WO2003049476A1 - Equipment and method of call admission in cdma based system - Google Patents

Equipment and method of call admission in cdma based system Download PDF

Info

Publication number
WO2003049476A1
WO2003049476A1 PCT/CN2001/001608 CN0101608W WO03049476A1 WO 2003049476 A1 WO2003049476 A1 WO 2003049476A1 CN 0101608 W CN0101608 W CN 0101608W WO 03049476 A1 WO03049476 A1 WO 03049476A1
Authority
WO
WIPO (PCT)
Prior art keywords
service
uplink
cell
downlink
power
Prior art date
Application number
PCT/CN2001/001608
Other languages
English (en)
French (fr)
Inventor
Chao Huang
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to EP01274866A priority Critical patent/EP1463356B1/en
Priority to EA200400700A priority patent/EA007640B1/ru
Priority to PCT/CN2001/001608 priority patent/WO2003049476A1/zh
Priority to AU2002218947A priority patent/AU2002218947A1/en
Publication of WO2003049476A1 publication Critical patent/WO2003049476A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/02Access restriction performed under specific conditions
    • H04W48/06Access restriction performed under specific conditions based on traffic conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present invention relates to a method for controlling a code division multiple access (CDMA) system in the field of mobile communications, and in particular, to WCDMA, CDMA2000, and TD-SCDMA and TD-CDMA and other code division multiple access systems. Admission control methods. BACKGROUND OF THE INVENTION
  • the second-generation mobile communication system whether it is a GSM or IS-95 system, has the common feature that it is directed to a single voice service, each channel has a fixed transmission rate, and the number of channels in the sector corresponds to the throughput.
  • the mobile Internet-third generation mobile communication system (3G) has entered a vigorous development stage.
  • the services carried by 3G should also carry packet data services corresponding to the Internet.
  • the transmission methods and requirements of packet data services are very different from those of voice services. They are specifically reflected in the different rules of service generation, different transmission error rates and delay requirements, which results in differences in packet data transmission formats and transmission control methods.
  • the third code division multiple access system (WCDMA, CDMA2000, TD-SCDMA, and TD-CDMA, etc.) belongs to the technical standards of the third generation mobile communication system, and is similar to the narrowband code division multiple access system (IS-95 system) in principle. All use code sequences to distinguish users. However, the transmission technology and system control method of the third code division multiple access system are very different from those of the IS-95 system. The system power capacity load is no longer measured by the number of channels, but is characterized by power or data throughput. Although there is no unified method in the world. At the same time, wideband code division multiple access has three major characteristics such as broadband high speed, carrying mixed services, and variable rate transmission.
  • the power capacity load of the third code division multiple access system is soft, the power capacity load is different when different services are accessed, so the criteria for judging whether the system is full appears Very difficult.
  • the core is power, and using power as the cell load power has practical significance.
  • the cell load power and the throughput power capacity load of the cell are not fixed, that is, the number of channels and the throughput are indefinite.
  • the third generation mobile communication system standardization organization 3GPP passed and issued Release 99, a version of the wireless interface technical specification in March 1999, and it is constantly being modified. However, 3GPP did not formulate a unified standard for the admission control method of WCDMA system. The system control method was developed by each company based on the standard.
  • the process of admission control is: first of all, the current load power of the cell (base station) should be accurately measured, and the remaining (available) load power capacity of the system cell (base station) should be obtained; second, the call service (including new call service and handover call service)
  • the uplink and downlink load power increments are predicted and estimated respectively; then the service load power increment is compared with the cell's remaining (usable) load power capacity in the uplink and downlink directions, and the call service is accepted when the available surplus load power capacity is sufficient, Otherwise refuse.
  • accurate call admission control more users or services can be accepted on the premise that the system load power is allowed (system operation is stable), so the call loss rate and call drop rate can be kept low, and higher services can be achieved. Mass and system power capacity load.
  • An important feature of the third generation mobile communication system is that it supports asymmetric services, that is, the data rates in the uplink and downlink directions are not equal, and even the rate in one direction is zero. In this way, admission control (congestion control or access control) must be performed in the uplink and downlink directions. If the resource (power capacity load) requirements of the call service cannot be met in either direction, the call service cannot be accepted.
  • Another feature of the third generation mobile communication system is that a user can communicate with several services at the same time, such as making a call while surfing the Internet. So the business call is the basic call Called the unit.
  • PS packet data
  • a service call when a service call applies for a resource, it can use the resource for wireless data communication by waiting in a queue.
  • the lowest transmission rate of non-real-time services (determined by the system transmission format) is used to estimate the load power increase. This is a "soft" decision process.
  • CS real-time
  • multimedia services such as voice and movie
  • the admission judgment must be made within a short period of time according to the resources applied for by the service, or the transmission rate, quality, and delay requirements of the service must be fulfilled without fail, otherwise, Refuse. This is a "hard” decision process.
  • Admission control is performed during service calls.
  • the load power of the current system cell base station
  • the general criterion is to accept the call and allocate radio resources and parameters to it when the remaining load power capacity can meet the resource needs of the call service.
  • the remaining power capacity load cannot meet the demand of the call service, it is rejected.
  • the third-generation mobile communication system carries mixed services, including real-time voice services and non-real-time packet data services. It is necessary to make detailed estimates and effective judgments based on different characteristics of the services in order to fully ensure the stable operation of the system. Use the system power capacity load to achieve the purpose of efficient use of wireless resources.
  • a method for predicting a call service load power increase is a throughput-based method.
  • the current method for predicting the load power increase of the service does not take power as the core.
  • the load power increase of the call service is not a direct transmission or reception power increase, and it does not consider the impact of multiple access interference, which does not correspond to the actual system. It is impractical and inaccurate, which can easily lead to wrong judgment of admission control.
  • This method is a typical second-generation single-service, symmetric service admission control method, and only measures the received signal strength of the uplink base station; these methods do not take into account the amount of power increase when calculating the power required for the call service, and do not take into account asymmetric services
  • the issue of admission control on the uplink and downlink is different, because the methods of measuring and calculating the power margin of the load are different on the uplink and the downlink.
  • the particularity of non-real-time service admission and the priority of the service are not considered, and the third-generation system cannot be met at all. Complex diversity requirements.
  • the services carried by the third generation mobile communication system can be asymmetric, that is, the transmission rates in the uplink and downlink directions are different, so the admission control must be performed in the uplink and downlink.
  • the WCDMA system is a self-interference system
  • the uplink power capacity load is interference limited
  • the downlink power capacity load is power limited, because the downlink transmit power of a cell (base station) device is limited by physical devices, and the maximum downlink transmit capacity is limited. In general, each carrier does not exceed 20W per carrier frequency.
  • the downlink load power of the cell must be accurately measured, and the rate of service quality (QoS), the type of service (real-time service or non-real-time service), and signal-to-noise ratio requirements must be measured during service calls.
  • QoS rate of service quality
  • the type of service real-time service or non-real-time service
  • signal-to-noise ratio requirements must be measured during service calls.
  • the predicted transmission power required by the call service is calculated, and then admission control is performed. When the remaining downlink resources are sufficient to call the service, it is accepted, otherwise it is rejected.
  • a similar process is performed for the uplink. First, measure the uplink load power of the cell—received total interference power, predict (estimate) the received power increase of the calling service, and then determine whether the cell ’s available remaining power capacity load is sufficient and accept it. control. In the uplink and downlink admission control, the power increase caused by multiple access interference must be considered.
  • a cell In the downlink, a cell generally corresponds to a linear power amplifier, and only has a transmission power capability of 20W.
  • the concern in downlink admission control is the residual power capacity load—the power is not enough to transmit.
  • the multiple access interference between users is taken into consideration; all users transmit power to the base station at the same time, which is one-to-many communication. Because the spreading codes used to distinguish users are not completely orthogonal during uplink, there is multiple-access interference between users, which reduces the communication quality. The more users, the greater the interference; When the number of users reaches a certain number, the reception When the total power is large, the interaction between users is more serious, and the communication quality is reduced. Under closed-loop power control, the transmit power of each user is increased alternately, causing the power to climb non-linearly, and the total uplink receiving interference power is rapidly increased. Finally, the total received interference power exceeds the limit of the receiving circuit and collapses.
  • the total received uplink interference power cannot exceed the limit value.
  • the concern in uplink admission control is the remaining power capacity load (interference margin)-whether the total received power exceeds the system limit.
  • the current admission control method does not consider the power climbing problem when calculating the power required for the calling service, does not consider the admission control of the asymmetric service in the up and down directions, and does not consider the special characteristics of the non-real-time service admission and the priority of the service. , Can not meet the business requirements of the new generation of mobile communication systems.
  • the purpose of the present invention is to propose a device and method for accurately admitting control of a CDMA system.
  • the amount of power increase is considered, and the problem of admittance control of the asymmetric service on the uplink and the downlink is considered separately.
  • Downward measurement and calculation of load power The margin uses different methods to process non-real-time service admission and service priority differently. In order to achieve the effect of improving system operation efficiency, reducing call blocking rate and dropped call rate. Summary of the invention:
  • the admission control process is: when the call service requests access, classify the service type, take the lowest non-zero rate for the non-real-time service, obtain the rate transmission requirements for the call service, measure the uplink and downlink load power of the cell in real time, and consider the uplink Power climbing factors caused by multiple access interference and downlink non-orthogonality, the load power increment of the call service is estimated, and admission control is performed in the uplink and downlink directions respectively to adapt to the access of asymmetric services and reduce the call loss rate (blocking Rate) to improve system operating efficiency on the premise of system stability.
  • an admission control method of a code division multiple access system includes at least one base station, and at least one mobile station requesting access to a cell served by the base station, including the base station in the cell is providing services.
  • Information of the mobile station and other information of the cell such as a device for controlling the rated load of different services of the cell, wherein the mobile station requesting access to the cell served by the base station submits at least one service request to the system, such as non-real-time and real-time services;
  • the admission control method includes: receiving a call request from a mobile station requesting access to a cell served by the base station; obtaining parameters of the mobile station, including a signal-to-noise ratio required for the at least one service
  • the user's ID value, and the type of service; the determined path loss value L, the parameters of the mobile station and the information in the control device are used to calculate the remaining available downlink capacity of the system cell; according to the calculated available remaining downlink capacity of the system cell
  • the capacity determines whether the downlink can accept the service, and if so, establishes the downlink; otherwise, the service request is rejected.
  • the method includes a step of determining a downlink path loss value L of the service.
  • the method further includes the step of determining the downlink climbing power of the system cell according to the information in the control device.
  • the step of calculating the remaining available downlink capacity of the system cell further includes: calculating a processing gain and a required transmission level of the service downlink;
  • the downlink climbing power of the call service is determined.
  • APdBm is the original value of the power load and power increment of the call service
  • G 10xlog 10 (one ⁇ -—) dB is processing gain, R is service rate, dimension is kbps
  • ⁇ P is the original absolute value of downlink transmit power
  • is the voice activation factor
  • data service non-voice service
  • voice service symmetric session service
  • Aptotal is the downlink power climbing value after service access
  • It is a downlink non-orthogonal factor in a multipath wireless environment, and the value ranges from 0.1 to 0.4, which is related to the wireless environment.
  • step of determining the downlink path loss value L of the service further includes: Find the downlink loss value recently reported by this user ID;
  • the first predetermined value is equal to multiplying the maximum coverage radius of the cell by 0.707 and substituting it into the propagation model to calculate the path loss value of the equivalent radius.
  • the second predetermined value is the maximum coverage radius of the cell multiplied by 1.4, and then substituted into the propagation model to calculate the path loss value of the equivalent radius.
  • an admission control method for a code division multiple access system includes at least one base station, and at least one mobile station requesting access to a cell served by the base station, including the base station in the cell being provided by the base station.
  • the information of the serving mobile station and other information of the cell such as the control device for the rated load of different services of the cell, wherein the mobile station requesting access to the cell served by the base station submits at least one service request to the system, such as non-real-time and real-time services;
  • the admission control method includes:
  • the step of determining whether the uplink throughput meets the uplink requirements of the service according to the uplink rate R up includes:
  • the cell load determine whether the uplink throughput meets the uplink requirements of the service.
  • the step of determining whether the uplink throughput meets the uplink requirements of the service includes: determining an equivalent total received power required after the service is provided to the uplink rate R up ; the equivalent total received power is less than or equal to the cell When the load allows the total received power, it meets the uplink requirements of the service.
  • step of determining an equivalent total received power required after the service is provided to the uplink rate R up includes:
  • calculating the equivalent throughput corresponding to the data service call service satisfies the following formula: When 64kbps T x is 1280kbps, 144kbps when T x is at 1440kbps, 384kbps when T x is at 1536kbps.
  • the step of determining whether the uplink throughput meets the uplink requirements of the service further includes:
  • the uplink remaining capacity is greater than the third predetermined value, and if yes, the uplink service is accepted; otherwise, it is rejected.
  • the step of determining that the uplink remaining capacity is greater than a third predetermined value includes:
  • an admission control device of a code division multiple access system includes at least one base station, and at least one mobile station requesting access to a cell served by the base station, including the base station in the cell being provided by the base station.
  • the information of the serving mobile station and other information of the cell such as the control device for the rated load of different services of the cell, wherein the mobile station requesting access to the cell served by the base station submits at least one service request to the system, such as non-real-time and real-time services;
  • the admission control device includes: A receiving device, configured to receive a call request from a mobile station requesting access to a cell served by the base station;
  • the parameter acquiring device is configured to acquire parameters of the mobile station, including a signal-to-noise ratio Eb / No, an uplink R up, and / or a downlink source rate R d required for the at least one service.
  • Eb / No a signal-to-noise ratio
  • R up an uplink R up
  • R d a downlink source rate
  • the signal processing device is configured to determine the downlink path loss value L of the service, and determine the downlink climbing power of the system cell according to the information in the control device; and then, the determined path loss value L and the downlink source rate R d are determined . , The required signal-to-noise ratio Eb / No, the determined downlink climbing power of the system cell, and calculating the downlink available remaining capacity of the system cell;
  • a judging device configured to determine whether the downlink can accept the service according to the calculated remaining available capacity of the system cell downlink
  • the link linking device based on the result determined by the determining device, establishes a downlink or does not link and rejects the service request.
  • the signal processing device further includes: a device for determining a transmission level, configured to calculate a processing gain and a transmission level required for downlink services;
  • an admission control device for a code division multiple access system includes at least one base station, and at least one mobile station requesting access to a cell served by the base station, including the base station in the cell being provided by the base station.
  • the information of the serving mobile station and other information of the cell such as the control device for the rated load of different services of the cell, wherein the mobile station requesting access to the cell served by the base station submits at least one service request to the system, such as non real-time and real-time services;
  • the admission control device includes:
  • a receiving device configured to receive a call request from a mobile station requesting access to a cell served by the base station
  • a parameter acquiring device configured to acquire parameters of the mobile station, including a signal-to-noise ratio Eb / No, an uplink source rate R up , an ID value of a user, and a service type required for the at least one service; a control device according to the uplink rate R 11P determines whether the uplink throughput meets the uplink requirements of the service, and if so, establishes the uplink; otherwise, it rejects the service request.
  • the control device includes:
  • the receiving power determining device determines, according to the uplink rate R up, the total uplink receiving (interference) power of the cell from the measurement data group reported by the base station, and determines the equivalent received power required by the uplink rate R IIP .
  • the judging device determines whether the uplink throughput meets the uplink requirement of the service according to the total received power allowed by the cell load.
  • the receiving power determining device also determines an equivalent total received power required after the service is provided to the uplink rate R up ; when the equivalent total received power is less than or equal to the total received power allowed by the cell load, the determining device meets the Service uplink requirements.
  • the receiving power determining device calculates a call service corresponding to the call service from the received total power. Equivalent throughput; add the equivalent throughput and the uplink rate R up of the service to obtain the total throughput; and calculate a corresponding equivalent total received power value from the total throughput.
  • the judging device subtracts the equivalent total received power from the cell's uplink received total (interference) power (measured value) to obtain the uplink received power increase of the call service; and subtracts the measured total received absolute power from the cell load.
  • the cell uplink receives the total (interference) power to obtain the cell's uplink remaining capacity; then, it is determined that the uplink remaining capacity is greater than a third predetermined value; if it is, the uplink service is accepted; otherwise, it is rejected.
  • the present invention also provides an admission control method for a code division multiple access system, including the following steps:
  • Step A Extract parameters from the quality of service parameters requested by the calling service RAB; Step B: Determine whether to perform the downlink admission control process according to the parameters extracted in the above Step A; if yes, go to Step C; if not, go to Step E for uplink admission. Control process
  • Step C Calculate the downlink load power increase of the service and the available remaining power capacity load according to the extracted parameters
  • Step D if the downlink available remaining power capacity load of the system cell is greater than the service downlink load power increase, set the downlink admission permission to "true", and go to step E to continue the uplink admission control; otherwise return to step A to process the next service Call
  • Step E Calculate the uplink load power increase of the call service and the cell's uplink available remaining power capacity load
  • Step F If the uplink available remaining power capacity load of the system cell is greater than the service uplink load power increase, then set the uplink admission permission to "true”, otherwise go to step G, otherwise set the uplink admission permission to "not true”, and return to step A, Process the next business call;
  • Step G If both the downlink admission allowance and the uplink admission allowance are "true”, allocate downlink resources and parameters to the call service, simultaneously allocate uplink resources and parameters, and modify the code resource status table and the system cell resource parameter table.
  • Figure 1 is a schematic diagram of load power measurement of a Node B cell
  • FIG. 2 is a schematic diagram of a call admission control information path
  • FIG. 3 is a main flowchart of a call processing method of the present invention (a);
  • FIG. 7 is an uplink control device for call admission control according to the present invention. Detailed description of the invention
  • FIG. 1 is a schematic diagram of the load power measurement of a Node B cell.
  • Each base station can be one, three, or six cells (sectors). When an omnidirectional antenna is used, one base station is one cell, and a 120 ° antenna is used. There are 3 cells in one base station, and 6 cells in a base station when using a 60 ° antenna. There are two antennas in each cell, and one antenna (101) is connected to the transmitting linear power amplifier (LPA) (105) and the receiving low-noise small signal amplifier (LNA) (111) via a duplexer (102). . The other antenna (108) is directly connected to the received total power measurement circuit (110). The cell load power measurement in the base station is divided into the measurement of the received total power and the measurement of the transmitted total power.
  • LPA linear power amplifier
  • LNA low-noise small signal amplifier
  • the received total power measurement reporting module (109) reports the output of the received total power measurement circuit (110) to the wireless network via a signaling channel as required.
  • the controller similarly, the transmission total power measurement reporting module (103) reports the output of the transmission total power measurement circuit (104) to the RNC through a signaling channel as required.
  • the transmitted radio frequency signal is a signal generated by a baseband circuit (107), and is transmitted through an intermediate frequency transmission processing circuit (106). Similarly, the received signal undergoes IF receiving processing After the circuit (112), it goes to the baseband reception processing circuit (113) for processing.
  • FIG. 2 is a schematic diagram of an information path in call admission control.
  • a user equipment that is, a mobile device (201) may control a measured downlink path loss through radio resource control.
  • RRC radio resource management
  • RRM radio resource management
  • FIG. 3 is a main flowchart of a call processing method of the present invention, which includes a main control process of asymmetric service admission control for uplink and downlink; first, determine whether the downlink rate requirement of the service is zero, and if it is not zero, start a downlink admission control process. : Process non-real-time and real-time services separately. The main difference is that non-real-time services can be queued for processing for a period of time and can be accessed at the lowest rate, while real-time services can hardly wait. The required rate is the guaranteed rate; then the downlink is called. Admission control handler. After the downlink admission control is processed, the uplink admission control process is continued: The uplink admission control also distinguishes between real-time and non-real-time services and processes them separately. The process is similar to that of the downlink.
  • FIG. 4 is a detailed flowchart of a downlink call admission process of the method of the present invention.
  • a prediction method combining measurement with an equivalent coverage radius is used.
  • the measurement value is not reported, the downlink path loss value calculated using the equivalent radius is used. Because the cell does not necessarily report the measurement value, the measurement reporting function is optional. Calls include calls initiated by a mobile device (UE) from an idle state, calls that are newly added to the service during a connection, handover calls, and calls from the wired network side.
  • UE mobile device
  • the RRM at the upper layer of the RNC obtains the quality of service (QoS) of the call service from RRC signaling ) Parameters and measurement parameters, the service type (voice or data), service rate, bit error rate requirements (signal-to-noise ratio Eb / No requirements), and priority can be obtained from the quality of service (QoS) parameters.
  • QoS quality of service
  • the current load power value and downlink path loss value of the system so It is possible to predict the power increase ⁇ P of the call, consider the non-orthogonal factors caused by the wireless multipath environment, take into account the amount of power increase, get the final power increase of the service, and then convert it into the downlink load power increase ⁇ ; / .
  • the correct admission control can be performed.
  • the system load power threshold when determining the system load power threshold, it is divided into two high and low thresholds. The difference between these two thresholds is the handover of the reserved power capacity load for soft handover while ensuring hard handover. Sometimes there is a lower call drop rate.
  • the downlink admission control can be accurately performed when the downlink path loss is reported, and the admission control can also be performed when there is no report.
  • the non-orthogonal factor of the downlink is taken into account, and the power climbing power caused by the non-orthogonal is taken into account.
  • the priority of the service is considered, and different priorities are accepted differently.
  • the threshold can accurately predict the degree of impact of call service access on the system, and achieve the effects of improving system operation efficiency and reducing call blocking rate and call drop rate.
  • FIG. 5 is a detailed flowchart of the uplink call admission process of the method of the present invention.
  • the call admission control process is similar to the downlink process. The main difference is that it does not need to consider the problem of path loss, and the cell load power and power are completely the same. percentage.
  • the RNC radio network controller
  • the RRM radio resource management
  • the quality of service (service) parameters of the call from the signaling, and the type of service can be obtained from the quality of service (QoS) parameters ( Voice or data), service uplink rate, bit error rate requirement (signal-to-noise ratio Eb / No requirement), and priority, the current load power value of the system can be obtained from the measurement parameters.
  • QoS quality of service
  • the degree of multiple-access interference under the current load power condition of the cell is considered, that is, the power increase caused by the multiple-access interference is considered, so that the power increase ⁇ P and load power increase ⁇ of the calling service can be predicted.
  • the accurate admission control can be performed under the condition of accurately determining the current load power of the system.
  • the call service priority during admission control when determining the system load power threshold, it is also divided into two high and low thresholds. The difference between the two thresholds is the reserved reserved power capacity load for soft handover, which can guarantee hard There is a lower call drop rate when switching.
  • the multiple access interference factor is considered in the uplink admission control, and the uplink load power increase of the call service is calculated.
  • FIG. 6 is a downlink control device for call admission control according to the present invention.
  • the code division multiple access system 600 includes at least one base station 610, and at least one mobile station 620 requesting access to a cell served by the base station, and contains information of the mobile station in the cell that the base station is serving and other information of the cell, such as different cell services
  • a downlink control device including a base station 610 and a control device 630 includes a receiver 650 as a receiving device for receiving a call request from a mobile station 620 requesting access to a cell served by the base station.
  • the downlink control device further includes a parameter obtaining device 670, configured to obtain parameters of the mobile station 620 from the information received by the receiver 650 and the information in the control device 630, including but not limited to the signal-to-noise ratio Eb / No. R up or / and downlink source rate R d , user ID value, and service type.
  • the downlink control device further includes a signal processing device 680 composed of a CPU and auxiliary components, and determines the downlink path loss value L of the service according to the information obtained by the parameter obtaining device 670; and determines the downlink climbing power of the system cell based on the information in the control device. ; Then, the determined path loss value L and the downlink source rate R d are determined .
  • the judging device 690 determines whether the downlink can accept the service according to the remaining available downlink capacity of the system cell calculated by the signal processing device 680. If the service can be accepted, the link linking device establishes a downlink with the mobile station 620 according to the result determined by the determining device; otherwise, the service request is rejected.
  • the mobile station 620 may only need to establish downlink non-real-time services, such as receiving emails, etc., and may only need to establish downlink real-time services, such as receiving voice announcements; therefore, at this time, it is only necessary to establish downlinks .
  • the signal processing device 680 further includes a device 682 for determining a transmission level, a device 684 for determining a climbing power, a searching device 686, and a determining device 688.
  • a device 682 for determining a transmission level is used to calculate a processing gain and a service downlink requirement. Emission level.
  • the climbing power determining device 684 determines the downlink climbing power of the call service according to the information in the control device.
  • the searching device 686 is configured to search the downlink path loss value reported by the user ID recently.
  • the determining device 688 determines whether the path loss measurement value is available and valid, and if it is available and valid, determines that the reported downlink path loss value is a downlink path loss value L of the service; otherwise, the first predetermined value is used as the downlink path loss value 1 ⁇ .
  • FIG. 7 is an uplink control device for call admission control according to the present invention.
  • the admission control device 700 includes: a receiving device 650, a parameter acquisition device 670, and a control and processing device 710.
  • the receiving device 650 is configured to receive a call request from a mobile station requesting access to a cell served by the base station.
  • the parameter acquiring device 670 is configured to acquire parameters of the mobile station, including a signal-to-noise ratio Eb / No, an uplink source rate R up , an ID value of a user, and a service type of the at least one service.
  • the control and processing device 710 determines whether the uplink throughput meets the uplink requirement of the service according to the uplink rate R up , and if it meets, establishes the uplink; otherwise, rejects the service request.
  • the control and processing device 710 includes: a receiving power determining device 713 and a determining device 716.
  • the receiving power determining device 713 determines the uplink receive total (interference) power of the cell from the measurement data set reported by the base station according to the uplink rate R up , and determines the equivalent received power required by the uplink rate R up .
  • the judging device 716 determines whether the uplink throughput meets the uplink requirement of the service according to the total received power allowed by the cell load.
  • the receiving power determining device 713 also determines an equivalent total received power required after the service is provided to the uplink rate R up .
  • the determining device 716 satisfies this when the equivalent total received power is less than or equal to the total received power allowed by the cell load. Service uplink requirements.
  • the receiving power determining device 713 calculates the equivalent throughput corresponding to the call service from the received total power; adds the equivalent throughput and the uplink rate R up of the service to obtain the total throughput; and calculates a corresponding one from the total throughput calculation.
  • Equivalent total received power value The judging device 716 subtracts the equivalent total received power from the cell uplink received total (interference) power (measured value) to obtain the uplink received power increase of the call service; and subtracts the measured cell from the absolute value of the total received power allowed by the cell load. Uplink received total (interference) power to get cell uplink Remaining capacity; then, it is determined that the uplink remaining capacity is greater than a third predetermined value, and if yes, the uplink service is accepted; otherwise, it is rejected.
  • control and processing device 710 converts the uplink remaining capacity of the cell into the available uplink capacity of the cell according to the switching reserve capacity requirement; the judging device determines whether the uplink available remaining capacity is greater than the service load increment, and if so, it indicates that the uplink remaining capacity is greater than the third Predetermined value.
  • the mobile station 620 may only need to establish an uplink non-real-time service, such as sending an email, or may only need to establish an uplink real-time service, such as sending a voice notification. Therefore, at this time, it is only necessary to establish an uplink road.
  • the mobile station 620 may also need to establish uplink and downlink services.
  • the device includes the elements in FIG. 6 and FIG. 7. Invention Examples
  • the functional modules of the present invention are embodied in software in a radio network controller (RNC), and many base stations (cells) are controlled and managed by the RNC.
  • RNC radio network controller
  • cells base stations
  • an embodiment is further described in detail as follows:
  • Step 1 First, from the quality of service (QoS) parameters carried by the radio service bearer (RAB) request of the calling service (user), extract the source rate R of the calling service, the required signal-to-noise ratio Eb / No, Priority level and identification value of the calling user;
  • Step 2 Check whether the downlink rate of the calling service is zero. If it is not zero, go to Step 3. Continue to perform downlink admission control. Otherwise, go to Step 14. Upstream admission control processing steps.
  • QoS quality of service
  • RAB radio service bearer
  • Step 3 Further extract the downlink data rate of the calling service, the required signal-to-noise ratio Eb / No, the service type (real-time service or non-real-time service), and the identity of the calling user (ID) from the quality of service (QoS) parameters.
  • QoS quality of service
  • ) Value you can know the delay requirements of the service from the type of service, consider the length of the queue and the waiting time when queuing priority, and the identity (ID) value can determine whether this user already has services in communication, consider wireless The problem of link sharing, that is, whether to newly establish or reconfigure a wireless link. For non-real-time services, the minimum transmission rate is required as the admission rate.
  • Step 4 Find the user ’s recently reported downlink path loss value L (dB) in the database.
  • the mobile station will measure the downlink path loss value and report it to the wireless Network controller (RNC); This value must be a measurement value within the last few hundred milliseconds to several seconds, otherwise it is invalid. For example, the mobile station will move 6.67 meters at a time of 200ms (milliseconds) at 120km / h, and the time can be extended appropriately. However, moving too far will lose accuracy and have no practical significance.
  • Step 5 Determine whether the downstream path loss value L is valid, that is, the current time minus the value recording time, and a non-zero value with a time difference of at most a few seconds is valid. Use this real-time measurement value as the path loss value, and go to step 7 to continue Calculate; otherwise, go to the sixth step to obtain the approximate value of the downlink path loss through the estimation method;
  • Step 6 When the actual measured path loss value loses timeliness, use the cell parameters (base station antenna height ⁇ 3 ⁇ 4 and cell maximum coverage radius r max ) and 70.7% of the cell maximum coverage radius as the propagation distance parameters, and substitute them into the following propagation model
  • the calculation formula is to calculate the median road loss value Lj (approximate value of the road loss value L) of the equivalent radius, which is used instead of the road loss value L:
  • Step 7 After passing step 5 or step, the downlink rate R d of the service is used. wn and the required signal-to-noise ratio Eb / No are substituted into the following formula, and the power of the calling service can be calculated
  • R is kbps
  • Step 8 Since the WCDMA system is a self-interference system, the multipath transmission of the downlink radio link causes non-orthogonal physical code channels, resulting in incomplete separation (separation) between the physical code channels, and there are components that affect each other. That is, non-orthogonality may cause multiple access interference or noise between physical code channels, and reduce the signal-to-noise ratio of each physical code channel. The more physical code channels, the greater the interference. In order to compensate for the reduction of the signal-to-noise ratio caused by non-orthogonal factors, a power climb amount must be added, and the downlink power climb value after service access is calculated based on the seventh step: total
  • Step 9 In an actual system, the downlink load power of the system base station (cell) reporting the RNC is a percentage number. In this way, the actual measured load power value reported ⁇ 7 (%) and the maximum transmission power of the base station (cell) max (mW ) Inferring the total downlink transmit power ⁇ ) to further calculate the power climb of the base station (cell);
  • Step 10 In the above, the power increase caused by the call service (user) access is considered, then the load power increase caused by the service access can be predicted by the following formula
  • Step 11 Reserve the power capacity load required for the soft handover according to the needs of the soft handover, so that when the user performs the soft handover, there is not enough power capacity load for its use, resulting in dropped calls and greatly reducing the system's service quality.
  • the downlink reserved power capacity load is 50%
  • the load power required for stable system operation at a lower power peak-to-average ratio is 90%
  • the acceptance threshold for non-switched service calls is 60%
  • the formula for calculating the available remaining power capacity load of the switching call service is: 90%- ⁇ %
  • Step 12 Accept the call service when the available remaining power capacity load is greater than the downlink service load power increase, set the admission control of the downlink service to "True”, and then go to step 14 to perform the uplink admission control; otherwise, refuse the admission, and The admission control of the downlink service is allowed to be set to "not true", and go to step 24 to wait for the next call to arrive;
  • Step 13 Extract the service source uplink rate ⁇ >, the required signal-to-noise ratio Eb / No, the priority level, and the identity of the calling user (ID) from the quality of service (QoS) of the calling service. Take the lowest rate of service as the admission rate;
  • Step 14 Extract the total uplink received (interference) power P t from the data group reported by the base station.
  • tal (dBm) value which is reported by the base station device to the wireless network controller through the signaling channel on a regular basis, and is the real-time cell uplink load power value;
  • Step 15 According to the service type, the total (interference) power P t is received by the cell uplink. tal (dBm) value, use the following formula to calculate the equivalent throughput T t of the cell. tal (kbps): N
  • Vtot l ⁇ T x when the service is 800kbps, at 12. 2kbps when T x is 793kbps; P N - 103dBm is
  • T x When 64kbps T x is 1280kbps, 144kbps when T x is at 1440kbps, 384kbps when T x is at 1536kbps.
  • Step 16 Compare the service source rate R (kbps) with the equivalent throughput T t . tal (kbps) is added to obtain the total throughput after service access;
  • Step 17 Substituting the above formula (PT1) or (PT2) according to the total throughput to obtain the total power value (dBm) of the cell after service access.
  • Step 18 Convert ⁇ (w) and "/ 's dBm to absolute values, and then subtract them to obtain the rising power of the service:
  • Step 19 Subtract the threshold of the cell ’s maximum downlink transmit power from the total measurement (interference) reported by the base station. ) To obtain the uplink remaining power capacity load of the cell.
  • the threshold here is a maximum received power value to ensure the stable operation of the system.
  • Step 20 According to the requirements of soft handover, reserve the power capacity load required for soft handover, so as to avoid that when the user performs soft handover, there is not enough power capacity load for its use, resulting in dropped calls, thereby reducing the system's service quality.
  • the uplink reserved power capacity load for soft handover is 50%
  • the uplink load power (highest load power value) required for stable system operation is 90%
  • the admission threshold for non-switching service calls is 60%
  • the admission for switching service calls The threshold is 90%, which further determines the remaining power available in the cell uplink Capacity load. That is, the formula for calculating the available remaining power capacity load of non-switching call services is:
  • Step 21 The uplink available remaining power capacity load of the system cell (base station) is greater than the service uplink load power increase ⁇ P, that is, ⁇ ⁇ ⁇ , then the uplink admission is allowed to be set.
  • Step 22 If both the uplink and downlink admission allowances are “true”, then assign downlink resource parameters to the calling service And uplink resource parameters; allocating system resource parameters to the call service is specifically the parameters required to establish a wireless link, such as the spreading factor, transmission format, scrambling code, etc.
  • Step 23 If the call service is accepted, you need Modify the code resource table and system load power table so that the next call admission control is judged according to the latest conditions; if the call service is rejected, you do not need to modify the code resource table and system load power table; then wait for the next service call request Access, when the call is received again, the above process is performed again from the first step. Whenever a service initiates a call or a call is queued out, the call admission control process is performed once.
  • the present invention proposes the following method for the first time: First, consider the power increase caused by multiple access interference in both uplink and downlink; and secondly, separately estimate the uplink and downlink load power increments of the call service to adapt to Access to asymmetric services; Third, a method of estimating path loss using an equivalent average radius in the downlink can be used to estimate the transmit power of the downlink service when measurement information cannot be used, so that the load power incremental value of the service can be estimated; The fourth is to perform admission control on the uplink and the downlink respectively; the fifth is to adopt the lowest allowable transmission rate for non-real-time services. In this way, the problem of accurate admission control of asymmetric services is solved, that is, the contradiction between system operation stability and call loss rate at higher load power is resolved.
  • the invention is used for network design and admission control during network operation of a code division multiple access system, and can achieve The effect of accurate downlink load power increment estimation for call services, easy admission control, high network operation efficiency, and low call loss rate and call drop rate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

码分多址系统的接纳控制装置和方法 发明技术领域
本发明涉及移动通信领域码分多址 (CDMA) 系统的控制方法, 具 体地说, 涉及 WCDMA、 CDMA2000> TD-SCDMA和 TD- CDMA等码分多址系 统上行、 下行业务负荷功率增量估计和接纳控制的方法。 发明背景技术
第二代移动通信系统, 无论是 GSM还是 IS-95系统, 共同的特点 是针对单一的话音业务, 每条信道有固定的传输速率, 扇区的的信道 数与吞吐量也是一一对应的。
为了满足日益增长的数据业务发展需求, 移动因特网一第三代移 动通信系统 (3G) 进入了大力研制阶段。 3G承载的业务除传统的话 音业务外, 还要承载与因特网相对应的分组数据业务。 分组数据业务 的传输方法和要求与话音业务有很大的不同, 具体体现在业务产生的 规律不同, 传输误码率和时延要求不同, 因而造成了分组数据传输格 式和传输控制方法的差异。
第三代码分多址系统 (WCDMA、 CDMA2000、 TD-SCDMA 和 TD- CDMA 等系统) 都属于第三代移动通信系统的技术标准, 原理上与窄带码分 多址系统 (IS-95 系统) 相似, 都是用码序列来区分用户的。 但是, 第三代码分多址系统的传输技术和系统控制方法与 IS- 95系统有很大 的不同, 系统功率容量负荷不再是以信道数来衡量, 而是用功率或数 据吞吐量来表征, 尽管现在世界上还没有统一的方法。 同时,宽带码 分多址具有宽带高速、 承载混合业务和进行可变速率传输等三大特 点。 鉴于第三代码分多址系统的吞吐量功率容量负荷是软的, 在不同 业务接入时其功率容量负荷不同,因此在判断系统是否满的标准显得 很困难。 在实际的码分多址系统中, 核心是功率, 以功率作为小区负 荷功率具有实际意义。 但是小区负荷功率与小区的吞吐功率容量负荷 不是固定的关系, 即信道数与吞吐量都是不定的。
WCDMA 系统中, 尽管带宽较宽, 但是对于日益增长的业务需要来 说, 空中的无线功率容量负荷还是非常有限的, 在用户发起呼叫请求 无线接入时, 必须进行接纳控制, 以免系统负荷功率超出稳定运行的 门限, 使系统出现崩溃现象。
第三代移动通信系统标准化组织 3GPP在 99年 3月通过并颁布了 Release 99, 版本的无线接口技术规范, 并不断在修改。 但 3GPP 始 终没有对 WCDMA系统的接纳控制方法制订统一的标准, 系统控制方法 是各个公司以标准为基础进行研制的。
进行接纳控制的过程是: 首先要准确测量小区 (基站) 当前的负 荷功率, 求得系统小区 (基站) 剩余 (可用) 负荷功率容量; 其次对 呼叫业务 (包括新呼叫业务和切换呼叫业务) 的上、 下行负荷功率增 量分别进行预测与估计; 然后在上、 下行方向将业务负荷功率增量与 小区剩余 (可用) 负荷功率容量进行比较, 当可用剩余负荷功率容量 够用则接纳呼叫业务, 否则拒绝。 有了准确的呼叫接纳控制, 就可以 在系统负荷功率允许 (系统运行稳定) 的前提下接纳更多的用户或业 务, 因而可以保持较低的呼损率和掉话率, 达到较高的服务质量和系 统功率容量负荷。
第三代移动通信系统有一个重要的特点是支持不对称业务, 即上、 下行方向的数据速率不相等, 甚至某个方向的速率为零。 这样就必须 在上、 下行方向分别进行接纳控制 (拥塞控制或接入控制), 若在任 何一个方向不能满足呼叫业务的资源 (功率容量负荷) 要求, 就不能 接纳呼叫业务。
第三代移动通信系统还有一个特点是一个用户可以同时进行几个 业务的通信, 比如一边打电话, 一边上网。 因此以业务呼叫为基本呼 叫单元。
对于非实时 (UDD 即时延无限制) 的分组数据 (PS) 业务, 在业 务呼叫申请资源时, 可以通过排队等候方式使用资源进行无线数据通 信。 接纳判决时取非实时业务的最低传输速率 (由系统传输格式决定 的) 进行负荷功率增量的估计。 这是一个 "软"判决过程。
对于实时 (CS) 业务, 如话音、 电影等多媒体业务, 必须按照业 务申请的资源在较短时间内进行接纳判断, 要不折不扣地满足业务的 传输速率、 质量和时延要求, 否则就拒绝。 这是一个 "硬"判决过程。
接纳控制在业务呼叫时进行, 每一个业务呼叫申请无线接口资源 时, 必须对目前系统小区 (基站) 的负荷功率进行实时的、 动态的测 量, 得到系统可用的剩余负荷功率容量, 并对呼叫业务进行估计, 评 估业务接入后对系统影响的程度。 总的准则是当剩余负荷功率容量可 以满足呼叫业务的资源需要时, 接纳该呼叫并为其分配无线资源及参 数。 当剩余功率容量负荷不能满足该呼叫业务的需求时拒绝接纳。 但 是, 第三代移动通信系统承载的是混合业务, 包括实时话音业务、 非 实时分组数据业务, 必须针对业务不同的特点进行细致的估计和有效 的判断, 才能在保证系统稳定运行的前提下充分利用系统功率容量负 荷, 达到高效利用无线资源的目的。
目前, 预测呼叫业务负荷功率增量的方法是基于吞吐量的方法。 具体参考芬兰诺基亚公司 Harri Holma等人参考 3GPP协议规范的著 作——《UMTS 的 WCDMA——第三代移动通信的无线接入》。 现在所用 预测业务负荷功率增量的方法没有以功率为核心, 预测呼叫业务的负 荷功率增量不是直接的发射或接收功率增量, 更没有考虑多址干扰的 影响, 与实际系统不对应, 既不实用, 又不准确, 容易造成接纳控制 的错误判断。 在公开的专利中, 还没有针对混合业务和非对称业务的 接纳控制方法。 只有一些相关的专利, 如美国专利 US5687171 " CDMA 系统中分配无线信道的方法与装置"是最接近的方法, 这方法是基于 测量基站接收信号强度、 计算允许的余量、 估计呼叫所需的功率、 余 量大于所需功率时即分配一条无线信道。 这个方法是典型的第二代单 一业务、 对称业务的接纳控制方法, 且仅仅测量上行的基站接收信号 强度; 这些方法在计算呼叫业务所需功率时没有考虑功率攀升量, 更 没有考虑非对称业务在上、 下行分别接纳控制的问题, 因为上、 下行 的测量量和计算负荷功率余量方法是不同的, 没有考虑非实时业务接 纳的特殊性和业务的优先级, 完全不能满足第三代系统复杂的多样化 要求。
由于第三代移动通信系统承载的业务可以是不对称的, 即上、 下 行方向的传输速率不同,这样就要分上、下行进行接纳控制。由于 WCDMA 系统是一个自干扰系统, 上行功率容量负荷是干扰受限, 下行功率容 量负荷是功率受限, 因为小区 (基站) 设备的下行发射功率受物理器 件的限制, 下行的最大发射能力受到限制, 一般每个扇区每个载频不 超过 20W。 因此, 对于下行接纳控制来说, 首先要准确测量小区下行 的负荷功率, 在业务呼叫时对业务质量 (QoS ) 中的速率、 业务种类 (实时业务还是非实时业务)、 信噪比要求等进行分析, 通过计算得 出呼叫业务所需的发射功率预测值 , 再进行接纳控制。 当下行剩 余资源足够呼叫业务使用时就接纳, 否则就拒绝。 对于上行也是进行 类似的过程, 首先测量小区上行的负荷功率——接收总干扰功率, 对 呼叫业务的接收功率增量进行预测 (估计), 然后判断小区可用剩余 功率容量负荷是否够用, 进行接纳控制。 在进行上、 下行接纳控制必 须考虑多址干扰引起的功率攀升。
在对下行的业务负荷功率增量进行估计时, 常常无法准确知道移 动台的位置和下行路径损耗, 因而很难估计业务的负荷功率增量, 这 是一个公认的难题; 在可以利用下行路损测量值时, 下行路径损耗可 以利用, 但还要考虑下行非正交因子引起的功率攀升问题, 功率攀升 既增加本业务信道的额外功率, 还会引起下行总发射功率的额外增 力口, 很快使下行发射能力达到饱和, 最后各个用户的通信质量均达不 到要求而告崩溃。 尽管接纳误差仅仅影响一次, 误差不会积累, 但是 估计误差太大会使呼损率提高, 降低了系统的运行效率。
下行一般一个小区对应一个线性功率放大器, 只有 20W 的发射功 率能力, 下行接纳控制时关心的问题是剩余功率容量负荷——功率够 不够发射。
在对上行的业务负荷功率增量进行估计时, 重点考虑用户间的多 址干扰; 所有用户同时对基站发射功率, 是一对多的通信。 上行时由 于用于区分用户的扩频码之间不是完全正交的, 用户之间存在多址干 扰, 使通信质量降低; 用户数越多, 干扰就越大; 当用户数达到一定 数量致使接收总功率较大时, 用户之间互相影响就比较严重, 通信质 量下降较多, 在闭环功率控制下, 使各个用户的发射功率交替上升, 引起功率非线性攀升, 上行接收总干扰功率迅速增大, 最后使接收总 干扰功率超出接收电路的极限而崩溃。
上行接收总干扰功率不能超过极限值, 上行接纳控制时关心的问 题是剩余功率容量负荷 (干扰余量)——接收总功率有没有超出系统 的极限。
基于上述的特点和要求, 在呼叫业务要求接入无线接入网络系统 时, 需要同时考虑业务上、 下行的要求和系统上、 下行的负荷功率情 况, 分别在上、 下行方向进行接纳控制。
目前的接纳控制方法在计算呼叫业务所需功率时没有考虑功率攀 升问题, 没有考虑非对称业务在上、 下行方向分别进行接纳控制的问 题, 没有考虑非实时业务接纳的特殊性和业务的优先级, 完全不能满 足新一代移动通信系统的业务要求。
本发明的目的在于提出一种对 CDMA系统进行精确接纳控制的装置 和方法, 在计算呼叫业务所需功率时考虑功率攀升量, 和非对称业务 在上、 下行分别接纳控制的问题, 对上、 下行的测量和计算负荷功率 余量采用不同的方法, 对非实时业务接纳和业务的优先级进行不同的 处理。 以达到提高系统运行效率、 降低呼叫阻塞率和掉话率的效果。 发明概述:
接纳控制的过程是: 当呼叫业务请求接入时, 对业务类型进行分 类, 对非实时业务取最低非零速率, 得到呼叫业务的速率传输要求, 实时测量小区的上行、 下行负荷功率, 考虑上行多址干扰和下行非正 交引起的功率攀升因素, 对呼叫业务的负荷功率增量进行估计, 分别 在上、 下行方向进行接纳控制, 以适应非对称业务的接入, 降低呼损 率 (阻塞率), 在系统稳定的前提下提高系统运行效率。
根据本发明的一个方面, 码分多址系统的接纳控制方法,该码分 多址系统包括至少一个基站, 至少一个请求接入该基站服务的小区的 移动站, 含有该小区中基站正在提供服务的移动站的信息和小区其它 信息如小区不同业务的额定负荷的控制装置, 其中, 请求接入该基站 服务的小区的移动站至少向系统提出一项业务请求, 如非实时和实时 业务; 所述接纳控制方法包括: 接收请求接入该基站服务的小区的移动站的呼叫请求; 获取所述移动站的参数, 包括该至少一项业务所需信噪比
Eb/No、 上 Rup或 /和下行信源速率 Rdwn、 用户的 ID值、 业务种类; 由确定的路径损值 L、 获取的所述移动站的参数和控制控制装 置中的信息, 计算系统小区下行可用剩余容量; 根据计算的系统小区下行可用剩余容量确定下行链路是否可接 纳该业务, 如果可以, 建立下行链路; 否则, 拒绝该业务请求。
其中, 包括确定业务的下行路损值 L的步骤。 还包括: 根据控制装置中的信息, 确定系统小区的下行攀升功 率的步骤。
其中, 计算系统小区下行可用剩余容量的步骤还包括: 计算处理增益和业务下行所需发射电平;
根据控制装置中的信息, 确定呼叫业务的下行攀升功率。
而且, 确定下行攀升功率满足如下公式-
Figure imgf000009_0001
其中: APdBm是呼叫业务的功率负荷功率增量原始值; 信噪比分
Figure imgf000009_0002
3S40kcps
G =10xlog10(一~ -— )dB 是处理增益, R是业务速率, 量纲 kbps
Δ = 100.1Δ¾βηί χϋ mW 业务接入后下行功率攀升值: total mW
Figure imgf000009_0003
其中: ΔΡ 是下行发射功率原始的绝对值; υ是话音激活因 子, 数据业务 (非话音业务) 取 1.00, 话音业务 (对称会话业务) 取 0.67, Aptotal是业务接入后下行功率攀升值; " 是多径无线环 境的下行非正交因子, 取值 0.1到 0.4, 与无线环境有关。
另外, 确定业务的下行路损值 L的步骤还包括: 査找此用户 ID最近上报的下行路损值;
判定路损测量值是否可用和有效, 如果可用和有效, 确定该上 报的下行路损值为业务的下行路损值 L; 否则, 以第一预定值作为下 行路损值^
还有, 第一预定值等于将小区最大覆盖半径乘以 0. 707后代入 传播模型计算等效半径的路损值。
另外, 在此用户 ID 在预定时间内未上报下行路损值时, 判定 路损测量值不可用和无效。
又有, 在此用户 ID 在预定时间内上报的下行路损值大于第二 预定值时, 判定路损测量值不可用和无效。
其中, 第二预定值为小区最大覆盖半径乘以 1. 4后代入传播模 型计算等效半径的路损值。
根据本发明的另一个方面, 码分多址系统的接纳控制方法,该码 分多址系统包括至少一个基站, 至少一个请求接入该基站服务的小区 的移动站, 含有该小区中基站正在提供服务的移动站的信息和小区其 它信息如小区不同业务的额定负荷的控制装置, 其中, 请求接入该基 站服务的小区的移动站至少向系统提出一项业务请求, 如非实时和实 时业务; 所述接纳控制方法包括:
接收请求接入该基站服务的小区的移动站的呼叫请求; 获取所述移动站的参数, 包括该至少一项业务所需信噪比 Eb/No、 上行信源速率 Rup、 用户的 ID值、 业务种类;
根据上行速率 RUD确定上行链路的吞吐量是否满足该业务的上行 要求, 如果满足, 建立上行链路; 否则, 拒绝该业务请求。
根据上行速率 Rup确定上行链路的吞吐量是否满足该业务的上行要求 的步骤包括:
从基站上报测量数据组中取得小区上行接收总 (干扰) 功率; 确定该上行速率 Rup需要的等效接收功率;
根据小区负荷允许的接收总功率, 确定上行链路的吞吐量是否 满足该业务的上行要求。
其中, 确定上行链路的吞吐量是否满足该业务的上行要求的步 骤包括: 确定向该上行速率 Rup提供服务后需要的等效的总接收功率; 在等效的总接收功率小于或等于小区负荷允许的接收总功率时, 满足 该业务的上行要求。
还有, 确定向该上行速率 Rup提供服务后需要的等效的总接收功 率的步骤包括:
由接收总功率计算呼叫业务对应的等效吞吐量;
将等效吞吐量与业务的上行速率 Rup相加得到总吞吐量; 由总吞吐量计算得到一个对应的等效的总接收功率值。
再有, 计算话音呼叫业务对应的等效吞吐量满足下列公式:
P'ot l = ( PNt V ( PT1 )
V total — 1 x ) 其中, Tttal ( kbps ) 等效吞吐量 Tx是各种业务的最大吞吐功率容 量负荷值, 在 8kbps话音业务时 Tx为 800kbps, 在 12. 2kbps时 Tx为 793kbps; PN= - 103dBm是背景白噪声。
另外, 计算数据业务呼叫业务对应的等效吞吐量满足下列公式: 在 64kbps时 Tx为 1280kbps, 在 144kbps时 Tx为 1440kbps, 在 384kbps时 Tx为 1536kbps。
其中, 确定上行链路的吞吐量是否满足该业务的上行要求的步 骤还包括:
由等效的总接收功率减去小区上行接收总 (干扰) 功率 (测量 值) 得到呼叫业务上行的接收功率增量;
将小区负荷允许的接收总功率绝对值减去测量的小区上行接收 总 (干扰) 功率, 得到小区上行剩余容量;
判定上行剩余容量大于第三预定值, 如果是, 接纳该上行业务, 否则, 拒绝。
还有, 判定上行剩余容量大于第三预定值的步骤包括:
根据切换预留容量要求将小区上行剩余容量转换成小区上行可 用剩余容量;
判定上行可用剩余容量是否大于业务负荷增量, 如果是, 表明 上行剩余容量大于第三预定值。
根据本发明的再一个方面, 码分多址系统的接纳控制装置,该码 分多址系统包括至少一个基站, 至少一个请求接入该基站服务的小区 的移动站, 含有该小区中基站正在提供服务的移动站的信息和小区其 它信息如小区不同业务的额定负荷的控制装置, 其中, 请求接入该基 站服务的小区的移动站至少向系统提出一项业务请求, 如非实时和实 时业务; 所述接纳控制装置包括: 接收装置, 用于接收请求接入该基站服务的小区的移动站的呼 叫请求;
参数获取装置, 用于获取所述移动站的参数, 包括该至少一项 业务所需信噪比 Eb/No、上 Rup或 /和下行信源速率 Rdwn、用户的 ID值、 业务种类;
信号处理装置, 用于确定业务的下行路损值 L, 并根据控制装 置中的信息, 确定系统小区的下行攀升功率; 然后, 由确定的路径损 值 L、 下行信源速率 Rd。 、 所需信噪比 Eb/No, 确定的系统小区的下 行攀升功率, 计算系统小区下行可用剩余容量;
判断装置, 用于根据计算的系统小区下行可用剩余容量确定下 行链路是否可接纳该业务;
链路链接装置, 根据判断装置确定的结果, 建立下行链路或不 链接而拒绝该业务请求。
其中, 信号处理装置还包括- 确定发射电平的装置, 用于计算处理增益和业务下行所需发射 电平;
确定攀升功率的装置, 根据控制装置中的信息, 确定呼叫业务 的下行攀升功率;
查找装置, 用于查找此用户 ID最近上报的下行路损值; 判定装置, 判定路损测量值是否可用和有效, 如果可用和有效, 确定该上报的下行路损值为业务的下行路损值 L; 否则, 以第一预定 值作为下行路损值 L。 根据本发明的又一个方面, 码分多址系统的接纳控制装置,该码 分多址系统包括至少一个基站, 至少一个请求接入该基站服务的小区 的移动站, 含有该小区中基站正在提供服务的移动站的信息和小区其 它信息如小区不同业务的额定负荷的控制装置, 其中, 请求接入该基 站服务的小区的移动站至少向系统提出一项业务请求, 如非实时和实 时业务; 所述接纳控制装置包括:
接收装置, 用于接收请求接入该基站服务的小区的移动站的呼 叫请求;
参数获取装置, 用于获取所述移动站的参数, 包括该至少一项 业务所需信噪比 Eb/No、 上行信源速率 Rup、 用户的 ID值、 业务种类; 控制装置, 根据上行速率 R11P确定上行链路的吞吐量是否满足该 业务的上行要求, 如果满足, 建立上行链路; 否则, 拒绝该业务请求。
其中, 控制装置包括:
接收功率确定装置, 根据上行速率 Rup确定该速率需要的从基站 上报测量数据组中取得小区上行接收总 (干扰) 功率, 并确定该上行 速率 RIIP需要的等效接收功率;
判断装置, 根据小区负荷允许的接收总功率, 确定上行链路的 吞吐量是否满足该业务的上行要求。
另外, 接收功率确定装置, 还确定向该上行速率 Rup提供服务后 需要的等效的总接收功率; 判断装置在等效的总接收功率小于或等于 小区负荷允许的接收总功率时, 满足该业务的上行要求。
还有, 接收功率确定装置, 由接收总功率计算呼叫业务对应的 等效吞吐量; 将等效吞吐量与业务的上行速率 Rup相加得到总吞吐量; 由总吞吐量计算得到一个对应的等效的的总接收功率值。 另外, 判断装置将等效的总接收功率减去小区上行接收总 (干 扰) 功率 (测量值) 得到呼叫业务上行的接收功率增量; 并将小区负 荷允许的接收总功率绝对值减去测量的小区上行接收总(干扰)功率, 得到小区上行剩余容量; 然后, 判定上行剩余容量大于第三预定值, 如果是, 接纳该上行业务, 否则, 拒绝。 本发明还提供了一种码分多址系统的接纳控制方法, 包括如下步 骤:
步骤 A: 从呼叫业务 RAB请求的业务质量参数中提取参数; 步骤 B: 根据上述步骤 A所提取的参数判断是否进行下行接纳控制 过程; 若是则执行步骤 C, 若不是则转步骤 E进行上行接纳控制过 程;
步骤 C: 根据上述提取的参数计算业务下行的负荷功率增量以及下 行可用剩余功率容量负荷;
步骤 D: 如系统小区下行可用剩余功率容量负荷大于业务下行负荷 功率增量, 则将下行接纳允许置 "真 ", 转步骤 E, 继续进行上行 接纳控制; 否则回到步骤 A, 处理下一个业务呼叫;
步骤 E: 计算呼叫业务上行的负荷功率增量和小区上行可用剩余功 率容量负荷;
步骤 F: 如果系统小区上行可用剩余功率容量负荷大于业务上行负 荷功率增量, 则将上行接纳允许置 "真 ", 转步骤 G , 否则将上行 接纳允许置 "不真", 回到步骤 A, 处理下一个业务呼叫;
步骤 G : 若下行接纳允许和上行接纳允许都是 "真 ", 则给呼叫业 务分配下行资源及参数, 同时分配上行资源及参数, 并修改码资 源状态表和系统小区资源参数表。 附图的简要说明
通过下面结合附图以及实施例对本发明的进一步的说明, 可以更 清楚地了解本发明的实质内容和精神。 在附图中:
图 1是基站 (Node B) 小区的负荷功率测量示意图;
图 2是呼叫接纳控制信息通路示意图;
图 3是本发明的方法的呼叫处理主流程图 (一);
图 4是本发明方法的下行呼叫接纳处理流程图;
图 5是本发明方法的上行呼叫接纳处理流程图;
图 6是本发明的呼叫接纳控制的下行控制装置;
图 7是本发明的呼叫接纳控制的上行控制装置。 本发明详述
以下参照附图对本发明作进一步的说明。
图 1是基站 (Node B) 小区的负荷功率测量示意图, 每个基站可 以是 1个、 3个、 6个小区 (扇区), 当使用全向天线时一个基站就是 一个小区, 使用 120°天线时一个基站有 3个小区, 使用 60°天线时一 个基站有 6 个小区。 每个小区有两根天线, 一根天线 (101 ) 经双工 器 (102 ) 与发射的线性功率放大器 (LPA) ( 105) 和接收部分的线性 低噪声小信号放大器 (LNA) ( 111 ) 相连。 另外一根天线 (108) 直接 与接收总功率测量电路 (110 ) 相连。 基站中的小区负荷功率测量分 为接收总功率的测量和发射总功率测量, 接收总功率测量上报模块 ( 109) 将接收总功率测量电路 (110) 的输出按要求经过信令通道上 报给无线网络控制器(RNC), 同样地, 发射总功率测量上报模块(103) 将发射总功率测量电路(104)的输出按要求经过信令通道上报给 RNC。 发射的射频信号是由基带电路 (107 ) 产生的信号, 经过中频的发射 处理电路 (106 ) 而来的。 同样地, 接收的信号经过中频的接收处理 电路 (112) 后, 到基带接收处理电路 (113) 进行处理。
图 2是呼叫接纳控制中信息通路示意图, 首先用户设备 (UE, 即 移动设备) (201 ) 可能将测量的下行路径损耗, 经过无线资源控制
( RRC ) 信令通道 (202 ) 上报到无线网络控制器 RNC ( 203 ) 中的无 线资源管理(RRM)模块,供 RRM计算下行所需的发射功率;基站(Node B) 的公共测量功能模块 (204) 将小区上行接收总功率通过 Iub接口
( 205 ) 上报给 RNC ( 203 ), 这是小区当前的负荷功率, 作为接纳控 制进行判断的基础, 进行呼叫接纳控制 (CAC— Call Admission Control )。
图 3是本发明方法的呼叫处理主流程图, 包括了上行、 下行非对 称业务接纳控制的主控过程; 首先判断业务的下行速率要求是否为 零, 若不为零则开始下行的接纳控制过程: 分开处理非实时和实时业 务, 主要区别是非实时业务可以排队等待一段时间再处理, 且还可以 取最低的速率接入, 而实时业务就几乎不能等待, 要求的速率是保证 速率; 然后调用下行接纳控制处理程序。 处理完下行接纳控制后继续 进行上行的接纳控制过程: 上行接纳控制也是先区分实时和非实时业 务, 分别进行处理, 处理过程与下行类似。
图 4是本发明方法的下行呼叫接纳处理的详细流程图, 为了在呼 叫时能预测下行业务的功率增量和负荷功率增量, 采用了测量结合等 效覆盖半径的预测方法, 当小区 (基站) 没有上报测量值时使用等效 半径计算的下行路损值, 因为小区不是一定上报测量值的, 测量上报 功能是可选的。 呼叫包括移动设备 (UE) 从空闲状态发起的呼叫、 处 于连接中新增加业务的呼叫、 切换呼叫和有线网络侧来的呼叫, RNC 高层的 RRM从 RRC信令中得到呼叫业务的业务质量 (QoS ) 参数和测 量参数, 从业务质量 (QoS ) 参数中可以得到业务的类型 (话音还是 数据)、 业务速率、 误码率要求 (信噪比 Eb/No 要求) 以及优先级, 从测量参数可以得到系统当前的负荷功率值和下行路径损耗值, 从而 可以预测呼叫的功率增量 Δ Ρ , 再考虑无线多径环境引起的非正交因 子影响, 将功率攀升量考虑进去, 得到业务最终的功率增量, 再转换 成下行负荷功率增量 Δ;/。 在准确判断系统目前负荷功率的情况下能 够进行正确的接纳控制。 在接纳控制时针对呼叫业务优先级的情况, 在判断系统负荷功率门限时分为高低两个门限, 这两个门限的差值就 是切换预留功率容量负荷, 供软切换使用, 同时保证硬切换时有较低 的掉话率。 总之, 在下行路损上报时能精确地进行下行接纳控制, 在 没有上报时也可以进行接纳控制。 在计算呼叫业务的下行负荷功率增 量时, 考虑了下行非正交因素, 将非正交引起的功率攀升功率考虑在 内, 同时考虑了业务的优先级, 对不同的优先级有不同的接纳门限, 这样可以准确预测呼叫业务接入对系统影响的程度, 达到提高系统运 行效率、 降低呼叫阻塞率和掉话率的效果。
图 5 是本发明方法的上行呼叫接纳处理详细流程图, 呼叫接纳 控制过程与下行的过程相似, 主要差别是不必考虑路损的问题, 还有 小区负荷功率与功率完全是一致的, 不必转换成百分比。 进行上行接 纳控制时, RNC (无线网络控制器) 高层的 RRM (无线资源管理) 模 块从信令中得到呼叫的业务质量 (业务) 参数, 从业务质量 (QoS ) 参数中可以得到业务的类型 (话音还是数据)、 业务的上行速率、 误 码率要求 (信噪比 Eb/No要求) 以及优先级, 从测量参数可以得到系 统当前的负荷功率值。 根据上行多址干扰的情况, 考虑当前小区负荷 功率条件下的多址干扰程度, 即考虑多址干扰引起的功率攀升, 从而 可以预测呼叫业务的功率增量 Δ Ρ 和负荷功率增量 Δ 。 这样在准确 判断系统目前负荷功率的情况下能够进行正确的接纳控制。 在接纳控 制时针对呼叫业务优先级的情况, 在判断系统负荷功率门限时同样分 为高低两个门限, 这两个门限的差值就是切换预留功率容量负荷, 供 软切换使用, 可以保证硬切换时有较低的掉话率。 总之, 在上行接纳 控制时考虑了多址干扰因素, 在计算呼叫业务的上行负荷功率增量 时, 将多址干扰引起的功率攀升功率考虑在内, 同时考虑了业务的优 先级, 对不同的优先级有不同的接纳门限, 这样可以准确预测呼叫业 务接入对系统影响的程度, 达到提高系统运行效率、 降低呼叫阻塞率 和掉话率的效果。
图 6 是本发明的呼叫接纳控制的下行控制装置。 在码分多址系 统 600中包括至少一个基站 610, 至少一个请求接入该基站服务的小 区的移动站 620, 含有该小区中基站正在提供服务的移动站的信息和 小区其它信息如小区不同业务的额定负荷的控制装置 630。 包括基站 610和控制装置 630的下行控制装置包括作为接收装置的接收机 650, 用于接收请求接入该基站服务的小区的移动站 620的呼叫请求。 下行 控制装置还包括参数获取装置 670, 用于从接收机 650接收的信息和 控制装置 630中的信息获取所述移动站 620的参数, 包括但不限于业 务所需信噪比 Eb/No、 上 Rup或 /和下行信源速率 Rd,、 用户的 ID值、 业务种类。 下行控制装置还包括由 CPU及辅助元件构成的信号处理装 置 680, 根据参数获取装置 670获取的信息, 确定业务的下行路损值 L; 并根据控制装置中的信息, 确定系统小区的下行攀升功率; 然后, 由确定的路径损值 L、 下行信源速率 Rdwn、 所需信噪比 Eb/No, 确定 的系统小区的下行攀升功率, 计算系统小区下行可用剩余容量。 其中 的判断装置 690, 根据信号处理装置 680计算的系统小区下行可用剩 余容量确定下行链路是否可接纳该业务。 如果可以接纳该业务, 链路 链接装置, 根据判断装置确定的结果, 建立与移动站 620的下行链路; 否则, 拒绝该业务请求。 在实际应用中, 移动站 620可能只需要建立 下行非实时业务, 如电子邮件的接收等, 可能只需要建立下行实时业 务, 如语音通知的接收等; 因此, 此时, 只需建立下行链路。
在下行控制装置中, 信号处理装置 680 还包括确定发射电平的 装置 682, 确定攀升功率的装置 684, 査找装置 686和判定装置 688。 其中, 确定发射电平的装置 682, 用于计算处理增益和业务下行所需 发射电平。 而确定攀升功率的装置 684则根据控制装置中的信息, 确 定呼叫业务的下行攀升功率。 这里的查找装置 686, 用于査找此用户 ID最近上报的下行路损值。 判定装置 688, 判定路损测量值是否可用 和有效, 如果可用和有效, 确定该上报的下行路损值为业务的下行路 损值 L; 否则, 以第一预定值作为下行路损值1^。
图 7 是本发明的呼叫接纳控制的上行控制装置。 其中, 与图 6 相同的部件用相同的标记。 接纳控制装置 700包括: 接收装置 650, 参数获取装置 670和控制与处理装置 710。 其中, 接收装置 650, 用 于接收请求接入该基站服务的小区的移动站的呼叫请求。 而参数获取 装置 670, 用于获取所述移动站的参数, 包括该至少一项业务所需信 噪比 Eb/No、 上行信源速率 Rup、 用户的 ID值、 业务种类。 控制与处 理装置 710, 根据上行速率 Rup确定上行链路的吞吐量是否满足该业 务的上行要求, 如果满足, 建立上行链路; 否则, 拒绝该业务请求。
其中, 控制与处理装置 710包括: 接收功率确定装置 713和判 断装置 716。 其中, 接收功率确定装置 713根据上行速率 Rup确定该 速率需要的从基站上报测量数据组中取得小区上行接收总 (干扰) 功 率, 并确定该上行速率 Rup需要的等效接收功率。 判断装置 716, 根 据小区负荷允许的接收总功率, 确定上行链路的吞吐量是否满足该业 务的上行要求。 接收功率确定装置 713, 还确定向该上行速率 Rup提 供服务后需要的等效的总接收功率; 判断装置 716在等效的总接收功 率小于或等于小区负荷允许的接收总功率时, 满足该业务的上行要 求。 另外, 接收功率确定装置 713, 由接收总功率计算呼叫业务对应 的等效吞吐量; 将等效吞吐量与业务的上行速率 Rup相加得到总吞吐 量; 由总吞吐量计算得到一个对应的等效的的总接收功率值。 判断装 置 716将等效的总接收功率减去小区上行接收总 (干扰) 功率 (测量 值) 得到呼叫业务上行的接收功率增量; 并将小区负荷允许的接收总 功率绝对值减去测量的小区上行接收总 (干扰) 功率, 得到小区上行 剩余容量; 然后, 判定上行剩余容量大于第三预定值, 如果是, 接纳 该上行业务, 否则, 拒绝。
然后, 控制与处理装置 710根据切换预留容量要求将小区上行 剩余容量转换成小区上行可用剩余容量; 判断装置判定上行可用剩余 容量是否大于业务负荷增量, 如果是, 表明上行剩余容量大于第三预 定值。
在实际应用中, 移动站 620 可能只需要建立上行非实时业务, 如电子邮件的发送等, 也可能只需要建立上行实时业务, 如语音通知 的发送等; 因此, 此时, 只需建立上行链路。
在在实际应用中, 移动站 620也可能需要建立上行和下行业务, 此时, 装置包括图 6和图 7中的元件。 发明的实施例
本发明的功能模块以软件体现在无线网络控制器(RNC)中, 由 RNC 控制和管理许多的基站 (小区)。 结合本发明的步骤, 以一个实施例 进一步详细描述如下:
第一步: 首先从呼叫业务 (用户) 的无线接入承载 (RAB ) 请求 所带的业务质量 (QoS ) 参数中, 提取呼叫业务的信源速率 R、 所需 信噪比 Eb/No值、 优先级等级以及呼叫用户的身份标识 (ID) 值; 第二步: 检査呼叫业务的下行速率是否为零, 不为零到第三步继 续进行下行接纳控制; 否则转到第十四步开始上行接纳控制处理步 骤。
第三步: 进一步从业务质量 (QoS) 参数中提取呼叫业务下行的 数据速率、 所需的信噪比 Eb/No值、 业务类型 (实时业务还是非实时 业务)、 呼叫用户的身份标识 (ID) 值, 从业务类型可以知道业务对 时延的要求, 在排队优先级时考虑排队的队列和等待的时间长度, 身 份标识 (ID) 值可以判断此用户是否已经有业务在通信中, 考虑无线 链路的合用问题, 即考虑是新建立无线链路还是重新配置无线链路。 非实时业务取最低传输速率要求作为接纳速率。
第四步: 将此用户的身份标识 (ID) 在数据库中查找相应用户最 近上报的下行路损值 L (dB), 一般在初始呼叫连接时, 移动台会测 量下行路损值并上报给无线网络控制器 (RNC); 此值一定是最近数百 毫秒到数秒内的测量值, 否则无效, 比如移动台以 120km/h在 200ms (毫秒) 的时间会移动 6.67 米, 也可以将时间适当延长些, 但移动 的距离太远就失去了准确性, 没有实际意义。
第五步: 判断下行路损值 L是否有效, 即将现在时间减去数值记 录时间, 时间差最多在数秒以内的非零值就算有效, 使用此实时测量 值作为路损值, 转到第七步继续进行计算; 否则到第六步通过估算方 法求得下行路损的近似值;
第六步: 在实际测量的路损值失去时效性时, 将小区参数 (基站 天线高度 Δ¾和小区最大覆盖半径 rmax) 和小区最大覆盖半径的 70.7% 作为传播距离参数, 代入以下的传播模型计算公式, 计算等效半径的 路损中值 Lj (路损值 L的近似值), 用来代替路损值 L:
L =80 + 40(l-4xl0-3AA/))log10(^-rmax) + 21xlog10(/)-181og10(A/!,) dB 第七步: 在通过第五步或第六步得到下行跆损值 L后, 利用业务 的下行速率 Rdwn、 信噪比要求值 Eb/No代入下式, 可以计算呼叫业务 的功率
其 10
Figure imgf000022_0001
1 Λ , ,3840
¾ =l0xlogl0(一" - ~~ )dB 是处理增益, R是业务速率,
R 是 kbps,
声功率尸 Q =W^, 并通过 i J -lOlg^T^)计算白噪声功 率的 dBm值, 其中 Γ。为环境绝对温度 ( ) , k 为波尔兹曼常数, 为 1.38 X 10-23焦耳 /° , B是通信带宽(Hz ), WCDMA系统的通信带宽为 5MHz ; 常温下取尸。 = -103 dBm ;
将预测发射功率原始值的分贝数转换成绝对数值, 在转换时 需要考虑话音业务时的统计复用因素, 利用下式计算呼叫业务所需的 下行发射功率原始的绝对值 (mW) :
其中" 是话音激活因子, 数据业务 (非话音业务) 取
1. 00, 话音业务 (对称会话业务) 取 0. 67。
第八步: 由于 WCDMA系统是一个自干扰系统, 下行无线链路的多 径传输造成了物理码信道的非正交, 致使物理码信道之间分 (隔) 离 不完全, 存在互相影响的成分, 即非正交会引起物理码信道之间的多 址干扰或噪声, 使各条物理码信道的信噪比降低。 物理码信道越多, 干扰就越大。 为了弥补非正交因素引起的信噪比降低, 必须附加一个 功率攀升量, 在第七步基础上计算业务接入后下行功率攀升值: total
Figure imgf000023_0001
其中 " 是多径无线环境的下行非正交因子, 取值 0. 1 到 0. 4, 与无线环境有关。
第九步: 实际系统中, 上报 RNC的系统基站 (小区) 下行负荷功 率是一个百分比数, 这样利用实际测量上报的负荷功率值^ 7 (%) 和 基站 (小区) 最大发射功率尸 max ( mW) 反推下行的发射总功率 Λ) , 以便进一步计算基站 (小区) 的功率攀升量;
0 = 77 X 尸醒 m
由于 WCDMA系统下行非正交因素的影响, 物理码信道之间存 在多址干扰, 在一个功率已经达到平衡时接入一个用户 (业务), 这 个用户的发射功率会使其它物理码信道的信噪比有所降低, 造成其它 信道的发射功率稍有上升, 考虑业务接入后功率攀升时总的发射功率 估计值用下式计算; ΔΡ0 = R0« mW
第十步: 以上考虑了呼叫业务 (用户) 接入后引起的功率攀升情 况, 那么业务接入引起的负荷功率增量可以由下式预测;
Δ π ,, = △ + % 其中 ΔΡ0 = Δ 0 + APtotal
第十一步: 根据软切换的需要, 将软切换所需的功率容量负荷预 留出来, 以免在用户进行软切换时没有足够的功率容量负荷供其使 用, 造成掉话, 大大降低了系统的服务质量。 考虑软切换的下行预留 功率容量负荷为 50%, 在较小的功率峰均比下系统稳定运行要求的负 荷功率是 90%, 那么非切换业务呼叫的接纳门限是 60%, 切换业务呼 叫的接纳门限是 90%, 依此进一步确定小区可用的剩余功率容量负荷。 即非切换呼叫业务的可用剩余功率容量负荷计算公式为: m % = 60 % - /;% ; 切换呼叫业务的可用剩余功率容量负荷计算 公式为: = 90 % - η%
第十二步: 当可用剩余功率容量负荷大于下行业务负荷功率增量 时接纳呼叫业务, 将下行业务接纳控制允许置 "真 ", 接着到第十四 步进行上行接纳控制;否则拒绝接纳,将下行业务接纳控制允许置 "不 真", 转到第二十四步等待下一次的呼叫到来;
第十三步: 从呼叫业务的业务质量 (QoS) 中提取业务信源上行 速率^ >、所需信噪比 Eb/No、优先级等级和呼叫用户的身份标识(ID) 值, 对于非实时业务取最低速率作为接纳速率;
第十四步: 从基站上报的数据组中提取小区上行接收总 (干扰) 功率 Pttal (dBm) 值, 这是基站设备通过信令通道定期上报给无线网 络控制器的, 是实时的小区上行负荷功率值;
第十五步: 根据业务类型, 由小区上行接收总 (干扰) 功率 Pttal (dBm) 值, 用以下公式计算小区对应的等效吞吐量 Tttal (kbps): N
P t,otal ( PTl)
Vtot l Τχ 业务时 Tx为 800kbps, 在 12. 2kbps时 Tx为 793kbps; PN= - 103dBm是
对于数据业务, 用以下公式: Ρ'。 (ΡΤ2 )
Figure imgf000025_0001
在 64kbps时 Tx为 1280kbps, 在 144kbps时 Tx为 1440kbps, 在 384kbps时 Tx为 1536kbps。
公式 (PT1 ) 和 (PT2 ) 代表了功率攀升的规律, 功率攀升过程就 是功率非线性上升过程。
第十六步: 将业务信源速率 R (kbps ) 与等效吞吐量 Tttal ( kbps ) 相加, 得到业务接入后总的吞吐量;
第十七步: 根据总的吞吐量, 代入以上的 (PT1 ) 或 (PT2 ) 公式, 反推得到业务接入后小区的总功率值 (dBm);
第十八步: 将^^ ( w)和 《/的 dBm转换成绝对值, 然后相减得 到业务的上升功率: ,
_ ,一尸 " , = i ο0· ιρ total (dBm)一 | QO. IP total (dBm) 第十九步: 将小区下行最大发射功率的门限值减去基站测量上报 的接收总 (干扰) 功率值, 得到小区上行剩余功率容量负荷。 这里的 门限值是保证系统稳定运行的一个最大接收功率值。 即
A _ p p _ 1 r) . \Pth (dBm) _ 1 η0.1.Ρίο/α/ (dBm)
~ h ~ total — 1 U i U
第二十步: 根据软切换的需要, 将软切换所需的功率容量负荷预 留出来, 以免在用户进行软切换时没有足够的功率容量负荷供其使 用, 造成掉话, 从而降低了系统的服务质量。 考虑软切换的上行预留 功率容量负荷为 50%, 系统稳定运行要求的上行负荷功率 (最高的负 荷功率值) 是 90%, 那么非切换业务呼叫的接纳门限是 60%, 切换业 务呼叫的接纳门限是 90%, 据此进一步确定小区上行可用的剩余功率 容量负荷。 即非切换呼叫业务的可用剩余功率容量负荷计算公式为:
^ = ^ (60%) - ^/ = 109 - \ 00ΛΡ total (dBm) 切换呼叫业务的可用剩余功率容量负荷计算公式为:
APm = Pth (90%) - Ptotal = \ QSAdBm - \00ΛΡ total (dBm) 这里 60%的上行负荷功率量 (上行接收总功率) 等效为 -93dBm, 是从空载的 -103dBm上升到 - 93dBm, 而 90%的负荷功率量对应 _84dBm。
第二十一步: 系统小区 (基站) 上行可用剩余功率容量负荷 大于业务上行负荷功率增量 ΔΡ , 即 Δ ≤Δ , 则将上行接纳允许置
"真 ", 到第二十二步; 否则回到第一步, 处理下一个业务呼叫; 第二十二步: 若上、 下行接纳允许都是 "真", 则给呼叫业务分 配下行资源参数和上行资源参数; 给呼叫业务分配系统资源参数具体 是建立无线链路所需的参数, 如扩频因子、 传输格式和扰码等等; 第二十三步: 呼叫业务被接纳的, 则需要修改码资源表和系统负 荷功率表, 以便下一次的呼叫接纳控制按最新的条件进行判断; 呼叫 业务被拒绝的, 则不需要修改码资源表和系统负荷功率表; 然后等待 下一个业务呼叫请求接入, 当再次收到呼叫时, 从第一步起再进行一 遍以上的过程。 每当一个业务发起呼叫或呼叫排队输出时, 呼叫接纳 控制过程进行一次。
综上所述, 本发明首次提出了以下的方法: 一是在上行和下行同 时考虑因多址干扰引起的功率攀升; 二是分别对呼叫业务分别进行 上、 下行负荷功率增量估计, 以适应非对称业务的接入; 三是在下行 采用等效平均半径的路损估计方法, 在不能利用测量信息时仍然可以 对下行业务的发射功率进行估计, 从而可以估计业务的负荷功率增量 值; 四是分别在上、 下行进行接纳控制; 五是对非实时业务取最低允 许传输速率进行接纳。 这样解决了非对称业务进行精确接纳控制的问 题, 即解决了较高负荷功率时系统运行稳定性与呼损率的矛盾。 本发 明用于码分多址系统的网络设计和网络运行中的接纳控制, 可达到对 呼叫业务的下行负荷功率增量估计准确、 接纳控制容易、 网络运行效 率高、 呼损率和掉话率低的效果。
尽管本发明己由以上说明和实施例进行了描述, 应该知道, 本领 域技术人员不脱离本发明的精神, 能作出许多在本发明的范围内的变 形和修改, 权利要求包括这些变形和修改, 任何不脱离本发明的内容 的技术方案的等同变换都应属于本发明保护的范围。

Claims

权利要求:
1. 码分多址系统的接纳控制方法,该码分多址系统包括至少一个基 站, 至少一个请求接入该基站服务的小区的移动站, 含有该小区中基 站正在提供服务的移动站的信息和小区其它信息如小区不同业务的额 定负荷的控制装置, 其中, 请求接入该基站服务的小区的移动站至少 向系统提出一项业务请求, 如非实时和实时业务; 所述接纳控制方法 包括:
接收请求接入该基站服务的小区的移动站的呼叫请求; 获取所述移动站的参数, 包括该至少一项业务所需信噪比
Eb/No、 上 Rup或 /和下行信源速率 Rdwn、 用户的 ID值、 业务种类; 由确定的路径损值 L、 获取的所述移动站的参数和控制控制装 置中的信息, 计算系统小区下行可用剩余容量;
根据计算的系统小区下行可用剩余容量确定下行链路是否可接 纳该业务, 如果可以, 建立下行链路; 否则, 拒绝该业务请求。
2. 如权利要求 1 的方法, 其中, 计算系统小区下行可用剩余容量的 步骤还包括步骤确定该业务的下行路损值 L。
3. 如上述权利要求之一的方法, 其中, 计算系统小区下行可用剩余 容量的步骤还包括步骤根据控制装置中的信息, 确定系统小区的下行 攀升功率。
4. 如权利要求 1 或 2 的方法, 其中, 计算系统小区下行可用剩余容 量的步骤还包括: 计算处理增益和业务下行所需发射电平;
根据控制装置中的信息, 确定呼叫业务的下行攀升功率。
5. 如权利要求 3或 4的方法, 其中, 确定下行攀升功率满足如下公 式: dBm l03dBm +
Figure imgf000029_0001
其中: APdBrn是呼叫业务的功率负荷功率增量原始值; 信噪比分
Figure imgf000029_0002
N。jdB G =10xlog10( ~~ - ^) dB 是处理增益, R是业务速率, 量纲
R 是 kbps
Δ 二 100·1Δ¾"χ mW
业务接入后下行功率攀升值: total +1 mW
Figure imgf000029_0003
其中: ΔΡ 是下行发射功率原始的绝対值; υ是话音激活因子, 数据业务(非话音业务)取 1.00, 话音业务(对称会话业务)取 0.67, APtotal 是业务接入后下行功率攀升值; a 是多径无线环境的下行 非正交因子, 取值 0.1到 0.4, 与无线环境有关。
6. 如权利要求 2 的方法, 其中, 确定业务的下行路损值 L的步骤还 包括:
查找此用户 ID最近上报的下行路损值;
判定路损测量值是否可用和有效, 如果可用和有效, 确定该上 报的下行路损值为业务的下行路损值 L; 否则, 以第一预定值作为下 行路损值 L。
7.如权利要求 3的方法, 其中, 计算系统小区下行可用剩余容量的步 骤还包括:
计算处理增益和业务下行所需发射电平;
根据控制装置中的信息, 确定呼叫业务的下行攀升功率。
8. 如权利要求 6 的方法, 其中, 第一预定值等于将小区最大覆盖半 径乘以 0. 707后代入传播模型计算等效半径的路损值。
9. 如权利要求 6的方法, 其中, 在此用户 ID在预定时间内未上报下 行路损值时, 判定路损测量值不可用和无效。
10. 如权利要求 6 的方法, 其中, 在此用户 ID在预定时间内上报的 下行路损值大于第二预定值时, 判定路损测量值不可用和无效。
11. 如权利要求 10 的方法, 其中, 第二预定值为小区最大覆盖半径 乘以 1. 4后代入传播模型计算等效半径的路损值。
12. 码分多址系统的接纳控制方法,该码分多址系统包括至少一个基 站, 至少一个请求接入该基站服务的小区的移动站, 含有该小区中基 站正在提供服务的移动站的信息和小区其它信息如小区不同业务的额 定负荷的控制装置, 其中, 请求接入该基站服务的小区的移动站至少 向系统提出一项业务请求, 如非实时和实时业务; 所述接纳控制方法 包括:
接收请求接入该基站服务的小区的移动站的呼叫请求; 获取所述移动站的参数, 包括该至少一项业务所需信噪比 Eb/No、 上行信源速率 Rup、 用户的 ID值、 业务种类;
根据上行速率 Rlip确定上行链路的吞吐量是否满足该业务的上行 要求, 如果满足, 建立上行链路; 否则, 拒绝该业务请求。
13. 如权利要求 12的方法, 其中, 根据上行速率 Rup确定上行链路的 吞吐量是否满足该业务的上行要求的步骤包括:
从基站上报测量数据组中取得小区上行接收总 (干扰) 功率; 确定该上行速率 Rup需要的等效接收功率;
根据小区负荷允许的接收总功率, 确定上行链路的吞吐量是否 满足该业务的上行要求。
14. 如权利要求 13 的方法, 其中确定上行链路的吞吐量是否满足该 · 业务的上行要求的步骤包括: 确定向该上行速率 Rup提供服务后需要 的等效的总接收功率; 在等效的总接收功率小于或等于小区负荷允许 的接收总功率时, 满足该业务的上行要求。
15. 如权利要求 14的方法, 其中, 确定向该上行速率 Rup提供服务后 需要的等效的总接收功率的步骤包括:
由接收总功率计算呼叫业务对应的等效吞吐量;
将等效吞吐量与业务的上行速率 Rup相加得到总吞吐量;
由总吞吐量计算得到一个对应的等效的的总接收功率值。
16. 如权利要求 15 的方法, 其中, 计算话音呼叫业务对应的等效吞 吐量满足下列公式:
Ptotai - , Pn ( PT1 )
V total ~ 1 x J 其中, Tttal (kbps) 等效吞吐量 是各种业务的最大吞吐功率容 量负荷值, 在 8kbps话音业务时 Tx为 800kbps, 在 12. 2kbps时 Tx为 793kbps; PN= -103dBm是背景白噪声。
17. 如权利要求 15 的方法, 其中, 计算数据业务呼叫业务对应的等 效吞吐量满足下列公式:.
p
p<otai =-r ~~ ½ (PT2)
V total - lx ) 在 64kbps时 Tx为 1280kbps, 在 144kbps时 Tx为 1440kbps, 在 384kbps时 Tx为 1536kbps。
18. 如权利要求 15 的方法, 其中, 确定上行链路的吞吐量是否满足 该业务的上行要求的步骤还包括:
由等效的总接收功率减去小区上行接收总 (干扰) 功率 (测量 值) 得到呼叫业务上行的接收功率增量;
将小区负荷允许的接收总功率绝对值减去测量的小区上行接收 总 (干扰) 功率, 得到小区上行剩余容量;
判定上行剩余容量大于第三预定值, 如果是, 接纳该上行业务, 否则, 拒绝。
19. 如权利要求 18 的方法, 其中, 判定上行剩余容量大于第三预定 值的步骤包括:
根据切换预留容量要求将小区上行剩余容量转换成小区上行可 用剩余容量;
判定上行可用剩余容量是否大于业务负荷增量, 如果是, 表明 上行剩余容量大于第三预定值。
20. 码分多址系统的接纳控制方法,该码分多址系统包括至少一个基 站, 至少一个请求接入该基站服务的小区的移动站, 含有该小区中基 站正在提供服务的移动站的信息和小区其它信息如小区不同业务的额 定负荷的控制装置, 其中, 请求接入该基站服务的小区的移动站至少 向系统提出一项业务请求, 如非实时和实时业务; 所述接纳控制方法 包括如权利要求 1 及其从属权利要求和权利要求 12及其从属权利要 求的步骤。
21. 用于码分多址系统的接纳控制的计算机程序包括使计算机执行下 列过程的程序指令:
接收请求接入该基站服务的小区的移动站的呼叫请求; 获取所述移动站的参数, 包括该至少一项业务所需信噪比 Eb/No、 上 Rup或 /和下行信源速率 Rdwn、 用户的 ID值、 业务种类; 确定业务的下行路损值 L, 然后, 确定系统小区的下行攀升功 率;
由确定的路径损值 L、 下行信源速率 Rdwn、 所需信噪比 Eb/No, 确定的系统小区的下行攀升功率, 计算系统小区下行可用剩余容量; 根据计算的系统小区下行可用剩余容量确定下行链路是否可接纳 该业务, 如果可以, 建立下行链路; 否则, 拒绝该业务请求。
22. 用于码分多址系统的接纳控制的计算机程序包括使计算机执行下 列过程的程序指令:
接收请求接入该基站服务的小区的移动站的呼叫请求; 获取所述移动站的参数, 包括该至少一项业务所需信噪比 Eb/No, 上行信源速率 Rup、 用户的 ID值、 业务种类; 根据上行速率 Rup确定上行链路的吞吐量是否满足该业务的上行 要求, 如果满足, 建立上行链路; 否则, 拒绝该业务请求。
23. 用于码分多址系统的接纳控制的计算机程序包括使计算机执行如 权利要求 21和 22的步骤的程序指令。
24. 如权利要求 21到 23之一所述的计算机程序, 包含在记录媒介上。
25. 如权利要求 21到 23之一所述的计算机程序, 存储在计算机存储 器中。
26. 如权利要求 21到 23之一所述的计算机程序, 载于电子信号上或 光信号上。
27. 码分多址系统的接纳控制装置,该码分多址系统包括至少一个基 站, 至少一个请求接入该基站服务的小区的移动站, 含有该小区中基 站正在提供服务的移动站的信息和小区其它信息如小区不同业务的额 定负荷的控制装置, 其中, 请求接入该基站服务的小区的移动站至少 向系统提出一项业务请求, 如非实时和实时业务; 所述接纳控制装置 包括:
接收装置, 用于接收请求接入该基站服务的小区的移动站的呼 叫请求;
参数获取装置, 用于获取所述移动站的参数, 包括该至少一项 业务所需信噪比 Eb/No、 上 Rup或 /和下行信源速率 Rdwn、 用户的 ID 值、 业务种类;
信号处理装置, 用于确定业务的下行路损值 L, 并根据控制装 置中的信息, 确定系统小区的下行攀升功率; 然后, 由确定的路径损 值 L、 下行信源速率 Rdwn、 所需信噪比 Eb/No, 确定的系统小区的下 行攀升功率, 计算系统小区下行可用剩余容量;
判断装置, 用于根据计算的系统小区下行可用剩余容量确定下 行链路是否可接纳该业务;
链路链接装置, 根据判断装置确定的结果, 建立下行链路或不 链接而拒绝该业务请求。
28. 如权利要求 27的装置, 其中, 信号处理装置还包括:
确定发射电平的装置, 用于计算处理增益和业务下行所需发射 电平;
确定攀升功率的装置, 根据控制装置中的信息, 确定呼叫业务 的下行攀升功率;
查找装置, 用于查找此用户 ID最近上报的下行路损值; 判定装置, 判定路损测量值是否可用和有效, 如果可用和有效, 确定该上报的下行路损值为业务的下行路损值 L; 否则, 以第一预定 值作为下行路损值 L。
29. 码分多址系统的接纳控制装置,该码分多址系统包括至少一个基 站, 至少一个请求接入该基站服务的小区的移动站, 含有该小区中基 站正在提供服务的移动站的信息和小区其它信息如小区不同业务的额 定负荷的控制装置, 其中, 请求接入该基站服务的小区的移动站至少 向系统提出一项业务请求, 如非实时和实时业务; 所述接纳控制装置 包括:
接收装置, 用于接收请求接入该基站服务的小区的移动站的呼 叫请求;
参数获取装置, 用于获取所述移动站的参数, 包括该至少一项 业务所需信噪比 Eb/No、 上行信源速率 Rup、 用户的 ID值、 业务种类; 控制装置, 根据上行速率 Rup确定上行链路的吞吐量是否满足该 业务的上行要求, 如果满足, 建立上行链路; 否则, 拒绝该业务请求。
30. 如权利要求 29的装置, 其中, 控制装置包括:
接收功率确定装置, 根据上行速率 Rup确定该速率需要的从基站 上报测量数据组中取得小区上行接收总 (干扰) 功率, 并确定该上行 速率 Rup需要的等效接收功率;
判断装置, 根据小区负荷允许的接收总功率, 确定上行链路的 吞吐量是否满足该业务的上行要求。
31. 权利要求 30 的装置, 其中, 接收功率确定装置, 还确定向该上 行速率 Rup提供服务后需要的等效的总接收功率; 判断装置在等效的 总接收功率小于或等于小区负荷允许的接收总功率时, 满足该业务的 上行要求。
32. 如权利要求 31 的装置, 其中, 接收功率确定装置, 由接收总功 率计算呼叫业务对应的等效吞吐量; 将等效吞吐量与业务的上行速率 Rup相加得到总吞吐量; 由总吞吐量计算得到一个对应的等效的总接 收功率值。
33. 如权利要求 32 的装置, 其中, 判断装置将等效的总接收功率减 去小区上行接收总 (干扰) 功率 (测量值) 得到呼叫业务上行的接收 功率增量; 并将小区负荷允许的接收总功率绝对值减去测量的小区上 行接收总 (干扰) 功率, 得到小区上行剩余容量; 然后, 判定上行剩 余容量大于第三预定值, 如果是, 接纳该上行业务, 否则, 拒绝。
34. 如权利要求 33 的装置, 其中, 控制装置根据切换预留容量要求 将小区上行剩余容量转换成小区上行可用剩余容量; 判断装置判定上 行可用剩余容量是否大于业务负荷增量, 如果是, 表明上行剩余容量 大于第三预定值。
35. 码分多址系统的接纳控制装置,该码分多址系统包括至少一个基 站, 至少一个请求接入该基站服务的小区的移动站, 含有该小区中基 站正在提供服务的移动站的信息和小区其它信息如小区不同业务的额 定负荷的控制装置, 其中, 请求接入该基站服务的小区的移动站至少 向系统提出一项业务请求, 如非实时和实时业务; 所述接纳控制装置 包括如权利要求 27及其从属权利要求和权利要求 29及其从属权利要 求的装置。
PCT/CN2001/001608 2001-12-06 2001-12-06 Equipment and method of call admission in cdma based system WO2003049476A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP01274866A EP1463356B1 (en) 2001-12-06 2001-12-06 Equipment and method of call admission in cdma based system
EA200400700A EA007640B1 (ru) 2001-12-06 2001-12-06 Оборудование и способ приема вызова в системе cdma
PCT/CN2001/001608 WO2003049476A1 (en) 2001-12-06 2001-12-06 Equipment and method of call admission in cdma based system
AU2002218947A AU2002218947A1 (en) 2001-12-06 2001-12-06 Equipment and method of call admission in cdma based system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2001/001608 WO2003049476A1 (en) 2001-12-06 2001-12-06 Equipment and method of call admission in cdma based system

Publications (1)

Publication Number Publication Date
WO2003049476A1 true WO2003049476A1 (en) 2003-06-12

Family

ID=4574903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2001/001608 WO2003049476A1 (en) 2001-12-06 2001-12-06 Equipment and method of call admission in cdma based system

Country Status (4)

Country Link
EP (1) EP1463356B1 (zh)
AU (1) AU2002218947A1 (zh)
EA (1) EA007640B1 (zh)
WO (1) WO2003049476A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100502271C (zh) * 2003-09-17 2009-06-17 华为技术有限公司 宽带码分多址接入(wcdma)系统呼叫准入控制方法
CN101087279B (zh) * 2006-06-06 2013-02-13 财团法人交大思源基金会 分码多任务系统的码信道分配法
US9185663B2 (en) 2003-11-12 2015-11-10 Koninklijke Philips N.V. Radio communication system, method of operating a communication system, and a mobile station

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050249148A1 (en) * 2004-05-07 2005-11-10 Nokia Corporation Measurement and reporting for uplink enhanced dedicated channel (E-DCH)
CN100415048C (zh) * 2005-06-08 2008-08-27 上海华为技术有限公司 一种移动通讯系统中提高业务建立成功率的方法
US20070177503A1 (en) * 2006-01-31 2007-08-02 Mooney Christopher F Call admission to a wireless network based on application-specific quality of service information
FR2899421B1 (fr) * 2006-03-30 2008-11-14 Evolium Sas Soc Par Actions Si Dispositif perfectionne de controle de puissance et de charge de cellules d'un reseau mobile, par estimation d'evolutions temporelles des puissances et charges mesurees
US20130308475A1 (en) * 2012-05-21 2013-11-21 Qualcomm Incorporated Method and system for controlling uplink interference in heterogeneous networks
CN106412998B (zh) * 2016-11-16 2019-07-12 清华大学 一种智能通信终端平台的负载调配方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5687171A (en) * 1995-05-12 1997-11-11 Electronics And Telecommunications Research Institute Device and method for allocating radio channels in a CDMA system
US5838671A (en) * 1995-06-23 1998-11-17 Ntt Mobile Communications Network Inc. Method and apparatus for call admission control in CDMA mobile communication system
EP0889663A1 (en) * 1996-12-27 1999-01-07 Ntt Mobile Communications Network Inc. Call acceptance control method for cdma mobile radio communication system and mobile station device
EP1043908A2 (en) * 1999-04-08 2000-10-11 Lucent Technologies Inc. Intelligent burst control functions for wireless communication systems

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2157690T3 (es) * 1999-07-23 2001-08-16 Cit Alcatel Metodo de producir el nivel de potencia recibido en una estacion base de una red cdma y estacion base para su ejecucion.
US6721568B1 (en) * 1999-11-10 2004-04-13 Telefonaktiebolaget Lm Ericsson (Publ) Admission control in a mobile radio communications system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5687171A (en) * 1995-05-12 1997-11-11 Electronics And Telecommunications Research Institute Device and method for allocating radio channels in a CDMA system
US5838671A (en) * 1995-06-23 1998-11-17 Ntt Mobile Communications Network Inc. Method and apparatus for call admission control in CDMA mobile communication system
EP0889663A1 (en) * 1996-12-27 1999-01-07 Ntt Mobile Communications Network Inc. Call acceptance control method for cdma mobile radio communication system and mobile station device
EP1043908A2 (en) * 1999-04-08 2000-10-11 Lucent Technologies Inc. Intelligent burst control functions for wireless communication systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1463356A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100502271C (zh) * 2003-09-17 2009-06-17 华为技术有限公司 宽带码分多址接入(wcdma)系统呼叫准入控制方法
US9185663B2 (en) 2003-11-12 2015-11-10 Koninklijke Philips N.V. Radio communication system, method of operating a communication system, and a mobile station
US9277507B2 (en) 2003-11-12 2016-03-01 Koninklijke Philips N.V. Radio communication system, method of operating a communication system, and a mobile station
US10412686B2 (en) 2003-11-12 2019-09-10 Koninklijke Philips N.V. Radio communication system, method of operating a communication system, and a mobile station
CN101087279B (zh) * 2006-06-06 2013-02-13 财团法人交大思源基金会 分码多任务系统的码信道分配法

Also Published As

Publication number Publication date
AU2002218947A1 (en) 2003-06-17
EP1463356A4 (en) 2007-08-08
EA200400700A1 (ru) 2005-10-27
EA007640B1 (ru) 2006-12-29
EP1463356B1 (en) 2013-02-13
EP1463356A1 (en) 2004-09-29

Similar Documents

Publication Publication Date Title
US8611908B2 (en) Mobile communication method, base station and wireless line control station
JP3723771B2 (ja) 電力推定方法
US7983687B2 (en) Signal to interference ratio error as a load instability indicator for load control in cellular systems
EP1743503A1 (en) Measurement and reporting for uplink enhanced dedicated channel (e-dch)
JP2007510327A (ja) 無線通信システムのための無線アクセス管理の装置および方法
KR100573177B1 (ko) CDMA 1xEV-DO 이동 통신 시스템에서 역방향링크율을 제어하는 방법 및 시스템
KR101123587B1 (ko) 향상된 전용 채널에 대한 분산된 자원 관리
JP4838323B2 (ja) 過負荷制御装置及び方法
US20030228871A1 (en) Method for estimating the radio resource consumed by a service and its application for overload control
CN100377617C (zh) 宽带码分多址移动通信系统的动态信道分配方法
WO2003049476A1 (en) Equipment and method of call admission in cdma based system
JPWO2006054594A1 (ja) 最大許容伝送速度決定方法、移動局及び無線基地局
EP2020155A1 (en) Method and apparatus for handling uplink transmission rate in a handover region
CN100558008C (zh) 无线网络带宽调整的方法及其系统
RU2502190C2 (ru) Способ управления скоростью передачи, мобильная станция и радиосетевой контроллер
CN1394013A (zh) 一种宽带码分多址系统的下行接纳控制方法
CN100463568C (zh) 码分多址系统的自干扰接纳控制方法
WO2004059892A1 (fr) Procede de controle d&#39;acces dans un systeme de communication cdma
CN1172473C (zh) 码分多址移动通信系统中的一种接纳控制方法
WO2004043097A1 (fr) Systeme de communications hertziennes et procede de commande de charge et appareil utilise dans un tel systeme
KR100583843B1 (ko) 전력 추정 방법
WO2006094429A1 (fr) Procede de commande d&#39;admission de canal partage descendant a haute vitesse
WO2004030253A1 (fr) Prediction d&#39;une puissance principale recue de liaison montante et commande d&#39;admission dans un systeme amcr

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 301/KOL/2004

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2001274866

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200400700

Country of ref document: EA

WWP Wipo information: published in national office

Ref document number: 2001274866

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP