carbon atoms containing at least one double bond. Representative examples of alkenylene include, but are not limited to, -CH=CH-, -CH=CH2CH2-, and -CH=C(CH3)CH2-.
The term "alkoxy" as used herein, means an alkyl group, as defined herein, appended to the parent molecular moiety through an oxygen atom. Representative examples of alkoxy include, but are not limited to, methoxy, ethoxy, propoxy, 2-propoxy, butoxy, tert-butoxy, pentyloxy, and hexyloxy.
The term "alkoxyalkoxy" as used herein, means an alkoxy group, as defined herein, appended to the parent molecular moiety through an alkoxy group, as defined herein. Representative examples of alkoxyalkoxy include, but are not limited to, methoxymethoxy, ethoxymethoxy and 2-ethoxyethoxy.
The term "alkoxyalkyl" as used herein, means an alkoxy group, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of alkoxyalkyl include, but are not limited to, tert-butoxymethyl, 2- ethoxyethyl, 2-methoxyethyl, and methoxymethyl.
The term "alkoxycarbonyl" as used herein, means an alkoxy group, as defined herein, appended to the parent molecular moiety through a carbonyl group, as defined herein. Representative examples of alkoxycarbonyl include, but are not limited to, methoxycarbonyl, ethoxycarbonyl, and tert-butoxycarbonyl.
The term "alkoxycarbonylalkyl" as used herein, means an alkoxycarbonyl group, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of alkoxycarbonylalkyl include, but are not limited to, 3- methoxycarbonylpropyl, 4-ethoxycarbonylbutyl, and 2-tert-butoxycarbonylethyl.
The term "alkyl" as used herein, means a straight or branched chain hydrocarbon containing from 1 to 10 carbon atoms. Representative examples of alkyl include, but are not limited to, methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, n- pentyl, isopentyl, neopentyl, n-hexyl, 3-methylhexyl, 2,2-dimethylpentyl, 2,3-dimethylpentyl, n-heptyl, n-octyl, n-nonyl, and n-decyl.
The term "alkylcarbonyl" as used herein, means an alkyl group, as defined herein, appended to the parent molecular moiety through a carbonyl group, as defined herein.
Representative examples of alkylcarbonyl include, but are not limited to, acetyl, 1-oxopropyl,
2,2-dimethyl- 1-oxopropyl, 1-oxobutyl, and 1-oxopentyl.
The term "alkylcarbonylalkyl" as used herein, means an alkylcarbonyl group, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of alkylcarbonylalkyl include, but are not limited to, 2- oxopropyl, 3,3-dimethyl-2-oxopropyl, 3-oxobutyl, and 3-oxopentyl.
The term "alkylcarbonyloxy" as used herein, means an alkylcarbonyl group, as defined herein, appended to the parent molecular moiety through an oxygen atom. Representative examples of alkylcarbonyloxy include, but are not limited to, acetyloxy, ethylcarbonyloxy, and tert-butylcarbonyloxy.
The term "alkylene" means a divalent group derived from a straight or branched chain hydrocarbon of from 1 to 10 carbon atoms. Representative examples of alkylene include, but are not limited to, -CH2-, -CH2CH2-, -CH2CH2CH2-, -CH2CH2CH2CH2-, -CH2CH(CH3)CH2-, and -(CH2)pCH(Rz)(CH2)q-, wherein p and q are independently 0-4 and Rz is selected from the group consisting of aryl, cycloalkyl, and hydroxy. A prefened aryl group is phenyl.
The term "alkylsulfonyl" as used herein, means an alkyl group, as defined herein, appended to the parent molecular moiety through a sulfonyl group, as defined herein. Representative examples of alkylsulfonyl include, but are not limited to, methylsulfonyl and ethylsulfonyl.
The term "alkylthio" as used herein, means an alkyl group, as defined herein, appended to the parent molecular moiety through a sulfur atom. Representative examples of alkylthio include, but are not limited, methylsulfanyl, ethylsulfanyl, tert-butylsulfanyl, and hexylsulfanyl.
The term "alkynyl" as used herein, means a straight or branched chain hydrocarbon group containing from 2 to 10 carbon atoms and containing at least one carbon-carbon triple bond. Representative examples of alkynyl include, but are not limited, to acetylenyl, 1- propynyl, 2-propynyl, 3-butynyl, 2-pentynyl, and 1-butynyl.
The term "alkynylene" means a divalent group derived from a straight or branched chain hydrocarbon of from 2 to 10 carbon atoms containing at least one triple bond. Representative examples of alkynylene include, but are not limited to, -C≡C-, -CH2C≡C-, -CH(CH3)CH2C≡C-, -C≡CCH2-, and -C≡CCH(CH3)CH2-.
The term "aryl" as used herein, means a phenyl group, or a bicyclic or a tricyclic fused ring system wherein one or more of the fused rings is a phenyl group. Bicyclic fused ring systems are exemplified by a phenyl group fused to a cycloalkyl group, as defined
herein, or another phenyl group. Tricyclic fused ring systems are exemplified by a bicyclic fused ring system fused to a cycloalkyl group, as defined herein, or another phenyl group.
Representative examples of aryl include, but are not limited to, anthracenyl, azulenyl, fluorenyl, indanyl, indenyl, naphthyl, phenyl and tetrahydronaphthyl.
The aryl groups of this invention can be substituted with 1, 2, 3, 4 or 5 substituents independently selected from alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkyl, alkylcarbonyl, alkylcarbonylalkyl, alkylcarbonyloxy, alkylsulfonyl, alkylthio, alkynyl, carboxy, carboxyalkyl, cyano, cyanoalkyl, cycloalkyl, cycloalkylalkyl, ethylenedioxy, formyl, formylalkyl, haloalkoxy, haloalkyl, haloalkylthio, halogen, hydroxy, hydroxyalkyl, methylenedioxy, mercapto, mercaptoalkyl, nitro, -NZCZD,
(NZcZD)alkyl, (NZcZD)carbonyl, (NZcZD)carbonylalkyl, (NZcZD)sulfonyl, -NRAS(O)2RB,
-S(O)2ORA and -S(O)2RA wherein RA and RB are as defined herein. The aryl groups of this invention can be further substituted with any one of an additional aryl, arylalkyl, aryloxy, arylthio, heterocycle, heterocyclealkyl, heterocycleoxy, or heterocyclethio group, as defined herein, wherein the additional aryl, arylalkyl, aryloxy, arylthio, heterocycle, heterocyclealkyl, heterocycleoxy, and heterocyclethio group can be substituted with 1, 2, 3, 4, or 5 substituents independently selected from alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkyl, alkylcarbonyl, alkylcarbonylalkyl, alkylcarbonyloxy, alkylsulfonyl, alkylthio, alkynyl, carboxy, carboxyalkyl, cyano, cyanoalkyl, cycloalkyl, cycloalkylalkyl, formyl, formylalkyl, haloalkoxy, haloalkyl, haloalkylthio, halogen, hydroxy, hydroxyalkyl, mercapto, mercaptoalkyl, nitro, -NZCZD, (NZcZo)alkyl, (NZcZD)carbonyl,
(NZcZD)carbonylalkyl, (NZcZD)sulfonyl, -NRAS(O)2RB, -S(O)2ORA and -S(O)2RA wherein
RA and RB are as defined herein. Representative examples include, but are not limited to, 4- bromophenyl, 3-chlorophenyl, 4-chlorophenyl, 3,4-dichlorophenyl, 2,3-dichlorophenyl, 2,4- dichlorophenyl, 3,5-dichlorophenyl, 3,4-difluorophenyl, 4-bromo-2-fluorophenyl, 4-chloro-2- fluorophenyl, 4-(tert-butyl)phenyl), 4-cyanophenyl, 4-ethylphenyl, 3 -fluorophenyl, 2,4- difluorophenyl, 4-bromo-3 -fluorophenyl, 2,3-difluoro-4-(frifluoromethyl)phenyl, 3-fluoro-4-
(trifluoromethyl)phenyl, 3-fluoro-5-(frifluoromethyl)phenyl, 3-(trifluoromethyl)phenyl, 4-
(trifluoromethyl)phenyl, 4-(trifluoromethoxy)phenyl, 3-(trifluoromethoxy)phenyl, 4-
[(trifluoromethyl)thio]phenyl, 3-methylphenyl, 3,4-dimethylphenyl, 2,4-dimethylphenyl, 4- isopropylphenyl, 4-methylphenyl, 4-bromo-3-methylphenyl, 4-fluoro-3-
(frifluoromethyl)phenyl, 3-chloro-4-fluorophenyl, 4-(l-pynolidinyl)phenyl, 4-(l- azepanyl)phenyl, 3-fluoro-4-(l-pynolidinyl)phenyl, 3-fluoro-4-(l-azepanyl)phenyl, 4-(l-
azocanyl)phenyl, 4-(l-piperidinyl)phenyl, 3-fluoro-4-(l-piperidinyl)phenyl, 4-(2- pyridinyl)phenyl, l,l'-biphenyl, 3-fluoro-4-(4-methyl-l-piperidinyl)phenyl, 4-(4-methyl-l- piperidinyl)phenyl, 4-(4-morpholinyl)phenyl, 4-(2,6-dimethyl-4-morpholinyl)phenyl, 4-(4- thiomorpholinyl)phenyl, 3,5-difluoro-4-(4-morpholinyl)phenyl, 3,5- bis(trifluoromethyl)phenyl, and 2,5-bis(trifluoromethyl)phenyl.
The term "arylalkyl" as used herein, means an aryl group, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of arylalkyl include, but are not limited to, benzyl, 2-phenylethyl, 3-phenylpropyl, and 2-naphth-2-ylethyl.
The term "aryloxy" as used herein, means an aryl group, as defined herein, appended to the parent molecular moiety through an oxygen atom. Representative examples of aryloxy include, but are not limited to, phenoxy, naphthyloxy, 3-bromophenoxy, 4-chlorophenoxy, 4- methylphenoxy, and 3,5-dimethoxyphenoxy.
The term "arylthio" as used herein, means an aryl group, as defined herein, appended to the parent molecular moiety through a sulfur atom. Representative examples of arylthio include, but are not limited to, phenylsulfanyl, naphth-2-ylsulfanyl, and 5- phenylhexylsulfanyl.
The term "carbonyl" as used herein, means a -C(O)- group.
The term "carboxy" as used herein, means a -CO2H group.
The term "carboxyalkyl" as used herein, means a carboxy group, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of carboxyalkyl include, but are not limited to, carboxymethyl, 2- carboxyethyl, and 3-carboxypropyl.
The term "cyano" as used herein, means a -CN group.
The term "cyanoalkyl" as used herein, means a cyano group, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of cyanoalkyl include, but are not limited to, cyanomethyl, 2- cyanoyethyl, and 3-cyanopropyl.
The term "cycloalkyl" as used herein, means a monocyclic, bicyclic, or tricyclic ring system. Monocyclic ring systems are exemplified by a saturated cyclic hydrocarbon group containing from 3 to 8 carbon atoms. Examples of monocyclic ring systems include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl. Bicyclic ring systems are exemplified by a bridged monocyclic ring system in which two non-adjacent
carbon atoms of the monocyclic ring are linked by an alkylene bridge of between one and three additional carbon atoms. Representative examples of bicyclic ring systems include, but are not limited to, bicyclo [3. l.ljheptane, bicyclo[2.2.1]heptane, bicyclo[2.2.2]octane, bicyclo[3.2.2]nonane, bicyclo[3.3.1]nonane, and bicyclo[4.2.1]nonane. Tricyclic ring systems are exemplified by a bicyclic ring system in which two non-adjacent carbon atoms of the bicyclic ring are linked by a bond or an alkylene bridge of between one and three carbon atoms. Representative examples of tricyclic-ring systems include, but are not limited to, tricyclo [3.3.1.03'7]nonane and tricy clo [3.3.1.13'7] decane (adamantyl) .
The cycloalkyl groups of this invention can be substituted with 1, 2, 3, 4 or 5 substituents independently selected from alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkyl, alkylcarbonyl, alkylcarbonylalkyl, alkylcarbonyloxy, alkylsulfonyl, alkylthio, alkynyl, carboxy, carboxyalkyl, cyano, cyanoalkyl, formyl, haloalkoxy, haloalkyl, haloalkylthio, halogen, hydroxy, hydroxyalkyl, mercapto, mercaptoalkyl, nitro, -NZCZD, (NZcZϋ)alkyl, (NZcZD)carbonyl, (NZcZD)carbonylalkyl, (NZcZD)sulfonyl, -NRAS(O)2RB, -S(O)2ORA, and -S(O)2RA wherein RA and RB are as defined herein. Representative examples include, but are not limited to, 6,6-dimethylbicyclo[3.1.1 Jheptyl, 6,6-dimethylbicyclo [3.1.1 ]hept-2-yl, 4-tert- butylcyclohexyl, and 4-(trifluoromethyl)cyclohexyl.
The term "cycloalkylalkyl" as used herein, means a cycloalkyl group, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of cycloalkylalkyl include, but are not limited to, cyclopropylmethyl, 2-cyclobutylethyl, cyclopentylmethyl, cyclohexylmethyl, and 4-cycloheptylbutyl.
The term "cycloalkylene" as used herein, means a divalent group derived from a cycloalkyl group, as defined herein. Representative examples of cycloalkylene include, but are not limited to
The term "ethylenedioxy" as used herein, means a -O(CH )2O- group wherein the oxygen atoms of the ethylenedioxy group are attached to the parent molecular moiety through one carbon atom forming a 5 membered ring or the oxygen atoms of the ethylenedioxy group
are attached to the parent molecular moiety through two adjacent carbon atoms forming a six membered ring.
The term "formyl" as used herein, means a -C(O)H group.
The term "formylalkyl" as used herein, means a formyl group, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of formylalkyl include, but are not limited to, formylmethyl and 2- formylethyl.
The term "halo" or "halogen" as used herein, means -Cl, -Br, -I or -F.
The term "haloalkoxy" as used herein, means at least one halogen, as defined herein, appended to the parent molecular moiety through an alkoxy group, as defined herein. Representative examples of haloalkoxy include, but are not limited to, chloromethoxy, 2- fluoroethoxy, trifluoromethoxy, 2-chloro-3-fluoropentyloxy, and pentafluoroethoxy.
The term "haloalkyl" as used herein, means at least one halogen, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of haloalkyl include, but are not limited to, chloromethyl, 2- fluoroethyl, trifluoromethyl, pentafluoroethyl, and 2-chloro-3-fluoropentyl.
The term "haloalkylthio" as used herein, means at least one halogen, as defined herein, appended to the parent molecular moiety through an alkylthio group, as defined herein. Representative examples of haloalkylthio include, but are not limited to, trifluoromethylthio.
The term "heterocycle" or "heterocyclic" as used herein, means a monocyclic, bicyclic, or tricyclic ring system. Monocyclic ring systems are exemplified by any 3- or 4- membered ring containing a heteroatom independently selected from oxygen, nitrogen and sulfur; or a 5-, 6- or 7-membered ring containing one, two or three heteroatoms wherein the heteroatoms are independently selected from nitrogen, oxygen and sulfur. The 5-membered ring has from 0-2 double bonds and the 6- and 7-membered ring have from 0-3 double bonds. Representative examples of monocyclic ring systems include, but are not limited to, azetidinyl, azepanyl, aziridinyl, diazepinyl, 1,3-dioxolanyl, dioxanyl, dithianyl, furyl, imidazolyl, imidazolinyl, imidazolidinyl, isothiazolyl, isothiazolinyl, isothiazolidinyl, isoxazolyl, isoxazolinyl, isoxazolidinyl, morpholinyl, oxadiazolyl, oxadiazolinyl, oxadiazolidinyl, oxazolyl, oxazolinyl, oxazolidinyl, piperazinyl, piperidinyl, pyranyl, pyrazinyl, pyrazolyl, pyrazolinyl, pyrazolidinyl, pyridinyl, pyrimidinyl, pyridazinyl, pynolyl, pynolinyl, pynolidinyl, tetrahydrofuranyl, tefrahydrothienyl, tetrazinyl, tetrazolyl,
thiadiazolyl, thiadiazolinyl, thiadiazolidinyl, thiazolyl, thiazolinyl, thiazolidinyl, thienyl, thiomorpholinyl, 1,1-dioxidothiomorpholinyl (thiomorpholine sulfone), thiopyranyl, triazinyl, triazolyl, and trithianyl. Bicyclic ring systems are exemplified by any of the above monocyclic ring systems fused to an aryl group as defined herein, a cycloalkyl group as defined herein, or another monocyclic ring system. Representative examples of bicyclic ring systems include but are not limited to, for example, benzimidazolyl, benzodioxinyl, benzothiazolyl, benzothienyl, benzotriazolyl, benzoxazolyl, benzofuranyl, benzopyranyl, benzothiopyranyl, cinnolinyl, indazolyl, indolyl, 2,3-dihydroindolyl, indolizinyl, naphthyridinyl, isobenzofuranyl, isobenzothienyl, isoindolyl, isoquinolinyl, phthalazinyl, pyranopyridinyl, quinolinyl, quinolizinyl, quinoxalinyl, quinazolinyl, tetrahydroisoquinolmyl, tetrahydroquinolinyl, and thiopyranopyridinyl. Tricyclic rings systems are exemplified by any of the above bicyclic ring systems fused to an aryl group as defined herein, a cycloalkyl group as defined herein, or a monocyclic ring system. Representative examples of tricyclic ring systems include, but are not limited to, acridinyl, carbazolyl, carbolinyl, dibenzo[b,d]furanyl, dibenzo[b,d]thienyl, naphtho[2,3-b]furan, naphtho[2,3-b]thienyl, phenazinyl, phenothiazinyl, phenoxazinyl, thianthrenyl, thioxanthenyl and xanthenyl.
The heterocycles of this invention can be substituted with 1, 2,or 3 substituents independently selected from alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkyl, alkylcarbonyl, alkylcarbonylalkyl, alkylcarbonyloxy, alkylsulfonyl, alkylthio, alkynyl, arylalkyl, aryloxy, arylthio, carboxy, carboxyalkyl, cyano, cyanoalkyl, cycloalkyl, cycloalkylalkyl, formyl, formylalkyl, haloalkoxy, haloalkyl, haloalkylthio, halogen, hydroxy, hydroxyalkyl, mercapto, mercaptoalkyl, nitro, oxo, -NZCZD,
(NZcZD)alkyl, ( ZcZD)carbonyl, (NZcZD)carbonylalkyl, (NZcZD)sulfonyl, -NRAS(O)2RB, -
S(O) ORA and -S(O)2RA wherein RA and RB are as defined herein. The heterocycles of this invention can be further substituted with any one of an additional aryl, arylalkyl, aryloxy, arylthio, heterocycle, heterocyclealkyl, heterocycleoxy, or heterocyclethio group, as defined herein, wherein the additional aryl, arylalkyl, aryloxy, arylthio, heterocycle, heterocyclealkyl, heterocycleoxy, and heterocyclethio group can be substituted with 1, 2, or 3 substituents independently selected from alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkyl, alkylcarbonyl, alkylcarbonylalkyl, alkylcarbonyloxy, alkylsulfonyl, alkylthio, alkynyl, carboxy, carboxyalkyl, cyano, cyanoalkyl, cycloalkyl, cycloalkylalkyl, ethylenedioxy, formyl, formylalkyl, haloalkoxy, haloalkyl, haloalkylthio, halogen, hydroxy, hydroxyalkyl, mercapto, mercaptoalkyl, nifro, -NZCZD, (NZcZD)alkyl,
(NZcZD)carbonyl, (NZcZD)carbonylalkyl, (NZcZD)sulfonyl, -NRAS(O)2RB, -S(O)2ORA and - S(O)2RA wherein RA and RB are as defined herein. Representative examples include, but are not limited to, 2,6-dimethylmorpholinyl, 4-(3-chlorophenyl)-l-piperazinyl, 4-(3,4- dimethylphenyl)- 1 -piper azinyl, 4-(4-chlorophenyl)- 1 -piperazinyl, 4-(4-methylphenyl)-3 - methyl- 1 -piperazinyl, 4-(2,3 -dimethylphenyl)- 1 -piperazinyl, 4-(2,3 -dichlorophenyl)- 1 - piperazinyl, 4-(3,4-dichlorophenyl)-l -piperazinyl, 4-[3-(trifluoromethyl)phenyl]-l- piperazinyl, 4-(4-bromophenyl)-l -piperazinyl, 2-oxo- 1-pynolidinyl, and 5-(trifluoromethyl)- 2-pyridinyl.
The term "heterocyclealkyl" as used herein, means a heterocycle, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of heterocyclealkyl include, but are not limited to, pyridin-3- ylmethyl and 2-pyrimidin-2-ylpropyl.
The term "heterocycleoxy" as used herein, means a heterocycle group, as defined herein, appended to the parent molecular moiety through an oxygen atom. Representative examples of heterocycleoxy include, but are not limited to, pyridin-3-yloxy and quinolin-3- yloxy.
The term "heterocyclethio" as used herein, means a heterocycle group, as defined herein, appended to the parent molecular moiety through a sulfur atom. Representative examples of heterocyclethio include, but are not limited to, pyridin-3-ylsulfanyl and quinolin- 3-ylsulfanyl.
The term "hydroxy" as used herein, means an -OH group.
The term "hydroxyalkyl" as used herein, means at least one hydroxy group, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of hydroxyalkyl include, but are not limited to, hydroxymethyl, 2- hydroxyethyl, 3 -hydroxypropyl, 2,3-dihydroxypentyl, and 2-ethyl-4-hydroxyheptyl.
The term "mercapto" as used herein, means a -SH group.
The term "mercaptoalkyl" as used herein, means a mercapto group, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of mercaptoalkyl include, but are not limited to, 2-mercaptoethyl and 3-mercaptopropyl.
The term "methylenedioxy" as used herein, means a -OCH O- group wherein the oxygen atoms of the methylenedioxy are attached to the parent molecular moiety through two adjacent carbon atoms.
The term "nitro" as used herein, means a -NO2 group.
The term "-NZAZB" as used herein, means two groups, ZA and ZB, which are appended to the parent molecular moiety through a nitrogen atom. ZA and ZB are each independently selected from hydrogen, alkyl, alkylcarbonyl, formyl, aryl and arylalkyl. Representative examples of -NZAZB include, but are not limited to, amino, methylamino, acetylamino, benzylamino, phenylamino, and acetylmethylamino.
The term "(NZAZB)alkyl" as used herein, means a -NZAZB group, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of (NZAZB)alkyl include, but are not limited to, aminomethyl, 2- (methylamino)ethyl, 2-(dimethylamino)ethyl and (ethylmethylamino)methyl.
The term "(NZAZB)alkylcarbonyl" as used herein, means a (NZAZB)alkyl group, as defined herein, appended to the parent molecular moiety through a carbonyl group, as defined herein. Representative examples of (NZAZB)alkylcarbonyl include, but are not limited to, dimethylaminomethylcarbonyl, 2-(dimethylamino)ethylcarbonyl, and (ethylmethylamino)methylcarbonyl .
The term "(NZAZB)carbonyl" as used herein, means a -NZAZB group, as defined herein, appended to the parent molecular moiety through a carbonyl group, as defined herein. Representative examples of (NZAZβ)carbonyl include, but are not limited to, aminocarbonyl, (methylamino)carbonyl, (dimethylamino)carbonyl and (ethylmethylamino)carbonyl.
The term "(NZAZB)carbonylalkyl " as used herein, means a (NZAZB)carbonyl group, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of (NZAZB)carbonylalkyl include, but are not limited to, (aminocarbonyl)methyl, 2-((methylamino)carbonyl)ethyl and ((dimethylamino)carbonyl)methyl.
The term "(NZAZB)sulfonyl" as used herein, means a -NZAZB group, as defined herein, appended to the parent molecular moiety through a sulfonyl group, as defined herein.
Representative examples of (NZAZB)sulfonyl include, but are not limited to, aminosulfonyl,
(methylamino)sulfonyl, (dimethylamino)sulfonyl and (ethylmethylamino)sulfonyl.
The term "-NZAZB" as used herein, means two groups, ZA and ZB, which are appended to the parent molecular moiety through a nitrogen atom. ZA and ZB are each independently selected from hydrogen, alkyl, alkylcarbonyl, formyl, aryl and arylalkyl. Representative examples of
-NZAZB include, but are not limited to, amino, methylamino, acetylamino, benzylamino, phenylamino, and acetylmethylamino.
The term "-NZCZD" as used herein, means two groups, Zc and ZD, which are appended to the parent molecular moiety through a nitrogen atom. Zc and ZD are each independently selected from hydrogen, alkyl, alkylcarbonyl, formyl, aryl and arylalkyl. Representative examples of -NZCZD include, but are not limited to, amino, methylamino, acetylamino, benzylamino, phenylamino, and acetylmethylamino.
The term "(NZcZD)alkyl" as used herein, means a -NZCZD group, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of (NZcZo)alkyl include, but are not limited to, aminomethyl, 2- (methylamino)ethyl, 2-(dimethylamino)ethyl and (ethylmethylamino)methyl.
The term "(NZcZD)carbonyl" as used herein, means a -NZCZD group, as defined herein, appended to the parent molecular moiety through a carbonyl group, as defined herein. Representative examples of (NZcZD)carbonyl include, but are not limited to, aminocarbonyl, (methylamino)carbonyl, (dimethylamino)carbonyl and (ethylmethylamino)carbonyl.
The term "(NZcZD)carbonylalkyl " as used herein, means a (NZcZo)carbonyl group, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of (NZcZo)carbonylalkyl include, but are not limited to, (aminocarbonyl)methyl, 2-((methylamino)carbonyl)ethyl and ((dimethylamino)carbonyl)methyl.
The term "(NZcZD)sulfonyl" as used herein, means a -NZCZD group, as defined herein, appended to the parent molecular moiety through a sulfonyl group, as defined herein. Representative examples of (NZcZD)sulfonyl include, but are not limited to, aminosulfonyl, (methylamino)sulfonyl, (dimethylamino)sulfonyl and (ethylmethylamino)sulfonyl.
The term "oxo" as used herein, means =O.
The term "sulfonyl" as used herein, means a -S(O)2- group.
In Vitro Data Determination of Inhibition Potencies
Dulbecco's modified Eagle medium (D-MEM)(with 4.5 mg/mL glucose) and fetal bovine seram were obtained from Hyclone Laboratories, Inc. (Logan, Utah). Dulbecco's phosphate-buffered saline (D-PBS)(with 1 mg/mL glucose and 3.6 mg/1 Na pyravate)(without phenol red), L-glutamine, hygromycin B, and Lipofectamine™ were obtained from Life Technologies (Grand Island, NY). G418 sulfate was obtained from Calbiochem-Novabiochem Corp. (San Diego, CA). Capsaicin (8-methyl-N-vanillyl-6- nonenamide) was obtained from Sigma-Aldrich, Co. (St. Louis, MO). Fluo-4 AM (N-[4-[6-
[(acetyloxy)methoxy]-2,7-difluoro-3-oxo-3H-xanthen-9-yl]-2-[2-[2-[bis[2- [(acetyloxy)methoxy]-2-oxyethyl]amino]-5-methylphenoxy]ethoxy]phenyl]-N-[2- [(acetyloxy)methoxy]-2-oxyethyl]-glycine, (acetyloxy)methyl ester) was purchased from Molecular Probes (Eugene, OR).
The cDNAs for the human VRl receptor were isolated by reverse transcriptase- polymerase chain reaction (RT-PCR) from human small intestine poly A+RNA supplied by Clontech (Palo Alto, CA) using primers designed suπounding the initiation and termination codons identical to the published sequences (Hayes et al. Pain 88: 205-215, 2000). The resulting cDNA PCR products were subcloned into pCIneo mammalian expression vector (Promega) and fully sequenced using fluorescent dye-terminator reagents (Prism, Perkin- Elmer Applied Biosystems Division) and a Perkin-Elmer Applied Biosystems Model 373 DNA sequencer or Model 310 genetic analyzer. Expression plasmids encoding the hVRl cDNA were transfected individually into 1321N1 human astrocytoma cells using Lipofectamine™. Forty-eight hours after transfection, the neomycin-resistant cells were selected with growth medium containing 800 μg/mL Geneticin (Gibco BRL). Surviving individual colonies were isolated and screened for VRl receptor activity. Cells expressing recombinant homomeric VRl receptors were maintained at 37 °C in D-MEM containing 4 mM L-glutamine, 300 μg/mL G418 (Cal-biochem) and 10% fetal bovine serum under a humidified 5% CO2 atmosphere.
The functional activity of compounds at the VRl receptor was determined with a Ca2+ influx assay and measurement of intracellular Ca2+ levels ([Ca2+]i). All compounds were tested over an 11 -point half-log concentration range. Compound solutions were prepared in D-PBS (4x final concentration), and diluted serially across 96-well v-bottom tissue culture plates using a Biomek 2000 robotic automation workstation (Beckman-Coulter, Inc., Fullerton, CA). A 0.2 μM solution of the VRl agonist capsaicin was also prepared in D- PBS. The fluorescent Ca chelating dye fluo-4 was used as an indicator of the relative levels
94- of [Ca ]i in a 96-well format using a Fluorescence Imaging Plate Reader (FLIPR)(Molecular Devices, Sunnyvale, CA). Cells were grown to confluency in 96-well black- walled tissue culture plates. Then, prior to the assay, the cells were loaded with 100 μL per well of fluo-4 AM (2 μM, in D-PBS) for 1-2 hours at 23 °C. Washing of the cells was performed to remove extracellular fluo-4 AM (2 x 1 mL D-PBS per well), and afterward, the cells were placed in the reading chamber of the FLIPR instrament. 50 μL of the compound solutions were added
to the cells at the 10 second time mark of the experimental run. Then, after a 3 minute time delay, 50 μL of the capsaicin solution was added at the 190 second time mark (0.05 μM final concentration)(final volume = 200 μL) to challenge the VRl receptor. Time length of the experimental run was 240 seconds. Fluorescence readings were made at 1 to 5 second intervals over the course of the experimental run. The peak increase in relative fluorescence units (minus baseline) was calculated from the 190 second time mark to the end of the experimental run, and expressed as a percentage of the 0.05 μM capsaicin (control) response. Curve-fits of the data were solved using a four-parameter logistic Hill equation in GraphPad Prism® (GraphPad Software, Inc., San Diego, CA), and IC50 values were calculated.
The compounds of the present invention were found to be antagonists of the vanilloid receptor subtype 1 (VRl) receptor with ICsos from 1000 nM to 0.1 nM. In a prefened range, compounds tested had IC5os from 500 nM to 0.1 nM. In a more prefened range, compounds tested had IC50s from 50 nM to 0.1 nM.
In Vivo Data Determination of Antinociceptive Effect
Experiments were performed on 400 adult male 129J mice (Jackson laboratories, Bar Harbor, ME), weighing 20-25 g. Mice were kept in a vivarium, maintained at 22 °C, with a 12 hour alternating light-dark cycle with food and water available ad libitum. All experiments were performed during the light cycle. Animals were randomly divided into separate groups of 10 mice each. Each animal was used in one experiment only and was sacrificed immediately following the completion of the experiment. All animal handling and experimental procedures were approved by an IACUC Committee.
The antinociceptive test used was a modification of the abdominal constriction assay described in Collier, et al., Br. J. Pharmacol. Chemother. 32 (1968) 295-310. Each animal received an intraperitoneal (i.p.) injection of 0.3 mL of 0.6% acetic acid in normal saline to evoke writhing. Animals were placed separately under clear cylinders for the observation and quantification of abdominal constriction. Abdominal constriction was defined as a mild constriction and elongation passing caudally along the abdominal wall, accompanied by a slight twisting of the trunk and followed by bilateral extension of the hind limbs. The total number of abdominal constrictions was recorded from 5 to 20 minutes after acetic acid injection. The EDs0s were determined based on the i.p. injection.
The compounds of the present invention tested were found to have antinociceptive effects with ED5os from 1 mg/kg to 500 mg/kg.
The in vitro and in vivo data demonstrates that compounds of the present invention antagonize the VRl receptor and are useful for treating pain.
Compounds of the present invention, as VRl antagonists, are also useful for ameliorating or preventing additional disorders that are affected by the VRl receptors such as, but not limited to, infammatory thermal hyperalgesia, bladder overactivity, and urinary incontinence.
Compounds of the present invention, including but not limited to those specified in the examples, can be used to treat pain as demonstrated by Nolano, M. et al., Pain 81 (1999) 135; Caterina, M.J. and Julius, D., Annu. Rev. Neurosci. 24, (2001) 487-517; Caterina, M.J. et al., Science 288 (2000) 306-313; Caterina, M.J. et al., Nature 389 (1997) 816-824.
Compounds of the present invention, including but not limited to those specified in the examples, can be used to treat bladder overactivity and/or urinary incontinence as demonstrated by Fowler, C. Urology 55 (2000) 60.
Compounds of the present invention, including but not limited to those specified in the examples, can be used to treat inflammatory thermal hyperalgesia as demonstrated by Davis, J. et al, Nature 405 (2000) 183-187.
The present invention also provides phannaceutical compositions that comprise compounds of the present invention. The pharmaceutical compositions comprise compounds of the present invention that may be formulated together with one or more non-toxic pharmaceutically acceptable carriers.
The pharmaceutical compositions of this invention can be administered to humans and other mammals orally, rectally, parenterall , intracistemally, intravaginally, intraperitoneally, topically (as by powders, ointments or drops), bucally or as an oral or nasal spray. The term "parenterally," as used herein, refers to modes of administration which include intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and mtraarticular injection and infusion.
The term "pharmaceutically acceptable carrier," as used herein, means a non-toxic, inert solid, semi-solid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. Some examples of materials which can serve as pharmaceutically acceptable earners are sugars such as, but not limited to, lactose, glucose and sucrose; starches such as, but not limited to, corn starch and potato starch; cellulose and its derivatives such as, but not
limited to, sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients such as, but not limited to, cocoa butter and suppository waxes; oils such as, but not limited to, peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; glycols; such a propylene glycol; esters such as, but not limited to, ethyl oleate and ethyl laurate; agar; buffering agents such as, but not limited to, magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water; isotonic saline; Ringer's solution; ethyl alcohol, and phosphate buffer solutions, as well as other non-toxic compatible lubricants such as, but not limited to, sodium lauryl sulfate and magnesium stearate, as well as coloring agents, releasing agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the composition, according to the judgment of the formulator. *
Pharmaceutical compositions of this invention for parenteral injection comprise phannaceutically acceptable sterile aqueous or nonaqueous solutions, dispersions, suspensions or emulsions as well as sterile powders for reconstitution into sterile injectable solutions or dispersions just prior to use. Examples of suitable aqueous and nonaqueous caπiers, diluents, solvents or vehicles include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol and the like), vegetable oils (such as olive oil), injectable organic esters (such as ethyl oleate) and suitable mixtures thereof. Proper fluidity can be maintained, for example, by the use of coating materials such as lecithin, by the maintenance of the required particle size in the case of dispersions and by the use of surfactants.
These compositions may also contain adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents. Prevention of the action of microorganisms can be ensured by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid and the like. It may also be desirable to include isotonic agents such as sugars, sodium chloride and the like. Prolonged absorption of the injectable pharmaceutical form can be brought about by the inclusion of agents which delay absorption such as aluminum monostearate and gelatin.
In some cases, in order to prolong the effect of the drug, it is desirable to slow the absorption of the drug from subcutaneous or intramuscular injection. This can be accomplished by the use of a liquid suspension of crystalline or amorphous material with poor water solubility. The rate of absorption of the drag then depends upon its rate of dissolution which, in turn, may depend upon crystal size and crystalline form. Alternatively,
delayed absorption of a parenterally administered drag fonn is accomplished by dissolving or suspending the drag in an oil vehicle.
Injectable depot forms are made by forming microencapsule matrices of the drag in biodegradable polymers such as polylactide-polyglycolide. Depending upon the ratio of drag to polymer and the nature of the particular polymer employed, the rate of drag release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly (anhydrides). Depot injectable formulations are also prepared by entrapping the drag in liposomes or microemulsions which are compatible with body tissues.
The injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium just prior to use.
Solid dosage forms for oral administration include capsules, tablets, pills, powders and granules. In such solid dosage forms, the active compound may be mixed with at least one inert, pharmaceutically acceptable excipient or caπier, such as sodium citrate or dicalcium phosphate and/or a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol and silicic acid; b) binders such as carboxymethylcellulose, alginates, gelatin, polyvinylpynolidone, sucrose and acacia; c) humectants such as glycerol; d) disintegrating agents such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates and sodium carbonate; e) solution retarding agents such as paraffin; f) absorption accelerators such as quaternary ammonium compounds; g) wetting agents such as cetyl alcohol and glycerol monostearate; h) absorbents such as kaolin and bentonite clay and i) lubricants such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate and mixtures thereof. In the case of capsules, tablets and pills, the dosage form may also comprise buffering agents.
Solid compositions of a similar type may also be employed as fillers in soft and hard- filled gelatin capsules using such carriers as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.
The solid dosage forms of tablets, dragees, capsules, pills and granules can be prepared with coatings and shells such as enteric coatings and other coatings well-known in the pharmaceutical formulating art. They may optionally contain opacifying agents and may also be of a composition such that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of
embedding compositions which can be used include polymeric substances and waxes.
The active compounds can also be in micro-encapsulated form, if appropriate, with one or more of the above-mentioned caπiers.
Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups and elixirs. In addition to the active compounds, the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethyl formamide, oils (in particular, cottonseed, groundnut, com, germ, olive, castor and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan and mixtures thereof.
Besides inert diluents, the oral compositions may also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring and perfuming agents.
Suspensions, in addition to the active compounds, may contain suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar, tragacanth and mixtures thereof.
Compositions for rectal or vaginal administration are preferably suppositories which can be prepared by mixing the compounds of this invention with suitable non-initating caπiers or caπiers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at room temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound.
Compounds of the present invention can also be administered in the form of liposomes. As is known in the art, liposomes are generally derived from phospholipids or other lipid substances. Liposomes are formed by mono- or multi-lamellar hydrated liquid crystals which are dispersed in an aqueous medium. Any non-toxic, physiologically acceptable and metabolizable lipid capable of forming liposomes can be used. The present compositions in liposome form can contain, in addition to a compound of the present invention, stabilizers, preservatives, excipients and the like. The prefened lipids are natural and synthetic phospholipids and phosphatidyl cholines (lecithins) used separately or together.
Methods to form liposomes are known in the art. See, for example, Prescott, Ed.,
Methods in Cell Biology, Volume XIV, Academic Press, New York, N.Y. (1976), p. 33 et
seq.
Dosage forms for topical administration of a compound of this invention include powders, sprays, ointments and inhalants. The active compound may be mixed under sterile conditions with a phannaceutically acceptable canier and any needed preservatives, buffers or propellants which may be required. Opthalmic formulations, eye ointments, powders and solutions are also contemplated as being within the scope of this invention.
Actual dosage levels of active ingredients in the pharmaceutical compositions of this invention can be varied so as to obtain an amount of the active compound(s) which is effective to achieve the desired therapeutic response for a particular patient, compositions and mode of administration. The selected dosage level will depend upon the activity of the particular compound, the route of administration, the severity of the condition being treated and the condition and prior medical history of the patient being treated.
When used in the above or other treatments, a therapeutically effective amount of one of the compounds of the present invention can be employed in pure form or, where such forms exist, in phannaceutically acceptable salt, ester or prodrag form. The phrase "therapeutically effective amount" of the compound of the invention means a sufficient amount of the compound to treat disorders, at a reasonable benefit/risk ratio applicable to any medical treatment. It will be understood, however, that the total daily usage of the compounds and compositions of the present invention will be decided by the attending physician within the scope of sound medical judgement. The specific therapeutically effective dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drags used in combination or coincidental with the specific compound employed; and like factors well known in the medical arts.
The compounds of the present invention can be used in the form of phannaceutically acceptable salts derived from inorganic or organic acids. The phrase "pharmaceutically acceptable salt" means those salts which are, within the scope of sound medical judgement, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, initation, allergic response and the like and are commensurate with a reasonable benefit/risk ratio.
Pharmaceutically acceptable salts are well-known in the art. For example, S. M. Berge et al. describe pharmaceutically acceptable salts in detail in (J. Pharmaceutical Sciences, 1977, 66: 1 et seq). The salts can be prepared in situ during the final isolation and purification of the compounds of the invention or separately by reacting a free base function with a suitable organic acid. Representative acid addition salts include, but are not limited to acetate, adipate, alginate, citrate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, camphorate, camphorsulfonate, digluconate, glycerophosphate, hemisulfate, heptanoate, hexanoate, fumarate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethansulfonate (isothionate), lactate, maleate, methanesulfonate, nicotinate, 2-naphthalenesulfonate, oxalate, palmitoate, pectinate, per sulfate, 3-phenylpropionate, picrate, pivalate, propionate, succinate, tartrate, thiocyanate, phosphate, glutamate, bicarbonate, p-toluenesulfonate and undecanoate. Also, the basic nitrogen-containing groups can be quatemized with such agents as lower alkyl halides such as, but not limited to, methyl, ethyl, propyl, and butyl chlorides, bromides and iodides; dialkyl sulfates like dimethyl, diethyl, dibutyl and diamyl sulfates; long chain halides such as, but not limited to, decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides; arylalkyl halides like benzyl and phenethyl bromides and others. Water or oil-soluble or dispersible products are thereby obtained. Examples of acids which can be employed to form pharmaceutically acceptable acid addition salts include such inorganic acids as hydrochloric acid, hydrobromic acid, sulfuric acid, and phosphoric acid and such organic acids as acetic acid, fumaric acid, maleic acid, 4-methylbenzenesulfonic acid, succinic acid and citric acid.
Basic addition salts can be prepared in situ during the final isolation and purification of compounds of this invention by reacting a carboxylic acid-containing moiety with a suitable base such as, but not limited to, the hydroxide, carbonate or bicarbonate of a pharmaceutically acceptable metal cation or with ammonia or an organic primary, secondary or tertiary amine. Pharmaceutically acceptable salts include, but are not limited to, cations based on alkali metals or alkaline earth metals such as, but not limited to, lithium, sodium, potassium, calcium, magnesium and aluminum salts and the like and nontoxic quaternary ammonia and amine cations including ammonium, tetramethylammonium, tetraethylammonium, methylamine, dimethylamine, trimethylamine, triethylamine, diethylamine, ethylamine and the like. Other representative organic amines useful for the formation of base addition salts include ethylenediamine, ethanolamine, diethanolamine, piperidine, piperazine and the like.
The term "pharmaceutically acceptable prodrag" or "prodrag,"as used herein,
represents those prodrugs of the compounds of the present invention which are, within the scope of sound medical judgement, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, initation, allergic response, and the like, commensurate with a reasonable benefit/risk ratio, and effective for their intended use. Prodrugs of the present invention may be rapidly transformed in vivo to compounds of formula (I), for example, by hydrolysis in blood.
The present invention contemplates compounds of formula I formed by synthetic means or formed by in vivo biofransformation of a prodrag.
The compounds of the invention can exist in unsolvated as well as solvated forms, including hydrated forms, such as hemi-hydrates. In general, the solvated forms, with pharmaceutically acceptable solvents such as water and ethanol among others are equivalent to the unsolvated forms for the purposes of the invention.
The total daily dose of the compounds of this invention administered to a human or lower animal may range from about 0.01 to about 100 mg/kg/day. For purposes of oral administration, more preferable doses can be in the range of from about 0.1 to about 25 mg/kg/day. If desired, the effective daily dose can be divided into multiple doses for purposes of administration; consequently, single dose compositions may contain such amounts or submultiples thereof to make up the daily dose.
Compounds of the present invention were named by ACD/ChemSketch version 5.0 (developed by Advanced Chemistry Development, Inc., Toronto, ON, Canada) or were given names which appeared to be consistent with ACD nomenclature. Abbreviations
Abbreviations which have been used in the descriptions of the Schemes and the Examples that follow are: dba for dibenzylideneacetone; DBU for 1,8- diazabicyclo[5.4.0]undec-7-ene; BINAP for 2,2'-bis(diphenylphosphino)-l, -binaphthyl; DCC for 1,3-dicyclohexylcarbodiimide; DIEA for diisopropylethylamine; DMAP for 4- dimethylaminopyridine; DMF for N,N-dimethylformamide; DMSO for dimethylsulfoxide; EDCI or EDC for l-ethyl-3-[3-(dimethylamino)propyl]-carbodiimide hydrochloride; HMPA for hexamethylphosphoramide; HPLC high pressure liquid chromatography; NBS for N- bromosuccinimide; Pd for palladium; Ph for phenyl; psi for pounds per square inch; and THF for tetrahydrofuran.
Preparation of Compounds of the Present Invention
The compounds and processes of the present invention will be better understood in connection with the following synthetic Schemes and Examples which illustrate a means by which the compounds of the present invention can be prepared.
Scheme 1
(6)
Ureas of general formula (4), wherein Ri, R2, R4, R5, R6, R7, R9, and L are as defined in formula (I), may be prepared as described in Scheme 1. 5-Aminoisoquinolines of general formula (1), purchased commercially or prepared using standard chemistry known to those in the art, can be treated with trichloroacetyl chloride and a base such as, but not limited to, triethylamine in a solvent such as dichloromethane to provide trichloroacetamides of general formula (2). Trichloroacetamides of general formula (2) can be treated with amines of general formula (3) and a non-nucleophilic base such as, but not limited to, DBU in a solvent such as, but not limited to, acetonitrile to provide ureas of general formula (4).
Carbamates of general formula (6), wherein Ri, R2, R , R5, R6, R7, R and L are as defined in formula (I), may also be prepared as described in Scheme 1. Trichloroacetamides of general formula (2) can be treated with alcohols of general formula (5) and a non-
nucleophilic base such as, but not limited to, DBU in a solvent such as, but not limited to, acetonitrile to provide carbamates of general formula (6).
Scheme 2
Ureas of general formula (4), wherein Ri, R2, R4, R5, R6, R7, R9, and L are as defined in formula (I), may be prepared as described in Scheme 2. Amines of general formula (3) can be treated with phosgene or friphosgene and DMAP in a solvent such as, but not limited to, dichloromethane to provide isocyanates of general formula (8). 5-Aminoisoquinolines of general formula (1) can be treated with isocyanates of general formula (8) in a solvent such as, but not limited to, toluene or THF or a combination thereof to provide ureas of general formula (4).
Scheme 3
Ureas of general formula (4), wherein Ri, R2, R4, R5, R6, R7, R9, and L are as defined in formula (I), may be prepared as described in Scheme 3. 5-Aminoisoquinolines of general formula (1) can be treated with phosgene or friphosgene and DMAP in a solvent such as, but
not limited to, dichloromethane to provide isocyanates of general formula (10). Isocyanates of general formula (10) can be treated with amines of general formula (3) in a solvent such as, but not limited to, toluene or THF or a combination thereof to provide ureas of general formula (4).
Scheme 4
Ureas of general formula (13), wherein Ri, R2, R5, R6, R7, R9, and L are as defined in formula (I), and carbamates of general formula (14), wherein Ri, R , R5, Re, R7, R9 and L are as defined in formula (I), may be prepared as described in Scheme 4. 5-Aminocinnolines of general formula (12), purchased commercially or prepared using standard chemistry known to those in the art, may be processed as described in Schemes 1-3 to provide ureas of general formula (13) and carbamates of general formula (14).
