WO2003066734A1 - Polyester resin composition and process for producing the same - Google Patents

Polyester resin composition and process for producing the same Download PDF

Info

Publication number
WO2003066734A1
WO2003066734A1 PCT/JP2003/001379 JP0301379W WO03066734A1 WO 2003066734 A1 WO2003066734 A1 WO 2003066734A1 JP 0301379 W JP0301379 W JP 0301379W WO 03066734 A1 WO03066734 A1 WO 03066734A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
weight
parts
double hydroxide
layered double
Prior art date
Application number
PCT/JP2003/001379
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Yatsuka
Hirotoshi Kizumoto
Katsumasa Yamamoto
Katsuya Shimeno
Original Assignee
Toyo Boseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002032739A external-priority patent/JP2003231743A/en
Priority claimed from JP2002167465A external-priority patent/JP4139991B2/en
Application filed by Toyo Boseki Kabushiki Kaisha filed Critical Toyo Boseki Kabushiki Kaisha
Priority to AU2003207208A priority Critical patent/AU2003207208A1/en
Publication of WO2003066734A1 publication Critical patent/WO2003066734A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals

Definitions

  • the present invention relates to a polyester resin composition having improved mechanical strength, hardness, rigidity, gas barrier properties, and the like, and a method for producing the same.
  • the present invention relates to a polyester resin composition which is a composite of a polyester resin and layered inorganic particles and has excellent performance, and a method for producing the same.
  • Polyester resins such as polyethylene terephthalate and polybutylene terephthalate have excellent mechanical strength, heat resistance, and sanitation, and are widely used in the fields of fibers, films, potts, molding materials, etc. .
  • Various functions are provided by blending these polyester resins with an inorganic reinforcing material and various additives.
  • various additives For example, weather resistance, flame retardancy, antistatic properties, coloring properties, sliding properties, surface properties, antibacterial properties, crystallinity, transparency, impact resistance, blocking resistance, conductivity, gas barrier properties, etc.
  • various additives have been added to the inorganic reinforcing material.
  • nylon clay (montmorillonite, etc.) hybrids using a monomer compound in an inorganic layered compound have been actively studied, and have been put into practical use as a nanocomposite for automobile parts and the like.
  • the filler inorganic reinforcing material, etc.
  • the filler used in the nanocomposite clay minerals such as smectites such as montmorillonite and savonite, and power olins such as force olinate, and silicate compounds are used.
  • a layered double hydroxide represented by hydrotalcite As one of the particles of such an inorganic layered compound, a layered double hydroxide represented by hydrotalcite is known.
  • Compounds of layered double hydroxides (such as hydrated talcites) are substances having a layered structure with anions between the layers, and are used as heat stabilizers, etc., when they are mixed with polyvinyl chloride in the form of fine particles. ing. It is also used as an agricultural film when added to an olefin film to have a heat storage effect, and is also used as an antacid for pharmaceuticals because it dissolves in acid and has a pH control function.
  • WO 01/43253 discloses the use of hydrotalcites as a polyester polymerization catalyst.
  • Japanese Patent Publications Nos. 2002-500253 and 2002-500254 disclose nanocomposite materials in which at least 20% of anions are compatible and / or reactive with a polymer matrix. It has been disclosed that a polyester resin is mixed with a hydro
  • An object of the present invention is to provide a composition comprising a polyester resin and layered inorganic particles, in which the layered inorganic particles are extremely finely dispersed in the polyester resin, and the mechanical strength, hardness, rigidity, gas barrier properties, and the like have been improved.
  • the purpose is to provide a polyester resin composition.
  • the present invention provides the following method for producing a polyester resin composition and a polyester resin composition produced by the method.
  • a method for producing a polyester resin composition comprising 100 parts by weight of a polyester resin and 0.1 to 10 parts by weight of a layered double hydroxide, the layered double hydroxide is added until the polycondensation of the polyester resin is completed.
  • a method for producing a polyester resin composition comprising: completing the polycondensation after blending at an optional stage of the above.
  • the layered double hydroxide is a hydrotalcite (1) A method for producing the polyester resin composition as described above.
  • a method for producing a polyester resin composition comprising 100 parts by weight of a polyester resin and 0.1 to 10 parts by weight of a layered double hydroxide, comprising the steps of: after polycondensation in the polymerization process is blended at any stage until completion, process for producing a polyester resin composition characterized in that allowed to complete the polycondensation of the polyester resin (
  • the layered double hydroxide used in the present invention has a general formula [MS + + x (OH) 2 ]
  • divalent metal (M 2+ ) is replaced by trivalent metal (M 3+ )
  • M 2+ divalent metal
  • M 3+ trivalent metal
  • the layer is positively charged, forming a structure in which anions (A 11 —) exist between the layers.
  • Divalent metals include magnesium, nickel, and zinc
  • trivalent metals include aluminum, iron, and the like.
  • Chromium (n is an integer of 1 to 3, X is a value of 0.15 to 0.5, z is a value of 5 or less)
  • monovalent metals such as lithium It may contain a tetravalent metal such as titanium.
  • the method for producing the layered double hydroxide used in the present invention is not particularly limited.
  • the method described in S. Miya, Clays Clay Miner., Vol. 28, page 50 (issued in 1980) is simple and preferred.
  • a layer fired at a temperature of 300 to 800 ° C. may be used.
  • the layered double hydroxide used in the present invention is particularly preferably a hydrotalcite.
  • the polyester resin composition of the present invention can be obtained by blending the layered double hydroxide swollen with ethylene glycol at an arbitrary stage until the polycondensation is completed in the polyester polymerization step, and then completing the polycondensation. .
  • the layered double hydroxide When the layered double hydroxide is added at any stage in the polymerization step of the polyester until the polycondensation is completed, it is important that the layered double hydroxide be swelled with glycol to widen the layer interval. Necessary to achieve the purpose. Swelling of the layered double hydroxide with glycol is performed by heating in glycol. The heating temperature is preferably from 50 to 20 Ot: or less, more preferably from 100 to 180 and below.
  • the step of swelling the layered double hydroxide with glycol can be performed in a polyester polymerization step, or may be performed in advance in a step different from the polymerization step.
  • a dibasic acid which is a component of the polyester raw material may be present.
  • the layered double hydroxide can be efficiently dispersed in the polyester resin, and the separation of the layer of the layered double hydroxide can be promoted.
  • the layered double hydroxide can be dispersed in the polyester resin in a nanometer size, so that molecular reinforcement can be achieved, and properties such as mechanical strength, hardness, rigidity, and gas barrier properties can be improved. .
  • glycol used for swelling the layered double hydroxide with glycol ethylene glycol, diethylene glycol and triethylene glycol are preferred. Particularly, ethylene glycol is preferred. These glycols are considered to be replaced by water existing between the layers of the hydrotalcite by heating.
  • the layered double hydroxide used in the present invention preferably has a surface area of 5 to 200 m 2 / g.
  • the surface area is less than 5 m 2 Zg, the layered double hydroxide cannot be dispersed efficiently, and the transparency of the obtained polyester resin composition may be reduced. If it exceeds 20 O ms / g, the melt viscosity during polymerization sharply increases. As a result, the resin having the desired molecular weight may not be obtained.
  • the layered double hydroxide is blended in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the polyester resin. If it exceeds 10 parts by weight, the melt viscosity becomes too high, making it difficult to increase the molecular weight of the polyester resin, and the resulting polyester composition may be very brittle. When the amount is less than 0.1 part by weight, the effect of adding the layered double hydroxide is reduced.
  • dibasic acid component of the polyester resin used in the present invention terephthalic acid, isophthalic acid, orthophthalic acid> naphthalenedicarboxylic acid, aromatic dibasic acids such as diphenyldicarboxylic acid, diphenyletherdicarboxylic acid, succinic acid, Examples thereof include aliphatic dibasic acids such as adipic acid, azelaic acid, sebacic acid, dimer acid, and cyclohexanedicarboxylic acid.
  • glycol components of the polyester resin used in the present invention include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,3-butanediol, and 1,5-pentanediol.
  • 1,6-hexanediol diethylene glycol, triethylene glycol, 3_methyl-1,5, -pentynediol, neopentylglycol, 2-ethyl-2-butyl-1,3-propanediol, diethyleneglycol, 1 , 4-cyclohexanedimethanol, ethylene oxide adduct of bisphenol A, propylene oxide adduct of bisphenol A, or polyether glycol such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, etc. Can be .
  • a lactone component such as ⁇ -force prolactone and ⁇ -valerolactone and an oxycarboxylic acid component such as ⁇ -hydroxyethoxybenzoic acid can be used as raw materials for the polyester resin used in the present invention.
  • a trifunctional or higher functional component such as trimethylolpropane, pentaerythritol, and trimellitic anhydride may be used in combination.
  • a polar group such as a sulfonic acid metal base
  • a polar group such as a sulfonic acid metal base
  • a raw material for introducing a metal sulfonic acid salt into a polyester resin there are 5-sodium sulfoisophthalic acid, 5-calidosulfonic acid, sodium sulfoterephthalic acid, 2-sodium sulfo-1,4-butane
  • Examples include diols, dicarboxylic acids such as 2,5-dimethyl-3-sodium sulfo_2,5-hexanediol, and glycols.
  • the amount of the metal sulfonate group introduced into the polyester resin is preferably from 0.5 mol% to 20 mol% of the total dicarboxylic acid component. If it is less than 0.5 mol%, the effect of improving the dispersibility and delamination property of the layered double hydroxide is not remarkably obtained, and if it is more than 20 mol%, the thermal stability of the polyester resin tends to deteriorate, so that it is preferable. Absent.
  • the polyester resin composition of the present invention can be produced by a usual polyester polymerization method.
  • a dibasic acid is subjected to an esterification reaction with glycol under the condition of excess glycol
  • melt weight is subjected to deglycolization and polycondensation under high temperature and high vacuum in the presence of a metal catalyst such as antimony, titanium, and germanium.
  • a metal catalyst such as antimony, titanium, and germanium.
  • a synthetic method or a method in which a methyl ester compound of a dibasic acid and an glycol are subjected to an ester exchange reaction and then similarly polycondensed can be used.
  • the polyester resin obtained by these methods is subjected to solid phase polymerization at a temperature not higher than the melting point of the resin to increase the molecular weight.
  • the polycondensation is completed after blending the hydrated talcite at an arbitrary stage until the polycondensation is completed.
  • hydrotalcite be dispersed in glycol beforehand.
  • Ethylene glycol and diethylene glycol are preferred as the glycol used for dispersion.
  • Ethylene glycol, diethylene glyco It is considered that the polyester is replaced with water existing between the layers of the hydrotalcite during heating during polyester polymerization.
  • hydrotalcites obtained by dibasic acid oxidation There are two methods for obtaining hydrotalcites obtained by dibasic acid oxidation: (1) using dibasic acid as a source of anion when synthesizing the hydrotalcite, (2) previously obtained hydrotalcites. (3) A method of exchanging water with a dibasic acid anion; (3) A hydrotalcite of the original structure obtained by adding water to a talcite having a porosity that excludes interlayer anions by firing in the range of 300 to 800. For example, there is a method using a dibasic acid as a source of anion when converting the acid to an acid.
  • polyester resin composition of the present invention can be added to the polyester resin composition of the present invention in order to impart desired properties according to the purpose.
  • inorganic reinforcing materials, fiber reinforcing materials, heat stabilizers, antioxidants, antistatic agents, weathering agents, mold release agents, lubricants, coloring agents such as dyes and pigments, etc. can be added. .
  • the reduced viscosity was measured at 30 at a composition concentration of 0.4 g Zd1 using phenol tetrachloride (6/4 weight ratio) as a solvent.
  • the sample was measured by DSC under the following conditions, and the glass transition temperature Tg was measured according to JISK 71. Determined in accordance with 21.
  • Heating start temperature -100
  • Heating rate 20 ° C / niin.
  • the interlayer distance was measured by a powder X-ray diffraction method using an X-ray diffractometer, Rigaku Corporation, Geigerflex RAD-II.
  • composition of the polyester was measured by 1 H-NMR under the following conditions.
  • the tensile modulus at 50% elongation was measured under the following conditions.
  • the dynamic storage modulus at 1 Ot was measured under the following conditions.
  • the polyester resin composition obtained to examine the degree of dispersion of the layered double hydroxide was dissolved in methyl ethyl ketone / toluene (1/1 weight ratio) at a solid content of 10%, and the solution was stable after storage at room temperature for 1 week. By observing the properties, those with no sedimentation of the layered double hydroxide were evaluated as ⁇ , those with slight sedimentation ⁇ , and those with significant sedimentation as X.
  • the ratio of the oxygen permeation amount of a polyester resin having the same composition not containing the layered double hydroxide was calculated and evaluated. The smaller the number, the higher the barrier property.
  • the oxygen permeation amount was measured according to JIS K7126.
  • the composition of the polyester was analyzed by 1 H-NMR.
  • the obtained composition was dissolved in phenol / tetrachloroethane (6Z4 weight ratio), and the reduced viscosity was measured.
  • a membrane was obtained. The strength and elongation of the coating film, the storage modulus in the glass state, and the water vapor barrier property were measured. Table 1 shows the evaluation results.
  • Example 1A In the same manner as in Example 1A, except that the concentration of the 3-methyl-1,5-pentyldiol Z hydrotalcite dispersion was changed to obtain polyester compositions having different hydrotalcite contents. Evaluation was performed in the same manner as in Example 1. Table 1 shows the evaluation results.
  • Example 1A As in Example 1A, but without the use of 5.9 parts by weight of dimethyl 5-sodium sulfoisophthalate, the dispersion of isophthalic acid and 3-methyl-1,5-pentanediol / "hydrotalcite A polyester resin composition was obtained from the product, which was evaluated in the same manner as in Example 1 A. The evaluation results are shown in Table 1.
  • Example 5A as in Example 1A, except that the talcite used in Example 1A dispersed in ethylene glycol at 6.3% by weight was 40 parts by weight, and 3-methyl-1,5 was used. — 16.5 parts by weight of pen diol and isophthalate The reaction was carried out with 1666 parts by weight ofucic acid.
  • Example 6A as in Example 1A, except that the talcite used in Example 1A was dispersed at 4% by weight in diethylene glycol, 62 parts by weight, 3-methyl-1,5-pentene were used. 16.5 parts by weight of evening diol and 1666 parts by weight of isofluoric acid were reacted.
  • a polyester resin having the same composition as in Examples 1A and 4A was obtained without using a hydrotalcite. Evaluation was performed in the same manner as in Example 1A. Table 1 shows the evaluation results.
  • Comparative Example 1 Hydrotalcite was mixed with the polyester resin solution of 1A (solvent: methyl ethyl ketone toluene: 1 Z 1 weight ratio) at a solids weight ratio of 100: 2, and glass beads were added. The mixture was shaken and dispersed in a paint shaker for 6 hours. From this dispersion, a dried coating film was obtained in the same manner as in Example 1A. Evaluation was performed in the same manner as in Example 1A. Table 1 shows the evaluation results.
  • Example 1A As in Example 1A, except that the concentration of the 3-methyl-1,5-pentanediol Z hydrotalcite dispersion was changed to obtain polyester compositions having different hydrotalcite contents.
  • Comparative Examples 4A and 5A the content of the hide mouth talcite is out of the range of the present invention. Evaluation was performed in the same manner as in Example 1A. Table 1 shows the evaluation results. In Comparative Example 5A, the obtained coating film was very brittle, and the 50% tensile modulus and the water vapor barrier property could not be measured. Table 1 Properties of polyester resin composition
  • IPA isophthalic acid MPD: 3-methyl-1,5-pentanol
  • DSN 5-sodium sulfoisophthalic acid
  • EG ethylene glycol
  • a hydrotalcite (Mg 4 Al 2 (OH) 12 (TA), which was prepared from terephthalic acid anion synthesized by the method described in Inorganic Chemistry, vol. 27, 462, p. ⁇ 4 ⁇ 2 0), (the T Alpha was dispersed) 1 0 parts by weight represents terephthalic acid ion to 90 by weight of ethylene glycol.
  • Example 1A In a reaction vessel equipped with a thermometer, a stirrer, and a distilling cooling tube used in Example 1A, 166 parts by weight of terephthalic acid and 18.9 parts by weight of ethylene glycol in which the above-mentioned hydrosite was dispersed (18.9 parts by weight) 1.9 parts by weight of hydrotalcite, 17 parts by weight of ethylene glycol) and 107 parts by weight of ethylene glycol were charged, and the esterification reaction was carried out under pressure. During that time, the temperature reached 230. 0.07 parts by weight of tetrabutyl titanate was charged as a polycondensation reaction catalyst, and then the pressure inside the system was gradually reduced to finally reach 0.1 mm Hg. The temperature at that time was maintained at 27 Ot :. Thus, a high-viscosity polyethylene terephthalate (also referred to as PET) composition containing 1% by weight of hydrotalcite was obtained.
  • PET high-viscosity polyethylene terephthalate
  • the obtained composition was dissolved in phenolnotetrachloroethane, and the reduced viscosity was measured.
  • the oxygen barrier properties of the film obtained by the hot pressing method (a method in which the resin is melted by heating to above the melting point and softening point of the resin, stretched by applying pressure, and then rapidly cooled by water cooling) are measured in accordance with JISK 7126. It was measured.
  • Table 2 shows the oxygen barrier properties of the films obtained by the same method using PET containing no talcite.
  • Example 8A the hydrotalcite used in Example 7 was dispersed in 1,3-propanediol to obtain polytrimethylene terephthalate (PTT) in which the hydrotalcite was dispersed by the same polymerization method.
  • PTT polytrimethylene terephthalate
  • Example 9A polytetramethylene terephthalate (PBT) in which hydrotalcite was dispersed was obtained in the same manner as in Example 8.
  • Table 2 shows the respective reduced viscosities and oxygen barrier properties. Table 2 Properties of polyester resin composition
  • T P A Terephthalic acid
  • Examples 1A to 9A in which the hydrated talcite was added during the polyester polycondensation, were Comparative Examples 1A and 2A without the hydrotalcite and polycondensation.
  • the strength, elastic modulus, and gas barrier properties are significantly higher than those of Comparative Example 3A, which is simply blended after completion, and Comparative Examples 4A, 5A, which have a hydrotalcite content outside the scope of the claims. It can be seen that it has improved.
  • Hydrotalcite as layered double hydroxide in a glass reactor equipped with a stirrer (Hydrotal talcite manufactured by Toda Kogyo Co., Ltd., average particle size 0.15 / zm, Mg / Al molar ratio 2.7, B (ET surface area 18 m 2 / g) 20 parts by weight and 80 parts by weight of ethylene glycol were added, and the content was heated at 130 for 10 minutes.
  • the ethylene glycol solution containing hydrotalcite turned into a paste with high viscosity. According to the measurement by X-ray diffraction, the interlayer distance of the talcite at the mouth was widened from 7.5 A to 8.4 A by heating in ethylene glycol.
  • the composition of the polyester was analyzed by 1 H-NMR.
  • the reduced viscosity, glass transition temperature, 50% tensile modulus, storage modulus, solution stability, and water vapor barrier properties of the coating film were evaluated. Table 3 shows the results.
  • Example 3B As in Example 1B, except that the hydrotalcite / ethylene glycol (2Z8) solution used in Example 1B 6.2 parts by weight and the ethylene glycol 15 parts by weight, the hydrotalcite 0.5 parts by weight % Of a polyester resin composition. Evaluation was performed in the same manner as in Example 1B. Table 3 shows the results. (Example 3B)
  • a reaction vessel equipped with a thermometer, a stirrer, and a distilling cooling tube was charged with 19.8 parts by weight of the hydrotalcite used in Example 1B and 40 parts by weight of ethylene glycol, and stirred at 150 for 10 minutes. Further, 194 parts by weight of dimethyl isophthalate, 236 parts by weight of 3-methyl-1,5-pentanediol, and 0.08 parts by weight of tetrabutyl titanate as a reaction catalyst were charged, and the transesterification reaction was carried out in the same manner as in Example 1. A polycondensation reaction was carried out to obtain a polyester composition containing 8% by weight of hydrotalcite. Evaluation was performed in the same manner as in Example 1B. Table 3 shows the results. (Comparative Example 1B)
  • Example 1B A polyester resin having the same composition as in Example 1B was obtained without using a hydrotalcite. Evaluation was performed in the same manner as in Example 1B. Table 3 shows the evaluation results.
  • Example 4B In the same manner as in Example IB, except that the concentration of the hydrated talcite-to-ethylene glycol dispersion was changed to obtain a polyester composition having a different hydrotalcite content.
  • Comparative Examples 3B and 4B the content of the talcite at the mouth was out of the scope of the present invention. Evaluation was performed in the same manner as in Example 1B. Table 3 shows the evaluation results.
  • Comparative Example 4B the obtained coating film was very brittle, and the 50% tensile modulus and the water vapor barrier property could not be measured.
  • the obtained composition was dissolved in phenol / tetrachloroethane, and the reduced viscosity was measured.
  • the polyester resin composition is heated and melted at 280 by a heat press method, and is then thinned by applying pressure between fluorine-based resin films having a thickness of 0.2 mm.
  • a method for obtaining a film-like resin composition having a thickness of about 25 m) was measured for oxygen barrier properties.
  • Table 4 shows the oxygen barrier effect of the layered double hydroxide as a reduction ratio of the amount of oxygen permeated by the layered double hydroxide.
  • Example 4B shows the results.
  • the same layered double hydroxide was used for Example 5B and Comparative Example 6B, Example 6B and Comparative Example 7B, and Example 7B and Comparative Example 8B.
  • TPA Terephthalic acid
  • the layered double hydroxide is extremely finely dispersed in the polyester resin, and the mechanical strength, hardness, rigidity, gas barrier property, and the like are improved. Since an improved polyester resin composition can be obtained, the polyester resin composition of the present invention can be used as an engineering plastic as various molded articles such as electric and electronic parts by utilizing its properties. It is also applicable to films, paints, and fibers, and is particularly useful as a raw material for paints and films because the layered double hydroxide is extremely finely dispersed in the polyester resin.

Abstract

A process for producing a polyester resin composition comprising 100 parts by weight of a polyester resin and 0.1 to 10 parts by weight of a lamellar composite hydroxide, characterized in that the lamellar composite hydroxide swollen with a glycol is incorporated at any stage in the course of polycondensation for polyester resin production and the polycondensation is then completed; and a polyester resin composition produced by the process.

Description

明細書  Specification
ポリエステル樹脂組成物及びその製造方法  Polyester resin composition and method for producing the same
技術分野  Technical field
本発明は機械的強度、 硬度、 剛性、 ガスバリア性等が改善されたポリエ ステル樹脂組成物及びその製造方法に関する。 特に、 ポリエステル樹脂と 層状無機粒子との複合した上記の性能に優れたポリエステル樹脂組成物及 びその製造方法に関する。  The present invention relates to a polyester resin composition having improved mechanical strength, hardness, rigidity, gas barrier properties, and the like, and a method for producing the same. In particular, the present invention relates to a polyester resin composition which is a composite of a polyester resin and layered inorganic particles and has excellent performance, and a method for producing the same.
背景技術  Background art
ポリエチレンテレフタレ一卜やポリブチレンテレフタレートなどのポリ エステル樹脂は、優れた機械的強度、耐熱性、 衛生性を有するため、繊維、 フィルム、 ポ卜ル、 成型材料等の分野で広く使われている。 これらポリエ ステル樹脂に無機強化材ゃ各種添加剤を配合することによって種々の機能 を付与することが行われている。 たとえば、 耐候性、難燃性、 帯電防止性、 着色性、 摺動性、 表面特性、 抗菌性、 結晶性、 透明性、 耐衝撃性、 耐ブロ ッキング性、 導電性、 ガスバリア性等の機能の向上を図って無機強化材ゃ 各種添加剤の配合がなされている。  Polyester resins such as polyethylene terephthalate and polybutylene terephthalate have excellent mechanical strength, heat resistance, and sanitation, and are widely used in the fields of fibers, films, potts, molding materials, etc. . Various functions are provided by blending these polyester resins with an inorganic reinforcing material and various additives. For example, weather resistance, flame retardancy, antistatic properties, coloring properties, sliding properties, surface properties, antibacterial properties, crystallinity, transparency, impact resistance, blocking resistance, conductivity, gas barrier properties, etc. For the purpose of improvement, various additives have been added to the inorganic reinforcing material.
近年、 無機層状化合物への単量体化合物のィン夕一力レーシヨンを利用 したナイロン クレー (モンモリロナイ ト等) ハイブリッドが盛んに検討 され、ナノコンポジットとして自動車部品等に実用化されている。このナノ コンポジッ トにより、 フィラー (無機強化材等) がわずか数%の充填率で あっても、 高い弾性率、 耐熱性の向上あるいはガスバリア性の向上等の効 果が得られている。このナノコンポジッ トにおいて用いられるフィラーと しては、 モンモリロナイ ト、 サボナイ ト等のスメクタイ ト族や力オリナイ ト等の力オリン族等の粘土鉱物、 ケィ酸塩化合物等が用いられている。 このような無機層状化合物の粒子の一つとしてハイ ドロタルサイ 卜に代 表される層状複水酸化物が知られている。 層状複水酸化物 (ハイ ド口タル サイ ト類等) の化合物は層間にァニオンを有する層状構造を持った物質で あり、 微粒子状でポリ塩化ビニルに配合されて、 熱安定剤等として使われ ている。 また、 蓄熱効果を有するためにォレフィンフィルムに添加して農 業用フィルムに使われたり、 酸に溶けて P H調節機能を有することから医 薬用の制酸剤にも使われている。 W O 0 1 / 4 2 3 3 5ではハイ ドロタル サイ ト類のポリエステル重合触媒としての利用が開示されている。 また、 特公表 2002-500253及び特公表 2002-500254ではァニオンの少なくとも 2 0 %が高分子マトリックスと相溶性及び/又は反応性を有するものを使用 するナノ複合材料が開示されている。 ポリエステル樹脂においては、 高温 での耐加水分解を抑制するためにハイ ドロタルサイ トを配合することが開 示されている。 In recent years, nylon clay (montmorillonite, etc.) hybrids using a monomer compound in an inorganic layered compound have been actively studied, and have been put into practical use as a nanocomposite for automobile parts and the like. With this nanocomposite, even if the filler (inorganic reinforcing material, etc.) is only a few percent filling, effects such as high elastic modulus, improved heat resistance, and improved gas barrier properties are obtained. As the filler used in the nanocomposite, clay minerals such as smectites such as montmorillonite and savonite, and power olins such as force olinate, and silicate compounds are used. As one of the particles of such an inorganic layered compound, a layered double hydroxide represented by hydrotalcite is known. Compounds of layered double hydroxides (such as hydrated talcites) are substances having a layered structure with anions between the layers, and are used as heat stabilizers, etc., when they are mixed with polyvinyl chloride in the form of fine particles. ing. It is also used as an agricultural film when added to an olefin film to have a heat storage effect, and is also used as an antacid for pharmaceuticals because it dissolves in acid and has a pH control function. WO 01/43253 discloses the use of hydrotalcites as a polyester polymerization catalyst. In addition, Japanese Patent Publications Nos. 2002-500253 and 2002-500254 disclose nanocomposite materials in which at least 20% of anions are compatible and / or reactive with a polymer matrix. It has been disclosed that a polyester resin is mixed with a hydrotalcite to suppress hydrolysis resistance at high temperatures.
ハイ ドロタルサイ トも含め層状無機粒子とポリエステル樹脂の複合系組 成物は検討されているが、 ポリエチレンテレフ夕レート等のポリエステル 樹脂中にナノメータサイズで層状無機粒子を分散することができておらず, 満足できる特性を有するものが得られていない。 そのため層状無機粒子と ポリエステル樹脂のナノコンポジッ トは実用化に至っていない。  Although a composite composition of layered inorganic particles and polyester resin including hydrotalcite has been studied, it has not been possible to disperse layered inorganic particles at a nanometer size in polyester resin such as polyethylene terephthalate. Those having satisfactory properties have not been obtained. For this reason, nanocomposites of layered inorganic particles and polyester resin have not been put to practical use.
発明の開示  Disclosure of the invention
本発明の課題は、 ポリエステル樹脂と層状無機粒子とを複合した組成物 において、層状無機粒子がポリエステル樹脂中に極めて微細に分散され、機 械的強度、 硬度、 剛性、 ガスバリア性等が改善されたポリエステル樹脂組 成物を提供することである。  An object of the present invention is to provide a composition comprising a polyester resin and layered inorganic particles, in which the layered inorganic particles are extremely finely dispersed in the polyester resin, and the mechanical strength, hardness, rigidity, gas barrier properties, and the like have been improved. The purpose is to provide a polyester resin composition.
本発明者等は上記課題に対して鋭意検討した結果、 本発明に到達した。 すなわち、 本発明は以下のポリエステル樹脂組成物の製造方法とその方法 により製造されたポリエステル樹脂組成物である。  The present inventors have made intensive studies on the above-mentioned problems, and as a result, have reached the present invention. That is, the present invention provides the following method for producing a polyester resin composition and a polyester resin composition produced by the method.
( 1 ) ポリエステル樹脂 1 0 0重量部および層状複水酸化物 0 . 1〜 1 0 重量部からなるポリエステル樹脂組成物の製造方法において、 層状複水酸 化物をポリエステル樹脂の重縮合が完了するまでの任意の段階で配合した 後、 重縮合を完了せしめることを特徴とするポリエステル樹脂組成物の製 造方法。  (1) In a method for producing a polyester resin composition comprising 100 parts by weight of a polyester resin and 0.1 to 10 parts by weight of a layered double hydroxide, the layered double hydroxide is added until the polycondensation of the polyester resin is completed. A method for producing a polyester resin composition, comprising: completing the polycondensation after blending at an optional stage of the above.
( 2 )層状複水酸化物がハイ ドロタルサイ トであることを特徴とする ( 1 ) 記載のポリエステル樹脂組成物の製造方法。 (2) The layered double hydroxide is a hydrotalcite (1) A method for producing the polyester resin composition as described above.
(3) ポリエステル樹脂 1 0 0重量部および層状複水酸化物 0. 1〜 1 0 重量部のからなるポリエステル樹脂組成物の製造方法において、 グリコー ルにより膨潤した層状複水酸化物をポリエステル樹脂の重合工程において 重縮合が完了するまでの任意の段階で配合した後、 ポリエステル樹脂の重 縮合を完了せしめることを特徴とするポリエステル樹脂組成物の製造方法 ( (3) A method for producing a polyester resin composition comprising 100 parts by weight of a polyester resin and 0.1 to 10 parts by weight of a layered double hydroxide, comprising the steps of: after polycondensation in the polymerization process is blended at any stage until completion, process for producing a polyester resin composition characterized in that allowed to complete the polycondensation of the polyester resin (
(4) (3) 層状複水酸化物がハイ ド口タルサイ トであることを特徴とす る ( 3) 記載のポリエステル樹脂組成物の製造方法。 (4) (3) The method for producing a polyester resin composition according to (3), wherein the layered double hydroxide is a talcite at a mouth.
(5) ( 1 ) 〜 (4) いすれかに記載の方法により製造されたポリエステ ル樹脂組成物。  (5) (1) to (4) A polyester resin composition produced by any of the methods described above.
以下に本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明に用いる層状複水酸化物は、 一般式が [MS +
Figure imgf000004_0001
+ x (OH) 2] [A"-x/n · z H2〇] で表される層状無機化合物で、 二価金属 (M2+) が三価金属 (M3+) により置換されることにより、 層がプラスに荷電し、 ァニオン (A11— ) が層間に存在する構造を形成する。 二価の金属としては マグネシウム、 ニッケル、 亜鉛等が、 三価の金属としてはアルミニウム、 鉄、 クロムが挙げられる (nは 1〜3の整数、 Xは 0· 15〜0.5の数値、 z は 5以下の数値である) 。 二価と三価の金属以外に、 リチウム等の一価金 属ゃチ夕ン等の四価金属を含んでも良い。
The layered double hydroxide used in the present invention has a general formula [MS +
Figure imgf000004_0001
+ x (OH) 2 ] A layered inorganic compound represented by [A " -x / n · z H 2 〇], in which divalent metal (M 2+ ) is replaced by trivalent metal (M 3+ ) As a result, the layer is positively charged, forming a structure in which anions (A 11 —) exist between the layers.Divalent metals include magnesium, nickel, and zinc, and trivalent metals include aluminum, iron, and the like. Chromium (n is an integer of 1 to 3, X is a value of 0.15 to 0.5, z is a value of 5 or less) In addition to divalent and trivalent metals, monovalent metals such as lithium It may contain a tetravalent metal such as titanium.
本発明に用いる層状複水酸化物を製造する方法は特に限定されないが、 例えば S. Miya , Clays Clay Miner. , vol.28 , 50ページ (1980年発行) 記載の方法が簡便で好ましい。  The method for producing the layered double hydroxide used in the present invention is not particularly limited. For example, the method described in S. Miya, Clays Clay Miner., Vol. 28, page 50 (issued in 1980) is simple and preferred.
層状複水酸化物は 3 0 0〜8 0 0°Cの範囲で焼成したものを用いても良 い。  As the layered double hydroxide, a layer fired at a temperature of 300 to 800 ° C. may be used.
本発明に用いる層状複水酸化物は、特にハイ ドロタルサイ 卜が好ましい。 本発明のポリエステル樹脂組成物は、 エチレングリコールで膨潤させた 層状複水酸化物をポリエステルの重合工程において重縮合が完了するまで の任意の段階で配合した後、重縮合を完了せしめることによって得られる。 層状複水酸化物を分散、 層剥離を充分に行うためには、 層状複水酸化物 をエステル化反応あるいはエステル交換反応の反応前あるいは反応の途中 に添加することが望ましい。 The layered double hydroxide used in the present invention is particularly preferably a hydrotalcite. The polyester resin composition of the present invention can be obtained by blending the layered double hydroxide swollen with ethylene glycol at an arbitrary stage until the polycondensation is completed in the polyester polymerization step, and then completing the polycondensation. . In order to sufficiently disperse and delaminate the layered double hydroxide, it is desirable to add the layered double hydroxide before or during the esterification reaction or transesterification reaction.
ポリエステルの重合工程において重縮合が完了するまでの任意の段階で 層状複水酸化物を添加する際には、 層状複水酸化物をグリコールにより膨 潤させ層間隔を広げておくことが本発明の目的を達成するために必須であ る。 グリコールによる層状複水酸化物の膨潤はグリコール中で加熱するこ とによって行う。 加熱する温度は 5 0で以上 2 0 O t:以下、 より好ましく は 1 0 0で以上 1 8 0で以下が適している。  When the layered double hydroxide is added at any stage in the polymerization step of the polyester until the polycondensation is completed, it is important that the layered double hydroxide be swelled with glycol to widen the layer interval. Necessary to achieve the purpose. Swelling of the layered double hydroxide with glycol is performed by heating in glycol. The heating temperature is preferably from 50 to 20 Ot: or less, more preferably from 100 to 180 and below.
層状複水酸化物をグリコールによって膨潤させる工程は、 ポリエステル の重合工程において行うことができ、 あるいは重合工程とは別の工程にお いて事前に行っても良い。 層状複水酸化物をグリコールに膨潤させる際に は、 ポリエステル原料の成分である二塩基酸が存在してもかまわない。 グリコールで膨潤させた層状複水酸化物を用いることにより、 ポリエス テル樹脂中に層状複水酸化物を効率よく分散することができ、 また層状複 水酸化物の層の剥離を促進することができる。 その結果、 層状複水酸化物 をポリエステル樹脂中にナノメ一夕サイズで分散することができるため、 分子補強ができ、 機械的強度、 硬度、 剛性、 ガスバリア性等の特性が改善 されると考えられる。  The step of swelling the layered double hydroxide with glycol can be performed in a polyester polymerization step, or may be performed in advance in a step different from the polymerization step. When the layered double hydroxide is swelled in glycol, a dibasic acid which is a component of the polyester raw material may be present. By using the layered double hydroxide swollen with glycol, the layered double hydroxide can be efficiently dispersed in the polyester resin, and the separation of the layer of the layered double hydroxide can be promoted. . As a result, the layered double hydroxide can be dispersed in the polyester resin in a nanometer size, so that molecular reinforcement can be achieved, and properties such as mechanical strength, hardness, rigidity, and gas barrier properties can be improved. .
層状複水酸化物をグリコールに膨潤させる際に用いるグリコールとして は、 エチレングリコール、 ジエチレングリコール、 トリエチレングリコー ルが好まじい。 特にエチレングリコールが好ましい。 これらのグリコール は、 加熱によってハイ ドロタルサイ トの層間に存在する水との置換が起こ るものと考えられる。  As the glycol used for swelling the layered double hydroxide with glycol, ethylene glycol, diethylene glycol and triethylene glycol are preferred. Particularly, ethylene glycol is preferred. These glycols are considered to be replaced by water existing between the layers of the hydrotalcite by heating.
本発明に用いる層状複水酸化物の表面積は 5〜 2 0 0 m 2 / gのものが 好ましい。 表面積が 5 m 2 Z g未満であると層状複水酸化物を効率よく分 散することができず得られたポリエステル樹脂組成物の透明性が低下する ことがある。 また 2 0 O m s / gを越えると重合時の溶融粘度が急激に上 昇するため、 目的の分子量の樹脂を得られない場合がある。 The layered double hydroxide used in the present invention preferably has a surface area of 5 to 200 m 2 / g. When the surface area is less than 5 m 2 Zg, the layered double hydroxide cannot be dispersed efficiently, and the transparency of the obtained polyester resin composition may be reduced. If it exceeds 20 O ms / g, the melt viscosity during polymerization sharply increases. As a result, the resin having the desired molecular weight may not be obtained.
本発明において層状複水酸化物は、 ポリエステル樹脂 1 0 0重量部に対 して 0 . 1〜 1 0重量部になるように配合する。 1 0重量部を超えると溶 融粘度が高くなりすぎ、ポリエステル樹脂の分子量を高くすることが困難 になり、得られたポリエステル組成物は非常に脆くなることがある。 また、 0 . 1重量部以下では層状複水酸化物の添加効果が少なくなる。  In the present invention, the layered double hydroxide is blended in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the polyester resin. If it exceeds 10 parts by weight, the melt viscosity becomes too high, making it difficult to increase the molecular weight of the polyester resin, and the resulting polyester composition may be very brittle. When the amount is less than 0.1 part by weight, the effect of adding the layered double hydroxide is reduced.
本発明に用いるポリエステル樹脂の二塩基酸成分としては、 テレフタル 酸、 イソフ夕ル酸、 オルソフタル酸 >ナフタレンジカルボン酸、 ジフェニー ルジカルボン酸、ジフェニールエーテルジカルボン酸等の芳香族二塩基酸、 コハク酸、アジピン酸、 ァゼライン酸、 セバシン酸、 ダイマー酸、シクロへ キサンジカルボン酸等の脂肪族二塩基酸を挙げることができる。  As the dibasic acid component of the polyester resin used in the present invention, terephthalic acid, isophthalic acid, orthophthalic acid> naphthalenedicarboxylic acid, aromatic dibasic acids such as diphenyldicarboxylic acid, diphenyletherdicarboxylic acid, succinic acid, Examples thereof include aliphatic dibasic acids such as adipic acid, azelaic acid, sebacic acid, dimer acid, and cyclohexanedicarboxylic acid.
本発明に用いるポリエステル樹脂のグリコール成分としてはエチレング リコール、 1 , 2 _プロピレングリコール、 1, 3—プロピレングリコー ル、 1 , 4—ブタンジオール、 1, 3—ブタンジオール、 1 , 5—ペン夕 ンジオール、 1 , 6—へキサンジオール、 ジエチレングリコール、 トリエ チレングリコール、 3 _メチル— 1 , 5 —ペン夕ンジオール、 ネオペンチ ルグリコール、 2 —ェチルー 2 —ブチル— 1 , 3—プロパンジオール、 ジ エチレングリコール、 1 , 4 —シクロへキサンジメタノール、 ビスフエノ ール Aのエチレンォキサイ ド付加物、 ビスフエノール Aのプロピレンォキ サイ ド付加物あるいはポリエチレングリコール、 ポリプロピレングリコー ル、 ポリテトラメチレングリコール等のポリエーテルグリコール等を挙げ ることができる。  The glycol components of the polyester resin used in the present invention include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,3-butanediol, and 1,5-pentanediol. , 1,6-hexanediol, diethylene glycol, triethylene glycol, 3_methyl-1,5, -pentynediol, neopentylglycol, 2-ethyl-2-butyl-1,3-propanediol, diethyleneglycol, 1 , 4-cyclohexanedimethanol, ethylene oxide adduct of bisphenol A, propylene oxide adduct of bisphenol A, or polyether glycol such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, etc. Can be .
さらに、 本発明に用いるポリエステル樹脂には ε —力プロラク トン、 δ 一バレロラクトン等のラクトン類成分や ρ —ヒドロキシエトキシ安息香酸 等のォキシカルボン酸成分も原料として用いることができる。 また、 トリ メチロールプロパン、 ペン夕エリスリ トール、 無水トリメリッ ト酸等の三 官能以上の成分を併用してもかまわない。  Further, a lactone component such as ε-force prolactone and δ-valerolactone and an oxycarboxylic acid component such as ρ-hydroxyethoxybenzoic acid can be used as raw materials for the polyester resin used in the present invention. In addition, a trifunctional or higher functional component such as trimethylolpropane, pentaerythritol, and trimellitic anhydride may be used in combination.
層状複水酸化物のポリエステル樹脂中での分散性や層剥離性の改善のた めには、 スルホン酸金属塩基などの極性基をポリエステル樹脂中に導入す ることが好ましい。 例えば、 ポリエステル樹脂にスルホン酸金属塩を導入 するための原料としては、 5—ナトリウムスルホイソフ夕ル酸、 5—カリ ゥムスルホイソフ夕ル酸、 ナトリウムスルホテレフタル酸、 2—ナトリウ ムスルホ— 1 , 4—ブタンジオール、 2, 5 —ジメチルー 3—ナトリウム スルホ _ 2, 5—へキサンジオール等のジカルボン酸あるいはグリコール が挙げられる。 特に 5—ナトリウムスルホイソフ夕ル酸、 5—力リウムス ルホイソフタル酸が特に好ましい。 ポリエステル樹脂中に導入するスルホ ン酸金属塩基の量は、 全ジカルボン酸成分の 0 . 5モル%〜2 0モル%が 好ましい。 0 . 5モル%未満では層状複水酸化物の分散性や層剥離性の改 善の効果が顕著に得られなく、 2 0モル%以上ではポリエステル樹脂の熱 安定性が悪くなる傾向があり好ましくない。 Improvement of dispersibility and delamination property of layered double hydroxide in polyester resin For this purpose, it is preferable to introduce a polar group such as a sulfonic acid metal base into the polyester resin. For example, as a raw material for introducing a metal sulfonic acid salt into a polyester resin, there are 5-sodium sulfoisophthalic acid, 5-calidosulfonic acid, sodium sulfoterephthalic acid, 2-sodium sulfo-1,4-butane Examples include diols, dicarboxylic acids such as 2,5-dimethyl-3-sodium sulfo_2,5-hexanediol, and glycols. Particularly preferred are 5-sodium sulfoisophthalic acid and 5-force lithium sulfoisophthalic acid. The amount of the metal sulfonate group introduced into the polyester resin is preferably from 0.5 mol% to 20 mol% of the total dicarboxylic acid component. If it is less than 0.5 mol%, the effect of improving the dispersibility and delamination property of the layered double hydroxide is not remarkably obtained, and if it is more than 20 mol%, the thermal stability of the polyester resin tends to deteriorate, so that it is preferable. Absent.
本発明のポリエステル樹脂組成物の製造は、 通常のポリエステルの重合 方法を用いることができる。 すなわち、 グリコールが過剰の条件下で、 二 塩基酸とグリコールをエステル化反応させた後、 アンチモンやチタン、 ゲ ルマニウム等の金属触媒の存在下、 高温高真空下で脱グリコールし重縮合 する溶融重合法や二塩基酸のメチルエステル化合物とグリコールをエステ ル交換反応させた後同様に重縮合する方法を用いることができる。 更にこ れらの方法で得たポリエステル樹脂を樹脂の融点以下で固相重合し分子量 を高くする方法が挙げられる。  The polyester resin composition of the present invention can be produced by a usual polyester polymerization method. In other words, after a dibasic acid is subjected to an esterification reaction with glycol under the condition of excess glycol, melt weight is subjected to deglycolization and polycondensation under high temperature and high vacuum in the presence of a metal catalyst such as antimony, titanium, and germanium. Either a synthetic method or a method in which a methyl ester compound of a dibasic acid and an glycol are subjected to an ester exchange reaction and then similarly polycondensed can be used. Further, there is a method in which the polyester resin obtained by these methods is subjected to solid phase polymerization at a temperature not higher than the melting point of the resin to increase the molecular weight.
例えば、 ハイ ド口タルサイ 卜を層状複水酸化物として用いる場合は、 重 縮合が完了するまでの任意の段階でハイ ドロタルサイ トを配合した後、 重 縮合を完了せしめる。 ハイ ドロタルサイ トをポリエステル樹脂中に十分に 分散し、 層の剥離を行うためには、 ハイ ド口タルサイ トをエステル化反応 あるいはエステル交換反応前に投入することが好ましい。  For example, when using a hydrated talcite as a layered double hydroxide, the polycondensation is completed after blending the hydrated talcite at an arbitrary stage until the polycondensation is completed. In order to sufficiently disperse the hydrotalcite in the polyester resin and to peel off the layer, it is preferable to introduce the talcite at the mouth before the esterification reaction or transesterification reaction.
ハイ ドロタルサイ トは、 事前にグリコールに分散させておくことがさら に望ましい。 分散に使用するグリコールとしてはエチレングリコール、 ジ エチレングリコールが望ましい。 エチレングリコール、 ジエチレングリコ ールはポリエステル重合時の加熱時にハイ ドロタルサイ 卜の層間に存在す る水との置換が起こると考えられる。 It is even more desirable that the hydrotalcite be dispersed in glycol beforehand. Ethylene glycol and diethylene glycol are preferred as the glycol used for dispersion. Ethylene glycol, diethylene glyco It is considered that the polyester is replaced with water existing between the layers of the hydrotalcite during heating during polyester polymerization.
ポリエステル樹脂中にハイ ドロタルサイ トを効率よく分散し、 層剥離を 促進することによりナノメ一夕サイズの分散ができる。  By dispersing the hydrotalcite efficiently in the polyester resin and promoting delamination, it can be dispersed in nanometer size.
ポリエステル樹脂中にハイ ド口タルサイ トを効率よく分散し、 層剥離を 促進するためには、 あらかじめ二塩基酸をハイ ドロタルサイ 卜の層間にィ ンターカレ一トしたものを使用することが望ましい。 二塩基酸をィン夕カ レートしたハイ ドロタルサイ トを得る方法としては①ハイ ドロタルサイ ト を合成する際のァニオン源として二塩基酸を使用する方法、 ②あらかじめ 得られたハイ ドロタルサイ トのァ二オンを二塩基酸ァニオンと交換する方 法、 ③ 3 0 0〜8 0 0での範囲で焼成して層間ァニオンを排除したハイ ド 口タルサイ 卜に水を添加してもとの構造のハイ ドロタルサイ トに変換する 際のァニオン源として二塩基酸を使用する方法等がある。  In order to efficiently disperse the talcite at the mouth in the polyester resin and promote delamination, it is desirable to use a dibasic acid which has been previously intercalated between the layers of the hydrite site. There are two methods for obtaining hydrotalcites obtained by dibasic acid oxidation: (1) using dibasic acid as a source of anion when synthesizing the hydrotalcite, (2) previously obtained hydrotalcites. (3) A method of exchanging water with a dibasic acid anion; (3) A hydrotalcite of the original structure obtained by adding water to a talcite having a porosity that excludes interlayer anions by firing in the range of 300 to 800. For example, there is a method using a dibasic acid as a source of anion when converting the acid to an acid.
本発明のポリエステル樹脂組成物には、 目的に応じ所望の特性を付与す るために、 公知の物質を添加することができる。 例えば、 無機強化材、 繊 維強化材、 熱安定剤、 酸化防止剤、 帯電防止剤、 耐候剤、 離型剤、 潤滑剤、 染料や顔料等の着色剤等いずれも配合することが可能である。  Known substances can be added to the polyester resin composition of the present invention in order to impart desired properties according to the purpose. For example, inorganic reinforcing materials, fiber reinforcing materials, heat stabilizers, antioxidants, antistatic agents, weathering agents, mold release agents, lubricants, coloring agents such as dyes and pigments, etc. can be added. .
また、 目的に応じ所望の特性を付与するために、 他の樹脂とブレンドま たはァロイにしてもかまわない。  Further, it may be blended or alloyed with another resin in order to impart desired properties according to the purpose.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
以下に実施例に基づき本発明をより具体的に説明する。 もっとも、 本発 明はこれらの実施例に限定されるものではない。  Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to these examples.
実施例の説明の中で用いた測定方法、 評価方法を以下に示す。 The measurement method and evaluation method used in the description of the examples are shown below.
(還元粘度)  (Reduced viscosity)
還元粘度はフエノール テトラクロ口ェ夕ン (6 / 4重量比) を溶媒と し、 0 . 4 g Z d 1 の組成物濃度で、 3 0でで測定した。  The reduced viscosity was measured at 30 at a composition concentration of 0.4 g Zd1 using phenol tetrachloride (6/4 weight ratio) as a solvent.
(ガラス転移温度 ; Tg)  (Glass transition temperature; Tg)
試料を下記条件で D S C測定し、ガラス転移温度 Tgを J I S K 7 1 2 1 に準拠して求めた。 The sample was measured by DSC under the following conditions, and the glass transition temperature Tg was measured according to JISK 71. Determined in accordance with 21.
セイコーインスツルメンッ (株) 製 DSC6200 パン アルミパン (非気密型)  Seiko Instruments Inc. DSC6200 Pan Aluminum Pan (Non-hermetic type)
5 mg  5 mg
昇温開始温度 : -100  Heating start temperature: -100
昇温速度 : 20 °C/niin.  Heating rate: 20 ° C / niin.
雰囲気ガス  Atmosphere gas
(層状複水酸化物の層間距離)  (Distance between layers of layered double hydroxide)
層間距離は X線回析装置リガク (株) ガイガーフレックス RAD— II型に よって粉末 X線回析法で測定した。  The interlayer distance was measured by a powder X-ray diffraction method using an X-ray diffractometer, Rigaku Corporation, Geigerflex RAD-II.
(ポリエステル樹脂の組成)  (Composition of polyester resin)
ポリエステルの組成は1 H— N M Rによって下記条件で測定した。 The composition of the polyester was measured by 1 H-NMR under the following conditions.
核磁気共鳴装置 (BRUKER製 AVANCE 50 0) 測定溶媒 : 重水素化クロ口ホルム トリフルォロ酢酸 = 9 / 1容量比 共鳴周波数 500MHz  Nuclear Magnetic Resonance Apparatus (AVANCE 500 manufactured by BRUKER) Solvent: Deuterated chromatoform trifluoroacetic acid = 9/1 volume ratio Resonance frequency 500MHz
積算回数: 5 1 2回  Number of accumulation: 5 1 2 times
測定温度: 室温  Measurement temperature: room temperature
( 5 0 %引張弾性率)  (50% tensile modulus)
5 0 %伸張時の引張弾性率を下記条件で測定した。  The tensile modulus at 50% elongation was measured under the following conditions.
装置名 :東洋ポールドウイン社製 UYM— I — 2 5 0 0  Equipment name: UYM—I—250—0 manufactured by Toyo Paul Douwin
測定温湿度: 2 0で、 5 0 %RH  Measurement temperature and humidity: 20%, 50% RH
引張り速度: 2 0 Omm/分  Tensile speed: 20 Omm / min
試料の形状: 1 5mmX 3 Ommの短冊状 (厚み: 2 5 ^m)  Sample shape: 15 mm x 3 Omm strip (thickness: 25 ^ m)
(保存弾性率)  (Storage modulus)
一 1 Ot:での動的保存弾性率を下記条件で測定した。  The dynamic storage modulus at 1 Ot: was measured under the following conditions.
装置名 : アイティー計測制御社製 DVA— 2 00  Apparatus name: DVA-200 manufactured by IT Measurement Control Company
昇温開始温度 : 一 1 0 0で  Temperature rise start temperature: One in 100
昇温速度 : 2 0 /分 雰囲気ガス : 窒素 Heating rate: 20 / min Atmosphere gas: Nitrogen
測定周波数: 1 1 0 H z  Measurement frequency: 110 Hz
測定様式: 引張り変形  Measurement method: Tensile deformation
(溶液安定性)  (Solution stability)
層状複水酸化物の分散度を調べるために得られたポリエステル樹脂組成 物をメチルェチルケトンノトルエン 1 / 1重量比)に固形分濃度 1 0 % で溶解し室温保存 1週間後の溶液安定性を観察し、 層状複水酸化物の沈降 が全くないものを〇、 わずかに沈降するものを△、 顕著に沈降するものを Xとして評価した。  The polyester resin composition obtained to examine the degree of dispersion of the layered double hydroxide was dissolved in methyl ethyl ketone / toluene (1/1 weight ratio) at a solid content of 10%, and the solution was stable after storage at room temperature for 1 week. By observing the properties, those with no sedimentation of the layered double hydroxide were evaluated as 〇, those with slight sedimentation △, and those with significant sedimentation as X.
(水蒸気バリア性)  (Water vapor barrier property)
内径 2 cmの 1 0 0 c cの円筒状ガラス瓶に水を 3 0 c c入れ、 実施例 及び比較例のフィルム (厚み 2 5 m) で瓶の入口を密閉して、 20で、 50 %RHの雰囲気中に 24時間放置後、 水の重量減少を測定した。 実施 例 1 A〜6 A、 比較例 1 A、 3 A〜 5 Aについては比較例 2 Aの層状複水 酸化物を含まないフィルムでの水の減少量を標準 1とし、 その割合を示し た。 実施例 1 B〜3 B、 比較例 2 B〜 5 Bについては比較例 1 Bの層状複 水酸化物を含まないフィルムでの水の減少量を標準 1とし、 その割合を示 した。 数値が小さいほど水蒸気バリァ性が良好なことを示す。  Place 30 cc of water in a 100 cc cylindrical glass bottle with an inner diameter of 2 cm, seal the bottle inlet with the film of Example and Comparative Example (25 m thick), and at 20 and 50% RH atmosphere. After standing in the water for 24 hours, the weight loss of water was measured. For Examples 1A to 6A, Comparative Examples 1A and 3A to 5A, the reduction in water in the film containing no layered double hydroxide of Comparative Example 2A was set to Standard 1, and the ratio was shown. . For Examples 1B to 3B and Comparative Examples 2B to 5B, the reduction amount of water in the film containing no layered double hydroxide of Comparative Example 1B was set to Standard 1, and the ratio was shown. The smaller the value, the better the water vapor barrier property.
(酸素バリァ性)  (Oxygen barrier property)
2 5 / mフィルムの酸素透過量について、 層状複水酸化物を含有しない 同組成のポリエステル樹脂の酸素透過量を 1としたときの割合を計算し評 価した。数字が小さいほどバリァ性が高い。酸素透過量は JIS K7126に準 じて測定した。  With respect to the oxygen permeation amount of the 25 / m film, the ratio of the oxygen permeation amount of a polyester resin having the same composition not containing the layered double hydroxide was calculated and evaluated. The smaller the number, the higher the barrier property. The oxygen permeation amount was measured according to JIS K7126.
測定温湿度: 20で、 50 RH  Measurement temperature and humidity: 20 and 50 RH
(実施例 1 A)  (Example 1A)
温度計、 攪拌機、 留出用冷却管を具備した反応容器にイソフタル酸 1 6 3重量部、 5—ナトリウムスルホイソフタル酸ジメチル 5. 9重量部、 3 —メチルー 1 , 5—ペンタンジオールと Mg 6A 1 2 (OH) 16C03 · 4 H20で表されるハイ ドロタルサイ トを 1 0 0対 2の重量比率で分散した 溶液 2 55重量部、 反応触媒としてテトラブチルチタネート 0. 06 8重 量部を仕込み、 2 2 0 °Cまで昇温した。 エステル化反応による水の溜出が 終わった後、 240でまで昇温する間にエステル化反応を終了した。 その 後、 系内を徐々に減圧し、 最終的に 0. ImmHgに達した。 その時の温 度は 2 60 を保持させた。 このようにして、 ハイ ド口タルサイ トを 2重 量%含有するポリエステル樹脂組成物を得た。 In a reaction vessel equipped with a thermometer, a stirrer and a distilling condenser, 163 parts by weight of isophthalic acid, 5.9 parts by weight of dimethyl 5-sodium sulfoisophthalate, 3-methyl-1,5-pentanediol and Mg 6 A 1 2 (OH) 16 C0 3 Solution 2 55 parts by weight of a dispersed high Dorotarusai preparative represented by H 2 0 in 1 0 0: 2 weight ratio was charged with tetrabutyl titanate 0.06 8 by weight parts as a reaction catalyst, to 2 2 0 ° C The temperature rose. After the distillation of water by the esterification reaction was completed, the esterification reaction was terminated while the temperature was raised to 240. Thereafter, the pressure in the system was gradually reduced, and finally reached 0.1 mmHg. The temperature at that time was kept at 260. Thus, a polyester resin composition containing 2% by weight of the talcite at the mouth was obtained.
ポリエステルの組成を1 H— NMRにより分析した。 得られた組成物を フエノール/テトラクロロェタン (6Z4重量比) に溶解し、 還元粘度を 測定した。 また、 得られた組成物をメチルェチルケトン/トルエン (= 1 Z 1重量比) に溶解し、 二軸延伸ポリプロピレンフィルム上に塗布および 乾燥し、 プロピレンフィルムより剥がし取り、 樹脂組成物自身の塗膜を得 た。 塗膜の強伸度、 ガラス状態での保存弾性率、 水蒸気バリア性を測定し た。 評価結果を表 1に示す。 The composition of the polyester was analyzed by 1 H-NMR. The obtained composition was dissolved in phenol / tetrachloroethane (6Z4 weight ratio), and the reduced viscosity was measured. Also, the obtained composition is dissolved in methyl ethyl ketone / toluene (= 1 Z 1 weight ratio), coated and dried on a biaxially oriented polypropylene film, peeled off from the propylene film, and coated with the resin composition itself. A membrane was obtained. The strength and elongation of the coating film, the storage modulus in the glass state, and the water vapor barrier property were measured. Table 1 shows the evaluation results.
(実施例 2 A、 3 A)  (Examples 2A and 3A)
実施例 1 Aと同様に、 ただし、 3—メチル— 1, 5—ペン夕ンジオール Zハイ ドロタルサイ ト分散物の濃度を変更してハイ ドロタルサイ トの含有 量の異なるポリエステル組成物を得た。 実施例 1と同様に評価した。 評価 結果を表 1に示す。  In the same manner as in Example 1A, except that the concentration of the 3-methyl-1,5-pentyldiol Z hydrotalcite dispersion was changed to obtain polyester compositions having different hydrotalcite contents. Evaluation was performed in the same manner as in Example 1. Table 1 shows the evaluation results.
(実施例 4A)  (Example 4A)
実施例 1 Aと同様に、 ただし 5—ナトリゥムスルホイソフタル酸ジメチ ル 5. 9重量部を使わずに、 イソフ夕ル酸と 3—メチルー 1 , 5—ペン夕 ンジオール/"ハイ ドロタルサイ ト分散物からポリエステル樹脂組成物を得 た。 実施例 1 Aと同様に評価した。 評価結果を表 1に示す。  As in Example 1A, but without the use of 5.9 parts by weight of dimethyl 5-sodium sulfoisophthalate, the dispersion of isophthalic acid and 3-methyl-1,5-pentanediol / "hydrotalcite A polyester resin composition was obtained from the product, which was evaluated in the same manner as in Example 1 A. The evaluation results are shown in Table 1.
(実施例 5 A、 6 A)  (Examples 5A and 6A)
実施例 5 Aでは実施例 1 Aと同様に、 ただし実施例 1 Aで用いたハイ ド 口タルサイ トをエチレングリコールに 6. 3重量%で分散したものを 40 重量部、 3—メチルー 1, 5—ペン夕ンジオール 1 6 5重量部とイソフタ ル酸 1 6 6重量部とを反応させた。 In Example 5A, as in Example 1A, except that the talcite used in Example 1A dispersed in ethylene glycol at 6.3% by weight was 40 parts by weight, and 3-methyl-1,5 was used. — 16.5 parts by weight of pen diol and isophthalate The reaction was carried out with 1666 parts by weight of luic acid.
実施例 6 Aでは実施例 1 Aと同様に、 ただし実施例 1 Aで用いたハイ ド 口タルサイ トをジエチレングリコールに 4重量%分散したものを 6 2重量 部、 3—メチル— 1, 5 —ペン夕ンジオール 1 6 5重量部とイソフ夕ル酸 1 6 6重量部とを反応させた。  In Example 6A, as in Example 1A, except that the talcite used in Example 1A was dispersed at 4% by weight in diethylene glycol, 62 parts by weight, 3-methyl-1,5-pentene were used. 16.5 parts by weight of evening diol and 1666 parts by weight of isofluoric acid were reacted.
実施例 1 Aと同様に評価した。 評価結果を表 1に示す。 Evaluation was performed in the same manner as in Example 1A. Table 1 shows the evaluation results.
(比較例 1 A、 2 A )  (Comparative Example 1A, 2A)
ハイ ドロタルサイ 卜を用いることなく実施例 1 Aおよび 4 Aと同様の組 成を有するポリエステル樹脂を得た。 実施例 1 Aと同様に評価した。 評価 結果を表 1に示す。  A polyester resin having the same composition as in Examples 1A and 4A was obtained without using a hydrotalcite. Evaluation was performed in the same manner as in Example 1A. Table 1 shows the evaluation results.
(比較例 3 A )  (Comparative Example 3A)
比較例 1 Aのポリエステル樹脂溶液 (溶媒 : メチルェチルケトンノトル ェン = 1 Z 1重量比) にハイ ドロタルサイ トを固形分重量比で 1 0 0対 2 の割合で混合し、 ガラスビーズを添加しペイントシエ一カーで 6時間振盪 分散を行った。 この分散液から実施例 1 Aと同様に乾燥塗膜を得た。 実施 例 1 Aと同様に評価した。 評価結果を表 1に示す。  Comparative Example 1 Hydrotalcite was mixed with the polyester resin solution of 1A (solvent: methyl ethyl ketone toluene: 1 Z 1 weight ratio) at a solids weight ratio of 100: 2, and glass beads were added. The mixture was shaken and dispersed in a paint shaker for 6 hours. From this dispersion, a dried coating film was obtained in the same manner as in Example 1A. Evaluation was performed in the same manner as in Example 1A. Table 1 shows the evaluation results.
(比較例 4 A、 5 A )  (Comparative Example 4A, 5A)
実施例 1 Aと同様に、 ただし、 3—メチルー 1, 5 —ペンタンジオール Zハイ ドロタルサイ 卜分散物の濃度を変更してハイ ドロタルサイ 卜の含有 量の異なるポリエステル組成物を得た。 比較例 4 Aと 5 Aはハイ ド口タル サイ トの含有量が本発明の範囲外になる。 実施例 1 Aと同様に評価した。 評価結果を表 1に示す。 比較例 5 Aは得られた塗膜が非常に脆く、 5 0 % 引張弾性率と水蒸気バリァ性を測定することが出来なかった。 表 1 ポリエステル樹脂組成物の特性 As in Example 1A, except that the concentration of the 3-methyl-1,5-pentanediol Z hydrotalcite dispersion was changed to obtain polyester compositions having different hydrotalcite contents. In Comparative Examples 4A and 5A, the content of the hide mouth talcite is out of the range of the present invention. Evaluation was performed in the same manner as in Example 1A. Table 1 shows the evaluation results. In Comparative Example 5A, the obtained coating film was very brittle, and the 50% tensile modulus and the water vapor barrier property could not be measured. Table 1 Properties of polyester resin composition
Figure imgf000013_0001
Figure imgf000013_0001
IPA:イソフタル酸 MPD:3—メチルー 1, 5—ペンタン オール DSN: 5—ナトリウムスルホイソフタル酸 EG:エチレングリコール  IPA: isophthalic acid MPD: 3-methyl-1,5-pentanol DSN: 5-sodium sulfoisophthalic acid EG: ethylene glycol
DEG:ジエチレングリコール DEG: Diethylene glycol
(実施例 7 A、 8 A、 9 A) (Examples 7A, 8A, 9A)
1 9 88年発行の Inorganic Chemistry, vol27, 462 8ページに記載 された方法により合成したテレフタル酸ァニオンをィン夕一力レートした ハイドロタルサイ ト (Mg4A l 2 (OH) 12 (TA) · 4Η20) 、 (Τ Αはテレフタル酸イオンを表す) 1 0重量部をエチレングリコール 90重 量部に分散させた。 実施例 1 Aで用いた温度計、 攪拌機、 留出用冷却管を 具備した反応容器にテレフタル酸 1 6 6重量部、 上記のハイ ドロタルサイ トを分散させたエチレングリコールを 1 8. 9重量部 (ハイ ドロタルサイ ト 1. 9重量部、 エチレングリコール 1 7重量部) 、 エチレングリコール 1 07重量部を仕込み、 加圧下でエステル化反応を実施した。 その間に温 度は 2 30 まで達した。 重縮合反応触媒としてテトラブチルチ夕ネート 0. 0 7重量部仕込み、 その後系内を徐々に減圧し、 最終的に 0. 1mm Hgに達した。 その時の温度は 27 Ot:を保持させた。 このようにしてハ ィ ドロタルサイ トを 1重量%含有する高粘度のポリエチレンテレフ夕レー ト (P ETともいう) 組成物を得た。 1 9 A hydrotalcite (Mg 4 Al 2 (OH) 12 (TA), which was prepared from terephthalic acid anion synthesized by the method described in Inorganic Chemistry, vol. 27, 462, p. · 4Η 2 0), (the T Alpha was dispersed) 1 0 parts by weight represents terephthalic acid ion to 90 by weight of ethylene glycol. In a reaction vessel equipped with a thermometer, a stirrer, and a distilling cooling tube used in Example 1A, 166 parts by weight of terephthalic acid and 18.9 parts by weight of ethylene glycol in which the above-mentioned hydrosite was dispersed (18.9 parts by weight) 1.9 parts by weight of hydrotalcite, 17 parts by weight of ethylene glycol) and 107 parts by weight of ethylene glycol were charged, and the esterification reaction was carried out under pressure. During that time, the temperature reached 230. 0.07 parts by weight of tetrabutyl titanate was charged as a polycondensation reaction catalyst, and then the pressure inside the system was gradually reduced to finally reach 0.1 mm Hg. The temperature at that time was maintained at 27 Ot :. Thus, a high-viscosity polyethylene terephthalate (also referred to as PET) composition containing 1% by weight of hydrotalcite was obtained.
得られた組成物をフエノールノテトラクロロェタンに溶解し、 還元粘度 を測定した。 また熱プレス法 (樹脂の融点、 軟化点以上まで加熱して樹脂 を溶融し、 圧力をかけて伸ばした後水冷により急冷する方法) により得ら れたフィルムの酸素バリア性を J I S K 7 1 26に従って測定した。 ま た、 ハイ ド口タルサイ トを含まない P ETを用いて、 同様の方法により得 たフィルムの酸素バリァ性を表 2に示した。  The obtained composition was dissolved in phenolnotetrachloroethane, and the reduced viscosity was measured. In addition, the oxygen barrier properties of the film obtained by the hot pressing method (a method in which the resin is melted by heating to above the melting point and softening point of the resin, stretched by applying pressure, and then rapidly cooled by water cooling) are measured in accordance with JISK 7126. It was measured. Table 2 shows the oxygen barrier properties of the films obtained by the same method using PET containing no talcite.
実施例 8 Aでは実施例 7で用いたハイ ドロタルサイ トを 1 , 3—プロパ ンジオールに分散させて、 同様の重合方法によりハイ ドロタルサイ トを分 散させたポリ トリメチレンテレフタレート (PTT) を得た。  In Example 8A, the hydrotalcite used in Example 7 was dispersed in 1,3-propanediol to obtain polytrimethylene terephthalate (PTT) in which the hydrotalcite was dispersed by the same polymerization method.
実施例 9 Aでは実施例 8と同様にしてハイ ドロタルサイ トを分散させた ポリテトラメチレンテレフ夕レート (P BT) を得た。  In Example 9A, polytetramethylene terephthalate (PBT) in which hydrotalcite was dispersed was obtained in the same manner as in Example 8.
それぞれの還元粘度と酸素バリア性を表 2に示す。 表 2 ポリエステル樹脂組成物の特性 Table 2 shows the respective reduced viscosities and oxygen barrier properties. Table 2 Properties of polyester resin composition
Figure imgf000015_0001
Figure imgf000015_0001
E G : エチレングリコール  E G: Ethylene glycol
T P A : テレフタル酸  T P A: Terephthalic acid
1 , 3 - P G : 1 , 3—プロパンジオール  1,3-PG: 1,3-propanediol
1 , 4 - BD : 1 , 4一ブタンジオール  1, 4-BD: 1, 4-butanediol
表 1、 2より明らかなように、 ポリエステルの重縮合時にハイ ド口タル サイ トを添加した実施例 1 A〜 9 Aは、 ハイ ドロタルサイ トを含まない比 較例 1 A、 2 Aや重縮合が終了してから単に配合しただけの比蛟例 3 A、 ハイ ドロタルサイ ト含有量が特許請求の範囲外の比較例 4 A、 5 Aに比べ て、 強度、 弾性率、 ガスバリア性が飛躍的に向上していることがわかる。  As is clear from Tables 1 and 2, Examples 1A to 9A, in which the hydrated talcite was added during the polyester polycondensation, were Comparative Examples 1A and 2A without the hydrotalcite and polycondensation. The strength, elastic modulus, and gas barrier properties are significantly higher than those of Comparative Example 3A, which is simply blended after completion, and Comparative Examples 4A, 5A, which have a hydrotalcite content outside the scope of the claims. It can be seen that it has improved.
(実施例 1 B)  (Example 1B)
攪拌装置つきガラス製反応容器に層状複水酸化物としてハイ ドロタルサ イ ト (戸田工業社製ハイ ド口タルサイ ト、 平均粒子サイズ 0. 1 5 /zm、 Mg/A lモル比 2. 7、 B ET表面積 1 8m2/g) 20重量部、 ェチレ ングリコール 80重量部を入れ内容物を 1 30 で 1 0分間加熱した。 ハ ィ ドロタルサイ トを含むエチレングリコール溶液は高粘度のペース卜状に なった。 また、 ハイ ド口タルサイ トの層間距離は X線回析による測定によ ると、 エチレングリコール中で加熱することにより 7. 5 Aから 8. 4 A に広がっていた。 Hydrotalcite as layered double hydroxide in a glass reactor equipped with a stirrer (Hydrotal talcite manufactured by Toda Kogyo Co., Ltd., average particle size 0.15 / zm, Mg / Al molar ratio 2.7, B (ET surface area 18 m 2 / g) 20 parts by weight and 80 parts by weight of ethylene glycol were added, and the content was heated at 130 for 10 minutes. The ethylene glycol solution containing hydrotalcite turned into a paste with high viscosity. According to the measurement by X-ray diffraction, the interlayer distance of the talcite at the mouth was widened from 7.5 A to 8.4 A by heating in ethylene glycol.
温度計、 攪拌機、 留出用冷却管を具備した反応容器にイソフ夕ル酸ジメ チル 1 94重量部、 3—メチルー 1 , 5—ペンタンジオール 236重量部 と上記のハイ ドロタルサイ トノエチレングリコール溶液 (2 8重量比) 24. 8重量部、 反応触媒としてテトラブチルチ夕ネート 0. 068重量 部を仕込み、 1 8 (TCまで昇温した。 エステル交換反応によるメタノール の溜出を続けながら、 23 O :まで昇温する間にエステル交換反応を終了 した。 その後、 系内を徐々に減圧し、 最終的に 0. 3mmHgに達した。 その時の温度は 260でを保持させた。 このようにして、 ハイ ド口タルサ ィ トを 2重量%含有するポリエステル樹脂組成物を得た。 In a reaction vessel equipped with a thermometer, a stirrer, and a distilling condenser, 194 parts by weight of dimethyl isophthalate and 236 parts by weight of 3-methyl-1,5-pentanediol And 24.8 parts by weight of the above hydrotalcite ethylene glycol solution (28 parts by weight) and 0.068 parts by weight of tetrabutyl titanate as a reaction catalyst were charged, and the mixture was heated to 18 (TC. While continuing the distillation, the transesterification reaction was completed while the temperature was raised to 23 O. Thereafter, the pressure in the system was gradually reduced to finally reach 0.3 mmHg, and the temperature at that time was maintained at 260. In this way, a polyester resin composition containing 2% by weight of a talcite at a mouth was obtained.
ポリエステルの組成を1 H— NMRにより分析した。 得られた組成物を フエノール テトラクロロェタン (6 4重量比) に溶解し、 還元粘度を 測定した。 また、 得られた組成物をメチルェチルケトン トルエン (= 1 1重量比) に溶解し、 二軸延伸ポリプロピレンフィルム上に塗布および 乾燥し、 プロピレンフィルムより剥がし取り、 樹脂組成物自身の塗膜を得 た。 塗膜の還元粘度、 ガラス転移温度、 50%引張弾性率、 保存弾性率、 溶 液安定性、 水蒸気バリア性を評価した。 結果を表 3に示す。 The composition of the polyester was analyzed by 1 H-NMR. The obtained composition was dissolved in phenol tetrachloroethane (64 weight ratio), and the reduced viscosity was measured. Also, the obtained composition was dissolved in methyl ethyl ketone toluene (= 11 weight ratio), applied and dried on a biaxially oriented polypropylene film, peeled off from the propylene film, and the resin composition itself was coated. Obtained. The reduced viscosity, glass transition temperature, 50% tensile modulus, storage modulus, solution stability, and water vapor barrier properties of the coating film were evaluated. Table 3 shows the results.
(実施例 2 B)  (Example 2B)
実施例 1 Bと同様に、 ただし、 実施例 1 Bで用いたハイ ドロタルサイ ト /エチレングリコール (2Z8) 溶液 6. 2重量部とエチレングリコール 1 5重量部を用いてハイ ドロタルサイ トを 0. 5重量%含有するポリエス テル樹脂組成物を得た。実施例 1 Bと同様に評価した。結果を表 3に示す。 (実施例 3 B)  As in Example 1B, except that the hydrotalcite / ethylene glycol (2Z8) solution used in Example 1B 6.2 parts by weight and the ethylene glycol 15 parts by weight, the hydrotalcite 0.5 parts by weight % Of a polyester resin composition. Evaluation was performed in the same manner as in Example 1B. Table 3 shows the results. (Example 3B)
温度計、 攪拌機、 留出用冷却管を具備した反応容器に実施例 1 Bで用い たハイ ドロタルサイ ト 1 9. 8重量部とエチレングリコール 40重量部を 仕込み、 1 50 で 1 0分間攪拌した。 更にイソフタル酸ジメチル 1 94 重量部、 3—メチル— 1, 5—ペンタンジオール 2 36重量部、 反応触媒 としてテトラブチルチ夕ネート 0. 06 8重量部を仕込み、 実施例 1と同 様にエステル交換反応、 重縮合反応を行い 8重量%のハイ ドロタルサイ ト を含有するポリエステル組成物を得た。 実施例 1 Bと同様に評価した。 結 果を表 3に示す。 (比較例 1 B ) A reaction vessel equipped with a thermometer, a stirrer, and a distilling cooling tube was charged with 19.8 parts by weight of the hydrotalcite used in Example 1B and 40 parts by weight of ethylene glycol, and stirred at 150 for 10 minutes. Further, 194 parts by weight of dimethyl isophthalate, 236 parts by weight of 3-methyl-1,5-pentanediol, and 0.08 parts by weight of tetrabutyl titanate as a reaction catalyst were charged, and the transesterification reaction was carried out in the same manner as in Example 1. A polycondensation reaction was carried out to obtain a polyester composition containing 8% by weight of hydrotalcite. Evaluation was performed in the same manner as in Example 1B. Table 3 shows the results. (Comparative Example 1B)
ハイ ドロタルサイ 卜を用いることなく実施例 1 Bと同様の組成を有する ポリエステル樹脂を得た。 実施例 1 Bと同様に評価した。 評価結果を表 3 に示す。  A polyester resin having the same composition as in Example 1B was obtained without using a hydrotalcite. Evaluation was performed in the same manner as in Example 1B. Table 3 shows the evaluation results.
(比較例 2 B )  (Comparative Example 2B)
比較例 1 Bのポリエステル樹脂溶液 (溶媒: メチルェチルケトン トル ェン = 1 1重量比) にハイ ドロタルサイ 卜を固形分重量比で 1 0 0対 2 の割合で混合し、 ガラスビーズを添加しペイントシエ一力一で 6時間振盪 分散を行った。 この分散液から実施例 1 Bと同様に乾燥塗膜を得た。 実施 例 1 Bと同様に評価した。 評価結果を表 3に示す。  Comparative Example 1 Hydrotalcite was mixed with the polyester resin solution of B (solvent: methyl ethyl ketone toluene = 11 weight ratio) at a weight ratio of solids of 100: 2, and glass beads were added. Shake and disperse for 6 hours with a paint shear. From this dispersion, a dried coating film was obtained in the same manner as in Example 1B. Evaluation was performed in the same manner as in Example 1B. Table 3 shows the evaluation results.
(比較例 3 B、 4 B )  (Comparative Examples 3B, 4B)
実施例 I Bと同様に、 ただし、 ハイ ド口タルサイ トノエチレングリコ一 ル分散物の濃度を変更してハイ ドロタルサイ 卜の含有量の異なるポリエス テル組成物を得た。 比較例 3 Bと 4 Bはハイ ド口タルサイ 卜の含有量が本 発明の範囲外になる。 実施例 1 Bと同様に評価した。 評価結果を表 3に示 す。 比較例 4 Bは得られた塗膜が非常に脆く、 5 0 %引張弾性率と水蒸気 バリア性を測定することが出来なかった。  In the same manner as in Example IB, except that the concentration of the hydrated talcite-to-ethylene glycol dispersion was changed to obtain a polyester composition having a different hydrotalcite content. In Comparative Examples 3B and 4B, the content of the talcite at the mouth was out of the scope of the present invention. Evaluation was performed in the same manner as in Example 1B. Table 3 shows the evaluation results. In Comparative Example 4B, the obtained coating film was very brittle, and the 50% tensile modulus and the water vapor barrier property could not be measured.
(比較例 5 B )  (Comparative Example 5B)
温度計、 攪拌機、 留出用冷却管を具備した反応容器に実施例 1 Bで用い たハイ ド口タルサイ ト 1 9 . 8重量部と 3 —メチル— 1 , 5—ペン夕ンジ オール 4 0重量部を仕込み、 1 5 0 °Cで 1 0分間攪拌した。 更にイソフタ ル酸ジメチル 1 9 4重量部、 3—メチル— 1, 5 —ペン夕ンジオール 2 3 6重量部、 反応触媒としてテトラブチルチクネート 0 . 0 6 8重量部を仕 込み、 実施例 1 Bと同様にエステル交換反応、 重縮合反応を行い 2重量% のハイ ドロタルサイ トを含有するポリエステル樹脂組成物を得た。  In a reaction vessel equipped with a thermometer, a stirrer, and a cooling pipe for distillation, 19.8 parts by weight of a talcite having a mouth opening used in Example 1B and 40 parts by weight of 3-methyl-1,5-pentendiol were used. Then, the mixture was stirred at 150 ° C. for 10 minutes. Further, 194 parts by weight of dimethyl isophthalate, 236 parts by weight of 3-methyl-1,5-pentanediol, and 0.068 parts by weight of tetrabutyl ticnate as a reaction catalyst were prepared. A transesterification reaction and a polycondensation reaction were carried out in the same manner as described above to obtain a polyester resin composition containing 2% by weight of hydrotalcite.
実施例 1 Bと同様に評価した。 結果を表 3に示す。 表 3 ポリエステル樹脂組成物の特性 Evaluation was performed in the same manner as in Example 1B. Table 3 shows the results. Table 3 Properties of polyester resin composition
Figure imgf000018_0001
Figure imgf000018_0001
IPA:イソフタヅレ酸  IPA: Isophthalic acid
MPD:3—メチル一 1, 5—ペンタンジオール EG:エチレングリコール MPD: 3-Methyl-1,5-pentanediol EG: Ethylene glycol
(実施例 4 B、 5 B、 6 B ) (Examples 4B, 5B, 6B)
表 4に記載した層状複水酸化物 2重量部、 エチレングリコール 1 2 4重 量部、 テレフタル酸 1 6 6重量部、 反応触媒としてテトラブチルチタネ一 ト 0 . 0 6 8重量部を、 温度計、 攪拌機、 留出用冷却管を具備した反応容 器に仕込み、加圧下でエステル化反応を実施した。その間に温度は 2 3 0で まで上げた。 温度が 2 0 0でを越える頃から溶融物は透明になった。 その 後系内を徐々に減圧し、 最終的に 0 . 5 mm H gに達した。 その時の温度 は 2 7 0でを保持させた。 このようにして層状複水酸化物を 1重量%含有 する高粘度のポリエチレンテレフ夕レート (P E T ) 組成物を得た。  2 parts by weight of the layered double hydroxide described in Table 4, 124 parts by weight of ethylene glycol, 166 parts by weight of terephthalic acid, and 0.068 parts by weight of tetrabutyl titanate as a reaction catalyst were subjected to temperature. The mixture was charged into a reaction vessel equipped with a total, a stirrer, and a cooling pipe for distillation, and an esterification reaction was carried out under pressure. In the meantime, the temperature rose to 230. From around the time the temperature exceeded 200, the melt became transparent. Thereafter, the pressure in the system was gradually reduced, and finally reached 0.5 mmHg. The temperature at that time was kept at 270. Thus, a high-viscosity polyethylene terephthalate (PET) composition containing 1% by weight of the layered double hydroxide was obtained.
得られた組成物をフエノール/テトラクロロェタンに溶解し、 還元粘度 を測定した。 また、 熱プレス法 (ヒートプレスでポリエステル樹脂組成物 を 2 8 0でに加熱溶融し、 0 . 2 mm厚のフッ素系樹脂フィルムの間で圧 力をかけて薄くした後、 水で急冷固化し厚み約 2 5 mのフィルム状樹脂 組成物を得る方法)によって得られたフィルムの酸素バリァ性を測定した。 層状複水酸化物による酸素バリア効果を、 層状複水酸化物含有による酸素 透過量の減少比として表 4に記載した。  The obtained composition was dissolved in phenol / tetrachloroethane, and the reduced viscosity was measured. In addition, the polyester resin composition is heated and melted at 280 by a heat press method, and is then thinned by applying pressure between fluorine-based resin films having a thickness of 0.2 mm. A method for obtaining a film-like resin composition having a thickness of about 25 m) was measured for oxygen barrier properties. Table 4 shows the oxygen barrier effect of the layered double hydroxide as a reduction ratio of the amount of oxygen permeated by the layered double hydroxide.
(比較例 6 B、 7 B、 8 B )  (Comparative Examples 6B, 7B, 8B)
表 4に記載した層状複水酸化物 2重量部、 ビス (/3 —ヒドロキシェチル) テレフ夕レート 2 5 4重量部、反応触媒としてテトラブチルチタネート 0 . 0 6 8重量部を、 温度計、 攪拌機、 留出用冷却管を具備した反応容器に仕 込み、 系内の温度を 2 3 0でまで上げた。 その後系内を徐々に減圧し、 最 終的に 0 . 5 mm H gに達した。 その時の温度は 2 7 0でを保持させた。 このようにして層状複水酸化物を 1 %含有する高粘度のポリエチレンテレ フタレート (P E T ) 組成物を得た。 ただし、 層状複水酸化物は分散不良 で、 肉眼でも観察できる塊になっていた。 実施例 4 Bと同様に評価した。 結果を表 4に示す。 なお、 実施例 5 Bと比較例 6 B、 実施例 6 Bと比較例 7 B、 実施例 7 Bと比較例 8 Bはそれぞれ同じ層状複水酸化物を用いた。 表 4 ポリエステル樹脂組成物の特性 2 parts by weight of the layered double hydroxide described in Table 4, 254 parts by weight of bis (/ 3-hydroxyethyl) terephthalate, 0.068 parts by weight of tetrabutyl titanate as a reaction catalyst, a thermometer, The reactor was charged into a reaction vessel equipped with a stirrer and a distilling cooling tube, and the temperature in the system was raised to 230. Thereafter, the pressure in the system was gradually reduced, and finally reached 0.5 mmHg. The temperature at that time was kept at 270. Thus, a high-viscosity polyethylene terephthalate (PET) composition containing 1% of layered double hydroxide was obtained. However, the layered double hydroxide was poorly dispersed and formed a mass that could be observed with the naked eye. Evaluation was performed in the same manner as in Example 4B. Table 4 shows the results. The same layered double hydroxide was used for Example 5B and Comparative Example 6B, Example 6B and Comparative Example 7B, and Example 7B and Comparative Example 8B. Table 4 Properties of polyester resin composition
Figure imgf000020_0001
Figure imgf000020_0001
EG :エチレングリコール  EG: ethylene glycol
TPA:テレフタル酸  TPA: Terephthalic acid
BHET:ビス(/8—ヒドロキシェチル)亍レフタレ一ト BHET: bis (/ 8-hydroxyethyl) チ ル phthalate
表 3、 4より明らかなように、 ポリエステルの重縮合時に層状複水酸化 物を添加した実施例 1 B〜 6 Bは、 層状複水酸化物を含まない比較例 1 B や重縮合が終了してから単に配合しただけの比較例 2 B、 層状複水酸化物 含有量が特許請求の範囲外の比較例 3 B、 4 B、 エチレングリコールを使 わない比較例 5 B、 6 B、 7 B、 8 Bに比べて、 外観、 強度、 弾性率、 ガ スバリァ性が飛躍的に向上していることがわかる。 As is clear from Tables 3 and 4, Examples 1B to 6B in which the layered double hydroxide was added at the time of the polycondensation of the polyester were completed in Comparative Example 1B containing no layered double hydroxide and the polycondensation was completed. Comparative Examples 2B, 3B, 4B, and Comparative Examples 5B, 6B, and 7B in which ethylene glycol is not used. It can be seen that the appearance, strength, elastic modulus, and gas barrier properties are dramatically improved as compared with 8B and 8B.
産業上の利用可能性  Industrial applicability
本発明のポリエステル樹脂と層状複水酸化物とを複合した組成物の製造 方法によって、 層状複水酸化物がポリエステル樹脂中に極めて微細に分散 され、 機械的強度、 硬度、 剛性、 ガスバリア性等が改善されたポリエステ ル樹脂組成物を得ることができるので、 本発明のポリエステル樹脂組成物 はその特性を活かして、 エンジニアりングプラスチックとして電気 ·電子 部品などの各種成形品として使用できる。 また、 フィルム、 塗料、 繊維へ の応用も可能であり、 層状複水酸化物がポリエステル樹脂中に極めて微細 に分散されているので、 特に塗料やフィルムの原料として有用である。  By the method for producing a composition of the present invention in which the polyester resin and the layered double hydroxide are combined, the layered double hydroxide is extremely finely dispersed in the polyester resin, and the mechanical strength, hardness, rigidity, gas barrier property, and the like are improved. Since an improved polyester resin composition can be obtained, the polyester resin composition of the present invention can be used as an engineering plastic as various molded articles such as electric and electronic parts by utilizing its properties. It is also applicable to films, paints, and fibers, and is particularly useful as a raw material for paints and films because the layered double hydroxide is extremely finely dispersed in the polyester resin.

Claims

請求の範囲 The scope of the claims
1 . ポリエステル樹脂 1 0 0重量部および層状複水酸化物 0 . 1〜 1 0 重量部からなるポリエステル樹脂組成物の製造方法において、 層状複水酸 化物をポリエステル樹脂の重縮合が完了するまでの任意の段階で配合した 後、 重縮合を完了せしめることを特徴とするポリエステル樹脂組成物の製 造方法。 1. A method for producing a polyester resin composition comprising 100 parts by weight of a polyester resin and 0.1 to 10 parts by weight of a layered double hydroxide, wherein the layered double hydroxide is reacted until the polycondensation of the polyester resin is completed. A method for producing a polyester resin composition, comprising completing polycondensation after blending at an optional stage.
2 . 層状複水酸化物がハイドロタルサイ トであることを特徴とする請求 項 1に記載のポリエステル樹脂組成物の製造方法。  2. The method for producing a polyester resin composition according to claim 1, wherein the layered double hydroxide is hydrotalcite.
3 . ポリエステル樹脂 1 0 0重量部および層状複水酸化物 0 . 1〜 1 0 重量部のからなるポリエステル樹脂組成物の製造方法において、 グリコー ルにより膨潤した層状複水酸化物をポリエステル樹脂の重合工程において 重縮合が完了するまでの任意の段階で配合した後、 ポリエステル樹脂の重 縮合を完了せしめることを特徴とするポリエステル樹脂組成物の製造方法 t 3. A method for producing a polyester resin composition comprising 100 parts by weight of a polyester resin and 0.1 to 10 parts by weight of a layered double hydroxide, wherein the layered double hydroxide swollen by glycol is polymerized into a polyester resin. after the polycondensation has blended at any stage until completion in step, the manufacturing method t polyester resin composition characterized in that allowed to complete the polycondensation of the polyester resin
4 . 層状複水酸化物がハイドロタルサイ トであることを特徴とする請求 項 3に記載のポリエステル樹脂組成物の製造方法。 4. The method for producing a polyester resin composition according to claim 3, wherein the layered double hydroxide is hydrotalcite.
5 . 請求項 1〜4のいすれかに記載の方法により製造されたポリエステ ル樹脂組成物。  5. A polyester resin composition produced by the method according to any one of claims 1 to 4.
PCT/JP2003/001379 2002-02-08 2003-02-10 Polyester resin composition and process for producing the same WO2003066734A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003207208A AU2003207208A1 (en) 2002-02-08 2003-02-10 Polyester resin composition and process for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-32739 2002-02-08
JP2002032739A JP2003231743A (en) 2002-02-08 2002-02-08 Polyester resin composition and method for producing the same
JP2002167465A JP4139991B2 (en) 2002-06-07 2002-06-07 Polyester resin composition and method for producing the same
JP2002-167465 2002-06-07

Publications (1)

Publication Number Publication Date
WO2003066734A1 true WO2003066734A1 (en) 2003-08-14

Family

ID=27736466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001379 WO2003066734A1 (en) 2002-02-08 2003-02-10 Polyester resin composition and process for producing the same

Country Status (2)

Country Link
AU (1) AU2003207208A1 (en)
WO (1) WO2003066734A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999035186A1 (en) * 1998-01-09 1999-07-15 Nederlandse Organisatie Voor Toegepast Natuurweten Schappelijk Onderzoek Tno Nanocomposite material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999035186A1 (en) * 1998-01-09 1999-07-15 Nederlandse Organisatie Voor Toegepast Natuurweten Schappelijk Onderzoek Tno Nanocomposite material

Also Published As

Publication number Publication date
AU2003207208A1 (en) 2003-09-02

Similar Documents

Publication Publication Date Title
US6818730B2 (en) Process to produce polyesters which incorporate isosorbide
JP2003527457A (en) Polyester-polyamide blends with reduced gas permeability and low haze
EP1112174A1 (en) Isosorbide containing polyesters and methods for making same
JPH06172506A (en) Preparation of modified polybutylene terephthalate resin
JP2013173870A (en) Polyester resin, and polyester film using the same
US5302690A (en) Process for preparing polyester resin and the polyester resin thereby prepared
JP3686260B2 (en) Layered inorganic substance-containing resin film
TW200422347A (en) Poloyester resins composition
WO2003066734A1 (en) Polyester resin composition and process for producing the same
JPH06116486A (en) Copolyester composition and film for bonding sheet metal
JP4139991B2 (en) Polyester resin composition and method for producing the same
JP4662633B2 (en) Blend of poly (1,3-propylene 2,6-naphthalate)
JP4717236B2 (en) Adhesive polyester and laminate
JP2003246918A (en) Polybutylene terephthalate resin composition
JP2003231743A (en) Polyester resin composition and method for producing the same
JPH03252419A (en) Copolymerized polyester resin and resin composition
JPH0873710A (en) Reinforced polyester resin composition and preparation thereof
JP2973454B2 (en) Polyester production method
JP2641293B2 (en) Co-condensed polyester, its production method and its use
JP3593436B2 (en) Polyester resin composition and method for producing the same
CN117447687B (en) Low-warpage high-viscosity PETG copolyester and preparation method thereof
JP2005029638A (en) Polyester resin composition, and molded article, film and coating agent using the same
JP2010024370A (en) Polyester resin composition
JP2665074B2 (en) Polyester production method
JPH08120071A (en) Production of reinforced polyester resin composition

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP