WO2003045947A1 - Rosiglitazone edisylates and their use as antidiabetics - Google Patents
Rosiglitazone edisylates and their use as antidiabetics Download PDFInfo
- Publication number
- WO2003045947A1 WO2003045947A1 PCT/GB2002/005239 GB0205239W WO03045947A1 WO 2003045947 A1 WO2003045947 A1 WO 2003045947A1 GB 0205239 W GB0205239 W GB 0205239W WO 03045947 A1 WO03045947 A1 WO 03045947A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ethanedisulfonate
- dione
- ethoxy
- pyridyl
- benzyl
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
- C07D417/12—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
Definitions
- This invention relates to a novel compound, in particular to a novel pharmaceutical being a novel salt of a certain thiazolidinedione, to a process for the preparation of the said compound and to the use of the compound in medicine.
- EP-A-0 306 228 relates to certain thiazolidinedione derivatives disclosed as having hypoglycaemic and hypolipidaemic activity.
- the compound of Example 30 of EP-A-0 306 228 is 5-[4-[2-( ⁇ -methyl-N-(2-pyridyl)amino)ethoxy]benzyl]thiazolidine- 2,4-dione (hereinafter referred to as "Compound (I)").
- WO 94/05659 discloses certain salts of the compounds of EP-A-0 306 228.
- the preferred salt of WO 94/05659 is the maleic acid salt.
- the novel Ethanedisulfonate can be prepared by an efficient and economic process particularly suited to large-scale preparation.
- the novel Ethanedisulfonate also has useful pharmaceutical properties and in particular it is indicated to be useful for the treatment and/or prophylaxis of diabetes mellitus, conditions associated with diabetes mellitus and certain complications thereof.
- the present invention provides 5-[4-[2-(N-methyl-N-(2- pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4-dione ethanedisulfonate salt (the Ethanedisulphonate), or a solvate thereof.
- Ethanedisulfonic acid is a diacid, thus the Ethanedisulfonate of the invention can form either a 1:1, Compound (I): ethanedisulfonate molar ratio salt or a 2:1, Compound (I): ethanedisulfonate molar ratio salt.
- the present invention provides an Ethanedisulfonate in which the molar ratio of Compound (I) to ethanedisulfonic acid is 2:1 (the 2:1 salt).
- an Ethanedisulfonate in which the molar ratio of Compound (I) to ethanedisulfonic acid is 1:1 forms another aspect of the invention (the 1:1 salt).
- the ethanedisulfonate anion may be associated with a proton (hydrogen atom) in addition to Compound (I) or may be associated with another cation, for example an alkali metal or ammonium cation, i the former case the 1 : 1 salt may be described as a hydrogen ethanedisulfonate, while in the latter case the salt may be described as a mixed salt.
- the Ethanedisulfonate of the invention extends to hydrogen ethanedisulphonates .
- the Ethanedisulfonate of the invention also extends to mixed salts.
- the Ethanedisulfonate 2:1 salt exists in more than one polymorphic form.
- the present invention extends to all polymorphic forms of the Ethanedisulphonate whether in a pure polymorphic form or when admixed with any other material, such as another polymorphic form.
- certain novel polymorphic forms of the Ethanedisulfonate 2:1 salt are referred to as Form I and Form II.
- the invention provides the Ethanedisulfonate, or a solvate thereof characterised by spectral data, including at least one of, infra red, Raman, X-ray, (carbon or hydrogen) nuclear magnetic resonance spectral data and/or melting point data.
- the invention provides Ethanedisulfonate Form I, or a solvate thereof.
- the invention provides Ethanedisulfonate Form ⁇ , or a solvate thereof.
- the present invention provides 5-[4-[2-(N-methyl-N-(2- pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4-dione ethanedisulfonate salt Form I (Ethanedisulphonate Form I), characterised in that it provides:
- the Ethanedisulfonate Form I provides an infrared spectrum substantially in accordance with Figure 1.
- the Ethanedisulfonate Form I provides a Raman spectrum substantially in accordance with Figure 2.
- the Ethanedisulfonate Form I provides an X-Ray powder diffraction pattern (XRPD) substantially in accordance with Table 1 or Figure 3.
- the Ethanedisulfonate Form I provides a Solid State 13 C NMR spectrum substantially in accordance with Figure 4.
- the present invention provides 5-[4-[2-(N-methyl-N-(2- pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4-dione ethanedisulfonate salt Form II (Ethanedisulfonate Form II), characterised in that it provides:
- the Ethanedisulfonate Form II provides an infrared spectrum substantially in accordance with Figure 5.
