WO2003045352A2 - Osmotic delivery device having a two-way valve and dynamically self-adjusting flow channel - Google Patents

Osmotic delivery device having a two-way valve and dynamically self-adjusting flow channel Download PDF

Info

Publication number
WO2003045352A2
WO2003045352A2 PCT/US2002/037465 US0237465W WO03045352A2 WO 2003045352 A2 WO2003045352 A2 WO 2003045352A2 US 0237465 W US0237465 W US 0237465W WO 03045352 A2 WO03045352 A2 WO 03045352A2
Authority
WO
WIPO (PCT)
Prior art keywords
closing member
pressure
fluid chamber
fluid
agent
Prior art date
Application number
PCT/US2002/037465
Other languages
English (en)
French (fr)
Other versions
WO2003045352A3 (en
Inventor
Jay Gilbert Scott
Original Assignee
Alza Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alza Corporation filed Critical Alza Corporation
Priority to AU2002346482A priority Critical patent/AU2002346482B2/en
Priority to MXPA04004881A priority patent/MXPA04004881A/es
Priority to BR0214354-2A priority patent/BR0214354A/pt
Priority to NZ533642A priority patent/NZ533642A/en
Priority to JP2003546855A priority patent/JP2005515805A/ja
Priority to IL16209902A priority patent/IL162099A0/xx
Priority to CA002466816A priority patent/CA2466816A1/en
Priority to KR10-2004-7007834A priority patent/KR20040055813A/ko
Publication of WO2003045352A2 publication Critical patent/WO2003045352A2/en
Publication of WO2003045352A3 publication Critical patent/WO2003045352A3/en
Priority to NO20042404A priority patent/NO20042404L/no

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/20Excess-flow valves
    • F16K17/22Excess-flow valves actuated by the difference of pressure between two places in the flow line
    • F16K17/24Excess-flow valves actuated by the difference of pressure between two places in the flow line acting directly on the cutting-off member
    • F16K17/28Excess-flow valves actuated by the difference of pressure between two places in the flow line acting directly on the cutting-off member operating in one direction only
    • F16K17/30Excess-flow valves actuated by the difference of pressure between two places in the flow line acting directly on the cutting-off member operating in one direction only spring-loaded
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/22Valves or arrangement of valves
    • A61M39/26Valves closing automatically on disconnecting the line and opening on reconnection thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • A61K9/0004Osmotic delivery systems; Sustained release driven by osmosis, thermal energy or gas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/01Control of flow without auxiliary power
    • G05D7/0126Control of flow without auxiliary power the sensing element being a piston or plunger associated with one or more springs
    • G05D7/0133Control of flow without auxiliary power the sensing element being a piston or plunger associated with one or more springs within the flow-path

Definitions

  • the present invention pertains to osmotically controlled implantable delivery devices, and more particularly to a delivery device having a two-way miniature valve and dynamically self-adjusting flow channel for the regulation of back-diffusion and fluid delivery rate in an osmotically driven delivery system.
  • Controlled delivery of beneficial agents, such as drugs, in the medical and the veterinary fields has been accomplished by a variety of methods, including implantable delivery devices, such as implantable osmotic delivery devices.
  • implantable delivery devices such as implantable osmotic delivery devices.
  • Osmotic delivery systems are very reliable in delivering a beneficial agent over an extended period of time, called an administration period.
  • osmotic delivery systems operate by imbibing fluid from an outside environment and releasing controlled amounts of beneficial agent from the delivery system.
  • the absorption of water by a water-attracting agent contained within the capsule creates an osmotic pressure within the capsule, which then causes a beneficial agent within the capsule to be expelled.
  • the water- attracting agent may be the beneficial agent being delivered to the patient.
  • a separate agent is used specifically for its ability to draw water into the capsule.
  • the osmotic agent may be separated from the beneficial agent within the capsule by a movable dividing member such as a piston.
  • the structure of the capsule is generally rigid such that as the osmotic agent takes in water and expands, the capsule itself does not expand.
  • the agent causes the movable dividing member to move, discharging the beneficial agent through an orifice or exit passage of the capsule.
  • the beneficial agent is discharged through the exit passage at the same volumetric rate that water combines with the osmotic agent through the semi-permeable walls of the capsule.
  • the orifice or exit passage of the capsule is permanently open and thus allows for unimpeded discharge of the beneficial agent. This results in a direct fluid communication between the beneficial agent and water in the surrounding tissue of the patient. Thus, back diffusion of the water into the beneficial agent reservoir may result.
  • One way in which back diffusion of water has been reduced is to provide a long orifice or exit passage that can be in a variety of shapes, such as straight or spiral.
  • the orifice or exit passage of the capsule is covered with a stretchable or elastic member or band to reduce back diffusion of water into the beneficial agent reservoir.
  • the stretchable or elastic band allows discharge of the beneficial agent once a threshold pressure has been overcome.
  • the stretchable or elastic member or band closes the orifice when the pressure in the device is less than the threshold pressure.
  • the orifice or exit passage is at least partially made of a stretchable or elastic material that acts to reduce back diffusion of water into the beneficial agent reservoir.
  • This stretchable or elastic material deforms once a threshold pressure has been achieved in the device to allow discharge of the beneficial agent.
  • the stretchable orifice material closes when the internal pressure in the device is less than the threshold pressure.
  • osmotic delivery systems rely on the flow of interstitial body fluid across a rate-limiting membrane (also known as a semi-permeable membrane) to drive the osmotic agent expansion that in turn drives the delivery or discharge of the beneficial agent.
  • a rate-limiting membrane also known as a semi-permeable membrane
  • this interstitial fluid may also diffuse into the beneficial agent via a beneficial agent delivery channel (also known as an orifice or exit • passage).
  • a beneficial agent delivery channel also known as an orifice or exit • passage
  • an implantable, osmotically driven delivery system will have been stored at ambient room temperature (approximately 20 to 22°C) prior to implantation into a patient. Within a few hours following implantation, the system will subsequently come to thermal equilibrium with the patient (approximately 37°C). This increase in temperature may cause the beneficial agent formulation within the implantable device to expand, which may result in a pressurization of the system and a rapid, short-duration delivery of beneficial agent often referred to as a start-up "burst". This burst is typically followed by a short period of somewhat low agent delivery (typically lasting from less than one day to 5 days) during which time the osmotic pressure is increasing to a degree equal to that of the piston friction.
  • a further aspect of an implantable, osmotically-driven beneficial agent delivery system is that it is subject to external pressure or temperature changes (e.g., scuba diving, a hot bath, or temperature cycling during shipping) which may, in turn, result in transient spikes in the beneficial agent delivery profile.
  • Another objective of the present invention is to provide for the elimination of back diffusion in a relatively inexpensive manner and without requiring a relatively large or long orifice, diffusion path, or exit channel.
  • An additional objective of the present invention is to provide an implantable osmotic delivery device capable of containing the total osmotic pressure that can develop within the device without requiring relatively expensive and sophisticated fluid flow bypass pathways.
  • an implantable drug delivery system for use in mammals (preferably in humans) includes a capsule having an impermeable outer layer.
  • the capsule has a beneficial agent delivery end and a fluid uptake end that are spaced apart from each other, but not necessarily located on opposite ends of said capsule.
  • the capsule comprises a reservoir containing a beneficial agent; a movable dividing member separating the reservoir from the osmotic engine; and an osmotic engine.
  • the delivery system includes a means for controlling beneficial agent flow through the beneficial agent delivery end that substantially prevents flow of beneficial agent out of the capsule when pressure within the capsule is above an upper predetermined pressure and prevents flow of fluid into the capsule through the beneficial agent delivery end when the pressure within the capsule is below a lower predetermined pressure.
  • beneficial agent is substantially allowed to flow out of the capsule through the beneficial agent delivery end when the pressure within the capsule is between the lower and upper predetermined pressures.
  • a device for dynamically regulating the flow of a beneficial agent from a pressurized beneficial agent delivery system includes a hollow body having a lower port and an upper port.
  • the device also includes a means for controlling flow of interstitial fluid through the hollow body when pressure by the beneficial agent acting upon the means for controlling flow is below a lower predetermined pressure.
  • the device also includes a means for controlling beneficial agent flow out of the device when the pressure in the device is above an upper predetermined pressure.
  • the beneficial agent is substantially allowed to flow out of the device when the pressure in the device is between the lower and upper predetermined pressures.
  • a method of variably controlling the delivery of a beneficial agent from an implantable drug delivery system includes the steps of providing a capsule having a beneficial agent delivery end and. a fluid uptake end, an agent reservoir containing a beneficial agent, an uptake reservoir containing a fluid attracting agent, and a movable dividing member between the agent reservoir and the uptake reservoir.
  • the beneficial agent reservoir and the uptake reservoir are positioned adjacent the beneficial agent delivery end and the fluid uptake end, respectively.
  • the method also includes the step of substantially preventing the flow of fluid into the capsule when a pressure within the capsule is below a lower predetermined pressure and flow of beneficial agent out of the capsule when a pressure within the capsule is above an upper predetermined pressure.
  • a method of variably controlling the delivery of a beneficial agent from an implantable osmotically driven delivery system includes the steps of displacing a movable closing member of a valve assembly with respect to a lower port via application of fluid pressure thereon from a beneficial agent reservoir to thereby create an opening between the closing member and the lower port.
  • the method also includes the steps of increasing the size of the opening via increased pressure from the beneficial agent reservoir and allowing a beneficial agent from the beneficial agent reservoir to pass through the lower port and through the valve assembly.
  • the method further includes the step of variably controlling the beneficial agent flow through the valve assembly such that the beneficial agent flow is directly proportional to the pressure applied by the beneficial agent against the movable closing member until the pressure approaches a predetermined maximum pressure, at which time the beneficial agent flow becomes more restricted as the pressure increases.
  • the present invention provides the advantage of substantially preventing back diffusion during the start-up phase by causing the spring- loaded, valve to be closed during this time, effectively preventing fluid communication between the beneficial agent and interstitial fluids until the system is sufficiently pressurized, and the beneficial agent pumping at a sufficient rate, to disallow diffusion by the body fluid into the beneficial agent reservoir.
  • the present invention also provides the advantage of eliminating the need for a relatively long orifice, diffusion path or exit channel to prevent back diffusion in an implantable osmotically driven delivery device.
  • the present invention provides an implantable osmotically driven delivery device which has the capability to withstand and contain the full system osmotic pressure, an especially critical consideration with any highly potent beneficial agent, without requiring relatively expensive and sophisticated fluid flow bypass pathways.
  • the present invention eliminates the need for and cost of a separate fluid bypass pathway.
  • FIG. 1 is a cross-sectional side view of an osmotic agent delivery device including a two-way valve and dynamically " self-adjusting flow channel in a normal condition;
  • FIG. 2a is a cross-sectional side view of an upper section of an osmotic agent delivery device including a two-way valve and dynamically self- adjusting flow channel, in which the closing member has been axially displaced;
  • FIG. ' 2b is a cut away view of the valve shown in FIG. 2, showing the elongated cylindrical stem 48.
  • FIG. 3 is a cross-sectional side view of an upper section of an osmotic agent delivery device including a two-way valve and dynamically self- adjusting flow channel, in which the closing member has been axially displaced to a greater extent than that shown in FIG. 2;
  • FIG. 4 is a cross-sectional side view of an upper section of an osmotic agent delivery device including a two-way valve and dynamically self- adjusting flow channel, in which an upper chamber thereof is substantially closed off;
  • FIG. 5 is a cross-sectional side view of a two-way and dynamically self-adjusting flow channel, according to a second embodiment of the invention.
  • the present invention relates to a pressure activated, two-way valve and self-adjusting flow channel for use in regulating fluid flow in an implantable osmotically-driven beneficial agent delivery system.
  • the components of the two-way valve and self-adjusting flow channel are designed to substantially prevent the passage of interstitial fluid therethrough when the pressure within a beneficial agent reservoir is below a lower predetermined pressure and passage of beneficial agent therethrough when the pressure within a beneficial agent reservoir is above an upper predetermined pressure. This is accomplished by the narrowing of the fluid flow channel when the pressure within the beneficial agent reservoir is either below a lower predetermined pressure or above a higher predetermined pressure.
  • the valve can be designed to close altogether at the orifice end, or it can provide a minimal leak path so that a maximum fluid flow is never exceeded. At zero or very low pressures, the valve will close completely or provide a minimal leak path at the beneficial agent reservoir end, thereby substantially isolating the agent formulation from external fluid infiltration and eliminating diffusion of external fluid into the beneficial agent formulation. While these performance criteria can be achieved with various discrete components (e.g., relief valve, flow restrictor, check valve), this invention combines all the desired performance with a single, simple, and low cost mechanism.
  • the present invention minimizes the error contribution of them by requiring a significant increase in the overall pressure at which the system still dispenses beneficial agent.
  • a 0.01 psi (pounds per square inch) pressure increase will contribute substantially more error to a system dispensing at a nominal pressure of 0.10 psi than a 0.10 psi increase will to a system dispensing at 3 psi (10% vs. 3%).
  • FIG. 1 illustrates an implantable osmotically driven beneficial agent delivery system 1 having a capsule 2.
  • the capsule 2 has an impermeable outer layer and includes a beneficial agent reservoir 50 and an osmotic agent reservoir 52.
  • the beneficial agent delivery system 1 also preferably includes a movable piston 54 positioned between the beneficial agent reservoir 50 and the osmotic agent reservoir 52.
  • a fluid permeable membrane 56 is provided at the fluid uptake end 16 of the beneficial agent delivery system 1.
  • the fluid permeable membrane 56 can be any suitable membrane or combination of membranes in a shape that can adequately control the amount of fluid entering into the capsule 2. Additionally, the membrane 56 should also be selected to prevent the compositions within the capsule 2 from passing out of the capsule.
  • a valve assembly 10 is provided at the beneficial agent delivery end 14 of the capsule.
  • the capsule 2 must be sufficiently strong to ensure that it will not leak, crack, break or distort so as to expel its beneficial agent contents under stresses it would be subjected to during use while being impermeable. In particular, it should be designed to withstand the maximum osmotic pressure that could be generated by the water-swellable osmotic agent in reservoir 52.
  • Capsule 2 must also be chemically inert and biocompatible, that is, it must be non-reactive with the beneficial agent formulation as well as the body. Suitable materials generally comprise a non-reactive polymer or a biocompatible metal or alloy.
  • the polymers include acrylonitrile polymers such as acrylonitrile-butadiene-styrene terpolymer, and the like; halogenated polymers such as polytetrafluoroethylene, polychlorotrifluoroethylene, copolymer tertrfluoroethylene andhexafluoropropylene; polyimide; polysulfone; polycarbonate; polyethylene; polypropylene; polyvinylchloride- acrylic copolymer; polycarbonate-acrylonitrile-butadiene-styrene; polystyrene; and the like.
  • the water vapor transmission rate through compositions useful for forming the reservoir are reported in J. Pharm. Sci,. Vol. 29, pp.
  • Metallic materials useful in the invention include stainless steel, titanium, platinum, tantalum, gold and their alloys as well as gold-plated ferrous alloys, platinum-plated ferrous alloys, cobalt-chromium alloys and titanium nitride coated stainless steel.
  • a reservoir made from titanium or a titanium alloy having greater than 60%, often greater than 85% titanium is particularly preferred for most size-critical applications.
  • the osmotic agent reservoir 52 may contain any suitable osmotic agent, examples of which include, but are not limited to, a non-volatile water soluble osmagent, an osmopolymer which swells on contact with water, or a mixture of the two.
  • a non-volatile water soluble osmagent such as sodium chloride with appropriate lubricants, binders, and viscosity modifying agents, such as sodium carboxymethylcellulose or sodium polyacrylate can be prepared in various forms.
  • Sodium chloride in tablet form is a preferred water swellable agent as described, for example, in U.S. Patent No. 5,728,396, which is hereby incorporated by reference.
  • the osmotic agent should be capable of generating between 0 and 5200 psi.
  • Materials for the fluid permeable membrane 56 are those that are semipermeable and that can conform to the shape of the reservoir upon wetting and makes a water tight seal with the rigid surface of the reservoir. The semipermeable membrane expands as it hydrates when placed in a fluid environment so that a seal is generated between the mating surfaces of the membrane and the reservoir.
  • the polymeric materials from which the membrane may be made vary based on the pumping rates and device configuration requirements and include but are not limited to plasticized cellulosic materials, enhanced polymethylmethacrylate such as hydroxyethylmethacrylate (HEMA) and elastomeric materials such as polyurethanes and polyamides, polyether-polyamide copolymers, thermoplastic copolyesters and the like. Further semipermeable compositions are described in U.S. Patents 5,413,572 and 6,270,787, which are hereby incorporated by reference.
  • HEMA hydroxyethylmethacrylate
  • the movable dividing member 54 can be of any shape that isolates the water-swellable agent from the beneficial agent formulation, including, but not limited to a sheet or a piston.
  • the movable dividing member isolates the water-swellable agent in chamber 52 from the beneficial agent formulation in chamber 50 and must be capable of sealably moving under pressure within capsule 2.
  • the movable dividing member 54 is preferably made of a material that is of lower durometer than the capsule 2 and that will deform to fit the interior of the capsule to provide a fluid-tight compression seal with the capsule 2.
  • the materials from which the movable dividing member or piston is made are preferably elastomeric materials that are impermeable and include but are not limited to polypropylene, rubbers such as EPDM, silicone rubber, butyl rubber, and the like, fluoro elastomers, perfluoro elastomers, and thermoplastic elastomers such as. plasticized polyvinylchloride, polyurethanes, Santoprene®, C-Flex® TPE, a styrene- ethylene-butylene-styrene copolymer (Consolidated Polymer Technologies Inc.) and the like.
  • the movable dividing member may be of a compression- loaded design.
  • Implantable drug delivery devices of this invention are useful to deliver a wide variety of active agents. These agents include but are not limited to pharmacologically active peptides and proteins, genes and gene products, other gene therapy agents, and other small molecules.
  • active agents include but are not limited to pharmacologically active peptides and proteins, genes and gene products, other gene therapy agents, and other small molecules.
  • the polypeptides may include but are not limited to.
  • somatotropin analogues such as leuprolide, nafarelin and goserelin, LHRH agonists and antagonists, growth hormone releasing factor, calcitonin, colchicine, gonadotropins such as chorionic gonadotropin, oxtocin, octreotide, somatotropin pluss an amino acid, vaspressin, adrenocorticotrophic hormone, epidermal growth factor, prolactin, somatostatin, somatotropin plus a protein, cosyntropin, lypressin, polypeptides such as thyrotropin releasing hormone, throid stimulation hormone, secretin, pancreozymin, enkephalin, glucagons, endrocrine agents secreted internally and distributed by way of the bloodstream
  • agents that may be delivered include ⁇ -iantitrypsin, factor VIII, factor IX and other coagulation factors, insulin and other peptide hormones, adrenal cortical stimulating hormone, thyroid stimulating hormone and other pituitary hormones, interferon including but not limited to ⁇ , ⁇ , and ⁇ , erythropoietin, growth factors such GCSF, GMCSF, insulin-like growth factor 1 , tissue plasminogen activator, CD4, dDAVP, interleukin-1 receptor antagonist, tumor necrosis factor, pancreatic enzymes, lactase, cytokines, interleukin 2, tumor . necrosis actor receptor, tumor suppresser proteins, cytotoxic proteins, and recombinant antibodies and antibody fragments, and the like.
  • growth factors such GCSF, GMCSF, insulin-like growth factor 1 , tissue plasminogen activator, CD4, dDAVP, interleukin-1 receptor antagonist, tumor necrosis factor, pancreatic enzymes, lactase, cyto
  • the above agents are useful for the treatment of a variety of conditions including but not limited to hemophilia and other blood disorders, growth disorders, diabetes, leukemia, hepatitis, renal failure, HIV infection, hereditary diseases such as cerbrosidase deficiency and adenosine deaminase deficiency, hypertension, septic shock, autoimmune diseases such as multiple sclerosis, Graves disease, systemic lupus erythematosus and rheumatoid arthritis, shock and wasting disorders, cystic fibrosis, lactose intolerance, Crohn's diseased, inflammatory bowel disease, gastrointestinal and other cancers.
  • hereditary diseases such as cerbrosidase deficiency and adenosine deaminase deficiency
  • hypertension septic shock
  • autoimmune diseases such as multiple sclerosis, Graves disease, systemic lupus erythematosus and rheumatoi
  • the active agents may be anhydrous or aqueous solutions, suspensions or complexes with pharmaceutically acceptable vehicles or carriers such that a flowable formulation is produced that may be stored for long periods on the shelf or under refrigeration, as well as stored in an implanted delivery system.
  • the formulations may include pharmaceutically acceptable carriers and additional inert ingredients.
  • the active agents may be in various forms, such as uncharged molecules, components of molecular complexes or pharmacologically acceptable salts. Also, simple derivatives of the agents (such as prodrugs, ethers, esters, amides, etc.) which are easily hydrolyzed by body pH, enzymes, etc., can be employed.
  • Valve body 30 and 32 is preferably made of titanium, steel, and their alloys, thermoplastics including polyetherether ketone (PEEK) or liquid crystal polymers (LCP) and the like. More preferably valve body 30 and 32 is made of a liquid crystal polymer.
  • Spring 24 is preferably made of spring steels including stainless steel or berillium/copper or injection molded polymer or plastic. The spring material should provide dimensionality while having a wire thickness that can be manufactured and inserted into the valve. More preferably spring 24 is made of stainless steel for a fine wire spring or a suitable plastic for a thicker wire spring. The profile of spring 24 may be round, square, or any other appropriate shape. Spring 24 provides the fluid path from reservoir 50 through upper port 22.
  • Stem 46 and guide post 48 may be made of the same materials as valve body 30 and 32, or elastomeric materials such as fluoro elastomers, perfluoro elastomers, thermoplastice elastomers such as C-Flex® or Santoprene®, hard plastics, or the like. Stem 46 and guide post 48 are preferably made. of thermoplastic elastomers, or perfluoro elastomers, or hard plastic. [00044] In operation, fluid from the exterior of the capsule 2 passes through the membrane 56 and into the capsule. Some of the fluid is then absorbed by the osmotic agent in reservoir 52, thereby causing the osmotic agent to swell.
  • the valve assembly 10 includes a valve body 12 containing a plurality of interconnected fluid chambers 60 and 70.
  • the valve assembly should have a height measurement larger than the diameter measurement. In other words, the ratio of the height to width of the valve assembly should be greater than 1/1.
  • The- height to width ratio of the valve assembly should be less than 1/5. Preferably the height to width ratio of the valve assembly is between 1/1 and 1/2.
  • the valve assembly preferably has a diameter of about 1 to about 10 mm, more preferably about 3 to about 6 mm.
  • the valve assembly preferably has a height of about 5 to about 10 mm.
  • the valve body 12 preferably includes two identical halves 30 and 32.
  • the valve assembly 10 further includes a lower port 20 arid an upper port 22.
  • a lower fluid chamber 60 is positioned adjacent to and in fluid communication with .the lower port 20.
  • An upper fluid chamber 70 is positioned between and in fluid communication with the upper port 22 and the lower fluid chamber 60.
  • the lower fluid chamber 60 includes a first surface 62. having a conical frustum shape and a second surface 64 having a cylindrical shape.
  • the diameter of the lowermost portion of the first surface 62 is smaller than the diameter of the lower port 20.
  • The. diameter of the uppermost portion of the first surface 62 is substantially the same as the diameter of the second surface 64.
  • the lower fluid chamber 60 also includes a third surface 66 that is substantially perpendicular to the second surface 64.
  • a passageway 74 formed at the intersection of the third surface 66 and the upper fluid chamber 70, is provided between the upper and lower 60 fluid chambers.
  • the diameter of the upper port 22 is substantially smaller than the diameter of the upper fluid chamber 70 and a thus top surface 72 (also substantially perpendicular to 64) is provided therebetween.
  • the valve assembly 10 contains a movable closing member 40 having a cylindrical seal 44 and a conical frustum 42 attached to an elongated cylindrical stem 46 (shown more clearly in FIG. 2b) and a guide post 48.
  • Stem 46 is slightly smaller in diameter than spring 24.
  • Guide post 48 should have a diameter slightly smaller than the diameter of upper port 22.
  • the movable closing member 40 also includes a substantially flat upper surface 90.
  • the closing member 40 and the cylindrical stem 46 may be fabricated as a single piece, preferably by molding, or they may be separately fabricated and attached in any known manner. Additionally, the stem 46 may be fabricated with a threaded end that is configured to mate with a threaded opening provided on the upper surface 90 of the closing member 40.
  • the movable closing member 40 can be moved from a lowermost position substantially adjacent the first surface 62 to an uppermost position substantially adjacent the third surface 66.
  • the conical frustum 42 of the closing member 40 is shaped to substantially mate with the first surface 62 when the closing member is in the lowermost position.
  • the upper surface 90 of the closing member 40 is also shaped to substantially cover the third surface 66 of the lower fluid chamber 60 when the closing member is in the uppermost position.
  • the spring 24 is preferably a helical compression spring and is shown as such in FIG. 1. However, it is to be understood that any other -suitable spring may be used in place of the helical compression spring.
  • the spring 24 At zero or low pressures (0.5 to 10 psi, for example), such as can be expected during storage or initial pump startup, the spring 24 maintains the closing member 40 in a position to substantially prohibit fluid flow in either direction of the valve assembly 12. Cylindrical seal 44 prevents fluid flow across the lower port 20 such that there is substantially no fluid communication between any beneficial agent contained within the beneficial agent reservoir 50 and, once implanted, interstitial fluid present at the upper port 22. Further, as can be seen in FIG.
  • movable closing member 40 is designed to travel through some predetermined axial displacement while still maintaining a seal at lower port 22. This occurs because the cylindrical seal 44 has a height that is greater than the height of the lower port 20. This feature allows the valve assembly 10 to contain the increased agent formulation volume that results from thermal expansion upon implantation without the startup burst that occurs in many devices.
  • the pressure necessary to either keep valve 10 in the closed position (as illustrated in FIGS. 2 and 4) or in an open position (as illustrated in FIG. 3) is dependent, for example, on the viscosity of the beneficial agent formulation; the desired rate at which the beneficial agent formulation is delivered from the system; the spring constant of spring 24; and/or the amount of room spring 24 takes up in valve 10.
