WO2003068005A1 - Puffing apparatus for producing cereal crackers - Google Patents

Puffing apparatus for producing cereal crackers Download PDF

Info

Publication number
WO2003068005A1
WO2003068005A1 PCT/EP2002/001674 EP0201674W WO03068005A1 WO 2003068005 A1 WO2003068005 A1 WO 2003068005A1 EP 0201674 W EP0201674 W EP 0201674W WO 03068005 A1 WO03068005 A1 WO 03068005A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
oil
cylinder
raw material
pressure
Prior art date
Application number
PCT/EP2002/001674
Other languages
French (fr)
Inventor
Steven Van Poucke
Original Assignee
Steven Van Poucke
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US10/504,444 priority Critical patent/US7770513B2/en
Priority to CA002475563A priority patent/CA2475563A1/en
Priority to EP02724170.2A priority patent/EP1474006B1/en
Priority to MXPA04007845A priority patent/MXPA04007845A/en
Priority to AU2002367642A priority patent/AU2002367642A1/en
Priority to PCT/EP2002/001674 priority patent/WO2003068005A1/en
Application filed by Steven Van Poucke filed Critical Steven Van Poucke
Priority to ES02724170T priority patent/ES2421129T3/en
Publication of WO2003068005A1 publication Critical patent/WO2003068005A1/en
Priority to US12/368,464 priority patent/US8161871B2/en
Priority to US12/368,461 priority patent/US8191467B2/en
Priority to US12/368,458 priority patent/US8227005B2/en
Priority to US13/556,185 priority patent/US20130186284A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P30/00Shaping or working of foodstuffs characterised by the process or apparatus
    • A23P30/30Puffing or expanding
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • A23L7/10Cereal-derived products
    • A23L7/117Flakes or other shapes of ready-to-eat type; Semi-finished or partly-finished products therefor
    • A23L7/126Snacks or the like obtained by binding, shaping or compacting together cereal grains or cereal pieces, e.g. cereal bars
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • A23L7/10Cereal-derived products
    • A23L7/161Puffed cereals, e.g. popcorn or puffed rice
    • A23L7/174Preparation of puffed cereals from wholegrain or grain pieces without preparation of meal or dough
    • A23L7/178Preparation of puffed cereals from wholegrain or grain pieces without preparation of meal or dough by pressure release with or without heating
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P30/00Shaping or working of foodstuffs characterised by the process or apparatus
    • A23P30/30Puffing or expanding
    • A23P30/32Puffing or expanding by pressure release, e.g. explosion puffing; by vacuum treatment

Definitions

  • the present invention is related generally to the manufacture of puffed food-starch containing products which are obtainable from rice, corn, wheat and other cereal grains but also from other starch source materials like potato, beans etc. including mixtures of different food starches in any suitable form including grains, broke, grit, flour, pellets and the like.
  • this invention relates to an apparatus enabling automatic production of low-fat puffed-food products from any edible starch source in the form of crackers, cakes, wafers or chips of any desired shape, thickness, crispiness and taste, and this with remarkably increased reliability and efficiency over existing methods and machines.
  • Patent documents US-A-4328741 and WO-A-88/00797 are representative for machine types using air cylinders for selectively moving upwardly or downwardly an upper baking mold relative to a movable lower baking mold and to a stationary ring mold, in which said upper mold and lower molds are coaxially receivable in a fluid-tight manner and thereby forming a sealed molding cavity.
  • These machines produce a lot of noise and are rather energy consuming; furthermore, air cylinders are bulky devices which often are less reliable in terms of baking pressure and cracker thickness requirements.
  • a drawback of said machine types is the use of a toggle mechanism transmitting hydraulic power to the mold in an indirect way and requiring special care for aligning mold parts and controlling molding pressure.
  • a movable peripheral mold is more prone to overstraining and risk of mold leakage, giving rise to defective cracker quality and appearance after a period of time.
  • the provision of a hydraulic jack together with its oil circuit, oil tank and powering motor on each production machine or unit is rather expensive.
  • a generally experienced inconvenience in the production of puffed-food snacks by pressure- baking and subsequently expanding a starch-containing cereal or the like mixture in a mold cavity when using currently available technology is the quantity of trash and waste crackers produced by puffing machines, which may amount to 1 0 % or even more of total cracker output.
  • Furtherer disadvantages of known machines for making puffed crackers include the rather long running- in/starting-up times needed until a stable production regime is reached and the need of frequently cleaning the baking mold elements. As a result the productivity and economics of a cracker plant, in particular when making small crackers and chips, may be seriously affected.
  • the present invention aims at providing an adequate solution for the production problems and technical shortcomings of prior art technology for puffed cracker production and in particular at removing the above-mentioned technical and economical deficiencies of conventional puffed-food machinery and plants.
  • each apparatus has "direct" hydraulic drive means for its baMng-puff ⁇ ng molds or mold elements and wherein the hydraulic power for said drive means is selectively derivable from a common oil pressure supply line or common rail capable of supplying a constantly and continuously high oil pressure to a direct hydraulic drive cylinder of each mold element, irrespective of the number of apparatuses or instant power needs.
  • a puffing apparatus comprising a molding/baking/expansion chamber having upper walls, lower walls and side walls defined respectively in an upper baking mold element, a lower baking mold element and a peripheral mold element, whereby at least said upper and lower mold elements are adapted to he heated and to be selectively moved relative to each other by suitable means, and further a slidable feeding plate adapted both for transporting a predetermined quantity of food-starch raw material into said chamber and for pushing outwardly a shaped puffed cracker from said lower baking mold, the improvement wherein said means for selectively moving the upper mold resp. the lower mold comprise an upper hydraulic double- acting cylinder disposed on top of to said upper mold resp.
  • each of said hydraulic cylinders having a manifold for oil intake and oil outlet mounted directly on the cylinder so as to form an integral part thereof, wherein each manifold is adapted for connection with a pressure oil feed line and with a return oil line and comprises four valves, preferably poppet valves, which operatively cooperate for selectively controlling a forward stroke or a return stroke of the cylinder piston independently in each hydraulic cylinder. From each puffing apparatus the oil is returned through a central return line, for this purpose teed off at each apparatus and then connected to the oil outlet of each cylinder manifold, which flows the used oil back to the collection tank of an oil power unit of proper oil capacity and power output.
  • a first valve lets the oil in from a central pressure line in a first oil chamber of the cylinder while a second valve lets the oil out from a second oil chamber (at opposite side of the cylinder piston) to a central oil return line, whereby the cylinder piston is moved e.g. in the forward direction over a predetermined distance.
  • the two other valves, not actuated in the forward stroke, work together in a similar way to perform a reverse stroke of the piston.
  • the pressure oil system of the apparatus is preferably a central system powering simultaneously a plurality of puffing apparatuses.
  • the system is outlined for making available a "constant" high pressure in the pressure oil feed line which is branched of to each cylinder manifold of each apparatus, and this in spite of different oil flows and/or capacity needs according to number of puffing machines and actual process cycle for a given machine.
  • the power unit of the system comprises an electric motor driving an axial pump with variable swash plate allowing to create a constant hydraulic oil pressure at varying oil flows or capacities.
  • the system is preferably provided with three axial pumps and one accumulator.
  • Another advantage of the central oil power and pump system is that the oil remains at low and constant temperature.
  • Another pump will function as an oil circulation pump circulating the oil through a cooling and filtration unit. In the return line the oil flowing back from each cylinder manifold is further cooled and may be filtered before flowing into the oil tank of the system.
  • the new direct hydraulic drive means for the mold elements in an apparatus according to the invention surprisingly provides considerable improvements in puffed cracker properties and manufacturing efficiency: a consistently high and constant product quality was achieved, the flexibility to adapt cracker properties w.r.t. composition, texture and shape without risk of burns, seams or desintegration was greatly increased. Moreover machine reliability, incl. trouble- free production runs was remarkably improved.
  • valves When a command is given to the valves an immediate reaction occurs in the cylinders because the valves are directly mounted on the cylinders in a manifold thereof and at very close distance to the piston chambers; in addition the preferably used valves are poppet valves which react very quickly, i.e. are actuated instantaneously with a command.
  • a puffing apparatus having an improved feed system enabling the supply of raw material into the mold cavity such that no material gets spilled and each individual mold will receive an accurate predetermined quantity of starch- containing raw material selected from grains, pellets, broke, flour etc. incl. mixtures thereof.
  • a puffing apparatus having an improved ring mold design allowing pressure-baking and expansion of particularly a plurality of (small) crackers such as mini-snacks, and this without the risk of premature wear or deformation of the ring mold due to heat differential related misalignment between the ring mold cavities and the upper or lower mold punch elements slidable received in said cavities.
  • Figure 1 is a schematic illustration of the main steps occurring in the process of making a puffed cracker using a stationary ring mold and respective upper and lower movable mold elements or punches.
  • Figure 2 gives a side view of a puffing machine arrangement used in the present invention for carrying out the process steps according to figure 1.
  • Figure 3 is a schematic representation of the oil pressure circuit as connected with the hydraulic drive cylinders in a puffing apparatus according to the invention.
  • FIGS. 4a-b-c give a more detailed view of important components in the oil circuit to power a puffing machine drive system according to the invention.
  • Figure 5 is cut-away side view a raw material feed system according to the invention.
  • Figure 6 depicts details of a ring mold embodiment according to the invention.
  • Figure 7 is flow chart illustrating a process embodiment of the present invention.
  • the mold comprises an upper mold 1 and a lower mold 2, both heatable by means of embedded heating elements (not represented) and movable upwardly and downwardly by being directly driven by hydraulic cylinders as illustrated and explained below.
  • Upper and lower molds generally have punch elements (l',2') which are slidably receivable in a ring mold 3 (preferably fixed but not always required) so as to form therewith a hermetically sealed molding cavity.
  • the mold cavity is open and provides a feeding cup for dropping food-starch containing raw material 4 therein by lower mold 2 having been partially retracted within ring mold 3 while upper mold 1 is lifted.
  • Position 1 (b) shows pressure-baking of raw material 4 being crushed, compressed and heated in a closed cavity by descending the upper mold into the ring mold and then pressurising either one or both of upper and lower molds.
  • the starch in the raw material is gelatinised, becomes amorphous and moisture incl.
  • chemically hound water of the raw material is driven off and builds up a high internal vapour pressure which is suddenly released in step 1 (c) by quickly retracting upper and/or lower punches relative to one another within the ring mold.
  • the compressed raw material explosively expands thereby forming a puffed or popped wafer 5 filling the expansion chamber space defined between the upper mold, the lower mold and the ring mold.
  • step 1 (d) the upper mold is in a lifted position again, whereas lower punch is moved in the upward direction to raise the cracker to a discharge position flush with the upper surface of the ring mold.
  • a sliding plate of the raw material feed system will push then the puffed cracker from the raised lower mold surface into a discharge chute where after the baking- puffing cycle can start anew.
  • FIG 2 an overall side view of a puffing apparatus is shown comprising a multi-cracker mold, i.e. the upper and lower molds (1,2) include a plurality of die punches (l',2') which are slidably receivable in a plurality of corresponding die holes (not shown) of a stationary ring mold 3.
  • a raw material supply system 6 comprising a raw material supply line 7 (conduit or hopper) and sliding plates (8,8') having suitable perforations and back plates to supply a desired amount of grain or pellet material to each die cavity of the ring mold.
  • Power means (9,9',9" e.g.
  • a dosage mechanism (8') driven by cylinder (9 1 ) brings an exact amount of raw material from supply line (7 1 ) into a transport plate (8).
  • Said transport plate is driven by cylinder (9) and positions the raw material precisely over each lower punch element (2') being then in a cup forming feed position, i.e. received partly within ring mold openings (3').
  • Release plate (8 ") driven by cylinder (9 ") is then actuated to drop or release raw material from transport plate (8) into said ring mold cups or cavities.
  • an upper hydraulic cylinder 10 and a lower drive cylinder 11 both independently actionable in the upward and downward direction to raise or descend said mold elements over a precisely controlled distance and/or to transmit molding pressure to the raw material in the mold cavity according to the desired process stages.
  • the hydraulic cylinders are powered by a hydraulic oil circuit illustrated schematically in figure 3.
  • the oil circuit comprises a high-pressure oil line Pr, powered by a pump unit P, and a return line R flowing return oil back to oil tank T.
  • the pump unit P is designed to afford continuous availability of high-pressure oil at a precise constant pressure in feed line Pr for a sufficiently broad range of desired oil feed rates.
  • At least one puffing apparatus generally a plurality of puffing machines Al, A2 etc., is connected to the pressure line Pr and the return line R.
  • high-pressure oil is supplied from line Pr to upper cylinder Cl and lower cylinder C2 for driving respective mold elements schematised by the numerals 1 and 2.
  • Return or displacement oil originating from a piston chamber of the double-action cylinders (Cl, C2) is flowed back to return line R.
  • each cylinder The oil flow requirements for each cylinder are physically and functionally integrated in a manifold Ml of upper cylinder Cl, respectively a manifold M2 of lower cylinder C2, which manifolds unite the necessary oil supply/flow connections including valves needed for the piston chambers of each cylinder and which is disposed on top of the cylinder body as a constitutive part thereof.
  • valves 1 -1 and 1-4 The functioning of the manifold is depicted in figure 4a for the hydraulic cylinder connected to the upper mold element.
  • the piston stroke in the downward direction is performed by actuating simultaneously poppet valves 1 -1 and 1-4.
  • Oil from pressure line Pr enters manifold at port P and flows to cylinder port A in upper piston chamber via valve 1 - 1.
  • valve 1-4 is opened to enable back-flow of displaced oil from lower piston chamber through port B to the return tank line R.
  • the valves 1-2 and 1-3 remain closed.
  • valves 1-2 and 1-3 When effecting a reverse stroke in the upward direction the valves 1-2 and 1-3 are activated such that pressure oil flows from port P via valve 1-2 to port B of the lower piston chamber, whereas at the same time oil displaced in the upper piston chamber can f low from port A via valve 1-3 to the tank return line R. At this stage valves 1 - 1 and 1-4 are then closed.
  • the manifold oil flow line from intake port P to cylinder port A further preferably contains a (over-) pressure valve 2* located between valve 1-1 and port A. This allows to regulate the desired molding or crushing pressure for each apparatus individually according to the type and amount of raw material (grains, broke, pellets etc.) fed into the mold cavity, respectively according to the kind of puffed food cracker desired.
  • a port G may be provided which serves as a connection for mounting a (safety) manometer.
  • Figure 5 shows a particular improvement to the material dosing part of the raw material supply system (6) already explained above in connection with figure 2.
  • figure 5a shows a first position of the new dosing mechanism which is open to the feed line (7) and is comprised of a holding or dosing plate (8') of suitable thickness having therein cup forming dosage apertures; said holding plate constitutes the bottom of raw material feed conduit (7) and its top and bottom surfaces are delimited by upper and lower perforated plates (8*, 8**) which are arranged to slide together parallel to dosimeter plate (8') when actuated by cylinder means (9') .
  • perforated plates (8*,8**) as depicted in figure 5a enables the dosage apertures or cups to be filled with starch-containing raw material.
  • the perforated plates are shifted to the right thereby closing the dosimeter cups to the raw material entry side but at the same time opening the cup bottom towards a transport plate (8), in fact a second apertured holding plate cooperating with a perforated back plate (8"), whereby the raw material content of the dosimeter cups in plate (8') is then released -within a closed environment- with maximum accuracy in (preferably wider) openings/cups provided in transport plate (8), having a hole configuration similar to that of the dosimeter plate and of the ring mold cavity pattern.
  • Figure 6 shows an improvement in the design of the peripheral mold or ring die wherein the upper and lower punches (l',2') of the movable mold elements must be slidably received in a fluid-tight manner.
  • the ring mold for instance for a multi-cracker die (e.g. 64 mini-cakes of 25 mm in diameter), comprises a die mounting plate containing a plurality of die holes which is stationary by being fixed to the vertical frame posts (1,2) of the apparatus, about midway between upper and lower supports (10',H') of the hydraulic drives (10,11).
  • Each die hole includes an internal sleeve or a bushing that is elastically mounted to die hole and die plate, such that in use the bushing has a self-aligning or -centering property within the die hole relative to the slidably entering punches.
  • the elastic mounting may be realized by retaining rings or circlips (circular and small die holes) and by screwable fastening elements (bolts and nuts, etc.) for large dies and polygonal shapes.
  • the self-aligning die bushings prevent wear, damage and premature failure of dies or punches, incl. production interruptions, due to possible misalignments caused by temperature and thermal expansion differences between die and punch components.
  • the apparatus according to the invention is furthermore very advantageous in terms of process monitoring, controls and adjustments.
  • the high precision and quick response of the novel hydraulic drive system makes it easier to control the process steps, since all process movements and piston displacements are controllable in terms of time units resp. actuation times of valves in the oil manifold, without need of electro-mechanical contact, relay or stop means.
  • all process movements, cf. figure 1, and process temperatures are controlled by a PLC, e.g. a central PLC for a plurality of puffing machines, and are visualised (or selectively visualisable for each connected machine) on a monitor screen or control panel.
  • the process control system comprises the following features and/or steps:
  • Baking temperature lower mold platen temperature upper mold platen temperature
  • Cup time bottom cylinder retracts (goes down) and retracted punches of lower mold form feeding cups within ring mold dies to allow the raw material to be dropped in mold.
  • bottom cylinder extends and lower mold punch is displaced upwardly, compressing the raw material between the two punches.
  • Bottom expansion bottom cylinder retracts (mostly) simultaneously with top cylinder.
  • Expansion delay delay time of expanded/puffed product inside the retracted punches or expansion-opened molds to allow shape control of finished product.
  • bottom cylinder extends and recompresses already expanded product to a given extent, thereby controlling shape, thickness and surface flatness (optional).
  • top cylinder retracts upper mold above ring mold and bottom cylinder extends so that lower mold punch pushes finished product out of ring mold.
  • step 1 including the supply of starch-containing raw material into the mold cavities.
  • the new system of puffed cracker manufacture may give rise to substantial savings in power consumption and equipment costs, especially when running a large-scale cracker plant.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Confectionery (AREA)
  • Formation And Processing Of Food Products (AREA)

Abstract

The invention provides an improved apparatus and process for making puffed food crackers from a starch-containing raw material source by connecting each one of movable upper and lower molds directly to an independently controlled double-action hydraulic drive cylinder per mold element, which cylinder has an integral manifold, including quick-acting valves, directly connected to a central oil pressure line and also to a central oil return line.

Description

PUFFING APPARATUS FOR PRODUCING CEREAL CRACKERS
The present invention is related generally to the manufacture of puffed food-starch containing products which are obtainable from rice, corn, wheat and other cereal grains but also from other starch source materials like potato, beans etc. including mixtures of different food starches in any suitable form including grains, broke, grit, flour, pellets and the like.
More particularly, this invention relates to an apparatus enabling automatic production of low-fat puffed-food products from any edible starch source in the form of crackers, cakes, wafers or chips of any desired shape, thickness, crispiness and taste, and this with remarkably increased reliability and efficiency over existing methods and machines.
Automatic machines for the making of rice crackers and similar puffed or popped granular cakes by pressure-baking and expanding a food-starch containing material in a heated mold are known from the prior art to exist in a number of distinct machine variants.
Patent documents US-A-4328741 and WO-A-88/00797, for instance, are representative for machine types using air cylinders for selectively moving upwardly or downwardly an upper baking mold relative to a movable lower baking mold and to a stationary ring mold, in which said upper mold and lower molds are coaxially receivable in a fluid-tight manner and thereby forming a sealed molding cavity. These machines produce a lot of noise and are rather energy consuming; furthermore, air cylinders are bulky devices which often are less reliable in terms of baking pressure and cracker thickness requirements.
US Patents No. 4281593 to Gevaert and Nos. 5102677 and 5467693 to Van den Berghe describe pressure-baking apparatuses comprising a hydraulic jack connected with a toggle mechanism for driving a lower mold or punch upwardly and downwardly relative to a fixed upper mold. The patents to Van den Berghe furthermore propose the use of an annular mold element defining a peripheral wall of a molding chamber which element is selectively movable relative to the fixed upper mold and also to the lower punch. This facilitates the feeding of food-starch material into a mold cavity and the removal of a puffed cracker from the pressure-baking molding expansion chamber formed by said coaxially cooperating upper, lower and peripheral mold elements. A drawback of said machine types is the use of a toggle mechanism transmitting hydraulic power to the mold in an indirect way and requiring special care for aligning mold parts and controlling molding pressure. In addition a movable peripheral mold is more prone to overstraining and risk of mold leakage, giving rise to defective cracker quality and appearance after a period of time. In addition, the provision of a hydraulic jack together with its oil circuit, oil tank and powering motor on each production machine or unit is rather expensive.
A generally experienced inconvenience in the production of puffed-food snacks by pressure- baking and subsequently expanding a starch-containing cereal or the like mixture in a mold cavity when using currently available technology is the quantity of trash and waste crackers produced by puffing machines, which may amount to 1 0 % or even more of total cracker output. Furtherer disadvantages of known machines for making puffed crackers include the rather long running- in/starting-up times needed until a stable production regime is reached and the need of frequently cleaning the baking mold elements. As a result the productivity and economics of a cracker plant, in particular when making small crackers and chips, may be seriously affected.
The present invention aims at providing an adequate solution for the production problems and technical shortcomings of prior art technology for puffed cracker production and in particular at removing the above-mentioned technical and economical deficiencies of conventional puffed-food machinery and plants.
According to the invention in its broadest aspect these objects are achieved by providing one or a plurality of pressure-baking apparatuses, wherein each apparatus has "direct" hydraulic drive means for its baMng-puffϊng molds or mold elements and wherein the hydraulic power for said drive means is selectively derivable from a common oil pressure supply line or common rail capable of supplying a constantly and continuously high oil pressure to a direct hydraulic drive cylinder of each mold element, irrespective of the number of apparatuses or instant power needs. More in particular, a puffing apparatus is provided comprising a molding/baking/expansion chamber having upper walls, lower walls and side walls defined respectively in an upper baking mold element, a lower baking mold element and a peripheral mold element, whereby at least said upper and lower mold elements are adapted to he heated and to be selectively moved relative to each other by suitable means, and further a slidable feeding plate adapted both for transporting a predetermined quantity of food-starch raw material into said chamber and for pushing outwardly a shaped puffed cracker from said lower baking mold, the improvement wherein said means for selectively moving the upper mold resp. the lower mold comprise an upper hydraulic double- acting cylinder disposed on top of to said upper mold resp. a lower hydraulic double-acting cylinder attached to the lower side of said lower mold, each of said hydraulic cylinders having a manifold for oil intake and oil outlet mounted directly on the cylinder so as to form an integral part thereof, wherein each manifold is adapted for connection with a pressure oil feed line and with a return oil line and comprises four valves, preferably poppet valves, which operatively cooperate for selectively controlling a forward stroke or a return stroke of the cylinder piston independently in each hydraulic cylinder. From each puffing apparatus the oil is returned through a central return line, for this purpose teed off at each apparatus and then connected to the oil outlet of each cylinder manifold, which flows the used oil back to the collection tank of an oil power unit of proper oil capacity and power output.
In use of the apparatus the four (poppet) valves in the manifold function as follows: a first valve lets the oil in from a central pressure line in a first oil chamber of the cylinder while a second valve lets the oil out from a second oil chamber (at opposite side of the cylinder piston) to a central oil return line, whereby the cylinder piston is moved e.g. in the forward direction over a predetermined distance. The two other valves, not actuated in the forward stroke, work together in a similar way to perform a reverse stroke of the piston.
The pressure oil system of the apparatus is preferably a central system powering simultaneously a plurality of puffing apparatuses. The system is outlined for making available a "constant" high pressure in the pressure oil feed line which is branched of to each cylinder manifold of each apparatus, and this in spite of different oil flows and/or capacity needs according to number of puffing machines and actual process cycle for a given machine.
The power unit of the system comprises an electric motor driving an axial pump with variable swash plate allowing to create a constant hydraulic oil pressure at varying oil flows or capacities. To ensure a constant pressure with highest accuracy the system is preferably provided with three axial pumps and one accumulator.
Another advantage of the central oil power and pump system is that the oil remains at low and constant temperature. Another pump will function as an oil circulation pump circulating the oil through a cooling and filtration unit. In the return line the oil flowing back from each cylinder manifold is further cooled and may be filtered before flowing into the oil tank of the system. The new direct hydraulic drive means for the mold elements in an apparatus according to the invention surprisingly provides considerable improvements in puffed cracker properties and manufacturing efficiency: a consistently high and constant product quality was achieved, the flexibility to adapt cracker properties w.r.t. composition, texture and shape without risk of burns, seams or desintegration was greatly increased. Moreover machine reliability, incl. trouble- free production runs was remarkably improved. As a result the amount of waste product was tremendously decreased down to below 1.5% on the average. The inventor is unaware of a cereal puffing machine ever being developed using such a direct hydraulic coupling of the movable mould elements. As a matter of fact, prior art attempts in this direction were discouraged because of insufficiently rapid response times of hydraulic cylinder pistons in a situation requiring explosion-type expansion of the compressed food starch material and highest-speed retraction of a mold element.
Without willing to be bound by theory it is believed that the exceptional and unexpected puffing process improvements obtainable by the novel apparatus according to the invention are due to the following technical features:
1) When a command is given to the valves an immediate reaction occurs in the cylinders because the valves are directly mounted on the cylinders in a manifold thereof and at very close distance to the piston chambers; in addition the preferably used valves are poppet valves which react very quickly, i.e. are actuated instantaneously with a command.
2) The hydraulic cylinders are enabled to operate under extremely fast speed because the driving oil pressure is continuously built-up in the pressure line right at the top of the cylinder. This constant high pressure is released instantly at the moment the poppet valve is actuated.
This together results in an attainable mold/cracker expansion time of down to ten milliseconds, which is extremely short.
3) Both top and bottom cylinders of upper and lower molds are independently controlled.
According to another aspect of the invention a puffing apparatus is provided having an improved feed system enabling the supply of raw material into the mold cavity such that no material gets spilled and each individual mold will receive an accurate predetermined quantity of starch- containing raw material selected from grains, pellets, broke, flour etc. incl. mixtures thereof.
According to a further aspect of the invention a puffing apparatus is provided having an improved ring mold design allowing pressure-baking and expansion of particularly a plurality of (small) crackers such as mini-snacks, and this without the risk of premature wear or deformation of the ring mold due to heat differential related misalignment between the ring mold cavities and the upper or lower mold punch elements slidable received in said cavities.
These objects and further embodiments of the invention in many different forms are defined in the appended claims. The following detailed description of preferred embodiments is to be understood as an exemplification of the basic principles underlying the invention and is not intended to restrict the scope of the invention to the embodiments illustrated.
In the accompanying drawings:
Figure 1 is a schematic illustration of the main steps occurring in the process of making a puffed cracker using a stationary ring mold and respective upper and lower movable mold elements or punches.
Figure 2 gives a side view of a puffing machine arrangement used in the present invention for carrying out the process steps according to figure 1.
Figure 3 is a schematic representation of the oil pressure circuit as connected with the hydraulic drive cylinders in a puffing apparatus according to the invention.
Figures 4a-b-c give a more detailed view of important components in the oil circuit to power a puffing machine drive system according to the invention.
Figure 5 is cut-away side view a raw material feed system according to the invention.
Figure 6 depicts details of a ring mold embodiment according to the invention.
Figure 7 is flow chart illustrating a process embodiment of the present invention.
Referring to figure 1, important mold position steps in the process of producing a puffed cereal wafer or cracker are shown. The mold comprises an upper mold 1 and a lower mold 2, both heatable by means of embedded heating elements (not represented) and movable upwardly and downwardly by being directly driven by hydraulic cylinders as illustrated and explained below. Upper and lower molds generally have punch elements (l',2') which are slidably receivable in a ring mold 3 (preferably fixed but not always required) so as to form therewith a hermetically sealed molding cavity. In figure 1 (a) the mold cavity is open and provides a feeding cup for dropping food-starch containing raw material 4 therein by lower mold 2 having been partially retracted within ring mold 3 while upper mold 1 is lifted.
Position 1 (b) shows pressure-baking of raw material 4 being crushed, compressed and heated in a closed cavity by descending the upper mold into the ring mold and then pressurising either one or both of upper and lower molds. The starch in the raw material is gelatinised, becomes amorphous and moisture incl. chemically hound water of the raw material is driven off and builds up a high internal vapour pressure which is suddenly released in step 1 (c) by quickly retracting upper and/or lower punches relative to one another within the ring mold. As a result the compressed raw material explosively expands thereby forming a puffed or popped wafer 5 filling the expansion chamber space defined between the upper mold, the lower mold and the ring mold. In step 1 (d) the upper mold is in a lifted position again, whereas lower punch is moved in the upward direction to raise the cracker to a discharge position flush with the upper surface of the ring mold. A sliding plate of the raw material feed system will push then the puffed cracker from the raised lower mold surface into a discharge chute where after the baking- puffing cycle can start anew.
In figure 2 an overall side view of a puffing apparatus is shown comprising a multi-cracker mold, i.e. the upper and lower molds (1,2) include a plurality of die punches (l',2') which are slidably receivable in a plurality of corresponding die holes (not shown) of a stationary ring mold 3. Lateral to the apparatus there is mounted a raw material supply system 6 comprising a raw material supply line 7 (conduit or hopper) and sliding plates (8,8') having suitable perforations and back plates to supply a desired amount of grain or pellet material to each die cavity of the ring mold. Power means (9,9',9"), e.g. air cylinders drive the plates in sliding movements relative to one another and to the ring mold. More in particular, a dosage mechanism (8') driven by cylinder (91) brings an exact amount of raw material from supply line (71) into a transport plate (8). Said transport plate is driven by cylinder (9) and positions the raw material precisely over each lower punch element (2') being then in a cup forming feed position, i.e. received partly within ring mold openings (3'). Release plate (8 ") driven by cylinder (9 ") is then actuated to drop or release raw material from transport plate (8) into said ring mold cups or cavities. On the back side of each movable mold, i.e. on top of upper mold 1 and at the bottom of lower mold 2, there is mounted an upper hydraulic cylinder 10 and a lower drive cylinder 11, both independently actionable in the upward and downward direction to raise or descend said mold elements over a precisely controlled distance and/or to transmit molding pressure to the raw material in the mold cavity according to the desired process stages.
Mounting plates (10', 11') attached to apparatus frame (12) form support and fixation members for top and bottom hydraulic cylinders (10, 11) and also bear and guide the connection thereof with the movable mold elements (1,2). The hydraulic cylinders are powered by a hydraulic oil circuit illustrated schematically in figure 3.
As can be seen from figure 3, the oil circuit comprises a high-pressure oil line Pr, powered by a pump unit P, and a return line R flowing return oil back to oil tank T. The pump unit P is designed to afford continuous availability of high-pressure oil at a precise constant pressure in feed line Pr for a sufficiently broad range of desired oil feed rates. At least one puffing apparatus, generally a plurality of puffing machines Al, A2 etc., is connected to the pressure line Pr and the return line R. In each apparatus high-pressure oil is supplied from line Pr to upper cylinder Cl and lower cylinder C2 for driving respective mold elements schematised by the numerals 1 and 2. Return or displacement oil originating from a piston chamber of the double-action cylinders (Cl, C2) is flowed back to return line R. The oil flow requirements for each cylinder are physically and functionally integrated in a manifold Ml of upper cylinder Cl, respectively a manifold M2 of lower cylinder C2, which manifolds unite the necessary oil supply/flow connections including valves needed for the piston chambers of each cylinder and which is disposed on top of the cylinder body as a constitutive part thereof.
The functioning of the manifold is depicted in figure 4a for the hydraulic cylinder connected to the upper mold element. The piston stroke in the downward direction is performed by actuating simultaneously poppet valves 1 -1 and 1-4. Oil from pressure line Pr enters manifold at port P and flows to cylinder port A in upper piston chamber via valve 1 - 1. At the same time valve 1-4 is opened to enable back-flow of displaced oil from lower piston chamber through port B to the return tank line R. During this stroke the valves 1-2 and 1-3 remain closed. When effecting a reverse stroke in the upward direction the valves 1-2 and 1-3 are activated such that pressure oil flows from port P via valve 1-2 to port B of the lower piston chamber, whereas at the same time oil displaced in the upper piston chamber can f low from port A via valve 1-3 to the tank return line R. At this stage valves 1 - 1 and 1-4 are then closed.
The manifold oil flow line from intake port P to cylinder port A further preferably contains a (over-) pressure valve 2* located between valve 1-1 and port A. This allows to regulate the desired molding or crushing pressure for each apparatus individually according to the type and amount of raw material (grains, broke, pellets etc.) fed into the mold cavity, respectively according to the kind of puffed food cracker desired. In addition a port G may be provided which serves as a connection for mounting a (safety) manometer.
Figure 5 shows a particular improvement to the material dosing part of the raw material supply system (6) already explained above in connection with figure 2. In detail, figure 5a shows a first position of the new dosing mechanism which is open to the feed line (7) and is comprised of a holding or dosing plate (8') of suitable thickness having therein cup forming dosage apertures; said holding plate constitutes the bottom of raw material feed conduit (7) and its top and bottom surfaces are delimited by upper and lower perforated plates (8*, 8**) which are arranged to slide together parallel to dosimeter plate (8') when actuated by cylinder means (9') . The position of perforated plates (8*,8**) as depicted in figure 5a enables the dosage apertures or cups to be filled with starch-containing raw material. In figure 5b the perforated plates are shifted to the right thereby closing the dosimeter cups to the raw material entry side but at the same time opening the cup bottom towards a transport plate (8), in fact a second apertured holding plate cooperating with a perforated back plate (8"), whereby the raw material content of the dosimeter cups in plate (8') is then released -within a closed environment- with maximum accuracy in (preferably wider) openings/cups provided in transport plate (8), having a hole configuration similar to that of the dosimeter plate and of the ring mold cavity pattern. By actuating drive means (9) and (9"), cf figure 2, the raw material is transported to the ring mold position and dropped in the respective mold cavities (31). Thus the provision of a holding/dosimeter plate (8% combined with perforated sliding plates (8*,8**), "in addition" to a conventional dosing or holding/transport plate system (8,9; 8',9') allows a constantly more accurate supply of precisely metered quantities of raw material to the mold cavities without any losses or spill over of granular or other material which is normally unavoidable in conventional feeding slides of puffing machines.
Figure 6 shows an improvement in the design of the peripheral mold or ring die wherein the upper and lower punches (l',2') of the movable mold elements must be slidably received in a fluid-tight manner. The ring mold, for instance for a multi-cracker die (e.g. 64 mini-cakes of 25 mm in diameter), comprises a die mounting plate containing a plurality of die holes which is stationary by being fixed to the vertical frame posts (1,2) of the apparatus, about midway between upper and lower supports (10',H') of the hydraulic drives (10,11). Each die hole includes an internal sleeve or a bushing that is elastically mounted to die hole and die plate, such that in use the bushing has a self-aligning or -centering property within the die hole relative to the slidably entering punches. The elastic mounting may be realized by retaining rings or circlips (circular and small die holes) and by screwable fastening elements (bolts and nuts, etc.) for large dies and polygonal shapes. The self-aligning die bushings prevent wear, damage and premature failure of dies or punches, incl. production interruptions, due to possible misalignments caused by temperature and thermal expansion differences between die and punch components.
The apparatus according to the invention is furthermore very advantageous in terms of process monitoring, controls and adjustments. As a matter of fact the high precision and quick response of the novel hydraulic drive system makes it easier to control the process steps, since all process movements and piston displacements are controllable in terms of time units resp. actuation times of valves in the oil manifold, without need of electro-mechanical contact, relay or stop means. In practising the invention, all process movements, cf. figure 1, and process temperatures are controlled by a PLC, e.g. a central PLC for a plurality of puffing machines, and are visualised (or selectively visualisable for each connected machine) on a monitor screen or control panel. The process control system comprises the following features and/or steps:
Baking temperature: lower mold platen temperature upper mold platen temperature
Process movements (see also figure 1):
1. Cup time: bottom cylinder retracts (goes down) and retracted punches of lower mold form feeding cups within ring mold dies to allow the raw material to be dropped in mold.
2. Start time: top cylinder extends (goes down) and upper mold punch goes down inside ring mold die.
3. Press time: bottom cylinder extends and lower mold punch is displaced upwardly, compressing the raw material between the two punches.
4. Bake time: all valves remain closed, both cylinders and punches are kept stationary.
5. Top expansion: top cylinder retracts.
6. Bottom expansion: bottom cylinder retracts (mostly) simultaneously with top cylinder.
7. Expansion delay: delay time of expanded/puffed product inside the retracted punches or expansion-opened molds to allow shape control of finished product.
8. Thickness control: bottom cylinder extends and recompresses already expanded product to a given extent, thereby controlling shape, thickness and surface flatness (optional).
9. Out time: top cylinder retracts upper mold above ring mold and bottom cylinder extends so that lower mold punch pushes finished product out of ring mold.
Thereafter the cycle starts anew with step 1 including the supply of starch-containing raw material into the mold cavities.
The above process parameters are simply optimised by empirical testing, trial and error and easily adjustable according to raw material kind, cracker type (shape, thickness,..) and desired cracker properties such as texture, crispiness etc.
The direct hydraulic drive of the puffing molds in the new combination of super fast actuation of cylinder pistons and continuous availability of a constantly high oil pressure from a common or central high pressure oil line enables the above testing, optimisation and control to be carried out in conditions of increased accuracy, flexibility and reliability and this in much less time then previously possible. This also applies to industrial cracker production in terms of cracker quality and waste generation.
Since a big number of puffing machines are connectable to said central oil line, the new system of puffed cracker manufacture may give rise to substantial savings in power consumption and equipment costs, especially when running a large-scale cracker plant.
Although particular embodiments and working modes of the invention have been illustrated and described, it is clear that numerous modifications, applications and combinations are possible without departing from the key teaching and spirit of the invention. In this connection the scope of protection is only limited by the scope of the following claims.

Claims

Claims
1. Apparatus for making an expanded (puffed) food product from a starch-containing raw material, comprising: a heatable pressure-baking and expansion mold including at least one movable mold element connected to powered driving means capable of moving said mold element upwardly and downwardly in a vertical direction, a raw material supply means including a sliding plate system for transporting a given quantity of raw material from a raw material source into said mold, characterised in that said driving means comprise a hydraulic cylinder directly attached to said mold element, the vertical axis of said mold element and of said hydraulic cylinder failing substantially along the same vertical line, and in that said cylinder is connected to a central high- pressure oil feed line of a hydraulic oil pressure generator capable of continuously delivering a constantly high-pressure to one or a plurality of hydraulic drive cylinders connected thereto, and in that said cylinder is also connected to a central oil return line which flows the utilised oil back to an oil reservoir of the oil pressure generator.
2. Apparatus according to claim 1, characterised in that the pressure-baking and expansion mold is comprised of an upper movable mold element, a lower movable mold element and therebetween a stationary ring mold element adapted to slidably receive said upper and lower mold elements in a fluid-tight manner, and in that said upper and lower mold elements are moved in a direct manner but independently by their own two-way hydraulic cylinders which are each connected to said common oil pressure feed line and also to said common oil return line.
3. Apparatus according to claim 1 or claim 2, characterised in that each hydraulic drive cylinder is provided with a manifold mounted directly to the cylinder head and in that the oil pressure line, respectively the oil return line, is connected to said manifold which includes four valves, preferably poppet valves, two valves for the forward stroke and two other valves for the return stroke of the cylinder piston, said valves being selectively actuatable from a control unit commanding one or more puffing apparatuses.
4. Apparatus according to claim 1, characterised in that the raw material supply means comprises a dosimeter plate with cup forming holes and two parallel sliding plates, each perforated and disposed along opposite sides of said dosimeter plate located above said transport plate, whereby said two parallel sliding plates in use are shifted together by suitable moving means so as to open or close said dosimeter cups towards the raw material source respectively towards said transport plate.
5. Apparatus according to claim 1, characterised in that said hydraulic oil pressure generator system comprises at least one variable displacement axial piston pump including a swashplate for stepless variation of flow and a constant pressure control compensation, and furthermore optionally including an accumulator ahead the oil pressure line.
6. Apparatus according to claim 2, characterised in that the ring mold is a multiple die hole plate comprising self-aligning die bushings.
7. Apparatus according to claim 3, characterised in that the cylinder manifold additionally comprises a flow control valve which enables to preset or adjust the speed of each separate puffing machine connected to the central oil pressure line.
PCT/EP2002/001674 2002-02-15 2002-02-15 Puffing apparatus for producing cereal crackers WO2003068005A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
CA002475563A CA2475563A1 (en) 2002-02-15 2002-02-15 Puffing apparatus for producing cereal crackers
EP02724170.2A EP1474006B1 (en) 2002-02-15 2002-02-15 Puffing apparatus for producing cereal crackers
MXPA04007845A MXPA04007845A (en) 2002-02-15 2002-02-15 Puffing apparatus for producing cereal crackers.
AU2002367642A AU2002367642A1 (en) 2002-02-15 2002-02-15 Puffing apparatus for producing cereal crackers
PCT/EP2002/001674 WO2003068005A1 (en) 2002-02-15 2002-02-15 Puffing apparatus for producing cereal crackers
US10/504,444 US7770513B2 (en) 2002-02-15 2002-02-15 Puffing apparatus for producing cereal crackers
ES02724170T ES2421129T3 (en) 2002-02-15 2002-02-15 Blowing apparatus to produce cereal biscuits
US12/368,464 US8161871B2 (en) 2002-02-15 2009-02-10 Puffing apparatus for producing cereal crackers and methods thereof
US12/368,461 US8191467B2 (en) 2002-02-15 2009-02-10 Puffing apparatus for producing cereal crackers and methods thereof
US12/368,458 US8227005B2 (en) 2002-02-15 2009-02-10 Puffing apparatus for producing cereal crackers and methods thereof
US13/556,185 US20130186284A1 (en) 2002-02-15 2012-07-23 Puffing Apparatus For Producing Cereal Crackers And Methods Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2002/001674 WO2003068005A1 (en) 2002-02-15 2002-02-15 Puffing apparatus for producing cereal crackers

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US10504444 A-371-Of-International 2002-02-15
US12/368,464 Division US8161871B2 (en) 2002-02-15 2009-02-10 Puffing apparatus for producing cereal crackers and methods thereof
US12/368,458 Division US8227005B2 (en) 2002-02-15 2009-02-10 Puffing apparatus for producing cereal crackers and methods thereof

Publications (1)

Publication Number Publication Date
WO2003068005A1 true WO2003068005A1 (en) 2003-08-21

Family

ID=27675575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/001674 WO2003068005A1 (en) 2002-02-15 2002-02-15 Puffing apparatus for producing cereal crackers

Country Status (7)

Country Link
US (5) US7770513B2 (en)
EP (1) EP1474006B1 (en)
AU (1) AU2002367642A1 (en)
CA (1) CA2475563A1 (en)
ES (1) ES2421129T3 (en)
MX (1) MXPA04007845A (en)
WO (1) WO2003068005A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1561385A1 (en) * 2004-02-03 2005-08-10 Incomec-Cerex Production of expanded food crackers
WO2022038613A1 (en) * 2020-08-19 2022-02-24 Tuttipuffs Ltd. Apparatus and method for preparing puffed food

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002367642A1 (en) * 2002-02-15 2003-09-04 Steven Van Poucke Puffing apparatus for producing cereal crackers
US8119181B2 (en) * 2007-03-27 2012-02-21 Frito-Lay North America, Inc. Process for producing nut-based expandable pellets and nut-based snack chips
EP2249664A4 (en) * 2008-01-29 2011-04-20 Potato Magic Australia Pty Ltd Method of making a baked snack base product and the snack base product produced thereby
US7867535B2 (en) * 2008-05-07 2011-01-11 Frito-Lay North America, Inc. Process for producing baked potato slices with expanded texture
US20110214573A1 (en) * 2010-03-08 2011-09-08 Delice Co., Ltd. Apparatus for producing cereal puffs
KR101030073B1 (en) 2010-05-31 2011-05-11 코코 인터내셔널 주식회사 Machine for producing popped cereal snack
GB2502110B (en) * 2012-05-16 2014-11-12 Frito Lay Trading Co Gmbh Chips and manufacture thereof
KR101973203B1 (en) * 2012-09-24 2019-04-26 엘지전자 주식회사 A united type system of air conditioning and cooling
EP3065575A4 (en) * 2013-11-08 2017-06-14 Intercontinental Great Brands LLC System and method for dosing a popping chamber
US9924738B2 (en) * 2015-04-27 2018-03-27 Frito-Lay North America, Inc. Pneumatic-driven double-compression popping apparatus
US10721949B2 (en) 2016-08-09 2020-07-28 Kellogg Company Acrylamide control in cooked food products
GB2559557A (en) * 2017-02-08 2018-08-15 Frito Lay Trading Co Gmbh Snack food pellets
US11291226B1 (en) 2017-10-09 2022-04-05 The Hershey Company Crispy pressed snacks with inclusions
US20200359671A1 (en) 2019-05-14 2020-11-19 Ideal Snacks Corporation Multiple-Press, Multiple-Expansion Apparatus and Methods for Making Food Products
US11191294B1 (en) * 2019-05-14 2021-12-07 Ideal Snacks Corporation Apparatus and methods for making food products with improved hydraulic controls
US11589606B1 (en) * 2019-05-14 2023-02-28 Bfy Brands, Llc Apparatus and methods for making food products with improved heating components
CN110261087B (en) * 2019-06-28 2024-02-06 辽宁工程技术大学 Device and method for testing abrasion of screw rod of straw bulking machine
US11166469B1 (en) * 2020-05-08 2021-11-09 Crunch Food, Inc. System and method for preparing an edible multilayer food carrier

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4281593A (en) * 1978-06-22 1981-08-04 Omer Gevaert Device for preparing food products from cooked and expanded cereals and products obtained
US4328741A (en) * 1979-06-06 1982-05-11 Kabushiki Kaisha Airin Apparatus for producing crackers
US5467693A (en) * 1991-01-24 1995-11-21 Van Den Berghe; Rene Production of granular crackers
US5562021A (en) * 1995-08-16 1996-10-08 Slanik; Josef Device for preparing grain cakes
US5755152A (en) * 1996-12-19 1998-05-26 Hunt-Wesson, Inc. Popcorn cake machine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4936206A (en) * 1988-12-30 1990-06-26 Thomas R. Miles High-density compactor for fibrous material
JP3026441B2 (en) * 1989-04-27 2000-03-27 日産自動車株式会社 Active suspension
SG46233A1 (en) * 1990-11-19 1998-02-20 Real Foods Pty Ltd Cooking machine
US5203261A (en) * 1991-11-05 1993-04-20 Cp Manufacturing, Inc. Can baling machine and method
US5281100A (en) * 1992-04-13 1994-01-25 A.M.C. Technology, Inc. Well pump control system
US6085486A (en) * 1997-12-11 2000-07-11 Hwd Holdings Ltd. Forage compactor
DE19941841A1 (en) * 1999-09-02 2001-03-08 Claas Selbstfahr Erntemasch Self-propelled agricultural machine
AU2002367642A1 (en) * 2002-02-15 2003-09-04 Steven Van Poucke Puffing apparatus for producing cereal crackers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4281593A (en) * 1978-06-22 1981-08-04 Omer Gevaert Device for preparing food products from cooked and expanded cereals and products obtained
US4328741A (en) * 1979-06-06 1982-05-11 Kabushiki Kaisha Airin Apparatus for producing crackers
US5467693A (en) * 1991-01-24 1995-11-21 Van Den Berghe; Rene Production of granular crackers
US5562021A (en) * 1995-08-16 1996-10-08 Slanik; Josef Device for preparing grain cakes
US5755152A (en) * 1996-12-19 1998-05-26 Hunt-Wesson, Inc. Popcorn cake machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1561385A1 (en) * 2004-02-03 2005-08-10 Incomec-Cerex Production of expanded food crackers
WO2005074727A1 (en) * 2004-02-03 2005-08-18 Incomec-Cerex Production of expanded food crackers
US7918157B2 (en) 2004-02-03 2011-04-05 Incomec-Cerex Nv Production of expanded food crackers
WO2022038613A1 (en) * 2020-08-19 2022-02-24 Tuttipuffs Ltd. Apparatus and method for preparing puffed food

Also Published As

Publication number Publication date
US8227005B2 (en) 2012-07-24
US7770513B2 (en) 2010-08-10
US8191467B2 (en) 2012-06-05
EP1474006A1 (en) 2004-11-10
ES2421129T3 (en) 2013-08-29
US20130186284A1 (en) 2013-07-25
EP1474006B1 (en) 2013-04-10
US8161871B2 (en) 2012-04-24
MXPA04007845A (en) 2005-06-17
US20090205507A1 (en) 2009-08-20
US20050150392A1 (en) 2005-07-14
CA2475563A1 (en) 2003-08-21
AU2002367642A1 (en) 2003-09-04
US20090205508A1 (en) 2009-08-20
US20090208623A1 (en) 2009-08-20

Similar Documents

Publication Publication Date Title
US8191467B2 (en) Puffing apparatus for producing cereal crackers and methods thereof
US7918157B2 (en) Production of expanded food crackers
KR930009367B1 (en) Apparatus and method for producing crackers of granular material
US5467693A (en) Production of granular crackers
JP2001524804A (en) Food patty molding machine
US5755152A (en) Popcorn cake machine
US11191294B1 (en) Apparatus and methods for making food products with improved hydraulic controls
EP0499301A2 (en) Improvements in the production of granular crackers
KR102255075B1 (en) A manufacturing device of packaged rice
CN209219228U (en) A kind of adjustable bulking machine of product bulk density
BE1027309B1 (en) HYDRAULIC CONTROL FOR A FOOD CONTAINER
KR19990079239A (en) Food automatic popping device
US11589606B1 (en) Apparatus and methods for making food products with improved heating components
KR102617488B1 (en) Manufacturing apparatus for scorched rice
KR102688658B1 (en) hydraulic apparatus for device making of rice cake
CN209539672U (en) The hydraulic control system of bulking machine
CA3138701A1 (en) Multiple-press, multiple-expansion apparatus and methods for making food products

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002367642

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2475563

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2002724170

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2004/007845

Country of ref document: MX

WWP Wipo information: published in national office

Ref document number: 2002724170

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10504444

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2002724170

Country of ref document: EP