WO2003046600A2 - Positioning system and method - Google Patents

Positioning system and method Download PDF

Info

Publication number
WO2003046600A2
WO2003046600A2 PCT/EP2002/013474 EP0213474W WO03046600A2 WO 2003046600 A2 WO2003046600 A2 WO 2003046600A2 EP 0213474 W EP0213474 W EP 0213474W WO 03046600 A2 WO03046600 A2 WO 03046600A2
Authority
WO
WIPO (PCT)
Prior art keywords
time measuring
signal
time
measuring stations
mobile terminal
Prior art date
Application number
PCT/EP2002/013474
Other languages
German (de)
French (fr)
Other versions
WO2003046600A3 (en
Inventor
Burkhart Dietrich
Rolf Kraemer
Original Assignee
Ihp Gmbh - Innovations For High Performance Microelectronics / Institut Für Innovative Mikroelektronik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ihp Gmbh - Innovations For High Performance Microelectronics / Institut Für Innovative Mikroelektronik filed Critical Ihp Gmbh - Innovations For High Performance Microelectronics / Institut Für Innovative Mikroelektronik
Priority to EP02792827A priority Critical patent/EP1451609A2/en
Publication of WO2003046600A2 publication Critical patent/WO2003046600A2/en
Publication of WO2003046600A3 publication Critical patent/WO2003046600A3/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0226Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0221Receivers
    • G01S5/02213Receivers arranged in a network for determining the position of a transmitter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/878Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0284Relative positioning
    • G01S5/0289Relative positioning of multiple transceivers, e.g. in ad hoc networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/06Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements

Definitions

  • the present invention relates to a method for determining the location of a mobile terminal, in particular in a Bluetooth network, and a system for determining the location of a mobile terminal, in particular based on a Bluetooth network.
  • a mobile terminal in the sense of the invention can in addition to a mobile phone also any other conceivable mobile communication unit, such as. B. a notebook or a Personal Digital Assistant (PDA).
  • PDA Personal Digital Assistant
  • a wireless network in the high frequency range is e.g. B. a network based on the Bluetooth standard.
  • Bluetooth is a technology for wireless communication between different devices. The communication between the devices takes place in the license-free ISM band, a frequency band that is reserved for general industrial, scientific and medical use (ISM, Industrial, Scientific, Medical).
  • Bluetooth networks often have a range of less than 100 meters. If location-resolved information is to be made available in such networks, high demands are placed on the accuracy of the location determination.
  • mobile terminals for Bluetooth networks are provided with elements specifically provided for location determination, such as, for example, B. a GPS receiver.
  • the object of the present invention is to provide an improved method and an improved system for location determination, with which the location determination can be carried out without the need for elements provided specifically for the location determination in the mobile terminals.
  • a base station triggered by a location-related request from a mobile terminal, sends an originating signal to this mobile terminal.
  • the mobile terminal responds with a response signal that is received by at least three time measuring stations.
  • the arrival time of the response signal received in each case is determined in the time measuring stations.
  • the location of the mobile terminal is then calculated from the arrival times of the response signal at the various time measuring stations.
  • the transmission of the response signal in the time measuring stations can activate a counter for counting the time measuring clock cycles and the arrival of a stop signal sent from a known location can stop counting in the time measuring station (3).
  • any transmitter whose position is determined in a predetermined coordinate system can be considered as the transmitter of the stop signal.
  • the method according to claim 1 offers the advantage that the location determination can be carried out as part of a special Bluetooth profile.
  • a Bluetooth profile is a set of rules that specify how the Bluetooth protocols should run.
  • the steps carried out in the method according to claim 1 can all be implemented by means of commands from the Bluetooth protocols. Therefore, there are no modules specifically required for determining the location required in the mobile terminals.
  • the integration of the method into a Bluetooth profile is the subject of claim 16.
  • the time measuring stations compare the response signal bit by bit with the previously stored original signal in order to determine the arrival time. A correlation method is used for the comparison.
  • the determination of the arrival times can be carried out with an increased timing clock rate compared to the signal clock rate resulting from the bit rate of the signal (oversampling or oversampling). Local resolutions of a few meters are possible.
  • the system according to the invention for determining the location of a mobile terminal comprises a base station and at least three time measuring stations.
  • the time measuring stations each comprise a time recording unit with which the arrival time of the original signal and a signal emanating from the mobile terminal can be recorded, a shift register and a correlator each being present in the time recording unit.
  • the system also includes a location determination unit for calculating the location from the recorded arrival times.
  • the system according to the invention offers the advantage that an exact location can be determined for each existing mobile Bluetooth terminal without the mobile Bluetooth terminal having to be specially equipped for this.
  • the time measuring stations of the system can be clocked for detecting the arrival time of the signal coming from the mobile terminal via a common time clock. This makes it easy to ensure a common time scale for all time measuring stations.
  • the timer can provide a clock rate that is higher than the signal clock rate resulting from the bit rate. This improves the location resolution of the location determination.
  • each time measuring station is each connected to a receiver which has a receiving device for receiving a signal and a baseband processor.
  • the received signal can be picked up in the receiver in front of the baseband processor.
  • a corresponding signal connection or a branch is provided in the circuit of the receiver, via which the received signal is routed to the respective time measuring station.
  • Timing station and receiver are preferably integrated in one device.
  • the receiver can deliver a signal which still contains the information about the transit time of the signal.
  • the signal can be evaluated by a time measuring station.
  • Bluetooth stations with such a receiver can therefore be used as time measuring stations for the system according to the invention without an additional receiver for determining the location.
  • This provides a receiver, in particular for Bluetooth devices, which enables the location of a mobile terminal to be determined in a simple manner.
  • the receiver can also be operated independently of the system according to the invention.
  • a pulse shaper is present in the receiver.
  • the received signal can be tapped between the pulse shaper and the baseband processor.
  • this is preferably the base station.
  • the base station is preferably designed as a transmitter of the stop signal. This means that when you install the base station, your exact position is determined using known positioning methods.
  • FIG. 1 schematically shows an exemplary embodiment for the construction of the system according to the invention for determining the location of a mobile terminal.
  • FIG. 2 shows a possible sequence of the method according to the invention for determining the location of a mobile terminal.
  • 3a shows schematically the reading in of the response signal into a shift register, the signal being oversampled.
  • 3b shows the assignment of a pulse to the shift register cells.
  • 3c shows the assignment of a pulse to the shift register cells.
  • Fig. 4 shows schematically an embodiment for the construction of a receiver according to the invention.
  • Bluetooth is a standard for wireless communication between different devices. Communication between the devices takes place in the license-free ISM band, a frequency band that is reserved for general industrial, scientific and medical use (ISM, Industrial, Scientific, Medical).
  • the network shown is a so-called piconet, a network based on Bluetooth technology, which has a master which controls the piconet and which can comprise up to seven further devices, so-called slaves.
  • the piconet comprises a base station 1 as a master and two timing stations 3 as slaves, the positions of which are known.
  • the base station 1 takes over the function of a further, third time measuring station.
  • a common clock generator 7, hereinafter referred to as the clock generator provides the base station 1 and the time measurement stations 3 with a common time measurement clock frequency via lines 9.
  • the common timing pulse frequency can also be transmitted wirelessly.
  • a mobile terminal 5 is shown, which also belongs to the Piconet as a slave and whose location is to be determined.
  • the mobile terminal 5 is shown as the slave of that piconet with the base station 1 as the master is assumed here only to simplify the illustration. Instead, the mobile terminal 5 can also be the master or slave of another piconet to which the base station 1 also belongs as a slave. Base station 1 then belongs to two different piconets, one as a master and the other as a slave. Piconets connected in this way are called Scatternet. The base station 1 and the mobile terminal 5 only have to belong to one common piconet during the location determination.
  • the process of determining the location is carried out by the mobile terminal 5 with a
  • the base station 1 Upon request, the base station 1 sends a signal that the original jump signal, to the mobile terminal 5 and to the time measuring stations 3 and stores the original signal.
  • the original signal activates the time measurement in the time measuring stations 3, which also store the original signal.
  • the mobile terminal 5 then sends a copy of the received original signal as a response signal to the base station 1 and the time measuring stations 3.
  • the base station 1 and the time measuring stations 3 each determine the time of the arrival of the response signal (arrival time) on a common time scale, which is determined by the common Clock 7 is conveyed.
  • the stations each determine the point in time of the bit-wise correspondence between the stored original signal and the received response signal. This method will be described in detail later with reference to Fig. 2a. If the incoming response signal coincides bit by bit with the stored original signal, the response signal has arrived. The point in time at which the match exists provides the arrival time of the response signal at the respective station.
  • a processor in an evaluation unit calculates the location of the mobile terminal 5 from the determined arrival times.
  • the evaluation unit is integrated in the base station 1, but it can also be an independent unit, e.g. an evaluation computer.
  • the location is calculated on the basis of a method which makes it possible to determine the location of the mobile terminal 5 on the basis of the differences in the arrival times at the base station 1 or the time measuring stations 3.
  • TDOA Time Difference of Arrival
  • TOA time of arrival
  • the base station 1 does not have to take over the function of a time measuring station and therefore does not have to be equipped with a time recording unit for recording the arrival time of the response signal.
  • the method for determining the location of a mobile terminal is described in detail below with reference to FIGS. 2a and 2b. It is assumed that during the request from the mobile terminal 5 to the base station 1, there is already a piconet of base stations 1 and at least two time measuring stations 3, and the mobile terminal 5 also belongs to the same piconet as a slave. If such a piconet does not exist at the time of the request, a piconet or scatternet, which comprises the base station 1 and the mobile terminal 5, exists in any case at the time of the request.
  • the request then triggers the formation of a piconet or, if appropriate, a scatternet, to which both the base station 1 and the time measuring stations 3 belong, the base station 1 forming a piconet with the time measuring stations 3, in which the base station 1 is the master.
  • the base station 1 After the request, and possibly after the formation of a piconet or a scatternet, the base station 1 forms a Bluetooth group with the time measuring stations 3 and sends an echo request packet as a Bluetooth packet (Data packet in a Bluetooth connection) to the mobile terminal 5. With an echo request packet, the receiving station, in the exemplary embodiment the mobile terminal 5, is asked to send back a copy of the received signal as a response.
  • a Bluetooth packet Data packet in a Bluetooth connection
  • the echo request packet includes an access code that contains a 64-bit pseudo-random sequence. Like all Bluetooth packets, the Echo Request packet has a three-part structure consisting of access code for detecting and addressing the packet, header with control information and Payloader with the actual data.
  • the access code has a length of at least 68 and at most 72 bits, of which four bits are used for a preamble and a (not always available) preview (trailer) of the following data (payload).
  • the remaining 64 bits contain the pseudo-random sequence mentioned above. In addition to the pseudo-random sequence in the access code, other, longer pseudo-random sequences can also be contained in the data part (payload).
  • the data part can contain a maximum of one pseudo-random sequence of 2712 bits in length, so that a maximum of one pseudo-random sequence of length of 2776 bits can be present in a Bluetooth packet.
  • a random sequence or a combination of both can also be used.
  • the echo request packet is also received by the time measuring stations 3, demodulated there and stored in a random access memory (RAM, Random Access Memory). That the time measuring stations 3 are set to receive instead of sending while the response signal is being sent, even though they are slaves of the piconet and should therefore actually be set to sending after receiving a signal from the master (here the base station 1). B. achieve that the timing stations 3 are wired to the base station 1 (master) and receive a signal via cable that sets them to receive.
  • RAM Random Access Memory
  • the base station 1 can also send a further signal which the mobile terminal 5 sends. let swap the role with the base station 1, so that the base station 1 becomes the slave and the mobile terminal 5 becomes the master. The mobile terminal 5 then sends the copy of the echo request signal to the base station 1, which, like the time measuring stations 3, is now set to receive as a slave. Since the location determination in the exemplary embodiment is based only on the differences in the arrival times at the time measuring stations, the duration of this role change has no influence on the result of the location determination.
  • the mobile terminal 5 sends a copy of the echo request packet and thus the pseudo-random sequence.
  • the response signal is received by base station 1 and time measuring stations 3 and demodulated in order to extract the copy of the pseudo-random sequence.
  • the copy of the pseudo-random sequence is correlated with the pseudo-random sequence stored in RAM and obtained from the original signal. To do this, the copy of the pseudo-random sequence is entered into a shift register.
  • the pseudo-random sequence and its copy are made up of zeros and ones (bits), a one being represented by a high signal level and a zero by a low signal level before modulation and after demodulation.
  • a high level or a low level in the data each takes 1 ⁇ s.
  • Bluetooth is able to transmit 1 Mbit of data per second, i.e. one million high or low levels per second.
  • This is the bit rate of the pseudo-random sequence transmitted or its copy. With regard to the bit rate of the pseudo-random sequence or its copy, this results in a clock frequency, hereinafter referred to as the signal clock frequency, of 1 MHz.
  • the copy of the pseudo-random sequence is entered into the shift register at a clock frequency which is greater than or equal to the signal clock frequency.
  • the clock frequency with which the calculation is carried out hereinafter referred to as the time measurement clock frequency
  • the time measurement clock frequency is 110 MHz. that is 110 times the signal clock frequency.
  • this time measurement frequency means oversampling (oversampling) by a factor of 110. This means that each high level and each low level of the pseudo-random sequence with a respective duration of 1 ⁇ s in 110 "short” high levels or 110 "short” low level with a respective time period, which corresponds to the 110th part of a ⁇ s (approx. 9.09 ns), is converted.
  • the 64 bits of the pseudo-random sequence become 7040 bits, which form 64 groups, each comprising 110 bits, of high and low levels.
  • the 64-bit pseudo-random sequence of the original signal is also broken down in the same way into 7040 bits and the now 7040-bit long pseudo-random sequence of the original signal is stored in RAM.
  • the copy of the pseudo-random sequence is entered into a shift register in time with the time measurement frequency.
  • the 7040-bit copy of the pseudo-random sequence is shifted by one of the 7040 bits in the shift register with a length of 7040 bits.
  • the content of the shift register is bit-by-bit correlated with the content of the 7040 memory cells in RAM which contain the pseudo-random sequence of the original signal.
  • each bit of a register here the shift register
  • the RAM the corresponding bit of another register
  • the resulting products are added up.
  • the result of this correlation has a greater value, the better the content of the 7040 bit long shift register matches bit by bit with the content of those memory cells of the RAM in which the 7040 bit long pseudo-random sequence obtained from the original signal is stored.
  • the maximum value occurs when the content of the shift register matches that of the RAM bit by bit.
  • the value increases linearly with each cycle, and then decreases linearly again with each cycle.
  • the occurrence of the maximum value of the correlation therefore indicates that the copy of the pseudo-random sequence, and thus the response signal, has been completely is hit.
  • DH also the last bit of the copy of the pseudo-random sequence is entered in the shift register so that the shift register contains the entire pseudo-random sequence.
  • the described bit-wise correlation of the 7040-bit copy of the pseudo-random sequence with the 7040-bit long pseudo-random sequence of the original signal stored in the RAM provides a comparison of the original signal sent by the base station 1 with the response signal sent by the mobile terminal 5.
  • the value of the bit-wise correlation is calculated once per clock cycle. Then, with the following timing cycle, the 7040 bit long pseudo-random sequence in the shift register is shifted by a single one of the 7040 bits and the value of the correlation is calculated again.
  • the process of bit-wise reading of the incoming copy of the pseudo-random sequence 20 into the shift register 62 and the correlation of the oversampled signal with the pseudo-random sequence 22 stored in the RAM 66 is shown in FIG. 3a by means of a four-fold oversampling (oversampling with a factor of 4). shown as an example.
  • a counter of the respective station counts the time measuring cycle from a zero point until the maximum of the correlation function is reached.
  • the zero point is formed by the time at which base station 1 sends the echo request packet.
  • Timing station 3 reveals the running time of the echo request packet from base station 1 to time measuring station 3 and thus the zero point through the arrival of the original echo -Request packet and the known distance of the time measuring station 3 from the base station 1. With the arrival of the echo request packet, the counting of the time measuring clock cycles begins.
  • the number of clock pulse cycles times the length of a clock pulse cycle with the duration of 9.09 ns gives the time between the arrival of the original echo request packet by base station 1 and the occurrence of the maximum value of the correlation, ie the complete arrival of the copy of the echo request packet by which the respective time measuring station 3 or the base station 1 has passed.
  • the occurrence of the maximum value of the correlation thus indicates the point in time at which the response signal has arrived completely. Since the copy of the pseudo-random sequence is shifted by one memory location in the shift register every 9.09 ns and the value of the correlation is determined each time, the arrival of the response signal can be determined with an accuracy of 9.09 ns, i.e. to the 110th part of a ⁇ s ,
  • a processor then forms the differences from the arrival times determined by the respective time measuring stations 3 or by the base station 1 and calculates the location of the mobile terminal 5 from the differences.
  • the differences in the transit times of the echo request package to the individual time measuring stations can be determined with this method to an accuracy of approx. 20 ns. With this accuracy, location determination of a few meters is possible.
  • the time measuring clock for the base station 1 and the time measuring stations 3 is made available by a common time clock. This ensures that the time measuring cycle cycles each have exactly the same length.
  • the time of transmission of the echo request packet does not necessarily have to be selected as the zero point of the counting of the clock cycles. Other zero points are also possible. There is also no need for a common time clock for the time measurement cycle. In this case, however, the time measuring stations must each have their own time clock. The phase deviations occurring over the measurement time in the time measurement cycle of the individual time generators of the time measurement stations 3 must not exceed a certain value.
  • the location system is calibrated. The calibration is carried out in order to determine the transit time of the original signal from the base station 1 to the time measurement stations 3, so that the time measurement stations 3 can determine the zero point of the count (time of transmission of the original signal) from the arrival time of the original signal when the original signal is received.
  • the calibration measurement is the more suitable means, in particular if the location determination system system is changed frequently, for example by changing it frequently dismantled and rebuilt.
  • Another advantage of the calibration measurement is that it also takes into account the transit time differences of the original signal that occur within the receiving time measurement stations 3. Such runtime differences cannot be calculated from the distance of the time measuring stations 3 from the base station 1.
  • the location can also be calculated from the arrival times themselves if the time of sending the copy of the response signal in relation to the time measurement clock is known or can be estimated with sufficient accuracy.
  • the correlation is carried out with the clock frequency of 110 MHz. If the correlation were only performed at a clock frequency of 1 MHz (the clock frequency resulting from the bit rate of the Bluetooth signal), this means that a correlation is not carried out every 9.09 ns, but only every microsecond.
  • the maximum value of the correlation - and thus the arrival time of the copy of the echo request packet - can then only be determined with an accuracy of 1 ⁇ s. However, this means that the location can only be determined to within a few 100 meters. This is too imprecise for determining the location of a mobile terminal 5 in a piconet or a scatternet.
  • the above-described method with oversampling is therefore used to improve the accuracy of the location determination. applies.
  • the clock frequency of the bit rate of the transmitted data can be higher than 1 MHz. Oversampling may then not be necessary. Even with a clock frequency of 1 MHz, oversampling is not necessary if a spatial resolution of a few 100 m is sufficient.
  • An improvement in the accuracy in the determination of the arrival time of the response signal can be achieved in addition to a shortening of the timing cycle by interpolating between the correlation values determined for each timing cycle. This is done by laying a curve, which is known from preliminary considerations, through the correlation values and adapting the parameter or parameters of the curve until it maximally matches the correlation values (fitting process). For adjustment, for example, the sum of the squares of the deviations of the values of the curve from the correlation values can be calculated. The parameters of the curve are then varied until this sum assumes a minimum. With this method, an interpolation, the maximum can be determined with an accuracy that is greater than the accuracy that is determined by the length of the timing pulse cycles.
  • a simple case of interpolation is obtained for exactly rectangular pulses of the pseudo-random sequence or random sequence. If in this case the values are plotted before the occurrence of the maximum value depending on the state of the counting of the time measuring cycle cycles, then an ascending straight line is obtained, whereas after the maximum value occurs a descending straight line is obtained. The intersection of this straight line then shows the maximum value of the correlation.
  • oversampling with a different factor can also be selected.
  • the factor of oversampling depends on the desired spatial resolution.
  • the quality of the fitting process can also be taken into account. ever the more precisely the maximum can be determined with the fitting process, the lower the factor needs to be.
  • the selected factor of oversampling i.e. the ratio of the timing pulse frequency and the signal timing frequency
  • the selected factor of oversampling does not result in the length of a high or low level being an integral multiple of the duration of a timing pulse cycle. Otherwise, the time of occurrence of the maximum can only be determined with an accuracy of one time measuring cycle in the case of an integer ratio.
  • the selected factor for oversampling should not result in the duration of the level being an integral multiple of the duration of a time measurement cycle for any of these possible time periods of a high or low level. It is therefore particularly advantageous if the relationship between the timing pulse frequency and the signal timing frequency is not rational, since this ensures in any case that the duration of a level is not an integral multiple of the duration of a timing pulse cycle.
  • the method makes it possible, in particular, to dispense with the synchronization of the time clocks in the time measuring stations and in the master with a common system time. Furthermore, it does not require a defined time delay in the mobile terminal between the reception of the echo request signal and the transmission of the echo response signal. The position can be determined with an accuracy that is several times better than the distance corresponding to the duration of a bit. Finally, the location of the mobile terminal can be determined from the one-time reception of the signal code.
  • the received signal is sampled before it has been synchronized to the clock of the baseband processor.
  • the received signal is still oversampled at a frequency that is many times higher than the bit rate.
  • the value of the correlation function between received and stored code in each sampling interval, the time of the maximum of the correlation function is determined from the one-time reception of the signal code and finally.
  • the accuracy of the localization can be increased by repeating the measurement several times and averaging.
  • the mobile terminal 5 is also marked with "M” for a better understanding of the following equations.
  • time measuring stations 3 which are additionally marked with "Z1", “Z2” or “Z3”, and one Base station 1 is provided, which is identified by “B”.
  • time clock 7 also “T” to which the time measuring stations are connected.
  • the signal sequence explained with reference to FIG. 2a is symbolized in FIG. 2b by arrows of different line types.
  • the temporal course of the signals, which cannot be represented here, corresponds to that explained with reference to FIG. 2a.
  • the additional third time measuring station carries out the same steps as the time measuring stations shown in FIG. 2a.
  • an activation signal originating from the base station is provided in the present exemplary embodiment, which is shown in the form of arrows with a dashed line.
  • the activation signal is sent to all timing stations as well as the mobile terminal.
  • the echo request packet is then sent to the time measuring stations and the mobile terminal. This is shown by arrows with a dotted line.
  • the copy of the echo request signal sent by the mobile terminal is sent as an echo response signal from the mobile terminal to the time measuring stations. This is shown in the form of arrows with a solid line.
  • the mathematical side of determining the time difference is explained in detail below. First, the arrival time of the echo request signal at the time measuring stations Z
  • t start denotes the point in time at which the base station transmits the echo request signal
  • t B z ⁇ signal propagation time from the base station B to the i-th time measuring station Z
  • (i 1, 2, 3) and t 1Zl ⁇ arrival time of the echo request signal at the i-th time measuring station Z ⁇ .
  • the arrival time t ⁇ M of the echo request signal is given by
  • t BM denotes signal propagation time from base station B to the mobile terminal.
  • the arrival time of the echo response signal at the time measuring stations is the arrival time of the echo response signal at the time measuring stations.
  • t v denotes the delay time in the mobile station between the reception of the echo request signal and the transmission of the echo response signal
  • t M z signal runtime from the mobile station M to the i-th time measuring station Zj and t 2 z, ⁇ Arrival time of the echo response signal at the i-th time measuring station.
  • the signal propagation times t B z, ⁇ from the base station B to the i-th time measuring station Z ⁇ are known or can be determined in a calibration measurement.
  • the delay time t v between reception of the echo request signal and transmission of the echo response signal need not be known in the mobile station.
  • the time t Sta n of transmission of the echo request signal may also be arbitrary.
  • the delay times between reception and transmission of a signal in the time measuring stations and in the base station are not required at all for this method.
  • the method described here differs from known methods which measure the signal arrival times t 2Z ⁇ j directly at the base stations and, for this purpose, require the values of the time delay t v .
  • each time measuring station can use its own, non-synchronized time clock.
  • the time errors resulting from frequency deviations of the time clocks must be smaller than a clock time of the shift register of the correlator via the time difference ⁇ tj. This can be achieved with quartz-stabilized oscillators.
  • 3a shows schematically the reading in of the response signal into a shift register, the signal being oversampled.
  • the incoming copy 20 of the pseudo-random sequence 22 is read into the shift register 62 bit by bit.
  • the signal is oversampled four times.
  • 3b and 3c show an error source in the time determination of the assignment of a pulse to the shift register cells to explain the inaccuracy of the position determination at a low sampling rate.
  • a first case Fig. 3b
  • an incoming pulse solid line
  • Fig. 3c generates an equally long pulse due to a "1" of a slightly shifted clock in only three cells of the shift register.
  • the correlation result will be different depending on the position of the timing relative to the signal. This causes an inaccuracy when determining the time of arrival of a signal and thus the position determination.
  • FIG. 4 shows schematically the receiver as a receiving part of a Bluetooth transceiver.
  • the receiving part comprises a high-frequency antenna 50, a low-noise high-frequency amplifier 52 for amplifying the received signal, at the input of which the high-frequency signal received by the high-frequency antenna 50 is present, a demodulator 54 for demodulating the amplified signal, at the input of which the amplified signal is present, and a pulse shaper 56 for bringing the pulses of the demodulated signal into the desired form, at the input of which the demodulated signal is present.
  • the output of pulse shaper 56 is connected to shift register 62 and baseband processor 64.
  • the receiver shown is a superimposed receiver, also called a superheterodyne receiver or a superheterodyne receiver.
  • This is amplified between the low-noise high-frequency amplifier 52 and the demodulator 54 Signal mixed in a mixer 58 with a frequency signal z, which is generated by a voltage-controlled oscillator 60.
  • the result of the mixing is a sum frequency signal from the sum of the two mixed frequencies and a difference signal (intermediate frequency signal) of 111 MHz, which results from the absolute value of the difference between the frequencies.
  • the intermediate frequency signal is taken from the mixer 58 (down mixer) and fed to the demodulator 54.
  • the demodulator 54 is designed in such a way that it delivers the largest possible output signal for the frequency swing customary in Buetooth.
  • the demodulator 54 has a resonance curve with a steepest possible slope.
  • the resonance curve must be wide enough not to allow drift.
  • the signal tapped at the output of the demodulator 54 is applied as an input signal to the pulse sharpener 56, the output signal of which is present at the input of the shift register 62 and the baseband processor 64.
  • the length of the shift register, as well as the number of memory locations in RAM, which are provided for the pseudo-random sequence extracted from the original signal, depend on the choice of the oversampling factor, since this specifies in how many bits a single bit of the pseudo-random sequence is split up.
  • oversampling with a factor of 110 generates 110 "short" bits with a duration of 9.09 ns (110th part of a ⁇ s) from a single bit with a duration of 1 ⁇ s.
  • the shift register must or its own memory space can be provided in RAM.
  • the length of the shift register and the number of memory locations provided in RAM for the pseudo-random sequence extracted from the original signal depend on the length of the pseudo-random sequence sent.
  • the length of the pseudo-random sequence is 64 bits, which means that a shift register with 64 times 110, that is 7040, memory locations must be provided. The same applies to the area of RAM in which the pseudo-random sequence of the original signal should be saved. Longer or shorter pseudo-random sequences require longer or shorter shift registers and more or less memory locations in RAM with the same oversampling factor.
  • the demodulated response signal sharpened by the pulse shaper 56 is tapped before the baseband processor 64 in order not to lose the time information due to the synchronization carried out there to the clock of the baseband processor 64.
  • the clock generator of the baseband processor 64 is synchronized with the signal clock. This is done by adding an offset to the clock cycles of the baseband processor, whereby the time information of the received signal is lost.
  • the response signal can be tapped anywhere in front of the baseband processor 64. However, the earlier the response signal is tapped, the more additional elements must additionally be present between the tapping point and the correlator. If the response signal were tapped behind the mixer 58, for example, the branch to the correlator 62 would have to have its own demodulator and its own pulse shaper. It is therefore best to tap the response signal after the pulse shaper.
  • the common timing pulse frequency is conveyed via lines (see FIG. 1 and associated description). Alternatively, however, it can also be transmitted wirelessly.
  • time measuring station 3 and the base station 1 can each have an individual time clock instead of a common one.
  • these individual time clocks must each have a time provide a sequence with sufficiently long and stable timing cycles. If this does not happen, the sum of the deviations of the time measurement cycle from each other would become so large during the measurement that the location can no longer be determined with the required accuracy. The required quality of the individual timers is therefore dependent on the desired accuracy of the location determination.
  • Both the base station 1 and the time measuring stations 3 are designed as stationary stations in the exemplary embodiment, but they can also be mobile stations, provided that their position is known sufficiently well during the location determination for the location determination to be carried out.
  • the clock when entering the response signal in the shift register does not have to be given by the time measurement clock. It is sufficient if the clock used is synchronized with the time measurement clock.
  • the described location determination only leads to a clear result if there are three time measuring stations. However, if there are only two time measuring stations and the uniqueness of the result can be established in a different way than by a third time measuring station, two time measuring stations are sufficient for determining the location.
  • a procedure based on the arrival times and not on the differences of the arrival times a so-called ToA procedure (Time of Arrival) is used, a circle is obtained for each time measuring station on which the mobile terminal can be located. The radius of the circle shows the distance of the mobile terminal from the respective time measuring station. With two timing stations, these circles generally have two intersections, unless the mobile terminal is exactly in the middle between the two timing stations. If one of the two intersections can be excluded, for example because the time measuring stations are located on a wall and the mobile terminal can only be located on one side of the wall, two time measuring stations are sufficient for determining the location.

Abstract

The invention relates to a system for determining the position of a mobile terminal, which comprises a base station (1) and at least two time measuring stations (3). Said time measuring stations (3) comprise one time acquisition unit each with which the arrival time of a signal sent by the mobile terminal (5) can be detected, said time acquisition unit (3) being provided with a slide register and a correlator. The system is further provided with a positioning unit for calculating the position on the basis of the acquired arrival times. In order to position the mobile terminal (5), the base station (1), triggered by a position-related inquiry of the mobile terminal (5), transmits a source signal to the mobile terminal (5). The mobile terminal (5) responds with a response signal that is transmitted to at least two time measuring stations (3). The time measuring stations detect the arrival time of the respective response signal received. The arrival times of the response signal in the various time measuring stations (3) is used to calculate the position of the mobile terminal (5).

Description

System und Verfahren zur Standortbestimmung System and procedure for location determination
Die vorliegende Erfindung betrifft ein Verfahren zum Bestimmen des Standorts eines Mobilterminals, insbesondere in einem Bluetooth-Netzwerk, und ein System zum Bestimmen des Standorts eines Mobilterminals, insbesondere basierend auf einem Bluetooth-Netzwerk,The present invention relates to a method for determining the location of a mobile terminal, in particular in a Bluetooth network, and a system for determining the location of a mobile terminal, in particular based on a Bluetooth network.
In drahtlosen Netzwerken mit Mobilterminals ist es häufig wünschenswert oder gar notwenig, den Standort des Mobilterminals, z. B. den Standort eines Mobiltelefons in einem Gebäude, zu bestimmen. Dazu werden spezielle Standortbestimmungssysteme verwendet. Viele dieser Standortbestimmungssysteme basieren auf der Bestimmung von Laufzeiten oder Laufzeitdifferenzen von Signalen, die von dem Mobilterminal ausgehen und von stationären Stationen empfangen werden. Aus den Laufzeiten oder den Differenzen der Laufzeiten wird dann der Standort des Mobilterminals bzw. des Mobiltelefons ermittelt. Solche Verfahren sind z. B. in DE 199 36 846 beschrieben. Auch bei im Hochfrequenzbereich arbeitenden drahtlosen Netzwerken werden oft Standortdaten benötigt. Mit Hilfe solcher Standortdaten kann z. B. ein Serviceanbieter ortsbezogene Informationen an Mobilterminals senden.In wireless networks with mobile terminals, it is often desirable or even necessary to determine the location of the mobile terminal, e.g. B. to determine the location of a mobile phone in a building. Special positioning systems are used for this. Many of these location determination systems are based on the determination of transit times or transit time differences of signals which originate from the mobile terminal and are received by stationary stations. The location of the mobile terminal or the mobile phone is then determined from the transit times or the differences in the transit times. Such methods are e.g. B. described in DE 199 36 846. Location data is also often required for wireless networks operating in the high-frequency range. With the help of such location data z. B. Send a service provider location-related information to mobile terminals.
Ein Mobilterminal im Sinne der Erfindung kann außer einem Mobiltelefon auch jede andere denkbare mobile Kommunikationseinheit, wie z. B. ein Notebook oder ein Personal Digital Assistant (PDA) sein.A mobile terminal in the sense of the invention can in addition to a mobile phone also any other conceivable mobile communication unit, such as. B. a notebook or a Personal Digital Assistant (PDA).
Ein drahtloses Netzwerk im Hochfrequenzbereich ist z. B. ein auf dem Bluetooth-Standard basierendes Netzwerk. Bluetooth ist eine Technologie für die drahtlose Kommunikation zwischen verschiedenen Geräten. Die Kommunika- tion zwischen den Geräten erfolgt im lizenzfreien ISM-Band, einem Frequenzband, das für den allgemeinen industriellen, wissenschaftlichen und medizinischen Gebrauch (ISM, Jndustrial, Scientific, Medical) reserviert ist.A wireless network in the high frequency range is e.g. B. a network based on the Bluetooth standard. Bluetooth is a technology for wireless communication between different devices. The communication between the devices takes place in the license-free ISM band, a frequency band that is reserved for general industrial, scientific and medical use (ISM, Industrial, Scientific, Medical).
Bluetooth-Netze haben oft eine Reichweite von weniger als 100 Metern. Wenn in solchen Netzen ortsaufgelöste Informationen zur Verfügung gestellt werden sollen, werden hohe Anforderungen an die Genauigkeit der Standortbestimmung gestellt. Um Standortbestimmungsverfahren durchführen zu können, die diese Anforderungen erfüllen, werden Mobilterminals für Bluetooth-Netze mit eigens für die Standortbestimmung vorgesehenen Elementen, wie z. B. einem GPS-Empfänger, ausgestattet.Bluetooth networks often have a range of less than 100 meters. If location-resolved information is to be made available in such networks, high demands are placed on the accuracy of the location determination. In order to be able to carry out location determination methods that meet these requirements, mobile terminals for Bluetooth networks are provided with elements specifically provided for location determination, such as, for example, B. a GPS receiver.
Aufgabe der vorliegenden Erfindung ist es, ein verbessertes Verfahren und ein verbessertes System zur Standortbestimmung bereitzustellen, mit denen die Standortbestimmung vorgenommen werden kann, ohne dass dafür eigens für die Standortbestimmung vorgesehene Elemente in den Mobilterminals notwendig sind.The object of the present invention is to provide an improved method and an improved system for location determination, with which the location determination can be carried out without the need for elements provided specifically for the location determination in the mobile terminals.
Diese Aufgabe wird durch ein Verfahren zum Bestimmen des Standorts eines Mobilterminals nach Anspruch 1 und ein System, das heißt, eine Anordnung zum Bestimmen des Standorts eines Mobilterminals nach Anspruch 17 gelöst. Weitere Ausgestaltungen des Verfahrens nach Anspruch 1 sind in den Ansprüchen 2 bis 16 angegeben. Die Ansprüche 18 bis 24 enthalten weitere Ausgestaltungen der Anordnung nach Anspruch 17.This object is achieved by a method for determining the location of a mobile terminal according to claim 1 and a system, that is to say an arrangement for determining the location of a mobile terminal according to claim 17. Further refinements of the method according to claim 1 are specified in claims 2 to 16. Claims 18 to 24 contain further refinements of the arrangement according to Claim 17.
Im Verfahren nach Anspruch 1 sendet eine Basisstation, ausgelöst durch eine ortsbezogene Anfrage eines Mobilterminals, ein Ursprungssignal an dieses Mobilterminal aus. Das Mobilterminal antwortet mit einem Antwortsignal, das von mindestens drei Zeitmessstationen empfangen wird. In den Zeitmessstationen wird die Ankunftszeit des jeweils empfangenen Antwortsignals bestimmt. Aus den Ankunftszeiten des Antwortsignals an den verschiedenen Zeitmess- Stationen wird dann der Standort des Mobilterminals berechnet.In the method according to claim 1, a base station, triggered by a location-related request from a mobile terminal, sends an originating signal to this mobile terminal. The mobile terminal responds with a response signal that is received by at least three time measuring stations. The arrival time of the response signal received in each case is determined in the time measuring stations. The location of the mobile terminal is then calculated from the arrival times of the response signal at the various time measuring stations.
Dies erfolgt vorzugsweise mit Hilfe der Bestimmung der jeweiligen Ankunftszeiten des Ursprungssignals an den Zeitmessstationen. Es wird die Differenz zwischen den Ankunftszeiten des Antwortsignals und des Ursprungssignals an der jeweiligen Zeitmessstation bestimmt.This is preferably done by determining the respective arrival times of the original signal at the time measuring stations. The difference between the arrival times of the response signal and the original signal at the respective time measuring station is determined.
Alternativ kann die Aussendung des Antwortsignals in den Zeitmessstationen jeweils einen Zähler zum Zählen der Zeitmesstaktzyklen aktivieren und die Ankunft eines von einem bekannten Ort gesendeten Stoppsignals das Zählen in den Zeitmessstation (3) stoppen. Als Sender des Stoppsignals kommt grundsätzlich jeder Sender in Frage, dessen Position in einem vorgegebenen Koordinatensystem bestimmt ist.Alternatively, the transmission of the response signal in the time measuring stations can activate a counter for counting the time measuring clock cycles and the arrival of a stop signal sent from a known location can stop counting in the time measuring station (3). In principle, any transmitter whose position is determined in a predetermined coordinate system can be considered as the transmitter of the stop signal.
Das Verfahren nach Anspruch 1 bietet den Vorteil, dass die Standortbestimmung als Teil eines speziellen Bluetooth-Profils ausgeführt werden kann. Ein Bluetooth-Profil ist ein Satz Regeln, die angeben, wie die Bluetooth-Protokolle ausgeführt werden sollen. Die im Verfahren nach Anspruch 1 durchgeführten Schritte lassen sich sämtlich mittels Befehlen der Bluetooth-Protokolle realisieren. Daher sind in den Mobilterminals keine speziell für die Standortbestimmung vorgesehenen Bausteine notwendig. Die Integration des Verfahrens in ein Bluetooth-Profil ist Gegenstand von Anspruch 16. In einer Ausgestaltung des erfindungsgemäßen Verfahrens vergleichen die Zeitmessstationen das Antwortsignal bit-weise mit dem zuvor gespeicherten Ursprungssignal, um die Ankunftszeit festzustellen. Für den Vergleich kommt ein Korrelationsverfahren zur Anwendung.The method according to claim 1 offers the advantage that the location determination can be carried out as part of a special Bluetooth profile. A Bluetooth profile is a set of rules that specify how the Bluetooth protocols should run. The steps carried out in the method according to claim 1 can all be implemented by means of commands from the Bluetooth protocols. Therefore, there are no modules specifically required for determining the location required in the mobile terminals. The integration of the method into a Bluetooth profile is the subject of claim 16. In one embodiment of the method according to the invention, the time measuring stations compare the response signal bit by bit with the previously stored original signal in order to determine the arrival time. A correlation method is used for the comparison.
Um die Genauigkeit der Bestimmung der Ankunftszeiten zu erhöhen, kann das Bestimmen der Ankunftszeiten mit einer gegenüber der sich aus der Bitrate des Signals ergebenden Signaltaktrate erhöhten Zeitmesstaktrate durchgeführt werden (Überabtastung oder Oversampling). Es sind so Ortsauflösungen von wenigen Metern möglich.In order to increase the accuracy of the determination of the arrival times, the determination of the arrival times can be carried out with an increased timing clock rate compared to the signal clock rate resulting from the bit rate of the signal (oversampling or oversampling). Local resolutions of a few meters are possible.
Eine noch genauere Standortbestimmung ist durch die zusätzliche Anwendung eines Interpolationsverfahrens zur Interpolation zwischen den mit dem Korrelationsverfahren erhaltenen Korrelationswerten möglich.An even more precise location determination is possible through the additional application of an interpolation method for interpolation between the correlation values obtained with the correlation method.
Das erfindungsgemäße System zum Bestimmen des Standorts eines Mobilterminals umfasst eine Basisstation und mindestens drei Zeitmessstationen. Die Zeitmessstationen umfassen jeweils eine Zeiterfassungseinheit mit der die Ankunftszeit des Ursprungssignals und eines von dem Mobilterminal ausgehenden Signals erfasst werden kann, wobei in den Zeiterfassungseinheit jeweils ein Schieberegister und ein Korrelator vorhanden sind. Außerdem umfasst das System eine Standortbestimmungseinheit zur Berechnung des Standortes aus den erfassten Ankunftszeiten.The system according to the invention for determining the location of a mobile terminal comprises a base station and at least three time measuring stations. The time measuring stations each comprise a time recording unit with which the arrival time of the original signal and a signal emanating from the mobile terminal can be recorded, a shift register and a correlator each being present in the time recording unit. The system also includes a location determination unit for calculating the location from the recorded arrival times.
Das erfindungsgemäße System, das heißt, die erfindungsgemäße Anordnung, bietet den Vorteil, dass eine genaue Standortbestimmung für jedes bereits existierende mobile Bluetooth-Terminal vorgenommen werden kann, ohne dass das mobile Bluetooth-Terminal dafür speziell ausgerüstet sein muss.The system according to the invention, that is to say the arrangement according to the invention, offers the advantage that an exact location can be determined for each existing mobile Bluetooth terminal without the mobile Bluetooth terminal having to be specially equipped for this.
Die Zeitmessstationen des Systems können für das Erfassen der Ankunftszeit des von dem Mobilterminal ausgehenden Signals über einen gemeinsamen Zeittaktgeber getaktet sein. Dadurch lässt sich auf einfache Weise eine gemeinsame Zeitskala aller Zeitmessstationen sicherstellen. Der Zeittaktgeber kann eine Taktrate zu Verfügung stellen, die höher ist als die sich aus der Bitrate ergebende Signaltaktrate. Dadurch wird die Ortsauflösung der Standortbestimmung verbessert.The time measuring stations of the system can be clocked for detecting the arrival time of the signal coming from the mobile terminal via a common time clock. This makes it easy to ensure a common time scale for all time measuring stations. The timer can provide a clock rate that is higher than the signal clock rate resulting from the bit rate. This improves the location resolution of the location determination.
In dem erfindungsgemäßen System ist jede Zeitmessstation in einem bevor- zugten Ausführungsbeispiel mit jeweils einem Empfänger verbunden, der eine Empfangseinrichtung zum Empfang eines Signals und einen Basisbandprozessor aufweist. In dem Empfänger ist das empfangene Signal vor dem Basisbandprozessor abgreifbar. Hierfür ist ein entsprechender Signalanschluss oder eine Verzweigung in der Schaltung des Empfängers vorgesehen, über die das empfangene Signal an die jeweilige Zeitmessstation geleitet wird. Zeitmessstation und Empfänger sind vorzugsweise in einem Gerät integriert.In the system according to the invention, in a preferred exemplary embodiment, each time measuring station is each connected to a receiver which has a receiving device for receiving a signal and a baseband processor. The received signal can be picked up in the receiver in front of the baseband processor. For this purpose, a corresponding signal connection or a branch is provided in the circuit of the receiver, via which the received signal is routed to the respective time measuring station. Timing station and receiver are preferably integrated in one device.
Durch die Möglichkeit des Abgreifens des empfangenen Signals vor dem Basisbandprozessor, also bevor eine Synchronisation des empfangenen Signals auf den Takt des Basisbandprozessors erfolgt ist, kann der Empfänger ein Signal liefern, in dem die Informationen über die Laufzeit des Signals noch enthalten sind. Das Signal kann von einer Zeitmessstation ausgewertet werden. Bluetooth-Stationen mit einem solchen Empfänger können daher ohne zusätzlichen Empfänger für die Standortbestimmung als Zeitmessstationen für das erfindungsgemäße System Verwendung finden. Damit wird ein Empfän- ger insbesondere für Bluetooth-Vorrichtungen zur Verfügung gestellt, der das Bestimmen des Standortes eines Mobilterminals in einfacher Weise ermöglicht. Der Empfänger kann grundsätzlich auch unabhängig von dem erfindungsgemäßen System betrieben werden.Due to the possibility of tapping the received signal in front of the baseband processor, that is to say before the received signal has been synchronized to the clock of the baseband processor, the receiver can deliver a signal which still contains the information about the transit time of the signal. The signal can be evaluated by a time measuring station. Bluetooth stations with such a receiver can therefore be used as time measuring stations for the system according to the invention without an additional receiver for determining the location. This provides a receiver, in particular for Bluetooth devices, which enables the location of a mobile terminal to be determined in a simple manner. In principle, the receiver can also be operated independently of the system according to the invention.
In dem Empfänger ist in einer bevorzugten Ausführungsform ein Pulsformer vorhanden. Das empfangene Signal ist zwischen dem Pulsformer und dem Basisbandprozessor abgreifbar. Dadurch können die strukturellen Abweichungen des erfindungsgemäßen Empfängers von Standardempfängern für Bluetooth-Stationen auf ein Minimum reduziert werden. In Ausführungsformen, die einen Sender mit genau bestimmter Position verwenden, ist dies bevorzugt die Basisstation. So ist für eine Positionsbestimmung anhand der Differenz zwischen den Ankunftszeiten des Antwortsignals und des Stoppsignals bei den Zeitmessstationen vorzugsweise die Basisstati- on als Sender des Stoppsignals ausgebildet. Dies bedeutet, dass bei der Installation der Basisstation Ihre genaue Position anhand bekannter Positionsbestimmungsverfahren ermittelt wird.In a preferred embodiment, a pulse shaper is present in the receiver. The received signal can be tapped between the pulse shaper and the baseband processor. As a result, the structural deviations of the receiver according to the invention from standard receivers for Bluetooth stations can be reduced to a minimum. In embodiments that use a transmitter with a precisely defined position, this is preferably the base station. For a position determination based on the difference between the arrival times of the response signal and the stop signal at the time measuring stations, the base station is preferably designed as a transmitter of the stop signal. This means that when you install the base station, your exact position is determined using known positioning methods.
Im Folgenden wird das erfindungsgemäße Verfahren, das erfindungsgemäße System und der erfindungsgemäße Empfänger anhand eines Ausführungs- beispiels und unter Bezugnahme auf die Figuren im Detail beschrieben.The method according to the invention, the system according to the invention and the receiver according to the invention are described in detail below using an exemplary embodiment and with reference to the figures.
Fig. 1 zeigt schematisch eine Ausführungsbeispiel für den Aufbau des erfindungsgemäßen Systems zum Bestimmen des Standorts eines Mobilterminals.1 schematically shows an exemplary embodiment for the construction of the system according to the invention for determining the location of a mobile terminal.
Fig. 2 zeigt einen möglichen Ablauf des erfindungsgemäßen Verfahrens zum Bestimmen des Standorts eines Mobilterminals.2 shows a possible sequence of the method according to the invention for determining the location of a mobile terminal.
Fig. 3a zeigt schematisch das Einlesen des Antwortsignals in ein Schieberegister, wobei das Signal überabgetastet wird.3a shows schematically the reading in of the response signal into a shift register, the signal being oversampled.
Fig. 3b zeigt die Zuordnung eines Pulses zu den Schieberegisterzellen.3b shows the assignment of a pulse to the shift register cells.
Fig. 3c zeigt die Zuordnung eines Pulses zu den Schieberegisterzellen.3c shows the assignment of a pulse to the shift register cells.
Fig. 4 zeigt schematisch ein Ausführungsbeispiel für den Aufbau eines erfindungsgemäßen Empfängers.Fig. 4 shows schematically an embodiment for the construction of a receiver according to the invention.
Ein Ausführungsbeispiel des erfindungsgemäßen Systems und des erfindungsgemäßen Verfahrens wird nachfolgend anhand des Bestimmens des Standorts eines Mobilterminals in einem Bluetooth-Netzwerk näher beschrie- ben. ln Figur 1 ist ein System zur Standortbestimmung in einem auf Bluetooth- Technologie basierenden Netzwerk dargestellt. Bluetooth ist ein Standard für die drahtlose Kommunikation zwischen verschiedenen Geräten. Die Kommunikation zwischen den Geräten erfolgt im lizenzfreien ISM-Band, einem Fre- quenzband, das für den allgemeinen industriellen, wissenschaftlichen und medizinischen Gebrauch (ISM, Industrial, Scientific, Medical) reserviert ist.An exemplary embodiment of the system and the method according to the invention is described in more detail below on the basis of determining the location of a mobile terminal in a Bluetooth network. 1 shows a system for determining the location in a network based on Bluetooth technology. Bluetooth is a standard for wireless communication between different devices. Communication between the devices takes place in the license-free ISM band, a frequency band that is reserved for general industrial, scientific and medical use (ISM, Industrial, Scientific, Medical).
Das dargestellte Netzwerk ist ein so genanntes Piconet, ein auf Bluetooth- Technologie basierendes Netzwerk, das einen Master aufweist, der das Piconet steuert, und das bis zu sieben weitere Geräte, sog. Slaves umfassen kann. Gemäß Figur 1 umfasst das Piconet eine Basisstation 1 als Master sowie zwei Zeitmessstationen 3 als Slaves, deren Positionen bekannt sind. Im Ausführungsbeispiel übernimmt die Basisstation 1 die Funktion einerweiteren, dritten Zeitmessstation. Ein gemeinsamer Taktgeber 7, im Folgenden Zeittaktgeber genannt, vermittelt der Basisstation 1 und den Zeitmessstationen 3 über Leitungen 9 eine gemeinsame Zeitmesstaktfrequenz. Alternativ kann die gemeinsame Zeitmesstaktfrequenz auch drahtlos übermittelt werden. Schließlich ist ein Mobilterminal 5 dargestellt, das dem Piconet ebenfalls als Slave angehört und dessen Standort bestimmt werden soll.The network shown is a so-called piconet, a network based on Bluetooth technology, which has a master which controls the piconet and which can comprise up to seven further devices, so-called slaves. According to FIG. 1, the piconet comprises a base station 1 as a master and two timing stations 3 as slaves, the positions of which are known. In the exemplary embodiment, the base station 1 takes over the function of a further, third time measuring station. A common clock generator 7, hereinafter referred to as the clock generator, provides the base station 1 and the time measurement stations 3 with a common time measurement clock frequency via lines 9. Alternatively, the common timing pulse frequency can also be transmitted wirelessly. Finally, a mobile terminal 5 is shown, which also belongs to the Piconet as a slave and whose location is to be determined.
Dass das Mobilterminal 5 als Slave desjenigen Piconets mit der Basisstation 1 als Master dargestellt ist, wird hier nur zur Vereinfachung der Darstellung angenommen. Das Mobilterminal 5 kann stattdessen auch Master oder Slave eines weiteren Piconets sein, dem die Basisstation 1 ebenfalls als Slave angehört. Die Basisstation 1 gehört dann zwei unterschiedlichen Piconets an, dem einen als Master und dem anderen als Slave. Auf diese Art verbundene Piconets werden Scatternet genannt. Die Basisstation 1 und das Mobilterminal 5 müssen während der Standortbestimmung lediglich einem gemeinsamen Piconet angehören.The fact that the mobile terminal 5 is shown as the slave of that piconet with the base station 1 as the master is assumed here only to simplify the illustration. Instead, the mobile terminal 5 can also be the master or slave of another piconet to which the base station 1 also belongs as a slave. Base station 1 then belongs to two different piconets, one as a master and the other as a slave. Piconets connected in this way are called Scatternet. The base station 1 and the mobile terminal 5 only have to belong to one common piconet during the location determination.
Der Vorgang der Standortbestimmung wird von dem Mobilterminal 5 mit einerThe process of determining the location is carried out by the mobile terminal 5 with a
Anfrage an die Basisstation 1 nach standortspezifischen Informationen einge- leitet. Auf die Anfrage hin sendet die Basisstation 1 ein Signal, das Ur- sprungssignal, an das Mobilterminal 5 und an die Zeitmessstationen 3 und speichert das Ursprungssignal. Das Ursprungssignal aktiviert die Zeitmessung in den Zeitmessstationen 3, die das Ursprungssignal ebenfalls speichern. Danach sendet das Mobilterminal 5 eine Kopie des empfangenen Ursprungssig- nals als Antwortsignal an die Basisstation 1 und die Zeitmessstationen 3. Die Basisstation 1 und die Zeitmessstationen 3 ermitteln jeweils den Zeitpunkt des Eintreffens des Antwortsignals (Ankunftszeit) auf einer gemeinsamen Zeitskala, welche durch den gemeinsamen Zeittaktgeber 7 vermittelt wird.Request to base station 1 initiated for location-specific information. Upon request, the base station 1 sends a signal that the original jump signal, to the mobile terminal 5 and to the time measuring stations 3 and stores the original signal. The original signal activates the time measurement in the time measuring stations 3, which also store the original signal. The mobile terminal 5 then sends a copy of the received original signal as a response signal to the base station 1 and the time measuring stations 3. The base station 1 and the time measuring stations 3 each determine the time of the arrival of the response signal (arrival time) on a common time scale, which is determined by the common Clock 7 is conveyed.
Zum Bestimmen der Zeitpunkte, zu denen das Antwortsignal bei der Basissta- tion 1 und den Zeitmessstationen 3 eintrifft, wird von den Stationen jeweils der Zeitpunkt der Bit-weisen Übereinstimmung zwischen dem gespeicherte Ursprungssignal und dem empfangenen Antwortsignal ermittelt. Dieses Verfahren wird später unter Bezugnahme auf Fig. 2a ausführlich beschrieben. Wenn das eingehende Antwortsignal mit dem gespeicherten Ursprungssignal Bit- weise übereinstimmt, ist das Antwortsignal eingetroffen. Der Zeitpunkt, zu dem die Übereinstimmung vorliegt, liefert die Ankunftszeit des Antwortsignals an der jeweiligen Station.To determine the times at which the response signal arrives at the base station 1 and the time measuring stations 3, the stations each determine the point in time of the bit-wise correspondence between the stored original signal and the received response signal. This method will be described in detail later with reference to Fig. 2a. If the incoming response signal coincides bit by bit with the stored original signal, the response signal has arrived. The point in time at which the match exists provides the arrival time of the response signal at the respective station.
Aus den ermittelten Ankunftszeiten berechnet ein Prozessor in einer Auswerteeinheit, dem die ermittelten Ankunftszeiten per Kabel oder drahtlos übermit- telt werden, den Standort des Mobilterminals 5. Im Ausführungsbeispiel ist die Auswerteeinheit in die Basisstation 1 integriert, sie kann jedoch auch eine selbstständige Einheit, z.B. ein Auswertecomputer, sein.A processor in an evaluation unit, to which the determined arrival times are transmitted by cable or wirelessly, calculates the location of the mobile terminal 5 from the determined arrival times. In the exemplary embodiment, the evaluation unit is integrated in the base station 1, but it can also be an independent unit, e.g. an evaluation computer.
Die Berechnung des Standortes erfolgt auf der Basis eines Verfahrens, das es ermöglicht, den Standort des Mobilterminals 5 anhand der Unterschiede in den Ankunftszeiten an der Basisstation 1 beziehungsweise den Zeitmessstationen 3 zu ermitteln. Derartige Verfahren sind allgemein bekannt und werden TDOA-Verfahren genannt, wobei TDOA für „Time Difference of Arrival" (Differenz der Ankunftszeiten) steht. Wenn die Zeit des Sendens des Antwortsignals durch das Mobilterminal 5 hinreichend genau bekannt ist oder abgeschätzt werden kann, ist statt des TDOA-Verfahrens zur Standortbestimmung auch die Anwendung eins TOA- Verfahrens (Time of Arrival) möglich, in welchem die Standortbestimmung anhand der Ankunftszeiten und dem Sendezeitpunkt des Antwortsignals durchgeführt wird.The location is calculated on the basis of a method which makes it possible to determine the location of the mobile terminal 5 on the basis of the differences in the arrival times at the base station 1 or the time measuring stations 3. Such methods are generally known and are called TDOA methods, where TDOA stands for "Time Difference of Arrival". If the time of sending the response signal by the mobile terminal 5 is known with sufficient accuracy or can be estimated, instead of the TDOA method for determining the location, it is also possible to use a TOA method (time of arrival) in which the location is determined based on the arrival times and the transmission time of the response signal is carried out.
Statt, wie beschrieben, eine Basisstation 1 und zwei Zeitmessstationen 3 können auch mehr als zwei Zeitmessstationen 3 vorhanden sein. In diesem Fall braucht die Basisstation 1 nicht die Funktion einer Zeitmessstation zu über- nehmen und muss daher nicht mit einer Zeiterfassungseinheit zum Erfassen der Ankunftszeit des Antwortsignals ausgestattet sein. Dies bietet den Vorteil, dass das erfindungsgemäße Verfahren zur Standortbestimmung keine eigens für die Standortbestimmung eingerichtete Basisstation benötigt. Bestehende Systeme können daher mit Zeitmessstationen nachgerüstet werden, um in die Lage versetzt zu werden, das erfindungsgemäße Verfahren auszuführen.Instead of a base station 1 and two time measuring stations 3, as described, more than two time measuring stations 3 can also be present. In this case, the base station 1 does not have to take over the function of a time measuring station and therefore does not have to be equipped with a time recording unit for recording the arrival time of the response signal. This offers the advantage that the method according to the invention for determining the location does not require a base station set up specifically for determining the location. Existing systems can therefore be retrofitted with time measuring stations in order to be able to carry out the method according to the invention.
Anhand von Figur 2a und 2b wird im Folgenden das Verfahren zum Bestimmen des Standorts eines Mobilterminals im Detail beschrieben. Dabei wird davon ausgegangen, dass während der Anfrage des Mobilterminals 5 an die Basisstation 1 bereits ein Piconet aus Basisstationen 1 und mindestens zwei Zeitmessstationen 3 besteht und außerdem das Mobilterminal 5 demselben Piconet als Slave angehört. Falls ein solches Piconet zum Zeitpunkt der Anfrage nicht besteht, existiert jedoch auf jeden Fall zum Zeitpunkt der Anfrage ein Piconet oder Scatternet, das die Basisstation 1 und das Mobilterminal 5 umfasst. Die Anfrage löst dann die Bildung eines Piconets oder gegebenen- falls eines Scatternets aus, dem sowohl die Basisstation 1 als auch die Zeitmessstationen 3 angehören, wobei die Basisstation 1 mit den Zeitmessstationen 3 ein Piconet bildet, in dem die Basisstation 1 der Master ist.The method for determining the location of a mobile terminal is described in detail below with reference to FIGS. 2a and 2b. It is assumed that during the request from the mobile terminal 5 to the base station 1, there is already a piconet of base stations 1 and at least two time measuring stations 3, and the mobile terminal 5 also belongs to the same piconet as a slave. If such a piconet does not exist at the time of the request, a piconet or scatternet, which comprises the base station 1 and the mobile terminal 5, exists in any case at the time of the request. The request then triggers the formation of a piconet or, if appropriate, a scatternet, to which both the base station 1 and the time measuring stations 3 belong, the base station 1 forming a piconet with the time measuring stations 3, in which the base station 1 is the master.
Nach der Anfrage, und gegebenenfalls nach der Bildung eines Piconets oder eines Scatternets, bildet die Basisstation 1 mit den Zeitmessstationen 3 eine Bluetooth-Gruppe und sendet ein Echo-Request-Paket als Bluetooth-Paket (Datenpaket in einer Bluetooth-Verbindung) an das Mobilterminal 5. Mit einem Echo-Request-Paket wird die empfangende Station, im Ausführungsbeispiel das Mobilterminal 5, aufgefordert, als Antwort eine Kopie des empfangenen Signals zurückzusenden.After the request, and possibly after the formation of a piconet or a scatternet, the base station 1 forms a Bluetooth group with the time measuring stations 3 and sends an echo request packet as a Bluetooth packet (Data packet in a Bluetooth connection) to the mobile terminal 5. With an echo request packet, the receiving station, in the exemplary embodiment the mobile terminal 5, is asked to send back a copy of the received signal as a response.
Das Echo-Request-Paket umfasst einen Access Code (Zugriffscode), der eine 64 Bit lange Pseudo-Zufallsfolge enthält. Wie alle Bluetooth-Pakete weist das Echo-Request-Paket eine dreiteilige Struktur aus Access Code zum Detektie- ren und Adressieren des Paktes, Header mit Steuerinformationen und Paylo- ad mit den eigentlichen Daten auf. Der Access Code besitzt eine Länge von mindestens 68 und höchstens 72 Bit, wovon jeweils vier Bit für einen Vorspann (Preamble) und eine (nicht immer vorhandene) Vorschau (Trailer) auf die nachfolgenden Daten (Payload) Verwendung finden. Die übrigen 64 Bit enthalten die oben erwähnte Pseudo-Zufallsfolge. Neben der Pseudo- Zufallsfolge im Access Code können im Datenteil (Payload) noch weitere, län- gere Pseudo-Zufallsfolgen enthalten sein. Der Datenteil kann maximal eine Pseudo-Zufallsfolge von 2712 Bit Länge enthalten, so dass in einem Bluetooth-Paket insgesamt maximal eine Pseudo-Zufallsfolge der Länge von 2776 Bit vorhanden sein kann. Statt der Pseudo-Zufallsfoge kann genauso gut auch eine Zufallsfolge oder eine Kombination aus beidem Verwendung finden.The echo request packet includes an access code that contains a 64-bit pseudo-random sequence. Like all Bluetooth packets, the Echo Request packet has a three-part structure consisting of access code for detecting and addressing the packet, header with control information and Payloader with the actual data. The access code has a length of at least 68 and at most 72 bits, of which four bits are used for a preamble and a (not always available) preview (trailer) of the following data (payload). The remaining 64 bits contain the pseudo-random sequence mentioned above. In addition to the pseudo-random sequence in the access code, other, longer pseudo-random sequences can also be contained in the data part (payload). The data part can contain a maximum of one pseudo-random sequence of 2712 bits in length, so that a maximum of one pseudo-random sequence of length of 2776 bits can be present in a Bluetooth packet. Instead of the pseudo-random sequence, a random sequence or a combination of both can also be used.
Außer von dem Mobilterminal 5 wird das Echo-Request-Paket auch von den Zeitmessstationen 3 empfangen, dort demoduliert und in einem Speicher mit wahlfreiem Zugriff (RAM, Random Access Memory) gespeichert. Dass die Zeitmessstationen 3 während des Sendens des Antwortsignals auf Empfang anstatt auf Senden eingestellt sind, obwohl sie Slaves des Piconets sind und somit nach dem Empfang eines Signals vom Master (hier der Basisstation 1 ) eigentlich auf Senden eingestellt sein sollten, lässt sich z. B. dadurch erreichen, dass die Zeitmessstationen 3 mit der Basisstation 1 (Master) verkabelt sind und über Kabel ein Signal empfangen, das sie auf Empfang einstellt.In addition to the mobile terminal 5, the echo request packet is also received by the time measuring stations 3, demodulated there and stored in a random access memory (RAM, Random Access Memory). That the time measuring stations 3 are set to receive instead of sending while the response signal is being sent, even though they are slaves of the piconet and should therefore actually be set to sending after receiving a signal from the master (here the base station 1). B. achieve that the timing stations 3 are wired to the base station 1 (master) and receive a signal via cable that sets them to receive.
Alternativ kann die Basisstation 1 nach dem Senden des Echo-Request- Pakets auch ein weiteres Signal senden, welches das Mobilterminal 5 veran- lasst, mit der Basisstation 1 die Rolle zu tauschen, so dass die Basisstation 1 zum Slave und das Mobilterminal 5 zum Master wird. Danach sendet das Mobilterminal 5 die Kopie des Echo-Request-Signals an die Basisstation 1, die als Slave nun ebenso wie die Zeitmessstationen 3 auf Empfang eingestellt ist. Da die Standortbestimmung im Ausführungsbeispiel nur auf den Differenzen der Ankunftszeiten bei den Zeitmessstationen beruht, hat die Dauer dieses Rollentausches keinen Einfluss auf das Ergebnis der Standortbestimmung.Alternatively, after sending the echo request packet, the base station 1 can also send a further signal which the mobile terminal 5 sends. let swap the role with the base station 1, so that the base station 1 becomes the slave and the mobile terminal 5 becomes the master. The mobile terminal 5 then sends the copy of the echo request signal to the base station 1, which, like the time measuring stations 3, is now set to receive as a slave. Since the location determination in the exemplary embodiment is based only on the differences in the arrival times at the time measuring stations, the duration of this role change has no influence on the result of the location determination.
Als Antwortsignal auf das von der Basisstation 1 ausgesendete Echo- Request-Paket sendet das Mobilterminal 5 eine Kopie des Echo-Request- Pakets und somit der Pseudo-Zufallsfolge. Das Antwortsignal wird von der Basisstation 1 und den Zeitmessstationen 3 empfangen und demoduliert, um die Kopie der Pseudo-Zufallsfolge zu extrahieren.As a response signal to the echo request packet sent by the base station 1, the mobile terminal 5 sends a copy of the echo request packet and thus the pseudo-random sequence. The response signal is received by base station 1 and time measuring stations 3 and demodulated in order to extract the copy of the pseudo-random sequence.
Die Kopie der Pseudo-Zufallsfolge wird mit der im RAM gespeicherten, aus dem Ursprungssignal erhaltenen Pseudo-Zufallsfolge korreliert. Dazu wird die Kopie der Pseudo-Zufallsfolge in ein Schieberegister eingegeben.The copy of the pseudo-random sequence is correlated with the pseudo-random sequence stored in RAM and obtained from the original signal. To do this, the copy of the pseudo-random sequence is entered into a shift register.
Die Pseudo-Zufallsfolge sowie ihre Kopie sind aus Nullen und Einsen (Bits) aufgebaut, wobei vor der Modulation und nach der Demodulation eine Eins durch einen hohen Signalpegel und eine Null durch einen niedrigen Signalpegel dargestellt wird. Ein hoher Pegel beziehungsweise ein niedriger Pegel in den Daten dauert jeweils eine 1 μs. Damit ist Bluetooth in der Lage, 1 Mbit an Daten pro Sekunde zu übertragen, also eine Million hohe bzw. niedrige Pegel pro Sekunde. Dies ist die Bitrate der übertragenen Pseudo-Zufallsfolge bzw. ihrer Kopie. Daraus ergibt sich bezüglich der Bitrate der Pseudo-Zufallsfolge bzw. ihrer Kopie eine Taktfrequenz, im Folgenden Signaltaktfrequenz ge- nannt, von 1 MHz.The pseudo-random sequence and its copy are made up of zeros and ones (bits), a one being represented by a high signal level and a zero by a low signal level before modulation and after demodulation. A high level or a low level in the data each takes 1 μs. This means that Bluetooth is able to transmit 1 Mbit of data per second, i.e. one million high or low levels per second. This is the bit rate of the pseudo-random sequence transmitted or its copy. With regard to the bit rate of the pseudo-random sequence or its copy, this results in a clock frequency, hereinafter referred to as the signal clock frequency, of 1 MHz.
Das Eingeben der Kopie der Pseudo-Zufallsfolge in das Schieberegister erfolgt mit einer Taktfrequenz, die größer oder gleich der Signaltaktfrequenz ist. Im Ausführungsbeispiel beträgt die Taktfrequenz, mit der die Berechnung durchgeführt wird, im Folgenden Zeitmesstaktfrequenz genannt, 110 MHz, also das 110-fache der Signaltaktfrequenz. Gegenüber der Signaltaktfrequenz bedeutet diese Zeitmesstaktfrequenz ein Oversampling (Überabtastung) mit den Faktor 110. Dies bedeutet, dass jeder hohe Pegel und jeder niedrige Pegel der Pseudo-Zufallsfolge mit einer jeweiligen Zeitdauer von 1 μs in 110 „kurze" hohe Pegel beziehungsweise 110 „kurze" niedrige Pegel mit einer jeweiligen Zeitdauer, die dem 110ten Teil einer μs (ca. 9,09 ns) entspricht, umgewandelt wird. Aus den 64 Bit der Pseudo-Zufallsfolge werden auf diese Weise 7040 Bit, die 64, jeweils 110 Bit umfassende, Gruppen aus hohen bzw. niedrigen Pegeln bilden. Zuvor wird auch die 64 Bit lange Pseudo-Zufallsfolge des Ursprungssignals auf gleiche Weise in 7040 Bit zerlegt und die nun 7040 Bit lange Pseudo-Zufallsfolge des Ursprungssignals im RAM gespeichert.The copy of the pseudo-random sequence is entered into the shift register at a clock frequency which is greater than or equal to the signal clock frequency. In the exemplary embodiment, the clock frequency with which the calculation is carried out, hereinafter referred to as the time measurement clock frequency, is 110 MHz. that is 110 times the signal clock frequency. Compared to the signal clock frequency, this time measurement frequency means oversampling (oversampling) by a factor of 110. This means that each high level and each low level of the pseudo-random sequence with a respective duration of 1 μs in 110 "short" high levels or 110 "short" low level with a respective time period, which corresponds to the 110th part of a μs (approx. 9.09 ns), is converted. In this way, the 64 bits of the pseudo-random sequence become 7040 bits, which form 64 groups, each comprising 110 bits, of high and low levels. The 64-bit pseudo-random sequence of the original signal is also broken down in the same way into 7040 bits and the now 7040-bit long pseudo-random sequence of the original signal is stored in RAM.
Die Kopie der Pseudo-Zufallsfolge wird im Takt der Zeitmesstaktfrequenz in ein Schieberegister eingegeben. Pro Taktzyklus der Zeitmesstaktfrequenz, nachfolgend Zeitmesstaktzyklus genannt, wird die 7040 Bit lange Kopie Pseu- do-ZufallsfoIge um eines der 7040 Bit im Schieberegister mit einer Länge von 7040 Bit verschoben.The copy of the pseudo-random sequence is entered into a shift register in time with the time measurement frequency. For each clock cycle of the timing cycle, hereinafter referred to as the timing cycle, the 7040-bit copy of the pseudo-random sequence is shifted by one of the 7040 bits in the shift register with a length of 7040 bits.
In jedem Zeitmesstaktzyklus wird der Inhalt des Schieberegisters Bit-weise mit dem Inhalt der 7040 Speicherzellen im RAM, die die Pseudo-Zufallsfolge des Ursprungssignals enthalten, korreliert. In einer Bit-weisen Korrelation wird je- des Bit eines Registers, hier des Schieberegisters, mit dem entsprechenden Bit eines anderen Registers, hier des RAM, multipliziert. Die sich daraus ergebenden Produkte werden aufsummiert. Das Ergebnis dieser Korrelation hat einen um so größeren Wert, je besser der Inhalt des 7040 Bit langen Schieberegisters Bit-weise mit dem Inhalt derjenigen Speicherzellen des RAM, in dem die aus dem Ursprungssignal gewonnene 7040 Bit lange Pseudo-Zufallsfolge gespeichert ist, übereinstimmt. Der Maximalwert tritt auf, wenn der Inhalt des Schieberegisters mit dem des RAM Bit für Bit übereinstimmt. Bevor das Ergebnis der Korrelation seinen Maximalwert annimmt, nimmt der Wert mit jedem Takt linear zu, um danach mit jedem Takt wieder linear abzunehmen. Das Auftreten des Maximalwerts der Korrelation zeigt daher an, dass die Kopie der Pseudo-Zufallsfolge, und somit das Antwortsignal, vollständig einge- troffen ist. D. H. auch das letzte Bit der Kopie der Pseudo-Zufallsfolge ist in das Schieberegister eingegeben, so dass das Schieberegister die gesamte Pseudo-Zufallsfolge enthält.In each timing clock cycle, the content of the shift register is bit-by-bit correlated with the content of the 7040 memory cells in RAM which contain the pseudo-random sequence of the original signal. In a bit-wise correlation, each bit of a register, here the shift register, is multiplied by the corresponding bit of another register, here the RAM. The resulting products are added up. The result of this correlation has a greater value, the better the content of the 7040 bit long shift register matches bit by bit with the content of those memory cells of the RAM in which the 7040 bit long pseudo-random sequence obtained from the original signal is stored. The maximum value occurs when the content of the shift register matches that of the RAM bit by bit. Before the result of the correlation takes its maximum value, the value increases linearly with each cycle, and then decreases linearly again with each cycle. The occurrence of the maximum value of the correlation therefore indicates that the copy of the pseudo-random sequence, and thus the response signal, has been completely is hit. DH also the last bit of the copy of the pseudo-random sequence is entered in the shift register so that the shift register contains the entire pseudo-random sequence.
Die beschriebene Bit-weise Korrelation der 7040 Bit langen Kopie der Pseudo- Zufallsfolge mit der im RAM gespeicherten 7040 Bit langen Pseudo- Zufallsfolge des Ursprungssignals liefert den Vergleich des von der Basisstation 1 gesendeten Ursprungssignals mit dem von dem Mobilterminal 5 gesendeten Antwortsignal.The described bit-wise correlation of the 7040-bit copy of the pseudo-random sequence with the 7040-bit long pseudo-random sequence of the original signal stored in the RAM provides a comparison of the original signal sent by the base station 1 with the response signal sent by the mobile terminal 5.
Der Wert der Bit-weisen Korrelation wird einmal pro Zeitmesstaktzyklus be- rechnet. Dann wird mit dem folgenden Zeitmesstaktzyklus die 7040 Bit lange Pseudo-Zufallsfolge im Schieberegister um ein einziges der 7040 Bit weitergeschoben und erneut der Wert der Korrelation berechnet. Der Vorgang des Bit-weisen Einlesens der eingehenden Kopie der Pseudo-Zufallsfolge 20 in das Schieberegister 62 sowie die Korrelation des überabgetasteten Signals mit der im RAM 66 gespeicherten Pseudo-Zufallsfolge 22 ist in Figur 3a anhand eines vierfachen Überabtastens (Oversampling mit dem Faktor 4) beispielhaft dargestellt.The value of the bit-wise correlation is calculated once per clock cycle. Then, with the following timing cycle, the 7040 bit long pseudo-random sequence in the shift register is shifted by a single one of the 7040 bits and the value of the correlation is calculated again. The process of bit-wise reading of the incoming copy of the pseudo-random sequence 20 into the shift register 62 and the correlation of the oversampled signal with the pseudo-random sequence 22 stored in the RAM 66 is shown in FIG. 3a by means of a four-fold oversampling (oversampling with a factor of 4). shown as an example.
Während des gesamten Vorgangs zählt ein Zähler der jeweiligen Station die Zeitmesstaktzyklen von einem Nullpunkt ausgehend bis zum Erreichen des Maximums der Korrelationsfunktion. Den Nullpunkt bildet im Ausführungsbeispiel der Zeitpunkt des Aussendens des Echo-Request-Pakets durch die Basisstation 1. Die Zeitmessstation 3 erschließt sich die Laufzeit des Echo- Request-Pakets von der Basisstation 1 zur Zeitmessstation 3 und damit den Nullpunkt durch die Ankunft des ursprünglichen Echo-Request-Pakets und dem bekannten Abstand der Zeitmessstation 3 von der Basisstation 1. Mit der Ankunft des Echo-Request-Pakets beginnt die Zählung der Zeitmesstaktzyklen. Die Anzahl der Zeitmesstaktzyklen mal der Länge eines Zeitmesstaktzyklus mit der Dauer von 9,09 ns (Ausführungsbeispiel) ergibt die Zeit, die zwischen dem Eintreffen des ursprünglichen Echo-Request-Pakets durch die Ba- sisstation 1 und dem Auftreten des Maximalwerts der Korrelation, also dem vollständigen eintreffen der Kopie des Echo-Request-Pakets, durch die jeweilige Zeitmessstation 3 bzw. die Basisstation 1 vergangen ist. Das Auftreten des Maximalwerts der Korrelation gibt also den Zeitpunkt an, zu dem das Antwortsignal vollständig eingetroffen ist. Da die Kopie der Pseudo-Zufallsfolge alle 9,09 ns um einen Speicherplatz im Schieberegister verschoben wird und jedes mal der Wert der Korrelation bestimmt wird, kann die Ankunft des Antwortsignals auf 9,09 ns genau bestimmt werden, also auf den 110ten Teil einer μs.During the entire process, a counter of the respective station counts the time measuring cycle from a zero point until the maximum of the correlation function is reached. In the exemplary embodiment, the zero point is formed by the time at which base station 1 sends the echo request packet. Timing station 3 reveals the running time of the echo request packet from base station 1 to time measuring station 3 and thus the zero point through the arrival of the original echo -Request packet and the known distance of the time measuring station 3 from the base station 1. With the arrival of the echo request packet, the counting of the time measuring clock cycles begins. The number of clock pulse cycles times the length of a clock pulse cycle with the duration of 9.09 ns (exemplary embodiment) gives the time between the arrival of the original echo request packet by base station 1 and the occurrence of the maximum value of the correlation, ie the complete arrival of the copy of the echo request packet by which the respective time measuring station 3 or the base station 1 has passed. The occurrence of the maximum value of the correlation thus indicates the point in time at which the response signal has arrived completely. Since the copy of the pseudo-random sequence is shifted by one memory location in the shift register every 9.09 ns and the value of the correlation is determined each time, the arrival of the response signal can be determined with an accuracy of 9.09 ns, i.e. to the 110th part of a μs ,
Ein Prozessor bildet anschließend die Differenzen aus den von den jeweiligen Zeitmessstationen 3 bzw. von der Basisstation 1 bestimmten Ankunftszeiten und berechnet aus den Differenzen den Standort des Mobilterminals 5.A processor then forms the differences from the arrival times determined by the respective time measuring stations 3 or by the base station 1 and calculates the location of the mobile terminal 5 from the differences.
Da die Ankunftszeiten auf ca. 10 ns genau bestimmbar sind, lassen sich die Differenzen der Laufzeiten des Echo-Request-Pakets zu den einzelnen Zeitmessstationen mit diesem Verfahren auf ca. 20 ns genau bestimmen. Mit die- ser Genauigkeit sind Standortbestimmung von wenigen Metern möglich.Since the arrival times can be determined with an accuracy of approx. 10 ns, the differences in the transit times of the echo request package to the individual time measuring stations can be determined with this method to an accuracy of approx. 20 ns. With this accuracy, location determination of a few meters is possible.
Damit die Ankunftszeiten in den verschiedenen Zeitmessstationen 3 vergleichbar sind, wird der Zeitmesstakt für die Basisstation 1 und die Zeitmessstationen 3 von einem gemeinsamen Zeittaktgeber zur Verfügung gestellt. Damit ist sichergestellt, dass die Zeitmesstaktzyklen jeweils die genau gleiche Länge aufweisen.So that the arrival times in the different time measuring stations 3 are comparable, the time measuring clock for the base station 1 and the time measuring stations 3 is made available by a common time clock. This ensures that the time measuring cycle cycles each have exactly the same length.
Als Nullpunkt der Zählung der Zeittaktzyklen muss nicht notwendigerweise der Zeitpunkt des Aussendens des Echo-Request-Pakets gewählt werden. Andere Nullpunkte sind ebenfalls möglich. Auch braucht kein gemeinsamer Zeittaktgeber für den Zeitmesstakt vorhanden zu sein. In diesem Fall müssen die Zeitmessstationen jedoch jeweils einen eigenen Zeittaktgeber aufweisen. Die über die Messzeit auftretenden Phasenabweichungen im Zeitmesstakt der einzelnen Zeittaktgeber der Zeitmessstationen 3 dürfen einen bestimmten Wert nicht überschreiten. Bevor eine Standortbestimmung vorgenommen wird, wird das Standortbestimmungssystem kalibriert. Das Kalibrieren erfolgt, um die Laufzeit des Ursprungssignals von der Basisstation 1 zu den Zeitmessstationen 3 zu ermitteln, damit die Zeitmessstationen 3 bei Empfang des Ursprungssignals aus der Ankunftszeit des Ursprungssignals den Nullpunkt der Zählung (Zeitpunkt des Aussendens des Ursprungssignals) bestimmen können. Zwar kann die Laufzeit des Ursprungssignals und damit der Nullpunkt grundsätzlich auch aus dem Abstand der Zeitmessstationen 3 von der Basisstation 1 berechnet werden, jedoch ist die Kalibrierungsmessung das geeignetere Mittel, insbesonde- re, wenn das Standortbestimmungssystemsystem häufig verändert wird, z.B. dadurch, dass es häufig ab- und wieder aufgebaut wird. Ein weiterer Vorteil der Kalibrierungsmessung ist der, dass durch sie auch Laufzeitunterschiede des Ursprungssignals, die innerhalb der empfangenden Zeitmessstationen 3 zustande kommen, Berücksichtigung finden. Solche Laufzeitunterschiede las- sen sich aus dem Abstand der Zeitmessstationen 3 von der Basisstation 1 nicht berechnen.The time of transmission of the echo request packet does not necessarily have to be selected as the zero point of the counting of the clock cycles. Other zero points are also possible. There is also no need for a common time clock for the time measurement cycle. In this case, however, the time measuring stations must each have their own time clock. The phase deviations occurring over the measurement time in the time measurement cycle of the individual time generators of the time measurement stations 3 must not exceed a certain value. Before a location is determined, the location system is calibrated. The calibration is carried out in order to determine the transit time of the original signal from the base station 1 to the time measurement stations 3, so that the time measurement stations 3 can determine the zero point of the count (time of transmission of the original signal) from the arrival time of the original signal when the original signal is received. Although the transit time of the original signal and thus the zero point can in principle also be calculated from the distance of the time measuring stations 3 from the base station 1, the calibration measurement is the more suitable means, in particular if the location determination system system is changed frequently, for example by changing it frequently dismantled and rebuilt. Another advantage of the calibration measurement is that it also takes into account the transit time differences of the original signal that occur within the receiving time measurement stations 3. Such runtime differences cannot be calculated from the distance of the time measuring stations 3 from the base station 1.
