WO2003050829A1 - Niobium alloy, sintered body thereof, and capacitor using the same - Google Patents
Niobium alloy, sintered body thereof, and capacitor using the same Download PDFInfo
- Publication number
- WO2003050829A1 WO2003050829A1 PCT/JP2002/012904 JP0212904W WO03050829A1 WO 2003050829 A1 WO2003050829 A1 WO 2003050829A1 JP 0212904 W JP0212904 W JP 0212904W WO 03050829 A1 WO03050829 A1 WO 03050829A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- niobium
- sintered body
- capacitor
- alloy
- powder
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 162
- 229910001257 Nb alloy Inorganic materials 0.000 title claims abstract description 120
- 239000000843 powder Substances 0.000 claims abstract description 132
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims abstract description 130
- 239000010955 niobium Substances 0.000 claims abstract description 97
- 239000013078 crystal Substances 0.000 claims abstract description 95
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 93
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 41
- 239000000956 alloy Substances 0.000 claims abstract description 41
- 239000002245 particle Substances 0.000 claims abstract description 38
- 238000000034 method Methods 0.000 claims abstract description 25
- 230000000737 periodic effect Effects 0.000 claims abstract description 22
- 238000004519 manufacturing process Methods 0.000 claims description 47
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 20
- 238000005245 sintering Methods 0.000 claims description 20
- 239000003989 dielectric material Substances 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 18
- 239000012298 atmosphere Substances 0.000 claims description 16
- 150000004678 hydrides Chemical class 0.000 claims description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 14
- 229910052799 carbon Inorganic materials 0.000 claims description 14
- 150000001875 compounds Chemical class 0.000 claims description 14
- 229910052757 nitrogen Inorganic materials 0.000 claims description 11
- 238000002156 mixing Methods 0.000 claims description 8
- 229910052796 boron Inorganic materials 0.000 claims description 7
- 229910052717 sulfur Inorganic materials 0.000 claims description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 6
- 239000011593 sulfur Substances 0.000 claims description 6
- 239000011261 inert gas Substances 0.000 claims description 5
- 238000005121 nitriding Methods 0.000 claims description 5
- 150000002822 niobium compounds Chemical class 0.000 claims description 2
- NKPHXIVBVSKFHX-UHFFFAOYSA-N [Nb].[Nb].[Nd] Chemical compound [Nb].[Nb].[Nd] NKPHXIVBVSKFHX-UHFFFAOYSA-N 0.000 description 35
- 239000000243 solution Substances 0.000 description 31
- -1 niobium hydride Chemical compound 0.000 description 28
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 23
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 23
- 229910052726 zirconium Inorganic materials 0.000 description 21
- 238000002360 preparation method Methods 0.000 description 19
- 229910052715 tantalum Inorganic materials 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 150000001450 anions Chemical class 0.000 description 14
- 125000004429 atom Chemical group 0.000 description 14
- 229920001940 conductive polymer Polymers 0.000 description 14
- 239000007800 oxidant agent Substances 0.000 description 13
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 12
- 239000004065 semiconductor Substances 0.000 description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- MGKTZDSJNXXOOP-UHFFFAOYSA-N [Zr].[Nb].[Nb] Chemical compound [Zr].[Nb].[Nb] MGKTZDSJNXXOOP-UHFFFAOYSA-N 0.000 description 10
- 239000002253 acid Substances 0.000 description 10
- 239000002019 doping agent Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 239000007789 gas Substances 0.000 description 9
- 238000009740 moulding (composite fabrication) Methods 0.000 description 9
- 238000010298 pulverizing process Methods 0.000 description 9
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 8
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 229910052709 silver Inorganic materials 0.000 description 8
- 239000004332 silver Substances 0.000 description 8
- 239000002002 slurry Substances 0.000 description 8
- 229910052786 argon Inorganic materials 0.000 description 7
- 230000002950 deficient Effects 0.000 description 7
- 238000006722 reduction reaction Methods 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 229910001362 Ta alloys Inorganic materials 0.000 description 6
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- 239000003638 chemical reducing agent Substances 0.000 description 6
- 238000007598 dipping method Methods 0.000 description 6
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 6
- 239000011259 mixed solution Substances 0.000 description 6
- 239000008188 pellet Substances 0.000 description 6
- 238000007747 plating Methods 0.000 description 6
- 238000006116 polymerization reaction Methods 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 238000003763 carbonization Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 238000005336 cracking Methods 0.000 description 5
- 239000008151 electrolyte solution Substances 0.000 description 5
- 239000003822 epoxy resin Substances 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 239000011777 magnesium Substances 0.000 description 5
- 229910052749 magnesium Inorganic materials 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 229920000647 polyepoxide Polymers 0.000 description 5
- 229910052700 potassium Inorganic materials 0.000 description 5
- 239000011591 potassium Substances 0.000 description 5
- 238000010926 purge Methods 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Chemical compound O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- HZNVUJQVZSTENZ-UHFFFAOYSA-N 2,3-dichloro-5,6-dicyano-1,4-benzoquinone Chemical compound ClC1=C(Cl)C(=O)C(C#N)=C(C#N)C1=O HZNVUJQVZSTENZ-UHFFFAOYSA-N 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 4
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 229920002125 Sokalan® Polymers 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- YADSGOSSYOOKMP-UHFFFAOYSA-N dioxolead Chemical compound O=[Pb]=O YADSGOSSYOOKMP-UHFFFAOYSA-N 0.000 description 4
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 4
- 229910052734 helium Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 4
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 4
- 239000011812 mixed powder Substances 0.000 description 4
- 239000011733 molybdenum Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 4
- 229910000484 niobium oxide Inorganic materials 0.000 description 4
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 4
- 239000004584 polyacrylic acid Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 238000005476 soldering Methods 0.000 description 4
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- 125000004417 unsaturated alkyl group Chemical group 0.000 description 4
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 4
- QSGNKXDSTRDWKA-UHFFFAOYSA-N zirconium dihydride Chemical compound [ZrH2] QSGNKXDSTRDWKA-UHFFFAOYSA-N 0.000 description 4
- 229910000568 zirconium hydride Inorganic materials 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229910052779 Neodymium Inorganic materials 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- 229910001069 Ti alloy Inorganic materials 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- PQLVXDKIJBQVDF-UHFFFAOYSA-N acetic acid;hydrate Chemical compound O.CC(O)=O PQLVXDKIJBQVDF-UHFFFAOYSA-N 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium peroxydisulfate Substances [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 3
- VAZSKTXWXKYQJF-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)OOS([O-])=O VAZSKTXWXKYQJF-UHFFFAOYSA-N 0.000 description 3
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 150000002168 ethanoic acid esters Chemical class 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 3
- RHDUVDHGVHBHCL-UHFFFAOYSA-N niobium tantalum Chemical compound [Nb].[Ta] RHDUVDHGVHBHCL-UHFFFAOYSA-N 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229920000137 polyphosphoric acid Polymers 0.000 description 3
- 229920000128 polypyrrole Polymers 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 2
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 2
- FRASJONUBLZVQX-UHFFFAOYSA-N 1,4-naphthoquinone Chemical compound C1=CC=C2C(=O)C=CC(=O)C2=C1 FRASJONUBLZVQX-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 241000723346 Cinnamomum camphora Species 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 229910001029 Hf alloy Inorganic materials 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- 229910001182 Mo alloy Inorganic materials 0.000 description 2
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 2
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 229910000756 V alloy Inorganic materials 0.000 description 2
- 229910001080 W alloy Inorganic materials 0.000 description 2
- 229910001093 Zr alloy Inorganic materials 0.000 description 2
- AFPRJLBZLPBTPZ-UHFFFAOYSA-N acenaphthoquinone Chemical compound C1=CC(C(C2=O)=O)=C3C2=CC=CC3=C1 AFPRJLBZLPBTPZ-UHFFFAOYSA-N 0.000 description 2
- 235000011054 acetic acid Nutrition 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 229930006711 bornane-2,3-dione Natural products 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 229930008380 camphor Natural products 0.000 description 2
- 229960000846 camphor Drugs 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 150000002821 niobium Chemical class 0.000 description 2
- GFUGMBIZUXZOAF-UHFFFAOYSA-N niobium zirconium Chemical compound [Zr].[Nb] GFUGMBIZUXZOAF-UHFFFAOYSA-N 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 239000005518 polymer electrolyte Substances 0.000 description 2
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 2
- 229920000123 polythiophene Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 150000004053 quinones Chemical class 0.000 description 2
- 229930195734 saturated hydrocarbon Natural products 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XTHPWXDJESJLNJ-UHFFFAOYSA-N sulfurochloridic acid Chemical compound OS(Cl)(=O)=O XTHPWXDJESJLNJ-UHFFFAOYSA-N 0.000 description 2
- UGNWTBMOAKPKBL-UHFFFAOYSA-N tetrachloro-1,4-benzoquinone Chemical compound ClC1=C(Cl)C(=O)C(Cl)=C(Cl)C1=O UGNWTBMOAKPKBL-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 150000003754 zirconium Chemical class 0.000 description 2
- VNQXSTWCDUXYEZ-LDWIPMOCSA-N (+/-)-Camphorquinone Chemical compound C1C[C@@]2(C)C(=O)C(=O)[C@@H]1C2(C)C VNQXSTWCDUXYEZ-LDWIPMOCSA-N 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- WOAHJDHKFWSLKE-UHFFFAOYSA-N 1,2-benzoquinone Chemical compound O=C1C=CC=CC1=O WOAHJDHKFWSLKE-UHFFFAOYSA-N 0.000 description 1
- KETQAJRQOHHATG-UHFFFAOYSA-N 1,2-naphthoquinone Chemical compound C1=CC=C2C(=O)C(=O)C=CC2=C1 KETQAJRQOHHATG-UHFFFAOYSA-N 0.000 description 1
- 229940105324 1,2-naphthoquinone Drugs 0.000 description 1
- VNQXSTWCDUXYEZ-UHFFFAOYSA-N 1,7,7-trimethylbicyclo[2.2.1]heptane-2,3-dione Chemical compound C1CC2(C)C(=O)C(=O)C1C2(C)C VNQXSTWCDUXYEZ-UHFFFAOYSA-N 0.000 description 1
- VPUAYOJTHRDUTK-UHFFFAOYSA-N 1-ethylpyrrole Chemical compound CCN1C=CC=C1 VPUAYOJTHRDUTK-UHFFFAOYSA-N 0.000 description 1
- YMUICPQENGUHJM-UHFFFAOYSA-N 2-methylpropyl(tripropyl)azanium Chemical compound CCC[N+](CCC)(CCC)CC(C)C YMUICPQENGUHJM-UHFFFAOYSA-N 0.000 description 1
- JNGDCMHTNXRQQD-UHFFFAOYSA-N 3,6-dioxocyclohexa-1,4-diene-1,2,4,5-tetracarbonitrile Chemical compound O=C1C(C#N)=C(C#N)C(=O)C(C#N)=C1C#N JNGDCMHTNXRQQD-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 1
- 229940076442 9,10-anthraquinone Drugs 0.000 description 1
- JAJIPIAHCFBEPI-UHFFFAOYSA-N 9,10-dioxoanthracene-1-sulfonic acid Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C=CC=C2S(=O)(=O)O JAJIPIAHCFBEPI-UHFFFAOYSA-N 0.000 description 1
- YYVYAPXYZVYDHN-UHFFFAOYSA-N 9,10-phenanthroquinone Chemical compound C1=CC=C2C(=O)C(=O)C3=CC=CC=C3C2=C1 YYVYAPXYZVYDHN-UHFFFAOYSA-N 0.000 description 1
- 229910017048 AsF6 Inorganic materials 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 1
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 1
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- 229910001122 Mischmetal Inorganic materials 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 229910001275 Niobium-titanium Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical class [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- RGHILYZRVFRRNK-UHFFFAOYSA-N anthracene-1,2-dione Chemical compound C1=CC=C2C=C(C(C(=O)C=C3)=O)C3=CC2=C1 RGHILYZRVFRRNK-UHFFFAOYSA-N 0.000 description 1
- LSOTZYUVGZKSHR-UHFFFAOYSA-N anthracene-1,4-dione Chemical compound C1=CC=C2C=C3C(=O)C=CC(=O)C3=CC2=C1 LSOTZYUVGZKSHR-UHFFFAOYSA-N 0.000 description 1
- ILFFFKFZHRGICY-UHFFFAOYSA-N anthracene-1-sulfonic acid Chemical compound C1=CC=C2C=C3C(S(=O)(=O)O)=CC=CC3=CC2=C1 ILFFFKFZHRGICY-UHFFFAOYSA-N 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- UORKIKBNUWJNJF-UHFFFAOYSA-N chrysene-1,4-dione Chemical compound C1=CC2=CC=CC=C2C(C=C2)=C1C1=C2C(=O)C=CC1=O UORKIKBNUWJNJF-UHFFFAOYSA-N 0.000 description 1
- HZGMNNQOPOLCIG-UHFFFAOYSA-N chrysene-5,6-dione Chemical compound C12=CC=CC=C2C(=O)C(=O)C2=C1C=CC1=CC=CC=C21 HZGMNNQOPOLCIG-UHFFFAOYSA-N 0.000 description 1
- XVQUFOXACWQJMY-UHFFFAOYSA-N chrysene-6,12-dione Chemical compound C1=CC=C2C(=O)C=C3C4=CC=CC=C4C(=O)C=C3C2=C1 XVQUFOXACWQJMY-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 229940045803 cuprous chloride Drugs 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- AIRJNECCGRYSCS-UHFFFAOYSA-N ethane-1,2-diol;4-methyl-1,3-dioxolan-2-one Chemical compound OCCO.CC1COC(=O)O1 AIRJNECCGRYSCS-UHFFFAOYSA-N 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 239000005001 laminate film Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 229940046892 lead acetate Drugs 0.000 description 1
- PIJPYDMVFNTHIP-UHFFFAOYSA-L lead sulfate Chemical compound [PbH4+2].[O-]S([O-])(=O)=O PIJPYDMVFNTHIP-UHFFFAOYSA-L 0.000 description 1
- 235000002908 manganese Nutrition 0.000 description 1
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- IFSIGZHEDOYNJM-UHFFFAOYSA-N n,n-dimethylformamide;ethane-1,2-diol Chemical compound OCCO.CN(C)C=O IFSIGZHEDOYNJM-UHFFFAOYSA-N 0.000 description 1
- YZMHQCWXYHARLS-UHFFFAOYSA-N naphthalene-1,2-disulfonic acid Chemical compound C1=CC=CC2=C(S(O)(=O)=O)C(S(=O)(=O)O)=CC=C21 YZMHQCWXYHARLS-UHFFFAOYSA-N 0.000 description 1
- SLBHRPOLVUEFSG-UHFFFAOYSA-N naphthalene-2,6-dione Chemical compound O=C1C=CC2=CC(=O)C=CC2=C1 SLBHRPOLVUEFSG-UHFFFAOYSA-N 0.000 description 1
- KVBGVZZKJNLNJU-UHFFFAOYSA-N naphthalene-2-sulfonic acid Chemical compound C1=CC=CC2=CC(S(=O)(=O)O)=CC=C21 KVBGVZZKJNLNJU-UHFFFAOYSA-N 0.000 description 1
- RJSRQTFBFAJJIL-UHFFFAOYSA-N niobium titanium Chemical compound [Ti].[Nb] RJSRQTFBFAJJIL-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 150000004965 peroxy acids Chemical class 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L persulfate group Chemical group S(=O)(=O)([O-])OOS(=O)(=O)[O-] JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000414 polyfuran Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- RLCOXABDZNIZRQ-UHFFFAOYSA-N pyrene-2,7-dione Chemical compound C1=CC2=CC(=O)C=C(C=C3)C2=C2C3=CC(=O)C=C21 RLCOXABDZNIZRQ-UHFFFAOYSA-N 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 125000004151 quinonyl group Chemical group 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 description 1
- HIEHAIZHJZLEPQ-UHFFFAOYSA-M sodium;naphthalene-1-sulfonate Chemical compound [Na+].C1=CC=C2C(S(=O)(=O)[O-])=CC=CC2=C1 HIEHAIZHJZLEPQ-UHFFFAOYSA-M 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-N sulfamic acid Chemical compound NS(O)(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-N 0.000 description 1
- 125000000475 sulfinyl group Chemical group [*:2]S([*:1])=O 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- HIFJUMGIHIZEPX-UHFFFAOYSA-N sulfuric acid;sulfur trioxide Chemical compound O=S(=O)=O.OS(O)(=O)=O HIFJUMGIHIZEPX-UHFFFAOYSA-N 0.000 description 1
- 150000003481 tantalum Chemical class 0.000 description 1
- VSSLEOGOUUKTNN-UHFFFAOYSA-N tantalum titanium Chemical compound [Ti].[Ta] VSSLEOGOUUKTNN-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000001302 tertiary amino group Chemical group 0.000 description 1
- PCCVSPMFGIFTHU-UHFFFAOYSA-N tetracyanoquinodimethane Chemical compound N#CC(C#N)=C1C=CC(=C(C#N)C#N)C=C1 PCCVSPMFGIFTHU-UHFFFAOYSA-N 0.000 description 1
- CBXCPBUEXACCNR-UHFFFAOYSA-N tetraethylammonium Chemical compound CC[N+](CC)(CC)CC CBXCPBUEXACCNR-UHFFFAOYSA-N 0.000 description 1
- 125000003698 tetramethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/04—Electrodes or formation of dielectric layers thereon
- H01G9/048—Electrodes or formation of dielectric layers thereon characterised by their structure
- H01G9/052—Sintered electrodes
- H01G9/0525—Powder therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C27/00—Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
- C22C27/02—Alloys based on vanadium, niobium, or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/0047—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
- C22C32/0068—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only nitrides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Definitions
- the present invention relates to a capacitor, more specifically, to a niobium alloy for capacitors and a sintered body thereof, which can produce a capacitor having a large capacitance per unit mass, good high-temperature property and excellent heat resistance property, and also to a capacitor using the sintered body.
- Capacitors for use in electronic instruments such as cellular phone and personal computer are demanded to have a small size and a large capacitance.
- a tantalum capacitor is preferred because of its large capacitance for the size and good performance.
- a sintered body of tantalum powder is generally used for the anode moiety.
- the method of increasing the mass of the sintered body necessarily involves enlargement of the capacitor shape and cannot satisfy the reguirement for downsizing.
- the method of pulverizing tantalum powder to increase the specific surface area the pore diameter of the tantalum sintered body decreases or closed pores increase at the stage of sintering, as a result, impregnation of the cathode agent at the later step becomes difficult.
- One of studies for solving these problems is to fabricate a capacitor using a sintered body of a material powder capable of giving a dielectric constant larger than that of tantalum.
- niobium and titanium are known.
- JP-A-55-157226 discloses a method for producing a sintered device for capacitors, where agglomerated powder or niobium fine powder having a particle size of 2.0 ⁇ m or less is molded under pressure and then sintered, the molded and sintered body is cut into fine pieces, a lead part is joined therewith and these are again sintered.
- JP-A Japanese Patent Application
- U.S. Patent 4,084,965 discloses a capacitor using a sintered body of niobium powder of 5.1 ⁇ m obtained by hydrogenating and pulverizing a niobium ingot.
- the capacitor disclosed has a large leakage current (hereinafter sometimes simply referred to as "LC") value and is of little practical use.
- U.S. Patent 5,242,481 discloses a production method where the oxygen content in a niobium powder, a tantalum powder or a niobium and tantalum alloy powder is reduced to 300 ppm or less by using a reducing agent such as metal magnesium.
- a reducing agent such as metal magnesium.
- this patent publication does not describe a capacitor using these powders.
- Patent 6,171,363 discloses a production method where a metal or an alloy of tantalum, niobium, titanium, molybdenum, tungsten, vanadium, zirconium or hafnium is produced from an oxide of tantalum, niobium, titanium, molybdenum, tungsten, vanadium, zirconium or hafnium by reducing the oxide using a reducing agent such as gaseous magnesium or calcium and where a niobium-tantalum alloy, a niobium-titanium alloy and a tantalum-titanium alloy are described as a capacitor material substituting tantalum.
- a reducing agent such as gaseous magnesium or calcium
- WO00/67936 discloses a production method where a metal or an alloy of tantalum, niobium, titanium, molybdenum, tungsten, vanadium, zirconium or hafnium is produced from an oxide of tantalum, niobium, titanium, molybdenum, tungsten, vanadium, zirconium or hafnium by reducing the oxide using a reducing agent such as gaseous magnesium or calcium.
- a metal or an alloy of tantalum, niobium, titanium, molybdenum, tungsten, vanadium, zirconium or hafnium is produced from an oxide of tantalum, niobium, titanium, molybdenum, tungsten, vanadium, zirconium or hafnium by reducing the oxide using a reducing agent such as gaseous magnesium or calcium.
- This patent publication discloses an example of niobium-tantalum alloy and states that when a niobium-tantalum alloy containing 15 atom% of tantalum is used, the thickness of the dielectric film per unit voltage becomes smaller than that when using niobium alone and thereby, the capacitance is increased.
- tantalum or niobium is used in Examples and a case of using a niobium alloy is not described and the performance of capacitor is not described either.
- JP-A-10-242004 discloses a technique of improving the LC value by, for example, nitriding a part of niobium powder.
- JP-A-11-329902 discloses a niobium solid capacitor reduced in the change of electrostatic capacitance between before and after the reflow step at the mounting of parts.
- the capacitor disclosed has a capacitance as small as 2 ⁇ F and there are not disclosed high-temperature property with respect to the capacitance, which is described later, heat resistance and appearance frequency of defective/non- defective units with respect to LC.
- the ratio (C-C 0 ) /C 0 of the initial capacitance C 0 at room temperature to the capacitance C after a capacitor is left standing for 2,000 hours while applying a voltage in an atmosphere of 105°C and then returned to room temperature is defined as the high-temperature property.
- the high-temperature property of tantalum capacitors using a tantalum sintered body usually falls within ⁇ 20%, however, the high-temperature property of some niobium capacitors using a conventional niobium sintered body does not fall within ⁇ 20%.
- the heat resistance property is expressed, as a measure therefor, by the number of units showing a leakage current value (LC value) of 0.05 CV (a product of capacitance and rated voltage) or less when 50 capacitor units are manufactured and connected to a previously prepa'red substrate in a reflow furnace and then measured on the leakage current.
- LC value leakage current value
- the temperature at the exterior terminal part of a capacitor at the time of charging the substrate into the reflow furnace is kept at 230°C for 30 seconds per charging and the number of operations of charging the substrate is 3.
- the number of capacitor units having a heat resistance property of 0.05 CV or more is usually 0/50 units in the case of capacitors produced from a sintered body using ' a tantalum powder, whereas sometimes capacitor units having a heat resistance property exceeding 0.05 CV appeared in the case of capacitors produced from a sintered body using a conventional niobium powder.
- the niobium sintered body is inferior to a tantalum sintered body in the stability of oxide dielectric film. This difference outstandingly comes out at high temperatures. Many reasons are considered therefor but as one reason, it is presumed that due to difference between the composition of oxide dielectric film and the composition of niobium sintered body electrode, heat distortion occurs at high temperatures and thereby, the deterioration of oxide dielectric film is accelerated.
- capacitors using a niobium sintered body must be rated low in the reliability at room temperature and the service life thereof is sometimes judged defective. Therefore, their use in practice is limited.
- the object of the present invention is to provide a niobium capacitor having high capacitance, small leakage current value, good high-temperature property and good heat resistance property.
- the object of the present invention includes providing a sintered body, a niobium alloy and a niobium composition for giving this niobium capacitor.
- a niobium alloy and a niobium alloy sintered body comprising as an alloy component at least one element selected from the group consisting of the elements belonging to Groups 2 to 16 of the periodic table and further comprising diniobium mononitride crystal.
- the heat distortion for example, at the above-described high temperature is more relieved, and as a result, it is presumed that the capacitor using this niobium alloy powder or niobium alloy sintered body is greatly improved in both high-temperature property and heat resistance property.
- the present invention relates to a niobium alloy, a niobium composition powder, a sintered body thereof, a capacitor using the sintered body and a production method of the capacitor, which are described below.
- a niobium alloy for capacitors comprising as an alloy component at least one element selected from the group consisting of the elements belonging to Groups 2 to 16 of the periodic table and further comprising a diniobium mononitride crystal.
- a niobium alloy for capacitors as described in 1 above comprising as an alloy component at least one element selected from the group consisting of the elements belonging to Groups 3 to 16 of the periodic table and further comprising a diniobium mononitride crystal.
- niobium alloy for capacitors as described in any one of 1 to 3 above, wherein the diniobium mononitride crystal content is from 0.1 to 70 mass%.
- niobium alloy for capacitors as described in any one of 1 to 4 above, which is a powder having an average particle size of 0.05 to 5 ⁇ m.
- niobium alloy for capacitors as described in any one of 1 to 5 above, which has a BET specific surface area of 0.5 to 40 m 2 /g.
- niobium alloy for capacitors as described in any one of 1 to 6 above, which further comprises at least one element selected from the group consisting of boron, nitrogen, carbon and sulfur elements, in addition to the alloy component and the diniobium mononitride crystal.
- a niobium composition powder for capacitors comprising at least one element selected from the group consisting of the elements belonging to Groups 2 to 16 of the periodic table or a compound thereof, which becomes an alloy component of a niobium alloy; niobium or a niobium compound; and a diniobium mononitride crystal.
- a niobium granulated product for capacitors obtained by granulating a powder of the niobium alloy described in any one of 1 to 7 above.
- a niobium granulated product for capacitors obtained by granulating the niobium composition powder described in 8 or 9 above.
- a sintered body obtained by sintering the niobium granulated product described in any one of 10 to 12 above .
- a capacitor comprising the sintered body described in any one of 13 to 15 above as one electrode, a dielectric material formed on the surface of the sintered body, and a counter electrode provided on the dielectric material .
- a method for producing a capacitor comprising sintering a niobium-containing powder to obtain a niobium alloy sintered body, disposing this sintered body as one part electrode, forming a dielectric material on the surface of the sintered body and providing a counter electrode on the dielectric material, wherein the method comprises a step of incorporating a diniobium mononitride crystal into the sintered body.
- niobium-containing powder is a niobium alloy powder and/or a hydride thereof.
- niobium-containing powder contains niobium and/or a hydride thereof and at least one element selected from the group consisting of the elements belonging to Groups 2 to 16 of the periodic table, which becomes an alloy component of the niobium alloy.
- the alloy component of the niobium alloy is at least one element selected from the group consisting of the elements belonging to Groups 3 to 16 of the periodic table. 25. An electronic circuit using the capacitor described in 16 above.
- a niobium alloy comprising at least one element selected from the group consisting of the elements belonging to Groups 2 to 16 of the periodic table, which is an alloy component, and further comprising a diniobium mononitride crystal can be used as the material capable of satisfying the capacitor characteristics of both high-temperature property and heat resistance property.
- the "alloy" as used in the present invention includes a solid solution with the above alloy component (s) .
- the content of the diniobium mononitride crystal is preferably from 0.1 to 70 mass%.
- a treatment for additionally incorporating at least one element selected from the group consisting of boron, nitrogen, carbon and sulfur elements, into the niobium alloy may be performed.
- the total content of the at least one element selected from the group consisting of the elements belonging to Groups 2 to 16 of the periodic table, which is contained as an alloy component (excluding niobium) in the niobium alloy of the present invention is suitably 10 atom% or less, preferably from 0.01 to 10 atom%, more preferably from 0.01 to 7 atom%, of the niobium alloy.
- this element is less than 0.01 atom%, even if diniobium mononitride crystals are incorporated, the effect of restraining the electrolytic oxide film (dielectric film) formed by the electrolytic oxidation described later from undergoing heat distortion due to high temperatures cannot be easily obtained and it may fail to satisfy both the high-temperature property and the heat resistance property.
- the total content of the elements exceeds 10 atom%, the content of niobium itself in the niobium alloy decreases and this incurs reduction in the capacitance as a capacitor.
- the total content of the alloy component elements is preferably from 0.01 to 10 atom% . Furthermore, for more reducing the leakage current, the content of these elements in the niobium alloy is more preferably 7 atom% or less, still more preferably from 0.1 to 7 atom% .
- the average particle size of the niobium alloy powder of the present invention obtained by incorporating diniobium mononitride crystals into a niobium alloy comprising as an alloy component at least one element selected from the group consisting of the elements belonging to Groups 2 to 16 of the periodic table, is suitably 5 ⁇ m or less, preferably from 0.05 to 4 ⁇ m, so as to enlarge the specific surface area of the powder material and thereby realize a high capacitance.
- the average particle size (D 50 : ⁇ m) and the specific surface area (S: m 2 /g) of the niobium alloy powders (produced by the pulverization method) comprising zirconium and diniobium mononitride crystal, prepared as examples by the present inventors, are shown in Table 1.
- the average particle size (D 50 : ⁇ m) shown in Table 1 is a value measured by using a particle size distribution measuring device ("Microtrac", trade name, manufactured by Microtrac) (the D 50 value represents a particle size when the cumulative mass% corresponds to 50 mass%) .
- the specific surface area is a value measured by the BET method.
- the average particle size of the niobium alloy powder exceeds 5 ⁇ m, a large capacitor capacitance cannot be achieved, whereas if the average particle size is less than 0.05 ⁇ m, a sintered body produced from the powder has a small pore size and a large number of closed pores and this makes difficult the impregnation of a cathode agent, which is described later, and as a result, the capacitor can be hardly increased in the capacitance. Thus, this sintered body is not very suitable as a niobium alloy sintered body for capacitors.
- the niobium alloy powder for use in the present invention preferably has an average particle size of 0.05 to 5 ⁇ m. With this average particle size, a large capacitor capacitance can be achieved.
- the niobium alloy powder of the present invention is preferably a powder having a BET specific surface area of at least 0.5 m 2 /g, more preferably at least 1 m 2 /g, still more preferably at least 2 m 2 /g. Also, the niobium powder of the present invention is preferably a powder having a BET specific surface area of 0.5 to 40 m 2 /g, more preferably from 1 to 20 m 2 /g. As described above, the zirconium-diniobium mononitride crystal-containing niobium alloy powder used for the production of a sintered body preferably has an average particle size of 0.5 to 4 ⁇ m.
- the present invention is described by mainly referring to a niobium alloy comprising zirconium-diniobium mononitride crystal or a niobium alloy comprising neodymium-diniobium mononitride crystal, however, the present invention is not limited thereto.
- the contents in the following apply also to a niobium alloy comprising as an alloy component at least one element selected from the group consisting of the elements belonging to Groups 2 to 16 of the periodic table and further comprising a diniobium mononitride crystal.
- the zirconium-diniobium mononitride crystal- containing niobium alloy powder having the above-described average particle size can be obtained by mixing a diniobium mononitride crystal and/or its hydride having an average particle size of 0.05 to 5 ⁇ m, for example, with a zirconium-containing niobium hydride alloy powder obtained by pulverizing a hydride of zirconium-niobium alloy ingot, pellet or powder or with a zirconium-containing niobium alloy powder obtained by dehydrogenating the above- described hydride alloy powder.
- the powders may be mixed with each other at room temperature or lower in an inert gas (e.g., Ar, He, nitrogen) atmosphere or may be mixed using an appropriate solvent such as water, methanol, dichloroethane or toluene.
- an appropriate solvent such as water, methanol, dichloroethane or toluene.
- the solvent is preferably removed by distillation at a temperature of 50°C or lower under reduced pressure.
- a sintered body may be prepared.
- a sintered body may be prepared.
- a zirconium-containing niobium hydride alloy powder having an average particle size of 0.5 to 5 ⁇ m which is obtained by pulverizing a hydride of zirconium- niobium alloy ingot, pellet or powder, or a zirconium- containing niobium alloy powder obtained by dehydrogenating the hydride alloy powder is nitrided by exposing it to a temperature of 200 to 750°C, preferably from 300 to 600°C under a pressure of 10 2 to 10 6 Pa for 1 minute to 100 hours in a nitrogen atmosphere and further exposing the powder to a temperature of 800 to 1,500°C, preferably from 850 to 1,100°C under a pressure of 10 2 to 10 6 Pa for 1 minute to 100 hours in an inert gas atmosphere such as Ar or He so as to convert the nitrided niobium
- a niobium powder or a niobium hydride powder which is produced by pulverizing a hydride of niobium ingot or pellet, by dehydrogenating this niobium hydride powder, by pulverizing a sodium reduction product of potassium fluoroniobate or by pulverizing a reduction product of niobium oxide reduced using at least one member of hydrogen, carbon, magnesium, aluminum, cerium, lanthanum, misch metal and the like, is nitrided by exposing it to a temperature of 200 to 750°C, preferably from 300 to 600°C, under a pressure of 10 2 to 10 6 Pa for 1 minute to 100 hours in a nitrogen atmosphere, further exposing the powder to a temperature of 800 to 1,500°C, preferably from 850 to 1,100°C, under a pressure of 10 2 to 10 6 Pa for 1 minute to 100 hours in an inert gas atmosphere such as Ar or He so as to convert the nitrid
- the powder may be mixed with neodymium powder or a hydride, oxide, sulfide, boride, carbide, sulfate, halogenated salt, nitrate, organic acid salt or complex salt of neodymium.
- the thus-obtained neodymium-diniobium mononitride crystal-containing niobium alloy powder may be mixed with a neodymium-containing niobium powder and/or niobium powder having an average particle size of 0.05 to 5 ⁇ m to adjust the content of diniobium mononitride crystal and/or the content of neodymium or may be further mixed with a diniobium mononitride crystal having an average particle size of 0.05 to 5 ⁇ m to adjust the content of diniobium mononitride crystal in the neodymium-diniobium mononitride crystal-containing niobium alloy powder.
- the above-described neodymium-diniobium mononitride-containing niobium alloy powder may be granulated into an appropriate shape before use or the granulated powder may be mixed with an appropriate amount of non-granulated niobium powder and then used.
- Examples of the granulating methods include a method of allowing the non-granulated neodymium-diniobium mononitride crystal-containing niobium alloy powder to stand under highly reduced pressure, heating it at an appropriate temperature and then cracking the powder, a method of mixing an appropriate binder such as camphor, polyacrylic acid, polymethyl acrylic acid ester or polyvinyl alcohol, a solvent such as acetone, alcohols, acetic acid esters or water, and the non-granulated or granulated neodymium-diniobium mononitride crystal- containing niobium alloy powder and then cracking the mixture, a method of mixing an appropriate binder such as camphor, polyacrylic acid, polymethylacrylic acid ester or polyvinyl alcohol, a solvent such as acetone, alcohols, acetic acid esters or water, and the non-granulated or granulated neodymium-diniobium mononitride crystal- containing n
- the thus-granulated neodymium-diniobium mononitride crystal-containing niobium alloy powder is improved in the press-molding property at the production of a sintered body.
- the average particle size of the granulated powder is preferably from 10 to 500 ⁇ m. If the average particle size of the granulated powder is less than 10 ⁇ m, blocking partially takes place to worsen the flow property to a mold, whereas if it exceeds 500 ⁇ m, the compact after the press-molding is readily broken off.
- the average particle size of the granulated powder is more preferably from 30 to 250 ⁇ m, because a cathode agent is easily impregnated at the production of a capacitor after sintering the press-molded product.
- the neodymium- diniobium mononitride crystal-containing niobium alloy powder granulated as such has a repose angle of 60° or less and exhibits very smooth flow.
- the surface thereof is partially oxidized and the oxygen content is from 3,000 to 100,000 ppm.
- the amount of Fe, Cr, Ni, Ba, Mg, Si, Al, carbon and the like, which are impurities mingled from the apparatus or materials used, is hundreds of ppm or less.
- the neodymium-diniobium mononitride crystal- containing niobium alloy sintered body for capacitors of the present invention is produced by sintering the above- described neodymium-diniobium mononitride crystal- containing niobium alloy powder or neodymium-diniobium mononitride crystal-containing niobium alloy granulated powder.
- the production method of the sintered body is not particularly limited, and the sintered body is obtained, for example, by press-molding the neodymium-diniobium mononitride crystal-containing niobium alloy powder into a predetermined shape and heating the obtained compact under 10 "5 to 10 2 Pa for a few minutes to tens of hours at 500 to 2,000°C, preferably from 900 to 1,500°C, more preferably from 900 to 1,300°C.
- neodymium-diniobium mononitride crystal-containing niobium alloy powder granulated powder or sintered body
- a part of the neodymium-diniobium mononitride crystal-containing niobium alloy powder, granulated powder or sintered body may be subjected to nitridation, boronization, carbonization, sulfudization or a plurality of these treatments and may contain any of the obtained nitride, boride, carbide and sulfide of the neodymium-diniobium mononitride crystal-containing niobium alloy or may contain two or more thereof in combination.
- Their total bonded amount namely, the total content of nitrogen, boron, carbon and sulfur varies depending on the shape of the neodymium-diniobium mononitride crystal- containing niobium alloy powder, but is from more than 0 to 200,000 ppm, preferably from 50 to 100,000 ppm, more preferably from 200 to 20,000 ppm. If the total bonded amount exceeds 200,000 ppm, the capacitance property worsens and is not suitable as a capacitor.
- the nitridation of the neodymium-diniobium mononitride crystal-containing niobium alloy powder, granulated powder or sintered body can be implemented by any one method of liquid nitridation, ion nitridation and gas nitridation or by a combination thereof.
- gas nitridation by a nitrogen gas atmosphere is preferred because the apparatus is simple and the operation is easy.
- the gas nitridation by a nitrogen gas atmosphere can be achieved by allowing the neodymium- diniobium mononitride crystal-containing niobium alloy powder, granulated powder or sintered body to stand in a nitrogen atmosphere.
- neodymium-diniobium mononitride crystal- containing niobium alloy powder, granulated powder or sintered body having an objective nitrided amount can be obtained. Also, by performing the treatment at a higher temperature, the treatment time can be shortened.
- the boronization of the neodymium-diniobium mononitride crystal-containing niobium alloy powder, granulated powder or sintered body may be performed by either gas boronization or solid-phase boronization.
- the neodymium-diniobium mononitride crystal- containing niobium alloy powder, granulated powder or sintered body may be boronized by allowing it to stand together with a boron source such as boron pellet or boron halide (e.g., trifluoroboron) , at 2,000°C or less for from 1 minute to 100 hours under reduced pressure.
- a boron source such as boron pellet or boron halide (e.g., trifluoroboron)
- the carbonization of the neodymium-diniobium mononitride crystal-containing niobium alloy powder, granulated powder or sintered body may be performed by any one of gas carbonization, solid-phase carbonization and liquid carbonization.
- the neodymium-diniobium mononitride crystal-containing niobium alloy powder, granulated powder or sintered body may be carbonized by allowing it to stand together with a carbon source such as carbon material or organic material having carbon (e.g., methane), at 2,000°C or less for from 1 minute to 100 hours under reduced pressure.
- the sulfudization of the neodymium-diniobium mononitride crystal-containing niobium alloy powder, granulated powder or sintered body may be performed by any one of gas sulfudization, ion sulfudization and solid-phase sulfudization.
- the gas sulfudization by a sulfur gas atmosphere can be attained by allowing the neodymium-diniobium mononitride crystal-containing niobium alloy powder, granulated powder or sintered body to stand in a sulfur atmosphere.
- a niobium powder, granulated powder or sintered body having an objective sulfudized amount can be obtained. Also, by performing the treatment at a higher temperature, the treatment time can be shortened.
- a lead wire comprising a valve-acting metal such as niobium or tantalum and having appropriate shape and length is prepared and this lead wire is integrally molded at the press-molding of the niobium powder such that a part of the lead wire is inserted into the inside of the compact, whereby the lead wire can work out to an outgoing lead of the sintered body.
- a valve-acting metal such as niobium or tantalum
- a capacitor can be produced by interposing a dielectric material between the electrode and a counter electrode.
- the dielectric material used here for the capacitor is preferably a dielectric material mainly comprising niobium oxide.
- the dielectric material mainly comprising niobium oxide can be obtained, for example, by electrochemically forming the neodymium-diniobium mononitride crystal- containing niobium alloy sintered body as one electrode in an electrolytic solution.
- an aqueous protonic acid solution is generally used, such as aqueous 0.1% phosphoric acid solution, aqueous sulfuric acid solution, aqueous 1% acetic acid solution or aqueous adipic acid solution.
- the capacitor of the present invention is an electrolytic capacitor and the neodymium-diniobium mononitride crystal-containing niobium alloy electrode serves as an anode.
- the counter electrode to the niobium sintered body is not particularly limited and for example, at least one material (compound) selected from electrolytic solutions, organic semiconductors and inorganic semiconductors known in the art of aluminum electrolytic capacitor, may be used.
- the electrolytic solutions include a dimethylformamide-ethylene glycol mixed solution having dissolved therein 5 mass% of an isobutyltripropylammonium borotetrafluoride electrolyte, and a propylene carbonate- ethylene glycol mixed solution having dissolved therein 7 mass% of tetraethylammonium borotetrafluoride.
- organic semiconductors include an organic semiconductor comprising benzopyrroline tetramer and chloranile, an organic semiconductor mainly comprising tetrathiotetracene, an organic semiconductor mainly comprising tetracyanoquinodimethane, and an electrically conductive polymer containing a repeating unit represented by the following formula (1) or (2) :
- R 1 to R 4 each independently represents a monovalent group selected from the group consisting of a hydrogen atom, a linear or branched, saturated or unsaturated alkyl, alkoxy or alkylester group having from 1 to 10 carbon atoms, a halogen atom, a nitro group, a cyano group, a primary, secondary or tertiary amino group, a CF 3 group, a phenyl group and a substituted phenyl group; hydrocarbon chains of the pair of R 1 and R 2 or R 3 and R 4 may combine at an arbitrary position to form a divalent chain for forming at least one 3-, 4-, 5-, 6- or 7-membered saturated or unsaturated hydrocarbon cyclic structure together with the carbon atoms substituted by R 1 and R 2 or by R 3 and R 4 ; the cyclic combined chain may contain a bond of carbonyl, ether, ester, amide, sulfide, sulfinyl, sulfony
- R 1 to R 4 in formula (1) or (2) each independently preferably represents a hydrogen atom or a linear or branched, saturated or unsaturated alkyl or alkoxy group having from 1 to 6 carbon atoms, and each of the pair of R 1 and R 2 and pair of R 3 and R 4 may combine with each other to form a ring.
- (1) is preferably an electrically conductive polymer containing a structure unit represented by the following formula (3) as a repeating unit:
- R 6 and R 7 each independently represents a hydrogen atom, a linear or branched, saturated or unsaturated alkyl group having from 1 to 6 carbon atoms, or a substituent for forming at least one 5-, 6- or 7-membered saturated hydrocarbon cyclic structure containing two oxygen elements when the alkyl groups are combined with each other at an arbitrary position; and the cyclic structure includes a structure having a vinylene bond which may be substituted, and a phenylene structure which may be substituted.
- the electrically conductive polymer containing such a chemical structure bears an electric charge and is doped with a dopant.
- a dopant known dopants can be used without limitation.
- the inorganic semiconductors include an inorganic semiconductor mainly comprising lead dioxide or manganese dioxide, and an inorganic semiconductor comprising tri-iron tetroxide. These semiconductors may be used individually or in combination of two or more thereof.
- Examples of the polymer containing a repeating unit represented by formula (1) or (2) include polyaniline, polyoxyphenylene, polyphenylene sulfide, polythiophene, polyfuran, polypyrrole, polymethylpyrrole, and substitution derivatives and copolymers thereof.
- preferred are polypyrrole, polythiophene and substitution derivatives thereof (e.g., poly (3, 4-ethylenedioxythiophene) ) .
- the organic or inorganic semiconductor used has an electrical conductivity of 10 "2 to 10 3 S/cm, the capacitor produced can have a smaller impedance value and can be more increased in the capacitance at a high frequency.
- the electrically conductive polymer layer is produced, for example, by a method of polymerizing a polymerizable compound such as aniline, thiophene, furan, pyrrole, ethylpyrrole or a substitution derivative thereof under the action of an oxidizing agent capable of satisfactorily performing an oxidation reaction of dehydrogenative two- electron oxidation.
- a polymerizable compound such as aniline, thiophene, furan, pyrrole, ethylpyrrole or a substitution derivative thereof under the action of an oxidizing agent capable of satisfactorily performing an oxidation reaction of dehydrogenative two- electron oxidation.
- Examples of the polymerization reaction from the polymerizable compound (monomer) include vapor phase polymerization and solution polymerization.
- the electrically conductive polymer layer is formed on the surface of the niobium sintered body having thereon a dielectric material.
- the electrically conductive polymer is an organic solvent-soluble polymer capable
- One preferred example of the production method using the solution polymerization is a method of dipping the niobium sintered body having formed thereon a dielectric layer in a solution containing an oxidizing agent (Solution 1) and subsequently dipping the sintered body in a solution containing a monomer and a dopant (Solution 2), thereby performing the polymerization to form an electrically conductive polymer layer on the surface of the sintered body.
- the sintered body may be dipped in Solution 1 after it is dipped in Solution 2.
- Solution 2 used in the above-described method may be a monomer solution not containing a dopant. In the case of using a dopant, the dopant may be allowed to be present together with an oxidizing agent in the solution.
- any oxidizing agent may be used insofar as it does not adversely affect the capacitor performance and the reductant of the oxidizing agent can work out to a dopant and elevate the conductivity of the electrically conductive polymer.
- An industrially inexpensive compound easy to handle at the production is preferred.
- oxidizing agents include Fe (III) -base compounds such as FeCl 3 , FeC10 4 and Fe
- organic acid anion salt anhydrous aluminum chloride/cupurous chloride; alkali metal persulfates; ammonium persulfates; peroxides; manganeses such as potassium permanganate; quinones such as 2, 3-dichloro-5, 6- dicyano-1, 4-benzoquinone (DDQ) , tetrachloro-1, 4- benzoquinone and tetracyano-1, 4-benzoquinone; halogens such as iodine and bromine; peracid; sulfonic acids such as sulfuric acid, fuming sulfuric acid, sulfur trioxide, chlorosulfuric acid, fluorosulfuric acid and amidosulfuric acid; ozone; and a mixture of a plurality of these oxidizing agents.
- Examples of the fundamental compounds of the organic acid anion forming the above-described Fe (organic acid anion) salt include organic sulfonic acid, organic carboxylic acid, organic phosphoric acid and organic boric acid.
- Specific examples of the organic sulfonic acid include benzenesulfonic acid, p-toluenesulfonic acid, methanesulfonic acid, ethanesulfonic acid, ⁇ -sulfo- naphthalene, ⁇ -sulfonaphthalene, naphthalenedisulfonic acid and alkylnaphthalenesulfonic acid (examples of the alkyl group include butyl, triisopropyl and di-tert-butyl) .
- organic carboxylic acid examples include acetic acid, propionic acid, benzoic acid and oxalic acid.
- polymer electrolyte anions such as polyacrylic acid, polymethacrylic acid, polystyrene- sulfonic acid, polyvinylsulfonic acid, poly- ⁇ - methylsulfonic acid polyvinylsulfate, polyethylenesulfonic acid and polyphosphoric acid may also be used in the present invention.
- organic sulfuric acids and organic carboxylic acids are mere examples and the present invention is not limited thereto.
- Examples of the counter cation to the above-described anion include H + , alkali metal ions such as Na + and K + , and ammonium ions substituted by a hydrogen atom, a tetramethyl group, a tetraethyl group, a tetrabutyl group or a tetraphenyl group, however, the present invention is not limited thereto.
- these oxidizing agents preferred are oxidizing agents containing trivalent Fe-base compounds, cuprous chloride, alkali persulfates, ammonium persulfates or quinones .
- an electrolyte anion having as a counter ion an oxidizing agent anion (a reductant of oxidizing agent) produced from the above-described oxidizing agent, or other electrolyte anion may be used.
- halide anion of Group 5B elements such as PF 6 " , SbF s “ and AsF 6 "
- halide anion of Group 3B elements such as BF 4 "
- halogen anion such as I “ (I 3 " ), Br “ and Cl "
- perhalogenate anion such as C10 4 "
- Lewis acid anion such as A1C1E, FeCl 4 ⁇ and SnCl 5 ⁇
- inorganic acid anion such as N0 3 " and S0 4 2 ⁇
- sulfonate anion such as p- toluenesulfonic acid, naphthalenesulfonic acid and alkyl- substituted naphthalenesulfonic acid having from 1 to 5 carbon atoms (simply referred to as "Cl-5")
- organic sulfonate anion such as CF 3 S0 3 ⁇ and CH 3 S0 3 "
- carboxylate anion such as CH
- polymer electrolyte anions such as polyacrylic acid, polymethacrylic acid, polystyrenesulfonic acid, polyvinylsulfonic acid, polyvinylsulfuric acid, poly- ⁇ -methylsulfonic acid, polyethylenesulfonic acid and polyphosphoric acid.
- the present invention is not limited thereto.
- a high molecular or low molecular organic sulfonic acid compound or polyphosphoric acid compound preferred.
- an aromatic sulfonic acid compound sodium dodecylbenzenesulfonate, sodium naphthalenesulfonate, etc. is used as the anion-donating compound.
- more effective dopants are anions of a sulfoquinone compound having one or more sulfo-anion group (-S0 3 ⁇ ) within the molecule and having a quinone structure and of an anthracene sulfonate.
- Examples of the fundamental skeletons for the sulfoquinone anion of the above-described sulfoquinone compound include p-benzoquinone, o-benzoquinone, 1,2- naphthoquinone, 1, 4-naphthoquinone, 2, 6-naphthoquinone, 9, 10-anthraquinone, 1, 4-anthraquinone, 1, 2-anthraquinone, 1, 4-chrysenquinone, 5, 6-chrysenquinone, 6, 12-chrysenquinone, acenaphthoquinone, acenaphthenequinone, camphorquinone, 2, 3-bornanedione, 9, 10-phenanthrenequinone and 2,7- pyrenequinone .
- an electrically conductive layer may be provided thereon, if desired, so as to attain good electrical contact with an exterior outgoing lead (for example, lead frame) to be used.
- the electrically conductive layer can be formed, for example, by solidification of an electrically conductive paste, plating, metallization or forming a heat-resistant electrically conductive resin film.
- Preferred examples of the electrically conductive paste include silver paste, copper paste, aluminum paste, carbon paste and nickel paste, and these may be used individually or in combination of two or more thereof. In the case of using two or more kinds of pastes, the pastes may be mixed or may be superposed one on another as separate layers.
- the electrically conductive paste applied is then solidified by allowing it to stand in air or under heating.
- the plating include nickel plating, copper plating, silver plating and aluminum plating.
- Examples of the vapor-deposited metals include aluminum, nickel, copper and silver.
- This capacitor may have a lead formed of niobium, niobium alloy, diniobium mononitride crystal-containing niobium, diniobium mononitride crystal-containing niobium alloy or tantalum, which is sintered and molded integrally with the neodymium- diniobium mononitride crystal-containing niobium sintered body or is welded afterward.
- the thus-fabricated capacitor of the present invention is jacketed using, for example, resin mold, resin case, metallic jacket case, dipping of resin or laminate film, and then used as a capacitor product for various uses.
- the capacitor fabricated from the above-described two electrodes and a dielectric material is housed, for example, in a can electrically connected to the counter electrode to complete the capacitor.
- the electrode side of the neodymium-diniobium mononitride crystal-containing niobium sintered body is guided outside through the above- described lead formed of niobium, niobium alloy, diniobium mononitride crystal-containing niobium, diniobium mononitride crystal-containing niobium alloy or tantalum, and at the same time, insulated from the can using an insulating rubber or the like.
- the capacitor of the present invention has a larger electrostatic capacitance for the volume than that of conventional tantalum capacitors and therefore, a smaller capacitor product can be obtained.
- the capacitor of the present invention having such properties can be applied to uses, for example, as a bypass or coupling capacitor in an analogue or digital circuit or as a large-capacitance smoothing capacitor used in a power circuit, and also to uses of conventional tantalum capacitors.
- such a capacitor is often used in an electronic circuit and when the capacitor of the present invention is used, the limitation in the arrangement of electronic parts or by the discharge of heat can be relieved, and as a result, an electronic circuit having high reliability can be disposed in a smaller space than that necessary for a conventional electronic circuit. Furthermore, when the capacitor of the present invention is used, an electronic instrument having smaller size and higher reliability than those of conventional ones can be obtained, such as computers, computer peripheral equipment (e.g., PC card), mobile equipment (e.g., portable telephone) , home appliance, equipment mounted on vehicles, artificial satellites and communication equipment.
- computers computer peripheral equipment (e.g., PC card), mobile equipment (e.g., portable telephone) , home appliance, equipment mounted on vehicles, artificial satellites and communication equipment.
- computer peripheral equipment e.g., PC card
- mobile equipment e.g., portable telephone
- a diniobium mononitride crystal and a niobium alloy powder after mixing thereto the crystal having a known mass were subjected to X-ray diffractometry and a calibration curve was prepared from the 2 ⁇ diffraction intensity at the measurement and the mass mixed. From the calibration curve, the content was calculated.
- An LCR meter (Precision LCR Meter HP 4284A Model) manufactured by Hewlett-Packard was connected between terminals of a produced chip at room temperature and the capacitance at 120 Hz was determined as the capacitance of the capacitor processed into a chip.
- the ratio (C-C 0 ) /C 0 of the initial capacitance C 0 at room temperature to the capacitance C after a capacitor is left standing in an atmosphere of 105°C for 2,000 hours while applying a voltage of 4 V and then returned to room temperature is defined as the high-temperature property.
- the sample of the ratio within ⁇ 20% was rated non-defective.
- the high-temperature property was evaluated by the ratio of the number of samples and the number of non-defective samples. In each Example, the number of samples was 50 units.
- a capacitor was mounted with a solder on a 1.5 mm- thick lamination substrate and passed through a reflow furnace at 230°C over 30 seconds. This operation was repeated three times. Usually, a capacitor was heated at about 230°C x 30 seconds x 3 times at the passing through a reflow furnace and evaluated on the practical heat history (heat history by soldering three times, for example, when carrying out the soldering of parts mounted on the substrate surface, the soldering of parts mounted on the back surface of a substrate, or the soldering of after- mounted parts) .
- the LC value was measured at a rated voltage of 6.3 V before passing through the reflow furnace and after passing three times. Samples showing an LC value of 0.05 CV ⁇ A or less was rated non-defective and the heat resistance was evaluated by the ratio of the number of samples and the number of non-defective samples. In each Example, the number of samples was 50 units.
- niobium ingot containing 1 atom% of zirconium was manufactured by arc melting.
- an SUS 304-made reactor 150 g of this ingot was placed and thereinto, hydrogen was continuously introduced at 400°C for 10 hours. After cooling, the hydrogenated zirconium-containing niobium lump was placed in an SUS 304-made pot containing SUS-made balls and pulverized for 10 hours.
- the obtained hydride was formed into a slurry of 20 vol% with water, charged together with zirconia balls in an SUS 304-made spike mill and wet pulverized for 7 hours. The resulting slurry was centrifuged and then decanted to obtain a pulverized product. The pulverized product was dried under reduced pressure in the conditions of 1.33xl0 2 Pa and 50°C. Subsequently, the zirconium hydride-containing niobium powder was dehydrogenated by heating it at 1.33xl0 "2 Pa and 400°C for 1 hour. The manufactured zirconium-containing niobium powder had an average particle size of 1 ⁇ m and a zirconium content of 1 atom% (1 mass%) .
- the powder was granulated under reduced pressure of 6x10 "3 Pa at 1,100°C. Thereafter, the granulated lump was cracked to obtain a granulated powder having an average particle size of 110 ⁇ m.
- This granulated powder had a zirconium content of 0.5 mass% and a diniobium mononitride crystal content of 50 mass%.
- the thus-obtained zirconium-diniobium mononitride crystal-containing niobium granulated powder was molded together with a 0.3 m ⁇ niobium wire to manufacture a compact (about 0.1 g) having a size of approximately 0.3 cm x 0.18 cm x 0.45 cm.
- This compact was left standing under reduced pressure of 4xl0 ⁇ 3 Pa at 1,200°C for 30 minutes to obtain a sintered body.
- the obtained hydride was formed into a slurry of 20 vol% with water, charged together with zirconia balls in an SUS 304- made spike mill and wet pulverized for 10 hours.
- the resulting slurry was centrifuged and then decanted to obtain a pulverized product.
- the pulverized product was dried under reduced pressure in the conditions of 1.33xl0 2 Pa and 50°C.
- the resulting zirconium hydride-containing niobium powder was dehydrogenated by heating it at 1.33x10 " 2 Pa and 400°C for 1 hour.
- the manufactured zirconium- containing niobium powder had an average particle size of 0.9 ⁇ m and a zirconium content of 1 atom% (1 mass%) .
- the zirconium-containing niobium powder was charged in a niobium-made vat and placed in a sintering furnace. After purging the inside of the sintering body system with argon, the powder was granulated under reduced pressure of 6xl0 "3 Pa at 1,100°C. Thereafter, the granulated lump was cracked to obtain a granulated powder having an average particle size of 90 ⁇ m. This granulated powder had a zirconium content of 1 mass%.
- This zirconium-containing niobium granulated powder was charged into a molybdenum-made reactor and after thoroughly purging the inside of the reactor with nitrogen, nitrided by continuously heating it at 580°C for 5 hours while passing nitrogen.
- the system was cooled to room temperature, the inside of the reactor was thoroughly purged with Ar and the powder was heated at 950°C for 8 hours to convert the nitrided niobium into diniobium mononitride crystal. After cooling to room temperature, a zirconium-diniobium mononitride crystal-containing niobium granulated powder was obtained.
- the zirconium content was 0.9 mass% and the diniobium mononitride crystal content was 55 mass%.
- the thus-obtained zirconium-diniobium mononitride crystal-containing niobium granulated powder was molded together with a 0.3 mm ⁇ niobium wire to manufacture a compact (about 0.1 g) having a size of approximately 0.3 cm x 0.18 cm x 0.45 cm.
- This compact was left standing under reduced pressure of 4xl0 "3 Pa at 1,200°C for 30 minutes to obtain a sintered body.
- the product was pulverized for 10 hours using a ball mill of an alumina pot containing silica alumina balls and the pulverized product was dipped and stirred in a 3:2 (by mass) mixed solution of 50% nitric acid and 10% aqueous hydrogen peroxide, then thoroughly washed with water until the pH reached 7, thereby removing impurities, and dried under reduced pressure.
- the manufactured niobium powder had an average particle size of 0.9 ⁇ m.
- niobium powder 500 g was charged into a molybdenum-made reactor and after thoroughly purging the inside of the reactor with nitrogen, nitrided by continuously heating it at 500°C for 10 hours while passing nitrogen.
- the system was cooled to room temperature, the inside of the reactor was thoroughly purged with Ar and the powder was heated at 800°C for 20 hours to convert the nitrided niobium into diniobium mononitride crystal. After cooling to room temperature, a diniobium mononitride crystal-containing niobium powder was obtained.
- the zirconium content was 1.8 mass% and the diniobium mononitride crystal content was 25 mass%.
- the thus-obtained zirconium-diniobium mononitride crystal-containing niobium granulated powder was molded together with a 0.3 mm ⁇ niobium wire to manufacture a compact (about 0.1 g) having a size of approximately 0.3 cm x 0.18 cm x 0.45 cm.
- This compact was left standing under reduced pressure of 4xl0 "3 Pa at 1,200°C for 30 minutes to obtain a sintered body.
- the resulting niobium hydride powder was dehydrogenated by heating it at 1.33xl0 "2 Pa and 400°C for 1 hour.
- the manufactured niobium powder had an average particle size of 1 ⁇ m.
- This niobium powder was granulated at 1,100°C under reduced pressure of 4xl0 "3 Pa. Thereafter, the granulated lump was cracked to obtain a granulated powder having an average particle size of 100 ⁇ m.
- the thus-obtained niobium granulated powder was molded together with a 0.3 mm ⁇ niobium wire to manufacture a compact (about 0.1 g) having a size of approximately 0.3 cm x 0.18 cm x 0.45 cm.
- the product was pulverized for 10 hours using a ball mill of an alumina pot containing silica alumina balls and the pulverized product was dipped and stirred in a 3:2 (by mass) mixed solution of 50% nitric acid and 10% aqueous hydrogen peroxide, then thoroughly washed with water until the pH reached 7, thereby removing impurities, and dried under reduced pressure.
- the manufactured niobium powder had an average particle size of 0.9 ⁇ m.
- This niobium powder was granulated at 1,100°C under reduced pressure of 4xl0 "3 Pa. The obtained granulated powder was cracked to obtain a granulated powder having an average particle size of 100 ⁇ m.
- the thus-obtained niobium granulated powder was molded together with a 0.3 mm ⁇ niobium wire to manufacture a compact (about 0.1 g) having a size of approximately 0.3 cm x 0.18 cm x 0.45 c .
- each sintered body was electrolytically oxidized at a voltage of 20 V for 6 hours using an aqueous 0.1% phosphoric acid solution to form an oxide dielectric film on the surface. Thereafter, an operation of contacting the oxide dielectric film with an equivalent mixed solution of an aqueous 10% ammonium persulfate solution and an aqueous 0.5% anthraquinone sulfonic acid solution and then with a pyrrole vapor was repeated at least 5 times to form a counter electrode composed of polypyrrole. Subsequently, a carbon layer and a silver paste layer were sequentially stacked thereon. A lead frame was placed on the obtained laminate and the entire was sealed with epoxy resin to manufacture a chip-type capacitor.
- Sintered bodies were manufactured in the same manner as in Preparation Method 1 or 2 of Sintered Body by changing the diniobium mononitride crystal content and the alloy component content as in Table 2. 50 Units of each sintered body were prepared and used for the production of capacitors by any one method of Preparation Methods 1 to 4 of Capacitor. Each capacitor (50 units) was evaluated on the heat resistance property and high-temperature property. The results obtained are shown in Table 2. Examples 41 to 60:
- Sintered bodies were manufactured in the same manner as in Preparation Method 3 of Sintered Body by using additives (an element as an alloy component or a compound thereof) of which kind and amount are shown in Table 3. 50 Units of each sintered body were prepared and used for the production of capacitors by any one method of Preparation Methods 1 to 4 of Capacitor. Each capacitor (50 units) was evaluated on the heat resistance property and high- temperature property. The results obtained are shown in Table 3.
- Comparative Examples 1 to 8 For the purpose of comparison with Examples 1 to 60, niobium sintered bodies containing neither diniobium mononitride crystal nor other alloy components were manufactured in the same manner as in Preparation Method 4 or 5 of Sintered Body. 50 Units of each sintered body were prepared and used for the production of capacitors by any one method of Preparation Methods 1 to 4 of Capacitor. Each capacitor (50 units) was evaluated on the heat resistance property and high-temperature property. The results obtained are shown in Tables 2 and 3. C ⁇ oo
- a capacitor improved in the high-temperature property and heat resistance can be obtained by preparing a sintered body using a niobium alloy powder comprising as the alloy component at least one element selected from the group consisting of the elements belonging to Groups 2 to 16 of the periodic table and further comprising a diniobium mononitride (Nb 2 N) crystal, and producing a capacitor using the sintered body.
- a niobium alloy powder comprising as the alloy component at least one element selected from the group consisting of the elements belonging to Groups 2 to 16 of the periodic table and further comprising a diniobium mononitride (Nb 2 N) crystal
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Powder Metallurgy (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Manufacturing & Machinery (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Catalysts (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020107007846A KR101257278B1 (en) | 2001-12-10 | 2002-12-10 | Electrode for capacitor |
EP02796968.2A EP1454330B2 (en) | 2001-12-10 | 2002-12-10 | Niobium alloy, sintered body thereof, and capacitor using the same |
KR10-2004-7008942A KR20040062674A (en) | 2001-12-10 | 2002-12-10 | Niobium alloy, sintered body thereof, and capacitor using the same |
DE60222467.5T DE60222467T3 (en) | 2001-12-10 | 2002-12-10 | NIOBLANT, SINTERED BODY AND CONDENSER THEREWITH |
AU2002361502A AU2002361502A1 (en) | 2001-12-10 | 2002-12-10 | Niobium alloy, sintered body thereof, and capacitor using the same |
US10/495,211 US7648553B2 (en) | 2001-12-10 | 2002-12-10 | Niobium alloy, sintered body thereof, and capacitor using the same |
US12/630,308 US9336955B2 (en) | 2001-12-10 | 2009-12-03 | Niobium alloy, sintered body thereof, and capacitor using the same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001-375128 | 2001-12-10 | ||
JP2001375128 | 2001-12-10 | ||
US33934701P | 2001-12-13 | 2001-12-13 | |
US60/339,347 | 2001-12-13 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10495211 A-371-Of-International | 2002-12-10 | ||
US12/630,308 Division US9336955B2 (en) | 2001-12-10 | 2009-12-03 | Niobium alloy, sintered body thereof, and capacitor using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2003050829A1 true WO2003050829A1 (en) | 2003-06-19 |
WO2003050829A8 WO2003050829A8 (en) | 2004-11-11 |
Family
ID=32800873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2002/012904 WO2003050829A1 (en) | 2001-12-10 | 2002-12-10 | Niobium alloy, sintered body thereof, and capacitor using the same |
Country Status (9)
Country | Link |
---|---|
US (2) | US7648553B2 (en) |
EP (1) | EP1454330B2 (en) |
JP (1) | JP2009033182A (en) |
KR (2) | KR20040062674A (en) |
CN (1) | CN100487838C (en) |
AT (1) | ATE373312T1 (en) |
AU (1) | AU2002361502A1 (en) |
DE (1) | DE60222467T3 (en) |
WO (1) | WO2003050829A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1454330B2 (en) * | 2001-12-10 | 2017-10-04 | Showa Denko K.K. | Niobium alloy, sintered body thereof, and capacitor using the same |
JP3971266B2 (en) * | 2002-08-02 | 2007-09-05 | ローム株式会社 | Nb capacitor and method of manufacturing the same |
JP2010278343A (en) * | 2009-05-29 | 2010-12-09 | Sanyo Electric Co Ltd | Solid electrolytic capacitor, electronic apparatus using the same, and method of manufacturing the solid electrolytic capacitor |
JP5377142B2 (en) * | 2009-07-28 | 2013-12-25 | ソニー株式会社 | Target manufacturing method, memory manufacturing method |
JP5934478B2 (en) * | 2011-07-13 | 2016-06-15 | サン電子工業株式会社 | Solid electrolytic capacitor |
CN107924763B (en) * | 2015-08-12 | 2020-04-17 | 株式会社村田制作所 | Capacitor, method for manufacturing the same, substrate, and capacitor assembly substrate |
CN112593184B (en) * | 2020-11-27 | 2022-07-01 | 北京钢研高纳科技股份有限公司 | Method for improving oxidation resistance of niobium-based alloy, application and oxidation-resistant niobium-based alloy |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0763045A (en) | 1993-08-25 | 1995-03-07 | Unisia Jecs Corp | Exhaust emission controlling catalytic degradation diagnoser of internal combustion engine |
JPH0785461A (en) | 1993-09-12 | 1995-03-31 | Fujitsu Ltd | Magnetic recording medium and manufacture thereof |
JP2000226602A (en) * | 1999-02-03 | 2000-08-15 | Showa Kyabotto Super Metal Kk | Tantalum powder for high capacity capacitor |
WO2000049633A1 (en) * | 1999-02-16 | 2000-08-24 | Showa Denko K.K. | Niobium powder, niobium sintered body, capacitor comprised of the sintered body, and method for manufacturing the capacitor |
JP2001307963A (en) * | 2000-04-21 | 2001-11-02 | Showa Denko Kk | Niobium for capacitor, sintered body, and capacitor |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2218633B1 (en) * | 1973-02-19 | 1977-07-22 | Lignes Telegraph Telephon | |
US4084965A (en) * | 1977-01-05 | 1978-04-18 | Fansteel Inc. | Columbium powder and method of making the same |
JPS55157226A (en) | 1979-05-25 | 1980-12-06 | Matsushita Electric Ind Co Ltd | Method of manufacturing sintered element for capacitor |
US4812951A (en) * | 1987-03-20 | 1989-03-14 | Aerovox M, Inc. | Electrolytic capacitor and electrolyte therefor |
US5580367A (en) * | 1987-11-30 | 1996-12-03 | Cabot Corporation | Flaked tantalum powder and method of using same flaked tantalum powder |
US5242481A (en) * | 1989-06-26 | 1993-09-07 | Cabot Corporation | Method of making powders and products of tantalum and niobium |
JP3254163B2 (en) | 1997-02-28 | 2002-02-04 | 昭和電工株式会社 | Capacitor |
US6171363B1 (en) * | 1998-05-06 | 2001-01-09 | H. C. Starck, Inc. | Method for producing tantallum/niobium metal powders by the reduction of their oxides with gaseous magnesium |
WO2000067936A1 (en) † | 1998-05-06 | 2000-11-16 | H.C. Starck, Inc. | Metal powders produced by the reduction of the oxides with gaseous magnesium |
JP3196832B2 (en) * | 1998-05-15 | 2001-08-06 | 日本電気株式会社 | Solid electrolytic capacitor and method of manufacturing the same |
ATE385037T1 (en) * | 1998-08-05 | 2008-02-15 | Showa Denko Kk | NIOBIA SINTER FOR CAPACITOR AND METHOD FOR PRODUCING SAME |
JP2000082639A (en) * | 1998-09-04 | 2000-03-21 | Nec Corp | MANUFACTURE OF Nb CAPACITOR |
DE19847012A1 (en) † | 1998-10-13 | 2000-04-20 | Starck H C Gmbh Co Kg | Niobium powder and process for its manufacture |
TW460883B (en) * | 1999-02-16 | 2001-10-21 | Showa Denko Kk | Niobium powder, niobium sintered body, capacitor comprised of the sintered body, and method for manufacturing the capacitor |
US6558447B1 (en) * | 1999-05-05 | 2003-05-06 | H.C. Starck, Inc. | Metal powders produced by the reduction of the oxides with gaseous magnesium |
TW479262B (en) * | 1999-06-09 | 2002-03-11 | Showa Denko Kk | Electrode material for capacitor and capacitor using the same |
US6556427B2 (en) * | 2000-03-28 | 2003-04-29 | Showa Denko Kabushiki Kaisha | Solid electrolytic capacitor and method for producing the same |
JP4478906B2 (en) * | 2000-03-28 | 2010-06-09 | 株式会社村田製作所 | Solid electrolytic capacitor and manufacturing method thereof |
US6540810B2 (en) * | 2000-04-21 | 2003-04-01 | Showa Denko Kabushiki Kaisha | Niobium powder for capacitor, sintered body using the powder and capacitor using the same |
US6643120B2 (en) * | 2000-04-28 | 2003-11-04 | Showa Denko Kabushiki Kaisha | Niobium powder for capacitor, sintered body using the powder and capacitor using the same |
US6652619B2 (en) * | 2000-08-10 | 2003-11-25 | Showa Denko K.K. | Niobium powder, sintered body thereof, and capacitor using the same |
US6554884B1 (en) * | 2000-10-24 | 2003-04-29 | H.C. Starck, Inc. | Tantalum and tantalum nitride powder mixtures for electrolytic capacitors substrates |
AU1851002A (en) * | 2000-11-30 | 2002-06-11 | Showa Denko Kk | Powder for capacitor, sintered body thereof and capacitor using the sintered body |
US6780218B2 (en) * | 2001-06-20 | 2004-08-24 | Showa Denko Kabushiki Kaisha | Production process for niobium powder |
EP1454330B2 (en) * | 2001-12-10 | 2017-10-04 | Showa Denko K.K. | Niobium alloy, sintered body thereof, and capacitor using the same |
-
2002
- 2002-12-10 EP EP02796968.2A patent/EP1454330B2/en not_active Expired - Lifetime
- 2002-12-10 WO PCT/JP2002/012904 patent/WO2003050829A1/en active Application Filing
- 2002-12-10 CN CNB028246896A patent/CN100487838C/en not_active Expired - Fee Related
- 2002-12-10 AU AU2002361502A patent/AU2002361502A1/en not_active Abandoned
- 2002-12-10 AT AT02796968T patent/ATE373312T1/en not_active IP Right Cessation
- 2002-12-10 KR KR10-2004-7008942A patent/KR20040062674A/en active Application Filing
- 2002-12-10 DE DE60222467.5T patent/DE60222467T3/en not_active Expired - Lifetime
- 2002-12-10 US US10/495,211 patent/US7648553B2/en not_active Expired - Fee Related
- 2002-12-10 KR KR1020107007846A patent/KR101257278B1/en not_active IP Right Cessation
-
2008
- 2008-08-08 JP JP2008205380A patent/JP2009033182A/en active Pending
-
2009
- 2009-12-03 US US12/630,308 patent/US9336955B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0763045A (en) | 1993-08-25 | 1995-03-07 | Unisia Jecs Corp | Exhaust emission controlling catalytic degradation diagnoser of internal combustion engine |
JPH0785461A (en) | 1993-09-12 | 1995-03-31 | Fujitsu Ltd | Magnetic recording medium and manufacture thereof |
JP2000226602A (en) * | 1999-02-03 | 2000-08-15 | Showa Kyabotto Super Metal Kk | Tantalum powder for high capacity capacitor |
WO2000049633A1 (en) * | 1999-02-16 | 2000-08-24 | Showa Denko K.K. | Niobium powder, niobium sintered body, capacitor comprised of the sintered body, and method for manufacturing the capacitor |
JP2001307963A (en) * | 2000-04-21 | 2001-11-02 | Showa Denko Kk | Niobium for capacitor, sintered body, and capacitor |
Also Published As
Publication number | Publication date |
---|---|
JP2009033182A (en) | 2009-02-12 |
DE60222467T2 (en) | 2008-06-12 |
EP1454330B1 (en) | 2007-09-12 |
US9336955B2 (en) | 2016-05-10 |
EP1454330A1 (en) | 2004-09-08 |
DE60222467D1 (en) | 2007-10-25 |
US7648553B2 (en) | 2010-01-19 |
ATE373312T1 (en) | 2007-09-15 |
KR20040062674A (en) | 2004-07-07 |
KR101257278B1 (en) | 2013-04-23 |
EP1454330A4 (en) | 2005-05-25 |
CN1602533A (en) | 2005-03-30 |
EP1454330B2 (en) | 2017-10-04 |
AU2002361502A1 (en) | 2003-06-23 |
KR20100043295A (en) | 2010-04-28 |
DE60222467T3 (en) | 2017-12-07 |
US20100086434A1 (en) | 2010-04-08 |
CN100487838C (en) | 2009-05-13 |
US20050041372A1 (en) | 2005-02-24 |
WO2003050829A8 (en) | 2004-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6934146B2 (en) | Niobium powder, niobium sintered body and capacitor using the sintered body | |
US7594947B2 (en) | Niobium powder, sintered body thereof, and capacitor using the same | |
AU2007200912B2 (en) | Niobium powder, sintered body and capacitor using the body | |
US7986508B2 (en) | Niobium monoxide powder, niobium monoxide sintered body and capacitor using the sintered body | |
US9336955B2 (en) | Niobium alloy, sintered body thereof, and capacitor using the same | |
US6780218B2 (en) | Production process for niobium powder | |
JP4367827B2 (en) | Niobium alloy, sintered body thereof, and capacitor using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2002796968 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10495211 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20028246896 Country of ref document: CN Ref document number: 1020047008942 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2002796968 Country of ref document: EP |
|
CFP | Corrected version of a pamphlet front page | ||
CR1 | Correction of entry in section i |
Free format text: IN PCT GAZETTE 25/2003 REPLACE ""(71) APPLICANTS AND (72) INVENTORS (FOR US ONLY)"" BY ""(72) INVENTORS; AND (75) INVENTORS/APPLICANTS (FOR US ONLY)"" REMPLACER ""(71) DEPOSANTS ET (72) INVENTEURS (POUR US SEULEMENT)"" |
|
WWG | Wipo information: grant in national office |
Ref document number: 2002796968 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020107007846 Country of ref document: KR |