  • the psi (pounds per square inch) range from low to high pressure (from valve open to valve closed) needs to be very narrow, but could be anywhere in the range of about 0.1 to about 2000 psi. Preferably the range is about 0.5 to about 100 psi.
  • the valve assembly 10 is fabricated by positioning the helical compression spring 24 over the cylindrical stem 46 of the movable closing member 40.
  • the assembly 10 is subsequently captured between the two valve body halves 30 and 32 with the conical frustum 42 and cylindrical seal 44 oriented to engage the first surface 62 of lower fluid chamber 60 and the lower port 20, respectively.
  • the resulting assembly will cause the spring 24 to be under a compressive load, forcing the conical frustum 42 to seal against the first surface 62 at lower fluid chamber 60. Consequently, the valve assembly 10 is normally closed to ' fluid flow at the lower port 20.
  • the body halves 30 and 32 can be sealed together in any of a number of ways known in the art. For example, using adhesives, ultrasonic welding, or mechanical mating.
  • FIG 3 illustrates the valve operation once the fluid pressure at the lower port 20 exceeds the minimal value (for example, about 5 psi) as would be the case for normal operation.
  • the movable closing member 40 will be displaced axially upward toward the upper port 22, creating an opening at the lower port 20 and allowing the beneficial agent from the agent reservoir 50 to be pumped through the lower port 20 then through, successively, fluid chambers 60 and 70, and finally exiting upper port 22.
  • the cross-sectional area of the opening, and thus the fluid flow is directly proportional to the pressure applied by the fluid against the movable closing member 40 until such time as the pressure begins to approach some predetermined maximum value.
  • the valve action is reversed as the upper surface 90 of the closing member 40 approaches the third surface 66 of the lower fluid chamber 60.
  • the spring 24 defines a spiral fluid flow path through the upper fluid chamber 70.
  • the spring 24 compresses as the movable closing member 40 is forced upward by the flowing agent. Consequently, as the fluid pressure inside the beneficial agent reservoir 50 and the chamber 60 increases, the lower port 20 opens more fully while the fluid flow path progressively narrows, thus becoming more restrictive. Normal flow will cause a balance between the opposing forces of the spring and the fluid pressure while low fluid flow will typically be completely impeded by the compression spring 24 causing lower port 20 to be closed by the movable closing member 40. On the other hand, high fluid flow will typically be substantially impeded by the upper surface of the movable closing member 40 substantially closing off the opening 74. Compression of spring 24 reduces the flow path between lower fluid chamber 60 and upper port 22.
  • FIG. 4 shows the valve condition when a maximum pressure is reached (for example, about 20 psi).
  • the movable closing member 40 has been driven in FIG. 4 to its uppermost position, forcing the movable member against third surface 66 of lower fluid chamber 60.
  • This both limits the travel of the movable closing member 40 and either closes fluid communication between lower fluid chamber 60 and upper fluid chamber 70, or, in the preferred embodiment, limits the fluid flow around the movable closing member 40 to some predetermined minimal amount via a small fluid bypass channel around movably closing member 40.
  • the fluid path increases in cross-sectional area at the upper surface- 66, thereby again allowing increased fluid flow.
  • One further embodiment of this invention includes a separate small fluid bypass channel that can be formed by either a small hole through movable closing member 40 or a notch formed in one edge of movable closing member 40.
  • FIG. 5 illustrates another preferred embodiment of the present invention, in which, a valve assembly 80 can be fabricated as a silicon microstructure or molded in thermoplastic.
  • the valve assembly 80 includes a single chambered valve body 81 having an integrally formed cantilever spring arm 82 in place of the compression spring described hereinabove.
  • the cantilever spring arm may be made of metal (such as those described above for valve body 30 and 32) or a thermoplastic.
  • the movable closing member 86 is in the form of a spheroid and is attached to the free end of the cantilever spring arm 82.
  • the movable closing member 86 may be made of a metal or metal alloy (such as those described above for valve body 30 and 32), a thermoplastic, or an elastomer.
  • the upper and lower ports of this embodiment do not have to have the same, diameter, as long as movable closing member 86 closes off the vertical portion of the upper or lower port when pressure is either lower or higher than a predetermined pressure.
  • other shapes may also be used for the closing member 86.
  • One potential benefit is that this embodiment presents an integral structure rather than an assembly and discrete components. Still another benefit is its extremely small overall size.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Hematology (AREA)
  • Epidemiology (AREA)
  • Anesthesiology (AREA)
  • Pulmonology (AREA)
  • Mechanical Engineering (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Prostheses (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Medicinal Preparation (AREA)
PCT/US2002/037465 2001-11-21 2002-11-21 Osmotic delivery device having a two-way valve and dynamically self-adjusting flow channel WO2003045352A2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AU2002346482A AU2002346482B2 (en) 2001-11-21 2002-11-21 Osmotic delivery device having a two-way valve and dynamically self-adjusting flow channel
MXPA04004881A MXPA04004881A (es) 2001-11-21 2002-11-21 Dispositivo de suminstro osmotico que tiene una valvula de dos vias y canal de flujo de autoajuste de manera dinamica.
BR0214354-2A BR0214354A (pt) 2001-11-21 2002-11-21 Dispositivo de liberação osmótico tendo uma válvula de duas vias e um canal de escoamento dinamicamente auto-ajustável
NZ533642A NZ533642A (en) 2001-11-21 2002-11-21 Osmotic delivery device having a two-way valve and dynamically self-adjusting flow channel
JP2003546855A JP2005515805A (ja) 2001-11-21 2002-11-21 二方弁及び動的自動調節式流れチャンネルを備えた浸透圧式送出装置
IL16209902A IL162099A0 (en) 2001-11-21 2002-11-21 Osmotic delivery device having a two-way valve anddynamically self-adjusting flow channel
CA002466816A CA2466816A1 (en) 2001-11-21 2002-11-21 Osmotic delivery device having a two-way valve and dynamically self-adjusting flow channel
KR10-2004-7007834A KR20040055813A (ko) 2001-11-21 2002-11-21 쌍방향 밸브와 동적 자가조절 유동 채널을 갖는 삼투 전달장치
NO20042404A NO20042404L (no) 2001-11-21 2004-06-09 Osmotisk leveringsanordning med en toveisventil og dynamisk selvjusterende stromningskanal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US33210801P 2001-11-21 2001-11-21
US60/332,108 2001-11-21

Publications (2)

Publication Number Publication Date
WO2003045352A2 true WO2003045352A2 (en) 2003-06-05
WO2003045352A3 WO2003045352A3 (en) 2003-10-16

Family

ID=23296751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/037465 WO2003045352A2 (en) 2001-11-21 2002-11-21 Osmotic delivery device having a two-way valve and dynamically self-adjusting flow channel

Country Status (12)

Country Link
JP (1) JP2005515805A (pt)
KR (1) KR20040055813A (pt)
CN (2) CN100352424C (pt)
AU (1) AU2002346482B2 (pt)
BR (1) BR0214354A (pt)
CA (1) CA2466816A1 (pt)
IL (1) IL162099A0 (pt)
MX (1) MXPA04004881A (pt)
NO (1) NO20042404L (pt)
NZ (1) NZ533642A (pt)
WO (1) WO2003045352A2 (pt)
ZA (1) ZA200404893B (pt)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1486224A1 (en) * 2003-06-12 2004-12-15 Cordis Corporation Method for manufacturing an orifice mechanism capable of low fluid flow rates
EP1486222A1 (en) * 2003-06-12 2004-12-15 Cordis Corporation Orifice device for delivering drugs at low fluid flow rates
EP1486223A1 (en) * 2003-06-12 2004-12-15 Cordis Corporation Implantable device for delivering drugs using a capillary orifice for low fluid flow rates
JP2005000668A (ja) * 2003-06-12 2005-01-06 Cordis Corp 低速で流体を送達するための医療装置
EP1600188A2 (en) * 2004-05-27 2005-11-30 Cordis Corporation Flow restricting orifice device having multiple channels between multiple coiled layers for drug delivery
WO2006082092A1 (de) * 2005-02-05 2006-08-10 RST Gesellschaft für Wasserspartechnik mbH Mengenregler
EP2087265A2 (en) * 2006-10-24 2009-08-12 Ceme S.p.A. Electrovalve
US8491571B2 (en) 2003-06-12 2013-07-23 Cordis Corporation Orifice device having multiple channels with varying flow rates for drug delivery
CN104001261A (zh) * 2013-02-27 2014-08-27 重庆市北碚区精神卫生中心 一种皮下给药装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11246913B2 (en) 2005-02-03 2022-02-15 Intarcia Therapeutics, Inc. Suspension formulation comprising an insulinotropic peptide
CN101715340A (zh) 2007-04-23 2010-05-26 精达制药公司 促胰岛素释放肽的混悬制剂及其应用
CN102537447B (zh) * 2012-02-16 2013-04-24 辽宁卓异装备制造有限公司 救生舱专用自动泄压阀
WO2023181996A1 (ja) * 2022-03-25 2023-09-28 テルモ株式会社 投与装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR640907A (fr) * 1927-06-25 1928-07-24 Limitateur de débit automatique
US3122162A (en) * 1963-06-20 1964-02-25 Asa D Sands Flow control device
US5308348A (en) * 1992-02-18 1994-05-03 Alza Corporation Delivery devices with pulsatile effect
US5514110A (en) * 1993-03-22 1996-05-07 Teh; Eutiquio L. Automatic flow control device
EP0812596A1 (de) * 1996-06-14 1997-12-17 Filtertek, S.A. Schwerkraft-Infusionsvorrichtung für medizinische Infusionen
US6183461B1 (en) * 1998-03-11 2001-02-06 Situs Corporation Method for delivering a medication

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR640907A (fr) * 1927-06-25 1928-07-24 Limitateur de débit automatique
US3122162A (en) * 1963-06-20 1964-02-25 Asa D Sands Flow control device
US5308348A (en) * 1992-02-18 1994-05-03 Alza Corporation Delivery devices with pulsatile effect
US5514110A (en) * 1993-03-22 1996-05-07 Teh; Eutiquio L. Automatic flow control device
EP0812596A1 (de) * 1996-06-14 1997-12-17 Filtertek, S.A. Schwerkraft-Infusionsvorrichtung für medizinische Infusionen
US6183461B1 (en) * 1998-03-11 2001-02-06 Situs Corporation Method for delivering a medication

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7108762B2 (en) 2003-06-12 2006-09-19 Cordis Corporation Method for manufacturing an orifice mechanism capable of low fluid flow rates
US8491571B2 (en) 2003-06-12 2013-07-23 Cordis Corporation Orifice device having multiple channels with varying flow rates for drug delivery
EP1486223A1 (en) * 2003-06-12 2004-12-15 Cordis Corporation Implantable device for delivering drugs using a capillary orifice for low fluid flow rates
JP2005000670A (ja) * 2003-06-12 2005-01-06 Cordis Corp 低速で流体を送達可能なオリフィス機構を用いた移植用薬物送達装置
JP2005000668A (ja) * 2003-06-12 2005-01-06 Cordis Corp 低速で流体を送達するための医療装置
JP2005000669A (ja) * 2003-06-12 2005-01-06 Cordis Corp 低速で流体を送達するためのオリフィス療装置
US6976983B2 (en) 2003-06-12 2005-12-20 Cordis Corporation Implantable device for delivering drugs using orifice mechanism capable of low fluid flow rates
EP1486224A1 (en) * 2003-06-12 2004-12-15 Cordis Corporation Method for manufacturing an orifice mechanism capable of low fluid flow rates
US8109922B2 (en) 2003-06-12 2012-02-07 Cordis Corporation Orifice device having multiple channels and multiple layers for drug delivery
EP1486222A1 (en) * 2003-06-12 2004-12-15 Cordis Corporation Orifice device for delivering drugs at low fluid flow rates
AU2004202258B2 (en) * 2003-06-12 2010-04-22 CARDINAL HEALTH SWITZERLAND 515 GmbH Implantable device for delivering drugs using orifice mechanism capable of low fluid flow rates
US7211076B2 (en) 2003-06-12 2007-05-01 Cordis Corporation Medical device for fluid delivery having low fluid flow rate
US7678103B2 (en) 2003-06-12 2010-03-16 Cordis Corporation Orifice device for delivering drugs at low fluid flow rates
EP1600188A3 (en) * 2004-05-27 2005-12-07 Cordis Corporation Flow restricting orifice device having multiple channels between multiple coiled layers for drug delivery
AU2005201875B2 (en) * 2004-05-27 2011-02-03 Cardinal Health 529, Llc Orifice device having multiple channels and multiple layers for drug delivery
EP1600188A2 (en) * 2004-05-27 2005-11-30 Cordis Corporation Flow restricting orifice device having multiple channels between multiple coiled layers for drug delivery
US9122277B2 (en) 2005-02-05 2015-09-01 Neoperl Gmbh Flow regulator
WO2006082092A1 (de) * 2005-02-05 2006-08-10 RST Gesellschaft für Wasserspartechnik mbH Mengenregler
EP2087265A2 (en) * 2006-10-24 2009-08-12 Ceme S.p.A. Electrovalve
CN104001261A (zh) * 2013-02-27 2014-08-27 重庆市北碚区精神卫生中心 一种皮下给药装置

Also Published As

Publication number Publication date
CN100352424C (zh) 2007-12-05
WO2003045352A3 (en) 2003-10-16
ZA200404893B (en) 2005-07-21
NZ533642A (en) 2006-12-22
CA2466816A1 (en) 2003-06-05
BR0214354A (pt) 2004-11-03
IL162099A0 (en) 2005-11-20
KR20040055813A (ko) 2004-06-29
AU2002346482A1 (en) 2003-06-10
JP2005515805A (ja) 2005-06-02
NO20042404L (no) 2004-06-09
CN1981888A (zh) 2007-06-20
CN1607939A (zh) 2005-04-20
AU2002346482B2 (en) 2008-05-01
MXPA04004881A (es) 2004-09-03

Similar Documents

Publication Publication Date Title
US7316680B2 (en) Osmotic delivery device having a two-way valve and a dynamically self-adjusting flow channel
TWI279235B (en) An implantable osmotic agent delivery system and method of variably controlling the delivery of a beneficial agent from the same
US7163688B2 (en) Osmotic implant with membrane and membrane retention means
US5728396A (en) Sustained delivery of leuprolide using an implantable system
US6156331A (en) Sustained delivery of an active agent using an implantable system
US8298562B2 (en) Sustained delivery of an active agent using an implantable system
US6261584B1 (en) Sustained delivery of an active agent using an implantable system
AU2002315374A1 (en) Osmotic implant with membrane and membrane retention means
AU2002346482B2 (en) Osmotic delivery device having a two-way valve and dynamically self-adjusting flow channel
CA2533678C (en) Sustained delivery of an active agent using an implantable system
AU779205B2 (en) An implantable device for delivering an active agent to a fluid environment of use
CA2244997C (en) Sustained delivery of an active agent using an implantable system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 162099

Country of ref document: IL

Ref document number: 2466816

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: PA/a/2004/004881

Country of ref document: MX

Ref document number: 2003546855

Country of ref document: JP

Ref document number: 1020047007834

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 533642

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2004/04893

Country of ref document: ZA

Ref document number: 200404893

Country of ref document: ZA

Ref document number: 2002346482

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 20028262255

Country of ref document: CN

122 Ep: pct application non-entry in european phase