Statt aus den Differenzen der Ankunftszeiten kann der Standort auch aus den Ankunftszeiten selbst berechnet werden, falls der Zeitpunkt des Sendens der Kopie des Antwortsignals im Bezug auf den Zeitmesstakt hinreichend genau bekannt ist oder abgeschätzt werden kann.Instead of the difference in arrival times, the location can also be calculated from the arrival times themselves if the time of sending the copy of the response signal in relation to the time measurement clock is known or can be estimated with sufficient accuracy.
Wie oben beschrieben, wird die Korrelation mit der Zeittaktfrequenz von 110 MHz durchgeführt. Wenn die Korrelation nur mit einer Taktfrequenz von 1 MHz (die sich aus der Bitrate des Buetooth-Signals ergebende Taktfrequenz) durchgeführt würde, bedeutete dies, dass nicht alle 9,09 ns eine Korrelation durchgeführt wird, sondern nur jede Mikrosekunde. Der Maximalwert der Korrelation - und damit die Ankunftszeit der Kopie des Echo-Request-Pakets - ist dann nur auf 1 μs genau zu bestimmen. Damit kann jedoch der Standort nur auf einige 100 Meter genau bestimmt werden. Dies ist für die Standortbestimmung eines Mobilterminals 5 in einem Piconet oder einem Scatternet zu un- genau. Das oben beschriebene Verfahren mit Überabtastung (Oversampling) wird daher zur Verbesserung der Genauigkeit der Standortbestimmung ver- wendet. In anderen als auf Bluetooth basierenden Netzwerken kann die Taktfrequenz der Bitrate der gesendeten Daten höher als 1 MHz sein. Ein Oversampling ist dann gegebenenfalls nicht nötig. Auch bei einer Taktfrequenz von 1 MHz ist ein Oversampling nicht nötig, wenn eine Ortsauflösung von einigen 100 m ausreicht.As described above, the correlation is carried out with the clock frequency of 110 MHz. If the correlation were only performed at a clock frequency of 1 MHz (the clock frequency resulting from the bit rate of the Bluetooth signal), this means that a correlation is not carried out every 9.09 ns, but only every microsecond. The maximum value of the correlation - and thus the arrival time of the copy of the echo request packet - can then only be determined with an accuracy of 1 μs. However, this means that the location can only be determined to within a few 100 meters. This is too imprecise for determining the location of a mobile terminal 5 in a piconet or a scatternet. The above-described method with oversampling is therefore used to improve the accuracy of the location determination. applies. In networks other than Bluetooth-based, the clock frequency of the bit rate of the transmitted data can be higher than 1 MHz. Oversampling may then not be necessary. Even with a clock frequency of 1 MHz, oversampling is not necessary if a spatial resolution of a few 100 m is sufficient.
Eine Verbesserung der Genauigkeit in der Bestimmung der Ankunftszeit des Antwortsignals lässt sich außer durch eine Verkürzung der Zeitmesstaktzyklen auch erreichen, indem zwischen den für jeden Zeitmesstaktzyklus ermittelten Werten der Korrelation interpoliert wird. Dies geschieht, indem eine Kurve, die aus Vorüberlegungen bekannt ist, durch die Korrelationswerte gelegt wird, und der oder die Parameter der Kurve angepasst werden, bis sie Maximal mit den Korrelationswerten übereinstimmt (Fittprozess). Zum Anpassen kann beispielsweise die Summe aus den Quadraten der Abweichungen der Werte der Kurve von den Korrelationswerten berechnet werden. Die Parameter der Kur- ve werden dann so lange variiert, bis diese Summe ein Minimum annimmt. Mit dieser Methode, einer Interpolation, lässt sich das Maximum mit einer Genauigkeit bestimmen, die größer ist, als diejenige Genauigkeit, die durch die Länge der Zeitmesstaktzyklen bestimmt ist.An improvement in the accuracy in the determination of the arrival time of the response signal can be achieved in addition to a shortening of the timing cycle by interpolating between the correlation values determined for each timing cycle. This is done by laying a curve, which is known from preliminary considerations, through the correlation values and adapting the parameter or parameters of the curve until it maximally matches the correlation values (fitting process). For adjustment, for example, the sum of the squares of the deviations of the values of the curve from the correlation values can be calculated. The parameters of the curve are then varied until this sum assumes a minimum. With this method, an interpolation, the maximum can be determined with an accuracy that is greater than the accuracy that is determined by the length of the timing pulse cycles.
Einen einfachen Fall der Interpolation erhält man für exakt rechteckförmige Pulse der Pseudo-Zufallsfolge oder Zufallsfolge. Werden in diesem Fall die Werte vor dem Auftreten des Maximalwerts in Abhängigkeit vom Stand der Zählung der Zeitmesstaktzyklen aufgetragen, so erhält man eine ansteigende Gerade, wohingegen man nach dem Auftreten des Maximalwerts eine absteigende Gerade erhält. Der Schnittpunkt dieser Geraden zeigt dann den Maxi- malwert der Korrelation an.A simple case of interpolation is obtained for exactly rectangular pulses of the pseudo-random sequence or random sequence. If in this case the values are plotted before the occurrence of the maximum value depending on the state of the counting of the time measuring cycle cycles, then an ascending straight line is obtained, whereas after the maximum value occurs a descending straight line is obtained. The intersection of this straight line then shows the maximum value of the correlation.
Statt des beschriebenen 110-fach Oversamplings kann jedoch auch ein Oversampling mit einem anderen Faktor gewählt werden. Der Faktor des Oversamplings hängt von der gewünschten Ortsauflösung ab. Bei der Wahl des Faktors kann auch die Qualität des Fittprozesses Berücksichtigung finden. Je genauer mit dem Fittprozess das Maximum bestimmt werden kann, desto geringer braucht der Faktor zu sein.Instead of the described 110-fold oversampling, however, oversampling with a different factor can also be selected. The factor of oversampling depends on the desired spatial resolution. When choosing the factor, the quality of the fitting process can also be taken into account. ever the more precisely the maximum can be determined with the fitting process, the lower the factor needs to be.
Günstig ist es außerdem, wenn der gewählte Faktor des Oversamplings, also das Verhältnis aus Zeitmesstaktfrequenz und Signaltaktfrequenz, nicht dazu führt, dass die Länge eines hohen oder niedrigen Pegels ein ganzzahliges Vielfaches der Dauer eines Zeitmesstaktzyklus ist. Sonst kann bei einem ganzzahligen Verhältnis der Zeitpunkt des Auftretens des Maximums nur mit einer Genauigkeit von einem Zeitmesstaktzyklus festgestellt werden. Der gewählte Faktor für das Überabtasten sollte für keine dieser möglichen Zeitdau- ern eines hohen bzw. niedrigen Pegels dazu führen, dass die Dauer des Pegels ein ganzzahliges Vielfaches der Dauer eines Zeitmesstaktzyklus ist. Daher ist es insbesondere günstig, wenn das Verhältnis aus Zeitmesstaktfrequenz und Signaltaktfrequenz nicht rational ist, da damit auf jeden Fall sichergestellt ist, dass die Dauer eines Pegels kein ganzzahliges Vielfaches der Dauer eines Zeitmesstaktzyklus ist.It is also advantageous if the selected factor of oversampling, i.e. the ratio of the timing pulse frequency and the signal timing frequency, does not result in the length of a high or low level being an integral multiple of the duration of a timing pulse cycle. Otherwise, the time of occurrence of the maximum can only be determined with an accuracy of one time measuring cycle in the case of an integer ratio. The selected factor for oversampling should not result in the duration of the level being an integral multiple of the duration of a time measurement cycle for any of these possible time periods of a high or low level. It is therefore particularly advantageous if the relationship between the timing pulse frequency and the signal timing frequency is not rational, since this ensures in any case that the duration of a level is not an integral multiple of the duration of a timing pulse cycle.
Nachfolgend werden die Vorteile des beschriebenen Verfahrens noch einmal zusammengefasst: Das Verfahren ermöglicht es insbesondere, auf die Synchronisation der Zeittaktgeber in den Zeitmessstationen und im Master auf eine gemeinsame Systemzeit zu verzichten. Weiterhin erfordert es keine defi- nierte zeitliche Verzögerung im Mobilterminal zwischen dem Empfang des Echo-Request-Signals und dem Aussenden des Echo-Response-Signals. Die Position kann mit einer Genauigkeit bestimmt werden, die um ein Mehrfaches besser ist als die der Dauer eines Bits entsprechende Strecke. Schließlich kann die Lokalisation des Mobilterminals aus dem einmaligen Empfang des Signalkodes bestimmen.The advantages of the described method are summarized again below: The method makes it possible, in particular, to dispense with the synchronization of the time clocks in the time measuring stations and in the master with a common system time. Furthermore, it does not require a defined time delay in the mobile terminal between the reception of the echo request signal and the transmission of the echo response signal. The position can be determined with an accuracy that is several times better than the distance corresponding to the duration of a bit. Finally, the location of the mobile terminal can be determined from the one-time reception of the signal code.
Diese Vorteile werden durch folgende technische Maßnahmen erreicht: das empfangene Signal wird abgetastet, bevor es auf den Takt des Basisbandprozessors synchronisiert worden ist. Das empfangene Signal wird weiterhin ü- berabgetastet mit einer Frequenz die um ein Vielfaches höher als die Bitrate ist. Weiterhin wird der Wert der Korrelationsfunktion zwischen empfangenem und gespeichertem Kode in jedem Abtastintervall berechnet, der Zeitpunkt des Maximums der Korrelationsfunktion aus dem einmaligen Empfang des Signalkodes bestimmt und schließlich. Die Genauigkeit der Lokalisation kann durch mehrfache Wiederholung der Messung und Mittelwertbildung erhöht werden.These advantages are achieved by the following technical measures: the received signal is sampled before it has been synchronized to the clock of the baseband processor. The received signal is still oversampled at a frequency that is many times higher than the bit rate. Furthermore, the value of the correlation function between received and stored code in each sampling interval, the time of the maximum of the correlation function is determined from the one-time reception of the signal code and finally. The accuracy of the localization can be increased by repeating the measurement several times and averaging.
Anhand von Fig. 2b wird nachfolgend die Bestimmung der Position eines Mobilterminals durch das erfindungsgemäße TDOA-Verfahren in einem Ausführungsbeispiel näher erläutert. Das Mobilterminal 5 ist in diesem Zusammenhang zum besseren Verständnis der nachfolgenden Gleichungen auch mit „M" gekennzeichnet. Im vorliegenden Ausführungsbeispiel sind drei Zeitmessstati- onen 3, die zusätzlich mit „Z1", „Z2" bzw. „Z3" gekennzeichnet sind, sowie eine Basisstation 1 vorgesehen, die mit „B" gekennzeichnet ist. Weiterhin ist ein Zeittaktgeber 7 (auch „T") vorhanden, mit dem die Zeitmessstationen verbunden sind.The determination of the position of a mobile terminal by the TDOA method according to the invention in one exemplary embodiment is explained in more detail below with reference to FIG. 2b. In this context, the mobile terminal 5 is also marked with "M" for a better understanding of the following equations. In the present exemplary embodiment there are three time measuring stations 3, which are additionally marked with "Z1", "Z2" or "Z3", and one Base station 1 is provided, which is identified by “B”. Furthermore, there is a time clock 7 (also “T”) to which the time measuring stations are connected.
Die anhand von Fig. 2a erläuterte Signalabfolge ist in Fig. 2b durch Pfeile un- terschiedlicher Linienart symbolisiert. Der hier nicht darstellbare zeitliche Ablauf der Signale entspricht dem anhand von Fig. 2a erläuterten. Die zusätzliche dritte Zeitmessstation führt die gleichen Schritte aus wie die in Fig. 2a gezeigten Zeitmessstationen.The signal sequence explained with reference to FIG. 2a is symbolized in FIG. 2b by arrows of different line types. The temporal course of the signals, which cannot be represented here, corresponds to that explained with reference to FIG. 2a. The additional third time measuring station carries out the same steps as the time measuring stations shown in FIG. 2a.
Zusätzlich zu den in Fig. 2a erläuterten Signalen ist jedoch im vorliegenden Ausführungsbeispiel ein von der Basisstation ausgehendes Aktivierungssignal vorgesehen, das in Form von Pfeilen mit einer gestrichelten Linie dargestellt ist. Das Aktivierungssignal wird an alle Zeitmessstationen sowie das Mobilterminal gesendet. Anschließend wir an die Zeitmessstationen und das Mobilterminal das Echo-Request-Paket gesendet. Dies ist durch Pfeile mit einer gepunkteten Linie dargestellt. Die vom Mobilterminal ausgesandte Kopie des Echo-Request-Signals wird als Echo-Response-Signal vom Mobilterminal an die Zeitmessstationen gesendet. Dies ist in Form von Pfeilen mit durchgehender Linie dargestellt. Nachfolgend wird die mathematische Seite der Bestimmung der Zeitdifferenz im Detail erläutert. Zunächst wird die Ankunftszeit des Echo Request-Signals an den Zeitmessstationen Z| bestimmt. Sie ist gegeben durchIn addition to the signals explained in FIG. 2a, an activation signal originating from the base station is provided in the present exemplary embodiment, which is shown in the form of arrows with a dashed line. The activation signal is sent to all timing stations as well as the mobile terminal. The echo request packet is then sent to the time measuring stations and the mobile terminal. This is shown by arrows with a dotted line. The copy of the echo request signal sent by the mobile terminal is sent as an echo response signal from the mobile terminal to the time measuring stations. This is shown in the form of arrows with a solid line. The mathematical side of determining the time difference is explained in detail below. First, the arrival time of the echo request signal at the time measuring stations Z | certainly. It is given by
tlZ,i=tstart+tBZ,l (1 )tlZ, i = tstart + tBZ, l (1)
Dabei bezeichnet tStart den Zeitpunkt, zu dem die Basisstation das Echo- Request-Signal aussendet, tBz,ι Signallaufzeit von der Basisstation B zur i-ten Zeitmessstation Z| (i= 1 , 2, 3) und t1Zlι Ankunftzeit des Echo-Request-Signals an der i-ten Zeitmessstation Z\ .Here, t start denotes the point in time at which the base station transmits the echo request signal, t B z, ι signal propagation time from the base station B to the i-th time measuring station Z | (i = 1, 2, 3) and t 1Zl ι arrival time of the echo request signal at the i-th time measuring station Z \ .
Für das Mobilterminal M ist die Ankunftszeit tιM des Echo-Request-Signals gegeben durchFor the mobile terminal M, the arrival time tι M of the echo request signal is given by
Figure imgf000021_0001
Figure imgf000021_0001
wobei tBM Signallaufzeit von der Basisstation B zum Mobilterminal bezeichnet.where t BM denotes signal propagation time from base station B to the mobile terminal.
Die Ankunftszeit des Echo-Response-Signals an den Zeitmessstationen istThe arrival time of the echo response signal at the time measuring stations is
Figure imgf000021_0002
tstart+tB +tv+t Z,i (3)
Figure imgf000021_0002
tstart + tB + tv + t Z, i (3)
Hier bezeichnet tv die Verzögerungszeit in der Mobilstation zwischen dem Empfang des Echo-Request-Signals und dem Aussenden des Echo- Response-Signals, tMz,ι Signallaufzeit von der Mobilstation M zur i-ten Zeitmessstation Zj und t2z,ι Ankunftszeit des Echo-Response-Signals an der i-ten Zeitmessstation.Here, t v denotes the delay time in the mobile station between the reception of the echo request signal and the transmission of the echo response signal, t M z, signal runtime from the mobile station M to the i-th time measuring station Zj and t 2 z, ι Arrival time of the echo response signal at the i-th time measuring station.
Damit ergibt sich die Zeitdifferenz zwischen Empfang von Echo-Request und Echo-Response an der i-ten Zeitmessstation aus den Gleichungen (1) und (3) zuThe time difference between receipt of the echo request and echo response at the i-th time measuring station thus results from equations (1) and (3)
Δtj= t2z,i—
Figure imgf000021_0004
tstart+tBM+tv+ Z,i " tstarrtBZ.i =
Figure imgf000021_0003
(4) Schließlich folgt als Differenz der Signalankunftszeiten an den Zeitmessstationen i und j, Δtdoa.u
Δtj = t 2 z, i
Figure imgf000021_0004
tstart + tBM + tv + Z, i "tstarrtBZ.i =
Figure imgf000021_0003
(4) Finally, the difference between the signal arrival times at the time measuring stations i and j is Δtdoa.u
Δtdoa,i,j= Δtj- Δtj= tBM+tv+tMZ,i-tBZ,i " tß - v-tMZj+tBZjΔtdoa, i, j = Δtj- Δtj = t B M + tv + tMZ, i-tBZ, i "tß - v-tMZj + tBZj
das heißt, im Ergebnisthat is, in the result
Δtdoa,i,j= tMZ,i-tBZ,rtMZ,j+tBZ,j (5)Δtdoa, i, j = tMZ, i-tBZ, rtMZ, j + tBZ, j (5)
Die Signallaufzeiten tBz,ι von der Basisstation B zur i-ten Zeitmessstation Z\ sind bekannt oder können in einer Kalibrierungsmessung ermittelt werden.The signal propagation times t B z, ι from the base station B to the i-th time measuring station Z \ are known or can be determined in a calibration measurement.
Bei dem hier beschriebenen Verfahren muss die Verzögerungszeit tv zwischen Empfang des Echo-Request-Signals und Aussenden des Echo- Response-Signals in der Mobilstation nicht bekannt sein. Der Zeitpunkt tStan des Aussendens des Echo-Request-Signals kann ebenfalls beliebig sein. Die Verzögerungszeiten zwischen Empfang und Senden eines Signals in den Zeitmessstationen und in der Basisstation werden für dieses Verfahren gar nicht benötigt. Dadurch unterscheidet sich das hier beschriebene Verfahren von bekannten Verfahren, die die Signalankunftszeiten t2Zιj an den Basisstationen direkt messen und dazu die Werte der Zeitverzögerung tv benötigen.In the method described here, the delay time t v between reception of the echo request signal and transmission of the echo response signal need not be known in the mobile station. The time t Sta n of transmission of the echo request signal may also be arbitrary. The delay times between reception and transmission of a signal in the time measuring stations and in the base station are not required at all for this method. The method described here differs from known methods which measure the signal arrival times t 2Zι j directly at the base stations and, for this purpose, require the values of the time delay t v .
Zur Messung der Zeitdifferenzen zwischen dem Eintreffen des Echo-Request- Signals von dem Master und dem Eintreffen des Echo-Response-Signals vom Mobilterminal kann jede Zeitmessstation ihren eigenen, nicht synchronisierten Zeittaktgeber verwenden. Die durch Frequenzabweichungen der Zeittaktgeber entstehenden Zeitfehler müssen über die Zeitdifferenz Δtj kleiner als eine Taktzeit des Schieberegisters des Korrelators sein. Das kann mit Quarzstabilisierten Oszillatoren erreicht werden.In order to measure the time differences between the arrival of the echo request signal from the master and the arrival of the echo response signal from the mobile terminal, each time measuring station can use its own, non-synchronized time clock. The time errors resulting from frequency deviations of the time clocks must be smaller than a clock time of the shift register of the correlator via the time difference Δtj. This can be achieved with quartz-stabilized oscillators.
Fig. 3a zeigt schematisch das Einlesen des Antwortsignals in ein Schiebere- gister, wobei das Signal überabgetastet wird. Die eingehende Kopie 20 der Pseudo-Zufallsfolge 22 wird Bit-weise in das Schieberegister 62 eingelesen. Das Signal wird vierfach überabgetastet. Fig. 3b und 3c zeigen zur Erläuterung der Ungenauigkeit der Positionsbestimmung bei niedriger Abtastrate eine Fehlerquelle bei der Zeitbestimmung die Zuordnung eines Impulses zu den Schieberegisterzellen. In einem ersten Fall (Fig. 3b) erzeugt ein eingehender Impuls (durchgezogene Linie) aufgrund des gegebenen Zeittaktes (vertikale Linien) in vier Zellen des Schieberegisters eine „1". In einem zweiten Fall (Fig. 3c) erzeugt ein gleich langer Impuls aufgrund eines geringfügig verschobenen Zeittaktes in nur drei Zellen des Schieberegisters eine „1". Auf diese Weise wird das Korrelationsergebnis je nach Lage des Zeittaktes relativ zum Signal unterschiedlich ausfallen. Dies bedingt eine Ungenauigkeit bei der Bestimmung des Zeitpunktes der Ankunft eines Signals und damit der Positionsbestimmung. Die Figuren machen demnach deutlich, dass mit einer Erhöhung der Abtastrate über die Zeitauflösung die Ortsauflösung der Positionsbestimmung erhöht werden kann. Denn je höher die Abtastrate, desto geringfügiger der Fehler in der Korrelation.3a shows schematically the reading in of the response signal into a shift register, the signal being oversampled. The incoming copy 20 of the pseudo-random sequence 22 is read into the shift register 62 bit by bit. The signal is oversampled four times. 3b and 3c show an error source in the time determination of the assignment of a pulse to the shift register cells to explain the inaccuracy of the position determination at a low sampling rate. In a first case (Fig. 3b) an incoming pulse (solid line) generates a "1" in four cells of the shift register due to the given timing (vertical lines). In a second case (Fig. 3c) generates an equally long pulse due to a "1" of a slightly shifted clock in only three cells of the shift register. In this way, the correlation result will be different depending on the position of the timing relative to the signal. This causes an inaccuracy when determining the time of arrival of a signal and thus the position determination. The figures accordingly make it clear that by increasing the sampling rate via the time resolution, the spatial resolution of the position determination can be increased. Because the higher the sampling rate, the smaller the error in the correlation.
Im Folgenden wird anhand von Figur 4 der Aufbau eines für Bluetooth geeigneten Empfängers beschrieben, der die Anwendung des oben beschriebenen Verfahrens ermöglicht.The structure of a receiver suitable for Bluetooth, which enables the use of the above-described method, is described below with reference to FIG.
Figur 4 zeigt schematisch den Empfänger als Empfangsteil eines Bluetooth- Transceivers. Der Empfangsteil umfasst eine Hochfrequenzantenne 50, einen rauscharmen Hochfrequenzverstärker 52 zum Verstärken des empfangenen Signals, an dessen Eingang das von der Hochfrequenzantenne 50 empfangene Hochfrequenzsignal anliegt, einen Demodulator 54 zum Demodulieren des verstärkten Signals, an dessen Eingang das verstärkte Signal anliegt, sowie einen Pulsformer 56 zum Bringen der Pulse des demodulierten Signals in die gewünscht Form, an dessen Eingang das demodulierte Signal anliegt. Der Ausgang des Pulsformers 56 ist mit dem Schieberegister 62 und dem Basisbandprozessor 64 verbunden.Figure 4 shows schematically the receiver as a receiving part of a Bluetooth transceiver. The receiving part comprises a high-frequency antenna 50, a low-noise high-frequency amplifier 52 for amplifying the received signal, at the input of which the high-frequency signal received by the high-frequency antenna 50 is present, a demodulator 54 for demodulating the amplified signal, at the input of which the amplified signal is present, and a pulse shaper 56 for bringing the pulses of the demodulated signal into the desired form, at the input of which the demodulated signal is present. The output of pulse shaper 56 is connected to shift register 62 and baseband processor 64.
Der dargestellte Empfänger ist ein Überlagerungsempfänger, auch Superheterodynempfänger oder Superhetempfänger genannt. Zwischen dem rauschar- men Hochfrequenzverstärker 52 und den Demodulator 54 wird das verstärkte Signal in einem Mischer 58 mit einem Frequenzsignal z gemischt, das von einem spannungsgesteuerten Oszillator 60 erzeugt wird. Das Ergebnis der Mischung ist ein Summenfrequenzsignal aus der Summe der beiden gemischten Frequenzen und ein Differenzsignal (Zwischenfrequenzsignal) von 111 MHz, dass sich aus dem Absolutbetrag der Differenz der Frequenzen ergibt. Das Zwischenfrequenzsignal wird dem Mischer 58 entnommen (Abwärtsmischer) und dem Demodulator 54 zugeführt.The receiver shown is a superimposed receiver, also called a superheterodyne receiver or a superheterodyne receiver. This is amplified between the low-noise high-frequency amplifier 52 and the demodulator 54 Signal mixed in a mixer 58 with a frequency signal z, which is generated by a voltage-controlled oscillator 60. The result of the mixing is a sum frequency signal from the sum of the two mixed frequencies and a difference signal (intermediate frequency signal) of 111 MHz, which results from the absolute value of the difference between the frequencies. The intermediate frequency signal is taken from the mixer 58 (down mixer) and fed to the demodulator 54.
Der Demodulator 54 ist so ausgebildet, dass er für den bei Buetooth üblichen Frequenzhub ein möglichst großes Ausgangssignal liefert. Dazu weist der Demodulator 54 eine Resonanzkurve mit möglichst steiler Flanke auf. Andererseits muss die Resonanzkurve breit genug sein, um keine Drift zuzulassen. Das am Ausgang des Demodulators 54 abgegriffene Signal ist als Eingangssignal an den Pulsschärfer 56 angelegt, dessen Ausgangssignal am Eingang des Schieberegisters 62 und des Basisbandprozessors 64 anliegt.The demodulator 54 is designed in such a way that it delivers the largest possible output signal for the frequency swing customary in Buetooth. For this purpose, the demodulator 54 has a resonance curve with a steepest possible slope. On the other hand, the resonance curve must be wide enough not to allow drift. The signal tapped at the output of the demodulator 54 is applied as an input signal to the pulse sharpener 56, the output signal of which is present at the input of the shift register 62 and the baseband processor 64.
Die Länge des Schieberegisters, und ebenso die Zahl der Speicherplätze im RAM, welche für die aus dem Ursprungssignal extrahierte Pseudo-Zufallsfolge vorgesehen sind, hängen von der Wahl des Oversamplingfaktors ab, da dieser angibt, in wie viele Bits ein einzelnes Bit der Pseudo-Zufallsfolge aufgespaltet wird. Wie oben beschrieben, erzeugt das Oversampling mit dem Faktor 110 aus einem einzelnen Bit mit einer Dauer von 1 μs 110 „kurze" Bit mit einer Dauer von 9,09 ns (110ter Teil einer μs). Für jedes „kurze" Bit muss im Schieberegister beziehungsweise im RAM ein eigener Speicherplatz vorgesehen sein.The length of the shift register, as well as the number of memory locations in RAM, which are provided for the pseudo-random sequence extracted from the original signal, depend on the choice of the oversampling factor, since this specifies in how many bits a single bit of the pseudo-random sequence is split up. As described above, oversampling with a factor of 110 generates 110 "short" bits with a duration of 9.09 ns (110th part of a μs) from a single bit with a duration of 1 μs. For each "short" bit the shift register must or its own memory space can be provided in RAM.
Daneben hängt die Länge des Schieberegisters sowie die Zahl der im RAM für die aus dem Ursprungssignal extrahierte Pseudozufallsfolge vorgesehenen Speicherplätze von der Länge der gesendeten Pseudo-Zufalls-Folge ab. Im beschriebenen Ausführungsbeispiel beträgt die Länge der Pseudo-Zufallsfolge 64 Bit, was bedeutet, dass ein Schieberegister mit 64 mal 110, also 7040 Speicherplätzen vorgesehen werden muss. Entsprechendes gilt für den Be- reich des RAM, in welchem die Pseudo-Zufallsfolge des Ursprungssignals gespeichert werden soll. Längere oder kürzere Pseudo-Zufallsfolgen erfordern bei gleichem Oversamplingfaktor längere bzw. kürzere Schieberegister und mehr bzw. weniger Speicherplätze im RAM.In addition, the length of the shift register and the number of memory locations provided in RAM for the pseudo-random sequence extracted from the original signal depend on the length of the pseudo-random sequence sent. In the exemplary embodiment described, the length of the pseudo-random sequence is 64 bits, which means that a shift register with 64 times 110, that is 7040, memory locations must be provided. The same applies to the area of RAM in which the pseudo-random sequence of the original signal should be saved. Longer or shorter pseudo-random sequences require longer or shorter shift registers and more or less memory locations in RAM with the same oversampling factor.
Wichtig ist, dass das demodulierte und vom Pulsformer 56 geschärfte Ant- wortsignal vor dem Basisbandprozessor 64 abgegriffen wird, um die Zeitinformation nicht durch die dort durchgeführte Synchronisation auf den Takt des Basisbandprozessors 64 zu verlieren. Um die zeitliche Abweichung des sich aus der Bitrate des Antwortsignals ergebenden Signaltakts vom Takt des Basisbandprozessors 64 auszugleichen, wird der Taktgeber des Basisbandpro- zessors 64 mit dem Signaltakt synchronisiert. Dies geschieht durch das Hinzufügen eines Offsets zu den Taktzyklen des Basisbandprozessors, wodurch die Zeitinformation des empfangenen Signals verloren geht.It is important that the demodulated response signal sharpened by the pulse shaper 56 is tapped before the baseband processor 64 in order not to lose the time information due to the synchronization carried out there to the clock of the baseband processor 64. In order to compensate for the time deviation of the signal clock resulting from the bit rate of the response signal from the clock of the baseband processor 64, the clock generator of the baseband processor 64 is synchronized with the signal clock. This is done by adding an offset to the clock cycles of the baseband processor, whereby the time information of the received signal is lost.
Das Antwortsignal kann an jeder beliebigen Stelle vor dem Basisbandprozessor 64 abgegriffen werden. Umso früher das Antwortsignal abgegriffen wird, umso mehr zusätzliche Elemente müssen jedoch zwischen dem Abgriffspunkt und den Korrelator zusätzlich vorhanden sein. Würde das Antwortsignal zum Beispiel hinter dem Mischer 58 abgegriffen, so müsste der Zweig zum Korrelator 62 einen eigenen Demodulator und einen eigenen Pulsformer enthalten. Am günstigsten ist es daher das Antwortsignal nach dem Pulsformer abzugrei- fen.The response signal can be tapped anywhere in front of the baseband processor 64. However, the earlier the response signal is tapped, the more additional elements must additionally be present between the tapping point and the correlator. If the response signal were tapped behind the mixer 58, for example, the branch to the correlator 62 would have to have its own demodulator and its own pulse shaper. It is therefore best to tap the response signal after the pulse shaper.
Im Rahmen der Erfindung sind Abweichungen von den detailliert dargestellten Ausführungsbeispielen möglich.Deviations from the exemplary embodiments shown in detail are possible within the scope of the invention.
Im Ausführungsbeispiel wird die gemeinsame Zeitmesstaktfrequenz über Leitungen vermittelt (siehe Fig. 1 und zugehörige Beschreibung). Sie kann jedoch alternativ auch drahtlos übermittelt werden.In the exemplary embodiment, the common timing pulse frequency is conveyed via lines (see FIG. 1 and associated description). Alternatively, however, it can also be transmitted wirelessly.
Außerdem können die Zeitmessstation 3 und die Basisstation 1 statt eines gemeinsamen auch jeweils einen individuellen Zeittaktgeber aufweisen. Diese individuellen Zeittaktgeber müssen dann jedoch jeweils eine Zeitmesstaktfre- quenz mit hinreichend gleich langen und stabilen Zeitmesstaktzyklen zur Verfügung stellen. Geschieht dies nicht, so würde die Summe der Abweichungen der Zeitmessaktzyklen voneinander während der Dauer der Messung so groß werden, dass die Standortbestimmung nicht mehr mit der erforderlichen Ge- nauigkeit möglich ist. Die benötigte Qualität der individuellen Zeittaktgeber ist daher von der gewünschten Genauigkeit der Standortbestimmung abhängig.In addition, the time measuring station 3 and the base station 1 can each have an individual time clock instead of a common one. However, these individual time clocks must each have a time provide a sequence with sufficiently long and stable timing cycles. If this does not happen, the sum of the deviations of the time measurement cycle from each other would become so large during the measurement that the location can no longer be determined with the required accuracy. The required quality of the individual timers is therefore dependent on the desired accuracy of the location determination.
Sowohl die Basisstation 1 als auch die Zeitmessstationen 3 sind im Ausführungsbeispiel als stationäre Stationen ausgebildet, sie können jedoch auch mobile Stationen sein, sofern ihre Position während der Standortbestimmung für die Durchführung der Standortbestimmung genau genug bekannt ist.Both the base station 1 and the time measuring stations 3 are designed as stationary stations in the exemplary embodiment, but they can also be mobile stations, provided that their position is known sufficiently well during the location determination for the location determination to be carried out.
Der Takt beim Eingeben des Antwortsignals in das Schieberegister muss nicht durch den Zeitmesstakt gegeben sein. Es ist ausreichend, wenn der verwendete Takt zum Zeitmesstakt synchron ist.The clock when entering the response signal in the shift register does not have to be given by the time measurement clock. It is sufficient if the clock used is synchronized with the time measurement clock.
Zwar führt die Beschriebene Standortbestimmung nur dann zu einem eindeu- tigen Ergebnis, wenn drei Zeitmessstationen vorhanden sind. Sind jedoch nur zwei Zeitmessstationen vorhanden und kann die Eindeutigkeit des Ergebnisses auf andere Weise hergestellt werden, als durch eine Dritte Zeitmessstation, so genügen zwei Zeitmessstationen für die Standortbestimmung. Wird z.B. ein auf den Ankunftszeiten und nicht auf den Differenzen der Ankunftszeiten basierendes Verfahren, ein sog. ToA-Verfahren (Time of Arrival), angewendet, so erhält man für jede Zeitmessstation einen Kreis, auf dem sich das Mobilterminal befinden kann. Der Radius des Kreises gibt den Abstand des Mobilterminals von der jeweiligen Zeitmessstation wieder. Bei zwei Zeitmessstationen haben diese Kreise im Allgemeinen zwei Schnittpunkte, es sei denn, das Mobilterminal befindet sich genau in der Mitte zwischen beiden Zeitmessstationen. Kann einer der beiden Schnittpunkt ausgeschlossen werden, etwa, weil sich die Zeitmessstationen an einer Wand befinden und sich das Mobilterminal nur auf der einen Seite der Wand befinden kann, so genügen zwei Zeitmessstationen für die Standortbestimmung. The described location determination only leads to a clear result if there are three time measuring stations. However, if there are only two time measuring stations and the uniqueness of the result can be established in a different way than by a third time measuring station, two time measuring stations are sufficient for determining the location. E.g. If a procedure based on the arrival times and not on the differences of the arrival times, a so-called ToA procedure (Time of Arrival) is used, a circle is obtained for each time measuring station on which the mobile terminal can be located. The radius of the circle shows the distance of the mobile terminal from the respective time measuring station. With two timing stations, these circles generally have two intersections, unless the mobile terminal is exactly in the middle between the two timing stations. If one of the two intersections can be excluded, for example because the time measuring stations are located on a wall and the mobile terminal can only be located on one side of the wall, two time measuring stations are sufficient for determining the location.

Claims

Patentansprüche claims
1. Verfahren zum Bestimmen des Standorts eines Mobilterminals mit den Schritten:1. Procedure for determining the location of a mobile terminal with the steps:
Senden eines von einer Basisstation (1 ) ausgehenden Ursprungs- Signals an das Mobilterminal (5) und an mindestens zwei Zeitmessstationen (3),Sending an originating signal originating from a base station (1) to the mobile terminal (5) and to at least two time measuring stations (3),
Senden eines Antwortsignals auf das Ursprungssignal an die Zeitmessstationen (3) durch das Mobilterminal (5),Sending a response signal to the original signal to the time measuring stations (3) by the mobile terminal (5),
Bestimmen der Ankunftszeiten des Antwortsignals bei den Zeit- messstationen (3) undDetermining the arrival times of the response signal at the time measuring stations (3) and
Ermitteln des Standortes des Mobilterminals (5) anhand der Ankunftszeiten des Antwortsignals bei den Zeitmessstationen (3).Determining the location of the mobile terminal (5) on the basis of the arrival times of the response signal at the time measuring stations (3).
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das Ursprungssignal an mindestens drei Zeitmessstationen gesendet wird.2. The method according to claim 1, characterized in that the original signal is sent to at least three time measuring stations.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Ankunftszeiten des Ursprungssignals bei den Zeitmessstationen bestimmt werden.3. The method according to claim 1 or 2, characterized in that the arrival times of the original signal are determined at the time measuring stations.
4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass den Zeitmessstationen (3) eine Zeitskala mit gemeinsa- mem Zeitmesstaktzyklus und gemeinsamem Nullpunkt vermittelt wird.4. The method according to any one of the preceding claims, characterized in that the time measuring stations (3) are conveyed a time scale with a common time measuring cycle and a common zero point.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Bestimmung der Ankunftszeiten in den Zeitmessstationen (3) dadurch erfolgt, dass die Zeitmesstaktzyklen bis zur Ankunft des Antwortsignals gezählt werden. 5. The method according to claim 4, characterized in that the arrival times in the time measuring stations (3) are determined by counting the time measuring clock cycles until the arrival of the response signal.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Ankunft des Ursprungssignals in den Zeitmessstationen (3) jeweils einen Zähler zum Zählen der Zeitmesstaktzyklen aktiviert.6. The method according to claim 5, characterized in that the arrival of the original signal in the time measuring stations (3) each activates a counter for counting the time measuring clock cycles.
7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Ankunft eines von einem bekannten Ort gesendeten Signals in den Zeitmessstationen (3) jeweils einen Zähler zum Zählen der Zeitmesstaktzyklen aktiviert.7. The method according to claim 5, characterized in that the arrival of a signal sent from a known location in the time measuring stations (3) each activates a counter for counting the time measuring clock cycles.
8. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Aussendung des Antwortsignals in den Zeitmessstationen (3) jeweils einen Zäh- ler zum Zählen der Zeitmesstaktzyklen aktiviert und die Ankunft eines von einem bekannten Ort gesendeten Stoppsignals das Zählen in den Zeitmessstationen (3) stoppt.8. The method according to claim 1, characterized in that the transmission of the response signal in the time measuring stations (3) activates a counter for counting the time measuring clock cycles and the arrival of a stop signal sent from a known location stops counting in the time measuring stations (3) ,
9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die jeweilige Differenz der Ankunftszeiten des Ursprungssignals und des Antwortsignals bzw. des Antwortsignals und des Stoppsignals bei den9. The method according to claim 7 or 8, characterized in that the respective difference in the arrival times of the original signal and the response signal or the response signal and the stop signal in the
Zeitmessstationen ermittelt wird.Timing stations is determined.
10. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Zeitmessstationen (3) das Ursprungssignal speichern, dass das Mobilterminal (5) als Antwortsignal eine Kopie des Ursprungs- Signals sendet und dass die Ankunft des Antwortsignals durch einen10. The method according to any one of the preceding claims, characterized in that the time measuring stations (3) store the original signal, that the mobile terminal (5) sends a copy of the original signal as a response signal and that the arrival of the response signal by a
Vergleich des Antwortsignals mit dem gespeicherten Ursprungssignal festgestellt wird.Comparison of the response signal with the stored original signal is determined.
11. Verfahren nach Anspruch 4 und Anspruch 10, dadurch gekennzeichnet, dass der Vergleich des Antwortsignals mit dem Ursprungssignal durch- geführt wird, indem das Antwortsignal in den Zeitmessstationen (3) im11. The method according to claim 4 and claim 10, characterized in that the comparison of the response signal with the original signal is carried out by the response signal in the time measuring stations (3) in
Zeitmesstakt in ein Schieberegister eingegeben wird und in jedem Zeitmesstaktzyklus das im Schieberegister befindliche Antwortsignal Bitweise mit dem gespeicherten Ursprungssignal korreliert wird. Time measurement clock is entered in a shift register and in each time measurement cycle the response signal located in the shift register is correlated bit by bit with the stored original signal.
12. Verfahren nach Anspruch 6 und Anspruch 11 , dadurch gekennzeichnet, dass die Ankunft des Antwortsignals durch den Maximalwert der Korrelation bestimmt wird und der Zählerstand, bei dem der Maximalwert auftritt, die Ankunftszeit wiedergibt.12. The method according to claim 6 and claim 11, characterized in that the arrival of the response signal is determined by the maximum value of the correlation and the counter reading at which the maximum value occurs represents the arrival time.
13. Verfahren nach einem der Ansprüche 4 bis 12, dadurch gekennzeichnet, dass der Zeitmesstaktzyklus kürzer ist, als der sich durch die Bitrate des Antwortsignals ergebende Signaltaktzyklus.13. The method according to any one of claims 4 to 12, characterized in that the timing cycle is shorter than the signal clock cycle resulting from the bit rate of the response signal.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass der Zeitmesstaktzyklus 10 bis 1000 mal kürzer ist, als der Signaltaktzyklus.14. The method according to claim 13, characterized in that the timing cycle is 10 to 1000 times shorter than the signal cycle.
15. Verfahren nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass, um den Maximalwert der Korrelation zu bestimmen, eine pa- rametrisierte Kurve oder Gerade an die Korrelationswerte angepasst wird.15. The method according to any one of claims 12 to 14, characterized in that in order to determine the maximum value of the correlation, a parameterized curve or straight line is adapted to the correlation values.
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass das An- passen derart geschieht, dass die Quadrate der Abweichungen der Werte der Kurve bzw. der Geraden von den Korrelationswerten bestimmt wird und die Parameter der Kurve bzw. der Geraden so lange variiert werden, bis die Summe der Quadrate der Abweichungen ein Minimum annimmt.16. The method according to claim 15, characterized in that the adaptation takes place in such a way that the squares of the deviations of the values of the curve or the straight line from the correlation values are determined and the parameters of the curve or the straight line are varied for as long as possible, until the sum of the squares of the deviations takes a minimum.
17. Verfahren nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass durch die vor und nach dem Maximalwert ermittelten Werte je eine Gerade gelegt wird, um den Maximalwert der Korrelation zu bestimmen.17. The method according to any one of claims 12 to 14, characterized in that a straight line is laid through the values determined before and after the maximum value in order to determine the maximum value of the correlation.
18. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekenn- zeichnet, dass das Ursprungssignal eine Pseudo-Zufallsfolge und/oder eine Zufallsfolge umfasst. 18. The method according to any one of the preceding claims, characterized in that the original signal comprises a pseudo-random sequence and / or a random sequence.
19. Verfahren nach einem der vorangehenden Ansprüche, bei dem die Basisstation (1) auch die Aufgaben einer der Zeitmessstationen (3) wahrnimmt.19. The method according to any one of the preceding claims, wherein the base station (1) also performs the tasks of one of the timing stations (3).
20. Verfahren nach einem der vorangehenden Ansprüche, bei dem die Kommunikation zwischen dem Mobilterminal, der Basis und den Zeitmessstationen nach einem Bluetooth-Protokoll erfolgt.20. The method according to any one of the preceding claims, wherein the communication between the mobile terminal, the base and the time measuring stations takes place according to a Bluetooth protocol.
21. Anordnung zum Bestimmen des Standorts eines Mobilterminals mit einer Basisstation (1 ), mindestens zwei Zeitmessstationen (3), wobei die Zeitmessstationen (3) jeweils eine Zeiterfassungseinheit aufweisen, mit welcher die Ankunftszeit eines von dem Mobilterminal (5) ausgehenden21. Arrangement for determining the location of a mobile terminal with a base station (1), at least two time measuring stations (3), the time measuring stations (3) each having a time recording unit, with which the arrival time of an outgoing from the mobile terminal (5)
Signals erfasst werden kann, und einer Standortbestimmungseinheit zum Berechnen des Standorts aus den von Zeiterfassungseinheiten er- fassten Ankunftszeiten, dadurch gekennzeichnet, dass die Zeiterfassungseinheiten jeweils ein Schieberegister (62) und einen Korrelator umfassen.Signal can be detected, and a location determination unit for calculating the location from the arrival times recorded by time recording units, characterized in that the time recording units each comprise a shift register (62) and a correlator.
22. Anordnung nach Anspruch 21 mit mindestens drei Zeitmessstationen (3).22. The arrangement according to claim 21 with at least three time measuring stations (3).
23. Anordnung nach Anspruch 21 oder 22, dadurch gekennzeichnet, dass ein gemeinsamer Zeittaktgeber (7) zum Zuführen einer gemeinsamen Zeitmesstaktfrequenz an alle Zeitmessstationen (3) vorgesehen ist.23. The arrangement according to claim 21 or 22, characterized in that a common time clock (7) is provided for supplying a common time measurement frequency to all time measuring stations (3).
24. Anordnung nach Anspruch 23, dadurch gekennzeichnet, dass der gemeinsame Zeittaktgeber (7) den Zeitmessstationen (3) eine Taktfrequenz zuführt, die 10 bis 1000 mal höher ist als die Frequenz des Signaltaktes.24. The arrangement according to claim 23, characterized in that the common clock (7) supplies the timing stations (3) with a clock frequency which is 10 to 1000 times higher than the frequency of the signal clock.
25. Anordnung nach einem der Ansprüche 21 bis 24, dadurch gekennzeichnet, dass jede Zeitmessstation (3) einen Empfänger nach Anspruch 17 oder Anspruch 18 umfasst. 25. Arrangement according to one of claims 21 to 24, characterized in that each time measuring station (3) comprises a receiver according to claim 17 or claim 18.
26. Anordnung nach einem der Ansprüche 21 bis 25, dadurch gekennzeichnet, dass eine der Zeitmessstationen (3) in die Basisstation (1) integriert ist.26. Arrangement according to one of claims 21 to 25, characterized in that one of the time measuring stations (3) is integrated in the base station (1).
27. Anordnung nach einem der Ansprüche 23 bis 26, dadurch gekennzeich- net, dass die Zeitmessstationen mit jeweils einem Empfänger verbunden sind, der eine Empfangseinrichtung zum Empfang eines Signals und einen Basisbandprozessor aufweist, wobei der Empfänger so ausgebildet ist, dass das empfangene Signal vor dem Basisbandprozessor abgreifbar ist.27. Arrangement according to one of claims 23 to 26, characterized in that the time measuring stations are each connected to a receiver which has a receiving device for receiving a signal and a baseband processor, the receiver being designed such that the received signal is present the baseband processor can be tapped.
28. Anordnung nach Anspruch 27, dadurch gekennzeichnet, dass Empfänger und Zeitmessstation in einem Gerät integriert sind. 28. The arrangement according to claim 27, characterized in that the receiver and time measuring station are integrated in one device.
PCT/EP2002/013474 2001-11-27 2002-11-26 Positioning system and method WO2003046600A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02792827A EP1451609A2 (en) 2001-11-27 2002-11-26 Positioning system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10159226A DE10159226A1 (en) 2001-11-27 2001-11-27 Location determination system and method
DE10159226.4 2001-11-27

Publications (2)

Publication Number Publication Date
WO2003046600A2 true WO2003046600A2 (en) 2003-06-05
WO2003046600A3 WO2003046600A3 (en) 2004-01-15

Family

ID=7707809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/013474 WO2003046600A2 (en) 2001-11-27 2002-11-26 Positioning system and method

Country Status (3)

Country Link
EP (1) EP1451609A2 (en)
DE (1) DE10159226A1 (en)
WO (1) WO2003046600A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3036496B1 (en) * 2015-05-18 2017-06-23 Geops Systems RADIO FREQUENCY SIGNAL TRANSMISSION IN A TIME-REAL LOCATION SYSTEM

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2448638A1 (en) * 1973-10-23 1975-05-28 Sercel Rech Const Elect METHOD AND DEVICE TO AID IN CALCULATING DISTANCES
DE2625719C1 (en) * 1976-06-09 1991-03-28 Siemens Ag Location system with separately installed sensors for the intersection between a hyperbola (transit time difference) and a straight line
DE4409178A1 (en) * 1994-03-17 1995-09-21 Siemens Ag Determining positions of mobile stations in mobile radio system
WO1999049691A2 (en) * 1998-03-24 1999-09-30 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for determining the position of a mobile station in a cellular communication system
US6297737B1 (en) * 2000-04-03 2001-10-02 Ericsson Inc Object locating system
US6300904B1 (en) * 1999-06-09 2001-10-09 Honeywell International Inc. Narrowband based navigation scheme

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3222255A1 (en) * 1982-06-14 1983-12-15 Fried. Krupp Gmbh, 4300 Essen Method for determining and displaying target data
DE3644066C2 (en) * 1986-08-07 2000-03-02 Interdigital Tech Corp Subscriber unit for a wireless digital telephone system
DE19647098A1 (en) * 1996-11-14 1998-06-04 Helge Dipl Ing Bruenger Multiple dimensional location system for object using electromagnetically transferred signal transition time differences
DE19944938A1 (en) * 1999-09-20 2001-03-22 Mannesmann Vdo Ag Navigation system has expanded display function whereby traffic restriction information applying to determined vehicle position and held in memory element is displayed
DE10004277A1 (en) * 2000-02-01 2001-08-02 Joern Ilper Identification and location of individuals, animals and objects using attached mobile network transmitter modules

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2448638A1 (en) * 1973-10-23 1975-05-28 Sercel Rech Const Elect METHOD AND DEVICE TO AID IN CALCULATING DISTANCES
DE2625719C1 (en) * 1976-06-09 1991-03-28 Siemens Ag Location system with separately installed sensors for the intersection between a hyperbola (transit time difference) and a straight line
DE4409178A1 (en) * 1994-03-17 1995-09-21 Siemens Ag Determining positions of mobile stations in mobile radio system
WO1999049691A2 (en) * 1998-03-24 1999-09-30 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for determining the position of a mobile station in a cellular communication system
US6300904B1 (en) * 1999-06-09 2001-10-09 Honeywell International Inc. Narrowband based navigation scheme
US6297737B1 (en) * 2000-04-03 2001-10-02 Ericsson Inc Object locating system

Also Published As

Publication number Publication date
DE10159226A1 (en) 2003-07-03
WO2003046600A3 (en) 2004-01-15
EP1451609A2 (en) 2004-09-01

Similar Documents

Publication Publication Date Title
DE69829421T2 (en) Positioning system for a digital telephone network
DE602004006872T2 (en) DEVICES AND ASSOCIATED METHODS FOR PRECISION DISTANCE MEASUREMENTS IN A WIRELESS COMMUNICATION ENVIRONMENT
EP1314048B1 (en) System for determining the position of an object
DE60117522T2 (en) Method for synchronizing a base station for wireless communication systems
DE60304689T2 (en) METHOD AND DEVICE FOR SYNCHRONIZING BASE STATIONS
DE112005000779B4 (en) Method for the synchronization of clock devices
DE102006022605A1 (en) A time synchronization system and method for synchronizing location units in a communication system using a known external signal
WO2018059782A1 (en) Telegram splitting-based localization
DE112005001916T5 (en) Bandwidth-efficient system and method for distance measurement of nodes in a wireless communication network
DE10317905A1 (en) Method and device for synchronizing a radio telemetry system using a transmission reference delay jump ultra-wideband pilot signal
DE102007043649B4 (en) Method for increasing the location accuracy of unsynchronized radio subscribers
EP3639549B1 (en) Method for radio measuring applications
DE60002358T2 (en) PROCESS AND POSITIONING SYSTEM OF A TRANSMITTER
DE102011107164A1 (en) Method and system for locating a current position or a coupling point of a mobile unit by means of leaky waveguide
WO2003046600A2 (en) Positioning system and method
DE102010023960A1 (en) Method and device for location determination
WO2022096515A1 (en) Method for determining distances between a plurality of objects
DE102007031129A1 (en) Mobile transceiver for use in e.g. wireless local area network, has distance determining unit determining distance between transceiver and another transceiver based on signal propagation delay between reception and transmission values
EP2465310A1 (en) Method and arrangement for measuring delay of a signal between two stations of the arrangement
DE10106820A1 (en) Method for determining a bearing for a mobile communications terminal in a non-time synchronous mobile radiotelephone system uses multiple base stations each to circulate signals periodically as data on locations.
DE69832667T2 (en) Transceiver circuit for connecting a base station to a control center of base stations according to the DECT standard
EP1041397B1 (en) Method and apparatus to determine the arrival time of a coded signal
DE10332551B4 (en) Method for determining position
DE102010023340B4 (en) Method and device for distance measurement
DE19912475A1 (en) Methods for position determination and navigation by using transmission/reception units of mobile radio network

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002792827

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002792827

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2002792827

Country of ref document: EP