- the Ethanedisulfonate Form II provides a Raman spectrum substantially in accordance with Figure 6.
- the Ethanedisulfonate Form II provides an X-Ray powder diffraction pattern (XRPD) substantially in accordance with Table 2 or Figure 7.
- the Ethanedisulfonate Form II provides a Solid State 13 C NMR spectrum substantially in accordance with Figure 8.
- the Ethanedisulfonate Form ⁇ provides a melting range in the range of 192 to 205 °C, for example 197.8 - 199.0°C.
- the invention provides 5-[4-[2-(N-methyl-N-(2- pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4-dione, ethanedisulfonate salt Form II, characterised in that it provides:
- the present invention encompasses the Ethanedisulfonate or a solvate thereof isolated in a purified form or when a admixed with other materials.
- the Ethanedisulfonate or a solvate thereof in an isolated form, that is isolated substantially from any impurity.
- the Ethanedisulfonate or a solvate thereof in substantially pure form.
- the invention provides the Ethanedisulfonate or solvate thereof in a solid pharmaceutically acceptable form, such as a solid dosage form, especially when adapted for oral administration.
- the invention also provides the Ethanedisulfonate or solvate thereof in a pharmaceutically acceptable form, especially in bulk form, such form being particularly capable of being milled.
- the invention therefor also provides the Ethanedisulfonate or solvate thereof in a milled form.
- the invention provides the Ethanedisulfonate or solvate thereof in a pharmaceutically acceptable form, especially in bulk form, such form having good flow properties, especially good bulk flow properties.
- Solvates include pharmaceutically acceptable solvates, such as hydrates.
- a suitable solvate is a hydrate.
- the invention also provides a process for preparing the Ethanedisulfonate or a solvate thereof, characterised in that 5-[4-[2-(N-methyl-N-(2- pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4-dione (Compound (1)) or a salt thereof, preferably dispersed or dissolved in a suitable solvent, is reacted with a suitable source of ethanedisulfonate ion; and the Ethanedisulfonate or a solvate thereof is recovered.
- a process for preparing the Ethanedisulfonate or a solvate thereof characterised in that 5-[4-[2-(N-methyl-N-(2- pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4-dione (Compound (1)) or a salt thereof, preferably dispersed or dissolved in a suitable solvent, is reacted with a suitable
- Ethanedisulfonates may be prepared by contacting appropriate amounts, such as stoichiometric amounts (1:1 or 1:2), of the acid and Compound (I); alternatively a relative excess of the acid may be used.
- Mixed salts may be prepared by forming a precursor 1:1 salt in situ or using it pre-formed; and contacting the precursor salt with a solution containing the metal or ammonium ion, or treating a metal or ammonium hydrogen ethanedisulfonate with Compound (I).
- a suitable reaction solvent is an alkanol, for example propan-2-ol, or a hydrocarbon, such as toluene, a ketone, such as acetone, an ester, such as ethyl acetate, an ether such as tetrahydrofuran, a nitrile such as acetonitrile, or a halogenated hydrocarbon such as dichloromethane or water, or an organic acid such as acetic acid; or a mixture thereof.
- a hydrocarbon such as toluene, a ketone, such as acetone, an ester, such as ethyl acetate, an ether such as tetrahydrofuran, a nitrile such as acetonitrile, or a halogenated hydrocarbon such as dichloromethane or water, or an organic acid such as acetic acid; or a mixture thereof.
- the source of ethanedisulfonate ion is ethanedisulfonic acid.
- the ethanedisulfonic acid is preferably added as a solid or in solution, for example in water, ether, ketone, nitrile or a lower alcohol such as methanol, ethanol, or propan-2-ol, or a mixture of solvents.
- a solution of ethanedisulfonic acid in IMS (industrial methylated spirits), ethanol or propan-2-ol may be added to a solution of Compound (I) also in the same solvent.
- An alternative source of ethanedisulfonate ion is provided by a base salt of ethanedisulfonic acid for example ammonium ethanedisulfonate, or the ethanedisulfonic acid salt of an amine, for example ethylamine or diethylamine.
- a base salt of ethanedisulfonic acid for example ammonium ethanedisulfonate
- the ethanedisulfonic acid salt of an amine for example ethylamine or diethylamine.
- the concentration of Compound (I) is preferably in the range 3 to 50% weight/volume, more preferably in the range 5 to 20%.
- the concentration of ethanedisulfonic acid solutions are preferably in the range of 5 to 100%) weight/volume.
- the reaction is usually carried out at ambient temperature or at an elevated temperature, for example at the reflux temperature of the solvent, although any convenient temperature that provides the required product may be employed.
- Solvates, such as hydrates, of the Ethanedisulfonate are prepared according to conventional procedures, for example by crystallising or recrystallising from a solvent which provides or contains the solvate moiety, or by exposing the Ethanedisulfonate to the solvate moiety as a vapour.
- Recovery of the required compound generally comprises crystallisation from an appropriate solvent, conveniently the reaction solvent, usually assisted by cooling.
- the Ethanedisulfonate may be crystallised from an alcohol such as ethanol or propan-2-ol, an ester such as ethyl acetate, an ether such as tetrahydrofuran, a nitrile such as acetonitrile, or water; or a mixture thereof.
- An improved yield of the salt can be obtained by evaporation of some or all of the solvent or by crystallisation at elevated temperature followed by controlled cooling. Careful control of precipitation temperature and seeding may be used to improve the reproducibility of the product form.
- Crystallisation can also be initiated by seeding with crystals of the Ethanedisulfonate or a solvate thereof but this is not essential unless mentioned to the contrary herein.
- Ethanedisulfonate Form I is suitably crystallised by seeding with seeds of Ethanedisulfonate Form I.
- Ethanedisulfonate Form II is suitably crystallised by seeding with seeds of Ethanedisulfonate Form II.
- the Ethanedisulfonate is Ethanedisulfonate Form I .
- the Ethanedisulfonate is Ethanedisulfonate Form I together with Ethanedisulfonate Form II .
- the Ethanedisulfonate is Ethanedisulfonate Form II .
- the Ethanedisulfonate is (2:1 salt) Ethanedisulfonate Form II .
- Compound (I) is prepared according to known procedures, such as those disclosed in EP- A-0 306 228 and WO 94/05659. The disclosures of EP-A-0 306 228 and WO 94/05659 are incorporated herein by reference.
- 1,2-Ethanedisulfonic acid is a commercially available compound.
- Ethanedisulphonate refers to any and all polymorphic forms of 5-[4-[2-(N-methyl-N-(2-pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4-dione ethanedisulfonate salt unless clarifed herein to the contrary.
- T onse t is generally determined by Differential Scanning Calorimetry and has a meaning generally understood in the art, as for example expressed in Pharmaceutical Thermal Analysis, Techniques and Applications", Ford and Timmins, 1989 as "The temperature corresponding to the intersection of the pre- transition baseline with the extrapolated leading edge of the transition".
- good flow properties is suitably characterised by the said compound having a Hausner ratio of less than or equal to 1.5, especially of less than or equal to 1.25.
- the term 'prophylaxis of conditions associated with diabetes mellitus' includes the treatment of conditions such as insulin resistance, impaired glucose tolerance, hyperinsulinaemia and gestational diabetes.
- Diabetes mellitus preferably means Type II diabetes mellitus.
- Conditions associated with diabetes include hyperglycaemia and insulin resistance and obesity. Further conditions associated with diabetes include hypertension, cardiovascular disease, especially atherosclerosis ⁇ certain eating disorders, in particular the regulation of appetite and food intake in subjects suffering from disorders associated with under-eating, such as anorexia nervosa, and disorders associated with over-eating, such as obesity and anorexia bulimia. Additional conditions associated with diabetes include polycystic ovarian syndrome and steroid induced insulin resistance.
- the complications of conditions associated with diabetes mellitus encompassed herein includes renal disease, especially renal disease associated with the development of Type II diabetes including diabetic nephropathy, glomerulonephritis, glomerular sclerosis, nephrotic syndrome, hypertensive nephrosclerosis and end stage renal disease.
- the present invention accordingly provides the Ethanedisulfonate or a solvate thereof for use as an active therapeutic substance.
- the present invention provides the Ethanedisulfonate or a solvate thereof for use in the treatment and/or prophylaxis of diabetes mellitus, conditions associated with diabetes mellitus and certain complications thereof.
- the Ethanedisulfonate or a solvate thereof may be administered per se or, preferably, as a pharmaceutical composition also comprising a pharmaceutically acceptable carrier. Suitable methods for formulating the Ethanedisulfonate or a solvate thereof are generally those disclosed for Compound (I) in the above mentioned publications.
- the present invention also provides a pharmaceutical composition
- a pharmaceutical composition comprising the Ethanedisulfonate or a solvate thereof and a pharmaceutically acceptable carrier therefor.
- the Ethanedisulfonate or a solvate thereof is normally administered in unit dosage form.
- the active compound may be administered by any suitable route but usually by the oral or parenteral routes.
- the compound will normally be employed in the form of a pharmaceutical composition in association with a pharmaceutical carrier, diluent and or excipient, although the exact form of the composition will naturally depend on the mode of administration.
- compositions are prepared by admixture and are suitably adapted for oral, parenteral or topical administration, and as such may be in the form of tablets, capsules, oral liquid preparations, powders, granules, lozenges, pastilles, reconstitutable powders, injectable and infusable solutions or suspensions, suppositories and transdermal devices.
- Orally administrable compositions are preferred, in particular shaped oral compositions, since they are more convenient for general use.
- Tablets and capsules for oral administration are usually presented in a unit dose, and contain conventional excipients such as binding agents, fillers, diluents, tabletting agents, lubricants, disintegrants, colourants, flavourings, and wetting agents.
- the tablets may be coated according to well known methods in the art.
- Suitable fillers for use include cellulose, mannitol, lactose and other similar agents.
- Suitable disintegrants include starch, polyvinylpyrrolidone and starch derivatives such as sodium starch glycollate.
- Suitable lubricants include, for example, magnesium stearate.
- Suitable pharmaceutically acceptable wetting agents include sodium lauryl sulfate.
- Solid oral compositions may be prepared by conventional methods of blending, filling, tabletting or the like. Repeated blending operations may be used to distribute the active agent throughout those compositions employing large quantities of fillers. Such operations are, of course, conventional in the art.
- Oral liquid preparations may be in the form of, for example, aqueous or oily suspensions, solutions, emulsions, syrups, or elixirs, or may be presented as a dry product for reconstitution with water or other suitable vehicle before use.
- Such liquid preparations may contain conventional additives such as suspending agents, for example sorbitol, syrup, methyl cellulose, gelatin, hydroxyethylcellulose, carboxymethyl cellulose, aluminium stearate gel or hydrogenated edible fats, emulsifying agents, for example lecithin, sorbitan monooleate, or acacia; non-aqueous vehicles (which may include edible oils), for example, almond oil, fractionated coconut oil, oily esters such as esters of glycerine, propylene glycol, or ethyl alcohol; preservatives, for example methyl or propyl p_-hydroxybenzoate or sorbic acid, and if desired conventional flavouring or colouring agents.
- suspending agents for example sorbitol, syrup, methyl cellulose, gelatin, hydroxyethylcellulose, carboxymethyl cellulose, aluminium stearate gel or hydrogenated edible fats, emulsifying agents, for example lecithin, sorbitan monoole
- fluid unit dose forms are prepared containing a compound of the present invention and a sterile vehicle.
- the compound depending on the vehicle and the concentration, can be either suspended or dissolved.
- Parenteral solutions are normally prepared by dissolving the active compound in a vehicle and filter sterilising before filling into a suitable vial or ampoule and sealing.
- adjuvants such as a local anaesthetic, preservatives and buffering agents are also dissolved in the vehicle.
- the composition can be frozen after filling into the vial and the water removed under vacuum.
- Parenteral suspensions are prepared in substantially the same manner except that the active compound is suspended in the vehicle instead of being dissolved and sterilised by exposure to ethylene oxide before suspending in the sterile vehicle.
- a surfactant or wetting agent is included in the composition to facilitate uniform distribution of the active compound.
- compositions will usually be accompanied by written or printed directions for use in the medical treatment concerned.
- the term 'pharmaceutically acceptable embraces compounds, compositions and ingredients for both human and veterinary use: for example the term 'pharmaceutically acceptable salt 1 embraces a veterinarily acceptable salt.
- the present invention further provides a method for the treatment and/or prophylaxis of diabetes mellitus, conditions associated with diabetes mellitus and certain complications thereof, in a human or non-human mammal which comprises administering an effective, non-toxic, amount of the Ethanedisulfonate or a solvate thereof to a human or non-human mammal in need thereof.
- compositions are formulated according to conventional methods, such as those disclosed in standard reference texts, for example the British and US Pharmacopoeias, Remington's Pharmaceutical Sciences (Mack Publishing Co.), Martindale The Complete Drug Reference (London, The Pharmaceutical Press) and Harry's Cosmeticology (Leonard Hill Books).
- the active ingredient may be administered as a pharmaceutical composition hereinbefore defined, and this forms a particular aspect of the present invention.
- the present invention provides the use of the Ethanedisulfonate or a solvate thereof for the manufacture of a medicament for the treatment and/or prophylaxis of diabetes mellitus, conditions associated with diabetes mellitus and certain complications thereof.
- the Ethanedisulfonate or a solvate thereof may be taken in amounts so as to provide Compound (I) in suitable doses, such as those disclosed in EP-A-0 306 228, WO 94/05659 or WO 98/55122.
- the unit dose compositions of the invention comprise the Ethanedisulfonate in an amount providing up to 12mg, including l-12mg such as 2-12mg of Compound (I), especially 2-4mg, 4-8mg or 8-12mg of Compound (I), for example 1, 2, 3, 4, 8, 4 to 8 or 8 to 12mg of Compound ( ⁇ ).
- a pharmaceutical composition comprising the Ethanedisulfonate or a solvate thereof and a pharmaceutically acceptable carrier therefor, wherein the Ethanedisulfonate or a pharmaceutically acceptable solvate thereof is present in an amount providing 1, 2, 3, 4, 8, 4 to 8 or 8 to 12mg of Compound (I); such as lmg of Compound (I); such as 2mg of Compound (I); such as 3mg of Compound (I); such as 4 of Compound (I); such as 8mg of Compound (I); such as 12mg of Compound (I);
- the invention also provides a pharmaceutical composition
- a pharmaceutical composition comprising the Ethanedisulfonate or a pharmaceutically acceptable solvate thereof in combination with one or more other medicaments such as anti-diabetic agents and optionally a pharmaceutically acceptable carrier therefor.
- the invention also provides a method for a method for the treatment and/or prophylaxis of diabetes mellitus, conditions associated with diabetes mellitus and certain complications thereof, in a human or non-human mammal which comprises administering an effective, non-toxic, amount of the Ethanedisulfonate or a pharmaceutically acceptable solvate thereof in combination with one or more other anti- diabetic agents.
- the present invention provides the use of the Ethanedisulfonate or a pharmaceutically acceptable solvate thereof in combination with one or more other anti-diabetic agents, for the manufacture of a medicament for the treatment and/or prophylaxis of diabetes mellitus, conditions associated with diabetes mellitus and certain complications thereof.
- the administration of the Ethanedisulfonate or a pharmaceutically acceptable solvate thereof and the other anti-diabetic agent or agents includes co-administration or sequential administration of the active agents.
- the Ethanedisulfonate or a pharmaceutically acceptable solvate thereof is present in an amount providing up to 12mg, including l-12mg, such as 2-12mg of Compound (I), especially 2-4mg, 4-8mg or 8-12mg of Compound (I), for example 1, 2, 3, 4, 4 to 8, 8 to 12 mg of Compound (I).
- the Ethanedisulfonate or a pharmaceutically acceptable solvate thereof is present in an amount providing lmg of Compound (I); the Ethanedisulfonate or a pharmaceutically acceptable solvate thereof is present in an amount providing 2mg of Compound (I); the Ethanedisulfonate or a pharmaceutically acceptable solvate thereof is present in an amount providing 3mg of Compound (I); or the Ethanedisulfonate or a pharmaceutically acceptable solvate thereof is present in an amount providing 4mg of Compound (I).
- the other antidiabetic agents are suitably selected from biguanides, sulphonylureas and alpha glucosidase inhibitors.
- Suitable antidiabetic agents are those disclosed in WO98/57649, WO98/57634, WO98/57635, WO98/57636, WO99/03477, WO99/03476.
- the infrared absorption spectrum of a mineral oil dispersion of the product was obtained using a Nicolet 710 FT-IR spectrometer at 2 cm -1 resolution ( Figure 1). Data were digitised at 1 cnr 1 intervals. Bands were observed at: 2769, 1748, 1694, 1644, 1612, 1544, 1513, 1417, 1324, 1303, 1279, 1248, 1227, 1214, 1200, 1181, 1163, 1110, 1094, 1080, 1055, 1026, 996, 929, 894, 822, 763, 737, 717, 662, 617, 604, 559, 550, 527, 518, 504 cm "1 .
- the X-Ray Powder Diffractogram pattern of the product (Figure 3) was recorded using the following acquisition conditions: Tube anode: Cu, Generator tension: 40 kN, Generator current: 40 mA, Start angle: 2.0 °2 ⁇ , End angle: 35.0 °2 ⁇ , Step size: 0.02 °2 ⁇ , Time per step: 2.5 seconds. Characteristic XRPD angles and relative intensities are recorded in Table 1. Table 1
- the solid-state NMR spectrum of the product ( Figure 4) was recorded on a Bruker AMX360 instrument operating at 90.55 MHz: The solid was packed into a 4 mm zirconia MAS rotor fitted with a Kel-F cap and rotor spun at ca.10 kHz.
- the 13 C MAS spectrum was acquired by cross-polarisation from Hartmann-Hahn matched protons (CP contact time 3 ms, repetition time 15 s) and protons were decoupled during acquisition using a two-pulse phase modulated (TPPM) composite sequence.
- TPPM phase modulated
- solubility of the material was determined by adding water in aliquots from 0.25 to lml to approximately 30 mg of drug substance until the powder had dissolved Solubility: 4.7 mg/ml.
- the melting range of the Ethanedisulfonate Form I was determined according to the method described in the U.S. Pharmacopoeia, USP 23, 1995, ⁇ 741> "Melting range or temperature, Procedure for Class la", using a Buchi 545 melting point instrument. Melting range: 177.0-177.6°C
- the Raman spectrum of the product ( Figure 6) was recorded with the sample in a glass vial using a Perkin-Elmer 2000R FT-Raman spectrometer, at 4 cm-1 resolution with excitation from a Nd:YAG laser (1064 nm) with a power output of 400mW.
- the X-Ray Powder Diffractogram pattern of the product ( Figure 7) was recorded using the following acquisition conditions: Tube anode: Cu, Generator tension: 40 kN, Generator current: 40 mA, Start angle: 2.0 °2 ⁇ , End angle: 35.0 °2 ⁇ , Step size: 0.02 °2 ⁇ , Time per step: 2.5 seconds. Characteristic XRPD angles and relative intensities are recorded in Table 2.
- the solid-state NMR spectrum of the product ( Figure 8) was recorded on a Bruker AMX360 instrument operating at 90.55 MHz: The solid was packed into a 4 mm zirconia MAS rotor fitted with a Kel-F cap and rotor spun at ca.10 kHz.
- the 13 C MAS spectrum was acquired by cross-polarisation from Hartmann-Hahn matched protons (CP contact time 3 ms, repetition time 15 s) and protons were decoupled during acquisition using a two-pulse phase modulated (TPPM) composite sequence.
- the solid state stability of the drug substance was determined by storing approximately
- solubility of the material was determined by adding water in aliquots from 1 to 1000ml to approximately lOOmg of drug substance until the powder had dissolved. The visual solubility was confirmed by an HPLC assay of a saturated solution. Solubility: 4.7 mg/ml.
- the ratio between the bulk density and the tapped bulk density (Hausner Ratio) of the Ethanedisulfonate was determined using standard methods ("Pharmaceutics - The Science of Dosage Form Design", editor M. Aulton, 1988, published by: Churchill Livingstone). Hausner Ratio: 1.1
- the T onse t of the drug substance was determined by Differential Scanning Calorimetry using a Perkin-Elmer DSC7 apparatus. ⁇ onset (10°C/minute, closed pan): 197 °C
- the melting range of the Ethanedisulfonate Form II was determined according to the method described in the U.S. Pharmacopoeia, USP 23, 1995, ⁇ 741> "Melting range or temperature, Procedure for Class la", using a Buchi 545 melting point instrument. Melting range: 197.8-199.0°C
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Diabetes (AREA)
- Emergency Medicine (AREA)
- Endocrinology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Hematology (AREA)
- Obesity (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI200230362T SI1446404T1 (en) | 2001-11-21 | 2002-11-21 | Rosiglitazone edisylates and their use as antidiabetics |
US10/496,429 US20050107440A1 (en) | 2001-11-21 | 2002-11-21 | Rosiglitazone edisylates and their use as antidiabetics |
AU2002343052A AU2002343052A1 (en) | 2001-11-21 | 2002-11-21 | Rosiglitazone edisylates and their use as antidiabetics |
DE60212434T DE60212434T2 (en) | 2001-11-21 | 2002-11-21 | ROSIGLITAZONE EDISYLATES AND THEIR USE AS ANTIDIABETICS |
KR10-2004-7007722A KR20040062965A (en) | 2001-11-21 | 2002-11-21 | Rosiglitazone edisylates and their use as antidiabetics |
JP2003547397A JP2005515987A (en) | 2001-11-21 | 2002-11-21 | Roziglitazone edicylate its use as an antidiabetic agent |
EP02779713A EP1446404B1 (en) | 2001-11-21 | 2002-11-21 | Rosiglitazone edisylates and their use as antidiabetics |
HK05100816A HK1068616A1 (en) | 2001-11-21 | 2005-01-31 | Rosiglitazone edisylates and their use as antidiabetics |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0127932A GB0127932D0 (en) | 2001-11-21 | 2001-11-21 | Novel compounds |
GB0127931.4 | 2001-11-21 | ||
GB0127933.0 | 2001-11-21 | ||
GB0127933A GB0127933D0 (en) | 2001-11-21 | 2001-11-21 | Novel compounds |
GB0127931A GB0127931D0 (en) | 2001-11-21 | 2001-11-21 | Novel compounds |
GB0127932.2 | 2001-11-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003045947A1 true WO2003045947A1 (en) | 2003-06-05 |
Family
ID=27256332
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2002/005239 WO2003045947A1 (en) | 2001-11-21 | 2002-11-21 | Rosiglitazone edisylates and their use as antidiabetics |
Country Status (12)
Country | Link |
---|---|
US (1) | US20050107440A1 (en) |
EP (1) | EP1446404B1 (en) |
JP (1) | JP2005515987A (en) |
KR (1) | KR20040062965A (en) |
CN (1) | CN1612874A (en) |
AT (1) | ATE329914T1 (en) |
AU (1) | AU2002343052A1 (en) |
DE (1) | DE60212434T2 (en) |
DK (1) | DK1446404T3 (en) |
ES (1) | ES2266593T3 (en) |
PT (1) | PT1446404E (en) |
WO (1) | WO2003045947A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005023803A1 (en) * | 2003-09-10 | 2005-03-17 | Biocon Limited | Phosphoric acid salt of 5-[[4-[2-(methyl-2-pyridinylamino) ethoxy] phenyl] methyl]- 2,4-thiazolidinedione |
WO2007009799A1 (en) * | 2005-07-22 | 2007-01-25 | Ratiopharm Gmbh | Amino acid salts of rosiglitazone |
WO2008078176A1 (en) * | 2006-12-22 | 2008-07-03 | Bellus Health (International) Limited | Methods, compounds, and compositions for treating metabolic disorders and diabetes |
US8372886B2 (en) | 2005-12-22 | 2013-02-12 | Kiacta Sarl | Treatment of renal disorders, diabetic nephropathy and dyslipidemias |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110015254A (en) * | 2009-08-07 | 2011-02-15 | 한미홀딩스 주식회사 | Prasugrel disulfonate salts and crystals thereof |
CN101758337B (en) | 2009-12-03 | 2012-02-15 | 湖南阿斯达生化科技有限公司 | Non-halogen active agent for scaling powder |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4108994A (en) * | 1975-09-12 | 1978-08-22 | Roussel Uclaf | 5-thiazole-methane-amines, and their use as antilipolytics |
WO1994005659A1 (en) * | 1992-09-05 | 1994-03-17 | Smithkline Beecham Plc | Substituted thiazolidinedione derivatives |
-
2002
- 2002-11-21 ES ES02779713T patent/ES2266593T3/en not_active Expired - Lifetime
- 2002-11-21 WO PCT/GB2002/005239 patent/WO2003045947A1/en active IP Right Grant
- 2002-11-21 PT PT02779713T patent/PT1446404E/en unknown
- 2002-11-21 DE DE60212434T patent/DE60212434T2/en not_active Expired - Fee Related
- 2002-11-21 EP EP02779713A patent/EP1446404B1/en not_active Expired - Lifetime
- 2002-11-21 US US10/496,429 patent/US20050107440A1/en not_active Abandoned
- 2002-11-21 AU AU2002343052A patent/AU2002343052A1/en not_active Abandoned
- 2002-11-21 CN CNA028267591A patent/CN1612874A/en active Pending
- 2002-11-21 KR KR10-2004-7007722A patent/KR20040062965A/en not_active Application Discontinuation
- 2002-11-21 JP JP2003547397A patent/JP2005515987A/en active Pending
- 2002-11-21 DK DK02779713T patent/DK1446404T3/en active
- 2002-11-21 AT AT02779713T patent/ATE329914T1/en not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4108994A (en) * | 1975-09-12 | 1978-08-22 | Roussel Uclaf | 5-thiazole-methane-amines, and their use as antilipolytics |
WO1994005659A1 (en) * | 1992-09-05 | 1994-03-17 | Smithkline Beecham Plc | Substituted thiazolidinedione derivatives |
Non-Patent Citations (1)
Title |
---|
BERGE S M ET AL: "Pharmaceutical salts", JOURNAL OF PHARMACEUTICAL SCIENCES, vol. 66, no. 1, 1977, pages 1 - 19, XP000562636 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005023803A1 (en) * | 2003-09-10 | 2005-03-17 | Biocon Limited | Phosphoric acid salt of 5-[[4-[2-(methyl-2-pyridinylamino) ethoxy] phenyl] methyl]- 2,4-thiazolidinedione |
WO2007009799A1 (en) * | 2005-07-22 | 2007-01-25 | Ratiopharm Gmbh | Amino acid salts of rosiglitazone |
EA012594B1 (en) * | 2005-07-22 | 2009-10-30 | Рациофарм Гмбх | Amino acid salts of rosiglitazone |
US8372886B2 (en) | 2005-12-22 | 2013-02-12 | Kiacta Sarl | Treatment of renal disorders, diabetic nephropathy and dyslipidemias |
WO2008078176A1 (en) * | 2006-12-22 | 2008-07-03 | Bellus Health (International) Limited | Methods, compounds, and compositions for treating metabolic disorders and diabetes |
Also Published As
Publication number | Publication date |
---|---|
ATE329914T1 (en) | 2006-07-15 |
ES2266593T3 (en) | 2007-03-01 |
DE60212434T2 (en) | 2007-05-24 |
DE60212434D1 (en) | 2006-07-27 |
EP1446404B1 (en) | 2006-06-14 |
EP1446404A1 (en) | 2004-08-18 |
CN1612874A (en) | 2005-05-04 |
JP2005515987A (en) | 2005-06-02 |
PT1446404E (en) | 2006-10-31 |
KR20040062965A (en) | 2004-07-09 |
DK1446404T3 (en) | 2006-10-09 |
AU2002343052A1 (en) | 2003-06-10 |
US20050107440A1 (en) | 2005-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7291740B2 (en) | 5-[4-[2-(N-methyl-N-(2-pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4-dione Mesylate salt | |
US20070191435A1 (en) | Hydrochloride salt of 5-[4-[2-(n-methyl-n-(2-pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4-dione | |
EP1446404B1 (en) | Rosiglitazone edisylates and their use as antidiabetics | |
EP1315724B1 (en) | A thiazolidinedione derivative and its use as antidiabetic | |
AU2001284284A1 (en) | The hydrochloride salt of 5-[4-[2-(N-methyl-N-(2-pyridyl)amino)ethoxy]benzyl] thiazolidine-2,4-dione | |
AU2001276509A1 (en) | Tartrate salts of thiazolidinedione derivative | |
US20040014791A1 (en) | Thiazolidinedione derivative and its use as antidiabetic | |
EP1448559B1 (en) | 5-(4-(2-(n-methyl-n-(2-pyridyl)amino)ethoxy)benzyl)thiazolidine-2,4-dione benzenesulfonate; process for its preparation; polymorphs i, ii and iii thereof; and its use as pharmaceutical active ingredient | |
WO2002012232A1 (en) | Tartrate salt of thiazolidinedione derivative | |
AU2001262550A1 (en) | 5-(4-(2-(n-methyl-n-(2-pyridyl)amino)ethoxy)benzyl)thiazolidine-2,4-dione hydriodide as pharmaceutical | |
WO2001094343A1 (en) | 5-(4-(2-(n-methyl-n-(2-pyridyl)amino)ethoxy)benzyl)thiazolidine-2,4-dione hydriodide as pharmaceutical | |
US20040029926A1 (en) | Thiazolidinone nitrate salt | |
WO2003053962A1 (en) | 5- (4- (2- (n-methyl-n- (2-pyridyl) amino) ethoxy) benzyl) thiazolidine-2, 4-dione malic acid salt and use against diabetes mellitus | |
AU2001276502A1 (en) | Tartrate salts of thiazolidinedione derivative | |
WO2003050111A1 (en) | Toluenesulfonate salts of a thiazolidinedione derivative | |
EP1325000A1 (en) | A thiazolidinedione derivative and its use as antidiabetic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2002779713 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 01245/DELNP/2004 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020047007722 Country of ref document: KR Ref document number: 10496429 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003547397 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20028267591 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 2002779713 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 2002779713 Country of ref document: EP |