Ureas of general formula (16), wherein Ri, R3, R4, R5, R6, R7, R9 and L are as defined in formula (I), and carbamates of general formula (17), wherein Ri, R3, R4, R5, Re, R7, R9 and L are as defined in formula (I), may be prepared as described in Scheme 4. 8-Aminoisoquinolines of general formula (15), purchased commercially or prepared using standard chemistry known to those in the art, may be processed as described in Schemes 1-3 to provide ureas of general formula (16) and carbamates of general formula (17).
Scheme 5
Schemes 1-3
Ureas of general formula (20), wherein Ri, R2, R3, R5, R6, R7, R9; and L are as defined in foπnula (I), and carbamates of general foπnula (21), wherein Ri, R2, R3, R5, Re, R7, R9, and L are as defined in formula (I), may be prepared as described in Scheme 5. 4-Aminoindoles of general formula (19), purchased commercially or prepared using standard chemistry known to those in the art, may be processed as described in Schemes 1-3 to provide ureas of general formula (20) and carbamates of general formula (21).
Ureas of general formula (23), wherein Ri, R3, R5, R6, R7, R9 and L are as defined in formula (I), and carbamates of general formula (24), wherein Ri, R3, R5, Re, R7, R9, and L are as defined in formula (I), may be prepared as described in Scheme 5. 4-Aminoindazoles of general formula (22), purchased commercially or prepared using standard chemistry known to those in the art, may be processed as described in Schemes 1-3 to provide ureas of general formula (23) and carbamates of general formula (24).
Scheme 6
Amides of general formula (32), wherein R1? R2, R4, R5, R6, R7, R9, and L are as defined in formula (I), can be prepared as described in Scheme 6. Amines of general formula
(1) can be treated with an acid such as, but not limited to, concentrated sulfuric acid and
N-bromosuccinimide to provide bromides of general formula (27). Bromides of general formula (27) can be treated with an organolithium reagent such as, but not limited to, n- butyllithium and diethyl oxalate in a solvent such as, but not limited to, THF to provide keto esters of general formula (28). Keto esters of general formula (28) can be treated with a reducing agent such as, but not limited to, 10% Pd/C under a hydrogen atmosphere (50 psi) in a solvent such as, but not limited to, ethanol to provide hydroxy esters of general formula
(29). Hydroxy esters of general formula (29) can be treated with an acid chloride such as, but not limited to, acetyl chloride in a solvent such as, but not limited to, pyridine to provide diesters of general formula (30). Diesters of general formula (30) can be treated with 10% Pd/C and a base such as, but not limited to, triethylamine under a hydrogen atmosphere (60 psi) in a solvent such as, but not limited to, ethanol to provide esters of general formula (31). Esters of general formula (31) can be freated with amines of general formula (3) to provide amides of general formula (32). Alternatively, esters of general formula (31) can be treated with aqueous base such as, but not limited to, aqueous sodium hydroxide or aqueous potassium hydroxide to provide the acids which can then be converted into amides of general formula (32) by treatment with amines of general formula (3) under standard DCC or EDCI coupling procedures that are well known in the art.
Esters of general formula (33), wherein Rl3 R , R , R5, R6, R , R9 and L are as defined in formula (I), can be prepared as described in Scheme 6. Esters of general formula (31) can be treated with alcohols of general formula (5) under standard transesterification conditions well known to those of skill in the art to provide esters of general formula (33).
The following Examples are intended as an illustration of and not a limitation upon the scope of the invention as defined in the appended claims.
Example 1 N-[2-(3-fluorophenyl)ethyll-N'-isoquinolin-5-ylurea
Example 1A 2,2,2-trichloro-N-isoquinolin-5-ylacetamide A solution of 5-aminoisoquinoline (1.0 g, 6.9 mmol) in dichloromethane (40 mL) and Et3N (lmL) at 5 °C was treated with trichloroacetyl chloride (1.38 g, 7.6 mmol) dropwise. The reaction mixture was stined at ambient temperature for 14 hours, concentrated, diluted with ethyl acetate and washed with IN HCl. The aqueous layer was treated with aqueous NaHCO3 and extracted with ethyl acetate. The organic layer the was washed with water and concentrated. The solid residue was suspended in ethyl acetate (5 mL) and filtered to obtain 1.3 g (65%) of the title compound as a tan solid. 1H NMR (300 MHz, d6-DMSO) δ 11.20
(broad s, IH), 9.41, (s, IH), 8.60 (d, IH), 8.18 (m, IH), 7.77 (m, 2H), 7.66 (d, IH); MS (DCI/NH3) m/z 289 (M+H)+.
Example IB N-r2-(3-fluorophenyl)ethyll-N'-isoquinolin-5-ylurea The product from Example 1A (0.65 g, 2.25 mmol), DBU (0.85 g, 5.6 mmol) and 2- (3-fluorophenyl)ethylamine (0.35 g, 2.5 mmol) in acetonitrile (50 mL) were refluxed for 10 hours. The mixture was cooled, concentrated, diluted with ethyl acetate, washed twice with aqueous ammonium chloride and concentrated to dryness. The solid obtained was suspended in ethyl acetate and filtered to obtain 0.45 g (65%) of the title compound as a tan solid. 1H NMR (300 MHz, d6-DMSO) δ 9.27 (s, IH), 8.63 (s, IH), 8.51 (d, IH), 8.26 (d, IH), 7.89 (d, IH), 7.71 (d, IH), 7.59 (m, IH), 7.35 (m, IH), 7.18-7.0 (m, 3H), 6.60 (t, IH), 3.42 (m, 2H), 2.72 (m, 2H); MS (DCI/NH3) m/z 310 (M+H)+; Anal. Calcd. For C18H16N3FO. 0.1H2O: C 69.48; H 5.25; N 13.51. Found: C 69.31; H 5.25; N 13.46.
Example 2 N-[2-(3-bromophenyl)ethyl1-N'-isoquinolin-5-ylurea The title compound was prepared using 2-(3-bromophenyl)ethylamine, DBU, the product from Example 1 A and the procedure described in Example IB. 1H NMR (300 MHz, d6-DMSO) δ 9.26 (s, IH), 8.63 (s, IH), 8.51 (d, IH), 8.23 (d, IH), 7.90 (d, IH), 7.71 (d, IH), 7.59 (m, IH), 7.40 (m, 2H), 7.29 (m, 2H), 6.60 (t, IH), 3.42 (m, 2H), 2.80 (m, 2H); MS (DCI/NH3) m/z 370 (M+H)+; Anal. Calcd. For C18H16N3BrO: C 58.39; H 4.36; N 11.35. Found: C 58.17; H 4.46; N 11.28.
Example 3 N-isoquinolin-5-yl-N'-[4-(trifluoromethyl)benzyllurea The title compound was prepared using 4-(trifluoromethyl)benzylamine, DBU, the product from Example 1 A and the procedure described in Example IB. 1H NMR (300 MHz, d6-DMSO) 9.26 (s, IH), 8.82 (s, IH), 8.52 (d, IH), 8.26 (d, IH), 7.94 (d, IH), 7.71 (m, 3H), 7.58 (m, 3H), 7.20 (t, IH), 4.48 (d, 2H); MS (DCI/NH3) m/z 346 (M+H)+; Anal. Calcd. For C18H14N3F3O. 0.05H2O: C 62.63; H 4.19; N 12.04. Found: C 62.41; H 4.58; N 11.44.
Example 4 N-isoquinolm-5-yl-N'-(4-phenoxybenzyl)urea The title compound was prepared using 4-phenoxybenzylamine, DBU, the product from Example 1A and the procedure described in Example IB. 1H NMR (300 MHz, d6- DMSO) δ 9.30 (s, IH), 8.75 (s, IH), 8.58 (d, IH), 8.31 (d, IH), 7.92 (d, IH), 7.75 (d, IH), 7.60 (t, IH), 7.40 (m, 4H), 7.18-6.95 (m, 6H), 4.38 (d, 2H); MS (DCI/NH3) m/z 369 (M+H)+.
Example 5 N-r3-fluoro-5-(trifluoromethyl)benzyl]-N'-isoquinolin-5-ylurea The title compound was prepared using 3-fluoro-5-(trifluoromethyl)benzylamine, DBU, the product from Example 1 A and the procedure described in Example IB. 1H NMR (300 MHz, de-DMSO) δ 9.28 (s, IH), 8.88 (s, IH), 8.53 (d, IH), 8.22 (d, IH), 7.90 (d, IH), 7.77 (d, IH), 7.55 (m, 4H), 7.201, IH), 4.45 (d, 2H); MS (DCI/NH3) m z 364 (M+H)+.
Example 6 N-(2,5-dichlorobenzyl)-N'-isoquinolin-5-ylurea The title compound was prepared using 2,5-dichlorobenzylamine, DBU, the product from Example 1 A and the procedure described in Example IB. 1H NMR (300 MHz, d6- DMSO) δ 9.30 (s, IH), 8.90 (broad s, IH), 8.55 (d, IH), 8.36 (d, IH), 7.97 (d, IH), 7.76 (d, IH), 7.61-7.13 (m, 5H), 4.43 (d, 2H); MS (DCI/NH3) m/z 345 (M+H)+; Anal. Calcd. For C17H13N3Cl2O. 0.2H2O: C 58.07; H 3.90; N 11.95. Found: C 57.76; H 3.84; N 11.64.
Example 7 N-(l,3-benzodioxol-5-ylmethyl)-N'-isoquinolin-5-ylurea The title compound was prepared using l,3-benzodioxol-5-ylmethylamine, DBU, the product from Example 1 A and the procedure described in Example IB. 1H NMR (300 MHz, de-DMSO) δ 9.27 (s, IH), 8.85 (broad s, IH), 8.50 (d, IH), 8.30 (d, IH), 8.00 (d, IH), 7.73 (d, IH), 7.601, IH), 7.15 (m, 2H), 6.89 (m, 2H), 6.00 (s, 2H), 4.28 (d, 2H); MS (DCI/NH3) m/z 322 (M+H)+; Anal. Calcd. For C17H13N3O. 0.5H2O.0.8NF tCl: C 57.94; H 5.19; N 14.26. Found: C 57.63; H 5.14; N 14.41.
Example 8
N-[2-(4-fluorophenyl)ethyl1-N'-isoquinolin-5-ylurea The title compound was prepared using 2-(4-fluorophenyl)ethylamine, DBU, the product from Example 1 A and the procedure described in Example IB. 1H NMR (300 MHz, d6-DMSO) δ 9.25 (s, IH), 8.70 (broad s, IH), 8.50 (d, IH), 8.27 (d, IH), 7.93 (d, IH), 7.71 (d, IH), 7.60 (t, IH), 7.30 (m, 2H), 7.13 (m, 2H), 6.70 (t, IH), 3.40 (m, 2H), 2.80 (m, 2H); MS (DCI/NH3) m/z 310 (M+H)+; Anal. Calcd. For Cι7H13N3FO. 0.1H2O.0.2NH4C1: C 67.18; H 5.32; N 13.93. Found: C 66.86; H 5.41; N 13.75.
Example 9 N-(3-bromobenzyl)-N'-isoquinolin-5-ylurea The title compound was prepared using 3-bromobenzylamine, DBU, the product from Example 1 A and the procedure described in Example IB. 1H NMR (300 MHz, d6-DMSO) δ 9.29 (s, IH), 8.80 (broad s, IH), 8.53 (d, IH), 8.25 (d, IH), 7.93 (d, IH), 7.77 (d, IH), 7.58 (m, 2H), 7.48 (m, IH), 7.30 (m, 2H), 7.10 (t, IH), 4.39 (d, 2H); MS (DCI/NH3) m/z 356 (M+H)+; Anal. Calcd. For d7Hι4N3BrO: C 57.32; H 3.96; N 11.80. Found: C 57.06; H 3.90; N 11.45.
Example 10 N- [2-(3 ,4-dimethy lpheny l)ethy 1] -N'-isoquinolin-5 -y lurea The title compound was prepared using 2-(3 ,4-dimethy lphenyl)ethylamine, DBU, the product from Example 1 A and the procedure described in Example IB. 1H NMR (300 MHz, d6-DMSO) δ 9.25(s, IH), 8.68 (broad s, IH), 8.50 (d, IH), 8.28 (d, IH), 7.90 (d, IH), 7.70 (d, IH), 7.57 (t, IH), 7.00 (m, 3H), 6.60 (t, IH), 3.40 m, 2H), 2.71 (m, 2H), 2.19 (s, 3H), 2.16 (s, 3H); MS (DCI/NH3) m/z 320 (M+H)+; Anal. Calcd. For C20H2ιN3O.0.3H2O: C 73.96; H 6.70; N 12.94. Found: C 73.80; H 6.32; N 12.98.
Example 11 N-[l-(4-bromophenyl)ethyl1-N'-isoquinolin-5-ylurea 5-Aminoisoquinoline (0.64 g, 4.42 mmol) in dichloromethane (20 mL) was treated with l-bromo-4-(l-isocyanatoethyl)benzene (1.0 g, 4.42 mmol) in toluene (10 mL). The mixture was stined 14 hours at ambient temperature and filtered to obtain 1.2 g (74%) of the product as light grey solid. 1H NMR (300 MHz, d6-DMSO) δ 9.28 (s, IH), 8.68 (broad s,
IH), 8.56 (d, IH), 8.28 (d, IH), 7.90 (d, IH), 7.72 (d, IH), 7.59 (m, 2H), 7.35 (m, 2H), 7.10 (d, IH), 4.85 (m, IH), 1.40 (d, 3H); MS (DCI/NH3) m/z 370 (M+H)+; Anal. Calcd. For C18H16N3BrO.0.1H2O: C 58.11; H 4.39; N 11.29. Found: C 57.79; H 4.21; N 11.16.
Example 12 4-(trifluoromethyl)benzyl isoquinolin-5-ylcarbamate The title compound was prepared using [4-(trifluoromethyl)phenyl]methanol, DBU, the product from Example 1 A and the procedure described in Example IB. 1H NMR (300 MHz, d6-DMSO) δ 9.90 (broad s, IH), 9.30 (s, IH), 8.52 (d, IH), 7.94 (m, 3H), 7.80 d, 2H), 7.70 (m, 3H), 5.30 (s, 2H); MS (DCI/NH3) m/z 347 (M+H)+; Anal. Calcd. For C18H13N2O2F3: C 62.43; H 3.78; N 8.09. Found: C 62.23; H 3.83; N 7.99.
Example 13 2-(3-bromophenyl)ethyl isoquinolin-5-ylcarbamate The title compound was prepared using 2-(3-bromophenyl)ethanol, DBU, the product from Example 1 A and the procedure described in Example IB. 1H NMR (300 MHz, de- DMSO) δ 9.70 (broad s, IH), 9.30 (s, IH), 8.50 (d, IH), 7.88 (m, 3H), 7.64 (t, IH), 7.56 (s, IH), 7.45 (m, IH), 7.30 (m, 2H), 4.34 (t, 2H), 3.00 (t, 2H); MS (DCI/NH3) m/z 371 (M+H)+; Anal. Calcd. For C18H15N2O2Br: C 58.24; H 4.07; N 7.55. Found: C 58.35; H 4.07; N 7.51.
Example 14 1 -naphthylmethyl isoquinolin-5-ylcarbamate The title compound was prepared using 1-naphthylmethanol, DBU, the product from Example 1 A and the procedure described in Example IB. 1H NMR (DMSO-dβ) δ 9.85 (s, IH), 9.31 (s, IH), 8.48 (d, IH), 8.15 (d, IH), 8.04-7.91 (m, 5H), 7.72-7.52 (m, 5H), 5.69 (s, 2H); MS (ESI+) m/z 328 (M+H)+; Anal. Calcd. For C2ιHi6N2O2: C 76.81, H 4.91, N 8.53; Found: C 76.64, H 4.73, N 8.29.
Example 15 N-isoquinolin-5-yl-N'-r4-(trifluoromethoxy)benzyllurea The title compound was prepared using 4-(trifluorometl oxy)benzylamine, DBU, the product from Example 1 A and the procedure described in Example IB. MS (ESI+) m/z 362
(M+H)+; 1HNMR (DMSO-d6) δ 4.41 (d, 2H), 7.14 (t, IH), 7.35 (d, 2H), 7.48 (d, 2H), 7.60 (t, IH), 7.75 (d, IH), 7.95 (d, IH), 8.28 (d, IH), 8.53 (d, IH), 8.79 (s, IH), 9.27 (s, IH).
Example 16 N-(3 ,4-dichlorobenzyl)-N'-(3 -methylcinnolin-5 -yl)urea
Example 16A 2,2,2-trichloro-N-(3-methylcinnolin-5-yl)acetamide The title compound was prepared using 3-methylcinnolin-5-amine (commercially available, Maybridge), triethylamine, trichloroacetyl chloride and the procedure described in Example 1A.
Example 16B N-(3,4-dichlorobenzyl)-N'-(3-methylcinnolin-5-yl)urea The title compound was prepared using 3,4-dichlorobenzylamine, the product from Example 16 A, DBU and the procedure described in Example IB. MS (ESI+) m/z 362 (M+H)+; 1H NMR (DMSO-d6) δ 2.88 (s, 3H), 4.36 (d, 2H), 7.10 (t, IH), 7.34 (dd, IH), 7.59 (m, 2H), 7.76 (t, IH), 8.04 (d, 2H), 8.19 (d, IH), 8.93 (s, IH).
Example 17 N-isoquinolin-5-yl-N'-(4-methylbenzyl)urea The title compound was prepared using 4-methylbenzylamine, the product from Example 1 A, DBU and the procedure described in Example IB. MS (ESI+) m/z 292 (M+H)+; 1HNMR (DMSO-d6) δ 2.29 (s, 3H), 4.33 (d, 2H), 7.00 (t, IH), 7.17 (d, 2H), 7.24 (d, 2H), 7.60 (t, IH), 7.73 (d, IH), 7.93 (d, IH), 8.30 (d, IH), 8.53 (d, IH), 8.70 (s, IH), 9.26 (s, IH).
426934 Example 18 N-(4-fluorobenzyl)-N'-isoquinolin-5-ylurea The title compound was prepared using 4-fluorobenzylamine, the product from Example 1 A, DBU and the procedure described in Example IB. MS (APCI+) m z 296
(M+H)+; 1H NMR (DMSO-d6) δ 4.37 (d, 2H), 7.07 (t, IH), 7.18 (t, 2H), 7.40 (dd, 2H), 7.60 (t, IH), 7.74 (d, IH), 7.94 (d, IH), 8.28 (d, IH), 8.54 (d, IH), 8.74 (s, IH), 9.27 (s, IH).
Example 19 N-isoquinolin-5-yl-N'-[(trans)-2-phenylcyclopropyllurea The title compound was prepared using trans 2-phenylcyclopropylamine hydrochloride, the product from Example 1 A, DBU and the procedure described in Example IB. MS (ESI+) m/z 304 (M+H)+; 1H NMR (DMSO-d6) δ 1.21 (m, 2H), 2.05 (m, IH), 2.82 (m, IH), 7.00 (d, IH), 7.17 (t, 3H), 7.27 (t, 2H), 7.60 (t, IH), 7.74 (d, IH), 7.88 (d, IH), 8.26 (d, IH), 8.53 (d, IH), 8.57 (s, IH), 9.27 (s, IH).
Example 20 N- [2-(3 ,4-dichlorophenyl)ethyl1-N'-isoquinolin-5-ylurea The title compound was prepared using 2-(3,4-dichlorophenyl)ethylamine, the product from Example 1 A, DBU and the procedure described in Example IB. MS (ESI+) m/z 361 (M+H)+; 1H NMR (DMSO-d6) δ 2.82 (t, 2H), 3.43 (q, 2H), 6.63 (t, IH), 7.29 (dd, IH), 7.59 (m, 3H), 7.73 (d, IH), 7.88 (d, IH), 8.23 (d, IH), 8.52 (d, IH), 8.65 (s, IH), 9.26 (s, IH).
Example 21 N-[2-(3,5-dimethoxyphenyl)ethyll-N'-isoquinolin-5-ylurea The title compound was prepared using 2-(3,5-dimethoxyphenyl)ethylamine, the product from Example 1 A, DBU and the procedure described in Example IB. MS (ESI+) m/z 352 (M+H)+; 1H NMR (DMSO-d6) δ 2.74 (t, 2H), 3.42 (q, 2H), 3.73 (s, 6H), 6.36 (t, IH), 6.44 (d, 2H), 6.59 (t, IH), 7.59 (t, IH), 7.72 (d, IH), 7.91 (d, IH), 8.27 (d, IH), 8.52 (d, IH), 8.67 (s, IH), 9.26 (s, IH).
Example 22 N-(4-chlorobenzyl)-N'-isoquinolin-5-ylurea The title compound was prepared using 4-chlorobenzylamine, the product from Example 1A, DBU and the procedure described in Example IB. MS (ESI+) m/z 313
(M+H)+; 1H NMR (DMSO-d6) δ 4.37 (d, 2H), 7.14 (t, IH), 7.40 (q, 4H), 7.60 (t, IH), 7.74 (d, IH), 7.95 (d, IH), 8.28 (dd, IH), 8.53 (d, IH), 8.80 (s, IH), 9.27 (s, IH).
Example 23 N-isoquinolin-5 -yl-N'- { 2- [3 -(trifluoromethyl)phenyll ethyl } urea The title compound was prepared using 2-[3-(trifluoromethyl)phenyl]ethylamine, the product from Example 1 A, DBU and the procedure described in Example IB. MS (ESI+) m/z 360 (M+H)+; 1H NMR (DMSO-d6) δ 2.91 (t, 2H), 3.46 (q, 2H), 6.62 (t, IH), 7.59 (m, 4H), 7.64 (s, IH), 7.73 (d, IH), 7.87 (d, IH), 8.23 (d, IH), 8.51 (d, IH), 8.64 (s, IH), 9.26 (s, 1H).
Example 24 N-[2-(2,6-dichlorophenyl)ethyll-N'-isoquinolin-5-ylurea The title compound was prepared using 2-(2,6-dichlorophenyl)ethylamine, the product from Example 1 A, DBU and the procedure described in Example IB. MS (ESI+) m/z 361 (M+H)+; 1H NMR (DMSO-d6) δ 3.12 (t, 2H), 3.40 (q, 2H), 6.72 (t, IH), 7.28 (t, IH), 7.46 (d, 2H), 7.58 (t, IH), 7.72 (d, IH), 7.87 (d, IH), 8.19 (d, IH), 8.51 (d, IH), 8.60 (s, IH), 9.25 (s, IH).
Example 25 N-[2-(2,3-dichlorophenyl)ethyl1-N'-isoquinolin-5-ylurea The title compound was prepared using 2-(2,3-dichlorophenyl)ethylamine, the product from Example 1 A, DBU and the procedure described in Example IB. MS (ESI+) m/z 361 (M+H)+; 1H NMR (DMSO-d6) δ 3.01 (t, 2H), 3.46 (q, 2H), 6.67 (t, IH), 7.34 (t, IH), 7.38 (dd, IH), 7.53 (dd, IH), 7.59 (t, IH), 7.74 (d, IH), 7.87 (d, IH), 8.21 (d, IH), 8.52 (d, IH), 8.64 (s, IH), 9.26 (s, IH).
Example 26 N-isoquinolin-5 -yl-N'- [3 -(trifluoromethoxy)benzyllurea The title compound was prepared using 3-(trifluoromethoxy)benzylamine, the product from Example 1 A, DBU and the procedure described in Example IB. MS (ESI+) m/z 362 (M+H)+; 1H NMR (DMSO-d6) δ 4.44 (d, 2H), 7.15 (t, IH), 7.26 (d, IH), 7.34 (s, IH), 7.40 (d,
IH), 7.50 (t, IH), 7.61 (t, IH), 7.76 (d, IH), 7.95 (d, IH), 8.25 (d, IH), 8.53 (d, IH), 8.80 (s, IH), 9.28 (s, IH).
Example 27 N-[2-(4-ethoxy-3-methoxyphenyl)ethyl1-N'-isoquinolin-5-ylurea The title compound was prepared using 2-(4-ethoxy-3-methoxyphenyl)ethylamine, the product from Example 1 A, DBU and the procedure described in Example IB. MS (ESI+) m/z 366 (M+H)+; 1H NMR (DMSO-d6) δ 1.31 (t, 3H), 2.73 (t, 2H), 3.40 (q, 2H), 3.76 (s, 3H), 3.97 (q, 2H), 6.62 (t, IH), 6.76 (dd, IH), 6.87 (d, 2H), 7.59 (t, IH), 7.72 (d, IH), 7.93 (d, IH), 8.28 (d, IH), 8.52 (d, IH), 8.69 (s, IH), 9.26 (s, IH).
Example 28 N-[2-(2,4-dichlorophenyl)ethyll-N'-isoquinolin-5-ylurea The title compound was prepared using 2-(2,4-dichlorophenyl)ethylamine, the product from Example 1 A, DBU and the procedure described in Example IB. 1H NMR (DMSO-de) δ 9.26 (s, IH); 8.62 (s, IH); 8.53 (d", IH); 8.22 (dd, IH); 7.88 (d, IH); 7.74 (d, IH); 7.61 (m, IH); 7.57 (d, IH); 7.42 (m, 2H); 6.64 (t, IH); 3.43 (q, 2H); 2.93 (t, 2H).
Example 29
N-(3-bromo-4-fluorobenzyl)-N'-isoquinolin-5-ylurea
The title compound was prepared using 3-bromo-4-fluorobenzylamine, the product from Example 1 A, DBU and the procedure described in Example IB. MS (ESI+) m/z 376
(M+H)+; 1H NMR (DMSO-d6) δ 9.55 (s, IH); 9.06 (s, IH); 8.64 (d, IH); 8.42 (d, IH); 8.25
(d, IH); 7.95 (d, IH); 7.76 (t, IH); 7.70 (dd, IH); 7.38 (m, 2H); 7.15 (m, 2H); 4.35 (d, 2H).
Example 30 N-(3,4-dimethylbenzyl)-N'-isoquinolin-5-ylurea The title compound was prepared using 3,4-dimethylbenzylamine, the product from Example 1 A, DBU and the procedure described in Example IB. MS (ESI+) m/z 307 M+H)+; 1H NMR (DMSO-de) δ 9.55 (s, IH); 8.98 (s, IH); 8.62 (d, IH); 8.46 (d, IH); 8.25 (d, IH); 7.94 (d, IH); 7.78 (t, IH); 7.08 (m, 3H); 6.95 (m, 2H); 4.30 (d, 2H); 2.20 (s, 3H); 2.18 (s, 3H).
Example 31 N-isoquinolin-5-yl-N'-(3-phenylpropyl)urea The title compound was prepared using 3-phenylpropylamine, the product from Example 1A, DBU and the procedure described in Example IB. MS (ESI+) m/z 306 (M+H)+; 1HNMR (DMSO-d6) δ 9.61 (s, IH); 9.05 (s, IH); 8.65 (d, IH); 8.50 (d, IH); 8.40 (d, IH); 7.96 (d, IH); 7.80 (t, IH); 7.21 (m, 6H); 6.92 (t, IH); 3.18 (q, 2H); 2.65 (t, 2H); 1.78 (m, 2H).
Example 32 N-(3,5-dichlorobenzyl)-N'-isoquinolin-5-ylurea The title compound was prepared using 3,5-dichlorobenzylamine, the product from Example 1 A, DBU and the procedure described in Example IB. MS (ESI+) m/z 347 (M+H)+; 1HNMR (DMSO-d6) δ 9.60 (s, IH); 9.18 (s, IH); 8.65 (d, IH); 8.44 (d, IH); 8.35 (d, IH); 7.96 (d, IH); 7.80 (t, IH); 7.43 (dt, IH); 7.40 (m, 2H); 7.35 (m, IH); 7.25 (d, IH); 4.40 (d, 2H).
432465 Example 33 N-(3-chloro-4-methylbenzyl)-N'-isoquinolin-5-ylurea The title compound was prepared using 3-chloro-4-methylbenzylamine, the product from Example 1 A, DBU and the procedure described in Example IB. MS (ESI+) m/z 326 (M+H)+; 1HNMR (DMSO-d6) δ 9.65 (s, IH); 9.20 (s, IH); 8.65 (d, IH); 8.50 (d, IH); 8.40 (d, IH); 8.00 (d, IH); 7.80 (t, IH); 7.30 (m, 5H); 4.35 (d, 2H); 2.30 (s, 3H).
Example 34 ( N-isoquinolin-5-yl-N'-(2-phenoxyethyl)urea
The title compound was prepared using 2-phenoxyethylamine, the product from Example 1 A, DBU and the procedure described in Example IB. MS (ESI+) m/z 308 (M+H)+; 1H NMR (DMSO-d6) δ 9.50 (s, 1H); 8.98 (s, 1H); 8.61 (d, IH); 8.45 (d, IH); 8.20 (d, IH); 7.90 (d, IH); 7.75 (t, IH); 7.26 (m, 3H); 6.95 (m, 4H); 4.00 (t, 2H); 3.50 (m, 2H).
Example 35
N-(3,4-dichlorobenzyl)-N'-isoquinolin-5-ylurea The title compound was prepared using 3,4-dichlorobenzylamine, the product from Example 1 A, DBU and the procedure described in Example IB. MS (ESI-) m/z 344 (M-H)"; 1H NMR (300 MHz, DMSO-d6) δ 9.27 (s, IH), 8.82 (bs, IH), 8.54 (d, IH), 8.25 (m, IH),
7.94 (d, IH), 7.76 (d, IH), 7.56-7.65 (m, 3H), 7.35 (m, IH), 7.15 (t, IH), 4.38 (d, 2H); Anal. Calcd for C17Hi3Cl2N3O: C, 58.98; H, 3.78; N, 12.14. Found: C, 59.02; H, 3.70; N, 12.10.
Example 36 N-(3-fluorobenzyl)-N'-isoquinolin-5-ylurea The title compound was prepared using 3-fluorobenzylamine, the product from Example 1A, DBU and the procedure described in Example IB. MS (ESI-) m/z 294 (M-H)"; 1H NMR (300 MHz, DMSO-d6) δ 9.28 (s, IH), 8.80 (bs, IH), 8.54 (d, IH), 8.28 (m, IH),
7.95 (d, IH), 7.76 (d, IH), 7.60 (t, IH), 7.35-7.45 (m, IH), 7.05-7.15 (m, 4H), 4.40 (d, 2H); Anal. Calcd for Ci7Hi4FN3O: C, 69.14; H, 4.78; N, 14.23. Found: C, 68.98; H, 4.83; N, 14.27.
Example 37 N-(4-tert-butylbenzyl)-N'-isoquinolin-5-ylurea The title compound was prepared using 4-tert-butylbenzylamine, the product from Example 1 A, DBU and the procedure described in Example IB. MS (ESI+) m/z 334 (M+H)+; 1H NMR (300 MHz, DMSO-d6) δ 9.26 (s, IH), 8.70 (bs, IH), 8.53 (d, IH), 8.31 (dd, IH), 7.92 (d, IH), 7.73 (d, IH), 7.60 (t, IH), 7.38 (m, 2H), 7.28 (m, 2H), 7.01 (t, IH), 4.32 (d, 2H), 1.27 (s, 9H). Anal. Calcd for C2iH23N3OO.3 H2O: C, 74.44; H, 7.02; N, 12.40. Found: C, 74.19; H, 6.88; N, 12.33.
Example 38 N-isoquinolin-5-yl-N'-[2-(3-methylphenyl)ethyl1urea The title compound was prepared using 2-(3-methylphenyl)ethylamine, the product from Example 1 A, DBU and the procedure described in Example IB. MS (ESI+) m/z 306 (M+H)+; 1HNMR (300 MHz, DMSO-d6) δ 9.26 (m, IH), 8.66 (bs, IH), 8.52 (d, IH), 8.28 (dd, IH), 7.90 (d, IH), 7.72 (d, IH), 7.59 (t, IH), 7.21 (t, IH), 7.00-7.11 (m, 3H), 6.60 (t,
IH), 3.41 (m, 2H), 2.76 (t, 2H), 2.30 (s, 3H); Anal. Calcd for C19H19N3O«0.1 H2O: C, 74.29; H, 6.30; N, 13.68. Found: C, 74.06; H, 6.43; N, 13.76.
Example 39 N-isoquinolin-5-yl-N'-[2-(4-methylphenyl)ethyl1urea The title compound was prepared using 2-(3-methylphenyl)ethylamine, the product from Example 1 A, DBU and the procedure described in Example IB. MS (ESI+) m/z 306 (M+H)+; 1H NMR (300 MHz, DMSO-d6) δ 9.26 (s, IH), 8.66 (bs, IH), 8.52 (d, IH), 8.28 (m, IH), 7.90 (d, IH), 7.72 (d, IH), 7.59 (t, IH), 7.10-7.20 (m, 4H), 6.58 (t, IH), 3.40 (m, 2H), 2.75 (t, 2H), 2.28 (s, 3H); Anal. Calcd for d9Hι9N3O'0.2 H2O: C, 73.86; H, 6.33; N, 13.60. Found: C, 73.69; H, 6.53; N, 13.51.
Example 40 N-r2-(2,4-dimethylphenyl)ethyl1-N'-isoquinolin-5-ylurea The title compound was prepared using 2-(2,4-dimethylphenyl)ethylamine, the product from Example 1 A, DBU and the procedure described in Example IB. MS (ESI+) m/z 320 (M+H)+; 1H NMR (300 MHz, DMSO-de) δ 9.26 (s, IH), 8.66 (bs, IH), 8.53 (d, IH), 8.28 (m, IH), 7.90 (d, IH), 7.73 (d, IH), 7.59 (t, IH), 7.08 (d, IH), 6.92-7.02 (m, 2H), 6.63 (t, IH), 3.34 (m, 2H), 2.75 (t, 2H), 2.29 (s, 3H), 2.24 (s, 3H); Anal. Calcd for C20H2ιN3O-0.45 H2O: C, 73.35; H, 6.74; N, 12.83. Found: C, 73.70; H, 6.53; N, 12.45.
Example 41 N-isoquinolin-5-yl-N'-[2-(2-methylphenyl)ethyllurea The title compound was prepared using 2-(2-methylphenyl)ethylamine, the product from Example 1A, DBU and the procedure described in Example IB. MS (ESI-) m/z 324 (M-H)"; 1H NMR (300 MHz, DMSO-d6) δ 9.26 (s, IH), 8.64 (bs, IH), 8.53 (d, IH), 8.25 (m, IH), 7.89 (d, IH), 7.73 (d, IH), 7.59 (t, IH), 7.46 (dd, IH), 7.40 (dd, IH), 7.23-7.36 (m, 2H), 6.67 (t, IH), 3.44 (m, 2H), 2.94 (t, 2H); Anal. Calcd for Cι8Hι6ClN3O: C, 66.36; H, 4.95; N, 12.90. Found: C, 66.19; H, 4.87; N, 12.91.
Example 42 N-isoquinolin-5-yl-N'-{4-[(trifluoromethyl)thiolbenzyl}urea
The title compound was prepared using 4-[(trifluoromethyl)thio]benzylamine, the product from Example 1 A, DBU and the procedure described in Example IB. MS (ESI-) m/z 376 (M-H)"; 1H NMR (300 MHz, DMSO-d6) δ 9.27 (s, IH), 8.82 (bs, IH), 8.54 (d, IH), 8.27 (dd, IH), 7.95 (d, IH), 7.68-7.78 (m, 3H), 7.60 (t, IH), 7.51 (d, 2H), 7.17 (t, IH), 4.45 (d, 2H); Anal. Calcd for Cι8Hι4F3N3OS: C, 57.29; H, 3.74; N, 11.13. Found: C, 57.00; H, 3.73; N, 11.04.
Example 42 N-isoquinolin-5-yl-N'-[3-(trifluoromethyl)benzyl1urea The title compound was prepared using 3-(trifluoromethyl)benzylamine, the product from Example 1 A, DBU and the procedure described in Example IB. MS (ESI-) m/z 344 (M-H)"; 1H NMR (300 MHz, DMSO-de) δ 9.27 (s, IH), 8.82 (bs, IH), 8.53 (d, IH), 8.25 (dd, IH), 7.94 (d, IH), 7.55-7.79 (m, 6H), 7.18 (t, IH), 4.47 (d, 2H); Anal. Calcd for Cι8Hι4F3N3O: C, 62.61; H, 4.09; N, 12.17. Found: C, 62.39; H, 3.87; N, 12.28.
Example 43 N-isoquinolin-5-yl-N'-(4-methoxybenzyl)urea The title compound was prepared using 4-methoxybenzylamine, the product from Example 1 A, DBU and the procedure described in Example IB. MS (ESI-) m/z 306 (M-H)"; 1H NMR (300 MHz, DMSO-d6) δ 9.26 (s, IH), 8.70 (bs, IH), 8.53 (d, IH), 8.31 (dd, IH), 7.92 (d, IH), 7.73 (d, IH), 7.60 (t, IH), 7.29 (m, 2H), 6.88-7.03 (m, 3H), 4.30 (d, 2H), 3.74 (s, 3H); Anal. Calcd for d8Hι7N3O2: C, 70.34; H, 5.58; N, 13.67. Found: C, 70.21; H, 5.47; N, 13.46.
Example 44 N-[4-chloro-3-(trifluoromethyl)benzyll-N'-isoquinolin-5-ylurea The title compound was prepared using 4-chloro-3-(trifluoromethyl)benzylamine, the product from Example 1 A, DBU and the procedure described in Example IB. MS (ESI-) m/z 378 (M-H)"; 1H NMR (300 MHz, DMSO-d6) δ 9.73 (s, IH), 9.53 (s, IH), 8.69 (d, IH), 8.61 (d, IH), 8.54 (d, IH), 8.07 (d, IH), 7.82-7.92 (m, 2H), 7.63-7.75 (m, 3H), 4.47 (d, 2H); Anal. Calcd for Cι8Hι3ClF3N3O'1.2 HCl: C, 51.05; H, 3.38; N, 9.92. Found: C, 51.26; H, 3.68; N, 9.50.
Example 45 N-(3,5-dimethylbenzyl)-N'-isoquinolin-5-ylurea The title compound was prepared using 3,4-dimethylbenzylamine, the product from Example 1 A, DBU and the procedure described in Example IB. MS (ESI-) m/z 304 (M-H)"; 1H NMR (300 MHz, DMSO-d6) δ 9.74 (s, IH), 9.41 (bs, IH), 8.69 (d, IH), 8.62 (d, 2H), 8.05 (d, IH), 7.88 (t, IH), 7.44 (t, IH), 6.96 (bs, 2H), 6.89 (bs, IH), 4.31 (d, 2H), 2.26 (s, 6H); Anal. Calcd for Cι9H19N3O»l.l HCl: C, 66.05; H, 5.86; N, 12.16. Found: C, 66.09; H, 5.83; N, 12.14.
Example 46 N-(3,5-difluorobenzyl)-N'-isoquinolin-5-ylurea The title compound was prepared using 3,5-difluorobenzylamine, the product from Example 1A, DBU and the procedure described in Example IB. MS (ESI+) m/z 312 (M-H)"; 1H NMR (300 MHz, DMSO-d6) δ 9.76 (s, IH), 9.66 (bs, IH), 8.65-8.79 (m, 2H), 8.60 (d, IH), 8.08 (d, IH), 7.89 (t, IH), 7.77 (t, IH), 7.02-7.18 (m, 3H), 4.43 (d, 2H); Anal. Calcd for Cι7Hι3F2N3OΗCl»0.3 H2O: C, 57.49; H, 4.14; N, 11.83. Found: C, 57.76; H, 4.59; N, 11.76.
Example 47 N-hexyl-N'-isoquinolin-5-ylurea The title compound was prepared using hexylamine, the product from Example 1 A, DBU and the procedure described in Example IB. MS (ESI-) m/z 270 (M-H)"; 1H NMR (DMSO-d6) δ 9.25 (s, IH), 8.60 (s, IH), 8.55 (d, IH), 8.39 (d, IH), 7.93 (d, IH), 7.71 (d, IH), 7.59 (t, IH), 6.60 (t, IH), 3.15 (q, 2H), 1.49 (m, 2H), 1.32 (m, 6H), .90 (m, 3H).
Example 48 N-(4-bromobenzyl)-N'-isoquinolin-5-ylurea The title compound was prepared using 4-bromobenzylamine, the product from Example 1 A, DBU and the procedure described in Example IB. MS (ESI-) m/z 355 (M-H)"; 1H NMR (DMSO-de) δ 9.27 (s, IH), 8.78 (s, IH), 8.53 (d, IH), 8.27 (d, IH), 7.93 (d, IH),
7.74 (d, IH), 7.61 (d, IH), 7.55 (d, 2H), 7.42 (d, 2H) 7.10 (t, IH); Anal. Calcd for C17Hι4BrN3O: C, 57.32; H, 3.96; N, 11.80. Found C, 57.05; H, 3.79; N, 11.64.
Example 49 N-(3,5-dimethoxybenzyl)-N'-isoquinolin-5-ylurea The title compound was prepared using 3,5-dimethoxybenzylamine, the product from Example 1 A, DBU and the procedure described in Example IB. MS (ESI-) m/z 336 (M-H)"; 1H NMR (DMSO-de) δ 9.70 (s, IH), 9.32 (s, IH), 8.69 (d, IH), 8.55 (dd, 2H), 8.10 (d, IH), 7.85 (t, IH), 7.39 (t, IH), 6.54 (s, 2H), 6.41 (s, IH) 4.35 (d, 2H), 3.75 (s, 6H); Anal. Calcd for Cι9Hι9N3O3 1.25 HCl C, 59.59; H, 5.33; N, 10.97. Found C, 59.22; H, 5.41; N, 10.84.
Example 50 N-isoquinolin-5-yl-N'-(3,4,5-frimethoxybenzyl)urea The title compound was prepared using 3,4,5-trimethoxybenzylamine, the product from Example 1 A, DBU and the procedure described in Example IB. MS (ESI-) m/z 366 (M-H)"; 1H NMR (DMSO-d6) δ 9.79 (s, IH), 9.50 (s, IH), 8.69 (d, IH), 8.80 (d, IH), 8.65 (dd, 2H), 8.08 (d, IH), 7.90 (d, IH), 7.68 (m, IH), 6.71 (s, 2H), 4.53 (d, 2H) 3.79 (s, 6H), 3.53 (s, 3H). Anal. Calcd for C20H2ιN3O4 1.3 HCl: C, 57.91; H, 5.42; N, 10.13. Found C, 57.65; H, 5.60; N, 10.09.
Example 51 N-isoquinolin-5-yl-N'-[4-(methylsulfonyl)benzyl1urea The title compound was prepared using 4-(methylsulfonyl)benzylamine, the product from Example 1 A, DBU and the procedure described in Example IB. MS (ESI-) m/z 354 (M-H)"; 1H NMR (DMSO-d6) δ 9.65 (s, IH), 9.30 (s, IH), 8.65 (d, IH), 8.49 (d, IH), 8.42 (d, IH), 8.00 (d, IH), 7.91 (d, 2H), 7.82 (t, IH), 7.61 (d, 2H), 7.47 (t, IH), 4.50 (d, 2H), 3.20 (s, 3H); Anal. Calcd for C20H2ιN3O4 1.0 HCl: C, 55.17; H, 4.63; N, 10.72. Found C, 54.92; H, 4.54; N, 10.42.
Example 52 N-(3,4-dimethoxybenzyl)-N'-isoquinolin-5-ylurea
The title compound was prepared using 3,4-dimethoxybenzylamine, the product from Example 1A, DBU and the procedure described in Example IB. MS (ESI-) m z (M-H)" 336; 1H NMR (DMSO-de) δ 9.78 (s, IH), 9.50 (s, IH), 8.70 (s, 2H), 8.62 (d, IH), 8.05 (d, IH), 7.87 (t, IH), 7.51 (t, IH), 6.99 (s, IH), 6.79 (ds, 2H), 4.32 (d, 2H), 3.75 (s, 3H), 3.71 (s. 3H); Anal. Calcd for Cι9Hi9N303 1.0 HCl: C, 61.04; H, 5.39; N, 11.24. Found C, 60.82; H, 5.38; N, 11.19.
Example 53 N-isoquinolin-5 -y l-N'-(3 -phenoxybenzyl)urea The title compound was prepared using 3,4-dimethoxybenzylamine, the product from Example 1 A, DBU and the procedure described in Example IB. MS (ESI-) m/z 368 (M-H)"; 1HNMR (DMSO-de) δ 9.65 (s, IH), 9.25 (s, IH), 8.65 (d, IH), 8.52 (d IH), 8.48 (d, IH), 8.03 (d, IH), 7.82 (t, IH), 7.35 (m, 4H), 7.15 (d, 2H), 7.05 (s, 2H), 7.00 (s, IH), 6.84 (d, IH), 2.37 (d, 2H); Anal. Calcd for C23H19N3O2 1.25 HCl: C, 66.57; H, 4.92; N, 10.13. Found C, 66.49; H, 5.02; N, 10.14.
Example 54 N-isoquinolin-5-yl-N'-(l-naphthylmethyl)urea The title compound was prepared using 1-naphthylmethylamine, the product from Example 1 A, DBU and the procedure described in Example IB. MS (ESI+) m/z 328 (M+H)+; HRMS (FAB): Calculated for C21H18N3O 328.1450; observed 328.1438 (M+H)+; 1H NMR (DMSO-d6) δ 9.25 (s, IH), 8.48, (d, IH), 8.39 (d, IH), 8.22 (d, IH), 8.19 (d, IH), 7.97 (d, IH), 7.87 (d, IH), 7.78-7.71 (m, 2H), 7.63-7.49 (m, 6H), 4.85 (d, 2H).
Example 55 N-(2,4-dimethylbenzyl)-N'-isoquinolin-5-ylurea The title compound was prepared using 2,4-dimethylbenzylamine, the product from Example 1A, DBU and the procedure described in Example IB. MS (ESI+) m/z 306 (M+H)+; 1H NMR (DMSO-d6) δ 9.26 (s, IH), 8.67 (s, IH), 8.53 (d, IH), 8.32 (d, IH), 7.92 (d, IH), 7.72 (d, IH), 7.60 (t, IH), 7.19 (d, IH), 7.03-6.95 (m, 2H), 9.90 (t, IH), 4.31 (d, 2H), 2.30 (s, 3H), 2.26 (s, 3H); Anal. Calcd for CIDHI9N3O-0.2H O: C, 73.86, H 6.33, N 13.60. Found: C 73.75, H 6.49, N 13.49.
Example 56 N-[4-(dimethylamino)benzyll-N'-isoquinolin-5-ylurea The title compound was prepared using 4-(aminomethyl)-N,N-dimethylaniline, the product from Example 1 A, DBU and the procedure described in Example IB. MS (ESI+) m/z 321 (M+H)+; 1H NMR (DMSO-d6) δ 9.26 (s, IH), 8.71 (s, IH), 8.52 (d, IH), 8.32 (d, IH), 7.93 (d, IH), 7.72 (d, IH), 7.59 (t, IH), 7.18 (d, 2H), 6.96 (t, IH), 6.71 (d, 2H), 4.23 (d, 2H), 2.86 (s, 6H); Anal. Calcd for C19H20N4OO.7H2O: C, 68.53, H 6.48, N 16.82. Found: C 68.59, H 6.48, N 16.60.
Example 57 N-isoquinolin-8-yl-N'-r4-(trifluoromethyl)benzyllurea
Example 57A 5 -bromoisoquinoline Concentrated H2SO4 (260 mL) was cooled to -25 °C while stining with a mechanical stiner. Isoquinoline (30 mL, 0.25 mol) was added slowly so the temperature did not exceed 0 °C. After the addition was complete, the red solution was recooled to -25 °C and treated with N-bromosuccinimide (55.49 g, 0.31 mol) in small portions so that the temperature did not exceed -20 °C. The reaction mixture was stined for 5 hours keeping the temperature between -30 °C and -18 °C. The reaction mixture was then allowed to warm to -10 °C and was poured carefully over 600 g of ice. The resulting slurry was adjusted to pH 10 using 25% NH4OH. The mixture was then extracted with diethyl ether (3 x 600 mL). The ether fractions were combined, filtered through a celite plug and the filtrate concentrated under reduced pressure. The residue was suspended in hot heptane (600 mL). The heptane was decanted. This procedure was repeated with hexane (2 x 200 mL). The combined heptane and hexane fractions were concentrated under reduced pressure to give a mustard yellow solid. The title compound was obtained by recrystallization from heptane (26.37 g, 50%). mp 78°-80 °C; MS (ESI+) m/z 209 (M+H)+; 1H NMR (DMSO, 300 MHz) δ 7.65 (t, J 7.9, IH), 7.94 (d, J 8.1, IH), 8.17 (dd, J 1.0, 7.4, IH), 8.22 (d, J 8.1, IH), 8.68 (d, J 6.1, IH), 9.37 (s, IH); Anal. Calcd for C9H6BrN: C, 51.96; H, 2.91; N, 6.73; Br, 38.41. Found: C, 51.24; H, 2.79; N, 6.52; Br, 38.81.
Example 57B 5-bromo-8-nifroisoquinoline The diethyl ether solution from Example 57A was treated with potassium nitrate (10.1 g, 100 mmol). After stining for one hour, The mixture was poured onto ice and neutralized with concentrated ammonium hydroxide (~300 ml). The crude product was collected by filtration, dried, and recrystalization from methanol to provide the title compound (8.83 g).
Example 57C isoquinolin-8-amine The product from Example 57B was treated with Pd/C under a hydrogen atmosphere to provide the title compound.
Example 57D 2,2,2-trichloro-N-isoquinolin-8-ylacetamide The product from Example 57C and trichloroacetylchloride were processed as described in Example 1 A to provide the title compound.
Example 57E N-isoquinolin-8-yl-N'-[4-(trifluoromethyl)benzyllurea The title compound was prepared using 4-(trifluoromethyl)benzylamine, the product from Example 57D, DBU and the procedure described in Example IB. MS (ESI+) m/z 346 (M+H)+; 1H NMR (DMSO-d6) δ 9.58 (s, IH), 9.10 (s, IH), 8.49 (d, IH), 8.12 (d, IH), 7.81- 7.54 (m, 7H), 7.20 (t, IH), 4.47 (d, 2H); Anal. Calcd for Cι8H14F3N3O'0.2 H2O: C, 61.96, H 4.16, N 12.04. Found: C 62.06, H 4.23, N 11.91.
Example 58 N-(4-bromobenzyl)-N'-isoquinolin-8-ylurea The title compound was prepared using 4-bromobenzylamine, the product from Example 57D, DBU and the procedure described in Example IB. MS (ESI+) m/z 356 (M+H)+; 1H NMR (DMSO-d6) δ 9.52 (s, IH), 9.15 (s, IH), 8.49 (d, IH), 8.11 (d, IH), 7.77 (d, IH), 7.67 (t, IH), 7.55 (m, 3H) 7.32 (d, 2H), 7.25 (t, IH), 4.34 (d, 2H); Anal. Calcd for
Ci7Hi4BrN3O«0.25 H2O-0.16 MeOH: C 56.34, H 4.17, N 11.49. Found C, 56.32, H 4.45, N 11.70.
Example 60 N-(4-bromobenzyl)-N'-(3-chloroisoquinolin-5-yl)urea
Example 60A isoquinoline- 1 ,3 (2H,4H)-dione 2-(Carboxymethyl)benzoic acid (10 g, 55.6 mmol) was dissolved in concentrated NH4OH (15 mL) and then was evaporated to dryness under reduced pressure. The process was repeated with additional NH4OH (5 mL). The resulting residue was treated with 1,2- dichlorobenzene (20 mL) and heated with stining at 200 °C without a condenser allowing the solvent to evaporate. The concenfrated mixture was allowed to cool to room temperature, diluted with methanol (20 mL), and allowed to stand overnight. The precipitate was collected by filtration, washed with methanol, and dried under reduced pressure to provide the title compound as tan needles (6.6 g, 74%).
Example 60B 1 ,3-dichloroisoquinoline The product from Example 60A (6.5 g, 40.4 mmol) was freated with phenylphosphonic dichloride (11.5 mL, 81.1 mmol) and heated at 160 °C for 3 hours. The reaction was allowed to cool to room temperature and stand overnight. The resulting waxy orange material was dissolved in tetrahydrofuran (200 mL), treated with water (60 mL), and then concentrated under reduced to remove the tetrahydrofuran. The remaining aqueous material was neutralized with concenfrated NH4OH and extracted with ethyl acetate. The ethyl acetate phases were combined, washed with water, brine, dried over Na2SO4 and concentrated under reduced pressure to provide the title compound as yellow flakes (6.92 g, %)
Example 60C 3 -chloroisoquinoline
The product from Example 60B (6.73 g, 33.8 mmol) was suspended in glacial acetic acid (37 mL) and concentrated HCl (13 mL), freated with tin powder (12.1 g, 101.9 mmol), and heated at 55-60 °C for 3 hours with stining. The mixture was allowed to cool to room temperature and the precipitated tin salts were removed by filtration through Celite. The filfrate was basified to pH 9 with concentrated NH4OH and then extracted with ethyl acetate. The organic extracts were combined, washed with saturated NaHCO3 solution, dried over Na2SO4, and concentrated under reduced pressure to provide the title compound as a gummy yellow residue (1.28 g, 23%).
Example 60D 3-chloro-5-nitroisoquinoline The product from Example 60C (1.28 g, 7.85 mmol) in concentrated H SO4 (30 mL) at 0 °C was freated with a solution of KNO3 (0.84 g, 8.32 mmol) in concentrated H2SO4 (5 mL) dropwise over 5 minutes. The mixture was stined at 0 °C for 10 minutes, allowed to warm to room temperature, and stined overnight. The mixture was poured onto 65 g of ice and the precipitated yellow solid was collected by filtration. The solid was sluπied in water, collected by filtration, washed with water, and allowed to air-dry to provide the title compound as a pale yellow solid (0.45 g, 28%).
Example 60E 3 -chloroisoquinolin-5-amine The product from Example 60D (0.45 g, 2.16 mmol) was suspended in glacial acetic acid (4 mL) and warmed to 60 °C while adding water (4 mL). The heated mixture was freated with powdered iron (0.33 g, 5.91 mmol) in three portions over about 2 minutes. The reaction mixture stined at 60 °C for 2 hours, allowed to cool to room temperature and stir overnight. The mixture was basified with 25% aqueous NaOH, diluted with a little water, and the brown precipitate was collected by filtration and dried overnight at 50 °C in a vacuum oven. The filter cake was then broken up and extracted with boiling ethyl acetate. The extracts were combined, dried over Na2SO4, filtered, and the filfrate was concentrated under reduced pressure to provide the title compound as a gold-orange solid (200 mg, 52%).
Example 60F
N-(4-bromobenzyl)-N'-(3-chloroisoquinolin-5-yl)urea The product from Example 60E (250 mg, 1.4 mmol) and l-bromo-4- (isocyanatomethyl)benzene (0.22 mL, 1.57 mmol) were heated in toluene (5 mL) at 80 °C for 3 hours. The mixture was allowed to cool to room temperature, filtered, the filter cake was washed with toluene, and air-dried to provide the title compound (335 mg, 61%). 1H NMR (300 MHz, DMSO-de) δ 9.18 (s, IH), 8.81 (s, IH), 8.32 (dd, J=7.8Hz, 0.7 Hz, IH), 8.09 (s, IH), 7.80 (d, J=8.2 Hz, IH), 7.53-7.65 (m, 3H), 7.32 (m, 2H), 7.05 (t, J=5.7 Hz, IH), 4.35 (d, J=5.7 Hz, 2H); MS (ESI+) m/z 391/393 (M+H+, 35C1/37C1).
Example 61 4-cyanobenzyl isoquinolin-5-ylcarbamate
Example 61 A 5-isocyanatoisoquinoline Phosgene (20 ml, 20% in toluene from Fluka) in CH2C12 (300 mL) at 0 °C was treated with DMAP (10 g) in CH2C12 (100 mL) slowly. After complete addition, the mixture was treated with 5-aminoisoquinoline (5 g) in CH2C12 (100 mL) dropwise. The mixture was allowed to warm to room temperature and then stined overnight. The solvent was removed under reduced pressure. The solid residue was extracted with diethyl ether (400 mL). The diethyl ether was filtered to provide the title compound in diethyl ether as a pale yellow solution. The diethyl ether solution was used in subsequent reactions without further purification.
Example 61B 4-cyanobenzyl isoquinolin-5-ylcarbamate 4-Cyanobenzyl alcohol (150 mg, 1.13 mmol) in diethyl ether (10 mL) was freated with the product from Example 61 A as an ethereal solution. The mixture was stined for 2 hours, filtered, and the filter cake was washed with diethyl ether to provide the title compound as an off-white solid (150 mg, 44%). !H NMR (300 MHz, DMSO-d6) δ 9.95 (s, IH), 9.32 (d, J=1.0 Hz, IH), 8.52 (d, J=6.1 Hz, IH), 7.88-7.99 (m, 5H), 7.65-7.70 (m, 3H), 5.31 (s, 2H); MS (ESI+) m/z 304 (M+H)+.
Example 62 N-r(4-cyanophenyl)methyl1-N'-isoquinolin-5-ylurea N, N-bis(tert-butoxycarbonyl)-4-cyanobenzyl amine (0.75 g, 2.25 mmol, prepared according to Synth. Comm. (1998) 28, 4419) in CH2C12 (15 mL) was treated with trifluoroacetic acid (8 mL), and the resulting mixture was stined at room temperature for 3 hours. The mixture was concentrated under reduced pressure and then azeotroped with diethyl ether. The residue was taken up in diethyl ether (10 mL) and treated with N,N- diisopropylethylamine (5 mL) and the product from Example 61 A. After stining for 1 hour, the mixture was filtered and the filter was purified by chromatography (95:5 CH2Cl2-MeOH) to provide the title compound as a white solid (65 mg). The corresponding hydrochloride salt was prepared using methanolic HCl. 1H NMR (300 MHz, DMSO-d6) δ 9.75 (s, IH), 9.62 (s, IH), 8.69 (s, 2H), 8.58 (dd, J=7.8 Hz, 1.0 Hz, IH), 8.07 (d, J=7.4 Hz, IH), 7.90 (d, J=8.1 Hz, IH), 7.81-7.85 (m, 2H), 7.74 (t, J=6.1 Hz, IH), 7.54-7.57 (m, 2H), 4.48 (d, J=6.1 Hz, 2H); MS (ESI+) m/z 303 (M+H)+.
Example 63 N-[(4-bromophenyl)methyll-N'-(3-methylisoquinolin-5-yl)urea
Example 63A 3 -methy lisoquinolin-5 -amine 3-Methylisoquinoline was processed as described in Examples 60D and 60E to provide the title compound.
Example 63B N-[(4-bromophenyl)methyll-N'-(3-methylisoquinolin-5-yl)urea The product from Example 63A (500 mg, 3.1 mmol) in toluene (10 mL) was freated with l-bromo-4-(isocyanatomethyl)benzene (0.5 mL, 3.57 mmol) with stining and then the mixture was heated at 80 °C overnight. The mixture was allowed to cool to room temperature, filtered, the filter cake was washed with toluene, and allowed to air-dry to provide the title compound. The conesponding hydrochloride salt was prepared using methanolic HCl to afford a tan solid (919 mg, 73%). 1H NMR (300 MHz, DMSO-d6) δ 9.70 (s, IH), 9.54 (s, IH), 8.63 (s, IH), 8.57 (dd, J=7.8 Hz, 1.0 Hz, IH), 8.02 (d, J=8.2 Hz, IH),
7.78-7.83 (m, IH), 7.67-7.71 (m, IH), 7.52-7.57 (m, 2H), 7.30-7.35 (m, 2H), 4.36 (d, J=5.7 Hz, 2H), 2.78 (s, 3H); MS (ESI+) m/z 370/372 (M+H, 79Br/81Br).
Example 64 N-[(4-bromophenyl)methyll-N'-(l-chloroisoquinolin-5-yl)urea
Example 64A 1 -chloroisoquinolin-5-amine 1-Chloroisoquinoline was processed as described in Examples 60D and 60E to provide the title compound.
Example 64B N-[(4-bromophenyl)methyl1-N'-(l-chloroisoquinolin-5-yl)urea The product from Example 64 A (520 mg, 2.91 mmol) in toluene (8 mL) was treated with l-bromo-4-(isocyanatomethyl)benzene (0.41 mL, 2.93 mmol) with stining and then the mixture was heated at 90 °C for 2 hours. The mixture was allowed to cool to room temperature, filtered, the filter cake washed with toluene, and air-dried to provide the title compound as an off-white solid (717 mg, 63%). 1H NMR (300 MHz, DMSO-d6) δ 8.89 (s, IH), 8.34-8.37 (m, 2H), 8.00 (dd, J=6.1 Hz, 0.7 Hz, IH), 7.92-7.95 (m, IH), 7.73 (t, J=8.1, IH), 7.53-7.56 (m, 2H), 7.30-7.33 (m, 2H), 7.12 (t, J=5.8Hz, IH), 4.35 (d, J=5.8 Hz, 2H); MS (ESI+) m/z 390/392 (M+H+, 35C1/37C1).
Example 65 N-[(4-bromophenyl)methyll-N'-(l-methylisoquinolin-5-yl)urea
Example 65A 1 -methylisoquinolin-5-amine 1-Methylisoquinoline was processed as described in Examples 60D and 60E to provide the title compound.
Example 65B N-[(4-bromophenyl)methyll-N'-(l-methylisoquinolin-5-yl)urea
The product from Example 65 A (480 mg, 3.04 mmol) in toluene (9 mL) was treated with l-bromo-4-(isocyanatomethyl)benzene (0.43, 3.07 mmol) with stining. After heating the mixture at 90 °C for 1 hour, the mixture was allowed to cool to room temperature, filtered, and the filter cake washed with toluene to provide the title compound. The coπesponding di-hydrochloride salt was prepared using methanolic HCl (680 mg, 50%). 1H NMR (300 MHz, DMSO-d6) δ 8.74 (s, IH), 8.38 (d, J=6.1 Hz, IH), 8.25 (d, J=7.8 Hz, IH), 7.78-7.85 (m, 2H), 7.53-7.61 (m, 3H), 7.32 (d, J=8.5 Hz, 2H), 7.11 (t, J=6.1 Hz, IH), 4.34 (d, J=6.1 Hz, 2H), 2.88 (s, 3H); MS (ESI+) m/z 370/372 (M+H*, 79Br/81Br).
Example 66 N-isoquinolin-5-yl-N'-[(4-mo holin-4-ylphenyl)methyllurea
Example 66A 4-morpholin-4-ylbenzonitrile 4-Fluorobenzonitrile (1 g, 8.26 mmol) and morpholine (2.2 mL, 25.2 mmol) were combined in DMSO (25 mL) and heated at 100 °C for 2.5 hours. The mixture was allowed to cool to room temperature, poured into water, and extracted with diethyl ether. The organic extracts were combined, washed with water and brine, dried over Na2SO4, and concentrated under reduced pressure to provide the title compound as a white solid (1.24 g, 80%).
Example 66B (4-morpholin-4-ylphenyl)methylamine The product from Example 66A (1.24 g, 6.6 mmol) in THF (25 mL) was treated with LiAlH4 (2.5 g, 65.9 mmol) at 0 °C. The mixture was allowed to warm to room temperature and then refluxed for 1 hour. The mixture was allowed to cool to room temperature and then treated with IN NaOH carefully followed by water. The mixture was concentrated under reduced pressure and the resulting aqueous mixture was extracted with diethyl ether. The organic exfracts were combined, washed with saturated NaHCO3 solution, dried over Na SO , filtered, and the filtrate concentrated under reduced pressure to provide the title compound as a yellow oil (286 mg, 23%).
Example 66C
N-isoquinolin-5-yl-N'-[(4-morpholin-4-ylphenyl)methyllurea The product from Example 66B ( 285 mg, 1.48 mmol) in diethyl ether (10 mL) was treated with the product from Example 61 A. The mixture was filtered and the filter cake purified by chromatography (95:5 CH2Cl2-MeOH, eluant) to provide that title compound as a white solid. The conesponding di-hydrochloride salt was prepared using methanolic HCl to afford a yellow solid (505 mg, 78%). 1H NMR (300 MHz, DMSO-d6) δ 9.26 (s, IH), 8.67 (s, IH), 8.52-8.55 (m, IH), 8.32 (dd, J=7.8 Hz, 1.1 Hz, IH), 7.92 (d, J=6.1 Hz, IH), 7.73 (d, J=8.2 Hz, IH), 7.60 (m, IH), 7.23 (d, J=8.8 Hz, 2H), 6.92-6.96 (m, 3H), 4.26 (d, 5.4 Hz, 2H), 3.72-3.75 (m, 4H), 3.06-3.12 (m, 4H); MS (ESI+) m/z 363 (M+H)+.
Example 67 N- { [4-(2,6-dimethylmorpholin-4-yl)phenyl1methyl } -N'-isoquinolin-5-ylurea
Example 67A [4-(2,6-dimethylmorpholin-4-yl)phenyllmethylamine 4-Fluorobenzonitrile and 2,6-dimethylmorpholine were processed as described in Examples 66A and 66B to provide the title compound.
Example 67B N- { [4-(2,6-dimethylmorpholin-4-yl)phenyl1methyl} -N'-isoquinolin-5-ylurea The product from Example 67 A and the product from Example 61 A were processed as described in Example 66C to provide a waxy material which was purified by chromatography (95:5 CH2Cl2-MeOH, eluant) to provide the title compound as a white solid. The conesponding di-hydrochloride salt was prepared using methanolic HCl. !H NMR (300 MHz, DMSO-de) δ 9.26 (s, IH), 8.67 (s, IH), 8.53 (d, J=6.1 Hz, IH), 8.31 (dd, J=7.6 Hz, 1.1 Hz, IH), 7.92 (d, J=6.1 Hz, IH), 7.73 (d, J=8.1 Hz, IH), 7.57-7.62 (m, IH), 7.22 (d, J=8.8 Hz, 2H), 6.92-6.95 (m, 3H), 4.26 (d, J=5.7 Hz, 2H), 3.68 (m, 2H), 3.54-3.57 (m, 2H), 2.21 (m, 2H), 1.16 (s, 3H), 1.14 (s, 3H); MS (ESI+) m/z 391 (M+H).
Example 68 N-isoquinolin-5-yl-N'-[(4-thiomoφholin-4-ylphenyl)methynurea
Example 68 A (4-thiomorpholin-4-ylphenyl)methylamine 4-Fluorobenzonitrile and thiomorpholine were processed as described in Examples 66A and 66B to provide the title compound.
Example 68B N-isoquinolin-5-yl-N'-[(4-thiomorpholin-4-ylphenyl)methyl1urea The product from Example 68 A and the product from Example 61 A were processed as described in Example 66C to provide the title compound. The free base was treated with methanolic HCl to form the coπesponding di-hydrochloride salt. 1H NMR (300 MHz, DMSO-de) δ 9.26 (s, IH), 8.67 (s, IH), 8.53 (d, J=6.1 Hz, IH), 8.32 (dd, J=7.8 Hz, 1.1 Hz, IH), 7.92 (d, J=6.1 Hz, IH), 7.73 (d, J=8.2 Hz, IH), 7.60 (m, IH), 7.20-7.23 (m, 2H), 6.90- 6.96 (m, 3H), 4.25 (d, J=5.8 Hz, 2H), 3.45-3.51 (m, 4H), 2.64-2.67 (m, 4H); MS (ESI+) m/z 379 (M+H)+.
Example 69 4-(3 ,4-dichlorophenyl)-N-isoquinolin-5-ylpiperazine- 1 -carboxamide l-(3,4-Dichlorophenyl)piperazine (1280 mg, 5.55 mmol) in diethyl ether (30 mL) was treated with the product from Example 61 A (~40 mL). The mixture was filtered, the filter cake washed with diethyl ether, and dried under reduced pressure to provide the title compound as a white solid (1.78 g, 80%). 1H NMR (300 MHz, DMSO-d6) δ 9.29 (d, J=1.0 Hz, IH), 8.84 (s, IH), 8.49 (d, J=5.8 Hz, IH), 7.92 (d, J=7.8 Hz, IH), 7.78 (m, IH), 7.61-7.71 (m, 2H), 7.44 (d, J=8.8 Hz, IH), 7.22 (d, J=3.1 Hz, IH), 7.01 (dd, 3=9.1, 2.7 Hz, IH), 3.68 (m, 4H), 3.30 (m, 4H); MS (ESI+) m/z 401/403 (M+H+, 35C1/37C1).
Example 70 2-isoquinolin-5-yl-N-[4-(trifluoromethyl)benzyl1acetamide
Example 70A ethyl isoquinolin-5-yl(oxo)acetate The product from Example 57A (11.80 g, 56.6 mmol) in THF (200 mL) at -78 °C was treated with n-butyllithium (30 mL, 75.0 mmol, 2.5M in hexanes) dropwise. After 30
minutes, the mixture was treated with diethyl oxalate (25.0 mL, 184 mmol). After 20 minutes, the solution was allowed to warm to room temperature and was treated with saturated NH4C1 (150 mL). The mixture was conentrated under reduced pressure. The residue was treated with dichloromethane (100 mL) filtered, and the filfrate concentrated under reduced pressure. The residue was purified by column chromatography (20% ethyl acetate/hexanes) to provide the title compound as light brown oil (4.57 g, 35%). MS (ESI+) m/z 248 (100), 230 (M+H)+, (ESI-) m/z 200 (M-Et)"; 1H NMR (DMSO-d6, 300 MHz) rotomers δ 1.26 (t, J 7.1, 0.6H), 1.37 (t, J 7.1, 2.4H), 4.21 (q, J 7.1, 0.4H), 4.47 (q, J 7.1, 1.6H), 7.89 (t, J 7.5, IH), 8.41 (dd, J 1.0, 7.5, IH), 8.57 (d, J 8.1, IH), 8.64 (d, J 5.7, IH), 8.73 (d, J 6.3, IH), 9.50 (s, IH).
Example 70B ethyl hydroxy(isoquinolin-5-yl)acetate The product of Example 70A (1.11 g, 4.83 mmol) in absolute ethanol (20 mL) was added to 10% Pd/C (115.5 mg) under an argon atmosphere. The reaction mixture was stined under H (50 psi) for 5 hours at which time an additional 105.9 mg of catalyst was added as a suspension in ethanol. After 3 additional hours, the reaction mixture was filtered though a nylon membrane and the filtrate concentrated under reduced pressure to provide the title compound as dark brown oil (1.02 g, 91%). MS (ESI+) m/z 232 (M+H)+, (ESI-) m/z 202 (M-Et)"; 1H NMR (DMSO-d6, 300 MHz) δ 1.05 (t, J 7.1, 3H), 4.07 (m, 2H), 5.77 (d, J 4.7, IH), 6.36 (d, J 4.7, IH), 7.68 (dd, J 7.3, 8.1, IH), 7.85 (d, J 7.0, IH), 8.09 (t, J 7.5, 2H), 8.53 (d, J 6.2, IH), 9.33 (s, IH).
Example 70C ethyl (acetyloxy)(isoquinolin-5-yι)acetate The product of Example 70B (1.0202g, 4.41 mmol) in pyridine (15 mL) was treated with acetyl chloride (0.35 mL, 4.92 mmol) dropwise. The solution was stined at room temperature for 4 hours and concentrated under reduced pressure. The residue was purified by column chromatography (2% methanol/CH2Cl2) to provide the title compound as yellow oil (0.8100 g, 67%). MS (ESI+) m/z 274 (M+H)+; 1H NMR (DMSO-d6, 300 MHz) δ 1.07 (t, J 7.1, 3H), 2.17 (s, 3H), 4.13 (m, 2H), 6.62 (s, IH), 7.74 (m, IH), 7.94 (d, J 7.1, IH), 8.03 (d, J 6.1, IH), 8.22 (d, J 7.6, IH), 8.60 (d, J 5.7, IH), 9.39 (s, IH).
Example 70D ethyl isoquinolin-5-ylacetate The product of Example 70C (1.43 g, 5.23 mmol) in absolute ethanol (200 mL) was treated with dry 10% Pd/C (0.122 g) and triethylamine (10.4 mL). The reaction mixture was stined at 60 °C for 6 hours under H2 (60 psi), filtered and the filtrate concentrated under reduced pressure. The residue was purified by column chromatography (5% methanol/CH2Cl2) to provide the title compound as light brown oil (0.93 g, 67%). MS (ESI+) m/z 216 (M+H)+, (ESI-) m/z 214 (M-H)"; 1H NMR (DMSO-d6, 300 MHz) δ 1.17 (t, J 7.1, 3H), 4.09 (q, J 7.1, 2H), 4.17 (s, 2H), 7.64 (m, IH), 7.72 (d, J 6.2, IH), 7.81 (d, J 5.7, IH), 8.07 (d, J 7.9, IH), 8.54 (d, J 6.1, IH), 9.33 (s, IH).
Example 70E 2-isoquinolin-5-yl-N-[4-(trifluoromethyl)benzyllacetamide The product from Example 70D (0.207 g, 0.96 mmol) in dichloromethane (10 mL) was treated with trimethylaluminum (1 mL, 2.0 mmol, 2M in toluene) dropwise. After 30 minutes, the mixture was teated with 4-(trifluoromethyl)benzylamine (0.350 g, 2.0 mmol) in dichloromethane (2 mL) and then refluxed for 16 hours. The reaction mixture was allowed to cool to room temperature, treated with IM HCl (3 mL), basified to between pH 9 and 10 with concentrated NH4OH, treated with water and CH2C12 and the phases separated. The organic layer was washed with water (1 x 10 mL), brine (1 x 10 mL), dried (MgSO4), and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (5% methanol/CH2Cl ) to provide a yellow residue which was triturated with diethyl ether to provide the title compound as a white solid (0.122 g, 37%). MS (ESI+) m/z 345 (M+H)+; MS (ESI-) m z 343 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 4.00 (s, 2H), 4.37 (d, J 5.7, 2H), 7.46 (d, J 7.8, 2H), 7.67 (m, 4H), 7.93 (d, J 5.4, IH), 8.03 (d, J 7.8, IH), 8.52 (d, J 5.8, IH), 8.80 (t, J 5.7, IH), 9.31 (s, IH); Anal. Calcd for C19H15F3N2O: C, 66.28; H, 4.39; N, 8.14. Found: C, 66.16; H, 4.27; N, 7.96.
Example 71 methyl 5-({[(4-bromobenzyl)aminolcarbonyl}amino)isoquinoline-3-carboxylate
Example 71 A methyl 5-nitroisoquinoline-3-carboxylate Methyl isoquinoline-3 -carboxylate (9.58 g, 51.2 mmol) in concentrated H2SO4 (100 mL) at 0 °C was treated with sodium nitrate (4.79 g, 56.4 mmol) in small portions such that the temperature was maintained below 5 °C. Ten minutes after addition was complete, the reaction mixture was allowed to warm to room temperature and stined for 2 hours. The mixture was poured over ice and adjusted to pH between 7 and 8 and filtered to afford the title compound as a bright yellow solid (11.44 g, 96%). MS (ESI+) m/z 233 (M+H)+; 1H NMR (DMSO, 300 MHz) δ 3.97 (s, 3H), 8.06 (t, J 8.2, IH), 8.72 (dt, J 1.0, 8.2, IH), 8.78 (dd, J 1.0, 7.8, IH), 9.11 (s, IH), 9.65 (s, IH).
Example 7 IB methyl 5-aminoisoquinoline-3-carboxylate The product of Example 71A (10.33 g, 44.5 mmol) in acetic acid/water (3/1) (320 mL) was treated with iron powder (5.06 g, 90.7 mmol). After stining for 16 hours at room temperature, the reaction mixture was filtered the filtrate concentrated under reduced pressure to approximately half the original volume. The mixture was then extracted with dichloromethane (3 x 200 mL). The organic fractions were combined, dried (MgSO4), and the filtrate concentrated under reduced pressure to afford crade material. A precipitate formed in the aqueous phase after sitting for several hours. This was filtered to afford additional crade material. The crude material was purfidied by column chromatography (2% methanol/CH2Cl2) to provide the title compound. MS (ESI+) m/z 203 (M+H)+; MS (ESI-) m/z 201 (M-H)"; 1H NMR (DMSO-d6, 300 MHz) δ 3.92 (s, 3H), 6.34 (s, 2H), 6.96 (dd, J 1.0, 7.8, IH), 7.31 (d, J 8.1, IH), 7.51 (t, J 7.9, IH), 8.82 (s, IH), 9.15 (s, IH); Anal. Calcd for CiiH10N2O2: C, 65.34; H, 4.99; N, 13.85. Found: C, 65.03; H, 4.95; N, 13.65.
Example 71 C methyl 5-({[(4-bromobenzyl)amino1carbonyl}amino)isoquinoline-3-carboxylate The product of Example 71B (0.156 g, 0.77 mmol) in THF:toluene (10 mL, 1:1) was treated with a solution of l-bromo-4-(isocyanatomethyl)benzene (0.201 g, 0.95 mmol) in THF (1.0 mL). After stining for 16 hours at room temperature, the reaction mixture was concentrated under reduced pressure and the residue was triturated with diethyl ether to
provide the title compound as a tan solid (0.272 g, 85%). MS (ESI+) m/z 415 (M+H)+; MS (ESI-) m/z 413 (M-H)"; 1H NMR (DMSO-d6, 300 MHz) δ 3.95 (s, 3H), 4.36 (d, J 5.6, 2H), 7.23 (t, J 5.6, IH), 7.33 (m, 2H), 7.56 (m, 2H), 7.76 (t, J 7.8, IH), 7.85 (d, J 8.3, IH), 8.41 (dd, J 1.5, 7.8, IH), 8.82 (s, IH), 9.06 (s, IH), 9.35 (s, IH); Anal. Calcd for C19H16BrN3O3: C, 55.09; H, 3.89; N, 10.14. Found: C, 55.06; H, 3.56; N, 9.84.
Example 72 methyl 5 -( { [(2,4-dichlorobenzyl)aminol carbonyl } amino)isoquinoline-3 -carboxylate The product of Example 71B (0.156 g, 0.77 mmol) in THF:toluene (10 mL, 1:1) was treated with a solution of 2,4-dichloro-l-(isocyanatomethyl)benzene (0.195 g, 0.97 mmol) in THF (1.0 mL). After stining for 16 hours at room temperature, the reaction mixture was concentrated under reduced pressure and the residue was triturated with diethyl ether to provide the title compound as a tan solid (0.226 g, 73%). MS (ESI+) m/z 404 (M+H)+; MS (ESI-) m/z 402 (M-H)"; 1H NMR (DMSO-d6, 300 MHz) δ 3.96 (s, 3H), 4.44 (d, J 6.0, 2H), 7.29 (m, IH), 7.48 (m, IH), 7.65 (d, J 1.7, IH), 7.76 (t, J 7.8, IH), 7.86 (d, J 7.8, IH), 8.41 (dd, J 1.0, 7.8, IH), 8.84 (s, IH), 9.15 (s, IH), 9.35 (s, IH); Anal. Calcd for C19H15Cl2N3O3: C, 56.45; H, 3.74; N, 10.39. Found: C, 56.08; H, 3.67; N, 10.03.
Example 73 N-(8-bromoisoquinolin-5-yl)-N'-(2,4-dichlorobenzyl)urea Example 73A 8-bromoisoquinolin-5-amine 5-Aminoisoquinoline (5.50 g, 38.1 mmol) and aluminium trichloride (15.1 g, 113 mmol) were combined and heated at 80 °C in a 3-necked flask equipped with a dropping funnel, stiner bar, needle and sintered glass tube. Bromine (3.04 g, 19.05 mmol) was dripped onto the sintered glass funnel and the vapour diffused onto the complex over a period of 2 hours. Heating was continued for 2 hours. The suspension was added portionwise to crushed ice and the solution basified with concentrated NaOH solution. The aqueous layer was extracted with ethyl acetate (4 x 100 mL) and the layers were separated. The organic layers were combined, dried (Na SO4), filtered and the filtrate was concentrated to give a grey solid. The grey solid was subjected to column chromatography (hexanes:ethyl acetate, 3:1) to provide the title compound (2.96 g, 35%). MS (ESI+) m/z 225 (M+H)+; MS (ESI-) m/z 223
(M-H)"; 1H NMR (CDC13, 300 MHz) δ 4.22 (br s, 2H), 6.83 (d, J 8.1, IH), 7.25 (s, IH), 7.54 (d, J 5.8, IH), 7.61 (d, J 8.1, IH), 8.59 (d, J 5.8, IH), 9.56 (s, IH).
Example 73 B N-(8-bromoisoquinolin-5-yl)-N'-(2,4-dichlorobenzyl)urea The product from Example 73A (120 mg, 0.52 mmol) in THF:toluene (1 :4, 5 mL) was treated with a solution of 2,4-dichloro-l-(isocyanatomethyl)benzene (108 mg, 0.52 mmol) in THF (0.5 mL). After stining for 16 hours at room temperature, the mixture was filtered and the filter cake dried under reduced pressure to provide the title compound as a white solid (178 mg, 78%). The hydrochloride salt was obtained by dissolving the product in hot THF and adding HCl in diethyl ether (2M). The yellow precipitate was collected by filtration and dried under reduced pressure. MS (ESI+) m/z 426 (M+H)+; MS (ESI-) m/z 424 (M-H)"; 1H NMR (DMSO-d6, 300 MHz) δ 4.42 (d, 5.8, 2H), 7.22 (t, J 5.8, IH), 7.65 (m, IH), 7.91 (d, J 8.5, IH), 8.02 (d, J 6.1, IH), 8.22 (d, J 8.5, IH), 8.69 (d, J 5.8, IH), 9.01 (s, IH), 9.44 (s, IH); Anal. Calcd for C17Hι2BrCl2N3O HCl 0.25EtOH: C, 44.41; H, 3.14; N, 8.88. Found: C, 44.80; H, 2.76; N, 8.84.
Example 74 N-(8-bromoisoquinolin-5-yl)-N'-(4-fluorobenzyl)urea The title compound was prepared using l-fluoro-4-(isocyanatomethyl)benzene, the product of Example 73 A and the procedure described in Example 73B (white solid, 108 mg, 65%). MS (ESI+) m/z 376 (M+H)+; MS (ESI-) m/z 374 (M-H)"; 1H NMR (DMSO-d6, 300 MHz) δ 4.35 (d, 5.8, 2H), 7.12 (m, IH), 7.18 (m, 2H), 7.40 (m, IH), 7.91 (d, J 8.5, IH), 7.99 (d, J 6.1, IH), 8.24 (d, J 8.5, IH), 8.69 (d, J 5.8, IH), 8.88 (s, IH), 9.44 (s, IH); Anal. Calcd for Cι7Hι3BrFN3O: C, 54.56; H, 3.50; N, 11.23. Found: C, 54.61; H, 3.35; N, 11.14.
Example 75 N-(8-bromoisoquinolin-5-yl)-N'-(3-fluorobenzyl)urea The title compound was prepared using l-fluoro-3-(isocyanatomethyl)benzene, the product of Example 73 A and the procedure described in Example 73 (white solid, 108 mg, 65%). MS (ESI+) m/z 376 (M+H)+; MS (ESI-) m/z 374 (M-H)"; 1H NMR (DMSO-d6, 300 MHz) δ 4.39 (d, 5.8, 2H), 7.09 (m, IH), 7.17 (m, 2H), 7.40 (m, IH), 7.91 (d, J 8.5, IH), 8.01
(d, J 6.1, IH), 8.23 (d, J 8.5, IH), 8.69 (d, J 5.8, IH), 8.93 (s, IH), 9.44 (s, IH); Anal. Calcd for Cι7Hι3BrFN3O: C, 54.56; H, 3.50; N, 11.23. Found: C, 54.64; H, 3.33; N, 11.19.
Example 76 N-[l-(4-chlorophenyl)-l-methylethyll-N'-isoquinolin-5-ylurea
Example 76A 2-(4-chlorophenyl)-2-methylpropanoyl chloride 2-(4-Chlorophenyl)-2-methylpropanoic acid (3.85 g, 19.4 mmol) in toluene (5 mL) was treated with thionyl chloride (5.00g, 3.1 mL) and heated at 80 °C for 2 hours. The cooled solution was concentrated under reduced pressure to provide a yellow oil containing a crystalline residue. The mixture was dissolved in hexane, filtered and the filtrate concentrated to provide the compound as a pale yellow oil (4.10 g, 98%).
Example 76B 1 -chloro-4-(l -isocyanato- 1 -methylethyl)benzene The product of Example 76A (4.00 g, 19.4 mmol) in acetone (9 mL) at 0 °C was treated with a solution of sodium azide (1.27 g) in water (9 mL) dropwise over 15 minutes. After stining for 30 minutes at 0°C, the mixture was extracted with toluene (20 mL). The organic extract was dried with MgSO4, filtered, and the filtrate heated at reflux for 1 hour. The mixture was allowed to cool to room temperature and was concentrated under reduced pressure to provide the title compound as a pale yellow oil (3.45 g, 96%).
Example 76C N- [ 1 -(4-chlorophenyl)- 1 -methylethyl] -N'-isoquinolin-5 -ylurea The title compound was prepared using 5-aminoisoquinoline, the product of Example 76B and the procedure described in Example 73B except that THF was used as solvent. The product was recrystallized from ethyl acetate to provide the title compound as a white solid (840 mg, 34%). MS (ESI+) m/z 355 (M+H)+; MS (ESI-) m/z 353 (M-H)"; 1H NMR (DMSO- de, 300 MHz) δ 1.63 (s, 6H), 7.23 (s, IH), 7.37 (d, J 8.8, 2H), 7.47 (d, J 8.8, 2H), 7.73 (t, J 9.2, IH), 7.93 (d, J 8.1, IH), 8.25 (d, J 6.4, IH), 8.39 (d, J 8.1, IH), 8.67 (d, J 6.4, IH), 8.87
(s, IH), 9.58 (s, IH); Anal. Calcd for Cι9Hι8ClN3O HCl 0.25EtOH: C, 60.40; H, 5.33; N, 10.54. Found: C, 60.82; H, 5.23; N, 10.45.
Example 77 N-(4-bromobenzyl)-N'-{6-[2,2,2-trifluoro-l-hydroxy-l-(trifluoromethyl)ethyl1isoquinolin-5- yljurea
Example 77A 2-(5-aminoisoquinolin-6-yl)- 1 , 1 , 1 ,3,3 ,3-hexafluoropropan-2-ol 5-Aminoisoquinoline (288 mg, 2.00 mmol) and p-toluenesulfonic acid (5 mg) were combined and treated with hexafluoroacetone hexahydrate (0.29 mL, 462 mg, 2.10 mmol). The mixture was stined in a sealed pressure tube and heated to 150 °C for 18 hours. The reaction was allowed to cool to room temperature and partitioned between CH2C12 (20 mL) and water (10 mL). The organic layer was passed thru Na2SO and then filtered through activated charcoal. The charcoal was washed with methanol (3 x 10 mL) and the filtrate and washingswere collected and concenfrated under reduced pressure to provide the title compound (130 mg, 30%) as a yellow solid. MS (ESI+) m/z 311 (M+H)+; MS (ESI-) m/z 309 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 6.64 (br s, 2H), 7.30 (d, J 8.7, IH), 7.40 (d, J 8.7, IH), 8.09 (d, J 6.1, IH), 8.49 (d, J 6.1, IH), 9.14 (s, IH); 13C NMR (DMSO, 100 MHz) δ 107.02, 110.60, 113.95 (1), 115.46 (1), 122.03, 124.92, 124.92, 125.94, 126.98 (1), 128.17, 142.43 (1), 144.82, 151.85 (1).
Example 77B N-(4-bromobenzyl)-N'-{6-[2,2,2-trifluoro-l-hydroxy-l-(trifluoromethyl)ethyllisoquinolin-5- yljurea The title compound was prepared using l-bromo-4-(isocyanatomethyl)benzene, the product of Example 77A and the procedure described in Example 73B except that THF was used as solvent (white solid, 840 mg, 34%). MS (ESI+) m/z 376 (M+H)+; MS (ESI-) m/z 374 (M-H)"; 1H NMR (DMSO-d6, 300 MHz) δ 4.35 (d, 5.8, 2H), 7.12 (m, IH), 7.18 (m, 2H), 7.40 (m, IH), 7.91 (d, J 8.5, IH), 7.99 (d, J 6.1, IH), 8.24 (d, J 8.5, IH), 8.69 (d, J 5.8, IH), 8.88 (s, IH), 9.44 (s, IH); Anal. Calcd for C20Hι4BrF6N3O2: C, 46.00; H, 3.50; N, 11.23. Found: C, 54.61; H, 3.35; N, 11.14.
Example 78 N-(4-bromobenzyl)-N'- 1 H-indol-4-ylurea 4-aminoindole (0.13 g, 1 mmol) in THF (3 mL) was freated with l-bromo-4- (isocyanatomethyl)benzene (0.23 g, 1.1 mmol) for 3 hours at ambient temperature. Hexane was added to the reaction mixture to precipitate 0. 26 g of the title compound as a tan solid, mp 198 °C; 1H MR (300 MHz, DMSO-d6) δ 4.30 (d, 2H), 6.51 (t, IH), 6.89 (t, IH), 6.95 (d, 2H), 7.29 (t, IH), 7.31 (d, 2H), 7.55 (d, 2H), 7.62 (dd, IH), 8.3 (s, IH), 11.04 (s, IH); MS (DCI+) m/z 346 (M+H); Anal. Calcd. For Cι6Hι4N3BrO: C, 55.83; H, 4.10; N, 12.21. Found: C, 55.71, H, 4.12; N, 12.01.
Example 79 N-(3 ,4-dichlorobenzyl)-N'- 1 H-indol-4-ylurea 4-Aminoindole (0.13 g, 1 mmol) in THF (3 mL) was treated with l,2-dichloro-4- (isocyanatomethyl)benzene (0.22 g, 1.1 mmol) for 3 h at ambient temperature. Hexane was added to the reaction mixture to precipitate 0. 25 g of the title compound as a tan solid, mp 201 °C; 1H NMR (300 MHz, DMSO-d6) δ 4.23 (d, 2 H), 6.36 (s, IH), 6.54 (t, IH), 7. 0 (dd, 1 H), 7.25 (m , 2H), 7.30 (d, 2H), 7.45 (d, IH), 7.6 (m, 2H), 8.31 (s, IH), 10.87 (s, IH) MS (DCI+) m/z 336 (M+H); Anal. Calcd. For C16Hι3N3Cl2O: C, 57.50; H, 3.92; N, 12.57. Found: C, 56.94, H, 3.68; N, 11.97.
Example 80 N- 1 H-indol-4-yl-N'-[4-(trifluoromethyl)benzyllurea
Example 80A 4-isocyanato- 1 H-indole 4-Aminoindole (0.5 g, 3.78 mmol) in toluene (50 mL) was treated with friphosgene (0.4 g, 1.35 mmol) and heated at reflux for 5 hours. The reaction mixture was allowed to cool to room temperature and concentrated under reduced pressure. The residue was taken up in diethyl ether, filtered, and the filtrate was concentrated under reduced pressure to provide title compound as yellow oil (0.4 g). 1H NMR (300 MHz, CDCl3-d6) δ 6.62 (m, IH), 6.84 (d, IH), 7.1 (t, IH), 7.23 (m, 2H), 8.3 (s, IH).
Example 8 OB N-lH-indol-4-yl-N'-[4-(trifluoromethyl)benzyl1urea The product of Example 80A (0.16 g, 1 mmol) in THF (3 mL) was treated with 4- (trifluoromethyl)benzylamine (0.19 g, 1.1 mmol) at ambient temperature. After stining for 3 hours, hexane was added to the reaction mixture to precipitate the title compound as a solid, mp 178 °C. 1H NMR (300 MHz, DMSO-d6) δ 4.43 (d, 2H), 6.53 (t, IH), (6.98 m, 3H), 7.26 (t, IH), 7.57 (d, 2H), 7.62 (d, IH), 7.71 (d, 2H), 8.37 (s, IH), 11.04 (s, IH); MS (DCI+) m/z 334 (M+H); Anal. Calcd. For d7Hι4N3F3O: C, 61.26; H, 4.23; N, 12.61. Found: C, 61.28, H, 3.83; N, 12.31.
Example 81 N- 1 H-indol-4-yl-N'-[4-(trifluoromethoxy)benzyllurea 4-(Trifluoromethoxy)benzylamine (0.2 lg, 1.1 mmol) and the product of Example 80A (0.16 g, 1 mmol) were treated as described in Example 80B to provide the title compound (0.23 g). mp 177 °C; 1H NMR (300 MHz, DMSO-d6) δ 4.36 (d, 2 H), 6.52 (m, IH), 6.95 (m, 3H), 7.24 (t, 1 H), 7.36 (d, 2H), 7.48 (d, 2H), 7. 63 (dd, IH), 8.32 (IH), 11.06 (s, IH); MS (DCI+) m/z 349.9 (M+H)+; Anal. Calcd. For d7Hι4N3F3O2: C, 58.63, H, 4.34, N, 12.07. Found: C, 58.51, H, 3.98, N, 12.03.
Example 82 N- [3 -fluoro-4-(trifluoromethyl)benzyll -N'- 1 H-indol-4-ylurea 3-Fluoro-4-(trifluoromethyl)benzylamine (0.22g, 1.1 mmol) and the product of Example 80A (0.16 g, 1 mmol) were freated as described in Example 80B to provide the title compound (0.24 g). mp 198 °C; 1H NMR (300 MHz, DMSO-d6) δ 4.43 (d, 2H), 6.52 (m, IH), 6.98 (m, 3 H), 7.26 (m, IH), 7.39 (m, 2 H), 7.57 (dd, IH), 7.77 (t, IH), 8.40 (s, IH), 11.05 (s, IH); MS (DCI+) m/z 349.9 (M+H)+. Anal. Calcd. for C17H13N3F4O: C, 58.12; H, 3.73; N, 11.96. Found C, 58.52; H, 3.99; N, 11.55.
Example 83 l-(4-Chloro-3-trifluoromethyl-benzyl)-3-(lH-indol-4-yl)-urea
4-Chloro-3-(trifluoromethyl)benzylamine (0.27g, 1.1 mmol) and the product of Example 80A (0.16 g, 1 mmol) were treated as described in Example 80B to provide the title compound, mp 197 °C; 1H NMR (300 MHz, DMSO-d6) δ 4.42 (d, 2H), 6.52 (m, IH), 6.96 (m, 3H), 7.25 (m, IH), 7.56 (dd, IH), 7.67 (dd, IH), 7.70 (t, IH), 7.81 (s, IH), 8.37 (s, IH), 11.06 (s, IH); MS (DCI+) m/z 368 (M+H). Anal. Calcd. for Cι7Hι3N3ClF3O:.C, 55.52, H, 3.56; N, 11.43. Found C, 55.46; H, 3.65; N, 11.58.
Example 84 1 -(4-Chloro-3 -trifluoromethyl)-3 -(1 H-indol-4-yl)-urea 4-Chlorobenzylamine (0.2g, 1.4 mmol) and the product of Example 80A (0.2 g, 1.27 mmol) were treated as described in Example 80B to provide the title compound, mp 205 °C. 1H NMR (300 MHz, DMSO-d6) δ 4.32 (d, 2H), 6.52 (m, IH), 6.87 (m, IH), 6.97 (m, 2H), 7.25 (m, IH), 7.37 (m, 4H), 7.6 (m, IH), 8.30 (s, IH), 11.06 (s, IH). MS (DCI+) m/z 300 (M+H). Anal. Calcd. for CιeHι4N3Cl3O: C, 64.11; H, 4.71; N, 14.02. Found: C, 63.99; H, 4.70; N, 13.77.
Example 85 N-[2-(2,4-dichlorophenyl)ethyll-N'-lH-indol-4-ylurea 2-(2,4-Dichlorophenyl)ethylamine (0.21 g, 1.1 mmol) and the product of Example 80A (0.16 g, 1. mmol) were treated as described in Example 80B to provide the title compound, mp 170 °C; 1H NMR (300 MHz, DMSO-d6) δ 2.90 (m, 2H), 3.31 (m, 2H), 6.47 (m, 2H), 6.93 (m, 2H), 7.23 (m, IH), 7.40 (m, 2H), 7.60 (m, 2H), 8.15 (s, IH), 11.02 (s, IH). MS (DCI+) m/z 347 (M+H). Anal. Calcd. for Cι7Hi5N3Cl2O: C, 58.63; H, 4.34; N, 12.07. Found: C, 58.49; H, 4.49; N, 12.38.
Example 86 4-(trifluoromethyl)benzyl 1 H-indol-4-ylcarbamate [4-(Trifluoromethyl)phenyl]methanol (0.09 g, 0.55 mmol) and the product of Example 80 A (0.08 g, 0.5 mmol) in THF (5 mL) were heated at reflux for 16 hours with a catalytic amount of triethylamine. The reaction mixture was concentrated under reduced pressure and the residue was purified by chromatography on silica gel eluting with 50% hexane:ethylacetate to provide the title compound as an oil (0.09 g). lH NMR (300 MHz,
DMSO-d6) δ 5.32 (s, 2H), 6.73 (s, IH), 7.0 (t, IH), 7.11 (d, IH), 7.23 (t, IH), 7.38 (d, IH), 7.66 (d, 2H), 7.78 (d, 2H), 9.52 (s, IH), 11.08 (s, IH). Anal. Calcd. for d7Hι3N2F3O2: C, 61.08; H, 3.92; N, 8.38. Found: C, 60.97; H, 4.21; N, 8.17.
Example 87 4-(trifluoromethoxy)benzyl 1 H-indol-4-ylcarbamate [4-(Trifluoromethoxy)phenyl]methanol (0.13 g, 0.7 mmol) and the product of Example 80A (0.1 g, 0.63 mmol) in THF (5 mL) were heated at reflux for 16 hours with a catalytic amount of triethylamine. The reaction mixture was concentrated under reduced pressure and the residue was triturated with diethyl ether/hexane to provide the title compound as tan crystals (0.12 g). 1H NMR (300 MHz, DMSO-d6) δ 5.21 (s, 2H), 6.73 (s, IH), 7.0 (t, IH), 7.1 (d, IH), 7.23 (t, IH), 7.38 (dd, IH), 7.4 (d, 2H), 7.6 (d, 2H), 9.5 (s, IH), 11.06 (s, IH). ). Anal. Calcd. for Ci7Hi3N2F3O3.0.25 H2O: C, 57.55; H, 3.84; N, 7.90. Found: C, 57.42; H, 3.81; N, 7.32.
Example 88 N-(4-bromobenzyl)-N'-(2,3-dimethyl-lH-indol-4-yl)urea 2,3-Dimethyl-4-aminoindole (0.11 g, 0.7 mmol) in THF (3 mL) was treated with 1- bromo-4-(isocyanatomethyl)benzene (0.17 g, 0.8 mmol) at ambient temperature. After stining for 3 hours at ambient temperature, hexane was added to the reaction mixture to precipitate the title compound as a tan solid (0.12 g). mp 190 °C 1H NMR (300 MHz, DMSO-d6) δ 2.24 (s, 3H), 2.25 (s, 3H), 4.25 (d, 2H), 6.51 (t, IH), 6.82 (t, IH), 6.85 (d, 2H), 6.95 (m, 2H), 7.25 (d, 2H), 7.53 (d, 2H), 7.78 (s, IH), 11.04 (s, IH); MS (DCI+) m/z 346 (M+H)+; Anal. Calcd. for d8Hι8N3BrO: C, 58.08; H, 4.87; N, 11.29. Found: C, 57.97, H, 4.92; N, 11.30.
Example 89 N-(4-bromobenzyl)-N'- 1 H-indazol-4-ylurea
Example 89A 1 H-indazol-4-amine
4-Nitro-lH-indazole (1.63 g, 10 mmol) in ethanol (100 mL) was treated with BiCi3 (3.46 g, 11 mmol) followed by a portionwise addition of NaBH4. The reaction mixture was stined at ambient temperature for 20 minutes and filtered through Celite. The filtrate was evaporated under reduced pressure and the residue was partitioned between ethyl acetate/dilute NaHCO3 solution. The organic layer was dried over MgSO4, filtered, and the filtrate concentrated under reduced pressure to provide the title compound as a tan solid (1.0 g). 1H NMR (300 MHz, DMSO-d6) δ 5.64 (s, 2H), 6.1 (d, IH), 6.6 (d, IH), 6.98 (t, IH), 8.03 (s, IH), 12.6 (s, IH).
Example 89B N-(4-bromobenzyl)-N'-lH-indazol-4-ylurea hydrochloride salt The product of Example 89A (0.16 g, 1.2 mmol) in THF (10 mL) was treated with 1- bromo-4-(isocyanatomethyl)benzene (0.52 g, 2.4 mmol) at room temperature. After stining for 16 hours, the reaction mixture was concentrated and the residue was treated with methanol (20 mL) and 3N HCl (10 mL) and heated at reflux for 3 hours. The reaction mixture was allowed to cool to room temperature, evaporated under reduced pressure, and the residue was treated with water and the pH adjusted to 5. The obtained compound was purified by chromatography eluting with 5% of ethanol :methylene chloride and converted to HCl salt mp 126 °C. 1H NMR (300 MHz, DMSO-d6) δ 4.32 (d, 2H), 7.0 (t, IH), 7.05 (d, IH), 7.18 (t, IH), 7.3 (d, 2H), 7.55 (d, 2H), 7.61 (d, IH), 8.16 (s, IH), 8.92 (s, IH); Analysis Calcd for d5Hι3N4BrO HCl: C, 47.21; H, 3.70; N, 14.68. Found C, 46.99; H, 4.08; N, 14.13.
Example 90 N-(3 ,4-dichlorobenzyl)-N'- 1 H-indazol-4-ylurea
Example 90A methyl 4-nitro- 1 H-indazole- 1 -carboxylate Sodium hydride (0.3 g, 12.5 mmol ) suspended in DMF (5 mL) at 0 °C was treated with 4-nitro- 1 H-indazole (1.33 g, 10 mmol). After stining at room temperature for 1 hour, the mixture was treated with methylchloroformate (0.9 mL). After stining at room temperature for 3 hours, the mixture was carefully treated with water and filtered to provide the title
compound (1.2 g). 1H NMR (300 MHz, DMSO-d6) δ 4.1 9 (s, 3H), 7.9 (t, IH), 8.38 (d, IH), 8.62 (d, IH), 8.85 (s, IH).
Example 90B methyl 4-amino- 1 H-indazole- 1 -carboxylate The product of Example 90A (1.66 g, 7.5 mmol) in ethanol (20 mL) was treated with BiCl3 (8.2 g, 2.6 mmol) followed by the addition of NaBH4 (1.13 g, 30.5 mmol). The reaction mixture was stined at room temperature for 20 minutes, filtered through Celite, and the filtrate was evaporated under reduced pressure. The residue was partitioned between ethyl acetate/dilute NaHCO3 solution. The organic phase was separated, dried over MgSO4, filtered and the filtrate concentrated under reduced pressure to provide the title compound (1.2 g). 1H NMR (300 MHz, DMSO-d6) δ 6.1 (s, 2H), 6.41 (dd, IH), 7.21 (m, 2H), 8.42 (s, IH).
Example 90C methyl 4-( { [(3 ,4-dichlorobenzyl)aminol carbonyl } amino)- 1 H-indazole- 1 -carboxylate The product of Example 90B (0.19 g, 1 mmol) in THF (3 mL) was freated with 1,2- dichloro-4-(isocyanatomethyl)benzene (0.22 g, 1.1 mmol) at ambient temperature. After stining for 3 hours, hexane was added to the reaction mixture to precipitate the title compound as a tan solid (0. 25 g). 1H NMR (300 MHz, DMSO-d6) δ 4.38 (d, 2H), 6.97 (t, 1H): 7.36 (dd, IH), 7.48 (t, IH), 7.6 (m, 2H), 7.7 (d, IH), 7.8 (d, IH), 8.45 (s, IH), 9.16 (s, IH).
Example 90D N-(3 ,4-dichlorobenzyl)-N'- 1 H-indazol-4-ylurea The product of Example 90C (0.25 g, 0.6 mmol) was heated at reflux in methanol (5 mL) and 0.5N KOH (1 mL) for 0.5 hours. The reaction mixture was allowed to cool to ambient temperature, pH was adjusted to 5, and volume was reduced under reduced pressure. Methylene chloride and water was added, the phases were separated, and the organic phase concentrated under reduced pressure to provide the title compound. 1H NMR (300 MHz, DMSO-de) δ 4.38 (d, 2H), 6.9 (t, IH), 7.05 (d, IH), 7.19 (t, IH), 7.35 (dd, IH), 7.6 (m, 2 H), 8.06 (s, IH), 8.82 (s, IH). MS (DCI+) m/z 336 (M+H)+; Anal. Calcd. For Cι5Hι3N4Cl2O: C, 53.75; H, 3.62; N, 16.72. Found: C, 53.84, H, 3.44; N, 16.88.
Example 97 N-(l,r-biphenyl-4-ylmethyl)-N'-5-isoquinolinylurea The title compound was prepared using the procedure described in Example IB using l,r-biphenyl-4-ylmethylamine instead of 2-(3-fluorophenyl)ethylamine. NMR (DMSO-d6) δ 9.78 (s, IH), 9.57 (s, IH), 8.69 (s, 2H), 8.53 (d, IH), 8.11 (d, IH), 7.87 (t, IH), 7.64 (m, 5H), 7.45 (m, 4H), 7.35 (m, IH), 4.43 (d, 2H); MS (ESI) (M+H)+ 354.
Example 98 N-[3-fluoro-4-(trifluoromethyl)benzyl1-N'-5-isoquinolinylurea The title compound was prepared using the procedure described in Example IB using 3-fluoro-4-(trifluoromethyl)benzylamine instead of 2-(3-fluorophenyl)ethylamine. NMR (DMSO-d6) δ 9.78 (s, IH), 9.74 (s, IH), 8.77 (d, IH), 8.71 (d, IH), 8.61 (d, IH), 8.08 (d, IH), 7.87 (m, 2H), 7.78 (d, IH), 7.43 (m, 2H), 4.49 (d, 2H); MS (ESI) (M+H)+ 364.
Example 99 N-5-isoquinolinyl-N'-(3-methylbenzyl)urea The title compound was prepared using the procedure described in Example IB using 3-methylbenzylamine instead of 2-(3-fluorophenyl)ethylamine. NMR (DMSO-d6) δ 9.68 (s, IH), 9.18 (s, IH), 9.23 (s, IH), 8.66 (d, IH), 8.37 (d, IH), 8.48 (d, IH), 8.04 (d, IH), 7.85 (t, IH), 7.35 (t, IH), 7.23 (t, IH), 7.7.26 (m, IH), 7.06 (m, 1H),4.28 (d, 2H), 2.31 (s, 3H); MS (ESI) (M+H)+ 291.
Example 100 N-[4-fluoro-3-(trifluoromethyl)benzyll-N'-5-isoquinolinylurea The title compound was prepared using the procedure described in Example 61B using 4-fluoro-3-(trifluoromethyl)benzylamine instead of 4-cyanobenzyl alcohol. NMR (DMSO-d6) δ 9.31 (s, IH), 8.84 (s, IH), 8.65 (d, 2H), 7.95 (d, 2H), 7.86 (m, 2H), 7.60 (t, IH), 7.50 (d, IH), 7.17 (t, IH), 4.43 (d, 2H); MS (ESI) (M+H)+ 364.
Example 101 N-(3-chloro-4-fluorobenzyl)-N'-5-isoquinolinylurea
The title compound was prepared using the procedure described in Example 61 B using 3-chloro-4-fluorobenzylamine instead of 4-cyanobenzyl alcohol. NMR (DMSO-d6) δ 9.72 (s, IH), 9.42 (s, IH), 8.68 (d, IH), 8.58 (d, 2H), 8.05 (d, IH), 7.88 (t, IH), 7.67 (m, 2H), 7.20 (m, 2H), 4.38 (d, 2H); MS (ESI) (M+H)+ 330.
Example 102 N-5-isoquinolinyl-N'-pentylurea The title compound was prepared using the procedure described in Example 60F using 1-isocyanatopentane and 5-isoquinolinamine instead of the product from Example 60E and l-bromo-4-(isocyanatomethyl)benzene. NMR (DMSO-d6) δ 9.70 (s, IH), 9.19 (s, IH),
8.64 (d, IH), 8.57 (m, 2H), 8.01 (d, IH), 7.84 (d, IH), 7.85 (t, IH), 6.95 (m, IH), 3.17 (m, 2H), 2.48 (m, 2H), 1.23 (m, 4H), 0.86 (M, 3H); MS (ESI) (M+H)+ 339.
Example 103 N-5-isoquinolinyl-N'-octylurea The title compound was prepared using the procedure described in Example 60F using 1-isocyanatooctane and 5-isoquinolinamine instead of the product from Example 60E and l-bromo-4-(isocyanatomethyl)benzene. NMR (DMSO-d6) δ 9.53 (s, IH), 9.23 (s, IH),
8.65 (d, IH), 8.99 (d, IH), 8.05 (d, IH), 7.86 (t, IH), 7.01 (m, IH), 3.15 (m, 2H), 1.51 (m, 2H), 1.28 (m, 5H), 0.83 (m, 3H); MS (ESI) (M+H)+ 300.
Example 104 N-(l-adamantylmethyl)-N'-5-isoquinolinylurea The title compound was prepared using the procedure described in Example 6 IB using l-(l-adamantyl)methanamine instead of 4-cyanobenzyl alcohol. NMR (DMSO-d6) δ 9.68 (s, IH), 9.20 (s, IH), 8.64 (d, 2H), 8.60 (d, IH), 8.65 (m, IH), 8.00 (d, IH), 7.83 (t, IH), 6.95 (m, IH), 2.90 (d, 2H), 1.99 (m, 2H), 1.64 (m, 5H), 1.53 (m, 5H); MS (ESI) (M+H)+ 336.
Example 105 N-(cyclohexylmethyl)-N'-5-isoquinolinylurea The title compound was prepared using the procedure described in Example 61B using 1-cyclohexylmethanamine instead of 4-cyanobenzyl alcohol. NMR (DMSO-d6) δ 9.70
(s, IH), 9.18 (s, IH), 8.67 (d, 2H), 8.57 (m, 3H), 8.00 (d, IH), 7.84 (t, IH), 7.00 (m, IH), 3.06 (m,2H), 1.70 (m, 5H), 1.43(m, IH), 1.21 (m, 3H). 0.97 (m, 2H); MS (ESI) (M+H)+ 284.
619946 Example 107 N-[(6,6-dimethylbicyclo[3.1. nhept-2-yl)methyll-N'-5-isoquinolinylurea The title compound was prepared using the procedure described in Example 6 IB using [6,6-dimethylbicyclo[3.1.1]hept-2-yl]methylamine instead of 4-cyanobenzyl alcohol. NMR (DMSO-d6) δ 9.74 (s, IH), 9.28 (s, IH), 8.64 (d, IH), 8.60 (m, 2H), 8.03 (s, IH), 7.85 (t, IH), 7.08 (m, IH), 3.17 (m, 2H), 2.38 (m, IH), 2.18 (m,3H), 2.00 (m, IH), 1.88 (m, 5H), 1.20 (s, 3H), 1.03 (s, 3H); MS (ESI) (M+H)+ 324.
Example 108 N-5-isoquinolinyl-N'-[4-(l-pynolidinyl)benzyllurea The title compound was prepared using the procedure described in Example 6 IB using 4-(l-pynolidinyl)benzylamine instead of 4-cyanobenzyl alcohol. NMR (DMSO-de) δ 9.81 (s, IH), 9.58 (s, IH), 8.80 (d, IH), 8.71 (m, 2H), 8.11 (d, IH), 7.93 (t, IH), 7.48 (bs, IH), 7.20 (m, 2H), 6.65 (m, 2H), 4.43 (d,2H), 3.13 (m, 4H), 1.97 (m, 4H); MS (ESI) (M+H)+ 347.
Example 109 N-r4-(l-azepanyl)benzyll-N'-5-isoquinolinylurea The title compound was prepared using the procedure described in Example 6 IB using 4-(l-azepanyl)benzylamine instead of 4-cyanobenzyl alcohol. NMR (DMSO-d6) δ 9.80 (s, IH), 9.58 (s, IH), 8.79 (m, IH), 8.71 (m, 2H), 8.11 (d, IH), 7.95 (t, IH), 7.48 (bs, IH), 7.20 (m, 2H), 6.85 (bs, 2H), 4.23 (d,2H), 3.45 (m, 4H), 1.69 (bs, 4H), 1.50 (bs, 4H); MS (ESI) (M+H)+ 375.
Example 110 N-[3-fluoro-4-(l-pynolidinyl)benzyl1-N'-5-isoquinolinylurea The title compound was prepared using the procedure described in Example 6 IB using 3-fluoro-4-(l-pyπolidinyl)benzylamine instead of 4-cyanobenzyl alcohol. NMR (DMSO-de) δ 9.82 (s, IH), 9.72 (s, IH), 8.85 (d, IH), 8.70 (m, 2H), 8.14 (d, IH), 7.95 (t,
IH), 7.64 (bs, IH), 7.03 (m, 2H), 6.75 (t, IH), 4.25 (d,2H), 3.30 (m, 4H), 1.74 (m, 4H); MS (ESI) (M+H)+ 365.
Example 111 N-[4-(l-azepanyl)-3-fluorobenzyll-N'-5-isoquinolinylurea The title compound was prepared using the procedure described in Example 6 IB using 4-(l-azepanyl)-3-fluorobenzylamine instead of 4-cyanobenzyl alcohol. NMR (DMSO- d6) δ 9.85 (s, IH), 9.77 (s, IH), 8.71 (m, 2H), 8.13 (d, IH), 7.94 (t, IH), 7.77 (bs, IH), 7.64 (bs, IH), 7.10-6.90 (m, 2H), 4.28 (d,2H), 3.35 (m, 4H), 1.77 (m, 4H), 1.58 (m, 4H); MS (ESI) (M+H)+ 393.
Example 112 N-[4-(l-azocanyl)benzyll-N'-5-isoquinolinylurea The title compound was prepared using the procedure described in Example 6 IB using 4-(l-azocanyl)benzylamine instead of 4-cyanobenzyl alcohol. NMR (DMSO-d6) δ 9.85 (s, IH), 9.67 (s, IH), 8.70 (s, IH), 8.77 (m, 2H), 8.13 (s, IH), 7.95 (t, IH), 7.45 (bs, IH), 7.17(d, 2H), 6.63 (d, 2H), 4.23 (d,2H), 3.43 (m, 6H), 1.68 (m, 3H), 1.44 (m, 5H); MS (ESI) (M+H)+ 389.
Example 114 N- 1 H-indazol-4-yl-N'- r4-( 1 -piperidinyl)benzyl1urea The title compound was prepared using the procedure described in Example 89B using l-[4-(isocyanatomethyl)phenyl]piperidine instead of l-bromo-4- (isocyanatomethyl)benzene. NMR (DMSO-d6) δ 9.23 (s, IH), 9.30 (s, IH), 7.78 (d, 2H), 7.64 (d, IH), 7.63 (d, 2H), 7.53 (s, IH), 7.38 (bs, IH), 7.19 (t, IH), 7.06 (d, IH), 4.39 (d,2H), 3.53 (m, 4H), 1.97 (bs, 4H), 1.64 (bs, 2H); MS (ESI) (M+H)+ 350.
Example 115 N- [3 -fluoro-4-( 1 -piperidiny l)benzyl] -N'- 1 H-indazol-4-ylurea The title compound was prepared using the procedure described in Example 89B using l-[2-fluoro-4-(isocyanatomethyl)phenyl]piperidine instead of l-bromo-4- (isocyanatomethyl)benzene. NMR (DMSO-d6) δ 9.17 (s, IH), 8.28 (s, IH), 7.63 (d, IH),
7.40-7.15 (m, 6H), 7.05 (d, IH), 4.37 (s,2H), 3.17 (m, 4H), 1.77 (m, 4H), 1.58 (m, 2H).4H), 1.64 (bs, 2H); MS (ESI) (M+H)+ 368.
Example 116 N- 1 H-indazol-4-yl-N'- [4-(l -pynolidinyl)benzyllurea The title compound was prepared using the procedure described in Example 89B using l-[4-(isocyanatomethyl)phenyl]pynolidine instead of l-bromo-4- '
(isocyanatomethyl)benzene. NMR (DMSO-d6) δ 8.83 (s, IH), 8.15 (s, IH), 8.01 (bs, IH),
7.63 (d, IH), 7.21 (m, 3H), 7.04 (d, IH), 6.70 (bs, IH), 6.63 (m, IH), 6.56 (d, IH), 4.12 (d,2H), 3.13 (m, 4H), 1.97 (m, 4H); MS (ESI) (M+H)+ 336.
Example 117 N- [3 -fluoro-4-( 1 -pynolidinyl)benzyll -N'- 1 H-indazol-4-ylurea The title compound was prepared using the procedure described in Example 89B using l-[2-fluoro-4-(isocyanatomethyl)phenyl]pyrrolidine instead of l-bromo-4- (isocyanatomethyl)benzene. NMR (DMSO-d6) δ 9.89 (s, IH), 8.17 (s, IH), 7.63 (d, IH), 7.19 (t, IH), 7.07 (m, IH), 7.02 (d, IH), 6.99(s, IH), 6.93 (bs, 2H), 6.74 (t, IH), 4.23 (s,2H), 3.29 (m, 4H), 1.87 (m, 4H); MS (ESI) (M+H)+ 354.
Example 118 N-[4-(l-azepanyl)benzyl1-N'-lH-indazol-4-ylurea The title compound was prepared using the procedure described in Example 89B using l-[4-(isocyanatomethyl)phenyl]azepane instead of l-bromo-4- (isocyanatomethyl)benzene. NMR (DMSO-d6) δ 8.86 (s, IH), 8.17 (s, IH), 8.00 (bs, IH),
7.64 (d, IH), 7.20 (m, 3H), 7.02 (d, IH), 6.25 (bs, 2H), 6.70 (d, IH), 4.21 (s,2H), 1.88 (m, 6H), 1.47 (m, 6H); MS (ESI) (M+H)+ 364.
764293 Example 119 N- [4-( 1 -azepanyl)-3 -fluorobenzyll -N'- 1 H-indazol-4-y lurea The title compound was prepared using the procedure described in Example 89B using l-[2-fluoro-4-(isocyanatomethyl)phenyl]azepane instead of l-bromo-4- (isocyanatomethyl)benzene. NMR (DMSO-d6) δ 9.04 (s, IH), 8.13 (s, IH), 7.63 (d, IH),
7.19 (t, IH), 7.10 (s, IH), 7.02 (d, 4H), 4.23 (s,2H), 3.37 (m, 4H), 1.79 (m, 4H), 1.57 (m, 4H); MS (ESI) (M+H)+ 382.
Example 120 N-(l-methyl-lH-indazol-4-yl)-N'-[4-(l-piperidinyl)benzyllurea The title compound was prepared using the procedure described in Example 89B using l-[4-(isocyanatomethyl)phenyl]piperidine and 1 -methyl- lH-indazol-4-amine instead of l-bromo-4-(isocyanatomethyl)benzene and the product from Example 89 A. NMR (DMSO- de) δ 9.43 (s, IH), 8.37 (s, IH), 7.82 (d, 2H), 7.69 (d, IH), 7.63 (m, 3H), 7.22 (t, IH), 7.11 (t, IH), 4.40 (d,2H), 3.99 (s, 3H), 3.50 (m, 4H), 1.98 (m, 4H), 1.67 (m, 2H); MS (ESI) (M+H)+ 364.
Example 121 N- [3 -fluoro-4-( 1 -piperidinyl)benzyll -N'-( 1 -methyl- 1 H-indazol-4-yl)urea The title compound was prepared using the procedure described in Example 89B using l-[2-fluoro-4-(isocyanatomethyl)phenyl]piperidine and 1 -methyl- lH-indazol-4-amine instead of l-bromo-4-(isocyanatomethyl)benzene and the product from Example 89A. NMR (DMSO-de) δ 9.19 (s, IH), 8.22 (s, IH), 7.25 (m, 4H), 7.18 (d, 2H), 4.31 (s,2H), 4.00 (s, 3H), 3.15 (m, 4H), 1.77 (m, 4H), 1.66 (m, 2H); MS (ESI) (M+H)+ 382.
Example 122 N-( 1 -methyl- 1 H-indazol-4-yl)-N'- [4-( 1 -pyπolidinyl)benzyl]urea The title compound was prepared using the procedure described in Example 89B using l-[4-(isocyanatomethyl)phenyl]pynolidine and 1 -methyl- lH-indazol-4-amine instead of l-bromo-4-(isocyanatomethyl)benzene and the product from Example 89A. NMR (DMSO-d6) δ 8.98 (s, IH), 8.16 (s, IH), 7.63 (d, IH), 7.13 (m, 3H), 7.12 (d, IH), 6.94 (m, 1H),6.73 (bs, 2H), 4.23 (s, 2H), 3.99 (s, 3H), 3.24 (m, 4H), 1.98 (m, 4H); MS (ESI) (M+H)+ 350.
764300 Example 123 N- [3 -fluoro-4-( 1 -pyπolidinyl)benzyl] -N'-( 1 -methyl- 1 H-indazol-4-yl)urea
The title compound was prepared using the procedure described in Example 89B using l-[2-fluoro-4-(isocyanatomethyl)phenyl]pynolidine and 1 -methyl- lH-indazol-4-amine instead of l-bromo-4-(isocyanatomethyl)benzene and the product from Example 89A. NMR (DMSO-d6) δ 8.98 (s, IH), 8.18 (s, IH), 7.63 (d, IH), 7.12 (t, IH), 7.10 (m, 2H), 7.01 (m, ' 2H), 6.75 (t, IH), 4.22 (s, 2H), 3.99 (s, 3H), 3.30 (m, 4H), 1.89 (m, 4H); MS (ESI) (M+H)+ 368.
Example 124 N- [4-( 1 -azepany l)benzyl] -N'-( 1 -methyl- 1 H-indazol-4-yl)urea The title compound was prepared using the procedure described in Example 89B using l-[4-(isocyanatomethyl)phenyl]azepane and 1 -methyl- lH-indazol-4-amine instead of l-bromo-4-(isocyanatomethyl)benzene and the product from Example 89 A. NMR (DMSO- de) δ 8.97(s, IH), 8.18 (s, IH), 7.65 (d, IH), 7.14 (m, 4H), 7.11 (d, IH), 6.95 (bs, 2H), 4.23 (s, 2H), 3.99 (s, 3H), 3.27 (m, 4H), 1.90 (m, 4H), 1.53 (m, 4H); MS (ESI) (M+H)+ 378.
Example 125 N- f4-( 1 -azepany l)-3 -fluorobenzyll -N'-( 1 -methyl- 1 H-indazol-4-yl)urea The title compound was prepared using the procedure described in Example 89B using l-[2-fluoro-4-(isocyanatomethyl)phenyl]azepane and 1 -methyl- lH-indazol-4-amine instead of l-bromo-4-(isocyanatomethyl)benzene and the product from Example 89A. NMR (DMSO-d6) δ 9.03(s, IH), 8.19 (s, IH), 7.67 (d, IH), 7.24 (t, IH), 7.12-6.95 (m, 5H), 4.22 (s, 2H), 3.99 (s, 3H), 3.35 (m, 4H), 1.78 (m, 4H), 1.55 (m, 4H); MS (ESI) (M+H)+ 396.
Example 126 4-methylbenzyl 5-isoquinolinylcarbamate The title compound was prepared using the procedure described in Example IB using 4-methylbenzyl alcohol instead of 2-(3-fluorophenyl)ethylamine. 1H NMR (300 MHz, de- DMSO) 9.82 (s, IH), 9.31 (s, IH), 8.50 (d, IH), 7.93 (m, 3H), 7.68 (t, IH), 7.37 (d, 2H), 7.25 (d, 2H), 5.19 (s, 2H), 2.32 (s, 3H); MS (DCI/NH3) m/e 293 (M+H)+.
Example 127 N-5-isoquinolinyl-2-[4-(trifluoromethyl)phenyllhydrazinecarboxamide
The title compound was prepared using the procedure described in Example 6 IB using 4-trifluoromethylphenyl hydrazine instead of 4-cyanobenzyl alcohol. 1H NMR (300 MHz, d6-DMSO) 9.80 (m, 2H), 9.10 (broad s, IH), 8.90-8.43 (m, 3H), 8.40 (broad s, IH), 8.20 (d, IH), 7.93 (t, IH), 7.58 (d, 2H), 6.96 (d, 2H); MS (DCI/NH3) m/e 347 (M+H)+; Anal. Calcd. For Cι7Hι3N4OF3. 1.0 HCl 0.1 H2O: C 53.09; H 3.72; N 14.57. Found: C 52.80; H 3.81; N 14.51.
Example 128 4-bromobenzyl 5-isoquinolinylcarbamate The title compound was prepared using the procedure described in Example IB using 4-bromobenzyl alcohol instead of 2-(3-fluorophenyl)ethylamine. 1H NMR (300 MHz, de- DMSO) 10.23 (s, IH), 9.86 (s, IH), 8.69 (d, IH), 8.50 (d, IH), 8.30 (d, 2H), 7.98 (t, IH), 7.60 (m, 2H), 7.44 (d, 2H), 5.20 (s, 2H); MS (DCI NH3) m/e 357 (M+H)+; Anal. Calcd. For Cι7H13N2O2Br. 1.0 HCl: C 51.87; H 3.58; N 7.12. Found: C 51.95; H 3.45; N 7.03.
Example 129 N-benzhydryl-N'-5-isoquinolinylurea The title compound was prepared using the procedure described in Example 61B using benzhydrylamine instead of 4-cyanobenzyl alcohol. 1H NMR (300 MHz, d6-DMSO) 9.26 (s, IH), 8.78 (s, IH), 8.57 (d, IH), 8.31 (m, IH), 7.94 (d, IH), 7.70 (d, IH), 7.60 (m, 2H), 7.38 (m, 8H), 7.27 (m, 2H), 6.02 (d, IH); MS (DCI/NH3) m/e 354 (M+H)+; Anal. Calcd. For C23Hι9N3O. 0.1 H2O: C 77.77; H 5.45; N 11.83. Found: C 77.52; H 5.30; N 11.98.
Example 130
N-[(lS)-l-(4-bromophenyl)ethyl1-N'-5-isoquinolinylurea
The title compound was prepared using the procedure described in Example 61B using (lS)-l-(4-bromophenyl)ethanamine instead of 4-cyanobenzyl alcohol. 1H NMR (300
MHz, d6-DMSO) 9.78 (s, IH), 9.46 (s, IH), 8.70 (s, 2H), 8.59 (d, IH), 8.04 (d, IH), 7.84 (t,
IH), 7.75 (d, IH), 7.58 (d, 2H), 7.40 (d, 2H), 4.85 (m, IH), 1.40 (d, 3H); MS (DCI/NH3) m e
370 (M+H)+.
Anal. Calcd. For Cι8H16N3OBr. 1.2 HCl: C 52.22; H 4.19; N 10.15. Found: C 51.86; H 4.28;
N 9.78.
Example 131 N- [( 1 R)- 1 -(4-bromophenyl)ethyll -N'-5 -isoquinolinylurea The title compound was prepared using the procedure described in Example 61B using (lR)-l-(4-bromophenyl)ethanamine instead of 4-cyanobenzyl alcohol. lH NMR (300 MHz, d6-DMSO) 9.65 (s, IH), 9.46 (s, IH), 8.71 (s, 2H), 8.60 (d, IH), 8.04 (d, IH), 7.84 (t, IH), 7.78 (d, IH), 7.58 (d, 2H), 7.38 (d, 2H), 4.87 (m, IH), 1.40 (d, 3H); MS (DCI/NH3) m/e 370 (M+H)+; Anal. Calcd. For d8H16N3OBr. 1.1 HCl: C 52.69; H 4.20; N 10.24. Found: C 52.52; H 4.28; N 10.00.
Example 132 N-(4-bromobenzyl)-2-(3-methyl-5-isoquinolinyl)acetamide
Example 132 A 5-allyl-3 -methylisoquinoline 3-Methyl-5-bromoisoquinoline (1.0 g, 4.5 mmol), tributylallyltin (1.6 mL, 5.0 mmol), and dichlrobis(fri-o-tolylphosphine)palladium (II) were combined in toluene (100 mL) and refluxed for 14 hours. The mixture was cooled, diluted with ethyl acetate, and washed twice with aqueous NH C1. The organic phase was separated, concentrated, and the residue was purified by chromatography (ethyl acetate :hexanes, 30:70) to provide the title compound. 1H NMR (300 MHz, d6-DMSO) 9.21 (s, IH), 8.00 (d, IH), 7.63 (m, 2H), 7.58 (m, IH), 4.18 (s, 2H), 3.62 (s, 3H), 2.62 (s, 3H). MS (DCI/NH3) m/e 216 (M+H)+.
Example 132B methyl (3-methyl-5-isoquinolinyl)acetate The product from Example 132A (0.8 g, 4.37 mmol) in CH2CL2 (40 mL) and 2.5 MNaOH in MeOH (9 mL, 22 mmol, 5 eq.) was ozonized at -78 °C for 3 hours. The mixture was diluted with diethyl ether and washed with aqueous NH4C1. The organic phase was separated, concentrated, and the residue was purified by chromatography (ethyl acetate:hexanes, 40:60) to provide the title compound. 1H NMR (300 MHz, d6-DMSO) 9.20 (s, IH), 7.92 (d, IH), 7.73 (s, IH), 7.55 (m, 2H), 6.08 (m, IH), 5.15-5.04 (m, 2H), 3.80 (d, 2H), 2.63 (s, 3H); MS (DC17NH3) m/e 184 (M+H)+.
Example 132C N-(4-bromobenzyl)-2-(3-methyl-5-isoquinolinyl)acetamide 4-Bromobenzylamine (3.06 mmol) in CH C12 (30 mL) was treated with 2M Me3Al (1.53 mL, 3.06 mmol) in toluene. After 30 minutes, the mixture was treated with the product from Example 132B (0.33 g, 1.53 mmol) and refluxed for 16 hours. The mixture was cooled, quenched with IN HCl, diluted with ethyl acetate, and washed with water, aqueous NaHCO3 and aqueous NH4C1. The organic phase was evaporated and the residue dissolved in CH2Cl2:MeOH and IM HCl (3 mL) in diethyl ether. After stining for 2 hours, the mixture was concentrated under reduced pressure to provide the title compound. 1H NMR (300 MHz, d6-DMSO) 9.75 (s, IH), 8.92 (m, IH), 8.30 (m, 2H), 8.00 (d, IH), 7.82 (m, IH), 7.60 (d, 2H), 7.20 (d, 2H), 4.22 (d, 2H), 4.08 (s, 2H), 2.78 (s, 3H); MS (DCI/NH3) m/e 369 (M+H)+; Anal. Calcd. For d9Hι7N2OBr. 2.0 HCl. 1.7 H2O: C 48.27; H 4.78; N 5.92. Found: C 47.89; H 4.21; N 6.32.
Example 133 N-(4-bromobenzyl)-2-(5-isoquinolinyl)acetamide
Example 133 A 5-allylisoquinoline The title compound was prepared using the procedure described in Example 132 A using 5-bromoisoquinoline instead of 3-methyl-5-bromoisoquinoline.
Example 133B methyl 5-isoquinolinylacetate The title compound was prepared using the procedure described in Example 132B using the product from Example 133 A instead of the product from Example 132A.
Example 133C
N-(4-bromobenzyl)-2-(5-isoquinolinyl)acetamide
The title compound was prepared using the procedure described in Example 132C using the product from Example 133B instead of the product from Example 132B. 1H NMR
(300 MHz, de-DMSO) 9.78 (s, IH), 8.85 (m, IH), 8.68 (d, IH), 8.42 (d, IH), 7.90 (d, IH),
8.01 (d, IH), 7.94 (m, IH), 7.52 (d, 2H), 7.20 (d, 2H), 4.22 (d, 2H), 4.10 (s, 2H); MS (DCI/NH3) m/e 355 (M+H)+; Anal. Calcd. For C18H15N2OBr. 1.0 HCl. 0.3 H2O: C 54.44; H 4.21; N 7.05. Found: C 54.11; H 4.18; N 6.86.
Example 134 N-[l-(4-bromophenyl)ethyl1-2-(5-isoquinolinyl)acetamide The title compound was prepared using the procedure described in Example 132C using the product from Example 133B and l-(4-bromophenyl)ethanamine instead of the product from Example 132B and 4-bromobenzylamine. 1H NMR (300 MHz, d6-DMSO) 9.81 (s, IH), 9.00 (d, IH), 8.70 (d, IH), 8.48 (d, IH), 8.40 (d, IH), 8.04 (d, IH), 7.92 (m, IH), 7.51 (d, 2H), 7.23 (d, 2H), 4.84 (m, IH), 4.10 (s, 2H), 1.35 (d, 3H). MS (DCI/ H3) m/e 369 (M+H)+; Anal. Calcd. For Ci9H17N2OBr. 1.0 HCl. 1.0 H2O: C 53.86; H 4.76; N 6.61. Found: C 53.47; H 4.53; N 6.76.
Example 135 N-[l-(4-bromophenyl)ethyll-2-(3-methyl-5-isoquinolinyl)acetamide The title compound was prepared using the procedure described in Example 132C using l-(4-bromophenyl)ethanamine instead of 4-bromobenzylamine. 1H NMR (300 MHz, d6-DMSO) 9.68 (s, IH), 8.84 (d, IH), 8.24 (m, 2H), 7.92 (d, IH), 7.80 (m, IH), 7.50 (d, 2H), 7.28 (d, 2H), 4.02 (s, 2H), 2.75 (s, 3H), 1.38 (s, 3H); MS (DCI/NH3) m/e 383 (M+H)+; Anal. Calcd. For C20H19N2OBr. 0.9 HCl: C 57.73; H 4.82; N 6.73. Found: C 57.69; H 4.80; N 6.07.
Example 136
N-5-isoquinolinyl-N'-{l-r4-(trifluoromethyl)phenyl1ethyl}urea
Example 136A
1 -[4-(trifluoromethyl)phenyllethanone oxime
4-Trifluoromethylacetophenone (13.6 g, 72.3 mmol) and O-methylhydroxylamine hydrochloride were combined in pyridine (100 mL) and stined at ambient temperature for 16 hours. The mixture was concentrated under reduced pressure and the residue was suspended in diethyl ether. The suspension was filtered and the filter cake was washed with diethyl ether. The filtrate was washed with water, IN HCl, and water. The organic phase was concentrated to provide the title compound. 1H NMR (300 MHz, d6-DMSO) 7.90-7.68 (m,
4H), 3.97 and 3.78 (2S, IH), 2.20 and 2.17 (2s, 3H); MS (DCI NH3) m e 218 (M+H)+.
Example 136B 1 - r4-(trifluoromethyl)phenyll ethanamine The product from Example 136A (21.0 g, 100 mmol) in MeOH (220 mL) and ammonia (30 mL) was treated with 10% Pd/C under 60 psi of hydrogen gas for 2 hours. The mixture was filtered and the filfrate was concentrated to provide the title compound. 1H NMR (300 MHz, d6-DMSO) 7.60 (q, 4H), 4.07 (q, IH), 3.28 (broad s, 2H), 1.24 (d, 3H); MS (DCI/NH3) m/e 190 (M+H)+.
Example 136C N-5-isoquinolinyl-N'-{ 1 -r4-(trifluoromethyl)phenyllethyl)urea The title compound was prepared using the procedure described in Example 6 IB using the product from Example 136B instead of 4-cyanobenzyl alcohol. lH NMR (300 MHz, de-DMSO) 9.80 (s, IH), 9.75 (s, IH), 8.90 (d, IH), 8.73 (d, IH), 8.63 (d, IH), 8.08 (m, 2H), 7.90 (t, IH), 7.77 (d, 2H), 7.64 (d, 2H), 4.95 (m, IH), 1.41 (d, 3H); MS (DCI/NH3) m/e 360 (M+H)+; Anal. Calcd. For Ci9HieN3OF3. 1.0 HCl. 0.3 H2O: C 56.88; H 4.42; N 10.47. Found: C 56.61; H 4.49; N 10.28.
Example 138 (-) N-5-isoquinolinyl-N'-{(l S)-l -[4-(trifluoromethyl)phenyllethyl}urea
Example 138 A (lR)-2-oxo-l -phenyl-2-({ l-[4-(trifluoromethyl)phenyll ethyl }amino)ethyl acetate l-[4-(Trifluoromethyl)phenyl]ethanamine (37.5 g, 198.4 mmol) and (R)- acetylmandelic acid (40.4 g, 208.3 mmol, 1.05 eq.) were combined in DMAP (0.7 g, 5.7 mmol) and treated with DCC (45.0 g, 218 mmol). After stining overnight at ambient temperature, the mixture was filtered through a plug of silica. The filtrate was concentrated and the residue was purified by chromatography on Biotage Flash 75 column (ethyl acetate :hexanes, 25:75) to provide a faster running diastereomer and a slower running diastereomer. (fast diastereomer) 1H NMR (300 MHz, CDC13) 7.58 (d, 2H), 7.39 (m, 7H),
6.30 broad (d, IH), 6.08 (s, IH), 5.18 (m, IH), 2.20 (s, 3H), 1.29 (d, 3H); MS (DCI/NH3) m e 366 (M+H)+. (slow diastereomer) 1H NMR (300 MHz, CDC13) 7.58 (d, 2H), 7.40 (m, 5H),
7.31 (d, 2H), 6.21 (broad d, IH), 6.06 (s, IH), 5.18 (m, IH), 2.20 (s, 3H), 1.50 (d, 3H); MS
(DCI/NH3) m/e 366 (M+H)+.
Example 138B (-) 1 - [4-(trifluoromethyl)phenyll ethanamine The faster running diastereomer from Example 138A (29.2 g, 80 mmol) was treated with 48% aqueous HBr (350 mL) and water (50 mL) and was refluxed for 16 hours. The mixture was cooled and extracted with diethyl ether. The aqueous phase was basified with 2N NaOH (pH 12-13) and extracted with diethyl ether. The organic phase was concentrated to provide the title compound. 94% ee (by Mosher amide NMR). [αjo -19.1 ° (c 1.15; MeOH); 1H NMR (300 MHz, CDC13) 7.60 (d, 2H), 7.47 (d, 2H), 4.20 (m, IH), 1.65 (br s, 2H), 1.40 (s, 3H); MS (DCI/NH3) m/e 190 (M+H)+.
Example 138C (+) 1 - [4-(trifluoromethyl)phenyll ethanamine The slower running diastereomer from Example 138A (29.2 g, 80 mmol) was treated with 48% aqueous HBr (350 mL) and water (50 mL) and was refluxed for 16 hours. The mixture was cooled and extracted with diethyl ether. The aqueous phase was basified with 2N NaOH (pH 12-13) and extracted with diethyl ether. The organic phase was concentrated to provide the title compound. [α] +20.5° (c 1.47; MeOH). 94% ee (Mosher amide NMR); 1H NMR (300 MHz, CDCI3) 7.60 (d, 2H), 7.47 (d, 2H), 4.20 (m, IH), 1.60 (br s, 2H), 1.40 (s, 3H); MS (DCI/NH3) m/e 190 (M+H)+.
Example 138D (-) N-5-isoquinolinyl-N'-{(l S)-l -[4-(trifluoromethyl)phenyllethyl}urea The title compound was prepared using the procedure described in Example 6 IB using the product from Example 138B instead of 4-cyanobenzyl alcohol. H NMR (300 MHz, de-DMSO) 9.90 (s, IH), 9.83 (s, IH), 9.00 (d, IH), 8.72 (d, IH), 8.66 (d, IH), 8.23 (d, IH), 8.10 (d, IH), 7.90 (t, IH), 7.72 (d, 2H), 7.64 (d, 2H), 4.98 (m, IH), 1.43 (d, 3H); MS (DCI/NH3) m/e 360 (M+H)+; [α]D -18.4° (c 1.24; MeOH); Anal. Calcd. For d HieN3OF3. 1.0 HCl. 0.7 H2O: C 55.88; H 4.54; N 10.29. Found: C 55.70; H 4.40; N 10.12.
Example 139 (+) N-5-isoquinolinyl-N'-{(lS)-l-[4-(trifluoromethyl)phenynethyl}urea
The title compound was prepared using the procedure described in Example 61B using the product from Example 138C instead of 4-cyanobenzyl alcohol. 1H NMR (300 MHz, d6-DMSO) 9.90 (s, 2H), 8.98 (d, IH), 8.72 (d, IH), 8.66 (d, IH), 8.19 (d, IH), 8.10 (d, IH), 7.90 (t, IH), 7.72 (d, 2H), 7.64 (d, 2H), 4.98 (m, IH), 1.43 (d, 3H); MS (DCI/NH3) m/e 360 (M+H)+. [<x]D +17.0° (c 1.55; MeOH); Anal. Calcd. For C19H16N3OF3. 1.0 HCl. 0.4 H2O: C 56.63; H 4.45; N 10.43. Found: C 56.43; H 4.52; N 10.24.
Example 140 N- [ 1 -(4-tert-butylphenyl)ethyll -N'-5 -isoquinolinylurea
Example 140A 1 -(4-tert-butylphenyl)ethanamine The title compound was prepared using l-(4-tert-butylphenyl)ethanone and the procedures described in Examples 136A and 136B
Example 140B N-[l-(4-tert-butylphenyl)ethyll-N'-5-isoquinolinylurea The title compound was prepared using the procedure described in Example 6 IB using the product from Example 140A instead of 4-cyanobenzyl alcohol. 1H NMR (300 MHz, d6-DMSO) 9.88 (s, IH), 9.72 (broad s, IH), 8.90 (d, IH), 8.70 (d, IH), 8.64 (d, IH), 8.07 (d, IH), 7.87 (t, IH), 7.78 (d, IH), 7.38 (m, 4H), 4.94 (m, IH), 1.42 (d, 3H), 1.27 (s, 9H); MS (DCI/NH3) m/e 348 (M+H)+; Anal. Calcd. For C22H25N3O. 1.0 HCl. 0.6 H2O: C 66.94; H 6.96; N 10.65. Found: C 66.69; H 6.92; N 10.52.
