WO2003064131A1 - Process for production of reclaimed fluororubber vulcanizates and compositions for the devulcanized fluororubbers to be reclaimed - Google Patents

Process for production of reclaimed fluororubber vulcanizates and compositions for the devulcanized fluororubbers to be reclaimed Download PDF

Info

Publication number
WO2003064131A1
WO2003064131A1 PCT/JP2003/000643 JP0300643W WO03064131A1 WO 2003064131 A1 WO2003064131 A1 WO 2003064131A1 JP 0300643 W JP0300643 W JP 0300643W WO 03064131 A1 WO03064131 A1 WO 03064131A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluororubber
vulcanization
vulcanized
reclaimed
regenerated
Prior art date
Application number
PCT/JP2003/000643
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuhiro Ohtani
Katsusada Tokuhira
Tsunayuki Okumura
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2003064131A1 publication Critical patent/WO2003064131A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/12Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by dry-heat treatment only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2019/00Use of rubber not provided for in a single one of main groups B29K2007/00 - B29K2011/00, as moulding material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method for producing a reclaimed fluorine rubber from a vulcanized fluorine rubber to be regenerated, through re-vulcanization, and a composition for a reclaimed unvulcanized fluoro rubber used for re-vulcanization.
  • Fluorororubber has excellent properties such as heat resistance, chemical resistance, and oil resistance, so it is used in applications where severe use conditions such as exposure to various chemicals and high temperatures are imposed, such as the automotive industry, aircraft industry, and semiconductors. Even in applications such as industry, it is used as a material for various parts.
  • Fluorororubber is usually used as a molded product after vulcanization, so it may be necessary to treat debris, defective products, used molded products, etc. at the same time as general molded products. .
  • vulcanized fluoro rubber has its excellent properties, which hinders chemical treatment, and because it produces corrosive decomposition products when burned, thermal recycling is not easy. Was.
  • Japanese Patent Application Laid-Open No. 61-68905 discloses that vulcanized fluororubber is heat-treated in the presence of oxygen and added to unvulcanized fluororubber to improve the processability during molding. Methods have been proposed to improve this. In this method, peroxide vulcanized fluorine Rubber is preferably used, but it is described that this gives an excellent product.Uncured fluororubber to which heat-treated fluororubber has been added is subjected to peroxide vulcanization in Examples. Therefore, it is considered to be used as a filler.
  • an object of the present invention is to provide a method for producing a reclaimed fluororubber from a vulcanized fluororubber to be regenerated, through re-vulcanization, and a composition for the above revulcanization. It is in.
  • the regenerated unvulcanized fluororubber (B) is vulcanized ( 2)
  • the present invention relates to a composition for reclaimed unvulcanized fluororubber used for obtaining a reclaimed vulcanized fluororubber (C) by vulcanization, comprising a reclaimed unvulcanized fluorororubber (B) and a vulcanizing agent Wherein the regenerated unvulcanized fluororubber (B) is obtained by heat-treating the regenerated vulcanized fluororubber (A), and the regenerated vulcanized fluororubber (A) ) Is a composition for a regenerated unvulcanized fluororubber, which is obtained by the vulcanization treatment (1).
  • the method for producing a reclaimed vulcanized fluorororubber of the present invention comprises the steps of: heating a reclaimed vulcanized fluororubber (A) to obtain a reclaimed unvulcanized fluororubber (B); By subjecting (B) to vulcanization (2), a reclaimed vulcanized fluororubber (C) is obtained.
  • the above-mentioned "regenerated vulcanized fluorororubber (A)” means a vulcanized fluororubber which is a material to be regenerated by the method of the present invention for producing a regenerated vulcanized fluororubber.
  • the “vulcanized fluoro rubber” means a fluoro rubber in a vulcanized state. Vulcanization usually involves curing.
  • the reclaimed vulcanized fluororubber (A) is not particularly limited as long as it is a vulcanized fluororubber to be regenerated in the method for producing a reclaimed vulcanized fluororubber of the present invention. It may be dust or defective products generated at that time, or may be used molded products.
  • regenerated unvulcanized fluororubber (B) is obtained by subjecting the regenerated vulcanized fluororubber (A) to a heat treatment in the method for producing a regenerated vulcanized fluororubber of the present invention.
  • unvulcanized fluoro rubber means fluoro rubber which is in a substantially unvulcanized state.
  • reclaimed vulcanized fluorororubber (C) is a reclaimed product obtained by reclaiming in the method for producing a reclaimed vulcanized fluorororubber of the present invention.
  • B) means a vulcanized fluoro rubber obtained by re-vulcanizing.
  • the vulcanized fluoro rubber for the regenerated vulcanized fluoro rubber (C) is the same as the vulcanized fluoro rubber described for the regenerated vulcanized fluoro rubber (A).
  • the reclaimed unvulcanized fluororubber (B ) Is, as it were, an intermediate obtained in the process of obtaining a regenerated vulcanized fluororubber (C), which is a regenerated product obtained by regenerating from the regenerated vulcanized fluororubber (A). I can say.
  • the “vulcanized fluorororubber” means a fluororubber in a vulcanized state, and is not particularly limited as long as it is a fluororubber in such a state.
  • it may be a non-vulcanized fluoro rubber or a fluoro rubber obtained by subjecting an unvulcanized fluoro rubber thread to a vulcanization treatment. It may refer to both the fluororubber, that is, both the above-mentioned regenerated vulcanized fluororubber (A) and the above-mentioned regenerated vulcanized fluororubber (C). It is a term generally used for vulcanized fluoro rubber other than vulcanized fluoro rubber in the method for producing a reclaimed vulcanized fluoro rubber of the present invention.
  • the unvulcanized fluororubber composition is usually composed of an elastomeric fluoropolymer and a vulcanizing additive usually used for rubber vulcanization, and is subjected to vulcanization. Not what it is.
  • the additive for vulcanization depends on the vulcanization method used, such as polyol vulcanization or noxide vulcanization, but generally includes vulcanizing agents, vulcanization accelerators, and acid acceptors.
  • the components other than the vulcanizing agent are usually optional components that are optionally used for accelerating vulcanization and the like.
  • the “elastomer-containing fluoropolymer” is an ethylenic polymer having a fluorine atom directly bonded to a carbon chain which is a main chain, and is obtained by vulcanization. It refers to those that have elastomeric properties such as fluorosulfur rubber.
  • the vulcanized fluororubber is made of a molecule in which a crosslinking site is bonded to a carbon chain derived from the elastomeric fluoropolymer.
  • a cross-linking molecule is sometimes referred to as a cross-linking molecule.
  • the “crosslinking site” is a site that is chemically bonded to the elastomeric fluoropolymer by vulcanization, and is derived from the vulcanizing agent used in the vulcanization. Which means a part forming a so-called bridge.
  • the cross-linking site may form a bond between two sites in one molecule of the elastomeric fluoropolymer, or may be one of the elastomeric fluoropolymers.
  • a bond may be formed between a site in a molecule and a site in another molecule.
  • such a site where the above-described cross-linking site is bonded in the molecule of the elastomeric fluoropolymer may be referred to as a “cross-linking point”.
  • the unvulcanized fluoro rubber is made of a crosslinkable fluoropolymer.
  • the crosslinkable fluoropolymer comprises a carbon chain derived from the elastomeric fluoropolymer, and a small amount of the crosslinking site may be bonded to the carbon chain.
  • a small amount of the crosslinked portion is a crosslinked portion which remains without being decomposed when the regenerated vulcanized fluororubber (A) is subjected to heat treatment in the method for producing a regenerated vulcanized fluororubber of the present invention.
  • Rank. It is considered that a small amount of crosslinked sites usually remain due to the above heat treatment.
  • the carbon chains derived from the elastomeric fluoropolymer are not usually cut by the heat treatment, the carbon chains originate from the elastomeric fluoropolymer in the crosslinked molecules forming the regenerated vulcanized fluororubber (A). Substantially the same as the carbon chain.
  • the unvulcanized fluoro rubber is different from the vulcanized fluoro rubber in that it has a processable viscosity. As the processable viscosity, it is usually preferable to have a Mooney viscosity (ML 1 +10 , 100 ° C.) of 5 to 200.
  • elastomeric fluoropolymer when simply referred to as “elastomeric fluoropolymer”, the above-mentioned crosslinking site is not bonded.
  • elastomeric fluorine-containing polymer is a fluorine-containing polymer that has been obtained by polymerization to have elastomeric properties and has not been subjected to vulcanization treatment. It may be compounded in a rubber composition.
  • the elastomeric fluorine-containing polymer is distinguished from the crosslinked molecules forming the vulcanized fluororubber in that it has not been vulcanized and has no crosslinked portion bonded thereto.
  • crosslinkable fluoropolymer that forms a fluororubber, that is, one in which a small number of crosslinkable sites are bonded to a carbon chain derived from an elastomeric fluoropolymer.
  • the recycled vulcanized fluoro rubber (C) is obtained by re-vulcanizing as described above.
  • the “re-vulcanization” means vulcanizing the unvulcanized fluoro rubber. That is, the re-vulcanization is performed on an unvulcanized fluoro rubber made of a crosslinkable fluoropolymer. In the re-vulcanization, at least a part of the cross-linking site is decomposed by the heat treatment in the post-process of the cross-linkable fluoropolymer, but the vulcanization treatment is applied. This is distinguished from the so-called first vulcanization performed on an unvulcanized fluororubber composition comprising an elastomeric fluoropolymer having no cross-linking site bonded thereto.
  • the vulcanization method in the re-vulcanization may be the same as the first vulcanization method, or may be different. Both the re-vulcanization and the first vulcanization involve primary vulcanization, or primary vulcanization and secondary vulcanization, in the same manner as ordinary vulcanization.
  • the first vulcanization treatment is referred to as vulcanization treatment (1)
  • the re-vulcanization treatment is referred to as vulcanization treatment (2).
  • the above-mentioned recycled vulcanized fluororubber (C) is obtained by the first vulcanization described above in that it is obtained by re-vulcanization.
  • the vulcanization treatment method is the same, as a result, they may be composed of the same molecule, composition and the like.
  • the present inventors heat-treated the regenerated vulcanized fluororubber (A) comprising a cross-linked molecule in which the above-mentioned bridging site is bonded to a carbon chain derived from the above-mentioned elastomeric fluoropolymer, whereby the above-mentioned elastomer is obtained.
  • the bond at the cross-linking site can be cut before cutting the carbon chain derived from the unifunctional fluoropolymer, and the state obtained by the heat treatment can be re-vulcanized.
  • the method for producing a reclaimed vulcanized fluorororubber of the present invention comprises first heating the reclaimed vulcanized fluororubber (A) to obtain a reclaimed unvulcanized fluororubber (B).
  • the vulcanized fluoro rubber (A) is obtained by the vulcanization treatment (1).
  • the vulcanization treatment (1) is performed on an unvulcanized fluororubber composition.
  • the unvulcanized fluororubber composition comprises an elastomeric fluoropolymer and a vulcanizing additive.
  • Examples of the vulcanization of the fluororubber include those using a peroxide, those using a polyol, those using a polyamine, and the like. In order to efficiently perform selective cutting at the cut portion in the heat treatment of the fluororubber (A), it is preferable to use peroxide. In the present specification, vulcanization using peroxide may be referred to as peroxide vulcanization.
  • radicals generated from peroxide are added to a polyfunctional unsaturated compound to be blended substantially as a vulcanizing agent to generate another radical, and the latter radical is elastomeric fluorine-containing.
  • a bridge is formed by a chain reaction including a reaction to be added to a polymer.
  • the above polyfunctional unsaturated compound is referred to as a vulcanization aid, vulcanization accelerator or co-vulcanization agent in peroxide vulcanization. There is. The mechanism of such peroxide vulcanization will be described below, taking as an example the case where dialkyl peroxide is used as the peroxide and triaryl cyanurate is used as the polyfunctional unsaturated compound.
  • a crosslinked molecule obtained by vulcanization using a peroxide usually has a chemical structure derived from the vulcanization aid used at a crosslinked site. Cleavage of the bond at such a crosslinking site can be performed at a lower temperature than cleavage of the carbon-carbon bond in the carbon chain derived from the elastomeric fluoropolymer in the crosslinked molecule.
  • the heat treatment in the method for producing a recycled vulcanized fluororubber of the present invention focuses on the fact that there is a difference in the cutting temperature, and selectively cuts only the bond at the crosslinked site.
  • the crosslinked site in the obtained crosslinked molecule has a chemical structure derived from TAIC.
  • TAIC triallyl isocyanurate
  • a carbon chain derived from the aryl group of TAIC is bonded to the nitrogen constituting the saturated 6-membered ring.
  • This carbon chain is usually saturated with a bridge and is an n-propylene group. It is considered that the heat treatment breaks the bond between the nitrogen and the adjacent carbon or the bond between the adjacent carbon and the adjacent carbon among the bonds in the n-propylene group.
  • TAIC is considered to have the highest heat resistance among the vulcanization aids that can be used for peroxide vulcanization, and is obtained when peroxide vulcanization is performed using a vulcanization aid other than TAIC. Since the cross-linking site in the cross-linking molecule breaks the bond at a lower temperature than the chemical structure derived from TAIC, the difference in the above-mentioned cleavage temperature is large, and the selective cleavage of the bond at the cross-linking site is even more than when TAIC is used. It is considered easy. Therefore, as the vulcanization treatment (1), peroxide vulcanization is preferable, not limited to the case of using TAIC.
  • peroxide vulcanization When peroxide vulcanization is performed as the vulcanization treatment (1), the reaction of the above vulcanization treatment (1) is likely to proceed due to a chain reaction with radicals, and it is considered that there is no residual vulcanizing agent or the amount is small. Therefore, in the heat treatment, the cross-linking reaction substantially no longer occurs.
  • the use of peroxide vulcanization as the vulcanization treatment (1) is also preferable from the viewpoint that a crosslinked site can be cut without a crosslinking reaction in the above heat treatment.
  • the cross-linked molecule obtained by vulcanization using a polyol and the cross-linked molecule obtained by vulcanization using a polyamine generally have a bond breaking force at a cross-linking site, a carbon chain derived from an elastomeric fluoropolymer. Of the carbon-carbon bond at What happens at lower temperatures than cutting is similar to peroxide vulcanization. However, when a polyol or polyamine is used in the vulcanization treatment (1), it remains without reacting after the vulcanization treatment (1) during the heat treatment, in parallel with the cleavage of the bond at the cross-linking site. Vulcanization proceeds with the vulcanizing agent.
  • the peroxide used for the peroxide vulcanization is not particularly limited. However, an organic peroxide is preferred because it can easily generate a peroxide radical in the presence of heat or an oxidation-reduction system.
  • the organic peroxide that is, the organic peroxide, is not particularly limited.
  • dialkyl-based organic peroxide having two alkyl groups is preferable, and 2,5-dimethyl-1,2,5-di (t-butylperoxy) hexane is more preferable. Further, t-butyl peroxybenzoate is also preferable.
  • the amount of the above-mentioned organic peroxide to be used is appropriately determined in consideration of the amount of the active group of the dioxy group or the epidioxy group represented by the formula 1-O-1 in the organic peroxide, the decomposition temperature, and the like.
  • the amount is preferably 0.05 to 10 parts by weight, and more preferably 1.0 part by weight, more preferably 1.0 part by weight, based on 100 parts by weight of the elastomeric fluoropolymer.
  • the upper limit is 5 parts by weight.
  • the vulcanization is remarkably promoted by using a vulcanization aid.
  • the vulcanization aid is not particularly limited, for example, Examples thereof include those conventionally used. Examples of such compounds include triazine derivatives such as triaryl cyanurate and triallyl isocyanurate; triaryl trimellitate, ⁇ , ⁇ ′—m— Aromatic ring-containing compounds such as phenylene bismaleimide, dipropargyl terephthalate, diaryl phthalate, tetraaryl terephthalate amide; and acyclic compounds such as triacryl formal and triallyl phosphate.
  • the amount of the vulcanization aid is usually 0.1 to 10 parts by weight, preferably 0.1 to 10 parts by weight, and more preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the elastomeric fluoropolymer. Is 5 parts by weight, preferably 0.5 to 5 parts by weight.
  • the method of peroxide vulcanization is not particularly limited.
  • a roll vulcanization may be performed using an unvulcanized fluoro rubber composition comprising an elastomeric fluoropolymer and an additive for vulcanization by a method similar to the conventional method.
  • vulcanization followed by primary vulcanization under pressure and, if desired, secondary vulcanization.
  • the primary vulcanization conditions are temperature 100 to 200, time 5 to 60 minutes, pressure 2 to: range of about LOMPa. It is adopted in the range of about 30 minutes to 30 hours at 50 to 300 ° C.
  • the vulcanizing additive besides the vulcanizing agent, a vulcanization accelerator may be used as needed, and other additives which can be appropriately mixed may be used.
  • the reclaimed vulcanized fluororubber (A) is obtained by the vulcanization treatment (1), and is made of carbon derived from the elastomeric fluoropolymer in the above-mentioned unstripped fluororubber composition. It consists of a cross-linking molecule formed by linking a cross-linking site to a chain.
  • the reclaimed vulcanized fluororubber (A) is not particularly limited as long as it is such a substance.
  • the reclaimed vulcanized fluororubber (A) is, for example, one obtained by subjecting the main chain to one CFR 1 — CH 2- ( R 1 represents a cross-linking site, which can be said to consist of a copolymer having a site represented by: In the main chain of the copolymer constituting the regenerated vulcanized fluororubber (A), 1,1-difluoroethylene groups remain.
  • the copolymer obtained from the monomer component containing vinylidene fluoride is the above-mentioned elastomer-type fluorinated polymer. Body.
  • the above-mentioned elastomeric fluoropolymer is a polymer having a glass transition point of 25 ° C or lower. Therefore, the elastomeric fluoropolymer exhibits elasticity at room temperature.
  • a copolymer having a combination and composition exhibiting elastomeric properties can be used among copolymers obtained from monomer components containing vinylidene fluoride.
  • the above elastomer-containing fluorine-containing polymer is generally amorphous.
  • the elastomeric fluoropolymer is preferably a copolymer obtained from vinylidene fluoride and a monomer component containing perfluoroolefin and / or perfluorobutyl ether.
  • a copolymer obtained from a monomer component containing vinylidene fluoride and perfluoroolefin is more preferable.
  • perfluorophenol examples include olefins such as ethylene tetrahexenole and propylene hexanol.
  • perfluorobutyl ether perfluoro (alkyl vinyl ether) having 1 to 6 carbon atoms in a perfluoroalkyl group, represented by the following general formula:
  • CF 2 CFO (CF 2 CFX 1 0) n i- (CF 2 CF 2 CF 2 0) n2 -R f 1
  • X 1 represents a fluorine atom or a trifluoromethyl group, and represents a fluoropolyoxyalkyl group having 20 to 20 carbon atoms or a perfluoroalkyl group having 1 to 8 carbon atoms.
  • N1 and n2 are the same or different and each represent an integer of 0 to 5, provided that nl + n2 ⁇ 1.
  • the elastomeric fluorine-containing polymer may be used in addition to vinylidene fluoride, perfluoroolefin and Z or perfluorovinyl ether, and a monomer having a crosslinking group may be used as the monomer component of the elastomeric fluorine-containing polymer.
  • crosslinkable group-containing monomer means an ethylenically unsaturated compound having at least one iodine atom, Z or bromine atom as a crosslinkable group in a molecule.
  • Elastomer-containing rubber obtained from a monomer component containing the above-mentioned crosslinkable group-containing monomer
  • the nitrogen polymer has iodine and / or bromine bonded to the carbon constituting the main chain and / or the carbon constituting the side chain.
  • iodine and / or bromine provide a radical active point when peroxide vulcanization is performed as the vulcanization treatment (1). That is, in such an elastomeric fluorine-containing polymer, iodine, Z or bromine is easily eliminated by radicals generated from the peroxide in the peroxide vulcanization and has unpaired electrons, and this unpaired electron is added.
  • the elastomeric fluoropolymer has no iodine and no bromine, it has high resistance to attack by radicals, so that peroxide vulcanization hardly proceeds.
  • the above-mentioned "having no iodine and having no bromine” means that iodine [I] does not exist as an atom constituting a polymer such as an elastomeric fluoropolymer and bromine [ B r] does not exist.
  • the elastomeric fluoropolymer is obtained from a monomer component containing the crosslinkable group-containing monomer, it is obtained by polymerizing vinylidene fluoride and perfluoroolefin and Z or perfluorovinyl ether.
  • A is the segment obtained by
  • X 2 and X 3 are the same or different and represent a group derived from a polymerization initiator or a chain transfer agent or a group obtained by modification after polymerization.
  • Y represents a carbon atom having iodine and / or bromine.
  • N 3 represents an integer of 0 to 50, and n 4 represents an integer of 1 to 5, provided that n 3 X n 4 ⁇ l.
  • N 4 [A— (Y) n 3 ] may be the same or different, and if different, 114, n 4 Y and n And the four n 3 's may be the same or different.) It is preferable that they have a chemical structure represented by the following formula:
  • Y in the above formula may be introduced by any of block copolymerization, graft copolymerization, alternating copolymerization, and random copolymerization.
  • X 2 and X 3 can be arbitrarily changed by selecting the type and amount of the polymerization initiator and / or chain transfer agent used during the polymerization of the elastomeric fluoropolymer, and It can also be changed arbitrarily by modifying the terminal group obtained by polymerization.
  • X 2 And X 3 is preferably a propyloxyl group, an alkoxycarbonyl group, a nitrile group, an iodine atom, a bromine atom or a sulfonic acid group.
  • n5 represents an integer of 1 to 5
  • n6 represents an integer of 0 to 3.
  • Preferred examples of the iodine-containing fluorinated butyl ether include:
  • the elastomeric fluoropolymer can be produced by, for example, a conventionally known method. For example, a polymerization method such as emulsion polymerization or suspension polymerization can be used.
  • the crosslinked molecule in the regenerated vulcanized fluororubber (A) is a crosslinked molecule bonded to a carbon chain derived from the elastomeric fluoropolymer, and is obtained by the vulcanization treatment (1). It is a thing. Accordingly, the carbon chain may have a difference in chemical structure from the elastomeric fluoropolymer in addition to having a cross-linking point where a cross-linking site is bonded.
  • the carbon chain contains iodine contained in the elastomeric fluoropolymer as apparent from the mechanism described above for peroxide vulcanization. And / or does not have bromine in the molecule.
  • the heat treatment is preferably performed at 240 to 400 ° C.
  • the decomposition temperature of fluorororubber is usually a temperature exceeding 400 ° C. It is considered that the carbon chain derived from the above-mentioned elastomeric fluoropolymer in the crosslinked molecule forming the rubber (A) is cleaved.
  • the crosslinked site of the fluororubber obtained by peroxide vulcanization is usually decomposed at a temperature of 240 ° C or higher.
  • the regenerated vulcanized fluororubber (A) In the cross-linking molecule, the above-mentioned cross-linking site alone can be selectively decomposed without substantially cutting the carbon chain derived from the elastomeric fluoropolymer.
  • the heating conditions for the heat treatment depend on the type and degree of vulcanization of the regenerated vulcanized fluororubber (A). However, from the point that the crosslinked portion can be sufficiently cut, the heating time is further determined by using a heating device, Depending on the processing conditions such as heating temperature and pressurizing pressure, etc., it cannot be said unconditionally.
  • heating at 300 ° C for example, the above-mentioned cross-linking site can be sufficiently cut in 168 hours or less, and usually no heating is performed. 24 to 100 hours under pressure.
  • the heat treatment is preferably performed in air (under an oxygen-containing atmosphere) because it is easily decomposed.
  • a reclaimed unvulcanized fluororubber (B) is obtained by subjecting the reclaimed vulcanized fluororubber (A) to a heat treatment.
  • the unvulcanized fluoro rubber to be regenerated is made of a crosslinkable fluoropolymer and has a workable viscosity.