Example 141 N-{cyclopropyl[4-(trifluoromethyl)phenyllmethyl}-N'-5-isoquinolinylurea
Example 141 A N-methoxy-N-methyl-4-(trifluoromethyl)benzamide 4-(Trifluoromethyl)benzoyl chloride (5.0 g, 23.9 mmol) and N,O- dimethylhydroxylamine hydrochloride (2.55 g, 26.3 mmol, 1.1 eq.) were combined in CH2C12 (200 mL) at 0 °C and freated with pyridine (4.3 mL, 52.6 mmol). After stining for 2 hours,
the mixture was allowed to attain ambient temperature, diluted with diethyl ether and washed with water, aqueous HCl, and water, the organic phase was separated and concentrated to provide the title compound which was used directly in the next step. 1H NMR (300 MHz, de- DMSO) 7.90 (m, 4H), 3.52 (s, 3H), 3.28 (s, 3H); MS (DCI/NH3) m/e 234 (M+H)+.
Example 141B cyclopropyl[4-(trifluoromethyl)phenyllmethanone The product from Example 141 A (1.02 g, 4.38 mmol) in THF (50 mL) at 0 °C was treated with 0.8M solution of cyclopropylmagnesium bromide (7.1 mL, 5.7 mmol, 1.3 eq.) in THF. After stining for 1 hour, the mixture was treated with water (5 mL), 3N HCl (0.5 mL), diluted with diethyl ether, and washed with water. The organic phase was separated, evaporated, and and the residue was purified by chromatography (ethyl acetate :hexanes, 5:95) to provide the title compound. 1H NMR (300 MHz, d6-DMSO) 8.24 (d, 2H), 7.92 (d, 2H), 2.92 (m, IH), 1.10 (m, 4H).
Example 141C 1 -cyclopropyl- 1 - [4-(trifluoromethyl)phenyl1methanamine The title compound was prepared using the product from Example 141B and the procedures described in Examples 136A and 136B. 1HNMR (300 MHz, d6-DMSO) 7.92 (m, 4H), 3.24 (d, IH), 1.92 (broad s, 2H), 0.93 (m, IH), 0.50-0.27 (m, 4H); MS (DCI/NH3) m e 216 (M+H)+.
Example 141D N-{cyclopropyl[4-(trifluoromethyl)phenyl1methyl}-N'-5-isoquinolinylurea The title compound was prepared using the procedure described in Example 6 IB using the product from Example 141C instead of 4-cyanobehzyl alcohol. 1H NMR (300 MHz, de-DMSO) 9.78 (s, IH), 9.63 (s, IH), 8.80 (d, IH), 8.70 (d, IH), 8.60 (d, IH), 8.07 (m, 2H), 7.86 (t, IH), 7.73 (d, 2H), 7.63 (d, 2H), 4.37 (t, IH), 1.10 (m, IH), 0.60-0.40 (m, 4H); MS (DCI/NH3) m/e 386 (M+H)+; Anal. Calcd. For C21Hi8N3OF3. 1.0 HCl. 0.25 H2O: C 59.16; H 4.81; N 9.86. Found: C 58.81; H 4.76; N 9.62.
Example 142
(2E)-N-5-isoquinolinyl-3-[4-(trifluoromethyl)phenyll-2-butenamide
Example 142 A ethyl (2E)-3-[4-(trifluoromethyl)phenyll-2-butenoate A suspension of 98% NaH (0.81 g, 33.7 mmol) in THF (100 mL) at ambient temperature was treated with triethyl phosphonate (6.9 g, 31 mmol) dropwise and the resulting mixture was stined for 15 minutes. The mixture was treated with l-[4- (trifluoromethyl)phenyl]ethanone (5.0 g, 26.6 mmol) portion wise and refluxed for 6 hours. After cooling to ambient temperature, the mixture was quenched with aqueous NH4C1, diluted with diethyl ether, and washed with water and aqueous NH4C1. The organic phase was separated, concentrated, and the residue purified by chromatography (ethyl acetate :hexanes, 2:98) to provide the (E) isomer (3.4 g, 50%) and the (Z) isomer (1.3 g, 19 %). Geometry of the double bond was established by NOE studies. (E) isomer: 1H NMR for (300 MHz, de-DMSO) 7.78 (m, 4H), 6.25 (m, IH), 4.19, (q, 2H), 2.51, s, 3H), 1.22 (t, 3H); MS (DCI/NH3) m/e 259 (M+H)+.
Example 142B ethyl (2Z)-3-r4-(trifluoromethyl)phenyll-2-butenoate The title compound was isolated from the chromatography described in Example 142A. (Z) isomer: 1H NMR (300 MHz, d6-DMSO) 7.71 (d, 2H), 7.42 (d, 2H), 6.03 (m, IH), 3.90 (q, 2H), 2.18 (d, 3H), 1.00 (t, 3H); MS (DCI/NH3) m/e 259 (M+H)+.
Example 142C (2E)-3 - [4-(trifluoromethyl)pheny 1] -2-butenoic acid The product from Example 142 A (3.5 g, 13.5 mmol) in EtOH (80 mL) was treated with aqueous IM NaOH (40 mL) and stined for 16 hours at ambient temperature. The reaction mixture was neutralized with IN HCl (40 mL), diluted with brine, and extracted with diethyl ether to provide the title compound. NMR (CDC13) 2.60 (s, 3H), 6.82 (s, IH), 7.58 (d, 2H), 7.65 (d, 2H).
Example 142D (2E)-N-5-isoquinolinyl-3-r4-(trifluoromethyl)phenyll-2-butenamide
The product from Example 142C (0.23 g, 1.00 mmol) in CH2C12 (5 mL) was treated with oxalyl chloride (0.15 g, 1.2 mmol), 1 drop of DMF, and stined at ambient temperature for 45 minutes. The mixture was freated with a solution of 5-aminoisoquinoline (0.14 g, 1.0 mmol) and 98% NaH (0.048 g, 1.2 mmol) in DMF (5 mL) prepared separately by stining for 45 minutes. The resulting mixture was stined for 15 minutes, poured into water, and extracted with CH C12. The organic phase was dried (MgSO ), evaporated, and the residue triturated with diethyl ether. The solid was dried under reduced pressure to provide the title compound. 1H NMR (300 MHz, d6-DMSO) 2.61 (s, 3H), 2.73 (s, 0.45H, DMF)), 2.89 (s, 0.45H (DMF)), 6.82 (br s, IH), 7.70 (t, IH), 7.83 (s, 4H), 7.95 (d, IH), 8.04 (d, IH), 8.21 (d, IH), 8.56 (d, IH), 9.33 (s, IH), 10.20 (s, IH); MS (ESI+) 357 (M+H)+; Elemental: Calculated for C20Hi5N2OF3ΗCl«0.15C3H7NO: C66.87, H4.40, N8.20; Found: C66.83, H4.20, N8.27.
Example 143 N-5 -isoquinolinyl-3 - [4-(trifluoromethy l)phenyll -3 -butenamide The title compound was isolated from the procedure described Example 142D as a side-product. 1H NMR (300 MHz, d6-DMSO) 3.83 (s, 2H), 5.49 (s, IH), 5.74 (s, IH), 7.64 (t, IH), 7.77 (m, 4H), 7.93 (m, 2H), 8.49 (d, IH), 9.30 (s, IH), 10.18 (s, IH); MS (ESI+) 357 (M+H)+; Elemental: Calculated for C20H15N2OF3 «0.6H2O: C65.43, H4.45, N7.63; Found: C65.49, H4.08, N7.93.
Example 144 (2Z)-N-5-isoquinolinyl-3-[4-(trifluoromethyl)phenyl1-2-butenamide
Example 144A (2Z)-3-[4-(trifluoromethyl)phenyll-2-butenoic acid The title compoimd was prepared using the procedure described in Example 142C using the product from Example 142B instead of the product from Example 142 A.
Example 144B
(2Z)-N-5-isoquinolinyl-3-[4-(trifluoromethyl)phenyll-2-butenamide
The title compound was prepared using the procedure described in Example 142D using the product from Example 144A instead of the product from Example 142C. 1H NMR
(300 MHz, d6-DMSO) 2.21 (s, 3H), 6.48 (s, IH), 7.50 (d, 2H), 7.60 (t, IH), 7.67 (d, 2H), 7.90
(d, IH), 7.95 (d, IH), 8.44 (d, IH), 9.27 (s, IH), 10.03 (s, IH); MS (ESI+) 357 (M+H)+; Elemental: Calculated for C20H15N2OF3: C67.41, H4.24, N7.86; Found: C67.16, H4.15, N7.59.
Example 145 (2E)-3-[3-fluoro-4-(trifluoromethyl)phenyll-N-5-isoquinolinyl-2-butenamide
Example 145 A (2E)-3 - [3 -fluoro-4-(trifluoromethy l)phenyl] -2-butenoic acid The title compound was prepared using l-[3-fluoro-4- (trifluoromethyl)phenyl]ethanone and the procedures described in Examples 142 A and 142C.
Example 145B (2E)-3-[3-fluoro-4-(trifluoromethyl)phenyll-2-butenoic acid The title compound was prepared using the procedure described in 142D using the product from Example 145A instead of the product from Example 142C. 1H NMR (300 MHz, d6-DMSO) 2.59 (s, 3H), 6.92 (s, IH), 7.68 (d, IH), 7.78 (d, IH), 7.93 (m, 2H), 8.25 (d, IH), 8.44 (d, IH), 8.49 (d, IH), 8.70 (d, IH), 9.76 (s, IH), 10.59 (s, IH); MS (ESI+) 375 (M+H)+; Elemental: Calculated for C20H14N2OF4«1.6HC1: C55.52, H3.63, N6.47; Found: C55.60, H3.80, N6.09.
Example 146 3-r3-fluoro-4-(frifluoromethyl)phenyll-N-5-isoquinolinyl-3-butenamide The title compound was isolated from the procedure described in Example 145B as a side-product. 1H NMR (300 MHz, d6-DMSO) 3.88 (s, 2H), 5.57 (s, IH), 5.86 (s, IH), 7.60- 7.88 (m, 4H), 8.18 (m, 3H), 8.64 (d, IH), 9.65 (s, H), 10.50 (s, IH); MS (ESI+) 375 (M+H)+; Elemental: Calculated for C20H14N2OF4 »HC1«0.2NH4C1: C56.99, H3.78, N7.31; Found: C56.73, H3.69, N7.43.
768062 Example 147 (2E)-N-5-isoquinolinyl-3-[4-(l-piperidinyl)phenyll-2-butenamide
Example 147 A
(2E)-3 - [4-( 1 -piperidinyl)phenyll -2-butenoic acid The title compound was prepared using l-[4-(l-piperidinyl)phenyl]ethanone and the procedures described in Examples 142A and 142C.
Example 147B (2E)-N-5-isoquinolinyl-3-[4-(l-piperidinyl)phenyll-2-butenamide The title compound was prepared using the procedure described in 142D using the product from Example 147A instead of the product from Example 142C. 1H NMR (300 MHz, d6-DMSO) 10.50 (s, IH), 9.82 (s, IH), 8.71 (d, IH), 8.58 (d, IH), 8.47 (d, IH), 8.26 (d, IH), 7.95 (m, 2H), 7.62 (m, 2H), 6.80 (s, IH), 3.20 (m, 4H), 2.58 (s, 3H), 1.90-1.56 (m, 6H); MS (DCI/NH3) m/e 372 (M+H)+; Anal. Calcd. For C24H25N3O. 2.0 HCl. 2.0 H2O. 0.3 DMF: C 59.24; H 6.69; N 9.27. Found: C 59.44; H 6.83; N 9.24.
Example 148 N-(3-fluorobenzyl)-N'-(3-methyl-5-isoquinolinyl)urea The title compound was prepared using the procedure described in Example 60F using l-fluoro-3-(isocyanatomethyl)benzene and 3-methyl-5-isoquinolinamine instead of the product from Example 60E and l-bromo-4-(isocyanatomethyl)benzene. 1H NMR (300 MHz, DMSO-de) δ 9.18 (s, IH), 8.69 (bs, IH), 8.87 (bs, IH), 8.20 (d, IH, J=6.9 Hz), 7.76 (s, IH), 7.70 (d, IH, J=7.8 Hz), 7.50 (t, IH, J=7.8 Hz), 7.41 (m, IH), 7.23-7.05 (m, 3H), 4.39 (d, 2H, J=6 Hz), 2.65 (s, 3H). MS (ESI) 310 (M+H)+. Anal. Calcd for Ci8HieFN3O: C, 69.89; H, 5.21; N, 13.58. Found: C, 69.86; H, 5.24; N, 13.56.
Example 149 N-(4-bromo-3-fluorobenzyl)-N'-5-isoquinolinylurea The title compound was prepared using the procedure described in Example IB using 4-bromo-3-fluorobenzylamine instead of 2-(3-fluorophenyl)ethylamine. 1H NMR (300 MHz, DMSO-d6) δ 9.74 (s, IH), 9.55 (s, IH), 8.67 (m, 2H), 8.57 (dd, IH, J=7.8, 1.5 Hz), 8.06 (d, IH, J=7.8 Hz), 7.88 (t, IH, J=7.8 Hz), 7.67 (m, 2H), 7.35 (dd, IH, J=9.6, 2.4 Hz), 7.17 (dd, IH, J=8.7, 1.8 Hz) , 4.39 (d, 2H, J=6.3 Hz). MS (ESI) 374/376 (M+H)+. Anal. Calcd for C17Hi3BrFN3O-HCl: C, 49.72; H, 3.44; N, 10.23. Found: C, 50.04; H, 3.50; N, 10.25
Example 150 N-(3-amino-5-isoquinolinyl)-N'-[4-(l-piperidinyl)benzyllurea
Example 150A N-(3-amino-5-isoquinolinyl)-2,2,2-trichloroacetamide The title compound was prepared using the procedure described in Example 1 A using 3,5-isoquinolinediamine instead of 5-aminoisoquinoline.
Example 15 OB N-(3-amino-5-isoquinolinyl)-N'-[4-(l-piperidinyl)benzynurea The title compound was prepared using the procedure described in Example IB using 4-(l-piperidinyl)benzylamine and the product from Example 150A instead of 2-(3- fluorophenyl)ethylamine and the product from Example 1 A. 1H NMR (300 MHz, DMSO-d6) δ 8.77 (s, IH), 8.22 (s, IH), 7.87 (d, IH, J=8 Hz), 7.46 (d, IH, J=8 Hz), 7.16 (d, 2H, J=8.4 Hz), 7.07 (t, IH, J=8 Hz), 6.91 (d, 2H, J=8.4 Hz), 6.82 (t, IH, J=6 Hz), 6.70 (s, IH) , 5.91 (s, 2H), 4.22 (d, 2H, J=6 Hz), 3.10 (m, 4H), 1.70-1.45 (m, 6H). MS (ESI) 376 (M+H)+. Anal. Calcd for C22H25N5O-0.1H2O: C, 70.04; H, 6.73; N, 18.56. Found: C, 69.66; H, 6.50; N, 18.55.
Example 151 N-(3-amino-5-isoquinolinyl)-N'-r4-(l-azepanyl)benzyl1urea The title compound was prepared using the procedure described in Example IB using 4-(l-azepanyl)benzylamine and the product from Example 150A instead of 2-(3- fluorophenyl)ethylamine and the product from Example 1 A. 1H NMR (300 MHz, DMSO-d6) δ 8.77 (s, IH), 8.19 (s, IH), 7.88 (d, IH, J=8.7 Hz), 7.45 (d, IH, J=8.7 Hz), 7.09 (m, 3H), 6.76 (t, IH, J=5.4 Hz), 6.66 (m, 3H), 5.90 (s, 2H), 4.17 (d, 2H, J=5.4 Hz), 3.24 (m, 4H), 1.71 (m, 4H), 1.44 (m, 4H); MS (ESI) 390 (M+H)+; Anal. Calcd for C^I^NsO-OΛHbO: C, 69.64; H, 7.06; N, 17.65. Found: C, 69.53; H, 6.81; N, 17.38.
Example 152 N-(l,r-biphenyl-3-ylmethyl)-N'-5-isoquinolinylurea
The title compound was prepared using the procedure described in Example 6 IB using 1,1 '-biphenyl-3 -ylmethylamine instead of 4-cyanobenzyl alcohol. 1H NMR (300 MHz, DMSO-d6) δ 9.73 (s, IH), 9.47 (s, IH), 8.64 (m, 3H), 8.05 (d, IH, J=9 Hz), 7.87 (t, IH, J=9 Hz), 7.68 (m, 3H), 7.58 (m, 2H), 7.47 (m, 3H), 7.37 (m, 2H), 4.48 (d, 2H, J=6 Hz); MS (ESI) 354 (M+H)+. Anal. Calcd for C23Hi9N3O-HCl: C, 70.86; H, 5.17; N, 10.78. Found: C, 70.77; H, 5.16; N, 10.74.
Example 153 N-5-isoquinolinyl-N'-[4-(2-pyridinyl)benzyllurea The title compound was prepared using the procedure described in Example 6 IB using 4-(2-pyridinyl)benzylamine instead of 4-cyanobenzyl alcohol. 1H NMR (300 MHz, DMSO-d6) δ 9.83 (s, IH), 9.81 (s, IH), 8.88 (d, IH, J=6.3 Hz), 8.72 (m, 3H), 8.10 (m, 5H), 7.92 (m, 2H), 7.56 (m, 3H), 4.49 (d, 2H, J=5.4 Hz); MS (ESI) 355 (M+H)+; Anal. Calcd for C22H18N4O-1.8HCl: C, 62.91; H, 4.75; N, 13.34. Found: C, 62.95; H, 4.99; N, 13.27.
Example 154 N-(4-bromo-3-fluorobenzyl)-N'-(3-methyl-5-isoquinolinyl)urea
Example 154A 5-isocyanato-3-methylisoquinoline The title compound was prepared using the procedure described in Example 61 A using 3-methyl-5-isoquinolinamine instead of 5-aminoisoquinoline.
Example 154B N-(4-bromo-3-fluorobenzyl)-N'-(3-methyl-5-isoquinolinyl)urea The title compound was prepared using the procedure described in Example 61 B using 4-bromo-3-fluorobenzylamine and the product from Example 154A instead of 4- cyanobenzyl alcohol and the product from Example 61 A. 1H NMR (300 MHz, DMSO-d6) δ 9.68 (s, IH), 9.46 (s, IH), 8.51 (m, 2H), 8.01 (d, IH, J=7.8 Hz), 7.80 (t, IH, J=7.8 Hz), 7.67 (m, 2H), 7.36 (dd, IH, J=9, 1.5 Hz), 7.18 (dd, IH, J=9, 1 Hz), 4.39 (d, 2H, J=6 Hz), 2.77 (s,
3H); MS (ESI) 388/390 (M+H)+; Anal. Calcd for C18H15BrFN3θ-HCl: C, 50.91; H, 3.80; N, 9.89. Found: C, 50.81; H, 3.74; N, 9.87
Example 155 N- [3 -fluoro-4-(4-methyl- 1 -piperidinyl)benzyll -N'-(3 -methyl-5-isoquinolinyl)urea The title compound was prepared using the procedure described in Example 61B using 3-fluoro-4-(4-methyl-l-piperidinyl)benzylamine and the product from Example 154A instead of 4-cyanobenzyl alcohol and the product from Example 61 A. 1H NMR (300 MHz, DMSO-de) δ 9.74 (s, IH), 9.52 (s, IH), 8.66 (s, IH), 8.59 (d, IH, J=8.4 Hz), 8.04 (d, IH, J=8.4 Hz), 7.83 (t, IH, J=8.4 Hz), 7.62 (t, IH, J=6 Hz), 7.10 (m, 3H), 4.32 (d, 2H, J=6 Hz), 3.31 (m, 2H), 2.79 (s, 3H), 2.69 (m, 2H), 1.71 (m, 2H), 1.49 (m, IH), 1.32 (m, 2H), 0.95 (d, 3H, J=6 Hz). MS (ESI) 407 (M+H)+; Anal. Calcd for C24H27FN4O-2.3HCl: C, 58.79; H, 6.02; N, 11.43. Found: C, 58.73; H, 6.18; N, 11.19.
Example 156 N-(3-methyl-5-isoquinolinyl)-N'-[4-(4-methyl-l-piperidinyl)benzyllurea The title compound was prepared using the procedure described in Example 61B using 4-(4-methyl-l-piperidinyl)benzylamine and the product from Example 154 A instead of 4-cyanobenzyl alcohol and the product from Example 61 A. 1H NMR (300 MHz, DMSO-d6) δ 9.70 (s, IH), 9.66 (s, IH), 8.74 (s, IH), 8.59 (d, IH, J=8.7 Hz), 8.01 (d, IH, J=8.7 Hz), 7.82 (m, 2H), 7.65 (m, 2H), 7.48 (m, 2H), 4.40 (d, 2H, J=6 Hz), 3.54 (m, 4H), 2.78 (s, 3H), 1.90- 1.50 (m, 5H), 0.98 (d, 3H, J=6 Hz); MS (ESI) 389 (M+H)+; Anal. Calcd for C24H28N4O-2.6HCl: C, 59.64; H, 6.38; N, 11.59. Found: C, 59.31; H, 6.39; N, 11.19.
Example 157 N- [3 -fluoro-4-( 1 -piperidinyl)benzyll -N'-(3-methyl-5-isoquinolinyl)urea The title compound was prepared using the procedure described in Example 61B using 3-fluoro-4-(l-piperidinyl)benzylamine and the product from Example 154A instead of 4-cyanobenzyl alcohol and the product from Example 61 A. 1H NMR (300 MHz, DMSO-d6) δ 9.73 (s, IH), 9.47 (s, IH), 8.62 (s, IH), 8.58 (d, IH, J=8.4 Hz), 8.04 (d, IH, J=8.4 Hz), 7.83 (t, IH, J=8.4 Hz), 7.57 (t, IH), 7.10 (m, 3H), 4.32 (d, 2H, J=6 Hz), 2.98 (m, 4H), 2.79 (s, 3H),
1.67 (m, 4H), 1.53 (m, 2H); MS (ESI) 393 (M+H)+; Anal. Calcd for C23H25FN4O-1.5HCl: C, 61.78; H, 5.97; N, 12.53. Found: C, 61.40; H, 6.04; N, 12.18.
Example 158 N-(3 -methyl-5 -isoquinolinyl)-N'- [4-( 1 -piperidinyl)benzyl"|urea The title compound was prepared using the procedure described in Example 6 IB using 4-(l-piperidinyl)benzylamine and the product from Example 154A instead of 4- cyanobenzyl alcohol and the product from Example 61 A. 1H NMR (300 MHz, DMSO-d6) δ 9.69 (s, IH), 9.60 (s, IH), 8.68 (s, IH), 8.57 (d, IH, J=7.5 Hz), 8.00 (d, IH, J=7.5 Hz), 7.85- 7.55 (m, 4H), 7.43 (m, 2H), 4.40 (d, 2H, J=6 Hz), 3.44 (m, 4H), 2.77 (s, 3H), 1.90 (m, 4H), 1.65 (m, 2H); MS (ESI) 375 (M+H)+; Anal. Calcd for C23H26N4O-2.4HCl: C, 59.80; H, 6.20; N, 12.13. Found: C, 59.91; H, 6.45; N, 11.78
Example 159 N-[4-(l-azepanyl)benzyll-N'-(3-methyl-5-isoquinolinyl)urea The title compound was prepared using the procedure described in Example 61B using 4-(l-azepanyl)benzylamine and the product from Example 154A instead of 4- cyanobenzyl alcohol and the product from Example 61 A. 1H NMR (300 MHz, DMSO-de) δ 9.16 (s, IH), 8.53 (s, IH), 8.28 (d, IH, J=8 Hz), 7.74 (s, IH), 7.67 (d, IH, J=8 Hz), 7.50 (t, IH, J=8 Hz), 7.14 (d, 2H, J=9 Hz), 6.84 (t, IH, J=6 Hz), 6.66 (d, 2H, J=9 Hz), 4.20 (d, 2H, J=6 Hz), 3.44 (m, 4H), 2.63 (s, 3H), 1.71 (m, 4H), 1.45 (m, 4H). MS (ESI) 389 (M+H)+; Anal. Calcd for C24H28N4O-0.3H2O: C, 73.18; H, 7.32; N, 14.22. Found: C, 73.08; H, 7.38; N, 14.22.
Example 160 N-(3 -methyl-5 -isoquinolinyl)-N'- [4-( 1 -pyrrolidinyl)benzyl~|urea The title compound was prepared using the procedure described in Example 61B using 4-(l-pynolidinyl)benzylamine and the product from Example 154A instead of 4- cyanobenzyl alcohol and the product from Example 61 A. 1H NMR (300 MHz, DMSO-de) δ 9.15 (s, IH), 8.54 (s, IH), 8.27 (d, IH, J=7.5 Hz), 7.73 (s, IH), 7.67 (d, IH, J=7.5 Hz), 7.49 (t, IH, J=7.5 Hz), 7.16 (d, 2H, J=9 Hz), 6.84 (t, IH, J=6 Hz), 6.53 (d, 2H, J=9 Hz), 4.22 (d,
2H, J=6 Hz), 3.20 (m, 4H), 2.63 (s, 3H), 1.94 (m, 4H); MS (ESI) 361 (M+H)+. Anal. Calcd for C22H24N4O-0.2H2O: C, 72.58; H, 6.76; N, 15.39. Found: C, 72.33; H, 6.64; N, 15.22.
Example 161 N-[3-fluoro-4-(l-pynolidinyl)benzyl1-N'-(3-methyl-5-isoquinolinyl)urea The title compound was prepared using the procedure described in Example 6 IB using 3-fluoro-4-(l-pynolidinyl)benzylamine and the product from Example 154 A instead of 4-cyanobenzyl alcohol and the product from Example 61 A. 1H NMR (300 MHz, DMSO-d6) δ 9.17 (s, IH), 8.59 (s, IH), 8.22 (d, IH, J=7.5 Hz), 7.73 (s, IH), 7.69 (d, IH, J=7.5 Hz), 7.50 (t, IH, J=7.5 Hz), 7.03 (m, 2H), 6.93 (t, IH, J=6 Hz), 6.72 (m, IH), 4.24 (d, 2H, J=6 Hz), 3.28 (m, 4H), 2.64 (s, 3H), 1.88 (m, 4H); MS (ESI) 379 (M+H)+; Anal. Calcd for C22H23FN4O: C, 69.82; H, 6.13; N, 14.80. Found: C, 69.76; H, 6.06; N, 14.69.
Example 162 N-[4-(l-azepanyl)-3-fluorobenzyl1-N'-(3-methyl-5-isoquinolinyl)urea The title compound was prepared using the procedure described in Example 6 IB using 4-(l-azepanyl)-3-fluorobenzylamine and the product from Example 154A instead of 4- cyanobenzyl alcohol and the product from Example 61 A. 1H NMR (300 MHz, DMSO-d6) δ 9.74 (s, IH), 8.50 (s, IH), 8.67 (s, IH), 8.60 (d, IH, J=8.1 Hz), 8.14 (d, IH, J=8.1 Hz), 7.83 (t, IH, J=8.1 Hz), 7.56 (t, IH), 7.04 (m, 2H), 6.90 (m, IH), 4.26 (d, 2H, J=6 Hz), 3.32 (m, 4H), 2.79 (s, 3H), 1.75 (m, 4H), 1.55 (m, 4H); MS (ESI) 407 (M+H)+; Anal. Calcd for C24H27FN4O-2HCl: C, 60.13; H, 6.10; N, 11.69. Found: C, 60.09; H, 6.35; N, 11.47.
Example 163 N-[4-(l-azocanyl)benzyn-N'-(3-methyl-5-isoquinolinyl)urea The title compound was prepared using the procedure described in Example 6 IB using 4-(l-azocanyl)benzylamine and the product from Example 154A instead of 4- cyanobenzyl alcohol and the product from Example 61 A. 1H NMR (300 MHz, DMSO-d6) δ 9.15 (s, IH), 8.53 (s, IH), 8.27 (d, IH, J=7.5 Hz), 7.73 (s, IH), 7.67 (d, IH, J=7.5 Hz), 7.50 (t, IH, J=7.5 Hz), 7.15 (m, 2H), 6.83 (t, IH, J=5.4 Hz), 6.63 (m, 2H), 4.20 (d, 2H, J=5.4 Hz), 3.43 (m, 4H), 2.63 (s, 3H), 1.67 (m, 4H), 1.48 (m, 6H); MS (ESI) 403 (M+H)+; Anal. Calcd for C25H30N4O: C, 74.60; H, 7.51; N, 13.92. Found: C, 74.26; H, 7.48; N, 13.64.
Example 164 N- [4-(l -azocanyl)-3 -fluorobenzyl"|-N'-(3 -methyl-5 -isoquinolinyl)urea The title compound was prepared using the procedure described in Example 6 IB using 4-(l-azocanyl)-3-fluorobenzylamine and the product from Example 154A instead of 4- cyanobenzyl alcohol and the product from Example 61 A. 1H NMR (300 MHz, DMSO-d6) δ 9.70 (s, IH), 9.37 (s, IH), 8.56 (m, 2H), 8.01 (d, IH, J=8.4 Hz), 7.81 (t, IH, J=8.4 Hz), 7.45 (t, IH), 7.02 (m, 2H), 6.90 (m, IH), 4.25 (d, 2H, J=6 Hz), 3.35 (m, 4H), 2.77 (s, 3H), 1.67 (m, 4H), 1.54 (m, 6H); MS (ESI) 421 (M+H)+; Anal. Calcd for C25H29FN4O-HCl: C, 65.71; H, 6.62; N, 12.26. Found: C, 65.44; H, 6.49; N, 12.15.
Example 165 N-[(lS)-l-(4-bromophenyl)ethyll-N'-(3-methyl-5-isoquinolinyl)urea The title compound was prepared using the procedure described in Example 61 B using (lS)-l-(4-bromophenyl)ethanamine and the product from Example 154 A instead of 4- cyanobenzyl alcohol and the product from Example 61 A.
Example 166 N- {( 1 S)- 1 - [4-( 1 -azepany l)pheny llethyl} -N'-(3 -methyl-5-isoquinolinyl)urea The product from Example 165 (568 mg, 1.48 mmol, hexamethyleneimine (834 μL, 7.39 mmol), Pd2dba3 (271 mg, 0.30 mmol), BINAP (460 mg, 0.74 mmol), and sodium tert- butoxide (1.42 g, 14.8 mmol) were combined in 1,4-dioxane (20 mL) and heated to reflux. After 16 hours, the reaction was cooled to ambient temperature and concentrated in vacuo. The residue was purified by flash chromatography (1% to 5% CH3OH/CH2Cl2) to provide the title compound. 1HNMR (300 MHz, DMSO-d6) δ 9.15 (s, IH), 8.48 (s, IH), 8.28 (d, IH, J=8.4 Hz), 7.72 (s, IH), 7.64 (d, IH, J=8.4 Hz), 7.47 (t, IH, J=8.4 Hz), 7.16 (m, 2H), 6.90 (d, IH, J=7.5 Hz), 6.66 (m, 2H), 4.74 (m, IH), 3.43 (m, 4H), 2.64 (s, 3H), 1.71 (m, 4H), 1.44 (m, 7H). MS (ESI) 403 (M+H)+. Anal. Calcd for C25H3oN4O-0.2CH3OH: C, 74.01; H, 7.59; N, 13.70. Found: C, 74.39; H, 7.60; N, 13.32.
Example 167 N-benzyl-N'-(3-chloro-5-isoquinolinyl)urea
The product from Example 60E (250 mg, 1.4 mmol) and l-bromo-4- (isocyanatomethyl)benzene (0.22 mL, 1.57 mmol) were heated in toluene (5 mL) at 80 °C for 3 hours. The mixture was cooled to room temperature and the precipitated solid was collected by filtration, washed with toluene, and air-dried to provide the title compound. 1H NMR (300 MHz, DMSO-d6) δ 9.18 (s, IH), 8.81 (s, IH), 8.32 (dd, J=7.8Hz, 0.7 Hz, IH), 8.09 (s, IH), 7.80 (d, J=8.2 Hz, IH), 7.53-7.65 (m, 3H), 7.32 (m, 2H), 7.05 (t, J=5.7 Hz, IH), 4.35 (d, J=5.7 Hz, 2H); MS (ESI+) m/z 391/393 (M+H, 35C1/37C1).
Example 168 N-(4-bromobenzyl)-N'-(l-chloro-5-isoquinolinyl)urea
Example 168 A 1 -chloro-5-isoquinolinamine The title compound was prepared using the procedures described in Examples 60D and 60E using 1-chloroisoquinoline instead of the product from Example 60C.
Example 168B N-(4-bromobenzyl)-N'-(l-chloro-5-isoquinolinyl)urea The title compound was prepared using the procedure described in Example 60F using the product from Example 168 A instead of the product from Example 60E. 1H NMR (300 MHz, DMSO-de) δ 8.89 (s, IH), 8.34-8.37 (m, 2H), 8.00 (dd, J=6.1 Hz, 0.7 Hz, IH), 7.92-7.95 (m, IH), 7.73 (t, J=8.1, IH), 7.53-7.56 (m, 2H), 7.30-7.33 (m, 2H), 7.12 (t, J=5.8Hz, IH), 4.35 (d, J=5.8 Hz, 2H); MS (ESI+) m/z 390/392 (M+H, 35C1/37C1).
Example 169 N-(4-cyanobenzyl)-N'-5-isoquinolinylurea
Example 169 A 4-(aminomethyl)benzonitrile A solution of N, N-bis(tert-butoxycarbonyl)-4-cyanobenzylamine (0.75 g, 2.25 mmol, prepared according to the literature described in Synthetic Communications 4419:28 (1998), in CH2C12 (15 mL) was treated with trifluoroacetic acid (8 mL). After stirring at room
temperature for 3 hours, the mixuture was concentrated under reduced pressure and the residue was azeotroped with diethyl ether.
Example 169B N-(4-cyanobenzyl)-N'-5-isoquinolinylurea The title compound was prepared using the procedure described in Example 6 IB using the product from Example 169A instead of 4-cyanobenzyl alcohol. Purification was by chromatography (95:5 CH2Cl2:MeOH) to provide the title compound. 1H NMR (300 MHz, DMSO-d6) δ 9.75 (s, IH), 9.62 (s, IH), 8.69 (s, 2H), 8.58 (dd, J=7.8 Hz, 1.0 Hz, IH), 8.07 (d, J=7.4 Hz, IH), 7.90 (d, J=8.1 Hz, IH), 7.81-7.85 (m, 2H), 7.74 (t, J=6.1 Hz, IH), 7.54-7.57 (m, 2H), 4.48 (d, J=6.1 Hz, 2H); MS (ESI+) m/z 303 (M+H)+.
Example 170 N-(4-bromobenzyl)-N'-(3-methyl-5-isoquinolinyl)urea The product from Example 63 A (500 mg, 3.1 mmol) and l-bromo-4- (isocyanatomethyl)benzene (0.5 mL, 3.57 mmol) were stined in toluene (10 mL) at 80° overnight. The mixture was cooled to room temperature, and the resulting precipitate was collected by filtration, washed with toluene, and allowed to air-dry. The conesponding hydrochloride salt was prepared using methanolic HCl to afford a tan solid. !H NMR (300 MHz, DMSO-de) δ 9.70 (s, IH), 9.54 (s, IH), 8.63 (s, IH), 8.57 (dd, J=7.8 Hz, 1.0 Hz, IH), 8.02 (d, J=8.2 Hz, IH), 7.78-7.83 (m, IH), 7.67-7.71 (m, IH), 7.52-7.57 (m, 2H), 7.30-7.35 (m, 2H), 4.36 (d, J=5.7 Hz, 2H), 2.78 (s, 3H); MS (ESI+) m z 370/372 (M+H, 79Br/81Br)+.
Example 171 N-(4-bromobenzyl)-N'-(l-methyl-5-isoquinolinyl)urea
Example 171 A 1 -methyl-5-isoquinolinamine The title compound was prepared using the procedures described in Examples 60D and 60E using 1-methylisoquinoline instead of the product from Example 60C.
Example 171B
N-(4-bromobenzyl)-N'-( 1 -methyl-5-isoquinolinyl)urea The product from Example 171A (480 mg, 3.04 mmol) and l-bromo-4- (isocyanatomethyl)benzene (0.43, 3.07 mmol) were stined in toluene (9 mL) at 90° for 1 hour, then the mixture was cooled to room temperature. The precipitate was collected by filtration and washed with toluene. The conesponding di-hydrochloride salt was prepared using methanolic HCl. 1H NMR (300 MHz, DMSO-d6) δ 8.74 (s, IH), 8.38 (d, J=6.1 Hz, IH), 8.25 (d, J=7.8 Hz, IH), 7.78-7.85 (m, 2H), 7.53-7.61 (m, 3H), 7.32 (d, J=8.5 Hz, 2H), 7.11 (t, J=6.1 Hz, IH), 4.34 (d, J=6.1 Hz, 2H), 2.88 (s, 3H); MS (ESI+) m z 370/372 (M+H, 79Br/81Br)+.
Example 172 N-5-isoquinolinyl-N'-[4-(4-morpholinyl)benzyl1urea
Example 172 A 4-(4-morpholinyl)benzonitrile 4-Fluorobenzonitrile (1 g, 8.26 mmol) and morpholine (2.2 mL, 25.2 mmol) were stined in DMSO (25 mL) at 100 °C for 2.5 hours, cooled to room temperature, poured into H2O, and extracted with diethyl ether. The combined organic extracts were washed with H2O and brine, dried over Na2SO4, and evaporated in vacuo to provide the title compound.
Example 172B 4-(4-morpholinyl)benzylamine 4-(4-Mo holinyl)benzonitrile (1.24 g, 6.6 mmol) in THF (25 mL) at 0 °C was freated with LiAlH (2.5 g, 65.9 mmol) and refluxed for 1 hour. The mixture was cooled to room temperature and quenched by careful addition of IN NaOH and then H2O. The mixture was concentrated, extracted with diethyl ether. The combined ethereal extracts were washed with saturated NaHCO3 solution, dried over Na2SO4, and evaporated in vacuo to provide the title compound which was dried over MgSO as a THF:diethylether solution before the next step.
Example 172C N-5-isoquinolinyl-N'-[4-(4-morpholinyl)benzyl1urea The product from Example 172B (285 mg, 1.48 mmol) in diethyl ether (10 mL) was treated with an ethereal solution of 5-isocyanatoisoquinoline, causing a white precipitate to
form. This precipitate was collected by filtration and purified by chromatography (95:5 CH2Cl -MeOH, eluant) to provide the title compound. The conesponding di-hydrochloride salt was prepared using methanolic HCl to afford a yellow solid. 1H NMR (300 MHz, DMSO-d6) δ 9.26 (s, IH), 8.67 (s, IH), 8.52-8.55 (m, IH), 8.32 (dd, J=7.8 Hz, 1.1 Hz, IH), 7.92 (d, J=6.1 Hz, IH), 7.73 (d, J=8.2 Hz, IH), 7.60 (m, IH), 7.23 (d, J=8.8 Hz, 2H), 6.92- 6.96 (m, 3H), 4.26 (d, 5.4 Hz, 2H), 3.72-3.75 (m, 4H), 3.06-3.12 (m, 4H); MS (ES ) m/z 363 (M+H)+.
Example 173 N-r4-(2,6-dimethyl-4-morpholinyl)benzyll-N'-5-isoquinolinylurea
Example 173 A 4-(2,6-dimethyl-4-morpholinyl)benzylamine The title compound was prepared using the procedures described in Examples 172 A and 172B using 2,6-dimethylmorpholine instead of morpholine.
Example 173B N-[4-(2,6-dimethyl-4-morpholinyl)benzyll-N'-5-isoquinolinylurea The title compound was prepared using the procedure described in Example 172C using the product from Example 173A instead of the product from Example 172B. 1H NMR (300 MHz, DMSO-de) δ 9.26 (s, IH), 8.67 (s, IH), 8.53 (d, J=6.1 Hz, IH), 8.31 (dd, J=7.6 Hz, 1.1 Hz, IH), 7.92 (d, J=6.1 Hz, IH), 7.73 (d, J=8.1 Hz, IH), 7.57-7.62 (m, IH), 7.22 (d, J=8.8 Hz, 2H), 6.92-6.95 (m, 3H), 4.26 (d, J=5.7 Hz, 2H), 3.68 (m, 2H), 3.54-3.57 (m, 2H), 2.21 (m, 2H), 1.16 (s, 3H), 1.14 (s, 3H); MS (ESI+) m/z 391 (M+H).
Example 174 N-5-isoquinolinyl-N'-[4-(4-thiomorpholinyl)benzyllurea
Example 174 A 4-(4-thiomorpholinyl)benzylamine The title compound was prepared using the procedures described in Examples 172A and 172B using thiomorpholine instead of morpholine.
Example 174B N-5-isoquinolinyl-N'-[4-(4-thiomorpholinyl)benzyl1urea The title compound was prepared using the procedure described in Example 172C using the product from Example 174A instead of the product from Example 172B. 1H NMR (300 MHz, DMSO-d6) δ 9.26 (s, IH), 8.67 (s, IH), 8.53 (d, J=6.1 Hz, IH), 8.32 (dd, J=7.8 Hz, 1.1 Hz, IH), 7.92 (d, J=6.1 Hz, IH), 7.73 (d, J=8.2 Hz, IH), 7.60 (m, IH), 7.20-7.23 (m, 2H), 6.90-6.96 (m, 3H), 4.25 (d, J=5.8 Hz, 2H), 3.45-3.51 (m, 4H), 2.64-2.67 (m, 4H); MS (ESI+) m/z 379 (M+H).
Example 175 N-(4-bromobenzyl)-N'-(3-fluoro-5-isoquinolinyl)urea
Example 175 A 3-fluoro-5-isoquinolinamine The title compound was prepared using the procedures described in Examples 60D and 60E using 3-fluoroisoquinoline, prepared according to the procedure described in J. Am. Chem. Soc, 687:73 (1951), instead of the product from Example 60C.
Example 175B N-(4-bromobenzyl)-N'-(3 -fluoro-5 -isoquinolinyl)urea The title compound was prepared using the procedure described in Example 60F using the product from Example 175 A instead of the product from Example 60E. lH NMR (300 MHz, DMSO-de) δ 9.09 (s, IH), 8.74 (s, IH), 8.28 (d, IH, J=7.8 Hz), 7.83 (d, IH, J=8.4 Hz), 7.66 (s, IH), 7.55 (m, 3H), 7.32 (d, 2H, J=8.5 Hz), 7.03 (t, IH, J=5.9 Hz), 4.35 (d, 2H, J=6.1 Hz); MS (ESI+) m/z 373/375 (M+H, 79Br/81Br).
Example 176 N-(3-chloro-5-isoquinolinyl)-N'-[4-(4-morpholinyl)benzyl]urea
Example 176A 3-chloro-5-isocyanatoisoquinoline
5-Amino-3-chloroisoquinoline (740 mg, 4.15 mmol) was suspended in toluene (20 mL) and treated with 20% w/v phosgene solution in toluene (9 mL) and triethylamine (5 mL). The mixture was refluxed overnight and was then concentrated in vacuo and used in the next step without further purification.
Example 176B N-(3 -chloro-5-isoquinolinyl)-N'- [4-(4-morpholinyl)benzyl]urea The product from Example 176A in diethyl ether (40 mL) was treated with the product from Example 172B (300 mg, 1.56 mmol) and triethylamine (3 mL) in 1 : 1 diethyl ether:CH3CN (10 mL). After stining for 3 hours, the mixture was filtered, and the collected solid was washed with diethyl ether. The solid was purified by silica gel chromatography (95:5 CH2Cl2:MeOH) to provide the title compound. 1H NMR (300 MHz, DMSO-d6) δ 9.18 (s, IH), 8.71 (s, IH), 8.37 (d, IH, J=6.7 Hz), 8.08 (s, IH), 7.79 (d, 2H, J=8.2 Hz), 7.63 (t, IH, J=8.0 Hz), 7.23 (d, 2H, J=8.7 Hz), 6.94 (d, 2H, J=8.4 Hz), 6.91 (t, IH, 5.5 Hz), 4.26 (d, 2H, 5.7 Hz), 3.73 (m, 4H), 3.07 (m, 4H); MS (ESI+) m/z 397/399 (M+H, 35C1/37C1).
Example 177 N- [3 , 5 -difluoro-4-(4-morpholinyl)benzyll -N'-5 -isoquinoliny lurea
Example 177A 3,5-difluoro-4-(4-morpholinyl)benzylamine The title compound was prepared using the procedures described in Examples 172 A and 172B using 3,4,5-trifluorobenzonitrile instead of 4-fluorobenzonitrile.
Example 177B N-[3,5-difluoro-4-(4-morpholinyl)benzyl1-N'-5-isoquinolinylurea The product from Example 177A (500 mg, 2.19 mmol) in diethyl ether (5 mL) was treated with an ethereal solution of 5-isocyanatoisoquinoline. The resulting waxy precipitate was collected by filtration and air-dried to provide the title compound. 1H NMR (300 MHz, DMSO-de) δ 9.27 (s, IH), 8.79 (s, IH), 8.54 (d, IH, J=6.1 Hz), 8.26 (dd, IH, J=7.8 Hz, 1.0 Hz), 7.94 (d, IH, 6.1 Hz), 7.76 (d, IH, 8.2 Hz), 7.60 (t, 3H, J=7.6 Hz), 7.10 (t, IH, J=6.0 Hz), 7.03 (m, 2H), 4.31 (d, 2H), 3.68 (m, 4H), 3.07 (m, 4H); MS (ESI+) m/z 399 (M+H).
I l l
Example 178 N-(4-bromobenzyl)-N'-(l,3-dimethyl-5-isoquinolinyl)urea
Example 178 A 1 ,3-dimethyl-5-isoquinolinamine The title compound was prepared using the procedures described in Examples 60D and 60E using 1,3-dimethylisoquinoline, prepared according to the procedure described in Helv. Chim. Acta 1627:75 (1992), instead of the product from Example 60C.
Example 178B N-(4-bromobenzyl)-N'-(l,3-dimethyl-5-isoquinolinyl)urea The product from Example 178A(375 mg, 2.2 mmol) in toluene (7 mL) was treated with l-bromo-4-(isocyanatomethyl)benzene (0.31 mL, 2.2 mmol). After stining at 85-90 °C for 3 hours, the mixture was cooled to room temperature and filtered. The filter cake was treated with methanolic HCl to provide the title compound as the hydrochloride salt. 1H NMR (300 MHz, DMSO-d6) δ 8.62 (s, IH), 8.17 (d, IH, J=7.8 Hz), 7.80 (d, IH, J=8.5 Hz), 7.45-7.60 (m, 4H), 7.32 (d, 2H, J=8.1 Hz), 7.06 (t, IH, 5.7 Hz), 4.34 (d, 2H, 5.8 Hz), 2.84 (s, 3H), 2.75 (s, 3H); MS (ESI+) m/z 383/385 (M+H, 79Br/81Br).
Example 179 N-(3,4-dimethylbenzyl)-N'-(3-methyl-5-isoquinolinyl)urea 3,4-Dimethylbenzylamine (0.3 mL, 2.1 mmol) in toluene (11 mL) was added carefully to a 20% w/v solution of phosgene in toluene (4.5 mL). The mixture was refluxed overnight and was then concentrated in vacuo. The residue was then taken up in toluene (10 mL) and treated with DIEA (1.5 mL, 8.63 mmol) and 5-amino-3-methylisoquinoline (155 mg, 1.08 mmol). The reaction mixture was stined at 80° for 2 h and was then cooled to room temperature. The precipitated solid was collected by filtration and was chromatographed on silica gel (97:3 CH2Cl2-CH3OH to 9:1 CH2Cl2-CH3OH, eluant gradient) to afford the desired product, A-473191. Treatment of this solid with methanolic HCl yielded the conesponding hydrochloride salt. 1H NMR (300 MHz, DMSO-d6) δ 9.16 (s, IH), 8.59 (s, IH), 8.24 (d, IH, J=7.8 Hz), 7.74 (s, IH), 7.68 (d, IH, J=8.2 Hz), 7.50 (t, IH, J=7.9 Hz), 7.08-7.12 (m, 3H),
6.95 (m, IH), 4.28 (d, 2H, 5.8 Hz), 2.64 (s, 3H), 2.22 (s, 3H), 2.20 (s, 3H); MS (ESI+) m/z 320 (M+H).
Example 180 N-[3,5-bis(trifluoromethyl)benzyll-N'-(3-methyl-5-isoquinolinyl)urea The title compound was prepared using the procedure described in Example 179 using 3,5-bis(trifluoromethyl)benzylamine instead of 3,4-dimethylbenzylamine. 1H NMR (300 MHz, DMSO-de) δ 9.18 (s, IH), 8.79 (s, IH), 8.01-8.13 (m, 4H), 7.73 (m, 2H), 7.51 (t, IH, J=8.0 Hz), 7.23 (t, IH, J=6.0 Hz), 4.55 (d, 2H, J=6.1 Hz), 2.64 (s, 3H); MS (ES ) m/z 428 (M+H).
Example 181 N-(3-amino-5-isoquinolinyl)-N'-(4-bromobenzyl)urea
Example 181 A N-3 -isoquinolinylacetamide 3-Aminoisoquinoline (495 mg, 3.44 mmol) was stined in Ac2O (9 mL) at 60° for 16 hours. The mixture was cooled to room temperature and concentrated in vacuo to provide the title compound which was used in the next step without further purification.
Example 181B 3 , 5 -isoquinolinediamine The title compound was prepared using the procedures described in Examples 60D and 60E using the product from Example 181 A instead of the product from Example 60C.
Example 181C N-(3-amino-5-isoquinolinyl)-N'-(4-bromobenzyl)urea The title compound was prepared using the procedure described in Example 179 using 4-bromobenzylamine and the product from Example 18 IB instead of 3,4- dimethylbenzylamine and 5-amino-3-methylisoquinoline. The conesponding hydrochloride salt was formed by treatment of the free base with methanolic HCl. 1H NMR (300 MHz, DMSO-de) δ 8.78 (s, IH), 8.33 (s, IH), 7.82 (d, IH, J=7.5 Hz), 7.47-7.56 (m, 3H), 7.29 (d,
2H, J=8.1 Hz), 7.08 (t, IH, J=7.8 Hz), 6.99 (m, IH), 6.71 (s, IH), 5.94 (br s, 2H), 4.31 (d, 2H, J=6.1 Hz); MS (ES ) m/z 370/372 (M+H, 79Br/81Br).
Example 182 N-(3-methyl-5-isoquinolinyl)-N'-r4-(trifluoromethyl)benzyllurea 4-(Trifluoromethyl)benzylamine (1 mL, 7.02 mmol) in toluene (4 mL) was treated with 20% w/v phosgene solution in toluene (5 mL), and the whole mixture was refluxed overnight. After this time, the mixture was concentrated in vacuo, then was taken up again in toluene (8 mL). To this was added 5-amino-3-methylisoquinoline (340 mg, 2.15 mmol) and DIEA (4 mL) in toluene (8 mL). The reaction was allowed to stir at 80° for 3 h and then was cooled to room temperature. The precipitate was collected by filtration and purified by chromatography on silica gel (97:3 CH2Cl2-CH3OH to 95:5 CH2Cl2-CH3OH, eluant gradient) to afford A-638488 as a white solid. Treatment with methanolic HCl yielded the conesponding hydrochloride salt. 1H NMR (300 MHz, DMSO-de) δ 9.18 (s, IH), 8.73 (s, IH), 8.20 (d, IH, J=7.3 Hz), 7.69-7.75 (m, 4H), 7.58 (d, 2H, J=8.2 Hz), 7.50 (t, IH, 7.8 Hz), 7.16 (t, IH, J=5.9 Hz), 4.47 (d, 2H, J=6.1 Hz), 2.65 (s, 3H); MS (ESI+) m/z 360 (M+H).
Example 183 N-(4-tert-butylbenzyl)-N'-(3-methyl-5-isoquinolinyl)urea The title compound was prepard using the procedure described in Example 182 using 4-tert-butylbenzylamine instead of 4-(trifluoromethyl)benzylamine. The conesponding hydrochloride salt was obtained after treatment of the free base with methanolic HCl. !H NMR (300 MHz, DMSO-d6) δ 9.16 (s, IH), 8.60 (s, IH), 8.24 (dd, IH, J=7.8 Hz, 1.1 Hz), 7.74 (s, IH), 7.68 (d, 2H, J=8.2 Hz), 7.50 (t, 1 H, J=7.9 Hz), 7.38 (m, 2H), 7.29 (m, 2H), 6.99 (t, IH, J=5.8 Hz), 4.32 (d, 2H, J=5.8 Hz), 2.64 (s, 3H), 1.28 (s, 9H); MS (ESI+) m/z 348 (M+H).
Example 184 N-(4-tert-butylbenzyl)-N'-(l,3-dimethyl-5-isoquinolinyl)urea
Example 184A l-(isocyanatomethyl)-4-(trifluoromethyl)benzene
The title compound was prepared using the procedure described in Example 61 A using 4-(trifluoromethyl)benzylamine instead of 5-aminoisoquinoline.
Example 184B N-(4-tert-butylbenzyl)-N'-(l,3-dimethyl-5-isoquinolinyl)urea The product from Example 184 A (3.16 mmol) in toluene (12 mL) was freated with the product from Example 178A (273 mg, 1.59 mmol) and DIEA (5 mL). The mixture was heated at 80° for 3 hours before being cooled to room temperature and filtered. The precipitate thus obtained was purified by silica gel chromatography (97:3 CH2Cl2-CH3OH to 95:5 CH2Cl -CH3OH, eluant gradient) to provide the title compound. The conesponding hydrochloride salt was prepared by treatment with methanolic HCl. 1H NMR (300 MHz, DMSO-de) δ 8.68 (s, IH), 8.16 (d, IH, J=7.5 Hz), 7.80 (d, IH, J=8.1 Hz), 7.73 (d, 2H, J=8.2 Hz), 7.56-7.61 (m, 3H), 7.48 (t, IH, J=8.1 Hz), 7.15 (t, IH, J=5.7 Hz), 4.46 (d, 2H, J=5.7 Hz), 2.84 (s, 3H), 2.58 (s, 3H); MS (ESI+) m/z 374 (M+H).
Example 185 4-(3-chlorophenyl)-N-5-isoquinolinyl- 1 -piperazinecarboxamide l-(3-Chlorophenyl)piperazine (206 mg, 1.05 mmol) in diethyl ether (20 mL) was treated with an ethereal solution of 5-isocyanatoisoquinoline. The precipitate that formed was collected by filtration, washed with diethyl ether and air-dried to provide the title compound. 1HNMR (300 MHz, DMSO-d6) δ 9.30 (s, IH), 8.84 (s, IH), 8.49 (d, IH, J=7.1 Hz), 7.92 (d, IH, J=7.8 Hz), 7.78 (d, IH, 6.8 Hz), 7.61-7.72 (m, 2H), 7.25 (t, IH, J=8.1 Hz), 6.96-7.04 (m, 2H), 6.81-6.84 (m, IH), 3.68 (m, 4H), 3.29 (m, 4H); MS (ESI+) m/z 367 (M+H).
Example 186 N-(4-tert-butylbenzyl)-N'-(l,3-dimethyl-5-isoquinolinyl)urea
Example 186A l-tert-butyl-4-(isocyanatomethyl)benzene The title compound was prepared using the procedure described in Example 61 A using 4-tert-butylbenzylamine instead of 5-aminoisoquinoline.
Example 186B N-(4-tert-butylbenzyl)-N'-(l,3-dimethyl-5-isoquinolinyl)urea The product from Example 186A (3.42 mmol) in toluene (12 mL) was treated with 5- amino-l,3-dimethylisoquinoline (245 mg, 1.42 mmol) and DIEA (5 mL). The mixture was heated at 80° for 3 hours, cooled to room tempoerature, and filtered. The precipitate thus obtained was purified by silica gel chromatography (97:3 CH2Cl2:CH3OH to 95:5 CH2Cl2:CH3OH) to provide the title compound. The coπesponding hydrochloride salt was prepared by treatment with methanolic HCl. 1H NMR (300 MHz, DMSO-d6) δ 8.55 (s, IH), 8.21 (d, IH, J=7.1 Hz), 7.78 (d, IH, 8.5 Hz), 7.59 (s, IH), 7.48 (t, IH, J=8.0 Hz), 7.36-7.40 (m, 2H), 7.27-7.29 (m, 2H), 6.98 (m, IH), 4.31 (d, 2H, J=5.8 Hz), 2.84 (s, 3H), 2.58 (s, 3H), 1.28 (s, 9H); MS (ESI+) m/z 362 (M+H).
Example 187 4-(3,4-dimethylphenyl)-N-5-isoquinolinyl-l-piperazinecarboxamide l-(3,4-Dimethylphenyl)piperazine (194 mg, 1.02 mmol) in diethyl ether (20 mL) was treated with an ethereal solution of 5-isocyanatoisoquinoline. The precipitate that formed was collected by filtration, washed with diethyl ether, and air-dried to provide the title compound. lH NMR (300 MHz, DMSO-d6) δ 9.29 (d, IH, J=0.7 Hz), 8.82 (s, IH), 8.49 (d, J=6.2 Hz, IH), 7.90-7.93 (m, IH), 7.76-7.79 (m, IH), 7.61-7.71 (m, 2H), 7.00 (d, IH, 8.5 Hz), 6.83 (d, IH, J=2.4 Hz), 6.73 (dd, IH, J=8.3 Hz, 2.5 Hz), 3.67 (m, 4H), 3.15 (m, 4H), 2.19 (s, 3H), 2.13 (s, 3H); MS (ESI+) m/z 361 (M+H).
Example 188 4-(4-chlorophenyl)-N-5-isoquinolinyl- 1 -piperazinecarboxamide l-(4-Chlorophenyl)piperazine (197 mg, 1.01 mmol) in diethyl ether (20 mL) was freated with an ethereal solution of 5-isocyanatoisoquinoline. The precipitate that formed was collected by filtration, washed with diethyl ether, and air-dried to provide the title compound. 1H NMR (300 MHz, DMSO-d6) δ 9.29 (d, IH, J=1.0 Hz), 8.83 (s, IH), 8.49 (d, IH, 6.1 Hz), 7.93 (d, IH, J=7.8 Hz), 7.77 (m, IH), 7.61-7.72 (m, 2H), 7.26-7.29 (m, 2H), 7.01-7.04 (m, 2H), 3.68 (m, 4H), 3.23 (m, 4H); MS (ESI+) m/z 367 (M+H).
Example 189 N-5-isoquinolinyl-3 -methyl-4-(4-methylphenyl)- 1 -piperazinecarboxamide The title compound was prepared using the procedure described in Example 188 using 2-methyl- 1 -(4-methylphenyl)piperazine instead of 1 -(4-clιlorophenyl)piperazine. 1H NMR (300 MHz, DMSO-de) δ 9.29 (d, IH, J=0.6 Hz), 8.77 (d, IH, J=5.1 Hz), 8.49 (d, IH, J=5.7 Hz), 7.92 (d, IH, 7.5 Hz), 7.61-7.77 (m, 3H), 7.06 (d, 2H, 8.2 Hz), 6.86-6.91 (m, 2H), 3.61 and 4.53 (2m, IH), 4.09 (m, IH), 3.93 (m, IH), 3.49 (m, IH), 3.39 (m, IH), 2.62-3.24 (m, 2H), 2.22 (s, 3H), 1.35 and 0.98 (2d, 3H, J=6.4 and 6.1 Hz); MS (ESI+) m/z 361 (M+H).
Example 190 4-(2,3-dimethylphenyl)-N-5-isoquinolinyl-l-piperazinecarboxamide The title compound was prepared using the procedure described in Example 188 using 1 -(2,3-dimethylphenyl)piperazine instead of 1 -(4-chlorophenyl)piperazine. lH NMR (300 MHz, DMSO-de) δ 9.29 (d, IH, J=1.0 Hz), 8.80 (s, IH), 8.50 (d, IH, J=5.7 Hz), 7.92 (d, IH, J=8.2 Hz), 7.79 (dd, IH, J=6.1Hz, 1.0 Hz), 7.61-7.73 (m, 2H), 7.07 (m, 1H0, 6.90-6.96 (m, 2H), 3.70 (m, 4H), 2.87 (m, 4H), 2.23 (s, 3H), 2.23 (s, 3H); MS (ESI+) m/z 361 (M+H).
Example 191 4-(2,3 -dichlorophenyl)-N-5-isoquinolinyl- 1 -piperazinecarboxamide The title compound was prepared using the procedure described in Example 188 using 1 -(2,3 -dichlorophenyl)piperazine instead of 1 -(4-chlorophenyl)piperazine. 1H NMR (300 MHz, DMSO-de) δ 9.30 (d, IH, J=0.7 Hz), 8.83 (s, IH), 8.50 (d, IH, J=5.8 Hz), 7.92 (d, IH, J=7.8 Hz), 7.79 (dd, IH, J=5.1 Hz, 1.0 Hz), 7.62-7.73 (m, 2H), 7.33-7.36 (m, 2H), 7.21-7.24 (m, IH), 3.71 (m, 4H), 3.07 (m, 4H); MS (ESI+) m/z 401/403 (M+H, 35C1/37C1).
Example 192 N-[3-fluoro-4-(trifluoromethyl)benzyl1-N'-(3-methyl-5-isoquinolinyl)urea
Example 192 A 2-fluoro-4-(isocyanatomethyl)- 1 -(trifluoromethyl)benzene The title compound was prepared using the procedure described in Example 61 A using 3-fluoro-4-(trifluoromethyl)benzylamine instead of 5-aminoisoquinoline.
Example 192B N-r3-fluoro-4-(trifluoromethyl)benzyll-N'-(3-methyl-5-isoquinolinyl)urea The product from Example 192A (4.4 mmol) in toluene (10 mL) was treated with 5- amino-3-methylisoquinoline (460 mg, 2.9 mmol) and DIEA (3 mL). The mixture was heated at 80° for 1.5 hours, cooled to room temperature, and filtered. The precipitate thus obtained was purified by silica gel chromatography (97:3 CH2Cl2:CH3OH to 95:5 CH2Cl2:CH3OH) to provide the title compound. The conesponding hydrochloride salt was prepared by treatment with methanolic HCl. 1H NMR (300 MHz, DMSO-d6) δ 9.18 (s, IH), 8.77 (s, IH), 8.17 (dd, IH, J=7.8 Hz, 1.0 Hz), 7.70-7.81 (m, 3H), 7.38-7.53 (m, 3H), 7.19 (t, IH, 6.1 Hz), 4.47 (d, 2H, J=5.8 Hz), 2.65 (s, 3H); MS (EST) m/z 378 (M+H).
Example 193 N-[l-(4-bromophenyl)ethyll-N'-(3-methyl-5-isoquinolinyl)urea
Example 193 A 1 -bromo-4-(l -isocyanatoethyl)benzene The title compound was prepared using the procedure described in Example 61 A using l-(4-bromophenyl)ethylamine instead of 5-aminoisoquinoline.
Example 193B N-[l-(4-bromophenyl)ethyll-N'-(3-methyl-5-isoquinolinyl)urea The title compound was prepared using the procedure described in Example 192B using the product from Example 193 A instead of the product from Example 192 A. The conesponding hydrochloride salt was prepared by treatment with methanolic HCl. lH NMR (300 MHz, DMSO-d6) δ 9.16 (s, IH), 8.56 (s, IH), 8.20 (dd, IH, J=7.8 Hz, 1.0 Hz), 7.72 (s, IH), 7.67 (d, IH, J=8.2 Hz), 7.56 (m, 2H), 7.47 (t, IH, J=7.8 Hz), 7.35 (m, 2H), 7.12 (d, IH, J=7.4 Hz), 4.85 (m, IH), 2.65 (s, 3H), 1.43 (d, 3H, J=7.1 Hz); MS (ESI+) m/z 384/386 (M+H, 79Br/81Br).
Example 194 N-(3,4-dichlorobenzyl)-N'-(3-methyl-5-isoquinolinyl)urea
Example 194 A l,2-dichloro-4-(isocyanatomethyl)benzene The title compound was prepared using the procedure described in Example 61 A using 3,4-dichlorobenzylamine instead of 5-aminoisoquinoline.
Example 194B N-(3,4-dichlorobenzyl)-N'-(3-methyl-5-isoquinolinyl)urea 5-Amino-3-methylisoquinoline (390 mg, 2.47 mmol) and the product from Example 194A (0.36 mL, 2.45 mmol) were heated in toluene (10 mL) at 80° for 2.5 hours. Upon cooling to room temperature, a precipitate formed, which was collected by filtration, washed with toluene, and air-dried. Remaining impurities were removed by slurry ing the solid in 9:1 CH2Cl2:CH3OH and then filtering the mixture to provide the title compound. The conesponding hydrochloride salt was formed by treatment of the free base with methanolic HCl. 1H NMR (300 MHz, DMSO-d6) δ 9.17 (s, IH), 8.27 (s, IH), 8.17 (dd, IH, J=7.8 Hz, 1.0 Hz), 7.74 (s, IH), 7.71 (d, IH, J=8.1 Hz), 7.61 (m, 2H), 7.50 (t, IH, J=8.0 Hz), 7.35 (dd, IH, J=8.3 Hz, 2.2 Hz), 7.12 (t, IH, 5.9 Hz), 4.37 (d, 2H, J=6.1 Hz), 2.65 (s, 3H); MS (ESI+) m/z 360/362 (M+H, 35C1/37C1).
Example 195 N-(2,4-dichlorobenzyl)-N'-(3 -methyl-5 -isoquinolinyl)urea
Example 195 A 2,4-dichloro- 1 -(isocyanatomethyl)benzene The title compound was prepared using the procedure described in Example 61 A using 2,4-dichlorobenzylamine instead of 5-aminoisoquinoline.
Example 195B N-(2,4-dichlorobenzyl)-N'-(3-methyl-5-isoquinolinyl)urea 5-Amino-3-methylisoquinoline (390 mg, 2.47 mmol) and the product from Example 195A (0.36 mL, 2.47 mmol) were heated in toluene (10 mL) at 80° for 2.5 hours. Upon cooling to room temperature, a precipitate formed, which was collected by filtration, washed
with toluene, and air-dried. Remaining impurities were removed by slurrying the solid in 9:1 CH2Cl2:CH3OH and then filtering the mixture to provide the title compound. The conesponding hydrochloride salt was formed by treatment of the free base with methanolic HCl. 1HNMR (300 MHz, DMSO-d6) δ 9.17 (s, IH), 8.78 (s, IH), 8.21 (dd, IH, J=7.4 Hz, 1.0 Hz), 7.77 (s, IH), 7.70 (d, IH, J=8.1 Hz), 7.64 (m, IH), 7.44-7.52 (m, 3H), 7.14 (t, IH, J=6.1 Hz), 4.38 (d, 2H, J=6.0 Hz), 2.65 (s, 3H); MS (ESI+) m/z 360/362 (M+H, 35C1/37C1).
Example 196 N-(3-chlorobenzyl)-N'-(3-methyl-5-isoquinolinyl)urea 3-chlorobenzylamine (141 mg, 1.0 mmol) in ether (20 mL) was treated with an ethereal solution of 5-isocyanato-3-methylisoquinoline. The precipitate that formed was collected by filtration, washed with diethyl ether, and air-dried to provide the title compound. 1H NMR (300 MHz, DMSO-d6) δ 9.18 (s, IH), 8.69 (s, IH), 8.20 (d, IH, J=7.8 Hz), 7.75 (s, IH), 7.70 (d, IH, J=8.2 Hz), 7.51 (t, IH, J=7.8 Hz), 7.31-7.43 (m, 4H), 7.10 (m, IH), 4.38 (d, 2H, J=5.7 Hz), 2.65 (s, 3H); MS (ESI+) m/z 326/328 (M+H, 35C1/37C1).
Example 197 N-(3 -methyl-5 -isoquinolinyl)-N'- [4-(trifluoromethoxy)benzyllurea The title compound was prepared using the procedure described in Example 196 using 4-(trifluoromethoxy)benzylamine instead of 3-chlorobenzylamine. 1H NMR (300 MHz, DMSO-de) δ 9.17 (s, IH), 8.68 (s, IH), 8.21 (d, IH, J=7.8 Hz), 7.75 (s, IH), 7.70 (d, IH, J=8.1 Hz), 7.46-7.53 (m, 3H), 7.35-7.37 (m, 2H), 7.10 (t, IH, 5.9 Hz), 4.40 (d, 2H, J=5.7 Hz), 2.64 (s, 3H); MS (ESI+) m z 376 (M+H).
Example 198 N-r2-(3,4-dichlorophenyl)ethyll-N'-(3-methyl-5-isoquinolinyl)urea The title compound was prepared using the procedure described in Example 196 using 2-(3,4-dichlorophenyl)ethylamine instead of 3-chlorobenzylamine. 1H NMR (300 MHz, DMSO-de) δ 9.16 (s, IH), 8.54 (s, IH), 8.17 (d, IH, J=7.5 Hz), 7.67-7.70 (m, 2H), 7.57-7.60 (m, 2H), 7.49 (t, IH, 7.8 Hz), 7.29 (dd, IH, J=8.1 Hz, 2.0 Hz), 6.57 (t, IH, J=5.7 Hz), 3.43 (m, 2H), 2.82 (m, 2H), 2.64 (s, 3H); MS (ESI+) m/z 374/376 (M+H, 35C1/37C1).
Example 199 N-(4-ethylbenzyl)-N'-(3-methyl-5-isoquinolinyl)urea The title compound was prepared using the procedure described in Example 196 using 4-ethylbenzylamine instead of 3-chlorobenzylamine. 1H NMR (300 MHz, DMSO-d6) δ 9.17 (s, IH), 8.61 (s, IH), 8.24 (d, IH, J=7.8 Hz), 7.74 (s, IH), 7.68 (d, IH, J=7.8 Hz), 7.50 (t, IH, J=7.8 Hz), 7.19-7.29 (m, 4H), 6.99 (m, IH), 4.32 (d, 2H, J=5.7 Hz), 2.64 (s, 3H), 2.59 (q, 2H, J=7.6 Hz), 1.17 (t, 3H, J=7.6 Hz); MS (ESI+) m/z 320 (M+H).
Example 200 N-(3-methyl-5-isoquinolinyl)-N'-{2-[4-(trifluoromethyl)phenyllethyl}urea The title compound was prepared using the procedure described in Example 196 using 2-[4-(trifluoromethyl)phenyl]ethylamine instead of 3-chlorobenzylamine. 1H NMR (300 MHz, DMSO-de) δ 9.16 (s, IH), 8.55 (s, IH), 8.20 (d, IH, J=7.8 Hz), 7.67-7.70 (m, 4H), 7.46-7.53 (m, 3H), 6.60 (t, IH, J=5.6 Hz), 3.46 (m, 2H), 2.91 (m, 2H), 2.64 (s, 3H); MS (ESI+) m/z 374 (M+H).
Example 201 N-(3-methyl-5-isoquinolinyl)-N'-{4-[(trifluoromethyl)thiolbenzyl}urea The title compound was prepared using the procedure described in Example 196 using 4-[(frifluoromethyl)thio]benzylamine instead of 3-chlorobenzylamine. 1H NMR (300 MHz, DMSO-de) δ 9.18 (s, IH), 8.72 (s, IH), 8.21 (d, IH, J=7.8 Hz), 7.69-7.76 (m, 4H), 7.50-7.53 (m, 3H), 7.15 (m, IH), 4.44 (d, 2H, J=6.1 Hz), 2.65 (s, 3H); MS (ESI+) m/z 392 (M+H).
Example 202 N-(4-chlorobenzyl)-N'-(3-methyl-5-isoquinolinyl)urea The title compound was prepared using the procedure described in Example 196 using 4-chlorobenzylamine instead of 3-chlorobenzylamine. 1H NMR (300 MHz, DMSO-d6) δ 9.17 (s, IH), 8.67 (s, IH), 8.21 (m, IH), 7.66-7.74 (m, 2H), 7.37-7.53 (m, 5H), 7.08 (m, IH), 4.36 (d, 2H, J=5.8 Hz), 2.64 (s, 3H); MS (ESI+) m/z 326/328 (M+H, 35C1/37C1).
Example 203 4-(3,4-dichlorophenyl)-N-(3-methyl-5-isoquinolinyl)-l-piperazinecarboxamide
The title compound was prepared using the procedure described in Example 196 using l-(3,4-dichlorophenyl)piperazine instead of 3-chlorobenzylamine. 1H NMR (300 MHz, DMSO-d6) δ 9.20 (s, IH), 8.74 (s, IH), 7.86 (d, IH, J=8.1 Hz), 7.51-7.66 (m, 3H), 7.43 (d, IH, J=8.8 Hz), 7.22 (d, IH, J=3.1 Hz), 7.01 (dd, IH, J=9.1 Hz, 3.1 Hz), 3.67 (m, 4H), 3.28 (m, 4H), 2.62 (s, 3H); MS (ESI+) m/z 415/417 (M+H, 35C1/37C1).
Example 204 N-(2,4-difluorobenzyl)-N'-(3-methyl-5-isoquinolinyl)urea The title compound was prepared using the procedure described in Example 196 using 2,4-difluorobenzylamine instead of 3-chlorobenzylamine. 1H NMR (300 MHz, DMSO-d6) δ 9.17 (s, IH), 8.67 (s, IH), 8.21 (dd, IH, J=7.5 Hz, 1.0 Hz), 7.74 (s, IH), 7.70 (d, IH, J=8.1 Hz), 7.47-7.52 (m, 2H), 7.05-7.29 (m, 3H), 4.38 (d, 2H, J=5.7 Hz), 2.64 (s, 3H); MS (ESI+) m/z 328 (M+H).
Example 205 N-(l,3-dimethyl-5-isoquinolinyl)-N'-[3-fluoro-4-(frifluoromethyl)benzyllurea
Example 205A 2-fluoro-4-(isocy anatomethyl)- 1 -(trifluoromethyl)benzene The title compound was prepared using the procedure described in Example 61 A using 3-fluoro-4-(trifluoromethyl)benzylamine instead of 5-aminoisoquinoline.
Example 205B N-(l,3-dimethyl-5-isoquinolinyl)-N'-[3-fluoro-4-(trifluoromethyl)benzyllurea The product from Example 205 A (4.4 mmol) in toluene (10 mL) was treated with 1,3- dimethyl-5-isoquinolinamine (375 mg, 2.18 mmol) and DIEA (3.5 mL). The mixture was heated at 80° overnight. After cooling to room temperature, the precipitated solids were collected by filtration and chromatographed on silica gel (98:2 CH2Cl2:CH3OH to 95:5 CH2Cl2:CH3OH) to provide the title compound. The conesponding hydrochloride salt was prepared by treatment with methanolic HCl. 1H NMR (300 MHz, DMSO-d6) δ 8.72 (s, IH), 8.13 (d, IH, J=7.8 Hz), 7.75-7.83 (m, 2H), 7.61 (s, IH), 7.38-7.51 (m, 3H), 7.18 (t, IH, J=6.1 Hz), 4.46 (d, 2H, J=5.8 Hz), 2.84 (s, 3H), 2.59 (s, 3H); MS (ESI+) m/z 392 (M+H).
Example 206 N-5 -isoquinolinyl-4- [3 -(trifluoromethyl)phenyll - 1 -piperazinecarboxamide The title compound was prepared using the procedure described in Example 188 using l-[3-(trifluoromethyl)phenyl]piperazine instead of l-(4-chlorophenyl)piperazine. 1H NMR (300 MHz, DMSO-de) δ 9.30 (d, IH, J=1.0 Hz), 8.85 (s, IH), 8.49 (d, IH, J=5.7 Hz), 7.93 (d, IH, J=7.7 Hz), 7.78 (m, IH), 7.61-7.72 (m, 2H), 7.46 (m, IH), 7.26-7.31 (m, 2H), 7.12 (d, IH, J=7.5 Hz), 3.70 (m, 4H), 3.35 (m, 4H); MS (ESI+) m/z 401 (M+H).
Example 207 4-(4-bromophenyl)-N-5-isoquinolinyl-l-piperazinecarboxamide The title compound was prepared using the procedure described in Example 188 using l-(4-bromophenyl)piperazine instead of l-(4-chlorophenyl)piperazine. The precipitate that formed was collected by filtration, washed with diethyl ether, and air-dried. Purification by silica gel chromatography provided the title compound. !H NMR (300 MHz, DMSO-d6) δ 9.29 (d, IH, J=1.0 Hz), 8.83 (s, IH), 8.49 (d, IH, J=6.1 Hz), 7.92 (d, IH, J=7.8 Hz), 7.77 (m, IH), 7.61-7.71 (m, 2H), 7.37-7.40 (m, 2H), 6.96-6.99 (m, 2H), 3.68 (m, 4H), 3.23 (m, 4H); MS (ESI+) m/z 411/413 (M+H, 79Br/81Br).
Example 208 N-(4-isopropylbenzyl)-N'-(3-methyl-5-isoquinolinyl)urea 4-Isopropylbenzylamine (748 mg, 5.02 mmol) in toluene (20 mL) was refluxed with 20% w/v phosgene solution in toluene (3 mL) overnight. The mixture was cooled to room temperature and concentrated in vacuo. The residue was taken up in toluene (20 mL) and was treated with DIEA (4 mL) and 5-amino-3-methylisoquinoline (500 mg, 3.16 mmol). The reaction mixture was stined was at 80 °C for 6 hours. After cooling to room temperature, a precipitate formed which was collected by filtration and purified by silica gel chromatography (98:2 CH Cl2:CH3OH) to provide the title compound. The conesponding hydrochloride salt was formed by treatment with methanolic HCl. 1H NMR (300 MHz, DMSO-de) δ 9.16 (s, IH), 8.60 (s, IH), 8.24 (dd, IH, J=7.5 Hz, 1.0 Hz), 7.74 (s, IH), 7.68 (d, IH, J=8.2 Hz), 7.50 (t, IH, J=8.0 Hz), 7.22-7.30 (m, 4H), 6.99 (t, IH, 5.6 Hz), 4.32 (d, 2H, J=7.8 Hz), 2.88 (m, IH), 2.64 (s, 3H), 1.20 (d, 6H, J=6.8 Hz); MS (ESI*) m/z 334 (M+H).
Example 209 N-r4-fluoro-3-(trifluoromethyl)benzyll-N'-(3-methyl-5-isoquinolinyl)urea 4-Fluoro-3-(trifluoromethyl)benzylamine (0.8 g, 4.15 mmol) in toluene (20 mL) was refluxed with 20% w/v phosgene solution in toluene (2.1 mL) overnight. The mixture was cooled to room temperature and concentrated in vacuo. The residue was again taken up in toluene (25 mL) and was stined overnight at 80 °C with DIEA (2 mL, 11.5 mmol) and 5- amino-3-methylisoquinoline (500 mg, 3.16 mmol). The mixture was cooled to room temperature, concentrated in vacuo, and the residue was purified by silica gel chromatography (97:3 CH2Cl2:CH3OH, eluant) to provide the title compound. The conesponding hydrochloride salt was prepared by treatment with methanolic HCl. H NMR (300 MHz, DMSO-de) δ 9.18 (s, IH), 8.72 (s, IH), 8.16 (d, IH, J=7.8 Hz), 7.70-7.77 (m, 4H), 7.48-7.54 (m, 3H), 7.14 (t, IH, J=5.9 Hz), 4.42 (d, 2H, J=6.1 Hz), 2.64 (s, 3H); MS (ES ) m/z 378 (M+H).
Example 210 N-(3-amino-5-isoquinolinyl)-N'-{l-[4-(trifluoromethyl)phenyllethyl)urea l-(l-Isocyanatoethyl)-4-(trifluoromethyl)benzene (1.64 mmol) in toluene (8 mL) was treated withN-(5-amino-3-isoquinolinyl)acetamide (220 mg, 1.09 mmol) and DIEA (1.4 mL). The mixture was heated at 80 °C for 6 hours, cooled to room temperature, and the precipitate was collected by filtration. The solid was triturated with 97:3 CH Cl2:CH3OH and stined as a suspension in 48% aqueous HBr (8 mL) at 60 °C for 4 hours. After cooling to room temperature, the mixture was poured into concentrated NH4OH (20 mL) and filtered. The solid was washed with water and air-dried to provide the title compound. The conesponding hydrochloride salt was prepared by treatment with methanolic HCl. H NMR (300 MHz, DMSO-d6) δ 9.05 (s, IH), 8.64 (s, IH), 7.91 (d, IH), 7.58-7.74 (m, 4H), 7.22-7.36 (m, 3H), 7.14-7.18 (m, 2H), 6.97 (s, IH), 4.94 (m, IH), 1.44 (d, 3H, J=6.8 Hz); MS (ESI+) m/z 375 (M+H).
Example 211 N-(3-amino-5-isoquinolinyl)-N'-[3-fluoro-4-(trifluoromethyl)benzyllurea
2-Fluoro-4-(isocyanatomethyl)-l-(trifluoromethyl)benzene (2.59 mmol) in toluene (10 mL) was treated with N-(5-amino-3-isoquinolinyl)acetamide (400 mg, 1.99 mmol) and DIEA (1.8 mL). The mixture was heated at 80 °C for 5 hours, cooled to room temperature, and filtered. The solid was triturated with 97:3 CH2Cl2:CH3OH and stined as a suspension in 48% aqueous HBr (8 mL) at 60 °C for 2 hours. After cooling to room temperature, the mixture was poured into concentrated NH4OH (20 mL). The solid was washed with water and air-dried to provide the title compound. The conesponding hydrochloride salt was prepared by treatment with methanolic HCl. 1H NMR (300 MHz, DMSO-d6) δ 8.81 (s, IH), 8.68 (s, IH), 7.94 (s, IH), 7.76 (t, IH, J=7.9 Hz), 7.35-7.49 (m, 3H), 7.26 (s, IH), 7.09 (s, IH), 6.92 (s, IH), 6.84 (t, IH, J=6.0 Hz), 6.62 (s, IH), 4.41 (d, 2H, J=6.1 Hz).
Example 212 N- [(2,4-dichlorobenzyl)oxy] -N'-5 -isoquinolinylurea The title compound was prepared using the procedure described in Example 6 IB using O~(2,5-dichlorobenzyl)hydroxylamine instead of 4-cyanobenzyl alcohol. MS (ESI) m z: 361.96 (M+H)+; 1H NMR (DMSO-d6) δ 5.03 (s, 2H), 7.52 (dd, IH), 7.69 (m, 4H), 7.88 (d, IH), 7.93 (d, IH), 8.52 (d, IH), 9.00 (s, IH), 9.31 (s, IH), 9.77 (s, IH).
Example 213 N-(5-bromo-2-fluorobenzyl)-N'-5-isoquinolinylurea The title compound was prepared using the procedure described in Example 61 B using 5-bromo-2-fluorobenzylamine instead of 4-cyanobenzyl alcohol. MS (ESI) m z: 373.93 (M+H)+; 1HNMR (DMSO-d6) δ 4.42 (d, 2H), 7.22 (t, IH), 7.54 (m, 2H), 7.60 (dd, IH), 7.86 (t, IH), 8.05 (d, IH), 8.56 (t, 2H), 8.69 (d, IH), 9.45 (s, IH), 9.72 (s, IH).
Example 214 N-(4-chloro-2-fluorobenzyl)-N'-5-isoquinolinylurea The title compound was prepared using the procedure described in Example 61 B using 4-chloro-2-fluorobenzylamine instead of 4-cyanobenzyl alcohol. MS (ESI) m/z: 329.99 (M+H)+; 1H NMR (DMSO-d6) δ 4.41 (d, 2H), 7.31 (dd, IH), 7.47 (m, 3H), 7.85 (t, IH), 8.04 (d, IH), 8.56 (d, 2H), 8.68 (d, IH), 9.42 (s, IH), 9.71 (s, IH).
Example 215 2-(4-chlorophenyl)ethyl 5-isoquinolinylcarbamate The title compound was prepared using the procedure described in Example 61B using 2-(4-chlorophenyl)ethanol instead of 4-cyanobenzyl alcohol. MS (ESI) m/z: 327.04 (M+H)+; 1H NMR (DMSO-de) δ 2.99 (t, 2H), 4.37 (t, 2H), 7.36 (q, 4H), 7.89 (t, IH), 8.12 (d, IH), 8.20 (d, IH), 8.30 (d, IH), 8.63 (d, IH), 9.72 (s, IH), 9.97 (s, IH).
Example 216 2-[2-(trifluoromethyl)phenyllethyl 5-isoquinolinylcarbamate The title compound was prepared using the procedure described in Example 61B using 2-[2-(trifluoromethyl)phenyl]ethanol instead of 4-cyanobenzyl alcohol. MS (ESI) m/z: 361.06 (M+H)+; 1H NMR (DMSO-d6) δ 3.18 (t, 2H), 4.42 (t, 2H), 7.48 (t, IH), 7.63 (m, 2H), 7.72 (d, IH), 7.90 (t, IH), 8.13 (d, IH), 8.20 (d, IH), 8.30 (d, IH), 8.63 (d, IH), 9.72 (s, IH), 10.01 (s, IH).
Example 217 N-(4-tert-butylbenzyl)-N'-5-isoquinolinylurea The title compound was prepared using the procedure described in Example 6 IB using 4(-tert-butyl)benzylamine instead of 4-cyanobenzyl alcohol. MS (ESI) m/z: 333 (M+H)+; 1H NMR (DMSO-de) δ 1.27 (s, 9H), 2.80 (t, 2H), 2.95 (t, 2H), 7.22 (d, 2H), 7.33 (d, 2H), 7.67 (t, IH), 7.80 (d, IH), 7.96 (t, 2H), 8.48 (d, IH), 9.33 (s, IH), 9.99 (s, IH).
Example 218 N-r(4-tert-butylcyclohexyl)methyll-N'-5-isoquinolinylurea The title compound was prepared using the procedure described in Example 61B using (4-tert-butylcyclohexyl)methylamine instead of 4-cyanobenzyl alcohol. MS (ESI) m/z: 340.18 (M+H)+; 1H NMR (DMSO-d6) δ 0.82 (d, 9H), 0.93 (d, 4H), 1.09-1.50 (m, 2H), 1.74 (d, 2H), 1.82 (d, 2H), 3.01 & 3.19 (t & dd, 2H), 7.19 & 7.24 (t & t, IH), 7.87 (t, IH), 8.03 (d, IH), 8.63 (dd, IH), 8.67 (d, IH), 8.76 (dd, IH), 9.47 (d, IH), 9.74 (s, IH).
Example 219 N-(3,4-difluorobenzyl)-N'-5-isoquinolinylurea
The title compound was prepared using the procedure described in Example 61B using 3,4-difluorobenzylamine instead of 4-cyanobenzyl alcohol. MS (ESI) m/z: 314.07 (M+H)+; 1HNMR (DMSO-d6) δ 4.36 (d, 2H), 7.12 (t, IH), 7.20 (m, IH), 7.40 (t, 2H), 7.60 (t, IH), 7.75 (d, IH), 7.94 (d, IH), 8.26 (dd, IH), 8.54 (d, IH), 8.79 (s, IH), 9.27 (s, IH).
Example 220 N-5-isoquinolinyl-N'-{[4-(trifluoromethyl)cyclohexyllmethyl}urea The title compound was prepared using the procedure described in Example 61B using [4-(trifluoromethyl)cyclohexyl]methylamine instead of 4-cyanobenzyl alcohol. MS (ESI) m/z: 352.07 (M+H)+; 1H NMR (CDC13) δ 1.05 & 1.27 (q & q, IH), 1.58 (m, 2H), 1.66 (m, 2H), 1.70 (m, 2H), 1.94 (m, 2H), 2.08 (m, IH), 3.21 & 3.34 (d & d, 2H), 7.16 (br, IH), 7.84 (s, 2H), 8.35 (s, IH), 8.82 (d, IH), 9.12 (d, IH), 9.36 (s, IH), 9.49 (s, IH).
Example 221 ethyl 5-isoquinolinylacetate 5-Bromoisquinoline (7.19 g, 34.5 mmol) in toluene (80 mL) was treated with dichlorobis(tri-o-tolylphosphine)palladium(II) (5 mol%, 1.3639 g, 1.7 mmol) and tributylstannanylacetic acid ethyl ester in toluene (20 mL). This mixture was heated at 125 °C overnight, cooled, diluted with ethyl acetate (100 mL), washed with water (2 x 50 mL), dried (MgSO4), and the filtrate was concentrated under reduced pressure. The residue was pruified by column chromatography (20% ethyl acetate in hexanes to 50% ethyl acetate in hexanes) to provide the title compound. MS (ESI+) m/z 216 (M+H)+, (ESI-) m/z 214 (M-H)" ; 1H NMR (DMSO, 300 MHz) δ 1.17 (t, J 7.1, 3H), 4.09 (q, J 7.1, 2H), 4.17 (s, 2H), 7.64 (m, IH), 7.72 (d, J 6.2, IH), 7.81 (d, J 5.7, IH), 8.07 (d, J 7.9, IH), 8.54 (d, J 6.1, IH), 9.33 (s, IH); Anal. Calcd for d3Hι3NO2 • 0.6 H2O: C, 69.07; H, 6.33; N, 6.2. Found: C, 59.4; H, 6.09; N, 5.89.
Example 222 2-(5-isoquinolinyl)-N-r4-(trifluoromethoxy)benzyllacetamide
Example 222A
5-isoquinolinylacetic acid
Ethyl 5-isoquinolinylacetate (1.15 g, 5.34 mmol) was dissolved in concentrated H2SO4 (12 mL) and heated at 100 °C for 2 hours. The reaction mixture was poured into ice (20g) and the pH was adjusted to 6 with 50% NaOH/H O. The mixture was allowed to set of several hours, filtered, and the filter cake was rinsed with water to provide the title compound. MS (ESI+) mlz 188 (M+H)+; 1HNMR (DMSO, 300 MHz) δ 4.07 (s, 2H), 7.67 (m, 2H), 7.83 (d, J 5.7, IH), 8.05 (d, J 8.1, IH), 8.53 (d, J 6.1, IH), 9.32 (s, IH), 12.50 (s, IH); 13C NMR (DMSO, 75 MHz) δ 37.6 (CH2CO), 117.1 (CH, C4), 126.8, 127.0 (CH, C7 & C8), 128.4 (C), 131.1 (C), 132.0 (CH, C6), 134.4 (C), 143.0 (CH, C3), 152.7 (CH, Cl), 172.3 (CO); Anal. Calcd for CnH9NO2: C, 70.58; H, 4.85; N, 7.48. Found: C, 70.42; H, 4.93; N, 7.34.
Example 222B 2-(5-isoquinolinyl)-N-[4-(trifluoromethoxy)benzyl1acetamide Polymer supported 1,3-dicyclohexylcarbodiimide (0.845 g) in dichloromethane (5 mL) was treated with 5-isoquinolinylacetic acid (0.075 g, 0.40 mmol) in dichloromethane (1 mL), l-hydroxy-7-azabenzotriazole (0.049 g), and triethylamine (0.080 g) in dichloromethane (1 mL). After stining for 5 minutes, the mixture was treated with 4-(trifluoromethoxy)benzylamine (0.40 mmol). After stining for 16 hours, the mixture was treated with MP-Carbonate resin (0.310 g), stined for 5 minutes, and filtered. The filtrate was diluted with dichloromethane (40 mL), washed with water (4x20 mL), brine (1 χ20 mL), dried (NasSO4), filtered, and the filtrate was concentrated under reduced pressure to provide the title compound which was purified by forming the hydrochloride salt and triturating the solid with hot ethyl acetate. MS (ESI+) m/z 361 (M+H)+; MS (ESI-) m/z 359 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 3.99 (s, 2H), 4.31 (d, J 5.7, 2H), 7.31 (d, J 8.8, 2H), 7.36 (d, J 6.4, 2H), 7.66 (m, 2H), 7.93 (d, J 6.1, IH), 8.03 (d, J 8.2, IH), 8.51 (d, J 6.1, IH), 8.74 (t, J 6.1, IH), 9.31 (s, IH); Anal. Calcd for C19H15F3N2O2 + 1 HCl: C, 57.51; H, 4.06; N, 7.06. Found: C, 57.42; H, 3.98; N, 6.72.
Example 223 N-(4-tert-butylbenzyl)-2-(5-isoquinolinyl)acetamide The title compound was prepared using the procedure described in Example 222B using 4-(tert-butyl)benzylamine instead of 4-(trifluoromethoxy)benzylamine. MS (ESI+) m/z
333 (M+H)+; MS (ESI-) m/z 331 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 1.26 (s, 9H), 3.96 (s, 2H), 4.24 (d, J 6.1, 2H), 7.17 (d, J 8.5, 2H), 7.32 (d, J 6.4, 2H), 7.66 (m, 2H), 7.83 (d, J 6.1, IH), 8.03 (d, J 8.1, IH), 8.51 (d, J 6.1, IH), 8.65 (t, J 5.8, IH), 9.30 (s, IH); Anal. Calcd for C22H24N2O + 1.15 HCl: C, 70.58; H, 6.77; N, 7.48. Found: C, 70.56; H, 6.80; N, 7.39.
Example 224 N-[3-fluoro-4-(trifluoromethyl)benzyll-2-(5-isoquinolinyl)acetamide The title compound was prepared using the procedure described in Example 222B using 3-fluoro-4-(trifluoromethyl)benzylamine instead of 4-(trifluoromethoxy)benzylamine. MS (ESI+) m/z 363 (M+H)+; MS (ESI-) m/z 361 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 4.21 (s, 2H), 4.38 (d, J 6.1, 2H), 7.32 (m, 2H), 7.73 (t, J 7.8, IH), 7.98 (t, J 8.1, IH), 8.13 (d, J 7.1, IH), 8.44 (d, J 8.4, IH), 8.72 (d, J 6.8, IH), 9.07 (t, J 6.1, IH), 9.88 (s, IH); Anal. Calcd for C19H14F4N2O + 1.15 HCl: C, 56.45; H, 3.78; N, 6.93. Found: C, 5,6.57; H, 3.69; N, 6.88.
Example 225 N-{l-[3-fluoro-4-(trifluoromethyl)phenyllethyl}-2-(5-isoquinolinyl)acetamide The title compound was prepared using the procedure described in Example 222B using l-[3-fluoro-4-(trifluoromethyl)phenyl]ethylamine instead of
4-(trifluoromethoxy)benzylamine. MS (ESI+) m/z 377 (M+H)+; MS (ESI-) m/z 375, 411 (M- H)"; 1H NMR (DMSO, 300 MHz) δ 1.41 (d, J 7.1, 3H), 4.17 (s, 2H), 4.93 (q, J 7.4, IH), 7.39 (m, 2H), 7.72 (t, J 7.8, IH), 7.96 (t, J 8.1, IH), 8.10 (d, J 6.4, IH), 8.42 (d, J 8.2, IH), 8.55 (d, J 6.8, IH), 8.71 (d, J 6.8, IH), 9.07 (d, J 7.5, IH), 9.86 (s, IH); Anal. Calcd for C20H16F4N2O + 1.55 HCl: C, 55.50; H, 4.18; N, 6.52. Found: C, 55.49; H, 4.09; N, 6.47.
Example 226 N-{l-[3-fluoro-4-(trifluoromethyl)phenyllpropyl}-2-(5-isoquinolinyl)acetamide The title compound was prepared using the procedure described in Example 222B using l-[3-fluoro-4-(frifluoromethyl)phenyl]propylamine instead of
4-(trifluoromethoxy)benzylamine. MS (ESI+) m/z 391 (M+H)+; MS (ESI-) m/z 389, 425 (M- HV; 1H NMR (DMSO, 300 MHz) δ 1.06 (t, J 6.8, 3H), 3.44 (q, J 7.1, 2H), 4.20 (s, 2H), 4.73 (q, J 7.5, IH), 7.41 (m, 2H), 7.72 (t, J 7.8, IH), 7.97 (t, J 8.2, IH), 8.12 (d, J 7.1, IH), 8.44 (d, J 8.1, IH), 8.59 (d, J 6.7, IH), 8.72 (d, J 6.8, IH), 9.10 (d, J 8.2, IH), 9.88 (s, IH); Anal.
Calcd for C21H18F4N2O + 1.3 HCl: C, 57.46; H, 4.70; N, 6.51. Found: C, 57.62; H, 4.44; N, 6.40.
Example 227 2-(3-methyl-5-isoquinolinyl)-N-[4-(trifluoromethyl)benzyllacetamide
Example 227A ethyl (3-methyl-5-isoquinolinyl)acetate The title compound was prepared using the procedure described in Example 221 using 5-bromo-3-methylisquinoline instead of 5-bromoisoquinoline. MS (ESI+) m/z 230 (M+H)+; MS (ESI-) m/z 228 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 1.18 (t, J=7.1, 3H), 2.63 (s, 3H), 4.10 (m, 5H), 7.54 (t, J=7.1, IH), 7.65 (m, 2H), 8.01 (d, J 8.1, IH), 9.22 (s, IH).
Example 227B (3-methyl-5-isoquinolinyl)acetic acid The title compound was prepared using the procedure described in Example 222A using ethyl (3 -methyl-5 -isoquinolinyl)acetate instead of ethyl 5-isoquinolinylacetate. MS (ESI+) m/z 202 (M+H)+; MS (ESI-) m/z 200, 156 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 2.62 (s, 3H), 4.03 (s, 2H), 7.58 (t, J 8.2, IH), 7.64 (m, 2H), 7.99 (d, J 8.1, IH), 9.21 (s, IH), 12.46 (s, IH); Anal. Calcd for C12HiiNO2: C, 71.63; H, 5.51; N, 6.96. Found: C, 71.00; H, 5.42; N, 6.79.
Example 227C 2-(3-methyl-5-isoquinolinyl)-N-r4-(trifluoromethyl)benzyllacetamide The title compound was prepared using the procedure described in Example 222B using (3-methyl-5-isoquinolinyl)acetic acid and 4-(trifluoromethyl)benzylamine instead of 5- isoquinolinylacetic acid and 4-(trifluoromethoxy)benzylamine. MS (ESI+) m/z 359 (M+H)+; MS (ESI-) m/z 357 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 2.77 (s, 3H), 4.12 (s, 2H), 4.37 (d, J 6.1, 2H), 7.47 (d, J 7.8, 2H), 7.68 (d, J 8.1, 2H), 7.86 (t, J 7.4, IH), 8.03 (d, J 6.4, IH), 8.36 (m, 2H), 9.03 (t, J 5.8, IH), 9.77 (s, IH); Anal. Calcd for C20H17F3N2O + 1.85 HCl: C, 56.44; H, 4.57. Found: C, 56.41; H, 4.46.
Example 228 N-[3-fluoro-4-(trifluoromethyl)benzyll-2-(3-methyl-5-isoquinolinyl)acetamide The title compound was prepared using the procedure described in Example 222B using (3-methyl-5-isoquinolinyl)acetic acid and 3-fluoro-4-(trifluoromethyl)benzylamine instead of 5-isoquinolinylacetic acid and 4-(trifluoromethoxy)benzylamine. MS (ESI+) m/z 377 (M+H)+; MS (ESI-) m z 375 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 2.77 (s, 3H), 4.14 (s, 2H), 4.38 (d, J 6.1, 2H), 7.33 (m, 2H), 7.72 (t, J 7.8, IH), 7.86 (t, J 7.5, IH), 8.04 (d, J 6.8, IH), 8.36 (m, 2H), 9.07 (t, J 6.1, IH), 9.77 (s, IH); Anal. Calcd for C2oH16F4N2O + 1.2 HCl + 0.3 DMF: C, 56.62; H, 4.20; N, 7.48. Found: C, 56.79; H, 4.40; N, 7.29.
Example 229 2-(5 -isoquinolinyl)-N- { 2- [3 -(trifluoromethy l)phenyl"|ethy 1 } acetamide The title compound was prepared using the procedure described in Example 222B using 2-[3-(trifluoromethyl)phenyl]ethylamine instead of 4-(trifluoromethoxy)benzylamine. MS (ESI+) m/z 359 (M+H)+; MS (ESI-) m/z 357, 393 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 2.83 (t, J 7.1, 2H), 3.35 (q, J 6.8, 2H), 4.03 (s, 2H), 7.50 (m, 4H), 7.98 (m, 2H), 8.47 (m, 3H), 8.68 (d, J 6.8, IH), 9.89 (s, IH); Anal. Calcd for C2oH17F3N2O + 1.55 HCl: C, 57.94; H, 4.64; N, 6.73. Found: C, 57.90; H, 4.51; N, 6.75.
Example 230 N-(3,3-diphenylpropyl)-2-(5-isoquinolinyl)acetamide The title compound was prepared using the procedure described in Example 222B using 3,3-diphenylpropylamine instead of 4-(trifluoromethoxy)benzylamine. MS (ESI+) m/z 381 (M+H)+; MS (ESI-) m/z 379 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 2.17 (q, J 7.8, 2H), 2.96 (q, J 5.8, 2H), 3.99 (s, 2H), 7.16 (m, 2H), 7.25 (m, 9H), 7.84 (t, J 7.5, IH), 7.93 (d, J 6.5, IH), 8.29 (m, 3H), 8.63 (d, J 6.5, IH), 9.64 (s, IH); Anal. Calcd for C26H24N2O + 1 HCl + 0.45 H2O: C, 73.47; H, 6.14; N, 6.59. Found: C, 73.84; H, 6.17; N, 6.07.
Example 231 N-(3-butoxypropyl)-2-(5-isoquinolinyl)acetamide The title compound was prepared using the procedure described in Example 222B using 3-butoxypropylamine instead of 4-(trifluoromethoxy)benzylamine. MS (ESI+) m/z 301
(M+H)+; MS (ESI-) m z 299 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 0.85 (t, J 7.5, 3H), 1.28 (m, 2H), 1.43 (m, 2H), 1.63 (m, 2H), 3.11 (m, 2H), 3.32 (m, 4H), 3.97 (s, 2H), 7.81 (t, J 7.2, IH), 7.89 (d, J 6.8, IH), 8.22 (m, 3H), 8.63 (d, J 5.9, IH), 9.59 (s, IH).
Example 232 2-(5-isoquinolinyl)-N-(3-phenylpropyl)acetamide The title compound was prepared using the procedure described in Example 222B using 3-phenylpropylamine instead of 4-(trifluoromethoxy)benzylamine. MS (ESI+) m/z 305 (M+H)+; MS (ESI-) m/z 303 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 1.70 (p, J 7.1, 2H), 2.55 (t, J 7.1, 2H), 3.07 (q, J 6.8, 2H), 4.05 (s, 2H), 7.21 (m, 5H), 7.92 (t, J 7.5, IH), 8.04 (d, J 6.4, IH), 8.38 (m, 2H), 8.48 (d, J 6.5, IH), 8.69 (d, J 6.5, IH), 9.79 (s, IH); Anal. Calcd for C20H20N2O + 1.5 HCl: C, 66.97; H, 6.18; N, 8.06. Found: C, 66.90; H, 6.04; N, 7.80.
Example 233 2-(5-isoquinolinyl)-N-r2-(2-thienyl)ethyllacetamide The title compound was prepared using the procedure described in Example 222B using 2-(2-thienyl)ethylamine instead of 4-(trifluoromethoxy)benzylamine. MS (ESI+) m/z 297 (M+H)+; MS (ESI-) m z 295 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 2.93 (t, J 6.8, 2H), 3.32 (q, J 6.9, 2H), 3.96 (s, 2H), 6.83 (d, J 2.5, IH), 6.93 (q, J 3.4, IH), 7.31 (t, J 3.7, IH), 7.77 (t, J 8.1, IH), 7.82 (d, J 7.2, IH), 8.14 (d, J 6.2, IH), 8.18 (d, J 8.1, IH), 8.35 (t, J 6.1, IH), 8.59 (d, J 6.2, IH), 9.53 (s, IH).
Example 234 N-[3-(lH-imidazol-l-yl)propylI-2-(5-isoquinolinyl)acetamide The title compound was prepared using the procedure described in Example 222B using 3-(lH-imidazol-l-yl)propylamine instead of 4-(trifluoromethoxy)benzylamine. MS (ESI+) m/z 295 (M+H)+; MS (ESI-) m z 293 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 1.96 (m, 2H), 3.07 (q, J 6.9, 2H), 3.97 (s, 2H), 4.19 (t, J 6.8, 2H), 7.73 (m, 4H), 8.09 (d, J 5.9, IH), 8.14 (d, J 8.1, IH), 8.32 (t, J 5.3, IH), 8.58 (d, J 5.9, IH), 9.07 (s, IH), 9.46 (s, IH).
Example 235 2-(5-isoquinolinyl)-N-r3-(2-oxo-l-pynolidinyl)propyllacetamide
The title compound was prepared using the procedure described in Example 222B using l-(3-aminopropyl)-2-pynolidinone instead of 4-(trifluoromethoxy)benzylamine. MS (ESI+) m/z 312 (M+H)+; MS (ESI-) m z 310 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 1.59 (p, J 7.5, 15.3, 2H), 1.89 (p, J 7.2, 14.0, 2H), 2.19 (t, J 8.2, 2H), 3.04 (q, J 5.9, 2H), 3.15 (t, J 7.1, 2H), 3.28 (t, J 7.2, 2H), 3.99 (s, 2H), 7.81 (t, J 7.2, IH), 7.99 (d, J 6.9, IH), 8.23 (m, 3H), 8.63 (d, J 6.3, IH), 9.60 (s, IH).
Example 236 N-(2,2-diphenylethyl)-2-(5-isoquinolinyl)acetamide The title compound was prepared using the procedure described in Example 222B using 2,2-diphenylethylamine instead of 4-(trifluoromethoxy)benzylamine. MS (ESI+) m/z 367 (M+H)+; MS (ESI-) m/z 365 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 3.73 (q, J 6.0, 2H), 3.83 (s, 2H), 4.18 (t, J 8.1, IH), 7.18 (m, 2H), 7.25 (m, 9H), 7.60 (m, 2H), 7.81 (d, J 6.5, IH), 8.06 (d, J 8.1, IH), 8.25 (t, J 4.7, IH), 8.43 (d, J 5.6, IH), 9.37 (s, IH).
Example 237 N-benzyl-2-(5-isoquinolinyl)acetamide The title compound was prepared using the procedure described in Example 222B using 2,2-diphenylethylamine instead of 4-(trifluoromethoxy)benzylamine. MS (ESI+) m/z 277 (M+H)+; MS (ESI-) m/z 275 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 4.05 (s, 2H), 4.29 (d, J 5.9, 2H), 7.23 (t, J 5.3, 3H), 7.30 (t, J 3.4, 2H), 7.78 (t, J 7.8, IH), 7.88 (d, J 6.9, IH), 8.20 (t, J 7.8, 2H), 8.60 (d, J 6.3, IH), 8.72 (t, J 5.3, IH), 9.54 (s, IH).
Example 238 2-(5-isoquinolinyl)-N-{4-[(trifluoromethyl)thiolbenzyl}acetamide The title compound was prepared using the procedure described in Example 222B using 4-[(trifluoromethyl)thio]benzylamine instead of 4-(trifluoromethoxy)benzylamine. MS (ESI+) m/z 377 (M+H)+; MS (ESI-) m/z 375 (M-H)"; !H NMR (DMSO, 300 MHz) δ 4.06 (s, 2H), 4.35 (d, J 5.9, 2H), 7.40 (d, J 8.1, 2H), 7.66 (d, J 8.2, 2H), 7.75 (t, J 7.5, IH), 7.85 (d, J 6.6, IH), 8.16 (m, 2H), 8.59 (d, J 5.9, IH), 8.79 (t, J 5.9, IH), 9.50 (s, IH).
Example 239
2-(5-isoquinolinyl)-N-(2-phenylethyl)acetamide The title compound was prepared using the procedure described in Example 222B using 2-phenylethylamine instead of 4-(trifluoromethoxy)benzylamine. MS (ESI+) m/z 291 (M+H)+; MS (ESI-) m/z 289 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 2.71 (t, J 7.1, 2H), 3.31 (q, J 7.1, 2H), 3.94 (s, 2H), 7.17 (m, 3H), 7.25 (t, J 7.5, 2H), 7.77 (t, J 7.5, IH), 7.82 (d, J 6.6, IH), 8.15 (d, J 6.2, IH), 8.19 (d, J 7.8, IH), 8.27 (t, J 5.3, IH), 8.59 (d, J 5.0, IH), 9.55 (s, IH).
Example 240 2-(5 -isoquinolinyl)-N- [2-(3 -pyridinyl)ethyll acetamide The title compound was prepared using the procedure described in Example 222B using 2-(2-pyridinyl)ethylamine instead of 4-(trifluoromethoxy)benzylamine. MS (ESI+) m/z 292 (M+H)+; MS (ESI-) m/z 290 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 2.84 (t, J 6.9, 2H), 3.39 (q, J 6.5, 2H), 3.92 (s, 2H), 7.58 (t, J 5.3, IH), 7.75 (m, 2H), 7.97 (d, J 7.8, IH), 8.05 (d, J 5.9, IH), 8.16 (d, J 7.8, IH), 8.29 (t, J 5.6, IH), 8.57 (m, 3H), 9.51 (s, IH).
Example 241 N- { 1 - [3 -fluoro-4-(trifluoromethyl)phenyll ethyl ) -N'-5 -isoquinolinylurea The title compound was prepared using the procedure described in Example 6 IB using l-[3-fluoro-4-(trifluoromethyl)phenyl]ethylamine instead of 4-cyanobenzyl alcohol. MS (ESI+) m/z 378 (M+H)+; MS (ESI-) m/z 376 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 1.46 (d, J 7.1, 3H), 4.97 (p, J 7.1, IH), 7.51 (m, 2H), 7.77 (t, J 7.8, IH), 7.86 (t, J 8.2, IH), 7.99 (d, J 7.1, IH), 8.06 (d, J 8.1, IH), 8.58 (d, J 6.8, IH), 8.71 (d, J 6.8, IH), 8.78 (d, J 6.8, IH), 9.62 (s, IH), 9.76 (s, IH); Anal. Calcd for C19H15F4N3O + 1 HCl: C, 54.93; H, 3.99; N, 10.09. Found: C, 55.15; H, 3.90; N, 10.15.
Example 242 N-{l-[3-fluoro-4-(trifluoromethyl)phenyllpropyl}-N'-5-isoquinolinylurea The title compound was prepared using the procedure described in Example 6 IB using l-[3-fluoro-4-(trifluoromethyl)phenyl]propylamine instead of 4-cyanobenzyl alcohol. MS (ESI+) m/z 392 (M+H)+; MS (ESI-) m/z 390 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 0.94 (t, J 7.4, 3H), 1.78 (m, 2H), 4.80 (q, J 7.5, IH), 7.59 (m, 2H), 7.77 (t, J 8.1, IH), 7.84 (t,
J 8.2, IH), 7.96 (d, J 8.2, IH), 8.04 (d, J 8.1, IH), 8.56 (d, J 7.1, IH), 8.73 (m, 2H), 9.59 (s, IH), 9.73 (s, IH); Anal. Calcd for C20H17F4N3O + 1 HCl: C, 56.10; H, 4.26; N, 9.81. Found: C, 56.15; H, 4.24; N, 9.82.
Example 243 N-r3-bromo-4-(trifluoromethyl)benzyl1-2-(5-isoquinolinyl)acetamide
Example 243A 3 -bromo-4-trifluoromethylbenzoic acid 3-Amino-4-trifluoromethylbenzoic acid (8.20 g, 40.0 mmol), prepared according to Astrid Giencke and Helmut Lackner, Liebigs Ann. Chem., 569-579:6 (1990), in 48% HBr (20 mL) and H2O (67 mL) at 0 °C was treated with NaNO2 (2.99 g) in small portions over 15 minutes. After stining for 30 minutes, the mixture was treated with urea (0.250 g) and then the mixture was added dropwise to a solution of CuBr (10.0 g) in 48% HBr (40 mL) and H2O (100 mL). The reaction mixture was heated at 75 °C, stined for 2 hours, cooled to room temperature, and stined overnight. The mixture was treated with with 20% NaOH until the pH > 10. The resulting blue copper salts were removed by filtration through Celite. The mixture was acidified to pH 1 with HCl, extracted with CH C12 (3 x 200 mL), dried over Na2SO4, filtered, and the filtrate was concenfrated under reduced pressure to provide the title compound.
Example 243B 3-bromo-4-(trifluoromethyl)benzamide The product from Example 243A (4.00 g, 14.9 mmol) in thionyl chloride (20 mL) was heated at 80 °C for 2 hours. The mixture was concentrated under reduced pressure and the residue was dissolved in MeOH (30 mL) and cooled to -60 °C. The mixture was treated with ammonium hydroxide(10 mL) and allowed to reach room temperature over 3 hours. The solvent was removed to give crade 3-bromo-4-trifluoromethylbenzamide. mp 148-150°C.
Example 243 C 3-bromo-4-(trifluoromethyl)benzylamine
LiAlH4 (0.906 g, 23.9 mmol) was suspended in 60 mL of dry THF and cooled to 0 °C. The mixture was treated with the product from Example 243B (3.2 g, 11.9 mmol) in THF (10 mL) dropwise with stining. After 20 minutes, the mixture was warmed to room temperature 12 hours and treated in succession with ethyl acetate (2 mL), NaOH (50%, 5 mL), and diethyl ether (100 mL). The organic phase decanted, dried (Na2SO ), filtered and the filtrate was concentrated under reduced pressure to provide the title compound.
Example 243D N-[3-bromo-4-(trifluoromethyl)benzyll-2-(5-isoquinolinyl)acetamide The title compound was prepared using the procedure described in Example 222B using 3-bromo-4-(trifluoromethyl)benzylamine instead of 4-(trifluoromethoxy)benzylamine. MS (ESI+) m/z 425, 423 (M+H)+; MS (ESI-) m/z 423, 421 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 4.09 (s, 2H), 4.36 (d, J 6.1, 2H), 7.43 (d, J 7.2, 2H), 7.67 (s, IH), 7.79 (m, 2H), 7.90 (d, J 7.9, IH), 8.22 (m, 2H), 8.61 (d, J 6.4, IH), 8.86 (t, J 6.8, IH), 9.56 (s, IH); Anal. Calcd for Cι9Hι4BrF3N2O + 0.9 TFA: C, 47.51; H, 2.86; N, 5.33. Found: C, 47.53; H, 2.92; N, 5.22.
Example 244 N-(4-bromo-3-methylbenzyl)-2-(5-isoquinolinyl)acetamide
Example 244A 4-bromo-3 -methylbenzylamine LiAlH4 (0.68 g) in diethyl ether (30 mL) was freated with 4-bromo-3- methylbenzonitrile (15 mmol) and refluxed for 2 hours. The mixture was cooled to 0 °C and treated in succession with water (0.7 mL), 20% NaOH (0.5 mL), and water (2.5 mL). The mixture was filtered through a celite pad and the filter cake was washed several times with diethyl ether. The filtrate was dried over Na2SO4, filtered, and the filtrate was concentrated under reduced pressure to provide the title compound. MS (ESI+) m/z 194 (M+H)+; MS (ESI-) m/z 192 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 3.97 (s, 2H), 7.30 (m, IH), 7.46 m, 2H).
Example 244B N-(4-bromo-3 -methylbenzyl)-2-(5 -isoquinolinyl)acetamide
The title compound was prepared using the procedure described in Example 222B using 4-bromo-3-methylbenzylamine instead of 4-(trifluoromethoxy)benzylamine. MS (ESI+) m/z 371, 369 (M+H)+; MS (ESI-) m/z 369, 367 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 2.28 (s, 3H), 4.13 (s, 2H), 4.22 (d, J 6.1, 2H), 7.00 (d, J 8.1, IH), 7.10 (s, IH), 7.50 (d, J 8.1, IH), 7.92 (m, IH), 8.05 (d, J 7.1, IH), 8.38 (d, J 8.1, IH), 8.48 (d, J 6.8, IH), 8.70 (d, J 6.8, IH), 8.86 (t, J 6.8, IH), 9.80 (s, IH); Anal. Calcd for C19H17BrN2O + 1.1 HCl: C, 55.75; H, 4.46; N, 6.84. Found: C, 55.76; H, 4.23; N, 6.93.
Example 245 N-[2,4-bis(trifluoromethyl)benzyll-2-(5-isoquinolinyl)acetamide The title compound was prepared using the procedure described in Example 222B using 2,4-bis(trifluoromethyl)benzylamine instead of 4-(trifluoromethoxy)benzylamine. MS (ESI+) m/z 413 (M+H)+; MS (ESI-) m/z 411 (M-H)"; 1H NMR (DMSO, 300 MHz) rotamers δ 4.22 (s, 2H), 4.53 (d, J 6.1, 2H), 5.97 (d, J 6.4, IH), 7.57-8.48 (m, 6H), 8.72 (d, J 6.4, IH), 8.84 (m, IH), 9.12 (t, J 6.8, IH), 9.73 (s, IH ), 9.82 (s, IH); Anal. Calcd for C20H14F6N2O 1.2 HCl: C, 52.67; H, 3.36; N, 6.14. Found: C, 52.67; H, 3.21; N, 6.09.
Example 246 N-[2-chloro-4-(frifluoromethyl)benzyll-2-(5-isoquinolinyl)acetamide
Example 246A 2-chloro-4-(trifluoromethyl)benzylamine The title compound was prepared using the procedure described in Example 244A using 2-chloro-4-(trifluoromethyl)benzonitrile instead of 4-bromo-3-methylbenzonifrile. MS (ESI+) m/z 209 (M+H)+; 1H NMR (DMSO, 300 MHz) δ 3.97 (s, 2H), 7.50-7.70 (m, 3H).
Example 246B N-[2-chloro-4-(trifluoromethyl)benzyll-2-(5-isoquinolinyl)acetamide The title compound was prepared using the procedure described in Example 222B using 2-chloro-4-(trifluoromethyl)benzylamine instead of 4-(trifluoromethoxy)benzylamine. MS (ESI+) m/z 379 (M+H)+; MS (ESI-) m/z 377 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 4.19 (s, 2H), 4.41 (d, J 6.1, 2H), 7.56 (d, J 8.1, IH), 7.70 (d, J 8.1, IH), 7.83 (s, IH), 7.92 (m, IH), 8.06 (d, J 7.1, IH), 8.37 (d, J 8.1, IH), 8.45 (d, J 6.8, IH), 8.70 (d, J 6.8, IH), 8.97 (t, J
6.8, IH), 9.77 (s, IH); Anal. Calcd for C1 Hι4ClF3N2O + 1 HCl: C, 54.96; H, 3.64; N, 6.75. Found: C, 54.75; H, 3.47; N, 6.90.
Example 247 N-r2,3-difluoro-4-(trifluoromethyl)benzyll-2-(5-isoquinolinyl)acetamide
Example 247A 2,3-difluoro-4-(trifluoromethyl)benzylamine The title compound was prepared using the procedure described in Example 244A using 2,3-difluoro-4-(trifluoromethyl)benzonitrile instead of 4-bromo-3-methylbenzonitrile.
Example 247B N-[2,3-difluoro-4-(frifluoromethyl)benzyll-2-(5-isoquinolinyl)acetamide The title compound was prepared using the procedure described in Example 222B using 2,3-difluoro-4-(frifluoromethyl)benzylamine instead of
4-(trifluoromethoxy)benzylamine. MS (ESI+) m/z 381 (M+H)+; MS (ESI-) m/z 379 (M-H)"; 1H NMR (DMSO, 300 MHz) rotamers δ 4.16 (s, 2H), 4.42 (d, J 6.1, 2H), 7.35 (m, IH), 7.59 (m, IH), 7.93 (m, IH), 8.07 (m, IH), 8.39 (d, J 7.1, IH), 8.46 (m, IH), 8.70 (d, J 6.8, IH), 9.05 (t, J 6.8, IH), 9.81 (s, IH); Anal. Calcd for C19H14ClF3N2O + 1 HCl: C, 54.96; H, 3.64; N, 6.75. Found: C, 54.75; H, 3.47; N, 6.90.
Example 248 ethyl 2-(5-isoquinolinyl)propanoate Lithium diisopropylamide (12.75 mL, 2M, 25.5 mmol) in THF (160 mL) at -78 °C under nitrogen was treated with ethyl 5-isoquinolinylacetate (5.00 g, 23.2 mmol) in THF (5 mL). After stining for 30 minutes at -78 °C, the mixture was treated with HMPA (5.2 mL) and methyl iodide (1.62 mL, 25.5 mmol). After stining for 30 minutes at -78 °C, the mixture was warmed to 0°C over 1 hour and quenched by addition of saturated NH4C1 solution. The mixture was concentrated under reduced pressure to a volume of ~10 mL, diluted with ethyl acetate (200 mL), washed with water (100 mL x 5), washed with brine, dried with anhydrous MgSO4, filtered, and the filtrate was concentrated under reduced pressure to provide the title compound. MS (ESI+) m/z 230 (M+H)+; MS (ESI-) m/z 228 (M-H)"; 1H NMR (DMSO, 300
MHz) δ 1.53 (d, J 7.1, 3H), 4.35 (d, J 6.1, 2H), 4.47 (q, J 7.1, IH), 7.18 (m, 2H), 7.70 (m, 3H), 8.05 (m, 2H), 8.53 (d, J 6.1, IH), 8.68 (t, J 6.8, IH), 9.32 (s, IH); Anal. Calcd for C20H16F4N2O + 1.25 HCl: C, 56.93; H, 4.12; N, 6.64. Found: C, 56.72; H, 4.45; N, 7.03.
Example 249 N- [3 -fluoro-4-(trifluoromethy l)benzyll -2-(5 -isoquinolinyl)propanamide
Example 249A 2-(5-isoquinolinyl)propanoic acid Ethyl 2-(5-isoquinolinyl)propanoate (1.00 g, 4.36 mmol) was heated at 85 °C in NaOH (25%, 20 mL) for 1 hour. The mixture was allowed to cool to room temperature, acidified to around pH 1 with HCl, and concentrated to a dry residue. The solid was extracted with CHC ^isopropyl alcohol (3:1, 50 mL x 4). The extracts were combined, filtered, and the filtrate concentrated under reduced pressure to provide the title compound. MS (ESI+) m/z 202 (M+H)+; MS (ESI-) m/z 200 (M-H)"; 1HNMR (DMSO, 300 MHz) δ 1.42 (d, J 7.1, 3H), 4.01 (q, J 7.1, IH), 7.58 (t, J 8.1, IH), 7.63 (d, J 7.5, IH), 7.86 (d, J 8.1, IH), 8.19 (d, J 6.8, IH), 8.43 (d, J 6.8, IH), 9.22 (s, IH); Anal. Calcd for C12H10NO2Na + 0.9 H2O: C, 60.20; H, 4.97; N, 5.85. Found: C, 60.45; H, 5.26; N, 5.46.
Example 249B N-[3-fluoro-4-(trifluoromethyl)benzyll-2-(5-isoquinolinyl)propanamide The title compound was prepared using the procedure described in Example 222B using 3-fluoro-4-(trifluoromethyl)benzylamine and 2-(5-isoquinolinyl)propanoic acid instead of 4-(trifluoromethoxy)benzylamine and 5-isoquinolinylacetic acid. MS (ESI+) m/z 377 (M+H)+; MS (ESI-) m/z 375 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 1.53 (d, J 7.1, 3H), 4.35 (d, J 6.1, 2H), 4.47 (q, J 7.1, IH), 7.18 (m, 2H), 7.70 (m, 3H), 8.05 (m, 2H), 8.53 (d, J 6.1, IH), 8.68 (t, J 6.8, IH), 9.32 (s, IH); Anal. Calcd for C20H16F4N2O + 1.25 HCl: C, 56.93; H, 4.12; N, 6.64. Found: C, 56.72; H, 4.45; N, 7.03.
Example 250 2-(5-isoquinolinyl)-N-r4-(trifluoromethyl)benzyl1propanamide
The title compound was prepared using the procedure described in Example 222B using 4-(trifluoromethyl)benzylamine and 2-(5-isoquinolinyl)propanoic acid instead of 4-(trifluoromethoxy)benzylamine and 5-isoquinolinylacetic acid. MS (ESI+) m/z 359 (M+H)+; MS (ESI-) m/z 357 (M-H)"; 1HNMR (DMSO, 300 MHz) δ 1.59 (d, J 7.1, 3H), 4.35 (d, J 6.1, 2H), 4.69 (q, J 7.1, IH), 7.40 (d, J 8.1, IH), 7.65 (d, J 8.1, IH), 7.78 (m, 2H), 8.03 (t, IH), 8.20 (d, J 7.1, IH), 8.47 (d, J 7.8, IH), 8.65 (br s, IH), 8.75 (s, IH), 9.05 (t, J 5.8, IH), 9.93 (s, IH); Anal. Calcd for C20Hi7F3N2O + 1.6 HCl + 1.3 H2O: C, 54.58; H, 4.86. Found: C, 54.70; H, 5.10.
Example 251 2-(5-isoquinolinyl)-N-[3-(trifluoromethyl)benzyllpropanamide The title compound was prepared using the procedure described in Example 222B using 3-(trifluoromethyl)benzylamine and 2-(5-isoquinolinyl)propanoic acid instead of 4-(trifluoromethoxy)benzylamine and 5-isoquinolinylacetic acid. MS (ESI+) m/z 359 (M+H)+; MS (ESI-) m/z 357 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 1.54 (d, J 7.1, 3H), 4.28 (d, J 6.1, 2H), 4.50 (q, J 7.1, IH), 7.41 (s, IH), 7.49 (m, 2H), 7.56 (m, IH), 7.80 (t, J 7.8, IH), 7.95 (d, J 7.2, IH), 8.21 (d, J 8.L IH), 8.32 (d, J 6.2, IH), 8.60 (d, J 6.8, IH), 8.72 (t, J 5.8, IH), 9.56 (s, IH).
Example 252 2-(5 -isoquinolinyl)-N- {4- [(trifluoromethyl)thiolbenzyl } propanamide The title compound was prepared using the procedure described in Example 222B using 4-[(trifluoromethyl)thio]benzylamine and 2-(5-isoquinolinyl)propanoic acid instead of 4-(trifluoromethoxy)benzylamine and 5-isoquinolinylacetic acid. MS (ESI+) m/z 391 (M+H)+; MS (ESI-) m/z 389 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 1.57 (d, J 7.1, 3H), 4.33 (d, J 6.1, 2H), 4.65 (q, J 7.1, IH), 7.33 (d, J 8.1, IH), 7.65 (m, 2H), 7.76 (m, IH), 7.98 (m, 2H), 8.19 (d, J 7.1, IH), 8.42 (d, J 7.8, IH), 8.61 (br s, IH), 8.62 (d, J 6.8, IH), 8.73 (d, J 6.8, IH), 8.96 (t, J 5.8, IH), 9.86 (s, IH); Anal. Calcd for C20H17F3N2OS + 2.1 HCl: C, 51.44; H, 4.12. Found: C, 51.35; H, 3.91.
Example 253 N-(4-bromobenzyl)-2-(5-isoquinolinyl)propanamide
The title compound was prepared using the procedure described in Example 222B using 4-bromobenzylamine and 2-(5-isoquinolinyl)propanoic acid instead of 4-(trifluoromethoxy)benzylamine and 5-isoquinolinylacetic acid. MS (ESI+) m/z 371, 369 (M+H)+; MS (ESI-) m/z 369, 367 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 1.57 (d, J 7.1, 3H), 4.23 (d, J 6.1, 2H), 4.63 (q, J 7.1, IH), 7.14 (m, 2H), 7.47 (m, 2H), 7.76 (m, IH), 7.98 (t, J 7.5, IH), 8.17 (d, J 7.1, IH), 8.43 (d, J 7.8, IH), 8.69 (br s, IH), 8.74 (d, J 6.8, IH), 8.92 (t, J 5.8, IH), 9.88 (s, IH); Anal. Calcd for C19H17BrN2O + 1.4 HCl: C, 54.30; H, 4.41; N, 6.66. Found: C, 54.49; H, 4.28; N, 6.75.
Example 254 N-(4-tert-butylbenzyl)-2-(5-isoquinolinyl)propanamide The title compound was prepared using the procedure described in Example 222B using 4-(tert-butyl)benzylamine and 2-(5-isoquinolinyl)propanoic acid instead of 4-(trifluoromethoxy)benzylamine and 5-isoquinolinylacetic acid. MS (ESI+) m/z 347 (M+H)+; MS (ESI-) m/z 345 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 1.56 (d, J 7.1, 3H), 4.22 (d, J 6.1, 2H), 4.57 (q, J 7.1, IH), 7.10 (d, J 8.5, 2H), 7.29 (d, J 8.5, 2H), 7.98 (t, J 7.5, IH), 8.13 (d, J 7.1, IH), 8.34 (d, J 7.8, IH), 8.56 (d, J 6.8, IH), 8.69 (m, 2H), 9.78 (s, IH); Anal. Calcd for C23H26N2O + 1.1 HCl: C, 71.46; H, 7.07; N, 7.25. Found: C, 71.13; H, 7.17; N, 7.02.
Example 255 N-[3-fluoro-5-(trifluoromethyl)benzyll-2-(5-isoquinolinyl)propanamide The title compound was prepared using the procedure described in Example 222B using 3-fluoro-5-(trifluoromethyl)benzylamine and 2-(5-isoquinolinyl)propanoic acid instead of 4-(frifluoromethoxy)benzylamine and 5-isoquinolinylacetic acid. MS (ESI+) m/z 377 (M+H)+; MS (ESI-) m/z 375 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 1.55 (d, J 7.1, 3H), 4.36 (m, 2H), 4.53 (q, J 7.1, IH), 7.29 (m, 2H), 7.49 (d, J 8.7, IH), 7.80 (t, J 7.8, IH), 7.93 (d, J 6.5, IH), 8.21 (d, J 8.1, IH), 8.31 (d, J 6.4, IH), 8.60 (d, J 6.2, IH), 8.73 (t, J 5.8, IH), 9.56 (s, IH).
Example 256 2-(5-isoquinolinyl)-N-[4-(trifluoromethoxy)benzyllpropanamide
The title compound was prepared using the procedure described in Example 222B using 2-(5-isoquinolinyl)propanoic acid instead of 5-isoquinolinylacetic acid. MS (ESI+) m z 375 (M+H)+; MS (ESI-) m/z 373 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 1.54 (d, J 7.1, 3H), 4.28 (d, J 6.1, 2H), 4.50 (q, J 7.1, IH), 7.28 (q, J 8.5, 4H), 7.79 (t, J 7.8, IH), 7.93 (d, J 7.2, IH), 8.18 (d, J 8.1, IH), 8.26 (d, J 6.2, IH), 8.59 (d, J 6.8, IH), 8.65 (t, J 5.8, IH), 9.53 (s, IH).
Example 257 2-(5-isoquinolinyl)-N-[3-(trifluoromethoxy)benzyllpropanamide The title compound was prepared using the procedure described in Example 222B using 3-(trifluoromethoxy)benzylamine and 2-(5-isoquinolinyl)propanoic acid instead of 4-(frifluoromethoxy)benzylamine and 5-isoquinolinylacetic acid. MS (ESI+) m/z 375 (M+H)+; MS (ESI-) m/z 373 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 1.54 (d, J 7.1, 3H), 4.28 (d, J 6.1, 2H), 4.50 (q, J 7.1, IH), 7.05 (s, IH), 7.20 (m, 2H), 7.40 (m, IH), 7.81 (t, J 7.8, IH), 7.96 (d, J 7.2, IH), 8.21 (d, J 8.1, IH), 8.32 (d, J 6.2, IH), 8.61 (d, J 6.8, IH), 8.70 (t, J 5.8, 1H), 9.57 (S, 1H).
Example 258 N-(2,4-dimethylbenzyl)-2-(5-isoquinolinyl)propanamide The title compound was prepared using the procedure described in Example 222B using 2,4-dimethylbenzylamine and 2-(5-isoquinolinyl)propanoic acid instead of 4-(trifluoromethoxy)benzylamine and 5-isoquinolinylacetic acid. MS (ESI+) m/z 319 (M+H)+; MS (ESI-) m/z 317 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 1.52 (d, J 7.1, 3H), 2.13 (s, 3H), 2.21 (s, 3H), 4.20 (m, 2H), 4.51 (q, J 7.1, IH), 6.88 (d, J 7.5, IH), 6.94 (s, IH), 6.98 (d, J 7.5, IH), 7.82 (t, J 7.8, IH), 7.99 (d, J 6.5, IH), 8.21 (d, J 8.1, IH), 8.35 (d, J 6.4, IH), 8.44 (t, J 5.8, IH), 8.62 (d, J 6.2, IH), 9.57 (st IH).
Example 259 N-(2,5-dimethylbenzyl)-2-(5-isoquinolinyl)propanamide The title compound was prepared using the procedure described in Example 222B using 2,5-dimethylbenzylamine and 2-(5-isoquinolinyl)propanoic acid instead of 4-(trifluoromethoxy)benzylamine and 5-isoquinolinylacetic acid. MS (ESI+) m/z 319
(M+H)+; MS (ESI-) m/z 317 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 1.54 (d, J 7.1, 3H), 2.09 (s, 3H), 2.12 (s, 3H), 4.20 (m, 2H), 4.53 (q, J 7.1, IH), 6.79 (s, IH), 6.91 (d, J 7.8, IH), 6.98 (d, J 7.8, IH), 7.83 (t, J 7.8, IH), 8.00 (d, J 6.5, IH), 8.21 (d, J 8.1, IH), 8.37 (d, J 6.4, IH), 8.46 (t, J 5.8, IH), 8.62 (d, J 6.2, IH), 9.57 (s, IH).
Example 260 N-(2,3-dichlorobenzyl)-2-(5-isoquinolinyl)propanamide The title compound was prepared using the procedure described in Example 222B using 2,3-dichlorobenzylamine and 2-(5-isoquinolinyl)propanoic acid instead of 4-(trifluoromethoxy)benzylamine and 5-isoquinolinylacetic acid. MS (ESI+) m/z 359 (M+H)+; MS (ESI-) m/z 357 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 1.54 (d, J 7.1, 3H), 4.20 (m, 2H), 4.53 (q, J 7.1, IH), 7.17 (d, J 7.8, IH), 7.26 (t, J 7.8, IH), 7.52 (d, J 8.1, IH), 7.78 (t, J 7.8, IH), 7.91 (d, J 6.5, IH), 8.16 (d, J 8.1, IH), 8.24 (d, J 6.4, IH), 8.59 (d, J 6.2, IH), 8.66 (t, J 5.8, IH), 9.50 (s, IH).
Example 261 N-(2,4-dichlorobenzyl)-2-(5-isoquinolinyl)propanamide The title compound was prepared using the procedure described in Example 222B using 2,4-dichlorobenzylamine and 2-(5-isoquinolinyl)propanoic acid instead of 4-(trifluoromethoxy)benzylamine and 5-isoquinolinylacetic acid. MS (ESI+) m/z 359 (M+H)+; MS (ESI-) m/z 357 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 1.54 (d, J 7.1, 3H), 4.20 (m, 2H), 4.53 (q, J 7.1, IH), 7.22 (d, J 8.4, IH), 7.33 (m, 2H), 7.56 (s, IH), 7.78 (t, J 7.8, IH), 7.90 (d, J 6.5, IH), 8.17 (d, J 8.1, IH), 8.25 (d, J 6.4, IH), 8.62 (m, 2H), 9.51 (s, IH).
Example 262 N-(2,5-dichlorobenzyl)-2-(5-isoquinolinyl)propanamide The title compound was prepared using the procedure described in Example 222B using 2,5-dichlorobenzylamine and 2-(5-isoquinolinyl)propanoic acid instead of 4-(trifluoromethoxy)benzylamine and 5-isoquinolinylacetic acid. MS (ESI+) m/z 359 (M+H)+; MS (ESI-) m/z 357 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 1.54 (d, J 7.1, 3H), 4.20 (m, 2H), 4.53 (q, J 7.1, IH), 7.06 (s, IH), 7.32 (d, J 8.4, IH), 7.44 (d, J 8.4, IH), 7.51 (s, IH),
7.78 (t, J 7.8, IH), 7.90 (d, J 6.5, IH), 8.16 (d, J 8.1, IH), 8.26 (d, J 6.4, IH), 8.60 (d, J 6.2, IH), 8.65 (t, J 5.8, IH), 9.49 (s, IH).
Example 263 N-(3,4-dichlorobenzyl)-2-(5-isoquinolinyl)propanamide The title compound was prepared using the procedure described in Example 222B using 3,4-dichlorobenzylamine and 2-(5-isoquinolinyl)propanoic acid instead of 4-(trifluoromethoxy)benzylamine and 5-isoquinolinylacetic acid. MS (ESI+) m/z 359 (M+H)+; MS (ESI-) m/z 357 (M-H)"; 1HNMR (DMSO, 300 MHz) δ 1.54 (d, J 7.1, 3H), 4.20 (m, 2H), 4.53 (q, J 7.1, IH), 7.16 (d, J 8.4, IH), 7.31 (s, IH), 7.52 (d, J 8.4, IH), 7.77 (t, J 7.8, IH), 7.89 (d, J 6.5, IH), 8.16 (d, J 8.1, IH), 8.22 (d, J 6.4, IH), 8.59 (d, J 6.2, IH), 8.64 (t, J 5.8, IH), 9.49 (s, IH).
Example 264 N-(3,5-dichlorobenzyl)-2-(5-isoquinolinyl)propanamide The title compound was prepared using the procedure described in Example 222B using 3,5-dichlorobenzylamine and 2-(5-isoquinolinyl)propanoic acid instead of 4-(trifluoromethoxy)benzylamine and 5-isoquinolinylacetic acid. MS (ESI+) m/z 359 (M+H)+; MS (ESI-) m/z 357 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 1.54 (d, J 7.1, 3H), 4.20 (m, 2H), 4.53 (q, J 7.1, IH), 7.13 (s, 2H), 7.42 (s, IH), 7.78 (t, J 7.8, IH), 7.89 (d, J 6.5, IH), 8.17 (d, J 8.1, IH), 8.23 (d, J 6.4, IH), 8.59 (d, J 6.2, IH), 8.64 (t, J 5.8, IH), 9.51 (s, IH).
Example 265 N- r4- 1 -azepany l)-3 -fluorobenzyll -2-(5 -isoquinoliny ι)acetamide The title compound was prepared using the procedure described in Example 222B using 4-(l-azepanyl)-3-fluorobenzylamine instead of 4-(trifluoromethoxy)benzylamine. MS (ESI+) m/z 392 (M+H)+; MS (ESI-) m/z 390 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 1.53 (m, 4H), 1.72 (m, 4H), 3.32 (m, 4H), 3.96 (s, 2H), 4.18 (d, J 6.1, 2H), 6.86 (m, 3H), 7.69 (m, 2H), 7.94 (d, J 7.5, IH), 8.03 (d, J 7.1, IH), 8.50 (d, J 7.8, IH), 8.62 (t, J 5.8, IH), 9.30 (s, IH); Anal. Calcd for C24H26FN3O + 0.3 H2O: C, 72.63; H, 6.76; N, 10.59. Found: C, 72.78; H, 7.05; N, 10.80.
Example 266 N-r4-(l-azepanyl)benzyll-2-(5-isoquinolinyl)propanamide The title compound was prepared using the procedure described in Example 222B using 4-(l -azepany l)benzylamine and 2-(5-isoquinolinyl)propanoic acid instead of 4-(frifluoromethoxy)benzylamine and 5-isoquinolinylacetic acid. MS (ESI+) m/z 388 (M+H)+; MS (ESI-) m/z 366 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 1.53 (m, 7H), 1.72 (m, 4H), 3.85 (s, 2H), 4.03 (q, J 7.1, IH), 6.76 (m, 3H), 7.26 (m, 2H), 7.58 (m, IH), 7.71 (m, IH), 8.10 (m, 2H), 8.72 (t, J 5.8, IH), 9.91 (s, IH); Anal. Calcd for C25H29 3O + 2.15 HCl + 2 H2O: C, 59.82; H, 7.06. Found: C, 59.59; H, 7.28.
Example 267 N-[4-(l-azepanyl)-3-fluorobenzyll-2-(5-isoquinolinyl)propanamide The title compound was prepared using the procedure described in Example 222B using 4-(l-azepanyl)-3-fluorobenzylamine and 2-(5-isoquinolinyl)propanoic acid instead of 4-(trifluoromethoxy)benzylamine and 5-isoquinolinylacetic acid. MS (ESI+) m/z 406 (M+H)+; MS (ESI-) m/z 404 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 1.53 (m, 7H), 1.72 (m, 4H), 3.32 (m, 4H), 3.65 (s, 2H), 4.18 (q, J 7.1, IH), 6.86 (m, 3H), 7.58 (m, 2H), 7.74 (m, IH), 8.13 (m, 2H), 8.52 (d, J 7.8, IH), 9.30 (s, IH); Anal. Calcd for C25H28FN3O + 3.25 HCl: C, 57.30; H, 6.01. Found: C, 57.26; H, 5.98.
Example 268 ethyl 2-(5-isoquinolinyl)butanoate The title compound was prepared using the procedure described in Example 248 using ethyl iodide instead of methyl iodide. MS (ESI+) m/z 244 (M+H)+; MS (ESI-) m z 242 (M- H)-; 1H NMR (DMSO, 300 MHz) δ 1.53 (d, J 7.1, 3H), 4.35 (d, J 6.1, 2H), 4.47 (q, J 7.1, IH), 7.18 (m, 2H), 7.70 (m, 3H), 8.05 (m, 2H), 8.53 (d, J 6.1, IH), 8.68 (t, J 6.8, IH), 9.32 (s, IH); Anal. Calcd for Cι5Hι7NO2 + 0.4 H2O: C, 71.92; H, 7.16; N, 5.59. Found: C, 72.23; H, 7.32; N, 5.31.
Example 269 N-[3-fluoro-4-(trifluoromethyl)benzyll-2-(5-isoquinolinyl)butanamide
Example 269A 2-(5-isoquinolinyl)butanoic acid The title compound was prepared using the procedure described in Example 249A using ethyl 2-(5-isoquinolinyl)butanoate instead of ethyl 2-(5-isoquinolinyl)propanoate.
Example 269B N-[3-fluoro-4-(trifluoromethyl)benzyll-2-(5-isoquinolinyl)butanamide The title compound was prepared using the procedure described in Example 222B using 3-fluoro-4-(trifluoromethyl)benzylamine and 2-(5-isoquinolinyl)butanoic acid instead of 4-(trifluoromethoxy)benzylamine and 5-isoquinolinylacetic acid. MS (ESI+) m/z 391 (M+H)+; MS (ESI-) m/z 389 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 0.91 (t, J 7.5, 3H), 1.81 (m, IH), 2.17 (m, IH), 4.35 (m, 2H), 7.17 (m, 2H), 7.69 (t, J 7.8, IH), 7.86 (t, J 7.8, IH), 8.04 (d, J 7.1, IH), 8.23 (d, J 8.1, IH), 8.65 (d, J 6.8, IH), 8.83 (t, J 6.8, IH), 9.60 (s, IH); Anal. Calcd for C21H18F4N2O + 1 HCl: C, 54.77; H, 3.80; N, 5.55. Found: C, 54.62; H, 3.57; N, 5.50.
Example 270 2-(5-isoquinolinyl)-N-[4-(trifluoromethyl)benzyllbutanamide The title compound was prepared using the procedure described in Example 222B using 4-(trifluoromethyl)benzylamine and 2-(5-isoquinolinyl)butanoic acid instead of 4-(frifluoromethoxy)benzylamine and 5-isoquinolinylacetic acid. MS (ESI+) m z 391 (M+H)+; MS (ESI-) m/z 371 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 0.91 (t, J 7.5, 3H), 1.91 (m, IH), 2.19 (m, IH), 4.38 (m, 2H), 7.38 (d, J 8.5, 2H), 7.64 (d, J 8.5, 2H), 7.96 (t, J 7.8, IH), 8.20 (d, J 7.1, IH), 8.39 (d, J 8.1, IH), 8.72 (s, IH), 9.02 (t, J 6.8, IH), 9.81 (s, IH), 10.12 (br s, IH); Anal. Calcd for C21H19F3N2p: C, 67.73; H, 5.14; N, 7.52. Found: C, 67.46; H, 4.90; N, 7.90.
Example 271 N-(4-bromobenzyl)-2-(5-isoquinolinyl)butanamide The title compound was prepared using the procedure described in Example 222B using 4-bromobenzylamine and 2-(5-isoquinolinyl)butanoic acid instead of 4-(trifluoromethoxy)benzylamine and 5-isoquinolinylacetic acid. MS (ESI+) m/z 385, 383
(M+H)+; MS (ESI-) m/z 383, 381 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 0.91 (t, J 7.5, 3H), 1.81 (m, IH), 2.19 (m, IH), 3.39 (m, IH), 4.22 (m, 2H), 7.13 (d, J 8.5, 2H), 7.44 (m, 3H), 7.57 (t, J 7.8, IH), 8.00 (m, IH), 8.21 (d, J 7.1, IH), 8.41 (d, J 8.1, IH), 8.72 (s, IH), 8.93 (t, J 6.8, IH), 9.81 (s, IH), 10.16 (br s, IH); Anal. Calcd for C20H19BrN2O: C, 62.67; H, 5.00. Found: C, 62.52; H, 4.95.
Example 272 2-(5 -isoquinolinyl)-N- { 4- [(trifluoromethyl)thiolbenzyl jbutanamide The title compound was prepared using the procedure described in Example 222B using 4-[(trifluoromethyl)thio]benzylamine and 2-(5-isoquinolinyl)butanoic acid instead of 4-(trifluoromethoxy)benzylamine and 5-isoquinolinylacetic acid. MS (ESI+) m/z 405 (M+H)+; MS (ESI-) m z 403 (M-H)"; 1HNMR (DMSO, 300 MHz) δ 0.91 (t, J 7.5, 3H), 1.81 (m, IH), 2.21 (m, IH), 3.39 (m, IH), 4.34 (m, 2H), 7.31 (m, 2H), 7.58 (m, 2H), 7.62 (d, J 7.8, IH), 8.00 (m, 2H), 8.22 (d, J 7.1, IH), 8.45 (m, IH), 8.77 (m, IH), 8.82 (m, IH), 9.06 (t, J 6.8, IH), 9.87 (s, IH), 10.30 (br s, IH); Anal. Calcd for C21H19F3N2OS + 0.65 HCl: C, 58.91; H, 4.63; N, 6.54. Found: C, 59.24; H, 4.30; N, 6.60.
Example 273 N-r4-(l-azepanyl)-3-fluorobenzyl1-2-(5-isoquinolinyl)butanamide The title compound was prepared using the procedure described in Example 222B using 4-(l-azepanyl)-3-fluorobenzylamine and 2-(5-isoquinolinyl)butanoic acid instead of 4-(trifluoromethoxy)benzylamine and 5-isoquinolinylacetic acid. MS (ESI+) m/z 420 (M+H)+; MS (ESI-) m/z 418 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 0.90 (t, J 7.5, 3H), δ 1.55 (m, 4H), 1.76 (m, 6H), 2.20 (m, IH), 3.34 (m, 5H), 4.18 (m, 2H), 6.81 (m, IH), 7.62 (m, IH), 8.00 (m, 2H), 8.27 (d, J 7.1, IH), 8.45 (d, IH), 8.77 (d, IH), 8.82 (m, IH), 9.90 (s, IH), 10.18 (br s, IH); Anal. Calcd for C26H3oFN3O + 0.45 H2O: C, 73.02; H, 7.28. Found: C, 73.05; H, 7.20.
Example 274 ethyl 2-(5-isoquinolinyl)-2-methylpropanoate The title compound was prepared using the procedure described in Example 248 using ethyl 2-(5-isoquinolinyl)propanoate instead of ethyl 5-isoquinolinylacetate. MS (ESI+) m/z
244 (M+H)+; MS (ESI-) m/z 242 (M-H)"; 1H NMR (DMSO, 300 MHz) rotamers δ 0.98, 1.08 (t, J 7.1, 3H), 1.67 (s, 6H), 4.58 (q, J 7.1, IH), 7.53 (m, IH), 7.82 (m, IH), 7.97 (m, IH), 8.05 (m, IH), 8.55, 8.50 (d, J 6.1, IH), 9.33 (s, IH).
Example 275 2-(5-isoquinolinyl)-2-methyl-N-{4-[(trifluoromethyl)thiolbenzyl)propanamide
Example 275A 2-(5-isoquinolinyl)-2-methylpropanoic acid The title compound was prepared using the procedure described in Example 249A using ethyl 2-(5-isoquinolinyl)-2-methylpropanoate instead of ethyl 2-(5- isoquinolinyl)propanoate .
Example 275B 2-(5-isoquinolinyl)-2-methyl-N-{4-[(trifluoromethyl)thiolbenzyl)propanamide The title compound was prepared using the procedure described in Example 222B using 4-[(trifluoromethyl)thio]benzylamine and 2-(5-isoquinolinyl)-2-methylpropanoic acid instead of 4-(trifluoromethoxy)benzylamine and 5-isoquinolinylacetic acid. MS (ESI+) m/z 405 (M+H)+; MS (ESI-) m/z 403 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 1.57 (s, 3H), 1.64 (s, 3H), 4.33 (d, J 6.1, 2H), 6.57 (s, IH), 7.18 (m, IH), 7.33 (m, IH), 7.52 (m, 2H), 7.82 (m, IH), 8.11 (m, IH), 8.36 (d, J 7.8, IH), 8.57 (m, IH), 9.42 (s, IH), 10.08 (s, IH); Anal. Calcd for C21H19F3N2OS + 2 HCl: C, 52.84; H, 4.43. Found: C, 52.66; H, 4.39.
Example 276 ethyl hydroxy(5-isoquinolinyl)acetate The title compound was prepared using the procedure described in Example 248 using (S) camphorsulfonyloxaziridine (2 equivalents) instead of methyl iodide.
Example 277 i N-(4-tert-butylbenzyl)-2-hvdroxy-2-(5-isoquinolinyl)acetamide
Example 277A
hydroxy (5 -isoquinolinyl)acetic acid The title compound was prepared using the procedure described in Example 249A using ethyl hydroxy(5-isoquinolinyl)acetate instead of ethyl 2-(5-isoquinolinyl)propanoate. MS (ESI+) m/z 204 (M+H)+; MS (ESI-) m z 202 (M-H)";
1HNMR (DMSO, 300 MHz) δ 4.97 (d, J 3.1, IH), 5.34 (d, J 3.3, IH), 7.55 (m, IH), 7.68 (d, J 7.5, IH), 7.90 (d, J 8.1, IH), 8.21 (d, J 6.8, IH), 8.40 (d, J 6.8, IH), 9.22 (s, IH); Anal. Calcd for CnH9NO3 + 1.9 HCl: C, 51.96; H, 5.00. Found: C, 51.89; H, 5.25.
Example 277B N-(4-tert-butylbenzyl)-2-hydroxy-2-(5-isoquinolinyl)acetamide The title compound was prepared using the procedure described in Example 222B using 4-(tert-butyl)benzylamine and hydroxy(5-isoquinolinyl)acetic acid instead of 4-(frifluoromethoxy)benzylamine and 5-isoquinolinylacetic acid, [α] D —47.2 (c 0.7, MeOH); MS (ESI+) m/z 349 (M+H)+; MS (ESI-) m/z 347 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 1.26 (s, 9H), 3.69 (s, IH), 4.27 (d, J 6.1, 2H), 5.62 (s, IH), 6.52 (br s, IH), 7.17 (d, J 8.1, 2H), 7.29 (m, 3H), 7.67 (t, J 8.1, IH), 7.82 (d, J 7.1, IH), 8.10 (m, 2H), 8.44 (d, J 5.8, IH), 8.71 (t, J 6.1, IH), 9.30 (s, IH); Anal. Calcd for C22H24N2O2 + 0.25 H2O: C, 74.87; H, 7.00; N, 7.94. Found: C, 75.22; H, 7.40; N, 7.80.
Example 278 N-(4-tert-butyl-3-fluorobenzyl)-2-hydroxy-2-(5-isoquinolinyl)acetamide The title compound was prepared using the procedure described in Example 222B using 3-fluoro-4-(trifluoromethyl)benzylamine and hydroxy(5-isoquinolinyl)acetic acid instead of 4-(trifluoromethoxy)benzylamine and 5-isoquinolinylacetic acid. MS (ESI+) m/z 379 (M+H)+; MS (ESI-) m/z 377 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 4.37 (d, J 6.1, 2H), 5.65 (d, IH), 6.63 (d, IH), 7.27 (m, 2H), 7.29 (m, 3H), 7.67 (m, 2H), 7.82 (d, J 7.1, IH), 8.15 (m, 2H), 8.44 (d, J 5.8, IH), 8.96 (t, J 6.1, IH), 9.30 (s, IH); Anal. Calcd for C22H24N2O2 + 0.25 H2O: C, 74.87; H, 7.00; N, 7.94. Found: C, 75.22; H, 7.40; N, 7.80.
Example 279 4-tert-butyl 1 -ethyl 2-(5-isoquinolinyl)succinate
The title compound was prepared using the procedure described in Example 248 using tert-butyl bromoacetate instead of methyl iodide. MS (ESI+) m/z 330 (M+H)+; MS (ESI-) m/z 328 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 1.06 (t, J 7.1, 3H), 1.30 (s, 9H), 2.76 (dd, Ji 16.7, J2 6.1, IH), 3.14 (dd, Ji 9.5, J2 6.1, IH), 4.12 (q, J 7.1, IH), 4.76 (dd, Jj 16.7, J2 9.5, IH), 7.70 (m, 2H), 8.05 (m, 2H), 8.58 (d, J 6.1, IH), 9.34 (s, IH); Anal. Calcd for C19H23NO4 + 1 H2O: C, 65.69; H, 7.25; N, 4.03. Found: C, 65.37; H, 6.91; N, 3.67.
Example 280 tert-butyl 4-[(4-tert-butylbenzyl)aminol-3-(5-isoquinolinyl)-4-oxobutanoate
Example 280A 4-tert-butoxy-2-(5-isoquinolinyl)-4-oxobutanoic acid 4-Tert-butyl 1 -ethyl 2-(5-isoquinolinyl)succinate (1.00 g, 3.04 mmol) and LiOH (0.29 g) were stined in MeOH:H2O (3:1, 20 mL) at room temperature for 5 hours. The solution was poured into aqueous H3PO4 (0.1M, 30 mL) and extracted with CHCl3:IPA (3:1, 30 mL x 3). The extracts were combined, dried (MgSO ), filtered, and the filtrate was concentrated under reduced pressure to provide the title compound. MS (ESI+) m/z 302 (M+H)+; MS (ESI-) m/z 300 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 1.28 (s, 9H), 2.74 (dd, Ji 16.7, J2 6.1, IH), 3.10 (dd, Ji 9.5, J2 6.1, IH), 4.68 (dd, Ji 16.7, J2 9.5, IH), 7.70 (m, 2H), 8.05 (m, 2H), 8.57 (d, J 6.1, IH), 9.33 (s, IH); Anal. Calcd for d7Hι9NO4 + 1.25 H2O: C, 63.05; H, 6.69. Found: C, 63.27; H, 6.95.
Example 280B tert-butyl 4-[(4-tert-butylbenzyl)aminol-3-(5-isoquinolinyl)-4-oxobutanoate The title compound was prepared using the procedure described in Example 222B using 4-(tert-butyl)benzylamine and 4-tert-butoxy-2-(5-isoquinolinyl)-4-oxobutanoic acid instead of 4-(trifluoromethoxy)berιzylamine and 5-isoquinolinylacetic acid. MS (ESI+) m/z 447 (M+H)+; 1H NMR (DMSO, 300 MHz) δ 1.23 (s, 9H), 1.25 (s, 9H), 2.71 (dd, IH), 3.02 (dd, IH), 4.22 (m, 2H), 4.71 (m, IH), 6.57 (s, IH), 7.08 (d, J 8.5, 2H), 7.24 (d, J 8.5, 2H), 7.67 (m, IH), 7.78 (m, IH), 8.03 (d, J 7.8, IH), 8.13 (d, J 7.1, IH), 8.55 (d, J 6.8, IH), 8.63 (m, IH), 9.31 (s, IH); Anal. Calcd for C28H34N2O3 + 1 CH3CN + 0.8 H2O: C, 71.77; H, 7.75; N, 8.37. Found: C, 71.64; H, 7.38; N, 8.16.
Example 281 2-[(4-tert-butylbenzyl)amino"|- 1 -(5-isoquinolinyl)-2-oxoethyl acetate The product from Example 277B (100 mg, 0.287 mmol) and DMAP (59 mg, 0.480 mmol) in CH2C1 (1 mL) was treated with acetic anhydride (38 μL). After stining for 30 minutes, the mixture was treated with CH2C1 (5 mL) and the phases separated. The organic layer was washed with water (10 mL x 3), dried (Na2SO4), filtered, and the filtrate was concentrated to provide the title compound. MS (ESI+) m/z 391 (M+H)+; MS (ESI-) m z 389 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 1.25 (s, 9H), 4.27 (dq, J, 14.9, J2 6.1, 2H), 6.56 (s, IH), 7.09 (d, J 8.5, 2H), 7.28 (d, J 8.5, 2H), 7.72 (t, J 7.1, IH), 7.90 (d, J 6.1, IH), 8.07 (d, J 6.1, IH), 8.17 (d, J 8.1, IH), 8.53 (d, J 6.1, IH), 8.86 (t, J 6.1, IH), 9.35 (s, lH);Anal. Calcd for C24H26N2O3 + 0.8 H2O: C, 71.19; H, 6.87; N, 6.92. Found: C, 70.87; H, 6.47; N, 6.92.
Example 282 2-[(4-tert-butylbenzyl)amino1-l-(5-isoquinolinyl)-2-oxoethyl methanesulfonate The product from Example 277B (1.00 g, 2.87 mmol) in pyridine (5 mL) was treated with methanesulfonyl chloride (5.56 μL, 7.17 mmol). After stining for 30 minutes, the mixture was concentrated under reduced pressure and diluted with CH2C12 (50 mL). The organic layer was washed with water (50 mL x 3), dried (Na2SO4), filtered, and the filtrate concentrated under reduce pressure to provide the title compound. MS (ESI+) m z 427 (M+H)+; MS (ESI-) m/z 425 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 1.27 (s, 9H), 2.37 (s, 3H), 4.27 (dq, Jj 14.9, J2 6.1, 2H), 6.84 (s, IH), 7.17 (d, J 8.5, 2H), 7.38 (d, J 8.5, 2H), 8.07 (m, 2H), 8.37 (d, J 8.1, IH), 8.60 (d, J 6.1, IH), 8.97 (m, IH), 9.21 (t, J 6.1, IH), 9.96 (s, IH).
Example 283 N-(4-tert-butylbenzyl)-2-(5-isoquinolinyl)-2-methoxyacetamide The product from Example 277B (100 mg, 0.287 mmol) in THF (2 mL) was treated with NaH (95%, 8.7 mg, 0.344 mmol). After stining at room temperature for 20 minutes, the mixture was treated with methyl iodide (1.2 eq, 21.4 μL) and stined for 1 hour. The mixture was concentrated under reduced pressure and CH2C12 (10 mL) was added. The organic layer was washed with water (5 mL x 3), dried (Na SO4), filtered, and the filfrate concentrated under reduced pressure to provide the title compound. MS (ESI+) m/z 363 (M+H)+; MS
(ESI-) m/z 361 (M-H)"; 1HNMR (DMSO, 300 MHz) rotamers δ 1.25 (s, 9H), 3.32 (s, 3H), 4.27 (d, J 6.1, 2H), 5.37 (s, IH), 7.18 (d, J 8.5, 2H), 7.32 (d, J 8.5, 2H), 7.70 (t, J 7.1, IH), 7.83 (d, J 6.1, IH), 8.07 (m, 2H), 8.43 (d, J 6.1, IH), 8.80 (t, J 6.1, IH), 9.35 (s, IH); Anal. Calcd for C23H26N2O2 + 0.3 H2O: C, 75.09; H, 7.29; N, 7.61. Found: C, 75.02; H, 7.34; N, 7.43.
Example 284 N-(4-tert-butylbenzyl)-2-chloro-2-(5-isoquinolinyl)acetamide The product from Example 182 (300 mg, 0.704 mmol) in toluene (10 mL) was treated with BiμNCl (458 mg, 1.408 mmol) and heated at 100 °C for 12 hours. The mixture was concentrated under reduced pressure and diluted with CH2C1 (50 mL). The organic layer was washed with water (50 mL x 3), dried (Na2SO4), filtered, and the filtrate concentrated under reduced pressure. MS (ESI+) m/z 367 (M+H)+; MS (ESI-) m/z 365 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 1.26 (s, 9H), 4.11 (d, J 5.1, 2H), 6.59 (s, IH), 7.16 (d, J 8.1, 2H), 7.36 (d, J 8.1, 2H), 7.97 (d, J 8.1, 2H), 8.30 (d, J 7.5, IH), 8.48 (d, J 8.1, IH), 8.56 (d, J 6.8, IH), 8.73 (d, J 6.8, IH), 8.97 (m, IH), 9.18 (t, J 6.1, IH), 9.81 (s, IH); Anal. Calcd for C22H23ClN2O + 1 HCl + 1.5 CH3OH: C, 62.53; H, 6.70; N, 6.21. Found: C, 62.75; H, 6.87; N, 6.11.
Example 285 N-5 -isoquinolinyl-3 - r4-(trifluoromethyl)phenyl 1 acrylamide 5-Aminoisoquinoline (0.50 g, 3.47 mmol) and 3 -[4-(trifluoromethyl)phenyl] acrylic acid (3.47 mmol) were combined in a sealed tube and heated at 175 °C for 16 hours with stining. The mixture was cooled to room temperature, diluted with MeOH, transfened to a flask, and concentrated under reduced pressure. The residue was triturated with ethyl acetate and filtered to provide the title compound. MS (ESI+) m/z 343 (M+H)+; MS (ESI-) m/z 341 (M-H)"; 1H MR (DMSO, 300 MHz) rotamers δ 6.68 (d, J 15.9, IH), 7.29 (d, J 15.9, IH), 7.60 (d, J 15.9, IH), 7.80 (m, IH), 8.25 (d, J 6.8, IH), 8.57 (d, J 5.8, IH), 9.35 (s, IH), 10.36 (s, IH); Anal. Calcd for Cι9Hι3F3N2O + 2 HCl + 0.3 H2O: C, 54.25; H, 3.74; N, 6.66. Found: C, 53.90; H, 3.94; N, 7.20.
Example 286
N-5-isoquinolinyl-3-[3-(trifluoromethyl)phenyllacrylamide The title compound was prepared using the procedure described in Example 285 using 3-[3-(trifluoromethyl)phenyl]acrylic acid instead of 3-[4-(trifluoromethyl)phenyl]acrylic acid. MS (ESI+) m/z 343 (M+H)+; MS (ESI-) m/z 341 (M-H)"; 1H NMR (DMSO, 300 MHz) rotamers δ 6.72 (d, J 15.9, IH), 6.87 (d, J 7.4, IH), 7.23 (d, J 8.1, IH), 7.36 (t, J 7.8, IH), 7.70 (m, 2H), 7.93 (d, J 6.1, IH), 8.10 (m, 2H), 8.35 (d, J 5.8, IH), 9.09 (s, IH); Anal. Calcd for Cι9Hi3F3N2O + 2.15 HCl: C, 54.24; H, 3.63; N, 6.66. Found: C, 53.96; H, 3.93; N, 6.93.
Example 287 3-(4-isopropylphenyl)-N-5-isoquinolinylacrylamide The title compound was prepared using the procedure described in Example 285 using 3-(4-isopropylphenyl)acrylic acid instead of 3-[4-(trifluoromethyl)phenyl]acrylic acid. MS (ESI+) m/z 317 (M+H)+; MS (ESI-) m/z 315 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 1.24 (d, J 6.8, 3H), 2.94 (sept, J 6.8, IH), 7.10 (d, J 15.6, IH), 7.35 (d, J 7.4, 2H), 7.61 (d, J 8.1, 2H), 7.63 (d, J 15.6, IH), 7.84 (t, J 7.8, IH), 8.12 (d, J 7.8, IH), 8.26 (d, J 6.4, IH), 8.35 (d, J 7.1, IH), 8.64 (d, J 6.8, IH), 9.56 (s, IH), 10.35 (s, IH); Anal. Calcd for C2ιH20N2O + 0.35 TFA: C, 73.15; H, 5.76; N, 7.86. Found: C, 73.02; H, 5.50; N, 7.88.
Example 288 N-5-isoquinolinyl-2-phenylcyclopropanecarboxamide The title compound was prepared using the procedure described in Example 285 using 2-phenylcyclopropanecarboxylic acid instead of 3- [4-(trifluoromethyι)phenyι] acrylic acid. MS (ESI+) m/z 289 (M+H)+; MS (ESI-) m/z 287 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 1.46 (m, IH), 1.56 (m, IH), 2.46 (m, 2H), 7.24 (m, 3H), 7.32 (m, 2H), 7.82 (t, J 7.8, IH), 8.10 (d, J 7.8, IH), 8.28 (d, J 6.4, IH), 8.62 (d, J 6.8, IH), 9.58 (s, IH), 10.46 (s, IH); Anal. Calcd for d9Hι6N2O + 0.65 TFA: C, 67.27; H, 4.63; N, 7.73. Found: C, 67.27; H, 4.31; N, 7.52.
Example 289 3 -(3 ,4-dichlorophenyl)-N-5-isoquinolinylacrylamide The title compound was prepared using the procedure described in Example 285 using 3-(3,4-dichlorophenyl)acrylic acid instead of 3- [4-(trifluoromethyl)phenyl] acrylic acid. MS
(ESI+) m/z 344 (M+H)+; MS (ESI-) m/z 342 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 7.20 (d, J 15.6, IH), 7.67 (m, 3H), 7.84 (d, J 15.6, IH), 7.97 (d, J 1.7, IH), 8.10 (d, J 7.8, IH), 8.22 (d, J 6.4, IH), 8.35 (d, J 7.1, IH), 8.64 (d, J 6.8, IH), 9.53 (s, IH), 10.37 (s, IH); Anal. Calcd for Ci8Hi2Cl2N2O + 0.75 TFA: C, 54.63; H, 3.00; N, 6.53. Found: C, 54.43; H, 2.92; N, 6.39.
Example 290 3-(l , 1 '-biphenyl-4-yl)-N-5-isoquinolinylacrylamide The title compound was prepared using the procedure described in Example 285 using 3-(l,l'-biphenyl-4-yl)acrylic acid instead of 3- [4-(trifluoromethyl)phenyl] acrylic acid. MS (ESI+) m/z 351 (M+H)+; MS (ESI-) m/z 349 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 7.21 (d, J 15.6, IH), 7.39-7.79 (m, 10H), 7.97 (d, J 7.8, IH), 8.08 (d, J 6.4, IH), 8.29 (d, J 7.1, IH), 8.58 (d, J 6.8, IH), 9.34 (s, IH); Anal. Calcd for C24Hι8N2O + 0.85 HCl: C, 75.58; H, 4.98. Found: C, 75.69; H, 4.69.
Example 291 3-(3-bromo-4-fluorophenyl)-N-5-isoquinolinylacrylamide The title compound was prepared using the procedure described in Example 285 using 3-(3-bromo-4-fluorophenyl)acrylic acid instead of 3- [4-(trifluoromethyl)phenyl] acrylic acid. MS (ESI+) m/z 374, 372 (M+H)+; MS (ESI-) m/z 372, 370 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 7.14 (d, J 15.6, IH), 7.50 (t, J 8.8, IH), 7.65 (d, J 15.6, IH), 7.76 (m, IH), 7.83 (t, J 7.8, IH), 8.05 (dd, Ji 6.8, J2 2.1, IH), 8.11 (d, J 7.8, IH), 8.24 (d, J 6.4, IH), 8.36 (d, J 7.1, IH), 8.64 (d, J 6.8, IH), 9.55 (s, IH), 10.35 (s, IH); Anal. Calcd for Cι8Hι2BrFN2O + 1 TFA: C, 49.51; H, 2.70; N, 5.77. Found: C, 49.78; H, 2.71; N, 5.768.
Example 292 3-(4-tert-butylphenyl)-N-5-isoquinolinylacrylamide The title compound was prepared using the procedure described in Example 285 using 3-(4-tert-butylphenyl)acrylic acid instead of 3- [4-(trifluoromethyl)phenyl] acrylic acid. MS (ESI+) m/z 331 (M+H)+; MS (ESI-) m z 329 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 1.31 (s, 9H), 7.10 (d, J 15.6, IH), 7.51 (d, J 8.5, 2H), 7.62 (d, J 8.5, 2H), 7.67 (d, J 15.6, IH), 7.86 (t, J 8.2, IH), 8.14 (d, J 6.1, IH), 8.31 (d, J 8.2, IH), 8.40 (d, J 6.1, IH), 8.66 (d, J 6.1, IH), 9.60
(s, IH), 10.39 (s, IH); Anal. Calcd for C22H22N2O + 1 TFA: C, 64.86; H, 5.22; N, 6.30. Found: C, 64.54; H, 5.13; N, 6.18.
Example 293 3-r3-fluoro-4-(trifluoromethyl)phenyll-N-5-isoquinolinylacrylamide The title compound was prepared using the procedure described in Example 285 using 3-[3-fluoro-4-(trifluoromethyl)phenyl]acrylic acid instead of 3-[4-
(trifluoromethyl)phenyl]acrylic acid. MS (ESI+) m/z 361 (M+H)+; MS (ESI-) m/z 359 (M- H)"; 1H NMR (DMSO, 300 MHz) δ 7.30 (d, J 15.6, IH), 7.72-7.85 (m, 4H), 7.91 (t, J 8.2, IH), 8.13 (d, J 6.1, IH), 8.24 (d, J 8.2, IH), 8.35 (d, J 6.1, IH), 8.65 (d, J 6.1, IH), 9.56 (s, IH), 10.50 (s, IH); Anal. Calcd for C19Hι2F4N2O + 0.8 TFA: C, 54.80; H, 2.86; N, 6.20. Found: C, 54.59; H, 2.82; N, 6.06.
Example 294 N-(8-bromo-5-isoquinolinyl)-N'-(2,4-dichlorobenzyl)urea
Example 294A 8-bromo-5-isoquinolinamine 6,8-dibromo-5-isoquinolinamine 5-Aminoisoquinoline (5.50 g, 38.1 mmol) and aluminium trichloride (15.1 g, 113 mmol) were combined and heated at 80 °C in a 3-necked flask equipped with a dropping funnel, stiner bar, needle and sintered glass tube. The mixture was treated with bromine (3.04 g, 19.05 mmol) via the sintered glass funnel dropwise. After stining at 80 °C for 2 hours, the suspension was treated with crashed ice in small portions and the solution was basified with concentrated sodium hydroxide solution. The aqueous layer was extracted with ethyl acetate (4 x 100 mL). The organic layers were combined, dried (Na2SO4), filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (hexanes:ethyl acetate, 3:1) to provide the separate title compounds. Monobromo: MS (ESI+) m/z 225 (M+H)+; MS (ESI-) m/z 223 (M-H)"; 1H NMR (CDC13, 300 MHz) δ 4.22 (br s, 2H), 6.83 (d, J 8.1, IH), 7.25 (s, IH), 7.54 (d, J 5.8, IH), 7.61 (d, J 8.1, IH), 8.59 (d, J 5.8, IH), 9.56 (s, IH); Dibromo: MS (ESI+) m/z 303
(M+H)+; MS (ESI-) m/z 301 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 6.41 (br s, 2H), 7.92 (s, IH), 8.18 (d, J 6.1, IH), 8.59 (d, J 6.1, IH), 9.30 (s, IH).
Example 294B N-(8-bromo-5-isoquinolinyl)-N'-(2,4-dichlorobenzyl)urea 8-Bromo-5-isoquinolinamine (120 mg, 0.52 mmol) in THF:toluene (5 mL, 1:4) was treated with 2,4-dichloro-l-(isocyanatomethyl)benzene (108 mg, 0.52 mmol) in THF (0.5 mL). After stining for 16 hours at room temperature, the mixture was filtered and the filter cake was dried under reduced pressure to provide the title compound. MS (ESI+) m/z 426 (M+H)+; MS (ESI-) m/z 424 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 4.42 (d, 5.8, 2H), 7.22 (t, J 5.8, IH), 7.65 (m, IH), 7.91 (d, J 8.5, IH), 8.02 (d, J 6.1, IH), 8.22 (d, J 8.5, IH), 8.69 (d, J 5.8, IH), 9.01 (s, IH), 9.44 (s, IH); Anal. Calcd for Ci7H12BrCl2N3O.HCl + 0.25EtOH: C, 44.41; H, 3.14; N, 8.88. Found: C, 44.80; H, 2.76; N, 8.84.
Example 295 N-(8-bromo-5-isoquinolinyl)-N'-(4-fluorobenzyl)urea The title compound was prepard using the procedure described in Example 294B using l-fluoro-4-(isocyanatomethyl)benzene instead of 2,4-dichloro-l- (isocyanatomethyl)benzene. MS (ESI+) m/z 376 (M+H)+; MS (ESI-) m/z 374 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 4.35 (d, 5.8, 2H), 7.12 (m, IH), 7.18 (m, 2H), 7.40 (m, IH), 7.91 (d, J 8.5, IH), 7.99 (d, J 6.1, IH), 8.24 (d, J 8.5, IH), 8.69 (d, J 5.8, IH), 8.88 (s, IH), 9.44 (s, IH); Anal. Calcd for C17H13BrFN3O: C, 54.56; H, 3.50; N, 11.23. Found: C, 54.61; H, 3.35; N, 11.14.
Example 296 N-(8-bromo-5-isoquinolinyl)-N'-(3-fluorobenzyl)urea The title compound was prepard using the procedure described in Example 294B using l-fluoro-4-(isocyanatomethyl)benzene instead of 2,4-dichloro-l- (isocyanatomethyl)benzene. MS (ESI+) m/z 376 (M+H)+; MS (ESI-) m/z 374 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 4.39 (d, 5.8, 2H), 7.09 (m, IH), 7.17 (m, 2H), 7.40 (m, IH), 7.91 (d, J 8.5, IH), 8.01 (d, J 6.1, IH), 8.23 (d, J 8.5, IH), 8.69 (d, J 5.8, IH), 8.93 (s, IH), 9.44 (s,
IH); Anal. Calcd for C17H13BrFN3O: C, 54.56; H, 3.50; N, 11.23. Found: C, 54.64; H, 3.33; N, 11.19.
Example 297 N-[l-(4-chlorophenyl)-l-methylethyll-N'-5-isoquinolinylurea
Example 297A 2-(4-chlorophenyl)-2-methylpropanoyl chloride 2-(4-Chlorophenyl)-2-methylpropanoic acid (3.85 g, 19.4 mmol) in toluene (5 mL) and thionyl chloride (5.00g, 3.1 mL) was heated at 80 °C for 2 hours. The mixture was cooled and concentrated under reduced pressure to provide the title compound.
Example 297B 1 -chloro-4-( 1 -isocy anato- 1 -methy lethy Dbenzene The product from Example 297A (4.00 g, 19.4 mmol) in acetone (9 mL) at 0 °C ws treated with sodium azide (1.27 g) in water (9 mL) dropwise over 15 minutes, after stining for 30 minutes at 0 °C, the mixture was extracted with toluene (20 mL). The toluene solution was dried over MgSO4, filtered, and the filtrate was heated to reflux for 1 hour. The cooled solution was concentrated under reduced pressure to provide the title compound.
Example 297C N-[l-(4-chlorophenyl)-l-methylethyll-N'-5-isoquinolinylurea The title compound was prepared using the procedure described in Example 60F using l-chloro-4-(l-isocyanato-l-methylethyl)benzene and 5-isoquinolinamine instead of the product from Example 60E and l-bromo-4-(isocyanatomethyl)benzene. MS (ESI+) m/z 355 (M+H)+; MS (EST) m/z 353 (M-H)'; 1HNMR (DMSO, 300 MHz) δ 1.63 (s, 6H), 7.23 (s, IH), 7.37 (d, J 8.8, 2H), 7.47 (d, J 8.8, 2H), 7.73 (t, J 9.2, IH), 7.93 (d, J 8.1, IH), 8.25 (d, J 6.4, IH), 8.39 (d, J 8.1, IH), 8.67 (d, J 6.4, IH), 8.87 (s, IH), 9.58 (s, IH); Anal. Calcd for C19H18C1N30.HC1 + 0.25EtOH: C, 60.40; H, 5.33; N, 10.54. Found: C, 60.82; H, 5.23; N, 10.45.
Example 298 N-(4-bromo-3-methylbenzyl)-N'-5-isoquinolinylurea
The title compound was prepared using the procedure described in Example 61B using 4-bromo-3-methylbenzylamine instead of 4-cyanobenzyl alcohol. MS (ESI+) m/z 372, 370 (M+H)+; MS (ESI-) m/z 370, 368 (M-H)"; lH NMR (DMSO, 300 MHz) δ 2.34 (s, 3H), 4.31 (s, 2H), 4.09 (s, 2H), 7.13 (d, J 7.2, 2H), 7.34 (s, IH), 7.55 (m, 2H), 7.82 (d, J 7.9, IH), 7.90 (m, IH), 8.09 (d, IH), 8.65 (m, 2H), 8.80 (d, J 6.4, IH), 9.68 (s, IH), 9.79 (s, IH); Anal. Calcd for C18H16BrN3O + 1.05 HCl: C, 52.66; H, 4.86; N, 10.24. Found: C, 53.00; H, 4.27; N, 10.37.
Example 299 N-r2-fluoro-4-(trifluoromethyl)benzyll-N'-5-isoquinolinylurea
Example 299A 2-fluoro-4-(trifluoromethyl)benzylamine The title compound was prepared using the procedure described in Example 172B using 2-fluoro-4-(trifluoromethyl)benzonitrile instead of 4-(4-morpholinyl)benzonitrile. MS (ESI+) m/z 194 (M+H)+; MS (ESI-) m/z 192 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 3.97 (s, 2H), 7.30 (m, IH), 7.46 m, 2H).
Example 299B N-[2-fluoro-4-(trifluoromethyl)benzyll-N'-5-isoquinolinylurea The title compound was prepared using the procedure described in Example 6 IB using 2-fluoro-4-(trifluoromethyl)benzylamine instead of 4-cyanobenzyl alcohol. MS (ESI+) m/z 364 (M+H)+; MS (ESI-) m/z 362 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 4.51 (d, J 5.8, 2H), 7.65 (m, 4H), 7.90 (t, J 8.1, IH), 8.09 (d, J 7.8, IH), 8.59 (d, J 7.8, IH), 8.71 (s, 2H), 9.66 (s, IH), 9.76 (s, IH); Anal. Calcd for C18H13F4N3O + 1 HCl: C, 54.08; H, 3.53; N, 10.51. Found: C, 54.40; H, 3.60; N, 10.61.
Example 300 N-(4-bromobenzyl)-N'-(3-hydroxy-5-isoquinolinyl)urea
Example 300 A 5-nitro-3 -isoquinolinol
3 -Hydroxy isoquinoline (1.09 g, 7.53 mmol) in concentrated H2SO4 (20 mL) at 0 °C was freated withNaNO3 (0.71 g, 8.34 mmol) in concentrated H SO4 (5 mL) dropwise over 15 minutes. After stining for 90 minutes, the mixture was allowed to warm to room temperature, stir for 2 hours, poured over an ice-NH4Cl mixture, and the pH was adjusted to 7-8 with 50% NaOH solution. The mixture was filtered and the filter cake dried to provide the title compound. Stracture analysis determined a 2:1 mixture of the 5-nitro and 7-nitro isomers which were not separated. MS (ESI+) m z 191 (M+H)+; MS (ESI-) m/z 189 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 4.60 (s, IH), 7.48 (t, J 8.0, IH), 7.57 (s, IH), 8.42 (d, J 8.0, IH), 8.57 (d, J 7.7, IH), 9.19 (s, IH).
Example 300B 5-nitro-3-isoquinolinyl acetate 5-Nitro-3-isoquinolinol (3.40 g, 17.9 mmol) in acetic anhydride (40 mL) was treated with acetic acid (5 mL) and pyridine (5 mL) and heated at 120 °C for 2 hours. The mixture was cooled to room temperature and concentrated under reduced pressure to provide the title compound which was used in the next step without further purification. MS (ESI+) m/z 233 (M+H)+; MS (ESI-) m/z 231 (M-H)"; 1H NMR (DMSO, 300 MHz) isomers δ 2.39 (s, 3H), 7.88 (m, IH), 8.27 (m, IH), 8.50 (m, IH), 8.65, 8.74 (d, J 7.8, IH), 9.47, 9.55 (s, IH).
Example 300C 5-amino-3-isoquinolinyl acetate 5-Nitro-3-isoquinolinyl acetate (50 mg, 0.21 mmol) in 1,4-dioxane (20 mL) was treated with Raney-nickel powder (85 mg) and exposed to a hydrogen atmosphere via a balloon for 16 hours. The mixture was filtered through a plug of Celite and the filtrate was concentrated under reduced pressure to provide the title compound which was used without further purification.
Example 300D
N-(4-bromobenzyl)-N'-(3-hydroxy-5-isoquinolinyl)urea
5-Amino-3-isoquinolinyl acetate in toluene:THF (5:1, 5 mL) was treated with l-bromo-4-(isocyanatomethyl)benzene (105 mg). After stining for 1 hour, the mixture was concentrated under reduced pressure and the residue dissolved in MeOH (20 mL) and freated
with K CO3 (4 eq) and stined for 16 hours. The mixture was concentrated under reduced pressure and partitioned between CH2C12 and water. The aqueous phase was separated and the pH was adjusted to approximately 6 with HCl. The acidified solution was filtered, and the filter cake was dried. The solid was purified by reverse-phase chromatography (using TFA as eluent) to provide the title compound. MS (ESI+) m/z 374, 372 (M+H)+; MS (ESI-) m/z 372, 370 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 4.33 (d, J 5.8, 2H), 7.06 (m, IH), 7.29 (m, 3H), 7.57 (m, 3H), 8.07 (d, J 7.8, IH), 8.48 (s, IH), 8.80 (s, IH), 8.87 (s, IH); Anal. Calcd for C17H14BrN3O2 + 0.2 TFA: C, 53.08; H, 3.42; N, 10.43. Found: C, 52.91; H, 3.62; N, 10.43.
Example 301
N-5-isoquinolinyl-N'-{[5-(trifluoromethyl)-2-pyridinyllmethyl}urea
I
Example 301 A 5-(trifluoromethyl)-2-pyridinecarbonifrile Copper (I) cyanide (14.1 g) and 2-bromo-5-frifluoromethylpyridine (3.00 g, 13.3 mmol) in dry DMSO (70 mL) were combined and heated at 180 °C for 2 hours, cooled, and poured into NH4OH (3M). The mixture was then extracted with ethyl acetate (3 x 500 mL), washed with water (1 x 200 mL), dried (MgSO4), filtered and the filtrate concentrated under reduced pressure to provide the title compound. 1H NMR (DMSO, 300 MHz) δ 8.22 (m, IH), 8.42 (m, IH), 9.01 (s, IH).
Example 30 IB [5-(trifluoromethyl)-2-pyridinyllmethylamine The title compound was prepared using the procedure described in Example 172B using 5-(trifluoromethyl)-2-pyridinecarbonitrile instead of 4-(4-morpholinyl)benzonitrile.
Example 301C N-5-isoquinolinyl-N'-{[5-(frifluoromethyl)-2-pyridinyllmethyl}urea The title compound was prepared using the procedure described in Example 61B using [5-(trifluoromethyl)-2-pyridinyl]methylamine instead of 4-cyanobenzyl alcohol. 1H NMR (DMSO, 300 MHz) δ 4.51 (m, 2H), 7.97 (m, 2H), 8.12 (m, IH), 8.47 (d, J 7.8, IH),
8.72 (m, 3H), 9.13 (d, J 6.8, IH), 9.78 (m, 2H), 10.80 (s, IH); Anal. Calcd for C17H13F3N4O + 0.8 HCl + 0.7 CH3OH: C, 53.43; H, 4.20; N, 14.08. Found: C, 53.41; H, 4.31; N, 14.11.
Example 302 N-[3-bromo-4-(frifluoromethyl)benzyll-N'-5-isoquinolinylurea The title compound was prepared using the procedure described in Example 61 B using 3-bromo-4-(trifluoromethyl)benzylamine instead of 4-cyanobenzyl alcohol. MS (ESI+) m/z 426, 424 (M+H)+; MS (ESI-) m/z 424, 422 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 4.46 (d, J 5.8, 2H), 7.26 (t, J 6.1, IH), 7.56 (d, J 8.8, IH), 7.90 (m, 2H), 7.97 (d, J 8.1, IH), 8.21 (d, J 6.4, IH), 8.39 (d, J 8.8, IH), 8.64 (d, J 6.4, IH), 9.08 (s, IH), 9.57 (s, IH); Anal. Calcd for Cι8Hi3BrF3N3O + 0.9 TFA: C, 45.14; H, 2.66; N, 7.98. Found: C, 45.18; H, 2.64; N, 7.86.
Example 303 N-[2,4-bis(trifluoromethyl)benzyll-N'-5-isoquinolinylurea The title compound was prepared using the procedure described in Example 61B using 2,4-bis(trifluoromethyl)benzylamine instead of 4-cyanobenzyl alcohol. MS (ESI+) m/z 414 (M+H)+; MS (ESI-) m/z 412 (M-H)"; 1H NMR (DMSO, 300 MHz) rotamers δ 4.63 (d, J 5.8, 2H), 7.70-8.20 (m, 6H), 8.60 (m, 3H), 9.60 (m, 2H); Anal. Calcd for Cι9Hι3FeN3O + 1 HCl: C, 50.74; H, 3.14; N, 9.34. Found: C, 50.88; H, 3.08; N, 9.10.
Example 304 N-[2,3-difluoro-4-(trifluoromethyl)benzyll-N'-5-isoquinolinylurea The title compound was prepared using the procedure described in Example 6 IB using 2,3-difluoro-4-(trifluoromethyl)benzylamine instead of 4-cyanobenzyl alcohol. MS (ESI+) m/z 382 (M+H)+; MS (ESI-) m/z 380 (M-H)"; 1H NMR (DMSO, 300 MHz) rotamers δ 4.55 (d, J 5.8, 2H), 7.45 (m, IH), 7.63 (t, J 6.1, IH), 7.82 (m, IH), 8.05(d, J 8.1, IH), 8.56 (m, 2H), 8.69 (d, J 6.4, IH), 9.51 (s, IH), 9.70 (s, IH); Anal. Calcd for Cι8Hι2F5N3O + 0.8 HCl: C, 52.67; H, 3.14; N, 10.24. Found: C, 52.53; H, 3.38; N, 10.22.
Example 305 N-[2-chloro-4-(trifluoromethyl)benzyll-N'-5-isoquinolinylurea
The title compound was prepared using the procedure described in Example 61B using 2-chloro-4-(trifluoromethyl)benzylamine instead of 4-cyanobenzyl alcohol. MS (ESI+) m/z 380 (M+H)+; MS (ESI-) m/z 378 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 4.53 (d, J 5.8, 2H), 7.69 (m, 2H), 7.87 (m, IH), 8.06 (d, J 8.1, IH), 8.56 (d, J 7.8, IH), 8.63 (d, J 6.8, IH), 8.70 (d, J 6.8, IH), 9.59 (s, IH), 9.72 (s, IH); Anal. Calcd for C18Hi3ClF3N3θ + 1.3 HCl: C, 50.61; H, 3.37; N, 9.84. Found: C, 50.60; H, 3.42; N, 9.61.
Example 306 N-5-isoquinolinyl-N'-{l-methyl-l-r4-(trifluoromethyl)phenyl1ethyl)urea The title compound was prepared using the procedure described in Example 6 IB using 2-[4-(trifluoromethyl)phenyl]-2-propanamine instead of 4-cyanobenzyl alcohol. MS (ESI+) m/z 374 (M+H)+; MS (ESI-) m/z 372 (M-H)"; 1H NMR (DMSO, 300 MHz) δ 1.67 (s, 6H), 7.67 (s, 4H), 7.82 (t, J 8.1, IH), 8.02 (d, J 8.1, IH), 8.54 (d, J 7.8, IH), 8.72 (d, J 6.8, IH), 8.87 (d, J 6.8, IH), 9.65 (s, IH), 9.77 (s, IH); Anal. Calcd for C20H18F3N3θ + 1 HCl: C, 58.61; H, 4.67. Found: C, 58.62; H, 4.65.
Example 307 N-r2-(4-bromophenyl)-2-hydroxyethyll-N'-5-isoquinolinylurea
The title compound was prepared using the procedure described in Example 6 IB using 2-amino-l-(4-bromophenyl)ethanol instead of 4-cyanobenzyl alcohol. MS (ESI+) m/z 388, 386 (M+H)+; MS (ESI-) m/z 386, 384(M-H)";
1H NMR (DMSO, 300 MHz) rotamers δ 3.27 (m, IH), 3.42 (m, IH), 4.70 (m, IH), 6.82 (t, J 5.0, 2H), 7.38 (d, J 8.5, IH), 7.56 (d, J 8.5, IH), 7.81 (t, J 7.8, IH), 7.98 (d, J 8.7, IH), 8.29 (d, J 7.5, IH), 8.50 (d, J 5.9, IH), 8.67 (d, J 6.4, IH), 9.01 (s, IH), 9.64 (s, IH); Anal. Calcd for Ci8H16BrN3O2 + 2.35 TFA: C, 41.68; H, 2.83; N, 6.42. Found: C, 41.69; H, 2.86; N, 6.43.
It is understood that the foregoing detailed description and accompanying examples are merely illustrative and are not to be taken as limitations upon the scope of the invention, which is defined solely by the appended claims and their equivalents. Various changes and modifications to the disclosed embodiments will be apparent to those skilled in the art. Such changes and modifications, including without limitation those relating to the chemical
structures, substituents, derivatives, intermediates, syntheses, formulations and/or methods of use of the invention, may be made without departing from the spirit and scope thereof.