  • the crosslinkable fluoropolymer comprises a carbon chain derived from the elastomeric fluoropolymer. Since this carbon chain is derived from the crosslinked molecule in the regenerated vulcanized fluororubber (A), for example, when peroxide is used in the vulcanization treatment (1), as in the case of the crosslinked molecule, it contains an elastomeric material. It has no iodine and no bromine that the fluoropolymer had.
  • the crosslinkable fluoropolymer may be one in which a small amount of a crosslinkable site is bonded to a carbon chain derived from the elastomeric fluoropolymer.
  • the cross-linking site is generally bonded to the carbon chain in a small amount as a result of the above-described heat treatment. However, even when the decomposition is sufficiently performed by the above-described heat treatment, the cross-linked portion is not bonded. Good.
  • the cross-linking site bonded to the carbon chain forms a bridge. Accordingly, the cross-linking site in the cross-linking molecule forming the regenerated vulcanized fluororubber (A) is broken by the heat treatment to become a part, and is not crosslinked, but carbon derived from the elastomeric fluoropolymer is not crosslinked. Those still bonded on the chain (hereinafter referred to as “crosslinking site residues”) are not included in the “crosslinking site bonded to the carbon chain”. Can be said to be in a state not bonded to the carbon chain.
  • the portion at which the bond was broken by the heat treatment was at least when peroxide was used in the vulcanization treatment (1).
  • the crosslinkable fluorine-containing polymer has a carboxyl group in the side chain.
  • This side chain is composed of a part of the chemical structure derived from the crosslinking site.
  • the side chain having a carboxyl group is one of the above-mentioned cross-linking site residues.
  • the unvulcanized rubber to be regenerated (B) is distinguished by the fact that the vulcanized rubber to be regenerated (A) is insoluble in polar solvents such as acetone and tetrahydrofuran, but soluble in the polar solvent. can do.
  • polar solvents such as acetone and tetrahydrofuran
  • the regenerated unvulcanized fluorororubber (B) Since the regenerated unvulcanized fluorororubber (B) is obtained by decomposing the crosslinked site of the crosslinked molecule of the regenerated vulcanized fluorororubber (A), it can be processed. Has viscosity. Therefore, the unvulcanized fluoro rubber (B) to be regenerated can be treated in substantially the same manner as the unvulcanized fluoro rubber composition, and can be vulcanized by various vulcanization methods. This vulcanization treatment is the vulcanization treatment (2) in the method for producing a reclaimed vulcanized fluororubber of the present invention.
  • the mechanism of vulcanization in the vulcanization treatment (2) is not particularly limited. And those obtained by reacting the crosslinkable sites of the fluorinated polymer.
  • the crosslinkable site is (i) a site in the main chain represented by one CFR 2 —CH 2 — (R 2 represents a fluorine atom or a bridge site residue), or (ii) an ionic group. It is.
  • the 1,1-difluoroethylene group in which R 2 is a fluorine atom in the formula (i) is usually preferably contained in the monomer component of the elastomeric fluorine-containing polymer. It is a divalent group derived from vinylidene fluoride.
  • the crosslinking site residue as R 2 in the above formula (i) is as described above as being a part of the crosslinking site cleaved by the heat treatment.
  • the ionic group is formed as a result of a bond at a cross-linking site being cut by heat treatment of the regenerated vulcanized fluororubber (A), and examples thereof include the above-mentioned carboxyl group.
  • the site (i) is preferable from the viewpoint of high crosslinkability, and the 1,1 difluoroethylene group is preferable as the site (i).
  • Examples of the vulcanization method comprising reacting the above-mentioned site (i) include a vulcanization method using a polyol and a vulcanization method using a polyamine.
  • the vulcanization method using a polyol may be referred to as polyol vulcanization
  • the vulcanization method using a polyamine may be referred to as polyamine vulcanization.
  • Polyol vulcanization used for vulcanization treatment (2) is generally carried out using a nucleophilic agent obtained by reacting calcium hydroxide with an osmium compound used as a vulcanization accelerator, for example, a 1,1-difluoroethylene group.
  • the compound is dehydrofluorinated from the site (i) described above, and a polyol compound used as a vulcanizing agent is added to the resulting double bond to form a crosslink, thereby causing crosslinking.
  • the generated hydrogen fluoride can be eliminated by reacting with the magnesium oxide used as the acid acceptor.
  • a polyol compound generally known as a vulcanizing agent for a fluororubber can be used as the polyol compound used in the vulcanization treatment (2).
  • a polyol compound for example, a polyhydroxy compound is preferable, and among them, a polyhydroxy aromatic compound is more preferable because a fluororubber excellent in heat resistance, mechanical strength, and the like is easily obtained.
  • the polyhydroxy aromatic compound include 2,2-bis (4-hydroxyphenyl) propane [bisphenol A] and 2,2-bis (4-hydroxyoxy).
  • Feninole) Perphnoleo-propane [bisphenol AF], resorcinol, 1,3-trihydroxybenzene, 1,7-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 1,6-dihydrido Xinaphthalene, 4,4'-dihydroxy-dipheninole, 4,4-dihydroxy-stinoleben, 2,6-dihydroxy-xylene-racene, hydroquinone, catechol, 2,2-bis (4-hydroxy-doxypheninole) butane [Bisphenol II], 4,4-bis (4-hydroxyphenyl) valeric acid, 2,2-bis (4-hydroxyphenyl) tetrafluorodichloropropane, 4,4'-jihidroxydiphenylinoresole Hong, 4, '-dihydroxydipheninoletone, tri (4-hydroxyphenyl) methane, 3,3', 5,5'-tetrak Le ⁇ , 3,
  • These polyhydroxy aromatic compounds may be an alkali metal salt or an alkaline earth metal salt, etc., but the acid coagulates the coagulated cross-linking molecules that will form the resulting reclaimed vulcanized fluororubber (C). It is preferable not to use these metal salts when the reaction is carried out by using.
  • an iridium compound generally known as a vulcanization accelerator for the polyol vulcanization of a fluororubber can be used.
  • an ammonium compound include an ammonium compound such as a quaternary ammonium salt, a phosphonium compound such as a quaternary phosphonium salt, an oxonium compound, a sulfonium compound, and the like. Ammonium salts and quaternary phosphonium salts are preferred.
  • quaternary ammonium salts include, for example, 8-methyl-1,8-diazabicyclo mouth [5.4.0] — 7-indesenium chloride, 8-methyl-1,8-diazabicyclo [5 4.00] 1-7-dedecenium iodide, 8-methyl-1,8-diazabicyclo [5.4.0] — 7-dedecenium hydroxide, 8-methyl-1 , 8 dia. Mouth [5. 4. 0] 1- 7-dimethyl sulphate methyl sulfate, 8-ethyl chloro 1, 8-dia. 1-mouth [5. 4.
  • quaternary phosphonium salts examples include tetrabutylphosphonium chloride, benzinoletriphenylenolephosphonium chloride, benzinoletrimethinolephosphonium chloride, and benzyltriptylphosphonium chloride.
  • the polyol compound used in the polyol vulcanization is usually 0.5 to 5 parts by weight, preferably 1 part by weight, and preferably 2 parts by weight, per 100 parts by weight of the crosslinkable fluoropolymer. And preferably 1 to 2 parts by weight.
  • the vulcanization accelerator used in the polyol vulcanization is usually 0.2 to 10 parts by weight, preferably 0.5 part by weight, and preferably upper limit, per 100 parts by weight of the crosslinkable fluoropolymer. 5 parts by weight, preferably 0.5 to 5 parts by weight.
  • the vulcanization of the polyol used as the vulcanization treatment (2) can be carried out in the same manner as in the prior art.
  • the primary vulcanization conditions are a temperature of 100 to 200 ° C, a time of 10 to 180 minutes, and a pressure of about 2 to 10 MPa.
  • the secondary vulcanization conditions are a temperature of 150 to 150 MPa. At 300 ° C, time is adopted from the range of about 30 minutes to 30 hours.
  • the polyamine vulcanization used as the vulcanization treatment (2) is obtained by dehydrofluorination from the above-mentioned (i) site such as a 1,1-difluoroethylene group which is a crosslinkable site.
  • the polyamine compound used as a vulcanizing agent is added to the resulting double bond to form a bridge, and further dehydrofluorination at the cross-linking point to form a carbon-nitrogen double bond. By doing so, they are crosslinked.
  • the generated hydrogen fluoride can be eliminated by reacting it with magnesium oxide used as an acid acceptor.
  • Polyamine used for vulcanization treatment is a primary or secondary amine having two or more basic nitrogen atoms bonded in the molecule, and in many cases, these are salts. Use with reduced reactivity.
  • examples of the above-mentioned polyamine compounds include alkylenediamines such as ethylenediaminecarbamate, hexanemethylenediaminecarbamate, and 4,4-diaminecyclohexylmethanecarbamate; N, N, dicinnamylidene-1 And 6-hexamethylenediamine and the like.
  • a poorly basic aromatic polyamine compound can be used as a vulcanizing agent by using it together with another basic compound.
  • Examples of the other basic compounds include diphenyldananidin, di-O-triguanidine, diphenylthioperia, 2-mercaptoimidazoline, and the like.Also, it is a vulcanization accelerator for synthetic rubber and has an amino group in the molecule.
  • compounds having a group [one NH 2] and Z or an imino group [one NH-] may be a divalent metal hydroxides.
  • the amount of the polyamine compound used is preferably 0.5 to 5 parts by weight based on 100 parts by weight of the unvulcanized fluororubber to be regenerated (B).
  • a vulcanization method comprising reacting an ionic group such as a carboxyl group of (ii), that is, a vulcanization method utilizing an ionic group includes, for example, metal oxides. And the like. Such vulcanization may be referred to as ionic crosslinking.
  • a metal oxide such as zinc oxide acts on the lipoxyl group, for example, an ion cluster is formed between two carboxyl groups and a metal atom such as zinc. It is thought that by forming it, it will be a bridge.
  • the metal oxide used in the ion crosslinking is preferably 0.5 to 50 parts by weight per 100 parts by weight of the unvulcanized fluororubber (B) to be regenerated.
  • a method generally used for vulcanizing rubber can be used.
  • the ionic cross-linking is generally performed by adding a small amount of a fatty acid such as stearic acid.
  • the vulcanization in the vulcanization treatment (2) is such that the crosslinkable fluorinated polymer forming the uncured fluorinated rubber (B) to be regenerated has an elastomeric fluorinated content containing iodine and bromine.
  • peroxide curing is not suitable because vulcanization treatment (1) does not contain iodine and does not contain bromine, so it is not easily attacked by radicals.
  • the peroxide-cured fluororubber disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 61-69805 similarly does not have iodine in the molecule but has bromine. Instead, it is considered that the peroxide vulcanization after the heat treatment does not cause vulcanization, so it is considered that the heat-treated fluororubber is used as a filler.
  • the unvulcanized fluoro rubber (B) to be regenerated may be a blend of unvulcanized fluoro rubber.
  • the unvulcanized fluorororubber is not particularly limited as long as it can be vulcanized by vulcanization treatment (2), and is selected according to the vulcanization method to be used.
  • a fluoropolymer having a 1,1-difluoroethylene group is preferable.
  • ionic cross-linking for example, a carboxyl group A fluorine-containing polymer obtained from a monomer component containing an ethylenically unsaturated compound having the following can be used.
  • the molding method is not particularly limited, and includes, for example, known methods such as a method of heating and compressing using a mold, a method of press-fitting into a heated mold, and a method of extruding and steam heating with an extruder. .
  • the above molding is usually performed in primary vulcanization.
  • the molded product obtained by the above vulcanization 17 is subjected to secondary vulcanization by further heating. May be used.
  • the reclaimed vulcanized fluorororubber (C) obtained by the method for producing a reclaimed vulcanized fluorororubber of the present invention may be composed of other compounding agents, if necessary, in addition to the crosslinking molecule and the vulcanizing additive. .
  • the above other compounding agents are not blended with non-vulcanized fluororubber, composites, regenerated vulcanized fluororubber ( ⁇ ) and ⁇ or regenerated unvulcanized fluororubber ( ⁇ ).
  • the above-mentioned other compounding agents are not particularly limited.
  • various compounding agents generally used for rubber can be used. Examples of such compounds include fillers, processing aids, plasticizers, and softeners. Agents, anti-aging agents and the like.
  • filler metal oxides such as magnesium oxide, calcium oxide, titanium oxide, silicon oxide, and aluminum oxide
  • metal hydroxides such as magnesium hydroxide, aluminum hydroxide, and calcium hydroxide
  • magnesium carbonate Carbonates such as aluminum, aluminum carbonate, calcium carbonate and barium carbonate
  • silicates such as magnesium silicate, calcium silicate, sodium silicate and aluminum silicate
  • sulfates such as aluminum sulfate, calcium sulfate and barium sulfate
  • synthetic hydrotalcite Metal sulfides such as sulfide, molybdenum disulfide, iron sulfide, and sulfur sulfide, as well as diatomaceous earth, asbestos, lithobon (zinc sulfide / barium sulfide), graphite, carbon black, carbon fluoride, calcium fluoride, Coke, wet silica, dry silica Quartz fine powder, zinc oxide, talc, mica powder, Wallace Tokyo DOO, carbon fibers, Arami de
  • processing aid examples include higher fatty acids such as stearic acid, oleic acid, palmitic acid, and lauric acid; higher fatty acid salts such as sodium stearate and zinc stearate; stearic acid amide, oleic acid amide; Higher fatty acid esters such as ethyl oleate; higher aliphatic amines such as stearylamine and oleylamine; petroleum-based waxes such as carnauba wax and ceresin wax; ethylene glycolone, glycerin, diethylene glycol and the like.
  • higher fatty acids such as stearic acid, oleic acid, palmitic acid, and lauric acid
  • higher fatty acid salts such as sodium stearate and zinc stearate
  • stearic acid amide, oleic acid amide Higher fatty acid esters such as ethyl oleate
  • higher aliphatic amines such as stearylamine and oley
  • Polyglycorone; ⁇ In addition to other aliphatic hydrocarbons such as serine, paraffin, etc., silicone oil, silicone polymer, low molecular weight polyethylene, phthalates, ester phosphates, rosin, dianolequinoleamine, halogen Jianore Kill Min, Jianorekinore sulfonated, halogenated dialkyl sulfone, surfactants, and the like.
  • the plasticizer include phthalic acid derivatives and sebacic acid derivatives.
  • the softening agent include lubricating oil, process oil, coal tar, castor oil, calcium stearate, and the like.
  • Examples thereof include phenylenediamines, phosphates, quinolines, cresols, phenols, and dithiocarbamate metal salts.
  • a coloring agent, an ultraviolet absorber, a flame retardant, an oil resistance improver, a foaming agent, a scorch inhibitor, a tackifier, a lubricant, and the like can be arbitrarily compounded.
  • the reclaimed vulcanized fluorororubber (C) obtained by the method for producing a reclaimed vulcanized fluorororubber of the present invention has excellent heat resistance, oil resistance, solvent resistance, chemical resistance, weather resistance, and the like. It can be used in the same manner as vulcanized fluororubber obtained by vulcanization, and can withstand sufficient use even under severe conditions such as exposure to high temperatures and chemicals. Having.
  • Applications of the reclaimed vulcanized fluoro rubber (C) include, for example, parts for automobiles.
  • Parts for automobiles include, for example, the engine itself; the engine's main motion system, valve train, lubrication / cooling system; fuel system, intake / exhaust system, drive system transmission system, etc .; chassis steering system, brake system, etc.
  • Electrical components such as basic electrical components, electrical components for control systems, and electrical components.
  • C recycled vulcanized fluoro rubber
  • sealing materials include sealing materials, bellows, diaphragms, hoses, tubes, electric wires, etc., and these are particularly heat-resistant, oil-resistant, fuel-oil-resistant, and LLC-resistant. And those requiring steam resistance are preferred.
  • sealing material include gaskets, non-contact type and contact type packings, and examples of the packings include self-sealing packing, piston ring, split ring type packing, mechanical seal, and oil seal.
  • Can be Recycled vulcanized rubber (C) can be used for the following specific applications, for example.
  • Gaskets such as cylinder head gasket, cylinder head cover gasket, oil pan packing, general gasket, etc. in the automobile engine body; o-rings, packing, timing blanket cover gasket, etc .; Hose; anti-vibration rubber for engine mount, etc.
  • Shaft seals such as crankshaft seals and camshafts in the main motion system of automobile engines.
  • Valve stem oil seals for engine valves in automotive engine valve trains In the lubrication and cooling systems for automobile engines, engine oil cooler hoses, oil return hoses, seal gaskets, etc. for engine oil coolers, tertiary hoses around radiators, and vacuum pump oil / rehousing for vacuum pumps.
  • Oil seals, diaphragms, valves, etc. for fuel pumps in automotive fuel systems filler (neck) hoses, fuel supply hoses, fuel return hoses, fuel hoses such as vapor (evaporative) hoses; fuel tank in-tank hoses, fillers Seals, tank packings, ink tank fuel pump mounts, etc .; fuel tube tubes and connector O-rings, etc .; fuel injector injector rings, injector sino ring, injector ring, plenum regulator diaphragm, Check valves, etc .; carburetor needle valve petals, acceleration pump pistons, flange gaskets, control hoses, etc .; valve seats, diaphragms, etc.
  • CAC combined air control equipment
  • intake manifold packing for exhaust manifold, exhaust manifold packing, etc.
  • EGR recirculation during exhaust
  • transmission bearing bearings In automotive transmission systems, transmission bearing bearings, oil seals, O-rings, packing, torque converter hoses, etc., AT transmission oil hoses, ATF hoses, O-rings, packings, etc.
  • the composition for a reclaimed unvulcanized fluorororubber of the present invention is used for obtaining a reclaimed vulcanized fluorororubber (C) by vulcanization, and comprises a regenerated unvulcanized fluorororubber (B) and a vulcanized rubber. It consists of a sulfurizing agent.
  • the reclaimed vulcanized fluororubber (C), the reclaimed unvulcanized fluororubber (B), and the vulcanizing agent are as described above for the method for producing a reclaimed vulcanized fluororubber of the present invention.
  • the vulcanization treatment (2) in the method for producing a reclaimed vulcanized fluorororubber is used as the vulcanizing agent. Therefore, as the vulcanizing agent, a polyol, a polyamine and Z or a metal oxide can be used.
  • composition for a reclaimed unvulcanized fluorororubber of the present invention may be used in the method for producing a reclaimed vulcanized fluororubber of the present invention, if necessary, in addition to the reclaimed unvulcanized fluororubber (B) and the vulcanizing agent.
  • a vulcanizing additive other than the vulcanizing agent, a compounding agent, and Z or unvulcanized fluororubber Is also good.
  • composition for reclaimed unvulcanized fluorororubber of the present invention has a processable viscosity. is necessary.
  • the viscosity is the same as that described above for the regenerated vulcanized fluoro rubber (B) in the method for producing a regenerated vulcanized fluoro rubber of the present invention.
  • the composition for a reclaimed unvulcanized fluororubber of the present invention is the above-mentioned composition, it is possible to regenerate the vulcanized fluororubber by performing the above vulcanization treatment (2). It is.
  • the above-mentioned vulcanization treatment (2) to the composition for a reclaimed unvulcanized fluororubber of the present invention, usually the molding as described above for the method of producing a reclaimed vulcanized fluororubber of the present invention is carried out simultaneously.
  • the composition for reclaimed unvulcanized fluorororubber of the present invention can be represented in the following two ways.
  • the first composition for a regenerated unvulcanized fluorororubber according to the present invention is used for obtaining a regenerated vulcanized fluorororubber (C) by vulcanization.
  • a vulcanizing agent wherein the unrecured unvulcanized fluororubber (B) is obtained by heat-treating the regenerated vulcanized fluororubber (A), and Vulcanized fluoro rubber (A) is characterized by being obtained by vulcanization (1).
  • the second composition for a regenerated unvulcanized fluororubber of the present invention is used for obtaining a regenerated vulcanized fluororubber (C) by vulcanization, and comprises a regenerated unvulcanized fluorororubber (B). ) And a vulcanizing agent, and the reclaimed unvulcanized fluororubber (B) is composed of a crosslinkable fluoropolymer, and the crosslinkable fluoropolymer contains iodine. It has no bromo group and has an ionic group such as a carboxyl group in the side chain.
  • the crosslinkable fluorine-containing polymer is as described above in the method of producing reclaimed vulcanized fluorororubber of the present invention. Therefore, the crosslinkable fluoropolymer may be one obtained by heat-treating a vulcanized fluororubber obtained by peroxide vulcanization. In this case, the peroxyside vulcanization results in It has no iodine and no bromine, and as a result of decomposing the crosslinked site by the above heat treatment, it has an ionic group such as a carboxyl group in the side chain.
  • a reclaimed vulcanized fluorororubber characterized by being obtained from the composition for a reclaimed unvulcanized fluororubber is also one of the present invention.
  • This recycled vulcanized rubber is As described above, the recycled vulcanized fluororubber (C) obtained by the method for producing a recycled vulcanized fluororubber of the present invention.
  • the method for producing a reclaimed vulcanized fluorororubber of the present invention is characterized in that a vulcanization treatment is performed on the composition for a reclaimed unvulcanized fluororubber to obtain a reclaimed vulcanized fluororubber. It is.
  • This method for producing recycled vulcanized fluororubber is referred to as the second method for producing recycled vulcanized fluororubber of the present invention.
  • the vulcanization treatment is the vulcanization treatment (2) described above in the method for producing a reclaimed vulcanized fluororubber of the present invention, and the reclaimed vulcanized rubber is used in the method for producing a reclaimed vulcanized fluororubber of the present invention.
  • Fluorororubber Iodine-containing VdFZTFEZHF P copolymer, trade name: Daiel G-952, manufactured by Daikin Industries, Ltd.
  • MT carbon black trade name: Thermax N—990, Cancarb
  • Triallyl isocyanurate TA IC, manufactured by Nippon Kasei Co., Ltd.
  • Peroxide trade name: Perhexa 2.5B, manufactured by Nippon Yushi Co., Ltd.
  • the regenerated vulcanized fluorororubber (A) was pulverized using two rolls and heated in an oven at 300 ° C. for 70 hours to produce a regenerated unvulcanized fluororubber (B).
  • This recured unvulcanized fluororubber (B) is kneaded with a roll in the composition shown in Table 1, then polyol vulcanized, press vulcanized at 170 ° C for 20 minutes, and cured at 230 ° C for 24 minutes.
  • Oven vulcanization was performed for an hour to produce a recured vulcanized fluoro rubber (C).
  • the vulcanizability of the kneaded compound was measured using a curast meter (manufactured by JSR). Table 2 shows the measured results.
  • the recycled vulcanized fluoro rubber (C) is drawn according to JISK 6251. Tensile strength and elongation at break were measured, and hardness (shore A) was measured according to JISK 6253. In addition, a compression set test was performed. Table 3 shows the measurement results.
  • Example 2 The recycled vulcanized fluoro rubber (C) is drawn according to JISK 6251. Tensile strength and elongation at break were measured, and hardness (shore A) was measured according to JISK 6253. In addition, a compression set test was performed. Table 3 shows the measurement results.
  • Example 2 The recycled vulcanized fluoro rubber (C) is drawn according to JISK 6251. Tensile strength and elongation at break were measured, and hardness (shore A) was measured according to JISK 6253. In addition, a compression set test was performed. Table 3 shows the measurement results.
  • Example 2 The recycled vulcanized fluoro rubber (C) is drawn according to JISK
  • polyamine vulcanization was carried out with the composition shown in Table 1, and press vulcanization was performed at 160 ° C for 20 minutes during the production of regenerated vulcanized fluororubber (C), followed by oven vulcanization at 200 ° C.
  • a recycled vulcanized fluororubber (c) was prepared and measured in the same manner as in Example 1 except that C was performed for 24 hours. Tables 2 and 3 show the measurement results.
  • a recured vulcanized fluororubber (C) was prepared in the same manner as in Example 1 except that vulcanization was carried out in combination with ion vulcanization and polyol vulcanization in the composition shown in Table 1 instead of vulcanization with polyol. A measurement was made. Tables 2 and 3 show the measurement results. Comparative Example 1
  • Bisphenolone A F 2,2-bis (4-hydroxyphenol) perfluor
  • DBU-B 8-Benzyl-1,8-diazabicyclo [5.4.0] — ⁇ —dedecenium hydroxide
  • Vulcanizing agent V—3 N, N'-dicinnamylidene 1,6-hexanediamine, dacardic # 2000: Calcium hydroxide, manufactured by Omi Chemical Industry Co., Ltd.
  • Kiyomag 150 Highly active magnesium oxide, manufactured by Kyowa Chemical Industry Co., Ltd.
  • Kiyomag 30 Low activity magnesium oxide, manufactured by Kyowa Chemical Industry Co., Ltd.
  • ZnO zinc oxide, manufactured by Sakai Chemical Industry Co., Ltd. Table 2
  • the method for producing a reclaimed vulcanized fluorororubber of the present invention has the above-described configuration, the vulcanized fluororubber can be regenerated from the vulcanized fluororubber through recasting.
  • the composition for unrecured unvulcanized fluororubber of the present invention enables such re-vulcanization, and the obtained reclaimed vulcanized fluororubber is the same as the fluororubber obtained by the first vulcanization. It has a wide range of uses.

Abstract

The invention provides a process for producing a reclaimed fluororubber from a waste fluororubber vulcanizate through revulcanization; a composition for the above revulcanization; and reclaimed fluororubber vulcanizates. A process for production of reclaimed fluororubber vulcanizates which comprises converting a waste fluororubber vulcanizate (A) into a devulcanized fluororubber (B) by thermal treatment and then subjecting the devulcanized fluororubber (B) to vulcanization (2) to form a reclaimed fluororubber vulcanizate (C), characterized in that the waste fluororubber vulcanizate (A) is one obtained by vulcanization (1).

Description

再生加硫フッ素ゴム製造方法及び被再生未加硫フッ素ゴム用組成物 技術分野  Method for producing recycled vulcanized fluoro rubber and composition for recycled unvulcanized fluoro rubber
本発明は、 被再生物である加硫したフッ素ゴムから再加硫を経て再生フッ素ゴ ムを製造する方法、 及び、 再加硫に用いられる被再生未加硫フッ素ゴム用組成物 に関する。 背景技術  The present invention relates to a method for producing a reclaimed fluorine rubber from a vulcanized fluorine rubber to be regenerated, through re-vulcanization, and a composition for a reclaimed unvulcanized fluoro rubber used for re-vulcanization. Background art
フッ素ゴムは、 耐熱性、 耐薬品性、 耐油性等に優れた特性を有するので、 種々 の薬品への暴露、 高温等の苛酷な使用条件が課される用途、 例えば自動車産業、 航空機産業、 半導体産業等の分野における用途であっても、 各種部品の材料等と して使用されている。  Fluororubber has excellent properties such as heat resistance, chemical resistance, and oil resistance, so it is used in applications where severe use conditions such as exposure to various chemicals and high temperatures are imposed, such as the automotive industry, aircraft industry, and semiconductors. Even in applications such as industry, it is used as a material for various parts.
フッ素ゴムは、 通常、 加硫して成形品等として用いるので、 一般の成形品と.同 様に、 成形時の屑や不良品、 使用済の成形品等の処理が必要となることがある。 しかしながら、 加硫したフッ素ゴムは、 その優れた特性がかえって化学的処理の 妨げとなり、 また、 燃焼させると腐食性分解物を生じるのでサーマルリサイクル も容易ではないことから、 これまでは埋め立て等により廃棄していた。  Fluororubber is usually used as a molded product after vulcanization, so it may be necessary to treat debris, defective products, used molded products, etc. at the same time as general molded products. . However, vulcanized fluoro rubber has its excellent properties, which hinders chemical treatment, and because it produces corrosive decomposition products when burned, thermal recycling is not easy. Was.
近年、 埋め立て量の削減等による環境保護、 資源の有効活用等に対する高意識 化に伴い、 従来廃棄していたフッ素ゴムを再利用する方法の開発が要望されるよ うになってきた。  In recent years, with the increasing awareness of environmental protection and effective use of resources by reducing the amount of landfills, etc., there has been a growing demand for the development of methods for reusing previously discarded fluororubber.
加硫したフッ素ゴムの再利用方法としては、 従来、 化学的処理や燃焼が適さな いのでフッ素ゴムとして再生させることは困難であり、 フッ素ゴム組成物にブレ ンドするための充填剤として用いることが実用化されているだけであった。 充填 剤として用いる方法としては、 加硫したフッ素ゴムを冷凍粉砕等により機械的に 粉砕して用いる方法があった。  Conventionally, it is difficult to recycle vulcanized fluororubber as a fluororubber because it is difficult to regenerate it as it is not suitable for chemical treatment or combustion. Has only been put to practical use. As a method used as a filler, there was a method in which vulcanized fluoro rubber was mechanically pulverized by freeze pulverization or the like.
特開昭 6 1 - 6 9 8 0 5号公報には、 加硫したフッ素ゴムを酸素の存在下で加 熱処理し、 未加硫フッ素ゴムに添加することにより、 成形時の口一ル加工性を改 良する方法が提案されている。 この方法では、 パーオキサイド加硫されたフッ素 ゴムが好ましく用いられるが、 これにより優れた生成物を与えると記載されてお り、 また、 加熱処理したフッ素ゴムを添加した未加硫フッ素ゴムは、 実施例でパ ーォキサイド加硫が行われているので、 充填剤として用いるものと考えられる。 このように、 従来、 加硫したフッ素ゴムの再利用方法としては、 フッ素ゴム組 成物に添加する充填剤として用いる方法しかなく、 再利用の途は極めて限定され ているという問題があった。 再利用の途を拡大し、 資源活用を促進するため、 加 硫したフッ素ゴムから再加硫を経てフッ素ゴムを再生する方法の開発が望まれて いた。 発明の要約 Japanese Patent Application Laid-Open No. 61-68905 discloses that vulcanized fluororubber is heat-treated in the presence of oxygen and added to unvulcanized fluororubber to improve the processability during molding. Methods have been proposed to improve this. In this method, peroxide vulcanized fluorine Rubber is preferably used, but it is described that this gives an excellent product.Uncured fluororubber to which heat-treated fluororubber has been added is subjected to peroxide vulcanization in Examples. Therefore, it is considered to be used as a filler. As described above, conventionally, the only method of reusing vulcanized fluororubber is to use it as a filler to be added to the fluororubber composition, and there has been a problem that the way of reusing is extremely limited. In order to expand the recycling process and promote resource utilization, it has been desired to develop a method for regenerating fluororubber from vulcanized fluororubber through re-vulcanization. Summary of the Invention
本発明の目的は、 上記現状に鑑み、 被再生物である加硫したフッ素ゴムから再 加硫を経て再生フッ素ゴムを製造する方法、 及び、 上記再加硫のための組成物を 提供することにある。  In view of the above situation, an object of the present invention is to provide a method for producing a reclaimed fluororubber from a vulcanized fluororubber to be regenerated, through re-vulcanization, and a composition for the above revulcanization. It is in.
本発明は、 被再生加硫フッ素ゴム (A) を加熱処理して被再生未加硫フッ素ゴ ム (B ) を得た後、 上記被再生未加硫フッ素ゴム (B ) に加硫処理 (2 ) を ¾す ことにより再生加硫フッ素ゴム (C ) を得ることよりなる再生加硫フッ素ゴム製 造方法であって、 上記被再生加硫フッ素ゴム (A) は、 加硫処理 (1 ) により得 られたものであることを特徴とする再生加硫フッ素ゴム製造方法である。  In the present invention, after the regenerated vulcanized fluororubber (A) is subjected to a heat treatment to obtain a regenerated unvulcanized fluororubber (B), the regenerated unvulcanized fluororubber (B) is vulcanized ( 2) A method of producing a reclaimed vulcanized fluororubber (C) by obtaining a reclaimed vulcanized fluororubber (C) by subjecting the reclaimed vulcanized fluororubber (A) to a vulcanization treatment (1). A method for producing a reclaimed vulcanized fluororubber, characterized by being obtained by the above method.
本発明は、 加硫により再生加硫フッ素ゴム (C ) を得るために用いられる被再 生未加硫フッ素ゴム用組成物であって、 被再生未加硫フッ素ゴム (B ) 及び加硫 剤からなるものであり、 上記被再生未加硫フッ素ゴム (B ) は、 被再生加硫フッ 素ゴム (A) を加熱処理して得られたものであり、 上記被再生加硫フッ素ゴム ( A) は、 加硫処理 (1 ) により得られたものであることを特徴とする被再生未加 硫フッ素ゴム用組成物である。 発明の詳細な開示  The present invention relates to a composition for reclaimed unvulcanized fluororubber used for obtaining a reclaimed vulcanized fluororubber (C) by vulcanization, comprising a reclaimed unvulcanized fluororubber (B) and a vulcanizing agent Wherein the regenerated unvulcanized fluororubber (B) is obtained by heat-treating the regenerated vulcanized fluororubber (A), and the regenerated vulcanized fluororubber (A) ) Is a composition for a regenerated unvulcanized fluororubber, which is obtained by the vulcanization treatment (1). Detailed Disclosure of the Invention
以下に本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明の再生加硫フッ素ゴム製造方法は、 被再生加硫フッ素ゴム (A) を加熱 処理して被再生未加硫フッ素ゴム (B ) を得た後、 上記被再生未加硫フッ素ゴム ( B ) に加硫処理 (2 ) を施すことにより再生加硫フッ素ゴム (C) を得ること よりなるものである。 The method for producing a reclaimed vulcanized fluororubber of the present invention comprises the steps of: heating a reclaimed vulcanized fluororubber (A) to obtain a reclaimed unvulcanized fluororubber (B); By subjecting (B) to vulcanization (2), a reclaimed vulcanized fluororubber (C) is obtained.
本明細書において、 上記 「被再生加硫フッ素ゴム (A) 」 とは、 本発明の再生 加硫フッ素ゴム製造方法により再生を受ける被再生物である加硫フッ素ゴムを意 味する。 本明細書において、 「加硫フッ素ゴム」 とは、 加硫された状態であるフ ッ素ゴムを意味する。 加硫は、 通常、 硬化を伴う。 上記被再生加硫フッ素ゴム ( A) としては、 このように本発明の再生加硫フッ素ゴム製造方法において被再生 物となる加硫フッ素ゴムであれば特に限定されず、 例えば、 フッ素ゴムの成形時 に生じた屑又は不良品であってもよいし、 使用済の成形品であってもよい。  In the present specification, the above-mentioned "regenerated vulcanized fluororubber (A)" means a vulcanized fluororubber which is a material to be regenerated by the method of the present invention for producing a regenerated vulcanized fluororubber. In the present specification, the “vulcanized fluoro rubber” means a fluoro rubber in a vulcanized state. Vulcanization usually involves curing. The reclaimed vulcanized fluororubber (A) is not particularly limited as long as it is a vulcanized fluororubber to be regenerated in the method for producing a reclaimed vulcanized fluororubber of the present invention. It may be dust or defective products generated at that time, or may be used molded products.
本明細書において、 上記 「被再生未加硫フッ素ゴム (B ) 」 とは、 本発明の再 生加硫フッ素ゴム製造方法において上記被再生加硫フッ素ゴム (A) を加熱処理 して得られる未加硫フッ素ゴムを意味する。 本明細書において、 「未加硫フッ素 ゴム」 とは、 実質的に加硫していない状態であるフッ素ゴムを意味する。  In the present specification, the above-mentioned “regenerated unvulcanized fluororubber (B)” is obtained by subjecting the regenerated vulcanized fluororubber (A) to a heat treatment in the method for producing a regenerated vulcanized fluororubber of the present invention. Means unvulcanized fluoro rubber. In the present specification, “unvulcanized fluoro rubber” means fluoro rubber which is in a substantially unvulcanized state.
本明細書において、 上記 「再生加硫フッ素ゴム (C ) 」 とは、 本発明の再生加 硫フッ素ゴム製造方法において再生して得られる再生物であって、 上記被再生未 加硫フッ素ゴム (B ) を再加硫して得られた加硫フッ素ゴムを意味する。 上記再 生加硫フッ素ゴム (C ) についての加硫フッ素ゴムは、 上記被再生加硫フッ素ゴ ム (A) について説明した加硫フッ素ゴムと同様である。  In the present specification, the above-mentioned “reclaimed vulcanized fluororubber (C)” is a reclaimed product obtained by reclaiming in the method for producing a reclaimed vulcanized fluororubber of the present invention. B) means a vulcanized fluoro rubber obtained by re-vulcanizing. The vulcanized fluoro rubber for the regenerated vulcanized fluoro rubber (C) is the same as the vulcanized fluoro rubber described for the regenerated vulcanized fluoro rubber (A).
上記被再生加硫フッ素ゴム (A) から上記再生加硫フッ素ゴム (C) を得るこ とよりなる本発明の再生加硫フッ素ゴム製造方法において、 上記被再生未加硫フ ッ素ゴム (B ) は、 いわば、 被再生物である上記被再生加硫フッ素ゴム (A) か ら、 再生して得られる再生物である再生加硫フッ素ゴム (C ) を得る過程におい て得られる中間体ともいえる。  In the method for producing a reclaimed vulcanized fluororubber of the present invention comprising obtaining the reclaimed vulcanized fluororubber (C) from the reclaimed vulcanized fluororubber (A), the reclaimed unvulcanized fluororubber (B ) Is, as it were, an intermediate obtained in the process of obtaining a regenerated vulcanized fluororubber (C), which is a regenerated product obtained by regenerating from the regenerated vulcanized fluororubber (A). I can say.
本明細書において、 上記 「加硫フッ素ゴム」 は、 上述のように、 加硫された状 態であるフッ素ゴムを意味するものであり、 このような状態であるフッ素ゴムで あれば特に限定されず、 例えば未加硫フッ素ゴム又は未加硫のフッ素ゴム糸且成物 に対し、 加硫処理を施して得られるフッ素ゴムであってよく、 本発明の再生加硫 フッ素ゴム製造方法における加硫フッ素ゴム、 即ち、 上記被再生加硫フッ素ゴム (A) 及び上記再生加硫フッ素ゴム (C ) の何れをも指すことがあり、 また、 本 発明の再生加硫フッ素ゴム製造方法における加硫フッ素ゴム以外の加硫フッ素ゴ ムについても一般的に用い得る用語である。 In the present specification, as described above, the “vulcanized fluororubber” means a fluororubber in a vulcanized state, and is not particularly limited as long as it is a fluororubber in such a state. For example, it may be a non-vulcanized fluoro rubber or a fluoro rubber obtained by subjecting an unvulcanized fluoro rubber thread to a vulcanization treatment. It may refer to both the fluororubber, that is, both the above-mentioned regenerated vulcanized fluororubber (A) and the above-mentioned regenerated vulcanized fluororubber (C). It is a term generally used for vulcanized fluoro rubber other than vulcanized fluoro rubber in the method for producing a reclaimed vulcanized fluoro rubber of the present invention.
上記未加硫のフッ素ゴム組成物は、 通常、 エラストマ一性含フッ素重合体、 及 び、 ゴム加硫のために通常用いられる加硫用添加剤からなるものであり、 加硫処 理を受けていないものである。 上記加硫用添加剤としては、 ポリオール加硫、 ノ ーォキサイド加硫等の用いる加硫方法によるが、 一般的に、 加硫剤、 加硫促進剤、 受酸剤等が挙げられ、 これらのうち加硫剤以外のものは、 通常、 加硫促進等のた め所望により用いる任意成分である。  The unvulcanized fluororubber composition is usually composed of an elastomeric fluoropolymer and a vulcanizing additive usually used for rubber vulcanization, and is subjected to vulcanization. Not what it is. The additive for vulcanization depends on the vulcanization method used, such as polyol vulcanization or noxide vulcanization, but generally includes vulcanizing agents, vulcanization accelerators, and acid acceptors. The components other than the vulcanizing agent are usually optional components that are optionally used for accelerating vulcanization and the like.
本明細書において、 上記 「エラストマ一性含フッ素重合体」 とは、 主鎖である 炭素鎖に直接結合しているフッ素原子を有しているェチレン性重合体であって、 加硫により上記加硫フッ素ゴムとなるようなエラストマ一性を有するものを意味 する。  In the present specification, the “elastomer-containing fluoropolymer” is an ethylenic polymer having a fluorine atom directly bonded to a carbon chain which is a main chain, and is obtained by vulcanization. It refers to those that have elastomeric properties such as fluorosulfur rubber.
上記加硫フッ素ゴムは、 上記エラストマ一性含フッ素重合体に由来する炭素鎖 に架橋部位が結合してなる分子からなるものである。 本明細書において、 このよ うな分子を架橋分子ということがある。 本明細書において、 上記 「架橋部位」 と は、 化学構造上、 上記エラストマ一性含フッ素重合体に加硫処理により結合した 部位であって、 加硫処理に用いた加硫剤に由来する部位であり、 いわゆる橋かけ を形成している部位を意味する。  The vulcanized fluororubber is made of a molecule in which a crosslinking site is bonded to a carbon chain derived from the elastomeric fluoropolymer. In the present specification, such a molecule is sometimes referred to as a cross-linking molecule. In the present specification, the “crosslinking site” is a site that is chemically bonded to the elastomeric fluoropolymer by vulcanization, and is derived from the vulcanizing agent used in the vulcanization. Which means a part forming a so-called bridge.
上記架橋部位は、 上記エラストマ一性含フッ素重合体の 1つの分子内における 2つの部位の間で結合を形成しているものであってもよいし、 上記エラストマ一 性含フッ素重合体の一つの分子における部位と他の分子における部位との間で結 合を形成しているものであってもよい。 本明細書において、 このような、 上記ェ ラストマ一性含フッ素重合体の分子において上記架橋部位が結合する部位を、 「 架橋点」 ということがある。  The cross-linking site may form a bond between two sites in one molecule of the elastomeric fluoropolymer, or may be one of the elastomeric fluoropolymers. A bond may be formed between a site in a molecule and a site in another molecule. In the present specification, such a site where the above-described cross-linking site is bonded in the molecule of the elastomeric fluoropolymer may be referred to as a “cross-linking point”.
上記未加硫フッ素ゴムは、 架橋性含フッ素重合体からなるものである。 上記架 橋性含フッ素重合体は、 上記エラストマ一性含フッ素重合体に由来する炭素鎖か らなるものであり、 この炭素鎖に上記架橋部位が少量結合していてもよい。 この ような少量の架橋部位は、 通常、 本発明の再生加硫フッ素ゴム製造方法において 被再生加硫フッ素ゴム (A) を加熱処理した場合に分解されずに残存する架橋部 位である。 上記加熱処理により、 通常、 少量の架橋部位が残存するものと考えら れる。 上記エラストマ一性含フッ素重合体に由来する炭素鎖は、 上記加熱処理に よっては通常切断されないので、 被再生加硫フッ素ゴム (A) をなす架橋分子に おけるエラス トマー性含フッ素重合体に由来する炭素鎖と実質的に同じである。 上記未加硫フッ素ゴムは、 加工可能な粘度を有する点で、 上記加硫フッ素ゴムと は区別されるものである。 上記加工可能な粘度としては、 通常、 ムーニー粘度 ( M L 1 + 1 0、 1 0 0 °C) で 5〜2 0 0であることが好ましい。 The unvulcanized fluoro rubber is made of a crosslinkable fluoropolymer. The crosslinkable fluoropolymer comprises a carbon chain derived from the elastomeric fluoropolymer, and a small amount of the crosslinking site may be bonded to the carbon chain. Usually, such a small amount of the crosslinked portion is a crosslinked portion which remains without being decomposed when the regenerated vulcanized fluororubber (A) is subjected to heat treatment in the method for producing a regenerated vulcanized fluororubber of the present invention. Rank. It is considered that a small amount of crosslinked sites usually remain due to the above heat treatment. Since the carbon chains derived from the elastomeric fluoropolymer are not usually cut by the heat treatment, the carbon chains originate from the elastomeric fluoropolymer in the crosslinked molecules forming the regenerated vulcanized fluororubber (A). Substantially the same as the carbon chain. The unvulcanized fluoro rubber is different from the vulcanized fluoro rubber in that it has a processable viscosity. As the processable viscosity, it is usually preferable to have a Mooney viscosity (ML 1 +10 , 100 ° C.) of 5 to 200.
本明細書において、 単に 「エラストマ一性含フッ素重合体」 というときは、 上 記架橋部位が結合していないものである。 このようなエラストマ一性含フッ素重 合体は、 エラストマ一性を有するように重合して得られた後、 加硫処理を受けて いない含フッ素重合体であり、 上述のように未加硫のフッ素ゴム組成物に配合さ れたものであってもよい。 上記エラストマ一性含フッ素重合体は、 加硫処理を受 けておらず架橋部位が結合していない点で、 上記加硫フッ素ゴムをなす架橋分子 と区別され、 また、 通常、 上記未加硫フッ素ゴムをなす架橋性含フッ素重合体、 即ち、 エラストマ一性含フッ素重合体に由来する炭素鎖に架橋部位が少量結合し てなるものとも区別される。  In the present specification, when simply referred to as “elastomeric fluoropolymer”, the above-mentioned crosslinking site is not bonded. Such an elastomeric fluorine-containing polymer is a fluorine-containing polymer that has been obtained by polymerization to have elastomeric properties and has not been subjected to vulcanization treatment. It may be compounded in a rubber composition. The elastomeric fluorine-containing polymer is distinguished from the crosslinked molecules forming the vulcanized fluororubber in that it has not been vulcanized and has no crosslinked portion bonded thereto. It is also distinguished from a crosslinkable fluoropolymer that forms a fluororubber, that is, one in which a small number of crosslinkable sites are bonded to a carbon chain derived from an elastomeric fluoropolymer.
上記再生加硫フッ素ゴム (C ) は、 上述のように、 再加硫して得られたもので ある。 本明細書において、 上記 「再加硫」 とは、 上記未加硫フッ素ゴムを加硫す ることを意味する。 即ち、 上記再加硫は、 架橋性含フッ素重合体からなる未加硫 フッ素ゴムに対して行うものである。 上記再加硫は、 上記架橋性含フッ素重合体 力 後工程である加熱処理により少なくとも一部の架橋部位が分解されるものの 加硫処理をー且受けたものであり、 架橋部位が少量結合してなるものであっても よい点で、 架橋部位が結合していないエラストマ一性含フッ素重合体からなる未 加硫のフッ素ゴム組成物に対して行ういわば初めての加硫とは区別される。  The recycled vulcanized fluoro rubber (C) is obtained by re-vulcanizing as described above. In the present specification, the “re-vulcanization” means vulcanizing the unvulcanized fluoro rubber. That is, the re-vulcanization is performed on an unvulcanized fluoro rubber made of a crosslinkable fluoropolymer. In the re-vulcanization, at least a part of the cross-linking site is decomposed by the heat treatment in the post-process of the cross-linkable fluoropolymer, but the vulcanization treatment is applied. This is distinguished from the so-called first vulcanization performed on an unvulcanized fluororubber composition comprising an elastomeric fluoropolymer having no cross-linking site bonded thereto.
上記再加硫における加硫の方法は、 上記初めての加硫の方法と同様のものであ つてもよいし、 異なるものであってもよい。 上記再加硫と上記初めての加硫は何 れも、 通常の加硫と同様、 1次加硫、 又は、 1次加硫と 2次加硫を行うものであ る。 本発明の再生加硫フッ素ゴム製造方法において、 上記初めての加硫を行う処 理を加硫処理 (1 ) といい、 上記再加硫を行う処理を加硫処理 (2 ) という。 上記再生加硫フッ素ゴム (C ) は、 再加硫により得られたものである点で、 上 記初めての加硫により得られたものである上記被再生加硫フッ素ゴム (A) とは 概念上区別されるものであるが、 加硫処理の方法が同じである場合等のように、 結果的に同様の分子、 組成等からなることとなってもよい。 The vulcanization method in the re-vulcanization may be the same as the first vulcanization method, or may be different. Both the re-vulcanization and the first vulcanization involve primary vulcanization, or primary vulcanization and secondary vulcanization, in the same manner as ordinary vulcanization. In the method for producing a reclaimed vulcanized fluororubber of the present invention, the first vulcanization treatment is referred to as vulcanization treatment (1), and the re-vulcanization treatment is referred to as vulcanization treatment (2). The above-mentioned recycled vulcanized fluororubber (C) is obtained by the first vulcanization described above in that it is obtained by re-vulcanization. Although distinguished from the above, as in the case where the vulcanization treatment method is the same, as a result, they may be composed of the same molecule, composition and the like.
本発明者らは、 上記エラストマ一性含フッ素重合体に由来する炭素鎖に上記架 橋部位が結合してなる架橋分子からなる被再生加硫フッ素ゴム (A) を加熱処理 することにより上記エラストマ一性含フッ素重合体に由来する炭素鎖を切断する 前に上記架橋部位における結合を切断することができること、 こうして加熱処理 により得られた状態は再加硫することができる状態であること、 更に、 上記加熱 処理と上記再加硫とを行うことにより一旦加硫したフッ素ゴムであっても再カロ硫 を経てフッ素ゴムを再生することができることを見出し、 本発明の再生加硫フッ 素ゴム製造方法を完成した。  The present inventors heat-treated the regenerated vulcanized fluororubber (A) comprising a cross-linked molecule in which the above-mentioned bridging site is bonded to a carbon chain derived from the above-mentioned elastomeric fluoropolymer, whereby the above-mentioned elastomer is obtained. The bond at the cross-linking site can be cut before cutting the carbon chain derived from the unifunctional fluoropolymer, and the state obtained by the heat treatment can be re-vulcanized. It has been found that by performing the above-mentioned heat treatment and the above-mentioned re-vulcanization, it is possible to regenerate the fluoro-rubber through re-carosulfuration even if the fluoro-rubber is once vulcanized. Completed the method.
本発明の再生加硫フッ素ゴム製造方法は、 まず、 被再生加硫フッ素ゴム (A) を加熱処理して被再生未加硫フッ素ゴム (B ) を得ることよりなるものであり、 上記被再生加硫フッ素ゴム (A) は、 加硫処理 (1 ) により得られたものである。 上記加硫処理 (1 ) は、 未加硫のフッ素ゴム組成物について行う。 上記未加硫 のフッ素ゴム組成物は、 上述のように、 エラストマ一性含フッ素重合体及び加硫 用添加剤からなるものである。  The method for producing a reclaimed vulcanized fluororubber of the present invention comprises first heating the reclaimed vulcanized fluororubber (A) to obtain a reclaimed unvulcanized fluororubber (B). The vulcanized fluoro rubber (A) is obtained by the vulcanization treatment (1). The vulcanization treatment (1) is performed on an unvulcanized fluororubber composition. As described above, the unvulcanized fluororubber composition comprises an elastomeric fluoropolymer and a vulcanizing additive.
フッ素ゴムの加硫としては、 一般的に、 パーオキサイドを用いるもの、 ポリオ ールを用いるもの、 ポリアミンを用いるもの等が挙げられるが、 上記加硫処理 ( 1 ) としては、 上記被再生加硫フッ素ゴム (A) の加熱処理において切断箇所に ついて選択的な切断を効率的に行わせるため、 パーォキサイドを用いるものが好 ましい。 本明細書において、 パーォキサイドを用いる加硫をパーォキサイ ド加硫 ということがある。  Examples of the vulcanization of the fluororubber include those using a peroxide, those using a polyol, those using a polyamine, and the like. In order to efficiently perform selective cutting at the cut portion in the heat treatment of the fluororubber (A), it is preferable to use peroxide. In the present specification, vulcanization using peroxide may be referred to as peroxide vulcanization.
パーォキサイドを用いる加硫は、 通常、 パーォキサイドから生じたラジカルを、 実質上加硫剤として配合する多官能不飽和化合物に付加させて別のラジカルを発 生させ、 後者のラジカルをエラストマ一性含フッ素重合体に付加させる反応を含 む連鎖反応により、 橋かけを形成するものである。 上記多官能不飽和化合物は、 パーォキサイド加硫において加硫助剤、 加硫促進剤又は共加硫剤と称されること がある。 このようなパーオキサイド加硫の機構について、 パーオキサイドとして ジアルキルパーォキサイドを用い、 上記多官能不飽和化合物としてトリァリルシ ァヌレートを用いた場合を例にとり、 以下に示す。 In vulcanization using peroxide, usually, radicals generated from peroxide are added to a polyfunctional unsaturated compound to be blended substantially as a vulcanizing agent to generate another radical, and the latter radical is elastomeric fluorine-containing. A bridge is formed by a chain reaction including a reaction to be added to a polymer. The above polyfunctional unsaturated compound is referred to as a vulcanization aid, vulcanization accelerator or co-vulcanization agent in peroxide vulcanization. There is. The mechanism of such peroxide vulcanization will be described below, taking as an example the case where dialkyl peroxide is used as the peroxide and triaryl cyanurate is used as the polyfunctional unsaturated compound.
パーオキサイドを用いる加硫により得られる架橋分子は、 通常、 用いた加硫助 剤に由来する化学構造を架橋部位に有している。 このような架橋部位における結 合の切断は、 架橋分子におけるエラストマ一性含フッ素重合体に由来する炭素鎖 における炭素一炭素結合の切断よりも、 低温で行うことができる。 本発明の再生 加硫フッ素ゴム製造方法における上記加熱処理は、 この切断温度に差があること に着目し、 架橋部位における結合のみを選択的に切断するものである。 A crosslinked molecule obtained by vulcanization using a peroxide usually has a chemical structure derived from the vulcanization aid used at a crosslinked site. Cleavage of the bond at such a crosslinking site can be performed at a lower temperature than cleavage of the carbon-carbon bond in the carbon chain derived from the elastomeric fluoropolymer in the crosslinked molecule. The heat treatment in the method for producing a recycled vulcanized fluororubber of the present invention focuses on the fact that there is a difference in the cutting temperature, and selectively cuts only the bond at the crosslinked site.
上記加硫助剤として例えばトリアリルイソシァヌレート 〔T A I C〕 を用いた 場合、 得られる架橋分子における架橋部位は、 T A I Cに由来する化学構造を有 する。 この T A I Cに由来する化学構造のうち、 飽和 6員環を構成する窒素には T A I Cのァリル基に由来する炭素鎖が結合している。 この炭素鎖は、 通常、 架 橋により飽和し、 n—プロピレン基である。 上記加熱処理により、 この n—プロ ピレン基における結合のうち、 上記窒素と隣接炭素との間の結合、 又は、 上記隣 接炭素と更にその隣の炭素との間の結合が切断するものと考えられる。  When, for example, triallyl isocyanurate [TAIC] is used as the vulcanization aid, the crosslinked site in the obtained crosslinked molecule has a chemical structure derived from TAIC. In the chemical structure derived from TAIC, a carbon chain derived from the aryl group of TAIC is bonded to the nitrogen constituting the saturated 6-membered ring. This carbon chain is usually saturated with a bridge and is an n-propylene group. It is considered that the heat treatment breaks the bond between the nitrogen and the adjacent carbon or the bond between the adjacent carbon and the adjacent carbon among the bonds in the n-propylene group. Can be
T A I Cは、 パーォキサイド加硫に使用可能な加硫助剤の中で最も耐熱性が良 いとされていることから、 T A I C以外の加硫助剤を用いてパーオキサイド加硫 を行った場合、 得られる架橋分子における架橋部位は上記 T A I Cに由来する化 学構造よりも結合が低温で切断されるので、 上述の切断温度の差が大きく、 架橋 部位における結合の選択的切断は T A I Cを用いる場合よりも一層容易であると 考えられる。 従って、 加硫処理 (1 ) としては、 パーオキサイド加硫であれば T A I Cを用いる場合に限らず好ましい。  TAIC is considered to have the highest heat resistance among the vulcanization aids that can be used for peroxide vulcanization, and is obtained when peroxide vulcanization is performed using a vulcanization aid other than TAIC. Since the cross-linking site in the cross-linking molecule breaks the bond at a lower temperature than the chemical structure derived from TAIC, the difference in the above-mentioned cleavage temperature is large, and the selective cleavage of the bond at the cross-linking site is even more than when TAIC is used. It is considered easy. Therefore, as the vulcanization treatment (1), peroxide vulcanization is preferable, not limited to the case of using TAIC.
加硫処理 (1 ) としてパーオキサイド加硫を行う場合、 ラジカルによる連鎖反 応により上記加硫処理 ( 1 ) の反応は進行しやすく、 残存する加硫剤はないか微 量であると考えられるので、 上記加熱処理において、 架橋反応はもはや実質上起 こらない。 加硫処理 (1 ) としてパーオキサイド加硫を採用することは、 このよ うに上記加熱処理において架橋反応を伴わずに架橋部位の切断を行うことができ る点からも好ましい。  When peroxide vulcanization is performed as the vulcanization treatment (1), the reaction of the above vulcanization treatment (1) is likely to proceed due to a chain reaction with radicals, and it is considered that there is no residual vulcanizing agent or the amount is small. Therefore, in the heat treatment, the cross-linking reaction substantially no longer occurs. The use of peroxide vulcanization as the vulcanization treatment (1) is also preferable from the viewpoint that a crosslinked site can be cut without a crosslinking reaction in the above heat treatment.
なお、 ポリオールを用いる加硫により得られる架橋分子、 及び、 ポリアミンを 用いる加硫により得られる架橋分子は、 一般的に、 架橋部位における結合の切断 力 エラストマ一性含フッ素重合体に由来する炭素鎖における炭素一炭素結合の 切断よりも低温で生じることは、 パーオキサイ ド加硫の場合と同様である。 しか しながら、 加硫処理 (1 ) でポリオール又はポリアミンを用いる場合、 上記加熱 処理中において、 架橋部位における結合の切断と並行して、 加硫処理 (1 ) の後 反応せずに残っている加硫剤により加硫が進行する。 従って、 加硫処理 (1 ) で ポリオール又はポリアミンを用いる場合、 架橋部位における結合のみを選択的に 熱分解することはできず、 フッ素ゴムとして再度利用することは困難である。 パーォキサイ ド加硫に用いるパーォキサイドとしては特に限定されないが、 通 常、 熱や酸化還元系の存在下で容易にパーォキシラジカルを発生し得る点から、 有機系の過酸化物が好ましい。 上記有機系の過酸化物、 即ち、 有機過酸化物とし ては特に限定されず、 例えば、 1 , 1 _ビス ( t—ブチルパーォキシ) 一 3, 5 , 5—トリメチルシクロへキサン、 2 , 5 _ジメチルへキサン一 2 , 5—ジヒ ドロ パーォキサイ ド、 ジ一 t一ブチルパーォキサイ ド、 t—プチルクミルパーォキサ イ ド、 ジクミルパーオキサイド、 2 , 5—ジメチルー 2 , 5—ビス ( t一プチル パーォキシ) へキサン、 α, ひ一ビス ( t一プチルパーォキシ) 一 p—ジイソプ 口ピルベンゼン、 2, 5—ジメチル一2 , 5—ジ (t—ブチルパーォキシ) 一へ キシルー 3 —ベンゾィルパーォキサイ ド、 tーブチノレパーォキシベンゼン、 t - ブチノレパーォキシベンゾエート、 2 , 5—ジメチル一 2 , 5—ジ (ベンゾイノレパ ーォキシ) 一へキサン、 t一プチルパーォキシマレイン酸、 tーブチノレパーォキ シィソプロピルカーボネート等が挙げられる。 なかでも、 アルキル基を 2個有す る有機過酸化物であるジアルキル系が好ましく、 2, 5—ジメチル一 2, 5—ジ ( t一ブチルパーォキシ) へキサンがより好ましい。 また、 t一ブチルパーォキ シベンゾエートも好ましい。 The cross-linked molecule obtained by vulcanization using a polyol and the cross-linked molecule obtained by vulcanization using a polyamine generally have a bond breaking force at a cross-linking site, a carbon chain derived from an elastomeric fluoropolymer. Of the carbon-carbon bond at What happens at lower temperatures than cutting is similar to peroxide vulcanization. However, when a polyol or polyamine is used in the vulcanization treatment (1), it remains without reacting after the vulcanization treatment (1) during the heat treatment, in parallel with the cleavage of the bond at the cross-linking site. Vulcanization proceeds with the vulcanizing agent. Therefore, when a polyol or polyamine is used in the vulcanization treatment (1), only the bond at the cross-linking site cannot be selectively thermally decomposed, and it is difficult to reuse it again as a fluororubber. The peroxide used for the peroxide vulcanization is not particularly limited. However, an organic peroxide is preferred because it can easily generate a peroxide radical in the presence of heat or an oxidation-reduction system. The organic peroxide, that is, the organic peroxide, is not particularly limited. For example, 1,1-bis (t-butylperoxy) -1,3,5,5-trimethylcyclohexane, 2,5_ Dimethylhexane 1,2,5-dihydroperoxide, di-t-butylperoxide, t-butylcumyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-bis ( (t-butyl peroxy) hexane, α, bi-bis (t-butyl peroxy) 1-p-diisobutylpyrubenzene, 2,5-dimethyl-1,2,5-di (t-butyl peroxy) 1-hexyl 3-benzoyl peroxy Xide, t-butynoleoxybenzene, t-butynoleoxybenzoate, 2,5-dimethyl-1,2,5-di (benzoinoleoxy) 1-hexane, t-butyl peroxymale Acid, t chromatography butyrate Honoré Per O key Consequences isopropyl carbonate. Among them, a dialkyl-based organic peroxide having two alkyl groups is preferable, and 2,5-dimethyl-1,2,5-di (t-butylperoxy) hexane is more preferable. Further, t-butyl peroxybenzoate is also preferable.
上記有機過酸化物の使用量は、 有機過酸化物中の式一 O—〇一で表されるジォ キシ基又はェピジォキシ基のうち活性な基の量、 分解温度等を考慮して適宜決定 することができ、 通常、 エラストマ一性含フッ素重合体 1 0 0重量部に対し、 0 . 0 5 - 1 0重量部が好ましく、 より好ましい下限は 1 . 0重量部であり、 より好 ましい上限は 5重量部である。  The amount of the above-mentioned organic peroxide to be used is appropriately determined in consideration of the amount of the active group of the dioxy group or the epidioxy group represented by the formula 1-O-1 in the organic peroxide, the decomposition temperature, and the like. Usually, the amount is preferably 0.05 to 10 parts by weight, and more preferably 1.0 part by weight, more preferably 1.0 part by weight, based on 100 parts by weight of the elastomeric fluoropolymer. The upper limit is 5 parts by weight.
上記有機過酸化物によるパーォキサイ ド加硫では、 加硫助剤を使用することに より、 加硫が顕著に促進される。 上記加硫助剤としては特に限定されず、 例えば、 従来使用されているもの等が挙げられ、 このようなものとしては、 例えば、 トリ ァリルシアヌレート、 トリアリルイソシァヌレート等のトリアジン誘導体; トリ ァリルトリメリテート、 Ν, Ν' —m—フエ二レンビスマレイミ ド、 ジプロパル ギルテレフタレート、 ジァリルフタレート、 テトラァリルテレフタレ一トアミ ド 等の芳香環含有化合物; トリアクリルホルマール、 トリアリルホスフェート等の 非環式化合物等が挙げられ、 なかでも、 汎用性等の点から、 トリアジン誘導体が 好ましく、 トリアリルイソシァヌレートがより好ましい。 上記加硫助剤の使用量 は、 エラストマ一性含フッ素重合体 1 0 0重量部に対し、 通常、 0 . 1〜1 0重 量部であり、 好ましい下限は 0 . 5重量部、 好ましい上限は 5重量部であり、 好 ましくは 0 . 5〜 5重量部である。 In the peroxide vulcanization with the above-mentioned organic peroxide, the vulcanization is remarkably promoted by using a vulcanization aid. The vulcanization aid is not particularly limited, for example, Examples thereof include those conventionally used. Examples of such compounds include triazine derivatives such as triaryl cyanurate and triallyl isocyanurate; triaryl trimellitate, Ν, Ν′—m— Aromatic ring-containing compounds such as phenylene bismaleimide, dipropargyl terephthalate, diaryl phthalate, tetraaryl terephthalate amide; and acyclic compounds such as triacryl formal and triallyl phosphate. From the viewpoint of versatility and the like, a triazine derivative is preferable, and triallyl isocyanurate is more preferable. The amount of the vulcanization aid is usually 0.1 to 10 parts by weight, preferably 0.1 to 10 parts by weight, and more preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the elastomeric fluoropolymer. Is 5 parts by weight, preferably 0.5 to 5 parts by weight.
パーォキサイド加硫の方法としては特に限定されず、 例えば従来と同様の方法 により、 エラストマ一性含フッ素重合体と加硫用添加剤からなる未加硫のフッ素 ゴム組成物を用い、 ロール練りした後、 金型に入れ加圧して 1次加硫し、 所望に より、 次いで 2次加硫する方法等が挙げられる。 一般に、 1次加硫の条件は、 温 度1 0 0〜2 0 0 で、 時間 5〜6 0分間、 圧力 2〜: L O M P a程度の範囲から 採用され、 2次加硫の条件は温度 1 5 0〜 3 0 0 °Cで、 時間 3 0分間〜 3 0時間 程度の範囲から採用される。 上記加硫用添加剤としては、 加硫剤のほか、 必要に 応じて加硫促進剤を用い、 更に適宜混合可能な他の添加剤等を用いてもよい。 上記被再生加硫フッ素ゴム (A) は、 上記加硫処理 (1 ) により得られたもの であり、 上述の未力卩硫のフッ素ゴム組成物におけるエラストマ一性含フッ素重合 体に由来する炭素鎖に架橋部位が結合してなる架橋分子からなるものである。 上 記被再生加硫フッ素ゴム (A) は、 このようなものであれば特に限定されないが、 架橋しやすい点から、 ビニリデンフルオラィドを含む単量体成分から得られた共 重合体に加硫処理 (1 ) を施して得られるものからなるものであることが好まし く、 このような被再生加硫フッ素ゴム (A) は、 例えば、 主鎖中に一C F R 1— C H 2 - ( R 1は架橋部位を示す。 ) で表される部位を有する共重合体からなる ものであるといえる。 上記被再生加硫フッ素ゴム (A) をなす共重合体の主鎖に は、 1 , 1ージフルォロエチレン基が残存している。 上記ビニリデンフルオラィ ドを含む単量体成分から得られた共重合体は、 上記エラストマ一性含フッ素重合 体である。 The method of peroxide vulcanization is not particularly limited.For example, a roll vulcanization may be performed using an unvulcanized fluoro rubber composition comprising an elastomeric fluoropolymer and an additive for vulcanization by a method similar to the conventional method. And vulcanization, followed by primary vulcanization under pressure and, if desired, secondary vulcanization. In general, the primary vulcanization conditions are temperature 100 to 200, time 5 to 60 minutes, pressure 2 to: range of about LOMPa. It is adopted in the range of about 30 minutes to 30 hours at 50 to 300 ° C. As the vulcanizing additive, besides the vulcanizing agent, a vulcanization accelerator may be used as needed, and other additives which can be appropriately mixed may be used. The reclaimed vulcanized fluororubber (A) is obtained by the vulcanization treatment (1), and is made of carbon derived from the elastomeric fluoropolymer in the above-mentioned unstripped fluororubber composition. It consists of a cross-linking molecule formed by linking a cross-linking site to a chain. The reclaimed vulcanized fluororubber (A) is not particularly limited as long as it is such a substance. However, since it is easy to crosslink, it is added to a copolymer obtained from a monomer component containing vinylidene fluoride. It is preferable that the reclaimed vulcanized fluororubber (A) is, for example, one obtained by subjecting the main chain to one CFR 1 — CH 2- ( R 1 represents a cross-linking site, which can be said to consist of a copolymer having a site represented by: In the main chain of the copolymer constituting the regenerated vulcanized fluororubber (A), 1,1-difluoroethylene groups remain. The copolymer obtained from the monomer component containing vinylidene fluoride is the above-mentioned elastomer-type fluorinated polymer. Body.
上記エラストマ一性含フッ素重合体は、 ガラス転移点が 2 5 °C以下であるポリ マーである。 従って、 上記エラストマ一性含フッ素重合体は、 常温で弾性を有す るエラストマ一性を示す。 上記エラストマ一性含フッ素重合体としては、 ビニリ デンフルオライ ドを含む単量体成分から得られる共重合体のうち、 エラストマ一 性を示す組合せと組成のものを使用することができる。 上記エラストマ一性含フ ッ素重合体は、 一般に非晶性である。  The above-mentioned elastomeric fluoropolymer is a polymer having a glass transition point of 25 ° C or lower. Therefore, the elastomeric fluoropolymer exhibits elasticity at room temperature. As the above elastomer-containing fluoropolymer, a copolymer having a combination and composition exhibiting elastomeric properties can be used among copolymers obtained from monomer components containing vinylidene fluoride. The above elastomer-containing fluorine-containing polymer is generally amorphous.
上記エラストマ一性含フッ素重合体は、 ビニリデンフルオラィド並びにパーフ ルォロォレフイン及び/又はパーフルォロビュルエーテルを含む単量体成分から 得られる共重合体が好ましい。 パーフルォロォレフイン及び/又はパーフルォロ ビエルエーテルは、 それぞれ 1種又は 2種以上を用いることができる。 上記エラ ストマ一性含フッ素重合体としては、 ビニリデンフルオラィ ド及びパーフルォロ ォレフィンを含む単量体成分から得られる共重合体がより好ましい。  The elastomeric fluoropolymer is preferably a copolymer obtained from vinylidene fluoride and a monomer component containing perfluoroolefin and / or perfluorobutyl ether. One or more of perfluoroolefin and / or perfluorobiel ether can be used, respectively. As the elastomeric fluoropolymer, a copolymer obtained from a monomer component containing vinylidene fluoride and perfluoroolefin is more preferable.
上記パーフノレォロォレフィンとしては、 テトラフノレオ口エチレン、 へキサフノレ ォロプロピレン等が挙げられる。 上記パーフルォロビュルエーテルとしては、 パ 一フルォロアルキル基の炭素数が 1〜6であるパーフルォロ (アルキルビニルェ 一テル) 、 下記一般式  Examples of the above perfluorophenol include olefins such as ethylene tetrahexenole and propylene hexanol. As the above perfluorobutyl ether, perfluoro (alkyl vinyl ether) having 1 to 6 carbon atoms in a perfluoroalkyl group, represented by the following general formula:
CF2=CFO(CF2CFX10)ni-(CF2CF2CF20)n2-R f 1 CF 2 = CFO (CF 2 CFX 1 0) n i- (CF 2 CF 2 CF 2 0) n2 -R f 1
(式中、 X1はフッ素原子又はトリフルォロメチル基を表し、 !^ ま炭素数ェ 〜20のフルォロポリオキシアルキル基又は炭素数 1〜8のパーフルォロアルキ ル基を表し、 n 1及ぴ n 2は同一又は異なり、 0〜5の整数を表す。 但し、 n l + n 2≥ 1である。 ) で表されるフルォロビュルエーテル類等が挙げられる。 上記エラストマ一性含フッ素重合体は、 ビニリデンフルオラィ ド並びにパーフ ルォロォレフイン及ぴ Z又はパーフルォロビニルエーテルに加え、 架橋性基含有 モノマーを上記エラストマ一性含フッ素重合体の単量体成分の 0. 0 1〜3モル %の割合で重合したものであることが好ましい。 本明細書において、 上記 「架橋 性基含有モノマー」 とは、 架橋性基としてヨウ素原子及び Z又は臭素原子を分子 内に少なくとも 1個有するエチレン性不飽和化合物を意味する。 (In the formula, X 1 represents a fluorine atom or a trifluoromethyl group, and represents a fluoropolyoxyalkyl group having 20 to 20 carbon atoms or a perfluoroalkyl group having 1 to 8 carbon atoms.) , N1 and n2 are the same or different and each represent an integer of 0 to 5, provided that nl + n2 ≥ 1.) and the like. The elastomeric fluorine-containing polymer may be used in addition to vinylidene fluoride, perfluoroolefin and Z or perfluorovinyl ether, and a monomer having a crosslinking group may be used as the monomer component of the elastomeric fluorine-containing polymer. It is preferable to polymerize at a rate of 0.1 to 3 mol%. In the present specification, the “crosslinkable group-containing monomer” means an ethylenically unsaturated compound having at least one iodine atom, Z or bromine atom as a crosslinkable group in a molecule.
上記架橋性基含有モノマーを含む単量体成分から得られたエラストマ一性含フ ッ素重合体は、 主鎖を構成する炭素、 及び/又は、 側鎖を構成する炭素に結合し たヨウ素及び/又は臭素を有することとなる。 このヨウ素及び/又は臭素は、 上 述のように加硫処理 (1 ) としてパーオキサイド加硫を行う際に、 ラジカル活性 点を供与することとなる。 即ち、 このようなエラストマ一性含フッ素重合体は、 パーォキサイド加硫において、 パーォキサイドから生じたラジカルによりヨウ素 及び Z又は臭素が容易に脱離して不対電子を有することとなり、 この不対電子が 加硫助剤の有する不飽和結合に付加して結合を形成し、 効率よく橋かけを形成す る。 エラストマ一性含フッ素重合体は、 ヨウ素を有さず、 臭素を有しない場合、 ラジカルによる攻撃に対して耐性が強いので、 パーォキサイド加硫は進行しにく い。 本明細書において、 上記 「ヨウ素を有さず、 臭素を有しない」 とは、 エラス トマ一性含フッ素重合体等の重合体を構成する原子として、 ヨウ素 〔I〕 が存在 せず、 臭素 〔B r〕 が存在しないことを意味する。 Elastomer-containing rubber obtained from a monomer component containing the above-mentioned crosslinkable group-containing monomer The nitrogen polymer has iodine and / or bromine bonded to the carbon constituting the main chain and / or the carbon constituting the side chain. As described above, iodine and / or bromine provide a radical active point when peroxide vulcanization is performed as the vulcanization treatment (1). That is, in such an elastomeric fluorine-containing polymer, iodine, Z or bromine is easily eliminated by radicals generated from the peroxide in the peroxide vulcanization and has unpaired electrons, and this unpaired electron is added. It forms a bond by adding to the unsaturated bond of the sulfur aid, and forms a bridge efficiently. If the elastomeric fluoropolymer has no iodine and no bromine, it has high resistance to attack by radicals, so that peroxide vulcanization hardly proceeds. In the present specification, the above-mentioned "having no iodine and having no bromine" means that iodine [I] does not exist as an atom constituting a polymer such as an elastomeric fluoropolymer and bromine [ B r] does not exist.
上記エラストマ一性含フッ素重合体は、 上記架橋性基含有モノマーを含む単量 体成分から得られたものである場合、 ビニリデンフルオラィド並びにパーフルォ ロォレフィン及び Z又はパーフルォロビュルエーテルを重合して得られるセグメ ントを Aとして、 下記一般式  When the elastomeric fluoropolymer is obtained from a monomer component containing the crosslinkable group-containing monomer, it is obtained by polymerizing vinylidene fluoride and perfluoroolefin and Z or perfluorovinyl ether. Where A is the segment obtained by
X 2 - [A - (Y) n 3] n 4 - X 3 X 2- [A-(Y) n 3 ] n 4 -X 3
(式中、 X 2及び X 3は同一又は異なり、 重合開始剤若しくは連鎖移動剤に由来 する基又は重合後の修飾により得られる基を表す。 Yはョゥ素及び/又は臭素を 有する炭素鎮を表す。 n 3は 0〜5 0の整数を表し、 n 4は 1〜 5の整数を表す。 但し、 n 3 X n 4≥ lである。 !1 3個の¥は、 同一であっても異なっていてもよ い。 n 4個の [A— (Y) n 3] は、 同一であっても異なっていてもよく、 異な る場合、 11 4個の 、 n 4個の Y及び n 4個の n 3は同一であっても異なってい てもよい。 ) で表される化学構造を有することが好ましい。 (In the formula, X 2 and X 3 are the same or different and represent a group derived from a polymerization initiator or a chain transfer agent or a group obtained by modification after polymerization. Y represents a carbon atom having iodine and / or bromine. N 3 represents an integer of 0 to 50, and n 4 represents an integer of 1 to 5, provided that n 3 X n 4 ≥ l. N 4 [A— (Y) n 3 ] may be the same or different, and if different, 114, n 4 Y and n And the four n 3 's may be the same or different.) It is preferable that they have a chemical structure represented by the following formula:
上記式中の Yは、 ブロック共重合、 グラフト共重合、 交互共重合又はランダム 共重合の何れの方法により導入したものであってもよい。 X 2及び X 3は、 上記 エラストマ一性含フッ素重合体の重合時に用レ、る重合開始剤及び/又は連鎖移動 剤の種類や添加量を選択することにより任意に変えることができ、 また、 重合に より得られた末端基を修飾することによつても任意に変えることができる。 X 2 及び X3としては、 力ルポキシル基、 アルコキシカルボニル基、 二トリル基、 ョ ゥ素原子、 臭素原子又はスルホン酸基が好ましい。 Y in the above formula may be introduced by any of block copolymerization, graft copolymerization, alternating copolymerization, and random copolymerization. X 2 and X 3 can be arbitrarily changed by selecting the type and amount of the polymerization initiator and / or chain transfer agent used during the polymerization of the elastomeric fluoropolymer, and It can also be changed arbitrarily by modifying the terminal group obtained by polymerization. X 2 And X 3 is preferably a propyloxyl group, an alkoxycarbonyl group, a nitrile group, an iodine atom, a bromine atom or a sulfonic acid group.
上記架橋性基含有モノマーとしては、 下記一般式 I(CH2CF2CF20)n5-(CFCF2O)n6CF=CF2 Examples of the crosslinking group-containing monomer include the following general formula I (CH 2 CF 2 CF 20 ) n 5- (CFCF 2 O) n6 CF = CF 2
CF3 CF 3
(式中、 n5は 1〜5の整数を表し、 n6は 0〜3の整数を表す。)  (In the formula, n5 represents an integer of 1 to 5, and n6 represents an integer of 0 to 3.)
で表されるョゥ素含有フッ素化ビュルエーテル等が挙げられる。 And iodine-containing fluorinated butyl ether.
上記ョゥ素含有フッ素化ビュルエーテルの好ましい例としては、  Preferred examples of the iodine-containing fluorinated butyl ether include:
I CH2CF2CF2OCF = CF2I CH 2 CF 2 CF 2 OCF = CF 2 ,
I (CH2CF2CF20) 2CF = CF2I (CH 2 CF 2 CF 2 0) 2 CF = CF 2 ,
I (CH2CF2CF20) 3CF = CF2I (CH 2 CF 2 CF 2 0) 3 CF = CF 2 ,
I CH2CF2CF2OCF (C F 3) CF2OCF = CF2I CH 2 CF 2 CF 2 OCF (CF 3 ) CF 2 OCF = CF 2 ,
I CH2CF2CF20 [C F (CF3) CF20] 2CF = CF2 I CH 2 CF 2 CF 2 0 [CF (CF 3 ) CF 2 0] 2 CF = CF 2
等が挙げられ、  And the like,
I CH2CF2CF2OCF = CF2 I CH 2 CF 2 CF 2 OCF = CF 2
がより好ましい。  Is more preferred.
上記エラストマ一性含フッ素重合体は、 例えば従来公知の方法により製造する ことができ、 例えば、 乳化重合、 懸濁重合等の重合方法を用いることができる。 上記被再生加硫フッ素ゴム (A) における架橋分子は、 上記エラストマ一性含 フッ素重合体に由来する炭素鎖に架橋部位が結合してなるものであり、 上記加硫 処理 (1) により得られたものである。 従って、 上記炭素鎖は、 架橋部位が結合 している架橋点を有すること以外に、 上記エラストマ一性含フッ素重合体と化学 構造上差異を有する場合がある。 上記炭素鎖は、 例えば上記加硫処理 (1) でパ ーォキサイドを用いた場合、 パーォキサイド加硫について上述した機構から明ら かなように、 上記エラストマ一性含フッ素重合体が有していたヨウ素及び/又は 臭素を分子中に有しない。  The elastomeric fluoropolymer can be produced by, for example, a conventionally known method. For example, a polymerization method such as emulsion polymerization or suspension polymerization can be used. The crosslinked molecule in the regenerated vulcanized fluororubber (A) is a crosslinked molecule bonded to a carbon chain derived from the elastomeric fluoropolymer, and is obtained by the vulcanization treatment (1). It is a thing. Accordingly, the carbon chain may have a difference in chemical structure from the elastomeric fluoropolymer in addition to having a cross-linking point where a cross-linking site is bonded. For example, in the case where peroxide is used in the vulcanization treatment (1), the carbon chain contains iodine contained in the elastomeric fluoropolymer as apparent from the mechanism described above for peroxide vulcanization. And / or does not have bromine in the molecule.
本発明の再生加硫フッ素ゴム製造方法において、 上記被再生加硫フッ素ゴム ( A) は、 次いで加熱処理を行う。 In the method for producing a reclaimed vulcanized fluororubber according to the present invention, In (A), heat treatment is then performed.
上記加熱処理は、 240〜400°Cで行うことが好ましい。 フッ素ゴムの分解 温度は、 熱重量測定法 (Th e rmo g r a v i me t r y ; TG測定) による と、 通常、 400°Cを超える温度であり、 この範囲内の温度において、 上記被再 生加硫フッ素ゴム (A) をなす架橋分子における上述のエラストマ一性含フッ素 重合体に由来する炭素鎖が切断されるものと考えられる。 一方、 パーオキサイド 加硫により得られたフッ素ゴムの架橋部位は、 通常、 240°C以上の温度におい て分解される。 従って、 上記炭素鎖の切断開始温度未満であり、 上記架橋部位の 切断開始温度以上である温度、 即ち、 240〜400°Cにおいて加熱処理を行う ことにより、 上記被再生加硫フッ素ゴム (A) をなす架橋分子において、 上記ェ ラストマ一性含フッ素重合体に由来する炭素鎖を実質的に切断することなく、 上 記架橋部位のみを選択的に分解することができる。  The heat treatment is preferably performed at 240 to 400 ° C. According to thermogravimetry (TG measurement), the decomposition temperature of fluororubber is usually a temperature exceeding 400 ° C. It is considered that the carbon chain derived from the above-mentioned elastomeric fluoropolymer in the crosslinked molecule forming the rubber (A) is cleaved. On the other hand, the crosslinked site of the fluororubber obtained by peroxide vulcanization is usually decomposed at a temperature of 240 ° C or higher. Accordingly, by performing the heat treatment at a temperature lower than the carbon chain cleavage start temperature and higher than the crosslink site cleavage start temperature, that is, 240 to 400 ° C., the regenerated vulcanized fluororubber (A) In the cross-linking molecule, the above-mentioned cross-linking site alone can be selectively decomposed without substantially cutting the carbon chain derived from the elastomeric fluoropolymer.
上記加熱処理の加熱条件は、 上記被再生加硫フッ素ゴム (A) の種類や加硫度 によるが、 上記架橋部位の充分な切断が可能である点から、 加熱時間としては、 更に加熱装置、 加熱温度、 加圧圧力等の処理条件等にもより、 一概にはいえない 、 300°Cで加熱する場合、 例えば 168時間以下で上記架橋部位を充分に切 断することができ、 通常無加圧で 24〜100時間である。  The heating conditions for the heat treatment depend on the type and degree of vulcanization of the regenerated vulcanized fluororubber (A). However, from the point that the crosslinked portion can be sufficiently cut, the heating time is further determined by using a heating device, Depending on the processing conditions such as heating temperature and pressurizing pressure, etc., it cannot be said unconditionally. When heating at 300 ° C, for example, the above-mentioned cross-linking site can be sufficiently cut in 168 hours or less, and usually no heating is performed. 24 to 100 hours under pressure.
上記加熱処理は、 分解しやすい点から、 空気中 (含酸素雰囲気下) で行うこと が好ましい。  The heat treatment is preferably performed in air (under an oxygen-containing atmosphere) because it is easily decomposed.
本発明の再生加硫フッ素ゴム製造方法において、 上記被再生加硫フッ素ゴム ( A) を加熱処理することにより、 被再生未加硫フッ素ゴム (B) が得られる。 上記被再生未加硫フッ素ゴム (B) は、 未加硫フッ素ゴムについて上述したよ うに、 架橋性含フッ素重合体からなるものであり、 加工可能な粘度を有するもの である。  In the method for producing a reclaimed vulcanized fluororubber of the present invention, a reclaimed unvulcanized fluororubber (B) is obtained by subjecting the reclaimed vulcanized fluororubber (A) to a heat treatment. As described above for the unvulcanized fluoro rubber, the unvulcanized fluoro rubber to be regenerated is made of a crosslinkable fluoropolymer and has a workable viscosity.
上記架橋性含フッ素重合体は、 上述のように、 エラストマー性含フッ素重合体 に由来する炭素鎖からなるものである。 この炭素鎖は、 被再生加硫フッ素ゴム ( A) における架橋分子に由来するものであるので、 例えば加硫処理 (1) でパー オキサイドを用いた場合、 この架橋分子と同様、 エラストマ一性含フッ素重合体 が有していたヨウ素を有さず、 臭素を有しない。 上記架橋性含フッ素重合体は、 上記エラストマ一性含フッ素重合体に由来する 炭素鎖に少量の架橋部位が結合したものであってもよい。 上記架橋部位は、 上述 の加熱処理の結果、 上記炭素鎖に少量結合しているのが通常であるが、 上記加熱 処理による分解が充分に行われた結果、 結合していない状態となってもよい。 上 記炭素鎖に結合している架橋部位は、 橋かけを形成しているものである。 従って、 被再生加硫フッ素ゴム (A) をなす架橋分子における架橋部位が上記加熱処理に より結合を切断されて一部となり、 橋かけはしていないが上記エラストマ一性含 フッ素重合体に由来する炭素鎖上に依然として結合しているもの (以下、 「架橋 部位残基」 という。 ) は、 「上記炭素鎖に結合している架橋部位」 に含まれない し、 この架橋点に関しては、 上記架橋部位が上記炭素鎖に結合していない状態で あるといえる。 As described above, the crosslinkable fluoropolymer comprises a carbon chain derived from the elastomeric fluoropolymer. Since this carbon chain is derived from the crosslinked molecule in the regenerated vulcanized fluororubber (A), for example, when peroxide is used in the vulcanization treatment (1), as in the case of the crosslinked molecule, it contains an elastomeric material. It has no iodine and no bromine that the fluoropolymer had. The crosslinkable fluoropolymer may be one in which a small amount of a crosslinkable site is bonded to a carbon chain derived from the elastomeric fluoropolymer. The cross-linking site is generally bonded to the carbon chain in a small amount as a result of the above-described heat treatment. However, even when the decomposition is sufficiently performed by the above-described heat treatment, the cross-linked portion is not bonded. Good. The cross-linking site bonded to the carbon chain forms a bridge. Accordingly, the cross-linking site in the cross-linking molecule forming the regenerated vulcanized fluororubber (A) is broken by the heat treatment to become a part, and is not crosslinked, but carbon derived from the elastomeric fluoropolymer is not crosslinked. Those still bonded on the chain (hereinafter referred to as “crosslinking site residues”) are not included in the “crosslinking site bonded to the carbon chain”. Can be said to be in a state not bonded to the carbon chain.
上記被再生加硫フッ素ゴム (A) をなす架橋分子が有していた架橋部位におい て上記加熱処理により結合が切断された箇所は、 少なくとも加硫処理 (1 ) でパ ーォキサイドを用いた場合、 なかでも、 加硫助剤としてトリアリルイソシァヌレ ートを用いた場合、 切断により不安定な鎖末端となり、 不安定であるがゆえに通 常自然に安定化してカルボキシル基となる。 従って、 この場合、 上記架橋性含フ ッ素重合体は、 側鎖にカルボキシル基を有する。 この側鎖は、 上記架橋部位に由 来する化学構造の一部からなるものである。 このようにカルボキシル基を有する 側鎖は、 上述の架橋部位残基の一つである。  At the cross-linking site of the cross-linking molecule that forms the regenerated vulcanized fluororubber (A), the portion at which the bond was broken by the heat treatment was at least when peroxide was used in the vulcanization treatment (1). In particular, when triallyl isocyanurate is used as a vulcanization aid, the chain ends become unstable due to cleavage, and because of the instability, usually stabilizes naturally to become a carboxyl group. Therefore, in this case, the crosslinkable fluorine-containing polymer has a carboxyl group in the side chain. This side chain is composed of a part of the chemical structure derived from the crosslinking site. The side chain having a carboxyl group is one of the above-mentioned cross-linking site residues.
上記被再生未加硫フッ素ゴム (B ) は、 上記被再生加硫ゴム (A) がアセトン、 テトラヒドロフラン等の極性溶媒に不溶性であるのに対し、 上記極性溶媒に可溶 性である点で区別することができる。  The unvulcanized rubber to be regenerated (B) is distinguished by the fact that the vulcanized rubber to be regenerated (A) is insoluble in polar solvents such as acetone and tetrahydrofuran, but soluble in the polar solvent. can do.
上記被再生未加硫フッ素ゴム (B ) は、 このように、 被再生加硫フッ素ゴム ( A) の架橋分子が有していた架橋部位が分解されたものであることから、 加工可 能な粘度を有する。 従って、 上記被再生未加硫フッ素ゴム (B ) は、 未加硫のフ ッ素ゴム組成物と実質的に同様に扱い、 種々の加硫方法により加硫処理を施すこ とができる。 この加硫処理が、 本発明の再生加硫フッ素ゴム製造方法における加 硫処理 (2 ) である。  Since the regenerated unvulcanized fluororubber (B) is obtained by decomposing the crosslinked site of the crosslinked molecule of the regenerated vulcanized fluororubber (A), it can be processed. Has viscosity. Therefore, the unvulcanized fluoro rubber (B) to be regenerated can be treated in substantially the same manner as the unvulcanized fluoro rubber composition, and can be vulcanized by various vulcanization methods. This vulcanization treatment is the vulcanization treatment (2) in the method for producing a reclaimed vulcanized fluororubber of the present invention.
上記加硫処理 (2 ) の加硫の機構としては特に限定されず、 例えば、 上記架橋 性含フッ素重合体が有する架橋性部位を反応させることよりなるもの等が挙げら れる。 上記架橋性部位は、 (i ) 一 C F R 2— C H 2— ( R 2はフッ素原子又は架 橋部位残基を示す。 ) で表される主鎖中の部位、 又は、 (i i ) イオン性基であ る。 上記 (i ) の部位のうち、 式中の R 2がフッ素原子である 1 , 1—ジフルォ 口エチレン基は、 通常、 エラストマ一性含フッ素重合体の単量体成分に含むこと が好ましいとして上述したビニリデンフルオラィドに由来する 2価基である。 上 記 ( i ) の式中の R 2としての架橋部位残基は、 加熱処理により切断された架橋 部位の一部であるとして上述したものである。 上記イオン性基は、 被再生加硫フ ッ素ゴム (A) の加熱処理により架橋部位における結合が切断された結果生じる ものであり、 例えば、 上述したカルボキシル基等が挙げられる。 上記架橋性部位 としては、 架橋性が高い点から、 上記 (i ) の部位が好ましく、 上記 ( i ) の部 位としては、 1 , 1ージフルォロエチレン基が好ましい。 The mechanism of vulcanization in the vulcanization treatment (2) is not particularly limited. And those obtained by reacting the crosslinkable sites of the fluorinated polymer. The crosslinkable site is (i) a site in the main chain represented by one CFR 2 —CH 2 — (R 2 represents a fluorine atom or a bridge site residue), or (ii) an ionic group. It is. The 1,1-difluoroethylene group in which R 2 is a fluorine atom in the formula (i) is usually preferably contained in the monomer component of the elastomeric fluorine-containing polymer. It is a divalent group derived from vinylidene fluoride. The crosslinking site residue as R 2 in the above formula (i) is as described above as being a part of the crosslinking site cleaved by the heat treatment. The ionic group is formed as a result of a bond at a cross-linking site being cut by heat treatment of the regenerated vulcanized fluororubber (A), and examples thereof include the above-mentioned carboxyl group. As the crosslinkable site, the site (i) is preferable from the viewpoint of high crosslinkability, and the 1,1 difluoroethylene group is preferable as the site (i).
上記 (i ) の部位を反応させることよりなる加硫の方法としては、 ポリオール を用いた加硫方法、 及び、 ポリアミンを用いた加硫方法が挙げられる。 本明細書 において、 ポリオールを用いた加硫方法は、 ポリオール加硫ということがあり、 ポリアミンを用いた加硫方法は、 ポリアミン加硫ということがある。  Examples of the vulcanization method comprising reacting the above-mentioned site (i) include a vulcanization method using a polyol and a vulcanization method using a polyamine. In this specification, the vulcanization method using a polyol may be referred to as polyol vulcanization, and the vulcanization method using a polyamine may be referred to as polyamine vulcanization.
加硫処理 (2 ) として用いるポリオール加硫は、 一般的に、 加硫促進剤として 用いるォユウム化合物に水酸化カルシゥムを作用させて得られる求核剤により、 1, 1ージフルォロエチレン基等の上記 ( i ) の部位から脱フッ化水素させ、 得 られる二重結合に加硫剤として用いるポリオール化合物を付加させて橋かけを形 成させることにより架橋させるものである。 生じたフッ化水素は、 受酸剤として 用いる酸化マグネシウムと反応させることにより、 消失させることができる。 加硫処理 (2 ) として用いるポリオール加硫に使用するポリオール化合物とし ては、 例えば一般的にフッ素ゴムの加硫剤として従来知られているポリオール化 合物を使用することができる。 このようなポリオール化合物としては、 例えば、 ポリヒドロキシ化合物が好ましく、 なかでも、 耐熱性、 機械的強度等に優れたフ ッ素ゴムを得やすい点から、 ポリヒドロキシ芳香族化合物がより好ましい。 上記ポリヒ ドロキシ芳香族化合物としては、 例えば 2 , 2—ビス (4ーヒ ドロ キシフエニル) プロパン 〔ビスフエノール A〕 、 2, 2—ビス (4—ヒ ドロキシ フエ二ノレ) パーフノレオ口プロパン 〔ビスフエノール A F〕 、 レゾルシン、 1, 3 一トリ ヒ ドロキシベンゼン、 1 , 7—ジヒ ドロキシナフタレン、 2, 7_ジヒ ド ロキシナフタレン、 1, 6—ジヒ ド άキシナフタレン、 4, 4' ージヒ ドロキシ ジフエ二ノレ、 4, 4 ージヒ ドロキシスチノレベン、 2, 6—ジヒ ドロキシアンス ラセン、 ヒ ドロキノン、 カテコール、 2, 2一ビス (4ーヒ ドロキシフエ二ノレ) ブタン 〔ビスフエノール Β〕 、 4, 4—ビス (4ーヒ ドロキシフヱニル) 吉草酸、 2, 2一ビス (4—ヒドロキシフエ二ノレ) テトラフルォロジクロロプロパン、 4, 4' ージヒ ドロキシジフヱニノレスノレホン、 4, ' —ジヒ ドロキシジフエニノレケ トン、 トリ (4—ヒ ドロキシフエニル) メタン、 3, 3' , 5, 5' —テトラク 口口ビスフエノール Α、 3, 3' , 5, 57 —テトラプロモビスフエノール Α等 が挙げられる。 これらのポリヒドロキシ芳香族化合物は、 アルカリ金属塩又はァ ルカリ土類金属塩等であってもよいが、 得られる再生加硫フッ素ゴム (C) をな すこととなる架橋分子の凝析を酸を用いて行った場合は、 これらの金属塩は使用 しないことが好ましい。 Polyol vulcanization used for vulcanization treatment (2) is generally carried out using a nucleophilic agent obtained by reacting calcium hydroxide with an osmium compound used as a vulcanization accelerator, for example, a 1,1-difluoroethylene group. The compound is dehydrofluorinated from the site (i) described above, and a polyol compound used as a vulcanizing agent is added to the resulting double bond to form a crosslink, thereby causing crosslinking. The generated hydrogen fluoride can be eliminated by reacting with the magnesium oxide used as the acid acceptor. As the polyol compound used in the vulcanization of the polyol used in the vulcanization treatment (2), for example, a polyol compound generally known as a vulcanizing agent for a fluororubber can be used. As such a polyol compound, for example, a polyhydroxy compound is preferable, and among them, a polyhydroxy aromatic compound is more preferable because a fluororubber excellent in heat resistance, mechanical strength, and the like is easily obtained. Examples of the polyhydroxy aromatic compound include 2,2-bis (4-hydroxyphenyl) propane [bisphenol A] and 2,2-bis (4-hydroxyoxy). Feninole) Perphnoleo-propane [bisphenol AF], resorcinol, 1,3-trihydroxybenzene, 1,7-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 1,6-dihydrido Xinaphthalene, 4,4'-dihydroxy-dipheninole, 4,4-dihydroxy-stinoleben, 2,6-dihydroxy-xylene-racene, hydroquinone, catechol, 2,2-bis (4-hydroxy-doxypheninole) butane [Bisphenol II], 4,4-bis (4-hydroxyphenyl) valeric acid, 2,2-bis (4-hydroxyphenyl) tetrafluorodichloropropane, 4,4'-jihidroxydiphenylinoresole Hong, 4, '-dihydroxydipheninoletone, tri (4-hydroxyphenyl) methane, 3,3', 5,5'-tetrak Le Α, 3, 3 ', 5 , 5 7 - tetra Promo bisphenol Alpha, and the like. These polyhydroxy aromatic compounds may be an alkali metal salt or an alkaline earth metal salt, etc., but the acid coagulates the coagulated cross-linking molecules that will form the resulting reclaimed vulcanized fluororubber (C). It is preferable not to use these metal salts when the reaction is carried out by using.
加硫処理 (2) として用いるポリオール加硫に使用する加硫促進剤としては、 例えば一般的にフッ素ゴムのポリオール加硫の加硫促進剤として知られているォ ユウム化合物を使用することができる。 このようなォニゥム化合物としては、 例 えば、 第 4級アンモニゥム塩等のアンモニゥム化合物、 第 4級ホスホニゥム塩等 のホスホニゥム化合物のほか、 ォキソニゥム化合物、 スルホニゥム化合物等が挙 げられ、 なかでも、 第 4級アンモニゥム塩及び第 4級ホスホニゥム塩が好ましい。 第 4級アンモニゥム塩としては、 例えば 8—メチルー 1, 8 _ジァザ一ビシク 口 [5. 4. 0] — 7—ゥンデセニゥムクロリ ド、 8—メチルー 1, 8—ジァザ ービシクロ [5. 4. 0] 一 7—ゥンデセニゥムアイオダイド、 8—メチル一 1, 8 _ジァザービシクロ [5. 4. 0] — 7—ゥンデセニゥムハイドロキサイド、 8—メチルー 1, 8ージァザ一ビシク口 [5. 4. 0] 一 7—ゥンデセニゥムー メチルスルフェート、 8—ェチルー 1 , 8—ジァザ一ビシク口 [5. 4. 0] - 7 _ゥンデセニゥムブロミ ド、 8—プロピル _ 1, 8—ジァザービシクロ [5. 4. 0] — 7—ゥンデセニゥムプロミド、 8—ドデシルー 1 , 8—ジァザ一ビシ クロ [5. 4. 0] 一 7—ゥンデセニゥムクロリ ド、 8—ドデシルー 1 , 8—ジ ァザービシクロ [5. 4. 0] 一 7—ゥンデセニゥムハイドロキサイ ド、 8—ェ ィコシルー 1, 8一ジァザービシクロ [5. 4. 0] —7—ゥンデセニゥムクロ リ ド、 8—テトラコシル一1, 8—ジァザ一ビシクロ [5. 4. 0] 一 7—ゥン デセニゥムクロリ ド、 8—ベンジルー 1 , 8—ジァザ一ビシクロ [5. 4. 0] _ 7—ゥンデセニゥムクロリ ド、 8—ベンジノレ一 1, 8—ジァザービシクロ [5. 4. 0] _ 7—ゥンデセニゥムハイドロキサイド、 8—フエネチノレー 1, 8—ジ ァザ一ビシクロ [5. 4. 0] — 7—ゥンデセニゥムクロリ ド、 8— (3—フエ ニルプロピル) 一1, 8—ジァザ一ビシク口 [5. 4. 0] 一 7—ゥンデセニゥ ムクロリ ド等が挙げられる。 As the vulcanization accelerator used for the vulcanization of the polyol used as the vulcanization treatment (2), for example, an iridium compound generally known as a vulcanization accelerator for the polyol vulcanization of a fluororubber can be used. . Examples of such an ammonium compound include an ammonium compound such as a quaternary ammonium salt, a phosphonium compound such as a quaternary phosphonium salt, an oxonium compound, a sulfonium compound, and the like. Ammonium salts and quaternary phosphonium salts are preferred. Examples of quaternary ammonium salts include, for example, 8-methyl-1,8-diazabicyclo mouth [5.4.0] — 7-indesenium chloride, 8-methyl-1,8-diazabicyclo [5 4.00] 1-7-dedecenium iodide, 8-methyl-1,8-diazabicyclo [5.4.0] — 7-dedecenium hydroxide, 8-methyl-1 , 8 dia. Mouth [5. 4. 0] 1- 7-dimethyl sulphate methyl sulfate, 8-ethyl chloro 1, 8-dia. 1-mouth [5. 4. 0]-7 _ , 8-propyl_1,8-diazabicyclo [5.4.0] — 7-indesenium bromide, 8-dodecyl-1,8-diazabicyclo [5.4.0] Dedecenium chloride, 8-dodecyl 1,8-di Azabishikuro [5. 4.0] one 7-© down de Seni ©-time hydro-described de, 8-E Ikoshiru 1, 8 one Jiazabishikuro [5. 4.0] -7-© down de Seni © skeleton Li De, 8 —Tetracosyl-1,8-diazabicyclo [5.4.0] -17-didecenium chloride, 8-benzyl-1,8-diazabicyclo [5.4.0] _7-indesenii Muchloride, 8-benzinole-1,8-diazabicyclo [5.4.0] _ 7-indesenium hydroxide, 8-phenetinole 1,8-diazabicyclo [5. 4. 0] — 7-indesenium chloride, 8- (3-phenylpropyl) 1,8-diaza-bis [5.4.0] 1-7-indesenium chloride, etc.
第 4級ホスホニゥム塩としては、 例えばテトラブチルホスホニゥムクロリ ド、 ベンジノレトリフエ二ノレホスホニゥムク口リ ド、 ベンジノレトリメチノレホスホニゥム クロリ ド、 ベンジルトリプチルホスホニゥムクロリ ド等が挙げられる。  Examples of the quaternary phosphonium salts include tetrabutylphosphonium chloride, benzinoletriphenylenolephosphonium chloride, benzinoletrimethinolephosphonium chloride, and benzyltriptylphosphonium chloride. No.
上記ポリオール加硫に使用するポリオール化合物は、 架橋性含フッ素重合体 1 00重量部あたり、 通常 0. 5〜 5重量部であり、 好ましい下限は 1重量部、 好 ましい上限は 2重量部であり、 好ましくは 1〜2重量部である。  The polyol compound used in the polyol vulcanization is usually 0.5 to 5 parts by weight, preferably 1 part by weight, and preferably 2 parts by weight, per 100 parts by weight of the crosslinkable fluoropolymer. And preferably 1 to 2 parts by weight.
上記ポリオール加硫に使用する加硫促進剤は、 架橋性含フッ素重合体 100重 量部あたり、 通常 0. 2〜10重量部であり、 好ましい下限は 0. 5重量部、 好 ましい上限は 5重量部であり、 好ましくは 0. 5〜 5重量部である。  The vulcanization accelerator used in the polyol vulcanization is usually 0.2 to 10 parts by weight, preferably 0.5 part by weight, and preferably upper limit, per 100 parts by weight of the crosslinkable fluoropolymer. 5 parts by weight, preferably 0.5 to 5 parts by weight.
加硫処理 (2) として用いるポリオール加硫は、 従来と同様の方法により行う ことができ、 例えば、 架橋性含フッ素重合体と上述の加硫剤、 必要に応じ加硫促 進剤、 更に適宜混合可能な他の添加剤とを口ール練り後金型に入れ加圧して 1次 加硫し、 次いで 2次加硫する方法等が挙げられる。 一般に、 1次加硫の条件は、 温度 100〜 200 °Cで、 時間 10〜: 180分間、 圧力 2〜 10 MP a程度の範 囲から採用され、 2次加硫の条件は、 温度 150〜300°Cで、 時間 30分間〜 30時間程度の範囲から採用される。  The vulcanization of the polyol used as the vulcanization treatment (2) can be carried out in the same manner as in the prior art. For example, the crosslinkable fluoropolymer and the above vulcanizing agent, if necessary, a vulcanization accelerator, and After kneading the mixture with other additives that can be mixed, the mixture is put into a mold, pressurized to perform primary vulcanization, and then to secondary vulcanization. In general, the primary vulcanization conditions are a temperature of 100 to 200 ° C, a time of 10 to 180 minutes, and a pressure of about 2 to 10 MPa. The secondary vulcanization conditions are a temperature of 150 to 150 MPa. At 300 ° C, time is adopted from the range of about 30 minutes to 30 hours.
加硫処理 (2) として用いるポリアミン加硫は、 一般的に、 上述の架橋性部位 である 1, 1ージフルォロエチレン基等の上記 (i) の部位から脱フッ化水素さ せ、 得られる二重結合に加硫剤として用いるポリアミン化合物を付加させて橋か けを形成させ、 更に架橋点で脱フッ化水素させて炭素一窒素二重結合を形成させ ることにより、 架橋させるものである。 生じたフッ化水素は、 受酸剤として用い る酸化マグネシウムと反応させることにより、 消失させることができる。 In general, the polyamine vulcanization used as the vulcanization treatment (2) is obtained by dehydrofluorination from the above-mentioned (i) site such as a 1,1-difluoroethylene group which is a crosslinkable site. The polyamine compound used as a vulcanizing agent is added to the resulting double bond to form a bridge, and further dehydrofluorination at the cross-linking point to form a carbon-nitrogen double bond. By doing so, they are crosslinked. The generated hydrogen fluoride can be eliminated by reacting it with magnesium oxide used as an acid acceptor.
加硫処理 (2 ) として用いるポリアミン加硫に使用するポリアミン化合物とし ては、 分子中に 2個以上の塩基性窒素原子を結合した一級ァミン又は二級ァミン であり、 多くの場合はこれらを塩の形にして反応性を抑えて使用する。 上記ポリ ァミン化合物としては、 例えば、 エチレンジァミンカーバメート、 へキサメチレ ンジァミンカーバメート、 4, 4—ジアミンシクロへキシルメタンカーバメート 等のアルキレンジァミン類; N, N, ージシンナミリデン— 1, 6一へキサメチ レンジァミン等のシッフ塩基等が挙げられる。 そのほか、 塩基性に乏しい芳香族 ポリアミン化合物も他の塩基性化合物と併用することにより加硫剤として使用す ることができる。 上記他の塩基性化合物としては、 例えばジフエニルダァニジン、 ジー O—トリグァニジン、 ジフエ二ルチオゥレア、 2 _メルカプトイミダゾリン 等が挙げられ、 また、 合成ゴム用の加硫促進剤であって分子内にアミノ基 〔一 N H 2〕 及び Z又はイミノ基 〔一 N H—〕 を有する化合物、 2価の金属水酸化物等 であってもよい。 Polyamine used for vulcanization treatment (2) The polyamine compound used for vulcanization is a primary or secondary amine having two or more basic nitrogen atoms bonded in the molecule, and in many cases, these are salts. Use with reduced reactivity. Examples of the above-mentioned polyamine compounds include alkylenediamines such as ethylenediaminecarbamate, hexanemethylenediaminecarbamate, and 4,4-diaminecyclohexylmethanecarbamate; N, N, dicinnamylidene-1 And 6-hexamethylenediamine and the like. In addition, a poorly basic aromatic polyamine compound can be used as a vulcanizing agent by using it together with another basic compound. Examples of the other basic compounds include diphenyldananidin, di-O-triguanidine, diphenylthioperia, 2-mercaptoimidazoline, and the like.Also, it is a vulcanization accelerator for synthetic rubber and has an amino group in the molecule. compounds having a group [one NH 2] and Z or an imino group [one NH-], may be a divalent metal hydroxides.
上記ポリアミン化合物の使用量は、 通常、 被再生未加硫フッ素ゴム (B ) 1 0 0重量部に対して 0 . 5〜 5重量部が好ましい。  Usually, the amount of the polyamine compound used is preferably 0.5 to 5 parts by weight based on 100 parts by weight of the unvulcanized fluororubber to be regenerated (B).
加硫処理 (2 ) として (i i ) のカルボキシル基等のイオン性基を反応させる ことよりなる加硫の方法、 即ち、 イオン性基を利用した加硫方法としては、 例え ば金属酸ィヒ物を用いるもの等が挙げられる。 このような加硫は、 イオン架橋とい うことがある。 上記イオン性基としてカルボキシル基を反応させる加硫の場合、 酸化亜鉛等の金属酸化物を力ルポキシル基に作用させ、 例えば 2個のカルボキシ ル基と亜鉛等の金属原子との間にイオンクラスターを形成させることにより、 架 橋させるものであると考えられる。  Vulcanization Treatment (2) A vulcanization method comprising reacting an ionic group such as a carboxyl group of (ii), that is, a vulcanization method utilizing an ionic group includes, for example, metal oxides. And the like. Such vulcanization may be referred to as ionic crosslinking. In the case of vulcanization in which a carboxyl group is reacted as the ionic group, a metal oxide such as zinc oxide acts on the lipoxyl group, for example, an ion cluster is formed between two carboxyl groups and a metal atom such as zinc. It is thought that by forming it, it will be a bridge.
上記イオン架橋に使用する金属酸化物は、 被再生未加硫フッ素ゴム (B ) 1 0 0重量部あたり、 0 . 5〜 5 0重量部が好ましい。 ' 上記イオン架橘は、 一般的にゴムの加硫として用いられる方法等を用いること ができる。 上記イオン架橋は、 一般的に、 ステアリン酸等の脂肪酸を少量配合し て行う。 加硫処理 (2 ) の加硫の方法としては、 上述のように、 被再生未加硫フッ素ゴ ム (B ) をなす架橋性含フッ素重合体が、 ヨウ素及び臭素を有するエラストマ一 性含フッ素重合体に由来するものであっても、 加硫処理 (1 ) の結果ヨウ素を有 さず臭素を有しないことからラジカルによる攻撃を受けにくいので、 パーォキサ ィド加硫は適さない。 なお、 従来の技術として上述した特開昭 6 1 - 6 9 8 0 5 号公報に開示されたパーォキサイド加硫されたフッ素ゴムは、 同様に分子内にョ ゥ素を有さず、 臭素を有さず、 加熱処理後のパーォキサイド加硫では加硫しない と考えられるので、 加熱処理したフッ素ゴムは充填剤として用いられているもの と思料される。 The metal oxide used in the ion crosslinking is preferably 0.5 to 50 parts by weight per 100 parts by weight of the unvulcanized fluororubber (B) to be regenerated. 'For the above ion bridge, a method generally used for vulcanizing rubber can be used. The ionic cross-linking is generally performed by adding a small amount of a fatty acid such as stearic acid. As described above, the vulcanization in the vulcanization treatment (2) is such that the crosslinkable fluorinated polymer forming the uncured fluorinated rubber (B) to be regenerated has an elastomeric fluorinated content containing iodine and bromine. Even if it is derived from a polymer, peroxide curing is not suitable because vulcanization treatment (1) does not contain iodine and does not contain bromine, so it is not easily attacked by radicals. Incidentally, the peroxide-cured fluororubber disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 61-69805 similarly does not have iodine in the molecule but has bromine. Instead, it is considered that the peroxide vulcanization after the heat treatment does not cause vulcanization, so it is considered that the heat-treated fluororubber is used as a filler.
加硫処理 (2 ) を行うに際し、 被再生未加硫フッ素ゴム (B ) は、 未加硫のフ ッ素ゴムをブレンドしたものであってもよい。 上記未加硫のフッ素ゴムとしては 加硫処理 (2 ) により加硫することができるものであれば特に限定されず、 用い る加硫の方法に応じて選択される。 加硫処理 (2 ) としてポリオール加硫又はポ リアミン加硫を行う場合、 1 , 1ージフルォロエチレン基を有する含フッ素重合 体からなるものが好ましく、 イオン架橋を行う場合、 例えば、 カルボキシル基を 有するエチレン性不飽和化合物を含む単量体成分から得られた含フッ素重合体か らなるものを用いることができる。  In performing the vulcanization treatment (2), the unvulcanized fluoro rubber (B) to be regenerated may be a blend of unvulcanized fluoro rubber. The unvulcanized fluororubber is not particularly limited as long as it can be vulcanized by vulcanization treatment (2), and is selected according to the vulcanization method to be used. When vulcanization with polyol or polyamine is performed as the vulcanization treatment (2), a fluoropolymer having a 1,1-difluoroethylene group is preferable. When ionic cross-linking is performed, for example, a carboxyl group A fluorine-containing polymer obtained from a monomer component containing an ethylenically unsaturated compound having the following can be used.
加硫処理 (2 ) は、 得られる再生加硫フッ素ゴム (C ) として所望の形状を有 するように、 通常、 成形を同時に行う。 この成形の方法としては特に限定されず、 例えば'、 金型を用いて加熱圧縮する方法、 加熱した金型に圧入する方法、 押出機 で押出しスチーム加熱する方法等の公知の方法等が挙げられる。 上記成形は、 通 常、 1次加硫において行う。  In the vulcanization treatment (2), molding is usually performed at the same time so that the obtained regenerated vulcanized fluororubber (C) has a desired shape. The molding method is not particularly limited, and includes, for example, known methods such as a method of heating and compressing using a mold, a method of press-fitting into a heated mold, and a method of extruding and steam heating with an extruder. . The above molding is usually performed in primary vulcanization.
加硫処理 (2 ) は、 得られる再生加硫フッ素ゴム (C ) の特性を向上するため、 上記 1 7 加硫により得られた成形品を更に加熱することにより、 2次加硫を行う ものであつてもよい。  In the vulcanization treatment (2), in order to improve the properties of the obtained reclaimed vulcanized fluororubber (C), the molded product obtained by the above vulcanization 17 is subjected to secondary vulcanization by further heating. May be used.
本発明の再生加硫フッ素ゴム製造方法により得られる再生加硫フッ素ゴム (C ) は、 架橋分子及び加硫用添加剤に加え、 必要に応じてその他の配合剤からなる ものであってもよい。 上記その他の配合剤は、 未; ϋπ硫のフッ素ゴム ,袓成物、 被再 生加硫フッ素ゴム (Α) 及び Ζ又は被再生未加硫フッ素ゴム (Β ) に配合するこ とができる。 上記その他の配合剤としては特に限定されず、 例えば、 ゴムに一般 的に用いられる各種配合剤を用いることができ、 このようなものとしては、 例え ば充填剤、 加工助剤、 可塑剤、 軟化剤、 老化防止剤等が挙げられる。 The reclaimed vulcanized fluororubber (C) obtained by the method for producing a reclaimed vulcanized fluororubber of the present invention may be composed of other compounding agents, if necessary, in addition to the crosslinking molecule and the vulcanizing additive. . The above other compounding agents are not blended with non-vulcanized fluororubber, composites, regenerated vulcanized fluororubber (Α) and Ζ or regenerated unvulcanized fluororubber (Β). Can be. The above-mentioned other compounding agents are not particularly limited. For example, various compounding agents generally used for rubber can be used. Examples of such compounds include fillers, processing aids, plasticizers, and softeners. Agents, anti-aging agents and the like.
充填剤としては、 例えば、 酸化マグネシウム、 酸化カルシウム、 酸化チタン、 酸化珪素、 酸化アルミニウム等の充填剤用金属酸化物;水酸化マグネシウム、 水 酸化アルミニウム、 水酸化カルシウム等の金属水酸化物;炭酸マグネシウム、 炭 酸アルミニウム、 炭酸カルシウム、 炭酸バリウム等の炭酸塩;珪酸マグネシウム、 珪酸カルシウム、 珪酸ナトリウム、 珪酸アルミニウム等の珪酸塩;硫酸アルミ二 ゥム、 硫酸カルシウム、 硫酸バリゥム等の硫酸塩;合成ハイ ドロタルサイ ト、 二 硫化モリブデン、 硫化鉄、 硫化鲖等の金属硫化物等のほか、 珪藻土、 アスベス ト、 リ トボン (硫化亜鉛/硫化バリウム) 、 グラフアイ ト、 カーボンブラック、 フッ 化カーボン、 フッ化カルシウム、 コークス、 湿式シリカ、 乾式シリカ、 石英微粉 末、 亜鉛華、 タルク、 雲母粉末、 ワラス トナイ ト、 炭素繊維、 ァラミ ド繊維、 各 種ゥイスカー、 ガラス繊維、 有機補強剤、 有機充填剤等が挙げられる。  Examples of the filler include filler metal oxides such as magnesium oxide, calcium oxide, titanium oxide, silicon oxide, and aluminum oxide; metal hydroxides such as magnesium hydroxide, aluminum hydroxide, and calcium hydroxide; magnesium carbonate Carbonates such as aluminum, aluminum carbonate, calcium carbonate and barium carbonate; silicates such as magnesium silicate, calcium silicate, sodium silicate and aluminum silicate; sulfates such as aluminum sulfate, calcium sulfate and barium sulfate; synthetic hydrotalcite Metal sulfides such as sulfide, molybdenum disulfide, iron sulfide, and sulfur sulfide, as well as diatomaceous earth, asbestos, lithobon (zinc sulfide / barium sulfide), graphite, carbon black, carbon fluoride, calcium fluoride, Coke, wet silica, dry silica Quartz fine powder, zinc oxide, talc, mica powder, Wallace Tokyo DOO, carbon fibers, Arami de fibers, each species Uisuka, glass fiber, organic reinforcing agents, organic fillers and the like.
加工助剤としては、 例えば、 ステアリン酸、 ォレイン酸、 パルミチン酸、 ラウ リン酸等の高級脂肪酸; ステアリン酸ナトリウム、 ステアリン酸亜鉛等の高級脂 肪酸塩;ステアリン酸アミ ド、 ォレイン酸アミ ド等の高級脂肪酸アミ ド;ォレイ ン酸ェチル等の高級脂肪酸エステル; ステアリルァミン、 ォレイルァミン等の高 級脂肪族ァミン ;カルナバワックス、 セレシンワックス等の石油系ワックス ;ェ チレングリコーノレ、 グリセリン、 ジエチレングリコール等のポリグリコーノレ ; ヮ セリン、 パラフィン等のその他の脂肪族炭化水素等のほか、 シリコーン系オイル、 シリコーン系ポリマー、 低分子量ポリエチレン、 フタル酸エステル類、 燐酸エス テノレ類、 ロジン、 ジァノレキノレアミン、 ハロゲン化ジァノレキルァミン、 ジァノレキノレ スルフォン、 ハロゲン化ジアルキルスルフォン、 界面活性剤等が挙げられる。 可塑剤としては、 例えばフタル酸誘導体、 セバシン酸誘導体等が挙げられ、 軟 化剤としては、 例えば潤滑油、 プロセスオイル、 コールタール、 ヒマシ油、 ステ アリン酸カルシウム等が挙げられ、 老化防止剤としては、 例えばフエ二レンジァ ミン類、 フォスフェート類、 キノリン類、 クレゾール類、 フエノール類、 ジチォ カルバメート金属塩等が挙げられる。 上述のその他の配合剤としては、 また、 着色剤、 紫外線吸収剤、 難燃剤、 耐油 性向上剤、 発泡剤、 スコーチ防止剤、 粘着付与剤、 滑剤等を任意に配合すること ができる。 Examples of the processing aid include higher fatty acids such as stearic acid, oleic acid, palmitic acid, and lauric acid; higher fatty acid salts such as sodium stearate and zinc stearate; stearic acid amide, oleic acid amide; Higher fatty acid esters such as ethyl oleate; higher aliphatic amines such as stearylamine and oleylamine; petroleum-based waxes such as carnauba wax and ceresin wax; ethylene glycolone, glycerin, diethylene glycol and the like. Polyglycorone; ヮ In addition to other aliphatic hydrocarbons such as serine, paraffin, etc., silicone oil, silicone polymer, low molecular weight polyethylene, phthalates, ester phosphates, rosin, dianolequinoleamine, halogen Jianore Kill Min, Jianorekinore sulfonated, halogenated dialkyl sulfone, surfactants, and the like. Examples of the plasticizer include phthalic acid derivatives and sebacic acid derivatives.Examples of the softening agent include lubricating oil, process oil, coal tar, castor oil, calcium stearate, and the like. Examples thereof include phenylenediamines, phosphates, quinolines, cresols, phenols, and dithiocarbamate metal salts. As the other compounding agents described above, a coloring agent, an ultraviolet absorber, a flame retardant, an oil resistance improver, a foaming agent, a scorch inhibitor, a tackifier, a lubricant, and the like can be arbitrarily compounded.
本発明の再生加硫フッ素ゴム製造方法により得られる再生加硫フッ素ゴム (C ) は、 耐熱性、 耐油性、 耐溶剤性、 耐薬品性、 耐候性等に優れたものであり、 初 めての加硫により得られる加硫フッ素ゴムと同様に用いることができ、 例えば高 温、 薬品等への暴露等の苛酷な条件下であっても、 充分使用に耐え得るものであ り、 各種用途を有する。  The reclaimed vulcanized fluororubber (C) obtained by the method for producing a reclaimed vulcanized fluororubber of the present invention has excellent heat resistance, oil resistance, solvent resistance, chemical resistance, weather resistance, and the like. It can be used in the same manner as vulcanized fluororubber obtained by vulcanization, and can withstand sufficient use even under severe conditions such as exposure to high temperatures and chemicals. Having.
再生加硫フッ素ゴム (C ) の用途としては、 例えば自動車用の部品類が挙げら れる。 自動車用の部品類としては、 例えばエンジン本体;エンジンの主運動系、 動弁系、 潤滑 ·冷却系;燃料系、 吸気 ·排気系、 駆動系のトランスミッション系 等; シャーシのステアリング系、 ブレーキ系等;電装品の基本電装部品、 制御系 電装部品、 装備電装部品等の電装品類等が挙げられる。  Applications of the reclaimed vulcanized fluoro rubber (C) include, for example, parts for automobiles. Parts for automobiles include, for example, the engine itself; the engine's main motion system, valve train, lubrication / cooling system; fuel system, intake / exhaust system, drive system transmission system, etc .; chassis steering system, brake system, etc. Electrical components such as basic electrical components, electrical components for control systems, and electrical components.
再生加硫フッ素ゴム (C ) の用途としては、 また、 シール材、 ベローズ、 ダイ ャフラム、 ホース、 チューブ、 電線等が挙げられ、 これらは、 特に耐熱性、 耐油 性、 耐燃料油性、 耐 L L C性及び耐スチーム性が要求されるものが好適である。 上記シール材としては、 例えばガスケット、 非接触型及び接触型のパッキン類等 が挙げられ、 パッキン類としては、 例えばセルフシールパッキン、 ピストンリン グ、 割リング形パッキン、 メカニカルシール、 オイルシール等が挙げられる。 再生加硫フッ素ゴム (C ) の用途としては、 例えば、 以下の具体的用途に使用 可能である。  Applications of the recycled vulcanized fluoro rubber (C) include sealing materials, bellows, diaphragms, hoses, tubes, electric wires, etc., and these are particularly heat-resistant, oil-resistant, fuel-oil-resistant, and LLC-resistant. And those requiring steam resistance are preferred. Examples of the sealing material include gaskets, non-contact type and contact type packings, and examples of the packings include self-sealing packing, piston ring, split ring type packing, mechanical seal, and oil seal. Can be Recycled vulcanized rubber (C) can be used for the following specific applications, for example.
自動車用エンジン本体における、 シリンダ一へッドガスケット、 シリンダ一へ ッドカバーガスケット、 オイルパンパッキン、 一般ガスケット等のガスケット ; o—リング、 パッキン、 タイミングべノレトカバーガスケット等のシーノレ材; コン トロールホース等のホース ;エンジンマウントの防振ゴム等。  Gaskets such as cylinder head gasket, cylinder head cover gasket, oil pan packing, general gasket, etc. in the automobile engine body; o-rings, packing, timing blanket cover gasket, etc .; Hose; anti-vibration rubber for engine mount, etc.
自動車用エンジンの主運動系におけるクランクシャフトシール、 カムシャフト シーノレ等のシャフトシール等。  Shaft seals such as crankshaft seals and camshafts in the main motion system of automobile engines.
自動車用エンジンの動弁系におけるエンジンバルブのパルブステムオイルシー ル等。 自動車用エンジンの潤滑 ·冷却系において、 エンジンオイルクーラーのェンジ ンオイルクーラーホース、 オイルリターンホース、 シールガスケット等や、 ラジ エータ周辺のゥ才ターホース、 バキュームポンプのバキュームポンプオイ/レホー ス等。 Valve stem oil seals for engine valves in automotive engine valve trains. In the lubrication and cooling systems for automobile engines, engine oil cooler hoses, oil return hoses, seal gaskets, etc. for engine oil coolers, tertiary hoses around radiators, and vacuum pump oil / rehousing for vacuum pumps.
自動車の燃料系において、 燃料ポンプのオイルシール、 ダイヤフラム、 バルブ 等; フィラー (ネック) ホース、 燃料供給ホース、 燃料リターンホース、 ベーパ 一 (エバポ) ホース等の燃料ホース ;燃料タンクのインタンクホース、 フィラー シール、 タンクパッキン、 ィンタンクフューエルポンプマウント等;燃料チュー ブのチューブ本体やコネクター O—リング等;燃料噴射装置のインジェクターク ッシヨンリング、 インジェクターシーノレリング、 インジェクター〇一リング、 プ レツシャーレギュレーターダイヤフラム、 チェックバルブ類等;キャブレターの ニードルバルブ花弁、 加速ポンプピストン、 フランジガスケット、 コントロール ホース等;複合空気制御装置 (C A C ) のバルブシート、 ダイヤフラム等。 自動車の吸気 ·排気系において、 マ二ホールドの吸気マ二ホールドパッキン、 排気マ二ホールドパッキン等、 E G R (排気際循環) のダイヤフラム、 コント口 一ノレホース、 ェミッションコントローノレホース等、 B P Tのダイヤフラム等、 A Bバノレブの了フタ一バーン防止バノレブシート等、 スロッ トルのスロッ トルボディ パッキン、 ターボチャージヤーのターボオイノレホース (供給) 、 ターボオイルホ ース (リターン) 、 ターボエアホース、 インタークーラーホース、 タービンシャ フトシール等。  Oil seals, diaphragms, valves, etc. for fuel pumps in automotive fuel systems; filler (neck) hoses, fuel supply hoses, fuel return hoses, fuel hoses such as vapor (evaporative) hoses; fuel tank in-tank hoses, fillers Seals, tank packings, ink tank fuel pump mounts, etc .; fuel tube tubes and connector O-rings, etc .; fuel injector injector rings, injector sino ring, injector ring, plenum regulator diaphragm, Check valves, etc .; carburetor needle valve petals, acceleration pump pistons, flange gaskets, control hoses, etc .; valve seats, diaphragms, etc. for combined air control equipment (CAC). In the intake and exhaust systems of automobiles, intake manifold packing for exhaust manifold, exhaust manifold packing, etc., EGR (recirculation during exhaust) diaphragm, control port one hose, emission control hose, BPT diaphragm, etc. Throttle body packing, throttle body packing, turbocharger turbo oil hose (supply), turbo oil hose (return), turbo air hose, intercooler hose, turbine shaft seal, etc. .
自動車のトランスミツション系において、 トランスミツション関連のベアリン ダシーノレ、 オイノレシール、 O—リング、 パッキン、 トルコンホース等、 A Tのミ ッシヨンオイルホース、 A T Fホース、 O—リング、 パッキン類等。  In automotive transmission systems, transmission bearing bearings, oil seals, O-rings, packing, torque converter hoses, etc., AT transmission oil hoses, ATF hoses, O-rings, packings, etc.
自動車のステアリング系におけるパワーステアリングオイルホース等。  Power steering oil hoses, etc. in the steering system of automobiles.
自動車のブレーキ系において、 オイルシール、 O—リング、 パッキン、 ブレー キオイルホース等、 マスターバックの大気弁、 真空弁、 ダイヤフラム等、 マスタ 一シリンダーのビストンカップ (ゴムカップ) 等、 キヤリパーシール、 ブーツ類 自動車の基本電装品において、 電線 (ハーネス) の絶縁体やシース等、 ハーネ ス外装部品のチューブ等。 In automotive brake systems, oil seals, O-rings, packing, brake oil hoses, master back air valves, vacuum valves, diaphragms, etc. Master, cylinder-to-cylinder biston cups (rubber cups), etc. Carrier seals, boots Types of basic electrical components for automobiles, such as electric wire (harness) insulators and sheaths Tubes for exterior parts.
自動車の制御系電装品の、 各種センサ一線の被覆材料等。  Coating materials for control sensors of automobiles, along with various sensors.
自動車の装備電装品における、 カーエアコンの O—リング、 パッキン、 クーラ 一ホース等。  O-rings, packings, coolers, hoses, etc. for car air conditioners in electrical equipment of automobiles.
自動車用以外では、 例えば船舶、 航空機等の輸送機関における耐油、 耐薬品、 耐熱、 耐スチーム及び Z又は耐候用のパッキンその他のシール材、 o—リング、 ホース、 ダイヤフラム、 バルブ等;化学プラントにおける上記のようなパッキン、 〇一リング、 シール材、 ダイヤフラム、 バノレブ、 ホース、 ローノレ、 チューブ;而 薬品用コーティング、 ライニング;食品プラント機器及び食品機器 (家庭用品を 含む) における同様のパッキン、 ο—リング、 ホース、 シール材、 ベルト、 ダイ ャフラム、 バルブ、 ロール、 チューブ;原子力プラント機器における同様のパッ キング、 ο—リング、 ホース、 シーノレ材、 ダイヤフラム、 バノレブ、 チューブ;一 般工業部品における同様のパッキン、 〇一リング、 ホース、 シール材、 ダイヤフ ラム、 バルブ、 ロール、 チューブ、 ライニング、 マンドレノレ、 電線、 フレキシブ ルジョイント、 ベルト、 ゴム板、 ウエザーストリップ、 P P C複写機のロールプ レード等の用途に好適である。  Other than for automobiles, for example, oil-resistant, chemical-resistant, heat-resistant, steam-resistant and Z- or weather-resistant packing or other sealing materials, o-rings, hoses, diaphragms, valves, etc. in transportation such as ships and aircraft; Packings, such as seals, seals, diaphragms, banolebs, hoses, lorenoles, tubes; pharmaceutical coatings and linings; similar packings in food plant equipment and food equipment (including household goods), ο-rings, Hoses, seals, belts, diaphragms, valves, rolls, tubes; similar packing in nuclear plant equipment; o-rings, hoses, see-through materials, diaphragms, vanolebs, tubes; similar packing in general industrial parts; One ring, hose, sea Wood, diaphragms, are suitable valves, rolls, tubes, linings, Mandorenore, wire, Furekishibu Le joint, belt, rubber plate, a weather strip, in applications such Rorupu grade of P P C copier.
本発明の被再生未加硫フッ素ゴム用組成物は、 加硫により再生加硫フッ素ゴム ( C ) を得るために用いられるものであって、 被再生未加硫フッ素ゴム (B ) 及 び加硫剤からなるものである。 上記再生加硫フッ素ゴム (C ) 、 上記被再生未加 硫フッ素ゴム (B ) 及び上記加硫剤は、 本発明の再生加硫フッ素ゴム製造方法に ついて上述したものであり、 上記加硫は、 上記再生加硫フッ素ゴム製造方法にお ける加硫処理 (2 ) である。 従って、 上記加硫剤としては、 ポリオール、 ポリア ミン及び Z又は金属酸化物を用いることができる。  The composition for a reclaimed unvulcanized fluororubber of the present invention is used for obtaining a reclaimed vulcanized fluororubber (C) by vulcanization, and comprises a regenerated unvulcanized fluororubber (B) and a vulcanized rubber. It consists of a sulfurizing agent. The reclaimed vulcanized fluororubber (C), the reclaimed unvulcanized fluororubber (B), and the vulcanizing agent are as described above for the method for producing a reclaimed vulcanized fluororubber of the present invention. The vulcanization treatment (2) in the method for producing a reclaimed vulcanized fluororubber. Therefore, as the vulcanizing agent, a polyol, a polyamine and Z or a metal oxide can be used.
本発明の被再生未加硫フッ素ゴム用組成物は、 上記被再生未加硫フッ素ゴム ( B ) 及び加硫剤に加え、 必要に応じ、 本発明の再生加硫フッ素ゴム製造方法にお ける被再生未加硫フッ素ゴム (B ) について上述したことと同様、 上記加硫剤以 外の加硫用添加剤、 配合剤、 及ぴ Z又は、 未加硫のフッ素ゴムからなるものであ つてもよい。  The composition for a reclaimed unvulcanized fluororubber of the present invention may be used in the method for producing a reclaimed vulcanized fluororubber of the present invention, if necessary, in addition to the reclaimed unvulcanized fluororubber (B) and the vulcanizing agent. In the same manner as described above for the recycled unvulcanized fluororubber (B), a vulcanizing additive other than the vulcanizing agent, a compounding agent, and Z or unvulcanized fluororubber. Is also good.
本発明の被再生未加硫フッ素ゴム用組成物は、 加工可能な粘度を有することが 必要である。 上記粘度は、 本発明の再生加硫フッ素ゴム製造方法における被再生 被加硫フッ素ゴム (B ) について上述したものと同様である。 The composition for reclaimed unvulcanized fluororubber of the present invention has a processable viscosity. is necessary. The viscosity is the same as that described above for the regenerated vulcanized fluoro rubber (B) in the method for producing a regenerated vulcanized fluoro rubber of the present invention.
本発明の被再生未加硫フッ素ゴム用組成物は、 上述した組成物であるので、 上 記加硫処理 (2 ) を施すことにより、 加硫フッ素ゴムを再生することを可能にす るものである。 本発明の被再生未加硫フッ素ゴム用組成物に上記加硫処理 (2 ) を施すに際し、 通常、 本発明の再生加硫フッ素ゴム製造方法について上述したよ うな成形を同時に行う。 本発明の被再生未加硫フッ素ゴム用組成物は、 下記の 2 とおりに表すことができる。  Since the composition for a reclaimed unvulcanized fluororubber of the present invention is the above-mentioned composition, it is possible to regenerate the vulcanized fluororubber by performing the above vulcanization treatment (2). It is. When performing the above-mentioned vulcanization treatment (2) to the composition for a reclaimed unvulcanized fluororubber of the present invention, usually the molding as described above for the method of producing a reclaimed vulcanized fluororubber of the present invention is carried out simultaneously. The composition for reclaimed unvulcanized fluororubber of the present invention can be represented in the following two ways.
本発明の第 1の被再生未加硫フッ素ゴム用組成物は、 加硫により再生加硫フッ 素ゴム (C ) を得るために用いられるものであって、 被再生未加硫フッ素ゴム ( B ) 及ぴ加硫剤からなるものであり、 上記被再生未加硫フッ素ゴム (B ) は、 被 再生加硫フッ素ゴム (A) を加熱処理して得られたものであり、 上記被再生加硫 フッ素ゴム (A) は、 加硫処理 (1 ) により得られたものであることを特徴とす るものである。  The first composition for a regenerated unvulcanized fluororubber according to the present invention is used for obtaining a regenerated vulcanized fluororubber (C) by vulcanization. ) And a vulcanizing agent, wherein the unrecured unvulcanized fluororubber (B) is obtained by heat-treating the regenerated vulcanized fluororubber (A), and Vulcanized fluoro rubber (A) is characterized by being obtained by vulcanization (1).
本発明の第 2の被再生未加硫フッ素ゴム用組成物は、 加硫により再生加硫フッ 素ゴム (C ) を得るために用いられるものであって、 被再生未加硫フッ素ゴム ( B ) 及び加硫剤からなるものであり、 上記被再生未加硫フッ素ゴム (B ) は、 架 橋性含フッ素重合体からなるものであり、 上記架橋性含フッ素重合体は、 ヨウ素 を有さず、 臭素を有さず、 側鎖にカルボキシル基等のイオン性基を有するもので あることを特徴とするものである。  The second composition for a regenerated unvulcanized fluororubber of the present invention is used for obtaining a regenerated vulcanized fluororubber (C) by vulcanization, and comprises a regenerated unvulcanized fluororubber (B). ) And a vulcanizing agent, and the reclaimed unvulcanized fluororubber (B) is composed of a crosslinkable fluoropolymer, and the crosslinkable fluoropolymer contains iodine. It has no bromo group and has an ionic group such as a carboxyl group in the side chain.
本発明の第 2の被再生未加硫フッ素ゴム用組成物において、 上記架橋性含フッ 素重合体は、 本発明の再生加硫フッ素ゴム製造方法において上述したものである。 従って、 上記架橋性含フッ素重合体は、 パーオキサイド加硫により得られた加硫 フッ素ゴムを加熱処理して得られるものであってよく、 この場合、 パーォキサイ ド加硫を行った結果、 分子中にヨウ素を有さず、 臭素を有しないこととなってお り、 上記加熱処理により架橋部位を分解した結果、 側鎖にカルボキシル基等のィ オン性基を有することとなったものである。  In the second composition for reclaimed unvulcanized fluororubber of the present invention, the crosslinkable fluorine-containing polymer is as described above in the method of producing reclaimed vulcanized fluororubber of the present invention. Therefore, the crosslinkable fluoropolymer may be one obtained by heat-treating a vulcanized fluororubber obtained by peroxide vulcanization. In this case, the peroxyside vulcanization results in It has no iodine and no bromine, and as a result of decomposing the crosslinked site by the above heat treatment, it has an ionic group such as a carboxyl group in the side chain.
上記被再生未加硫フッ素ゴム用組成物から得られたものであることを特徴とす る再生加硫フッ素ゴムもまた、 本発明の一つである。 この再生加硫フッ素ゴムは、 上述のように、 本発明の再生加硫フッ素ゴム製造方法により得られる再生加硫フ ッ素ゴム (C) である。 A reclaimed vulcanized fluororubber characterized by being obtained from the composition for a reclaimed unvulcanized fluororubber is also one of the present invention. This recycled vulcanized rubber is As described above, the recycled vulcanized fluororubber (C) obtained by the method for producing a recycled vulcanized fluororubber of the present invention.
本発明の再生加硫フッ素ゴム製造方法は、 また、 上記被再生未加硫フッ素ゴム 用組成物に加硫処理を施すことにより、 再生加硫フッ素ゴムを得ることよりなる ことを特徴とするものである。 この再生加硫フッ素ゴム製造方法を本発明の第 2 の再生加硫フッ素ゴム製造方法という。 上記加硫処理は、 本発明の再生加硫フッ 素ゴム製造方法において上述した加硫処理 (2) であり、 上記再生加硫フッ素ゴ ムは、 本発明の再生加硫フッ素ゴム製造方法において上述した再生加硫フッ素ゴ ム (C) である。 従って、 この本努明の第 2の再生加硫フッ素ゴム製造方法によ つても、 再生加硫フッ素ゴム (C) を再生することができる。 発明の実施の形態  The method for producing a reclaimed vulcanized fluororubber of the present invention is characterized in that a vulcanization treatment is performed on the composition for a reclaimed unvulcanized fluororubber to obtain a reclaimed vulcanized fluororubber. It is. This method for producing recycled vulcanized fluororubber is referred to as the second method for producing recycled vulcanized fluororubber of the present invention. The vulcanization treatment is the vulcanization treatment (2) described above in the method for producing a reclaimed vulcanized fluororubber of the present invention, and the reclaimed vulcanized rubber is used in the method for producing a reclaimed vulcanized fluororubber of the present invention. This is the recycled vulcanized fluorine rubber (C). Therefore, the recycled vulcanized fluororubber (C) can also be regenerated by the second method for producing a reclaimed vulcanized fluororubber of the present invention. Embodiment of the Invention
実施例 1 Example 1
フッ素ゴム (ヨウ素を有する V d FZTFEZHF P共重合体、 商品名 :ダイ エル G— 952、 ダイキン工業社製) 100重量部に対し MTカーボンブラック (商品名 : Th e r ma x N— 990、 C a n c a r b社製) 20重量部、 ト リアリルイソシァヌレート (TA I C、 日本化成社製) 4重量部、 パーォキサイ ド (商品名 :パーへキサ 2. 5B、 日本油脂社製) 1. 5重量部を、 2本ロール を用いて混練りし、 160°Cで 10分間プレス加硫した後、 180°Cで 4時間ォ ーブン加硫し、 パーオキサイド加硫により被再生加硫フッ素ゴム (A) を作製し た。  Fluororubber (Iodine-containing VdFZTFEZHF P copolymer, trade name: Daiel G-952, manufactured by Daikin Industries, Ltd.) MT carbon black (trade name: Thermax N—990, Cancarb) 20 parts by weight, Triallyl isocyanurate (TA IC, manufactured by Nippon Kasei Co., Ltd.) 4 parts by weight, Peroxide (trade name: Perhexa 2.5B, manufactured by Nippon Yushi Co., Ltd.) 1.5 parts by weight , Kneading using two rolls, press vulcanization at 160 ° C for 10 minutes, and oven vulcanization at 180 ° C for 4 hours. It was made.
この被再生加硫フッ素ゴム (A) を 2本ロールを用いて粉砕し、 300°Cで 7 0時間、 オーブンにて加熱処理し、 被再生未加硫フッ素ゴム (B) を作製した。 この被再生未加硫フッ素ゴム (B) に、 表 1に示す配合にてロールにて混練り した後ポリオール加硫を行い、 170°Cで 20分間プレス加硫した後、 230°C で 24時間オーブン加硫し、 再生加硫フッ素ゴム (C) を作製した。 上述の混練 りしたコンパウンドは、 キュラストメーター (J SR社製) を用いて加硫性を測 定した。 測定した結果を表 2に示す。  The regenerated vulcanized fluororubber (A) was pulverized using two rolls and heated in an oven at 300 ° C. for 70 hours to produce a regenerated unvulcanized fluororubber (B). This recured unvulcanized fluororubber (B) is kneaded with a roll in the composition shown in Table 1, then polyol vulcanized, press vulcanized at 170 ° C for 20 minutes, and cured at 230 ° C for 24 minutes. Oven vulcanization was performed for an hour to produce a recured vulcanized fluoro rubber (C). The vulcanizability of the kneaded compound was measured using a curast meter (manufactured by JSR). Table 2 shows the measured results.
上記再生加硫フッ素ゴム (C) について、 J I S K 6251に準拠して引 張強さと切断時伸びを測定し、 J I S K 6253に準拠して硬さ ( s h o r e A) を測定した。 また、 圧縮永久歪み試験を実施した。 測定した結果を表 3に 示す。 実施例 2 The recycled vulcanized fluoro rubber (C) is drawn according to JISK 6251. Tensile strength and elongation at break were measured, and hardness (shore A) was measured according to JISK 6253. In addition, a compression set test was performed. Table 3 shows the measurement results. Example 2
ポリオール加硫を行う代わりに表 1に示す配合にてポリアミン加硫を行い、 再 生加硫フッ素ゴム (C) 作製時においてプレス加硫を 160°Cで 20分間行い、 オーブン加硫を 200°Cで 24時間行った以外は実施例 1と同様にして、 再生加 硫フッ素ゴム (c) を作製し、 測定を行った。 測定した結果を表 2と表 3に示す。 実施例 3  Instead of polyol vulcanization, polyamine vulcanization was carried out with the composition shown in Table 1, and press vulcanization was performed at 160 ° C for 20 minutes during the production of regenerated vulcanized fluororubber (C), followed by oven vulcanization at 200 ° C. A recycled vulcanized fluororubber (c) was prepared and measured in the same manner as in Example 1 except that C was performed for 24 hours. Tables 2 and 3 show the measurement results. Example 3
ポリオール加硫を行う代わりに表 1に示す配合にてィオン加硫とポリオール加 硫の併用加硫を行った以外は実施例 1と同様にして、 再生加硫フッ素ゴム (C) を作製し、 測定を行った。 測定した結果を表 2と表 3に示す。 比較例 1  A recured vulcanized fluororubber (C) was prepared in the same manner as in Example 1 except that vulcanization was carried out in combination with ion vulcanization and polyol vulcanization in the composition shown in Table 1 instead of vulcanization with polyol. A measurement was made. Tables 2 and 3 show the measurement results. Comparative Example 1
フッ素ゴム (ヨウ素を有する Vd FZTFE/HFP共重合体、 商品名 :ダイ エル G_ 952、 ダイキン工業社製) 100重量部を用い、 表 1に示す配合にて ポリオール加硫を行い、 プレス加硫を 170°Cで 20分間行い、 オーブン加硫を 230 °Cで 24時間行つてフッ素ゴムを作製し、 実施例 1と同様の測定を行つた 測定した結果を表 2と表 3に示す。 比較例 2  Using 100 parts by weight of fluoro rubber (Vd FZTFE / HFP copolymer containing iodine, trade name: DAIEL G_952, manufactured by Daikin Industries, Ltd.) This was performed at 170 ° C for 20 minutes, and oven vulcanization was performed at 230 ° C for 24 hours to produce a fluororubber. The same measurement as in Example 1 was performed. The measurement results are shown in Tables 2 and 3. Comparative Example 2
フッ素ゴム (ヨウ素を有する VdF/TFE/HFP共重合体、 商品名 :ダイ エル G— 952、 ダイキン工業社製) 100重量部を用い、 表 1に示す配合にて ポリアミン加硫を行い、 プレス加硫を 160°Cで 20分間行い、 オーブン加硫を 200 で 24時間行つてフッ素ゴムを作製し、 実施例 1と同様の測定を行つた 測定した結果を表 2と表 3に示す。 表 1 Using 100 parts by weight of fluorine rubber (VdF / TFE / HFP copolymer containing iodine, trade name: DAIEL G-952, manufactured by Daikin Industries, Ltd.) Sulfurization was performed at 160 ° C for 20 minutes, and oven vulcanization was performed at 200 for 24 hours to produce a fluororubber. The same measurement as in Example 1 was performed. The measurement results are shown in Tables 2 and 3. table 1
(単位:重量部) 表 1において、 各商品名及び略号は、 それぞれ以下に示すものである。  (Unit: parts by weight) In Table 1, each trade name and abbreviation are shown below.
ビスフエノーノレ A F : 2, 2 -ビス (4—ヒ ドロキシフエ二ノレ) パーフルォロ  Bisphenolone A F: 2,2-bis (4-hydroxyphenol) perfluor
DBU-B : 8—ベンジル一 1, 8—ジァザ一ビシクロ [5. 4. 0] — Ί— ゥンデセニゥムハイ ドロキサイ ド DBU-B: 8-Benzyl-1,8-diazabicyclo [5.4.0] — Ί—dedecenium hydroxide
加硫剤 V— 3 : N, N' —ジシンナミリデン一 1 , 6—へキサンジアミン、 ダ カルディック # 2 000 :水酸化カルシウム、 近江化学工業社製  Vulcanizing agent V—3: N, N'-dicinnamylidene 1,6-hexanediamine, Dacardic # 2000: Calcium hydroxide, manufactured by Omi Chemical Industry Co., Ltd.
キヨ一ヮマグ 1 5 0 :高活性酸化マグネシウム、 協和化学工業社製  Kiyomag 150: Highly active magnesium oxide, manufactured by Kyowa Chemical Industry Co., Ltd.
キヨ一ヮマグ 3 0 :低活性酸化マグネシウム、 協和化学工業社製  Kiyomag 30: Low activity magnesium oxide, manufactured by Kyowa Chemical Industry Co., Ltd.
ステアリン酸:試薬一級  Stearic acid: First-class reagent
Z nO :一種酸化亜鉛、 堺化学工業社製 表 2 ZnO: zinc oxide, manufactured by Sakai Chemical Industry Co., Ltd. Table 2
表 3から、 加硫処理 (2 ) としてポリアミン加硫を行った実施例 2は、 初めて の加硫としてポリアミン加硫を行った比較例 2と比べると、 引張り強さと切断伸 びは低下するものの、 硬さ (s h o r e A) はほぼ同程度であることがわかった。 産業上の利用可能性 From Table 3, it can be seen that Example 2 in which polyamine vulcanization was performed as the vulcanization treatment (2) had lower tensile strength and cut elongation than Comparative Example 2 in which polyamine vulcanization was performed as the first vulcanization. However, the hardness (shore A) was found to be about the same. Industrial applicability
本発明の再生加硫フッ素ゴム製造方法は、 上述の構成を有することから、 加硫 フッ素ゴムから再力卩硫を経て加硫フッ素ゴムを再生することができる。 本発明の 被再生未加硫フッ素ゴム用組成物は、 そのような再加硫を可能にするものであり、 得られる再生加硫フッ素ゴムは、 初めての加硫により得られるフッ素ゴムと同様 に幅広い用途を有するものである。  Since the method for producing a reclaimed vulcanized fluororubber of the present invention has the above-described configuration, the vulcanized fluororubber can be regenerated from the vulcanized fluororubber through recasting. The composition for unrecured unvulcanized fluororubber of the present invention enables such re-vulcanization, and the obtained reclaimed vulcanized fluororubber is the same as the fluororubber obtained by the first vulcanization. It has a wide range of uses.

Claims

請求の範囲 The scope of the claims
1. 被再生加硫フッ素ゴム (A) を加熱処理して被再生未加硫フッ素ゴム (B ) を得た後、 前記被再生未加硫フッ素ゴム (B) に加硫処理 (2) を施すことに より再生加硫フッ素ゴム (C) を得ることよりなる再生加硫フッ素ゴム製造方法 であって、 1. After heating the regenerated vulcanized fluororubber (A) to obtain a regenerated unvulcanized fluororubber (B), the regenerated unvulcanized fluororubber (B) is subjected to vulcanization (2). A method for producing a reclaimed vulcanized fluororubber comprising obtaining a reclaimed vulcanized fluororubber (C) by applying
前記被再生加硫フッ素ゴム (A) は、 加硫処理 (1) により得られたものである ことを特徴とする再生加硫フッ素ゴム製造方法。 The method for producing a reclaimed vulcanized fluororubber, wherein the reclaimed vulcanized fluororubber (A) is obtained by a vulcanization treatment (1).
2. 加熱処理は、 240°C〜400°Cで行うものである請求の範囲第 1項記載 の再生加硫フッ素ゴム製造方法。 2. The method for producing a reclaimed vulcanized fluororubber according to claim 1, wherein the heat treatment is performed at 240 ° C to 400 ° C.
3. 加硫処理 (1) は、 パーオキサイドを用いるものである請求の範囲第 1又 は 2項記載の再生加硫フッ素ゴム製造方法。 3. The method for producing a reclaimed vulcanized fluororubber according to claim 1 or 2, wherein the vulcanization treatment (1) uses a peroxide.
4. 被再生加硫フッ素ゴム (A) は、 ビニリデンフルオライ ドを含む単量体成 分から得られた共重合体に加硫処理 (1) を施して得られるものからなるもので ある請求の範囲第 1、 2又は 3項記載の再生加硫フッ素ゴム製造方法。 4. The reclaimed vulcanized fluororubber (A) is obtained by subjecting a copolymer obtained from a monomer component containing vinylidene fluoride to a vulcanization treatment (1). 4. The method for producing a reclaimed vulcanized fluororubber according to item 1, 2, or 3.
5. 被再生加硫フッ素ゴム (A) は、 主鎖中に一CFR1— CH2_ (R1は架 橋部位を示す。 ) で表される部位を有する共重合体からなるものである請求の範 囲第 1、 2、 3又は 4項記載の再生加硫フッ素ゴム製造方法。 5. The reclaimed vulcanized fluororubber (A) is composed of a copolymer having a portion represented by one CFR 1 — CH 2 _ (R 1 represents a bridge portion) in the main chain. 5. The method for producing a reclaimed vulcanized fluoro rubber according to claim 1, 2, 3, or 4.
6. 被再生未加硫フッ素ゴム (B) は、 架橋性含フッ素重合体からなるもので あり、 6. The recycled unvulcanized fluororubber (B) is made of a crosslinkable fluoropolymer,
加硫処理 (2) は、 前記架橋性含フッ素重合体が有する架橋性部位を反応させる ことよりなるものであり、 The vulcanization treatment (2) comprises reacting a crosslinkable site of the crosslinkable fluoropolymer,
前記架橋性部位は、 (i) 一 CFR2— CH2— (R 2はフッ素原子又は架橋部位 残基を示す。 ) で表される主鎖中の部位、 又は、 (i i) イオン性基である 請求の範囲第 1、 2、 3、 4又は 5項記載の再生加硫フッ素ゴム製造方法。 The crosslinkable site is (i) a site in the main chain represented by one CFR 2 —CH 2 — (R 2 represents a fluorine atom or a residue of a crosslinkable site), or (ii) an ionic group. is there 6. The method for producing a reclaimed vulcanized fluoro rubber according to claim 1, 2, 3, 4 or 5.
7 . 加硫処理 (2 ) は、 ポリアミンを用いた加硫方法、 ポリオールを用いた加 硫方法、 及び Z又は、 加熱処理により生じたイオン性基を利用した加硫方法であ る請求の範囲第 1、 2、 3、 4、 5又は 6項記載の再生加硫フッ素ゴム製造方法 c 7. The vulcanization treatment (2) is a vulcanization method using a polyamine, a vulcanization method using a polyol, and a vulcanization method using Z or an ionic group generated by heat treatment. Method c for producing reclaimed vulcanized fluoro rubber according to item 1, 2, 3, 4, 5 or 6
8 . 加硫により再生加硫フッ素ゴム (C ) を得るために用いられる被再生未カロ 硫フッ'素ゴム用組成物であって、 8. A composition for a regenerated uncaro-sulfurized fluororubber used for obtaining a recured vulcanized fluororubber (C) by vulcanization,
被再生未加硫フッ素ゴム (B ) 及び加硫剤からなるものであり、 It is composed of a recycled unvulcanized fluoro rubber (B) and a vulcanizing agent,
前記被再生未加硫フッ素ゴム (B ) は、 被再生加硫フッ素ゴム (A) を加熱処理 して得られたものであり、 The regenerated unvulcanized fluoro rubber (B) is obtained by subjecting the regenerated vulcanized fluoro rubber (A) to a heat treatment,
前記被再生加硫フッ素ゴム (A) は、 加硫処理 (1 ) により得られたものである ことを特徵とする被再生未加硫フッ素ゴム用組成物。 The composition for a non-vulcanized unrecured fluororubber, wherein the regenerated vulcanized fluororubber (A) is obtained by a vulcanization treatment (1).
9 . 加硫剤は、 ポリオール、 ポリアミン及び/又は金属酸化物である請求の範 囲第 8項記載の被再生未加硫フッ素ゴム用組成物。 9. The composition for a non-vulcanized recycled rubber according to claim 8, wherein the vulcanizing agent is a polyol, a polyamine and / or a metal oxide.
PCT/JP2003/000643 2002-01-28 2003-01-24 Process for production of reclaimed fluororubber vulcanizates and compositions for the devulcanized fluororubbers to be reclaimed WO2003064131A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-19052 2002-01-28
JP2002019052A JP4449271B2 (en) 2002-01-28 2002-01-28 Recycled vulcanized fluororubber production method and composition for recycled unvulcanized fluororubber

Publications (1)

Publication Number Publication Date
WO2003064131A1 true WO2003064131A1 (en) 2003-08-07

Family

ID=27654128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000643 WO2003064131A1 (en) 2002-01-28 2003-01-24 Process for production of reclaimed fluororubber vulcanizates and compositions for the devulcanized fluororubbers to be reclaimed

Country Status (2)

Country Link
JP (1) JP4449271B2 (en)
WO (1) WO2003064131A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5109150B2 (en) * 2006-05-26 2012-12-26 旭硝子株式会社 Crosslinkable fluorine-containing elastomer, composition thereof and crosslinked rubber molded product
JP6134293B2 (en) * 2014-06-13 2017-05-24 株式会社森清化工 Sealing material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4148982A (en) * 1976-07-16 1979-04-10 Asahi Glass Co. Ltd. Thermal modification method for fluoroelastomers
JPS54122350A (en) * 1978-03-15 1979-09-21 Daikin Ind Ltd Cross-linkable fluororubber composition
JPS6169805A (en) * 1984-09-06 1986-04-10 Daikin Ind Ltd Treatment of vulcanized fluororubber
JPH06210633A (en) * 1993-01-20 1994-08-02 Micro Denshi Kk Reclaming device for waste vulcanized rubber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4148982A (en) * 1976-07-16 1979-04-10 Asahi Glass Co. Ltd. Thermal modification method for fluoroelastomers
JPS54122350A (en) * 1978-03-15 1979-09-21 Daikin Ind Ltd Cross-linkable fluororubber composition
JPS6169805A (en) * 1984-09-06 1986-04-10 Daikin Ind Ltd Treatment of vulcanized fluororubber
JPH06210633A (en) * 1993-01-20 1994-08-02 Micro Denshi Kk Reclaming device for waste vulcanized rubber

Also Published As

Publication number Publication date
JP2003211460A (en) 2003-07-29
JP4449271B2 (en) 2010-04-14

Similar Documents

Publication Publication Date Title
EP3135485B1 (en) Laminate
JP6160714B2 (en) Compact
JP2013216915A (en) Crosslinkable composition including fluorine-containing elastomer and crosslinked rubber molded product
EP3868799B1 (en) Fluorine-containing elastomer, crosslinkable composition and molded article
JP2019094430A (en) Fluororubber molded body and composition
EP2315806A1 (en) Fluorine-containing elastomer composition and molded article made of same
WO2013141253A1 (en) Fluorine rubber composition
JP2610145B2 (en) Rubber composition
JP4731116B2 (en) Rubber laminate
JP5892276B1 (en) Fluoro rubber composition and fluoro rubber molding
JP5896068B2 (en) Fluoro rubber composition and fluoro rubber molding
EP3835352A1 (en) Composition, crosslinked rubber molded article and fluorine-containing polymer
JP2017008166A (en) Fluorine-containing composition and molded article
JP2019077860A (en) Fluorine-containing elastomer, crosslinkable composition, and crosslinked rubber molded article
JP2015231717A (en) Laminate
WO2014123037A1 (en) Laminate body
JP2005022403A (en) Manufacturing process of laminated body
JP4449271B2 (en) Recycled vulcanized fluororubber production method and composition for recycled unvulcanized fluororubber
JP5092188B2 (en) Rubber laminate
JP2016132754A (en) Seal member for rolling bearing, molded article and method for preventing or reducing curing or swelling of molded article by urea compound
JP6464797B2 (en) Compact
JP2014226853A (en) Laminated body
JP2020015818A (en) Composition and foam
JP2023177692A (en) Fluorine-containing elastomer composition, molding, and fuel hose
JP2021084988A (en) Crosslinked fluororubber and fluororubber composition

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase