WO2003036083A1 - Wind power generator - Google Patents

Wind power generator Download PDF

Info

Publication number
WO2003036083A1
WO2003036083A1 PCT/JP2001/010880 JP0110880W WO03036083A1 WO 2003036083 A1 WO2003036083 A1 WO 2003036083A1 JP 0110880 W JP0110880 W JP 0110880W WO 03036083 A1 WO03036083 A1 WO 03036083A1
Authority
WO
WIPO (PCT)
Prior art keywords
generator
roller
transmission
propeller
wind
Prior art date
Application number
PCT/JP2001/010880
Other languages
French (fr)
Japanese (ja)
Inventor
Ryoichi Otaki
Hiroyuki Itoh
Atsushi Oshima
Hideo Okano
Original Assignee
Nsk Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001327424A external-priority patent/JP2002221263A/en
Application filed by Nsk Ltd. filed Critical Nsk Ltd.
Priority to US10/487,257 priority Critical patent/US20040247437A1/en
Publication of WO2003036083A1 publication Critical patent/WO2003036083A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H13/00Gearing for conveying rotary motion with constant gear ratio by friction between rotary members
    • F16H13/02Gearing for conveying rotary motion with constant gear ratio by friction between rotary members without members having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H13/00Gearing for conveying rotary motion with constant gear ratio by friction between rotary members
    • F16H13/10Means for influencing the pressure between the members
    • F16H13/14Means for influencing the pressure between the members for automatically varying the pressure mechanically
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/80Arrangement of components within nacelles or towers
    • F03D80/82Arrangement of components within nacelles or towers of electrical components
    • F03D80/85Cabling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/402Transmission of power through friction drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/403Transmission of power through the shape of the drive components
    • F05B2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • F05B2260/40311Transmission of power through the shape of the drive components as in toothed gearing of the epicyclic, planetary or differential type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion
    • F16H57/082Planet carriers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/12Machines characterised by the modularity of some components
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • H02K7/1838Generators mounted in a nacelle or similar structure of a horizontal axis wind turbine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to an improvement of a wind power generator that generates electric power by using wind power, and relates to a structure that can efficiently generate electric power even when the wind speed is low, and can be easily installed in ordinary households and small business establishments. It will be realized. Background art
  • wind power generation which is a power generation method using natural energy
  • the wind power generator rotates the propeller using the kinetic energy of the wind, and drives the generator to rotate by a rotating shaft that connects the center of the propeller.
  • Conventionally used wind power generators generally connect the propeller and the generator directly without using a transmission or the like, or with a gear-type transmission (gearbox).
  • a toroidal type continuously variable transmission which is a friction transmission, is incorporated between the propeller and the generator, and the rotation speed of the propeller is affected.
  • a wind power generator comprises, similarly to a conventionally known wind power generator, a propeller that rotates by receiving wind, a transmission in which the propeller is coupled to an end of an input shaft, and an output of the transmission.
  • a generator rotatably driven by a shaft, wherein the transmission is a wedge roller type friction roller type transmission.
  • the wedge roller type friction roller type transmission includes an outer ring, a center roller, a plurality of support shafts, and a plurality of intermediate rollers.
  • the outer ring rotates with the rotation of the input shaft, and its inner peripheral surface is a drive-side cylindrical surface.
  • the center roller rotates together with the output shaft, and its outer peripheral surface is a driven-side cylindrical surface.
  • each of the support shafts is disposed in an annular space between the driven-side cylindrical surface and the drive-side cylindrical surface in parallel with the center roller.
  • Each of the intermediate rollers is rotatably supported by each of the support shafts, and each outer peripheral surface is a cylindrical surface for transmitting a driving force.
  • the width of the annular space in the radial direction is made uneven in the circumferential direction.
  • One of the intermediate rollers is movable at least in such a manner as to be movable at least in the circumferential direction of the annular space, and the remaining intermediate rollers are guide rollers.
  • the intermediate roller serving as the movable roller is moved to the width of the annular space. It can be moved toward a narrow part.
  • the wind power generator may include a propeller that rotates by receiving the wind, and a generator that is rotated by the propeller.
  • the generator includes a generator case and a rotatable interior of the generator case.
  • a rotating shaft that is supported by the motor and rotates together with the output shaft of the transmission, and is fixed to the outer peripheral surface of the rotating shaft at an axial distance, each of which is made of a magnetic material.
  • Axial type slotless power generator comprising: a plurality of coil holders fixed to portions deviating from the respective yokes; Machine.
  • ADVANTAGE OF THE INVENTION According to this invention comprised as mentioned above, it can be easily installed also in a general household, a small business establishment, etc., and also can implement
  • the speed of the propeller which rotates in response to the wind, is increased by the transmission and transmitted to the generator.
  • the wedge roller type friction roller type transmission has a driving force transmitting cylindrical surface that is the outer peripheral surface of each intermediate roller when stopped, a driven cylindrical surface that is the outer peripheral surface of the center roller, and an inner peripheral surface of the outer ring.
  • the contact pressure with the drive side cylindrical surface is low, and the torque (starting torque) required to start the rotation of the input shaft is small. For this reason, the propeller can be started to rotate even in a light wind, and the power generation efficiency can be improved accordingly.
  • the above transmission is a friction roller type transmission
  • the noise generated during operation is smaller than when a gear type transmission is used, and it is installed near a place where people live, such as near a private house.
  • noise problems are unlikely to occur.
  • the friction roller type transmission is a wedge roller type transmission, and the surface pressure of the contact portion between each of the driving force transmitting cylindrical surfaces and the driven-side cylindrical surface and the driving-side cylindrical surface is equal to the input pressure. It changes appropriately according to the magnitude of the torque (torque) transmitted from the shaft to the output shaft. For this reason, regardless of the fluctuation of the rotational force of the propeller which changes according to the wind speed, the rotational force of the propeller can be efficiently transmitted to the generator. Since the contact pressure of the contact portion increases after the propeller starts rotating, the increase of the contact pressure does not hinder the start of rotation of the propeller.
  • FIG. 1 is a sectional view showing a first example of an embodiment of the present invention.
  • FIG. 2 is an enlarged view of the upper center of FIG.
  • FIG. 3 is a sectional view taken along line AA of FIG.
  • FIG. 4 is an enlarged BB sectional view of FIG.
  • FIG. 5 is a sectional view showing a second example of the embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing the third example.
  • FIG. 7 is an enlarged view of a part C of FIG. 6, which is partially omitted.
  • FIG. 8 is a view of the generator and the permanent magnets taken out from the left side of FIG. 7.
  • FIG. 9 is a diagram of the coil holder and the coil of the generator taken out and viewed from the left in FIG.
  • Fig. 10 shows the basic structure of a general slotless generator.
  • A is a cross-sectional view of a virtual plane including the central axis
  • B is a cross-sectional view of a virtual plane orthogonal to the central axis.
  • FIG. 11 is a view similar to FIG. 10 (A), showing a state in which the diameter is increased in order to increase the power generation capacity of the slotless generator.
  • FIG. 12 is a view similar to FIG. 10 (A), showing a state in which the axial length is also increased.
  • FIG. 13 is a view similar to FIG. 10 (A), showing a state where a plurality of generators are similarly arranged in the axial direction.
  • the wind power generation device of the present invention is similar to a conventionally known wind power generation device.
  • the main body 9 of the power generator including the propeller 1, the transmission 3, and the generator 5, is rotatably supported on the upper end of the fixed support 10 around a vertical axis. That is, at the upper end of a hollow cylindrical column 10 fixed to the ground or on the roof in the vertical direction, a hollow cylindrical rotating shaft 11 protruding from the lower surface of the main body 9 is also provided with a deep groove type.
  • Rolling bearings 12 that can support radial and axial loads, such as ball bearings, are rotatably supported. Since the center of gravity of the main body portion 9 is located on an extension of the central axis of the rotary shaft 11, the tilting moment applied to the rotary shaft 11 is only a wind force.
  • the main body 9 is rotatable around the rotation axis 11 with a small force.
  • the extension of the center axis of the rotation shaft 11 may be located slightly closer to the propeller 1 than the center of gravity of the main body portion 9.
  • the cable 13 for extracting the electric power generated by the generator 5 is disposed in the internal space of the rotating shaft 11 and the support 10.
  • a slip ring (not shown) is provided in the middle of the cable 13 to prevent the cable 13 from being twisted regardless of the rotation of the main body 9.
  • the end of the cable 13 is connected to, for example, a battery, and the power stored in this battery is taken out and used as needed.
  • the configuration may be as follows.
  • the transmission 3 is unitized by housing the constituent members in a housing 14.
  • the housing 14 is made of a steel or aluminum alloy and has a bottomed cylindrical housing body 15 and a steel or aluminum alloy lid 16 that closes the base opening of the housing body 15.
  • the inner half of the center roller 17 (the left half in FIGS. 1 and 2) is inserted into the housing 14 through a through hole 18 formed substantially in the center of the lid 16. .
  • the through hole 18 is provided with the lid 16 It is located slightly off the center of the area.
  • the end of the rotating shaft 19 of the generator 5, which is also the output shaft 4 is connected to the outer end of the center roller 17 (the right end in FIGS. 1 and 2).
  • the center roller 17 having a smaller diameter than the rotating shaft 19 is integrally provided at the end of the rotating shaft 19. Both ends of the rotating shaft 19 are mounted on the bottom of the generator case 7 and the lid 16, respectively, to support a radial load and an axial load such as a deep groove type or an angular type ball bearing. It is rotatably supported by a pair of independent rolling bearings 20.
  • a seal ring 21 is provided between the inner peripheral surface of the through hole 18 and the outer peripheral surface of the end of the rotating shaft 19, so that grease such as traction grease existing in the housing 14 is removed. It does not enter the generator case 7 side.
  • three support shafts 22 and 22 a are arranged inside the housing 14 and around the center roller 17 in parallel with the center roller 17. That is, one end (the right end in FIGS. 1 and 2) of each of the support shafts 22 and 22a is supported by the lid 16 and the other end (the left end in FIGS. 1 and 2) is It is supported by a ring-shaped connecting plate 23 made of metal such as steel.
  • the two support shafts 22 located at the upper center and the lower left side in FIG. 3 have both ends attached to the lid 16 and the connecting plate 23. It is press-fitted and fixed in the formed fitting hole 24. Therefore, the two support shafts 22 are not displaced in the housing 14 in the circumferential or diametrical direction.
  • the remaining one support shaft 22a located on the lower right side of FIG. 3 has both ends in the circumferential direction of the housing 14 with respect to the lid 16 and the connecting plate 23. It is supported with a slight displacement in the diametric direction.
  • a portion of the lid 16 and the connecting plate 23 that is aligned with both ends of the support shaft 22a has a width and length larger than the outer diameter of the support shaft 22a.
  • a support hole 25 having a height is formed, and both ends of the support shaft 22 a are loosely engaged with the support holes 25.
  • Guide rollers 26a, 2Qb and movable rollers 27, each of which is an intermediate roller, are provided around the intermediate portion of each of the support shafts 22, 22a, respectively. By 8, it is supported rotatably.
  • the connecting plate 23 is connected to the inner surface of the lid 16 (the guide rollers 26a and 26b and the movable roller 27). On the space side where is installed, the left side of Figs. 1 and 2)
  • Thrust washers 31a and 31b are respectively rotated between the axial end surfaces of the guide rollers 26a and 26b and the movable roller 27 and the connecting plate 23 and the lid 16 respectively.
  • the rollers 26a, 26b, and 27 are provided freely so that the rotation of the rollers 26a, 26b, and 27 can be performed smoothly.
  • Each of the thrust washers 31a and 31b is preferably made of a material having a low coefficient of friction, such as a polyamide resin, a polyacetal resin, or a polyphenylene sulfide resin, which functions as a sliding bearing.
  • a cylindrical outer ring 32 is provided inside the housing 14 to surround the guide rollers 26 a and 26 b and the movable opening roller 27, and an inner peripheral surface of the outer ring 32 is provided.
  • the driving-side cylindrical surface is 3 3.
  • the driving-side cylindrical surface 33 and the driving force transmitting cylindrical surface 34 which is the outer peripheral surface of the guide rollers 26 a and 26 b and the movable roller 27,
  • the base end of the input shaft 2 (the right end in FIGS. 1 and 2) is connected to the outer ring 32 via a connecting plate 35.
  • a boss 37 provided at the center of the outer ring 32 at a position where the base end of the input shaft 2 is joined is attached to a support cylinder 38 formed at the center of the housing body 15.
  • the intermediate end of the input shaft 2 near the end is placed in the device housing 39, and a pair of rolling bearings 40, each of which is capable of supporting radial and axial loads, such as a deep groove or angular ball bearing, is used. , Rotatably supported.
  • the center of the propeller 1 is fixedly connected to a portion of the input shaft 2 that protrudes out of the device housing 39 at the tip (the left end in FIGS. 1 and 2).
  • a seal ring 41 is provided between the outer peripheral surface of the boss portion 37 and the inner peripheral surface of the support cylinder portion 38 so that foreign matter such as rainwater does not enter the housing 14. I have.
  • the outer ring 32 is provided inside the housing 14 so as to be rotatable and slightly displaceable in the radial direction. That is, in the case of the present example, the plurality of protruding pieces 42 formed on the outer peripheral edge of the connecting plate 35 and one axial edge of the outer ring 32 (the left edge in FIGS. 1 and 2). The formed notch 43 is slightly displaceably engaged in the radial direction. Also, insert each protruding piece 4 2 into each notch 4 In the state where it is inserted into the inner part of the outer ring 32 (the right part of FIGS.
  • the retaining ring 45 is locked in the locking groove 44 formed in the inner peripheral surface of the end of the outer ring 32, and The protruding pieces 42 are prevented from falling out of the respective notches 43. Therefore, the outer race 32 and the connecting plate 35 are connected to each other so as to be able to freely transmit a rotational force and to be slightly displaceable relative to the radial direction.
  • the driving force transmitting cylindrical surfaces 34 which are the outer peripheral surfaces of the guide rollers 26a, 26b and the movable roller 27, respectively, are driven on the outer peripheral surface of the center roller 17 respectively.
  • the side cylindrical surface 46 is in contact with the driving cylindrical surface 33 provided on the inner peripheral surface of the outer ring 32.
  • the center of the center roller 17 and the centers of the input shaft 2 and the outer ring 32 are eccentric to each other. That is, as described above, the through hole 18 that passes through the center roller 17 is provided at a position slightly deviated from the center of the housing 14, while the input shaft 2 is inserted therethrough.
  • the support cylinder 38 is provided at the center of the housing 14.
  • the input shaft 2 and the outer ring 32 which are rotatably supported inside the support cylinder 38, are substantially concentric with each other. Therefore, the center opening 17 and the outer ring 32 and the input shaft 2 are eccentric with respect to each other by the amount of deviation ⁇ of the through hole 18 from the center of the housing 14.
  • the guide roller exists between the driven cylindrical surface 46 provided on the outer peripheral surface of the center roller 17 and the driven cylindrical surface 33 provided on the inner peripheral surface of the outer ring 32.
  • the radial width of the annular space 47 provided with the rollers 26a and 26b and the movable roller 27 is not uniform in the circumferential direction by an amount corresponding to the eccentricity of 3 minutes. .
  • the outer diameters of the guide rollers 26a and 26b and the movable roller 27 are made different by an amount that the width of the annular space 47 in the radial direction is made uneven in the circumferential direction. That is, the diameters of the guide roller 26 b and the movable roller 27 located on the side where the center roller 17 is eccentric with respect to the outer ring 32 (the lower side in FIG. 3) are the same and relatively small. ing.
  • the diameter of the guide roller 26 a located on the opposite side (upper side in FIG. 3) of the center roller 17 with respect to the outer ring 32 is set to the diameter of the guide roller 26 b and the movable roller 2. It is larger than 7.
  • the driving force transmitting cylindrical surface 34 which is the outer peripheral surface of each of the three guide rollers 26a and 26b and the movable roller 27, is connected to the drive side and the driven The moving side is in contact with each of the cylindrical surfaces 33, 46.
  • the guide rollers 26a, 26b and the movable rollers 2 are used to prevent excessive surface pressure due to edge load from being applied to the contact portions of these surfaces 34, 33, 46. It is preferable to apply appropriate crowning to the driving force transmitting cylindrical surface 34, which is the outer peripheral surface of 7.
  • the generatrix shape of each of the driving-side and driven-side cylindrical surfaces 33 and 46 may be a straight line.
  • a support shaft 2 that supports both guide rollers 26a and 26b. 2 is fixed in the housing 14 as described above.
  • the support shaft 22 a supporting the movable opening roller 27 freely supports a slight displacement in the circumferential direction and the diametric direction in the housing 14 as described above. . Therefore, the movable roller 27 is also slightly displaceable in the circumferential direction and the diametrical direction in the housing 14.
  • a support shaft 22 a supporting the movable roller 27 is supported by an elastic material of a compression coil spring 49 mounted in a cylinder hole 48 of the lid 16 and the connecting plate 23.
  • the movable roller 27 rotatably supported by 22a is elastically pressed to move toward the narrow portion of the annular space 47.
  • a pair of pressing pins 5 having outwardly flange-shaped flanges 50 formed at the respective ends (the lower left end in FIG. 3 and the lower end in FIG. 4) by the compression coil spring 49 are provided. 1, and both ends of the support shaft 22a are pressed in the same direction by these two pressing pins 51.
  • the device housing 39 on which the main body 9 is installed is rotatably supported around the rotating shaft 11 arranged vertically, and the propeller 1 of the device housing 39 is provided.
  • a wind guide plate 52 is provided, so that the propeller 1 effectively receives the wind and rotates in the direction in which the wind blows.
  • the rotation of the propeller 1 is transmitted to the outer ring 32 via the input shaft 2 and the connecting plate 35, and the outer ring 32 rotates clockwise in FIG.
  • the rotation of the outer ring 32 is driven by the drive-side cylindrical surface 33, which is the inner peripheral surface of the outer ring 32, and the guide rollers 26a, Through the outer diameter side contact portions 5 3 a and 5 3 b which are the contact portions with the driving force transmitting cylindrical surfaces 34 and 34 which are the outer peripheral surfaces of the movable roller 26 and the movable roller 27.
  • the light is transmitted to the guide rollers 26 a and 26 b and the movable roller 27.
  • the rotation of the guide rollers 26 a and 26 b and the movable roller 27 is controlled by the driving force transmitting cylindrical surface 34 and the driven cylindrical surface 4, which is the outer peripheral surface of the central roller 17. It is transmitted to the central opening 17 via the inner diameter side contact portions 54a and 54b, which are the contact portions with 6.
  • the rotating shaft 19 of the generator 5, which also serves as the output shaft 4 provided integrally with the center roller 17, and the mouth 6 provided around the rotating shaft 19 are rotationally driven. I do. As a result, an electromotive force is generated in the stay 8 disposed around the mouth 6, and the power is taken out by the cable 13.
  • the movable roller 27 When the outer ring 32 rotates clockwise in FIG. 3, the movable roller 27 is driven by the force applied from the outer ring 32 and the elasticity of the compression coil springs 49 so that the movable side and the driven side are respectively driven.
  • the annular space 47 In the annular space 47 existing between the cylindrical surfaces 33 and 46, the annular space 47 moves toward the narrow portion (the lower central portion in FIG. 3) of the annular space 47.
  • the driving force transmitting cylindrical surface 34 which is the outer peripheral surface of the movable roller 27, strongly presses the driven-side cylindrical surface 46 and the driving-side cylindrical surface 33.
  • an inner diameter side contact portion 54b which is a contact portion between the driving force transmitting cylindrical surface 34 relating to the movable roller 27 and the driven side cylindrical surface 46, and the movable roller 27
  • the contact pressure of the outer diameter side contact portion 53b which is the contact portion between the driving force transmitting cylindrical surface 34 and the driving side cylindrical surface 33, increases.
  • the contact pressure of both the inner and outer diameter contact portions 54b and 53b with respect to the movable roller 27 increases, at least one of the center roller 17 and the outer ring 32 becomes It is slightly displaced in the diametric direction based on the assembling gap or elastic deformation.
  • the driving force transmitting cylindrical surface 34 which is the outer peripheral surface of the guide rollers 26a, 26b, which are the remaining two intermediate rollers, and the driven cylindrical surface 4, which is the outer peripheral surface of the center roller 17 described above.
  • the two inner diameter side contact portions 5a which are the contact portions with 6
  • the driving force transmitting cylindrical surface 34 which is the outer peripheral surface of each of the guide rollers 26a and 26b, and the outer ring
  • the contact pressure of the two outer diameter side contact portions 53 a which is the contact portion with the drive side cylindrical surface 33 which is the inner peripheral surface of 32 becomes high. Then, the center roller 17 rotates counterclockwise in FIG.
  • the force for moving the movable roller 27 toward the narrow portion of the annular space 47 in the annular space 47 is the torque transmitted from the outer ring 32 to the center roller 17. It changes according to the size. That is, as the torque transmitted from the propeller 1 to the outer ring 32 through the input shaft 2 increases, the force for moving the movable roller 27 toward the narrow portion of the annular space 47 increases. Becomes larger. And, as this force increases, the contact pressures of the inner and outer contact portions 54a, 54b, 53a, 53b increase.
  • the contact pressures of the inner and outer contact portions 54a, 54b, 53a, 53b are small. Therefore, the contact pressure of the inner and outer contact portions 54a, 54b, 53a, 53b is transmitted between the input shaft 2 and the output shaft 4.
  • the transmission efficiency of the friction roller type transmission can be increased by setting the appropriate value according to the magnitude of the torque to be performed.
  • the center roller 17 is stopped and the above-mentioned state is maintained. Including the case where the outer ring 32 rotates counterclockwise in FIG.
  • the rotation speed of the center roller 17 is higher than the rotation speed corresponding to the rotation speed of the input shaft 2.
  • the movable roller 27 is piled on the elasticity of each of the compression coil springs 49 by the force applied from the central roller 17 or the outer ring 32, and Within 7, move toward the wide part (the central part on the right side in FIG. 3) of this annular space 47.
  • the driving force transmitting cylindrical surface 34 which is the outer peripheral surface of the movable roller 27, does not press the driven-side cylindrical surface 46 and the driving-side cylindrical surface 33.
  • An outer diameter side contact portion which is a contact portion between the driving force transmitting cylindrical surface 34 and the driven cylindrical surface 46 relating to the movable roller 27 and the guide rollers 26 a and 26 b. 5 3 a, 5 3 b and the contact between the movable roller 27 and the driving force transmitting cylindrical surface 34 on the guide rollers 26 a and 26 b and the driving-side cylindrical surface 33
  • the contact pressure of the inner diameter side contact portions 54a and 54b, which are the portions, is reduced or lost. As a result, the rotation of the outer ring 32 is not transmitted to the rotating shaft 19. Therefore, even when the generator 5 is of a DC type, no electromotive force is generated in the generator 5 in the reverse direction.
  • the above guide rollers 26 a Even if the outer diameter and mounting position of 26 b are slightly displaced, the constituent members are elastically deformed, and even if the outer ring 32 thermally expands, the outer circumference of each of these guide rollers 26 a and 26 b Of the driving force transmitting cylindrical surface 34, which is the outer peripheral surface of the center roller 17, and the driving cylindrical surface 33, which is the inner peripheral surface of the outer ring 32.
  • the contact surface pressure at the contact part can be regulated as designed. That is, when the outer diameters and mounting positions of the guide rollers 26a and 26b are shifted, the movable roller 27 is displaced to a portion where the width dimension of the annular space 47 is narrow.
  • the outer ring 32 is displaced in the radial direction.
  • the driving force transmitting cylindrical surfaces 34 which are the outer peripheral surfaces of the guide rollers 26a and 26b and the movable roller 27, and the driven side, which is the outer peripheral surface of the center roller 17
  • the contact surface pressure of the contact portion between the cylindrical surface 46 and the drive-side cylindrical surface 33 that is the inner peripheral surface of the outer ring 32 is set to the designed value. Therefore, high transmission efficiency can be obtained even when the outer diameter or the mounting position is slightly displaced, or when the constituent members are deformed in nature.
  • the wind turbine generator of the present invention incorporating the wedge roller type friction roller type transmission as described above as the transmission 3 can be easily installed in ordinary households and small business establishments, and has good power generation efficiency. Can be.
  • the torque (starting torque) required to start the rotation of the input shaft 2 connected to the outer ring 32 is small. Therefore, the rotation of the propeller 1 can be started even in a light wind, and the power generation efficiency can be improved accordingly.
  • the transmission 3 is a friction roller type transmission, a gear type such as a planetary gear type may be used.
  • the noise generated during operation is lower than when using a high-speed gear, and noise problems are less likely to occur even when installed near a place where people live, such as near a private house.
  • no gears or belts that easily generate noise are used in the power transmission system from the above-mentioned probe 1 to the above-mentioned generator 5, an excellent noise prevention effect can be obtained.
  • the friction roller type transmission 3 is a wedge roller type, and a contact portion between the driving force transmitting cylindrical surface 34, the driven cylindrical surface 46, and the driving cylindrical surface 33.
  • the surface pressure changes appropriately according to the magnitude of the torque (torque) transmitted from the input shaft 2 to the output shaft 4. For this reason, the rotational force of the propeller 1 can be efficiently transmitted to the rotor 6 of the generator 3 irrespective of the fluctuation of the rotational force of the propeller 1 that changes according to the wind speed.
  • the contact pressure of the outer diameter side contact portions 53a, 53b and the inner diameter side contact portions 54a, 54b increases due to the action of the movable roller 27. After the above-mentioned mouthpiece 1 starts rotating.
  • FIG. 5 shows a second example of the embodiment of the present invention.
  • the lid 16 constituting the housing 14 for accommodating the transmission 3 also has a function of closing the opening of the generator case 7.
  • the transmission 3 and the generator 5 are integrally configured.
  • the transmission 3a and the generator 5a have independent housings 14a or generator cases 7a, respectively, and are configured independently of each other.
  • the center roller of the transmission 3a is provided integrally with the rotating shaft 19a at the tip of the rotating shaft 19a of the generator 5a.
  • the center roller 17 of the friction roller type transmission of the wedge roller type can be easily inserted and removed inside the guide rollers 26a, 26b and the movable roller 27. . Therefore, the work of assembling the transmission 3a and the generator 5a independently formed from each other as shown in FIG. 5 can be easily performed. For this reason, it is possible to sell wind turbines for general household use as a kit and to assemble the purchased generators easily.
  • the configuration and operation of the other parts are the same as in the case of the above-described first example, and overlapping drawings and descriptions are omitted.
  • FIGS. 6 to 9 show a third example of the embodiment of the present invention.
  • the structure of the first example shown in Figs. 1 to 4 is improved to obtain the following operations and effects of 1) to 3).
  • a rotating bracket 56 is mounted on the upper end of a pillar 10a planted on the upper surface of a board 55 fixed to the roof surface, etc., and each can support radial and axial loads, such as a deep groove ball bearing. It is rotatably supported by a pair of upper and lower rolling bearings 57.
  • the main body 9a of the power generator is swingably supported by a horizontal shaft 59 provided on a supporting arm 58 fixed to the upper outer peripheral surface of the rotating bracket 56.
  • the lower end of the swing arm 61 protruding from the bottom of the casing 60 in the axial direction is provided so as to surround the generator case 7b and constitute the main body 9a.
  • a seating bracket 63 is fixedly provided at the front end in the axial direction of the bottom surface of the casing 60 (the end on the propeller 1 side, the left end in FIG. 6). In order to catch the wind most efficiently by the propeller 1, the seat bracket 63 is used when the main body 9a is rotated most counterclockwise in FIG. 6, as shown in FIG. Abuts the upper surface of the bracket 56 with a large area to support the weight of the main body 9a and the propeller 1.
  • the main unit 9a is used when the wind receiving this propeller 1 is strong.
  • the rocker swings clockwise in FIG. 6 around the horizontal axis 59 and gradually increases the angle between the rotation center axis of the port propeller 1 and the horizontal direction.
  • the effective area of the propeller 1 that receives the wind is reduced, so that the rotation speed of the propeller 1 is prevented from becoming excessively high, and at the same time, the support structure portion of the propeller 1 including the strut 10 a is included. This prevents excessive force from being applied to the support structure and prevents the support structure from being damaged.
  • the inclination angle of the rotation center axis of the propeller 1 with respect to the horizontal direction with respect to the main body so that the main body 9a automatically returns to the position shown in Fig. 6 when the wind speed decreases. Is provided in the direction of reducing the force. For this reason, the center of gravity of the part that swings around the horizontal axis 59, including the main body 9a and the propeller 1, moves rearward beyond the vertical line passing through the horizontal axis 59 (Fig. 6).
  • a return spring is provided between the main body 9a and the rotating bracket 56.
  • the return spring may be a tension spring provided between the front end (the left end in FIG. 6) of the main body portion 9a and the rotating bracket 56, or the support arm 58 and the swing arm 6
  • a torsion coil spring or the like spanned between them can be used.
  • the base end of the input shaft 2 is connected to the center of the outer ring 32 of the friction roller type transmission 3b having the same structure as that of the first example shown in FIGS. 1 to 4 described above.
  • the boss portion 37a provided in the portion and the portion near the base end of the intermediate portion of the input shaft 2 are provided in the center of the housing body 15a of the housing 14b accommodating the transmission 3b.
  • 38a is rotatably supported by a pair of rolling bearings 40a and 40b, each of which is a deep groove type or angular type ball bearing.
  • a large load is applied to support the large weight of the propeller 1, and the load capacity of the rolling bearing 40a closer to the propeller 1 is relatively small.
  • the load capacity is larger than the load capacity of the rolling bearing 40b on the transmission 3b side, which applies only a load.
  • a seal ring 41 is provided between the inner peripheral surface of the support cylinder 38 a (the left end in FIG. 7) and the outer peripheral surface of the intermediate portion of the input shaft 2. For this reason, in the case of the present example, the axial dimension of the above-described support cylindrical portion 38a is larger than the axial size of the above-described first example of the support cylindrical portion 38 (see FIG. 2).
  • a bank-shaped protrusion 64 is formed on the outer peripheral surface of the distal end of the support cylindrical portion 38a, and the outer diameter of the distal end is made larger than the outer diameter of the intermediate portion.
  • a coupling bracket 65 for coupling and fixing the base end of the propeller 1 to the input shaft 2 is provided at a portion of the input shaft 2 protruding from the support cylindrical portion 38a at the front end. .
  • the coupling bracket 65 and the input shaft 2 are engaged with each other so that the rotation of the propeller 1 is reliably transmitted to the input shaft 2 via the coupling bracket 65.
  • a cover bracket 66 is screwed and fixed to a portion surrounding the support cylinder 38a on the rear side (right side in FIG. 7) of such a coupling bracket 65.
  • the cover bracket 66 has a crank-shaped cross section and is formed in an annular shape.
  • the distal end of the cover bracket 66 is fixed to the connecting bracket 65 and the outer edge of the support bracket 38a. It is close to the middle part of the surface.
  • the tip edge and the protruding portion 64 form a bent lapillin gap 67 between the support cylinder 38 a and the cover bracket 66.
  • by forming such a labyrinth gap 67 foreign substances such as dust reaching the sliding contact portion between the inner peripheral edge of the seal ring 41 and the outer peripheral surface of the input shaft 2 are reduced.
  • the sealing property of the sliding contact portion is kept good over a long period of time.
  • the generator 5b used in this example is an axial type slotless generator.
  • a generator case 7b is supported and fixed in the casing 60 via a lid 16a that separates the generator case 7b from the transmission 3b.
  • the base end of the rotary shaft 19 also serving as the output shaft 4 of the transmission 3b is located at the bottom of the generator case 7b, and the portion near the front end of the intermediate portion is approximately the cover 16a.
  • Each is rotatably supported via a rolling bearing 20 inside a through hole 18 provided at the center.
  • the intermediate portion of the rotating shaft 19 rotatably supported at the center of the generator case 7b, the portion between the pair of rolling bearings 20 is a circle made of a magnetic material such as a laminated steel plate.
  • a plurality of yokes 68 formed in a ring shape are fixed at intervals in the axial direction. For this reason, in the case of the present example, a retaining ring 69 engaged with a portion near the base end of the rotating shaft 19 and a nut 70 screwed with a portion near the center end of the rotating shaft 19 are provided. Between the yokes 68 and the yokes 68 adjacent in the axial direction. And a cylindrical spacer 71 held between them.
  • a cylindrical sleeve 72 is externally fitted to the intermediate portion of the rotary shaft 19, and the yokes 68 and the spacers 71 are externally fitted to the sleeve 72. are doing. Further, by hanging a key 73 between each of the yokes 68 and the rotary shaft 19, each of the yokes 68 rotates together with the rotary shaft 19.
  • a permanent magnet 74 is attached to one side in the axial direction (the left side in FIG. 7) of the other yoke 68 except for the yoke closest to the tip.
  • each of these permanent magnets 74 is formed by arranging four elements 75a and 75b, each of which is formed in a substantially quarter-arc shape (sector shape), in an annular shape. Become. These elements 75 a and 75 b are magnetized in the axial direction (left and right in FIG. 7 and front and back in FIG. 8), and the elements 75 a and 75 b adjacent to each other in the circumferential direction are mutually magnetized. The magnetization direction is reversed between. Therefore, S poles and N poles are alternately arranged in the circumferential direction on the tip side surface of each permanent magnet 74.
  • a plurality of coil holders 76 are fixed to portions of the inner peripheral surface of the generator case 7b whose phases in the axial direction deviate from the yokes 68.
  • Each of the coil holders 76 is made of a nonmagnetic material such as an aluminum alloy or a synthetic resin, and is formed in a ring shape as a whole.
  • a cylindrical spacer 7 is provided between the coil holders 76 adjacent in the axial direction. 7 is fixedly fitted inside the generator case 7b at the axially intermediate portion of the inner peripheral surface of the generator case 7b.
  • each of the coil holders 76 is positioned between the above-mentioned yoke 68 and the permanent magnet 74 adjacent to each other in the axial direction, in a state in which these two members 68, 74 are closely opposed to each other. (Contact state).
  • a coil 78 is mounted on one axial side (left side in FIG. 7) of each coil holder 76 fixed to the inner peripheral surface of the generator case 7b in this manner.
  • a plurality (six in the illustrated example) of each of the coil holders 76 are arranged at equal intervals in the circumferential direction on an arc centered on the rotating shaft 19.
  • Each of the coils 78 is formed by winding a conductive wire in a bobbin 79 which is a recess in one side in the axial direction of each of the coil holders 76 and is a circular recess. It faces the other side in the axial direction (the right side in Fig. 7).
  • the propeller 1 receives the wind, and the rotating shaft 19 rotates via the transmission 3b. Then, the yokes 68 and the permanent magnets 74 supported by the yokes 68 rotate. As a result, each of the coils 78 crosses the magnetic flux emitted from each of the permanent magnets 74, and power is generated in each of the coils 78. Therefore, if this electric power is sent to the wiring in the rotating bracket 56 through a flexible cord (not shown), and further sent to power distribution equipment provided on a fixed portion such as the upper surface of the base 55 through a slip ring (not shown) The power generated by the generator 5b can be taken out.
  • FIG. 10 shows a general slotless generator in which a permanent magnet and a coil are radially opposed to each other.
  • This generator 80 is composed of a permanent magnet 81 fixed around the rotating shaft 19 and a coil 84 supported on the inner peripheral surface of the generator case 82 via a stay 83. The inner peripheral surface is opposed.
  • a slotless generator the occurrence of cogging due to the presence of the slot, which is a discontinuous portion of the yoke, can be prevented, and a stable operating state can be realized, as compared with a general brushless generator.
  • a radial type slotless generator As shown in Fig.
  • a permanent magnet 81a a permanent magnet 81a, a generator case 82a, a stay case 83a
  • the diameter of the coil 84a can be increased, or as shown in Fig. 12, the axis of the permanent magnet 8lb, the generator case 82b, the stay case 83b, and the coil 84b It is conceivable to increase the dimension in the direction. However, in the case of a structure with a large diameter as shown in Fig. 11, not only the outer diameter of the generator 80a becomes large, but also the permanent magnet 81 a is easily damaged. When the axial dimension is increased as shown in Fig. 12, not only does the length of the generator 80b increase, but also the outer circumference of the permanent magnet 8 lb and the inner circumference of the coil 84b.
  • the efficiency tends to decrease.
  • a wasteful space is generated between the adjacent generators 80.
  • the overall axial dimension becomes larger.
  • the axial-type slotless generator used in the third example shown in Figs. 6 to 9 can secure a sufficient amount of power generation without particularly increasing the size.
  • the axial-type slotless generator as described above requires a small driving torque and has a high power generation efficiency.
  • a wedge roller type friction-port type transmission is installed between the propeller and the generator.
  • the rotating shaft 19 is rotated at a high speed, it is possible to obtain a necessary power generation amount even when the propeller and the generator are directly connected without incorporating a transmission.
  • the noise generated in this transmission can be kept low. Therefore, when the axial-type slotless generator is used, the above-mentioned problem can be solved without necessarily using the wedge-roller-type friction roller-type transmission (although it is preferable to use it).
  • the present invention is configured and operates as described above, a wind power generation device that can be easily installed in a general household or a small business establishment, has a quiet operation sound, and has good power generation efficiency is realized. it can. It should be noted that the same mechanism as that of the wind power generator of the present invention can also be used for a drive mechanism of a small hydroelectric generator using water flow in a stream or agricultural waterway.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Wind Motors (AREA)

Abstract

A wind power generator arranged to be installed in a general home and having an excellent power generation efficiency and low operating sound. A transmission (3) is disposed between a propeller (1) being rotated by wind and a power generator (5). The transmission (3) is a wedge roller type friction roller transmission and functions as a speed-up gear.

Description

明 細 書  Specification
技術分野 Technical field
この発明は、 風の力を利用して発電を行なう風力発電装置の改良に関し、 風速 が低い場合でも効率の良い発電を行なえ、 しかも一般家庭や小規模事業所等にも 容易に設置できる構造を実現するものである。 背景技術  The present invention relates to an improvement of a wind power generator that generates electric power by using wind power, and relates to a structure that can efficiently generate electric power even when the wind speed is low, and can be easily installed in ordinary households and small business establishments. It will be realized. Background art
近年、 二酸化炭素の削減等により地球環境を改善する事を目的として、 自然ェ ネルギを利用する発電方法である風力発電が注目される様になつている。 風力発 電装置は、 風の運動エネルギを利用してプロペラを回転させ、 このプロペラの中 心を結合した回転軸により、 発電機を回転駆動するものである。 従来から一般的 に使用されている風力発電装置は、 上記プロペラと発電機とを、 変速機等を介す る事なく直接結合するか、 歯車式の変速機 (増速機) を介して結合していた。 これに対して、 特開平 2— 1 5 7 4 8 3号公報には、 プロペラと発電機との間 に、 摩擦変速機であるトロイダル型無段変速機を組み込み、 プロペラの回転速度 変動に拘らず、 上記発電機を定速で回転駆動する風力発電機が記載されている。 上記プロペラと一般的な発電機とを直接結合する構造の場合には、 発電機の口 一夕の回転速度が遅く、 十分な発電効率を得られない場合が多い。  In recent years, wind power generation, which is a power generation method using natural energy, has been attracting attention for the purpose of improving the global environment by reducing carbon dioxide. The wind power generator rotates the propeller using the kinetic energy of the wind, and drives the generator to rotate by a rotating shaft that connects the center of the propeller. Conventionally used wind power generators generally connect the propeller and the generator directly without using a transmission or the like, or with a gear-type transmission (gearbox). Was. On the other hand, in Japanese Patent Application Laid-Open No. 2-1575743, a toroidal type continuously variable transmission, which is a friction transmission, is incorporated between the propeller and the generator, and the rotation speed of the propeller is affected. Instead, a wind power generator that drives the generator to rotate at a constant speed is described. In the case of a structure in which the above-mentioned propeller is directly connected to a general generator, the rotation speed of the generator at one time is low, and sufficient power generation efficiency cannot be obtained in many cases.
又、 歯車式の変速機 (増速機) を介して結合する構造の場合には、 この変速機 部分で大きな運転音が発生する為、 民家の近く等、 人が住む場所の近くに設置す ると、 騒音問題が発生する可能性がある。  Also, in the case of a structure that is connected via a gear type transmission (gearbox), since loud driving noise is generated at this transmission, install it near a place where people live, such as near a private house. This may cause noise problems.
更に、 トロイダル型無段変速機を組み込む構造の場合には、 コストが嵩むだけ でなく、 増速比を大きくする事が難しく、 小型でしかも発電効率の良い装置を実 現する事は難しい。  Furthermore, in the case of a structure incorporating a toroidal-type continuously variable transmission, it is difficult not only to increase the cost but also to increase the speed increase ratio, and to realize a small-sized device with high power generation efficiency.
この為、 従来構造の場合には、 一般家庭や小規模事業所等にも容易に設置でき、 しかも発電効率の良好な風力発電装置を実現する事は難しかった。 本発明の風力発電装置は、 この様な事情に鑑みて発明したものである。 発明の開示 For this reason, in the case of the conventional structure, it has been difficult to realize a wind power generation device that can be easily installed in ordinary households and small business establishments, and has good power generation efficiency. The wind power generator of the present invention has been invented in view of such circumstances. Disclosure of the invention
本発明の風力発電装置は、 従来から知られている風力発電装置と同様に、 風を 受けて回転するプロペラと、 このプロペラを入力軸の端部に結合した変速機と、 この変速機の出力軸により回転駆動される発電機とを備えてよく、 上記変速機は、 くさびローラ式の摩擦ローラ式変速機である。  A wind power generator according to the present invention comprises, similarly to a conventionally known wind power generator, a propeller that rotates by receiving wind, a transmission in which the propeller is coupled to an end of an input shaft, and an output of the transmission. A generator rotatably driven by a shaft, wherein the transmission is a wedge roller type friction roller type transmission.
そして、 このくさびローラ式の摩擦ローラ式変速機は、 外輪と、 中心ローラと、 複数本の支持軸と、 複数個の中間ローラとを備える。  The wedge roller type friction roller type transmission includes an outer ring, a center roller, a plurality of support shafts, and a plurality of intermediate rollers.
このうちの外輪は、 上記入力軸の回転に伴って回転するもので、 その内周面を 駆動側円筒面としている。  Of these, the outer ring rotates with the rotation of the input shaft, and its inner peripheral surface is a drive-side cylindrical surface.
又、 上記中心ローラは、 上記出力軸と共に回転するもので、 その外周面を被駆 動側円筒面としている。  The center roller rotates together with the output shaft, and its outer peripheral surface is a driven-side cylindrical surface.
又、 上記各支持軸は、 上記被駆動側円筒面と上記駆動側円筒面との間の環状空 間内に、 上記中心ローラと平行に配置されている。  Further, each of the support shafts is disposed in an annular space between the driven-side cylindrical surface and the drive-side cylindrical surface in parallel with the center roller.
又、 上記各中間ローラは、 上記各支持軸により回転自在に支持され、 それぞれ の外周面を駆動力伝達用円筒面としている。  Each of the intermediate rollers is rotatably supported by each of the support shafts, and each outer peripheral surface is a cylindrical surface for transmitting a driving force.
更に、 上記中心ローラの中心と上記入力軸及び外輪の中心とを偏心させる事に より、 上記環状空間の径方向に関する幅寸法を円周方向に関して不同にすると共 に、 上記複数個の中間ローラのうちの何れかの中間ローラを、 少なくとも上記環 状空間の円周方向に変位自在に支持して可動ローラとし、 残りの中間ローラをガ ィドロ一ラとしている。  Further, by eccentricizing the center of the center roller and the centers of the input shaft and the outer ring, the width of the annular space in the radial direction is made uneven in the circumferential direction. One of the intermediate rollers is movable at least in such a manner as to be movable at least in the circumferential direction of the annular space, and the remaining intermediate rollers are guide rollers.
そして、 上記中心ローラ及び外輪が所定方向に上記出力軸と入力軸との間の変 速比に見合う速度比で回転する場合に、 上記可動ローラとなる中間ローラを、 上 記環状空間の幅の狭い部分に向け移動自在としている。  When the center roller and the outer ring rotate in a predetermined direction at a speed ratio corresponding to the speed change ratio between the output shaft and the input shaft, the intermediate roller serving as the movable roller is moved to the width of the annular space. It can be moved toward a narrow part.
又、 風力発電装置は、 風を受けて回転するプロペラと、 このプロペラにより回 転駆動される発電機とを備えてよく、 この発電機が、 発電機ケースと、 この発電 機ケース内に回転自在に支持されて変速機の出力軸と共に回転する回転軸と、 こ の回転軸の外周面に軸方向に間隔をあけて固定された、 それぞれが磁性材製であ る複数のヨークと、 このヨークの軸方向側面に支持された、 S極と N極とを円周 方向に交互に配置した永久磁石と、 上記発電機ケースの内周面で軸方向に関する 位相が上記各ヨークから外れた部分に固定された複数のコイルホルダと、 これら 各コイルホルダの軸方向側面にそれぞれ複数ずつ支持されて、 それぞれ上記永久 磁石に対向するコイルとを備えたアキシアル型スロットレス発電機である。 上述の様に構成する本発明によれば、 一般家庭や小規模事業所等にも容易に設 置でき、 しかも発電効率の良好な風力発電装置を実現できる。 Further, the wind power generator may include a propeller that rotates by receiving the wind, and a generator that is rotated by the propeller. The generator includes a generator case and a rotatable interior of the generator case. A rotating shaft that is supported by the motor and rotates together with the output shaft of the transmission, and is fixed to the outer peripheral surface of the rotating shaft at an axial distance, each of which is made of a magnetic material. A plurality of yokes, a permanent magnet supported on the axial side surface of the yoke and having S and N poles alternately arranged in the circumferential direction, and a phase in the axial direction on the inner circumferential surface of the generator case. Axial type slotless power generator comprising: a plurality of coil holders fixed to portions deviating from the respective yokes; Machine. ADVANTAGE OF THE INVENTION According to this invention comprised as mentioned above, it can be easily installed also in a general household, a small business establishment, etc., and also can implement | achieve a wind power generator with good power generation efficiency.
即ち、 変速機を組み込んだ構成の風力発電装置の場合には、 風を受けて回転す るプロペラの回転を変速機により増速して発電機に伝達するので、 風速が低い場 合でも効率の良い発電を行なえる。 特に、 くさびローラ式の摩擦ローラ式変速機 は、 停止状態では各中間ローラの外周面である駆動力伝達用円筒面と、 中心ロー ラの外周面である被駆動側円筒面及び外輪の内周面である駆動側円筒面との当接 部の面圧が低く、 入力軸の回転を開始させる為に要するトルク (起動トルク) が 小さい。 この為、 微風時にも上記プロペラの回転を開始させる事ができて、 その 分、 発電効率の向上を図れる。  In other words, in the case of a wind turbine with a built-in transmission, the speed of the propeller, which rotates in response to the wind, is increased by the transmission and transmitted to the generator. Good power generation. In particular, the wedge roller type friction roller type transmission has a driving force transmitting cylindrical surface that is the outer peripheral surface of each intermediate roller when stopped, a driven cylindrical surface that is the outer peripheral surface of the center roller, and an inner peripheral surface of the outer ring. The contact pressure with the drive side cylindrical surface is low, and the torque (starting torque) required to start the rotation of the input shaft is small. For this reason, the propeller can be started to rotate even in a light wind, and the power generation efficiency can be improved accordingly.
又、 上記変速機は摩擦ローラ式変速機である為、 歯車式の変速機を使用する場 合に比べて、 運転時に生じる音が小さく、 民家の近く等、 人が住む場所近くに設 置しても、 騒音問題が発生しにくい。  In addition, since the above transmission is a friction roller type transmission, the noise generated during operation is smaller than when a gear type transmission is used, and it is installed near a place where people live, such as near a private house. However, noise problems are unlikely to occur.
更に、 上記摩擦ローラ式の変速機はくさびローラ式のものであり、 上記各駆動 力伝達用円筒面と上記被駆動側円筒面及び駆動側円筒面との当接部の面圧は、 入 力軸から出力軸に伝達する回転力 (トルク) の大きさに応じて適正に変化する。 この為、 風速に応じて変化する上記プロペラの回転力の変動に拘らず、 このプロ ペラの回転力を発電機まで、 効率良く伝達できる。 尚、 上記当接部の面圧が上昇 するのは、 上記プロペラが回転し始めた後である為、 この面圧上昇がこのプロべ ラの回転開始の妨げとはならない。  Further, the friction roller type transmission is a wedge roller type transmission, and the surface pressure of the contact portion between each of the driving force transmitting cylindrical surfaces and the driven-side cylindrical surface and the driving-side cylindrical surface is equal to the input pressure. It changes appropriately according to the magnitude of the torque (torque) transmitted from the shaft to the output shaft. For this reason, regardless of the fluctuation of the rotational force of the propeller which changes according to the wind speed, the rotational force of the propeller can be efficiently transmitted to the generator. Since the contact pressure of the contact portion increases after the propeller starts rotating, the increase of the contact pressure does not hinder the start of rotation of the propeller.
又、 変速機を組み込む必要の無い構成の風力発電装置の場合には、 発電機とし て、 駆動トルクが小さくて済む等、 効率の良いアキシアル型スロットレス発電機 を使用している事により、 効率的な発電を行なえる。 この為、 プロペラと発電機 との間にくさびローラ式の摩擦ローラ式変速機を組み込んだ場合は勿論、 変速機 を組み込まずにプロペラと発電機とを直結した場合でも、 必要な発電量を得る事 が可能になる。 更に、 発電機の駆動速度を低く抑えられる為、 歯車式の変速機を 使用した場合でも、 この変速機部分で発生する騒音を低く抑える事ができる。 図面の簡単な説明 In addition, in the case of a wind turbine generator that does not need to incorporate a transmission, the efficiency is improved by using an efficient axial type slotless generator, such as a small driving torque. Power generation. For this reason, when a wedge roller type friction roller type transmission is incorporated between the propeller and the generator, Even if the propeller is directly connected to the generator without incorporating the power, it is possible to obtain the required power generation. Furthermore, since the driving speed of the generator can be kept low, even when a gear type transmission is used, the noise generated in this transmission can be kept low. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施の形態の第 1例を示す断面図である。  FIG. 1 is a sectional view showing a first example of an embodiment of the present invention.
図 2は、 図 1の中央上部拡大図である。  FIG. 2 is an enlarged view of the upper center of FIG.
図 3は、 図 2の A— A断面図である。  FIG. 3 is a sectional view taken along line AA of FIG.
図 4は、 図 3の拡大 B— B断面図である。  FIG. 4 is an enlarged BB sectional view of FIG.
図 5は、 本発明の実施の形態の第 2例を示す断面図である。  FIG. 5 is a sectional view showing a second example of the embodiment of the present invention.
図 6は、 同第 3例を示す断面図である。  FIG. 6 is a cross-sectional view showing the third example.
図 7は、 一部を省略して示す、 図 6の C部拡大図である。  FIG. 7 is an enlarged view of a part C of FIG. 6, which is partially omitted.
図 8は、 発電機のョ一ク及び永久磁石を取り出して図 7の左方から見た図であ る。  FIG. 8 is a view of the generator and the permanent magnets taken out from the left side of FIG. 7.
図 9は、 発電機のコイルホルダ及びコイルを取り出して図 7の左方から見た図 である。  FIG. 9 is a diagram of the coil holder and the coil of the generator taken out and viewed from the left in FIG.
図 1 0は、 一般的なスロットレス発電機の基本的構造を示しており、 (A) は 中心軸を含む仮想平面に関する断面図、 (B ) は中心軸に直交する仮想平面に関 する断面図である。  Fig. 10 shows the basic structure of a general slotless generator. (A) is a cross-sectional view of a virtual plane including the central axis, and (B) is a cross-sectional view of a virtual plane orthogonal to the central axis. FIG.
図 1 1は、 スロットレス発電機の発電容量を増大させる為に径を大きくした状 態を示す、 図 1 0 (A) と同様の図である。  FIG. 11 is a view similar to FIG. 10 (A), showing a state in which the diameter is increased in order to increase the power generation capacity of the slotless generator.
図 1 2は、 同じく軸方向長さを大きくした状態を示す、 図 1 0 (A) と同様の 図である。  FIG. 12 is a view similar to FIG. 10 (A), showing a state in which the axial length is also increased.
図 1 3は、 同じく複数の発電機を軸方向に配列した状態を示す、 図 1 0 (A) と同様の図である。 発明を実施するための最良の形態  FIG. 13 is a view similar to FIG. 10 (A), showing a state where a plurality of generators are similarly arranged in the axial direction. BEST MODE FOR CARRYING OUT THE INVENTION
図 1〜4は、 本発明の実施の形態の第 1例を示している。 本発明の風力発電装 置は、 従来から知られている風力発電装置と同様に、 風を受けて回転するプロべ ラ 1と、 このプロペラ 1を入力軸 2の端部に結合した変速機 3と、 この変速機 3 の出力軸 4により回転駆動される発電機 5とを備える。 即ち、 上記プロペラ 1の 回転を、 上記変速機 3を介してこの発電機 5のロータ 6に伝達し、 この口一タ 6 を発電機ケース 7の内周面に設置したステ一タ 8の内側で回転させ、 このステ一 夕 8に起電力を惹起させる様にしている。 1 to 4 show a first example of an embodiment of the present invention. The wind power generation device of the present invention is similar to a conventionally known wind power generation device. A transmission 3, in which the propeller 1 is coupled to an end of the input shaft 2, and a generator 5 that is driven to rotate by an output shaft 4 of the transmission 3. That is, the rotation of the propeller 1 is transmitted to the rotor 6 of the generator 5 via the transmission 3, and this port 6 is placed inside a stator 8 installed on the inner peripheral surface of the generator case 7. To generate an electromotive force in this stage 8.
この様なプロペラ 1と変速機 3と発電機 5とを含む、 発電装置の本体部分 9は、 固定の支柱 1 0の上端部に、 鉛直軸を中心とする回転自在に支持している。 即ち、 地面或は屋上等に鉛直方向に固定された中空円管状の支柱 1 0の上端部に、 上記 本体部分 9の下面に突設した、 やはり中空円管状の回転軸 1 1を、 深溝型の玉軸 受の如き、 ラジアル荷重及びアキシアル荷重を支承自在な転がり軸受 1 2により、 回転自在に支持している。 上記本体部分 9の重心は、 上記回転軸 1 1の中心軸の 延長線上に位置する為、 この回転軸 1 1に加わる傾斜モーメントは、 風による力 のみとなる。 従って、 上記本体部分 9は、 この回転軸 1 1を中心として軽い力で 回転自在である。 尚、 上記プロペラ 1が受ける平均的な風速を考慮して、 上記回 転軸 1 1の中心軸の延長線を、 上記本体部分 9の重心よりも少し上記プロペラ 1 寄りに位置させる事もできる。  The main body 9 of the power generator, including the propeller 1, the transmission 3, and the generator 5, is rotatably supported on the upper end of the fixed support 10 around a vertical axis. That is, at the upper end of a hollow cylindrical column 10 fixed to the ground or on the roof in the vertical direction, a hollow cylindrical rotating shaft 11 protruding from the lower surface of the main body 9 is also provided with a deep groove type. Rolling bearings 12 that can support radial and axial loads, such as ball bearings, are rotatably supported. Since the center of gravity of the main body portion 9 is located on an extension of the central axis of the rotary shaft 11, the tilting moment applied to the rotary shaft 11 is only a wind force. Therefore, the main body 9 is rotatable around the rotation axis 11 with a small force. In consideration of the average wind speed received by the propeller 1, the extension of the center axis of the rotation shaft 11 may be located slightly closer to the propeller 1 than the center of gravity of the main body portion 9.
何れにしても、 上記発電機 5が発電した電力を取り出す為のケーブル 1 3は、 上記回転軸 1 1及び支柱 1 0の内部空間内に配設している。 このケ一ブル 1 3の 途中には、 図示しないスリップリングを設けて、 上記本体部分 9の回転に拘らず、 このケーブル 1 3が捩れない様にしている。 又、 風力発電の場合、 発電量は風速 の変化に伴って頻繁に変化するので、 上記ケーブル 1 3の端部を例えばバッテリ 一に接続し、 このバッテリーに貯めた電力を、 随時取り出して使用する様に構成 しても良い。  In any case, the cable 13 for extracting the electric power generated by the generator 5 is disposed in the internal space of the rotating shaft 11 and the support 10. A slip ring (not shown) is provided in the middle of the cable 13 to prevent the cable 13 from being twisted regardless of the rotation of the main body 9. In the case of wind power generation, since the amount of power generation frequently changes with the change in wind speed, the end of the cable 13 is connected to, for example, a battery, and the power stored in this battery is taken out and used as needed. The configuration may be as follows.
一方、 上記変速機 3は、 構成各部材をハウジング 1 4内に収納する事により、 ユニット化している。 このハウジング 1 4は、 鋼或はアルミニウム合金製で有底 円筒状のハウジング本体 1 5と、 このハウジング本体 1 5の基端開口部を塞ぐ、 鋼或はアルミニウム合金製の蓋体 1 6とから成る。 そして、 上記ハウジング 1 4 内に中心ローラ 1 7の内半部 (図 1〜2の左半部) を、 上記蓋体 1 6の略中央部 に形成した通孔 1 8を通じて揷入している。 尚、 この通孔 1 8は、 上記蓋体 1 6 の中心から、 少しだけ外れた位置に設けている。 又、 上記中心ローラ 1 7の外端 部 (図 1〜2の右端部) には、 前記出力軸 4でもある、 上記発電機 5の回転軸 1 9の端部を結合している。 図示の例では、 この回転軸 1 9の端部に、 この回転軸 1 9よりも小径の上記中心ローラ 1 7を一体に設けている。 そして、 この回転軸 1 9の両端部を、 前記発電機ケース 7の底部と上記蓋体 1 6とに、 それぞれが深 溝型或はアンギユラ型の玉軸受等の、 ラジアル荷重及びアキシアル荷重を支承自 在な 1対の転がり軸受 2 0により、 回転自在に支持している。 又、 上記通孔 1 8 の内周面と上記回転軸 1 9の端部外周面との間にはシールリング 2 1を設けて、 上記ハウジング 1 4内に存在するトラクショングリース等の油脂が、 上記発電機 ケース 7側に入り込まない様にしている。 On the other hand, the transmission 3 is unitized by housing the constituent members in a housing 14. The housing 14 is made of a steel or aluminum alloy and has a bottomed cylindrical housing body 15 and a steel or aluminum alloy lid 16 that closes the base opening of the housing body 15. Become. The inner half of the center roller 17 (the left half in FIGS. 1 and 2) is inserted into the housing 14 through a through hole 18 formed substantially in the center of the lid 16. . The through hole 18 is provided with the lid 16 It is located slightly off the center of the area. Further, the end of the rotating shaft 19 of the generator 5, which is also the output shaft 4, is connected to the outer end of the center roller 17 (the right end in FIGS. 1 and 2). In the illustrated example, the center roller 17 having a smaller diameter than the rotating shaft 19 is integrally provided at the end of the rotating shaft 19. Both ends of the rotating shaft 19 are mounted on the bottom of the generator case 7 and the lid 16, respectively, to support a radial load and an axial load such as a deep groove type or an angular type ball bearing. It is rotatably supported by a pair of independent rolling bearings 20. In addition, a seal ring 21 is provided between the inner peripheral surface of the through hole 18 and the outer peripheral surface of the end of the rotating shaft 19, so that grease such as traction grease existing in the housing 14 is removed. It does not enter the generator case 7 side.
又、 上記ハウジング 1 4の内側で上記中心ローラ 1 7の周囲部分には、 3本の 支持軸 2 2、 2 2 aを、 それぞれこの中心ローラ 1 7と平行に配置している。 即 ち、 これら各支持軸 2 2、 2 2 aの一端部 (図 1〜2の右端部) を上記蓋体 1 6 に支持すると共に、 他端部 (図 1〜 2の左端部) を、 鋼等の金属材により円輪状 に造られた連結板 2 3に支持している。  In addition, three support shafts 22 and 22 a are arranged inside the housing 14 and around the center roller 17 in parallel with the center roller 17. That is, one end (the right end in FIGS. 1 and 2) of each of the support shafts 22 and 22a is supported by the lid 16 and the other end (the left end in FIGS. 1 and 2) is It is supported by a ring-shaped connecting plate 23 made of metal such as steel.
上記 3本の支持軸 2 2、 2 2 aのうち、 図 3の上部中央並びに下部左側に位置 する 2本の支持軸 2 2は、 その両端部を上記蓋体 1 6及び連結板 2 3に形成した 嵌合孔 2 4に圧入固定している。 従って、 これら両支持軸 2 2が、 上記ハウジン グ 1 4内で円周方向或は直径方向に変位する事はない。 これに対して、 図 3の下 部右側に位置する残り 1本の支持軸 2 2 aは、 両端部を上記蓋体 1 6及び連結板 2 3に対し、 上記ハウジング 1 4の円周方向及び直径方向に関して若干の変位自 在に支持している。 この為に、 上記蓋体 1 6及び連結板 2 3の一部で上記支持軸 2 2 aの両端部に整合する部分には、 この支持軸 2 2 aの外径よりも大きな幅及 び長さを有する支持孔 2 5を形成し、 これら各支持孔 2 5に、 上記支持軸 2 2 a の両端部を緩く係合させている。  Of the three support shafts 22 and 22a, the two support shafts 22 located at the upper center and the lower left side in FIG. 3 have both ends attached to the lid 16 and the connecting plate 23. It is press-fitted and fixed in the formed fitting hole 24. Therefore, the two support shafts 22 are not displaced in the housing 14 in the circumferential or diametrical direction. On the other hand, the remaining one support shaft 22a located on the lower right side of FIG. 3 has both ends in the circumferential direction of the housing 14 with respect to the lid 16 and the connecting plate 23. It is supported with a slight displacement in the diametric direction. For this reason, a portion of the lid 16 and the connecting plate 23 that is aligned with both ends of the support shaft 22a has a width and length larger than the outer diameter of the support shaft 22a. A support hole 25 having a height is formed, and both ends of the support shaft 22 a are loosely engaged with the support holes 25.
そして、 これら各支持軸 2 2、 2 2 aの中間部周囲に、 それぞれが中間ローラ であるガイドローラ 2 6 a、 2 Q b及び可動ローラ 2 7を、 それぞれラジアル二 —ドル軸受等の軸受 2 8により、 回転自在に支持している。 尚、 上記連結板 2 3 は、 上記蓋体 1 6の内面 (上記ガイドロ一ラ 2 6 a、 2 6 b及び可動ローラ 2 7 を設置した空間側の面で、 図 1〜2の左面) の一部で、 上記ガイドローラ 2 6 a、Guide rollers 26a, 2Qb and movable rollers 27, each of which is an intermediate roller, are provided around the intermediate portion of each of the support shafts 22, 22a, respectively. By 8, it is supported rotatably. The connecting plate 23 is connected to the inner surface of the lid 16 (the guide rollers 26a and 26b and the movable roller 27). On the space side where is installed, the left side of Figs. 1 and 2)
2 6 b及び可動ローラ 2 7から外れた位置に突設した突部 2 9に突き当て、 連結 ボルト 3 0により、 上記蓋体 1 6に連結固定している。 又、 上記ガイドローラ 2 6 a , 2 6 b及び可動ローラ 2 7の軸方向両端面と上記連結板 2 3及び蓋体 1 6 との間には、 それぞれスラストヮッシャ 3 1 a、 3 1 bを回転自在に設けて、 上 記各ローラ 2 6 a、 2 6 b、 2 7の回転が円滑に行なわれる様にしている。 尚、 上記各スラストヮッシャ 3 1 a、 3 l bは、 滑り軸受としての機能を発揮させる ベく、 ポリアミド樹脂、 ポリアセタール樹脂、 ポリフエ二レンサルファイド樹脂 等の、 摩擦係数が低い材料により造る事が好ましい。 26 b and a protrusion 29 protruding from a position deviated from the movable roller 27, and are connected and fixed to the lid 16 by connection bolts 30. Thrust washers 31a and 31b are respectively rotated between the axial end surfaces of the guide rollers 26a and 26b and the movable roller 27 and the connecting plate 23 and the lid 16 respectively. The rollers 26a, 26b, and 27 are provided freely so that the rotation of the rollers 26a, 26b, and 27 can be performed smoothly. Each of the thrust washers 31a and 31b is preferably made of a material having a low coefficient of friction, such as a polyamide resin, a polyacetal resin, or a polyphenylene sulfide resin, which functions as a sliding bearing.
又、 上記ハウジング 1 4の内側で上記ガイドローラ 2 6 a、 2 6 b及び可動口 —ラ 2 7を囲む部分には、 円筒状の外輪 3 2を設け、 この外輪 3 2の内周面を、 駆動側円筒面 3 3としている。 そして、 この駆動側円筒面 3 3と、 上記ガイド口 ーラ 2 6 a、 2 6 b及び可動ローラ 2 7の外周面である駆動力伝達用円筒面 3 4、 A cylindrical outer ring 32 is provided inside the housing 14 to surround the guide rollers 26 a and 26 b and the movable opening roller 27, and an inner peripheral surface of the outer ring 32 is provided. The driving-side cylindrical surface is 3 3. The driving-side cylindrical surface 33 and the driving force transmitting cylindrical surface 34, which is the outer peripheral surface of the guide rollers 26 a and 26 b and the movable roller 27,
3 4とを当接自在としている。 又、 上記外輪 3 2には、 連結板 3 5を介して、 前 記入力軸 2の基端部 (図 1〜2の右端部) を結合している。 そして、 上記外輪 3 2の中心部でこの入力軸 2の基端部を結合した部分に設けたボス部 3 7を前記ハ ウジング本体 1 5の中央部に形成した支持筒部 3 8に、 上記入力軸 2の中間部先 端寄り部分を装置ハウジング 3 9に、 それぞれが深溝型或はアンギユラ型の玉軸 受等の、 ラジアル荷重及びアキシアル荷重を支承自在な 1対の転がり軸受 4 0に より、 回転自在に支持している。 そして、 上記入力軸 2の先端部 (図 1〜2の左 端部) で上記装置ハウジング 3 9外に突出した部分に、 前記プロペラ 1の中心部 を結合固定している。 尚、 上記ボス部 3 7の外周面と上記支持筒部 3 8の内周面 との間にはシールリング 4 1を設けて、 雨水等の異物が前記ハウジング 1 4内に 入り込まない様にしている。 3 and 4 can be freely contacted. The base end of the input shaft 2 (the right end in FIGS. 1 and 2) is connected to the outer ring 32 via a connecting plate 35. A boss 37 provided at the center of the outer ring 32 at a position where the base end of the input shaft 2 is joined is attached to a support cylinder 38 formed at the center of the housing body 15. The intermediate end of the input shaft 2 near the end is placed in the device housing 39, and a pair of rolling bearings 40, each of which is capable of supporting radial and axial loads, such as a deep groove or angular ball bearing, is used. , Rotatably supported. The center of the propeller 1 is fixedly connected to a portion of the input shaft 2 that protrudes out of the device housing 39 at the tip (the left end in FIGS. 1 and 2). In addition, a seal ring 41 is provided between the outer peripheral surface of the boss portion 37 and the inner peripheral surface of the support cylinder portion 38 so that foreign matter such as rainwater does not enter the housing 14. I have.
又、 本例の場合には、 上記外輪 3 2を上記ハウジング 1 4の内側に、 回転並び にラジアル方向に関する若干の変位自在に設けている。 即ち、 本例の場合には、 上記連結板 3 5の外周縁に形成した複数の突片 4 2と、 上記外輪 3 2の軸方向一 端縁部 (図 1〜2の左端縁部) に形成した切り欠き 4 3とを、 ラジアル方向に関 する若干の変位自在に係合させている。 又、 上記各突片 4 2を上記各切り欠き 4 3の奥部 (図 1〜 2の右部) に進入させた状態で、 上記外輪 3 2の端部内周面に 形成した係止溝 4 4に止め輪 4 5を係止して、 上記各突片 4 2が上記各切り欠き 4 3から抜け出ない様にしている。 従って、 上記外輪 3 2と上記連結板 3 5とは、 回転力の伝達を自在に、 且つ、 ラジアル方向に関する若干の相対変位自在に結合 されている。 In the case of the present example, the outer ring 32 is provided inside the housing 14 so as to be rotatable and slightly displaceable in the radial direction. That is, in the case of the present example, the plurality of protruding pieces 42 formed on the outer peripheral edge of the connecting plate 35 and one axial edge of the outer ring 32 (the left edge in FIGS. 1 and 2). The formed notch 43 is slightly displaceably engaged in the radial direction. Also, insert each protruding piece 4 2 into each notch 4 In the state where it is inserted into the inner part of the outer ring 32 (the right part of FIGS. 1 and 2), the retaining ring 45 is locked in the locking groove 44 formed in the inner peripheral surface of the end of the outer ring 32, and The protruding pieces 42 are prevented from falling out of the respective notches 43. Therefore, the outer race 32 and the connecting plate 35 are connected to each other so as to be able to freely transmit a rotational force and to be slightly displaceable relative to the radial direction.
又、 前記各ガイドローラ 2 6 a、 2 6 b及び可動ローラ 2 7の外周面である、 前記各駆動力伝達用円筒面 3 4は、 それぞれ前記中心ローラ 1 7の外周面に設け た被駆動側円筒面 4 6と、 上記外輪 3 2の内周面に設けた前記駆動側円筒面 3 3 とに当接させている。 上記中心ローラ 1 7の中心と上記入力軸 2及び外輪 3 2の 中心とは互いに偏心している。 即ち、 前述の様に、 上記中心ローラ 1 7を揷通す る通孔 1 8は、 前記ハウジング 1 4の中心から少しだけ外れた位置に設けている のに対して、 上記入力軸 2を挿通する支持筒部 3 8は、 上記ハウジング 1 4の中 心に設けている。 又、 この支持筒部 3 8の内側に回転自在に支持した入力軸 2と 外輪 3 2とは、 実質的には互いに同心である。 従って、 上記中心口一ラ 1 7と上 記外輪 3 2及び入力軸 2とは、 上記通孔 1 8のハウジング 1 4の中心からのずれ 量 δ分だけ、 互いに偏心している。 そして、 上記中心ローラ 1 7の外周面に設け た上記被駆動側円筒面 4 6と上記外輪 3 2の内周面に設けた上記駆動側円筒面 3 3との間に存在して上記ガイドロ一ラ 2 6 a、 2 6 b及び可動ローラ 2 7が設け られた環状空間 4 7の径方向に関する幅寸法が、 上記 3分の偏心量に見合う分だ け、 円周方向に関して不同になっている。  Further, the driving force transmitting cylindrical surfaces 34, which are the outer peripheral surfaces of the guide rollers 26a, 26b and the movable roller 27, respectively, are driven on the outer peripheral surface of the center roller 17 respectively. The side cylindrical surface 46 is in contact with the driving cylindrical surface 33 provided on the inner peripheral surface of the outer ring 32. The center of the center roller 17 and the centers of the input shaft 2 and the outer ring 32 are eccentric to each other. That is, as described above, the through hole 18 that passes through the center roller 17 is provided at a position slightly deviated from the center of the housing 14, while the input shaft 2 is inserted therethrough. The support cylinder 38 is provided at the center of the housing 14. The input shaft 2 and the outer ring 32, which are rotatably supported inside the support cylinder 38, are substantially concentric with each other. Therefore, the center opening 17 and the outer ring 32 and the input shaft 2 are eccentric with respect to each other by the amount of deviation δ of the through hole 18 from the center of the housing 14. The guide roller exists between the driven cylindrical surface 46 provided on the outer peripheral surface of the center roller 17 and the driven cylindrical surface 33 provided on the inner peripheral surface of the outer ring 32. The radial width of the annular space 47 provided with the rollers 26a and 26b and the movable roller 27 is not uniform in the circumferential direction by an amount corresponding to the eccentricity of 3 minutes. .
この様に、 上記環状空間 4 7の径方向に関する幅寸法を円周方向に関して不同 にした分、 上記ガイドローラ 2 6 a、 2 6 b及び可動ローラ 2 7の外径を異なら せている。 即ち、 上記外輪 3 2に対し中心ローラ 1 7が偏心している側 (図 3の 下側) に位置するガイドローラ 2 6 b及び可動ローラ 2 7の径を、 互いに同じと すると共に比較的小径にしている。 これに対し、 上記外輪 3 2に対し中心ローラ 1 7が偏心しているのと反対側 (図 3の上側) に位置するガイドローラ 2 6 aの 径を、 上記ガイドローラ 2 6 b及び可動ローラ 2 7よりも大きくしている。 そし て、 これら 3個の、 それぞれが中間ローラであるガイドローラ 2 6 a、 2 6 b及 び可動ローラ 2 7の外周面である駆動力伝達用円筒面 3 4を、 上記駆動側、 被駆 動側各円筒面 3 3、 4 6に当接させている。 尚、 これら各面 3 4、 3 3、 4 6同 士の当接部にエッジロードに基づく過大面圧が加わる事を防止する為に、 上記ガ ィドローラ 2 6 a、 2 6 b及び可動ローラ 2 7の外周面である駆動力伝達用円筒 面 3 4に、 適正なクラウニングを施す事が好ましい。 この場合に、 上記駆動側、 被駆動側各円筒面 3 3、 4 6の母線形状は、 直線のままで良い。 As described above, the outer diameters of the guide rollers 26a and 26b and the movable roller 27 are made different by an amount that the width of the annular space 47 in the radial direction is made uneven in the circumferential direction. That is, the diameters of the guide roller 26 b and the movable roller 27 located on the side where the center roller 17 is eccentric with respect to the outer ring 32 (the lower side in FIG. 3) are the same and relatively small. ing. On the other hand, the diameter of the guide roller 26 a located on the opposite side (upper side in FIG. 3) of the center roller 17 with respect to the outer ring 32 is set to the diameter of the guide roller 26 b and the movable roller 2. It is larger than 7. The driving force transmitting cylindrical surface 34, which is the outer peripheral surface of each of the three guide rollers 26a and 26b and the movable roller 27, is connected to the drive side and the driven The moving side is in contact with each of the cylindrical surfaces 33, 46. The guide rollers 26a, 26b and the movable rollers 2 are used to prevent excessive surface pressure due to edge load from being applied to the contact portions of these surfaces 34, 33, 46. It is preferable to apply appropriate crowning to the driving force transmitting cylindrical surface 34, which is the outer peripheral surface of 7. In this case, the generatrix shape of each of the driving-side and driven-side cylindrical surfaces 33 and 46 may be a straight line.
尚、 それぞれが中間ローラである、 上記 2個のガイドローラ 2 6 a、 2 6 b及 び 1個の可動ローラ 2 7のうち、 両ガイドローラ 2 6 a、 2 6 bを支持した支持 軸 2 2は、 前述の様に、 上記ハウジング 1 4内に固定している。 これに対して、 可動口一ラ 2 7を支持した支持軸 2 2 aは、 やはり前述した様に上記ハウジング 1 4内に、 円周方向及び直径方向に関する若干の変位を自在に支持している。 従 つて、 上記可動ローラ 2 7も、 上記ハウジング 1 4内で円周方向及び直径方向に 関して若干の変位自在である。 そして、 前記蓋体 1 6及び連結板 2 3のシリンダ 孔 4 8内に装着した圧縮コイルばね 4 9笋の弾性材により、 上記可動ローラ 2 7 を支持した支持軸 2 2 aを、 この支持軸 2 2 aに回転自在に支持した可動ローラ 2 7を前記環状空間 4 7の幅の狭い部分に向け移動させるベく、 弾性的に押圧し ている。 図示の例では、 上記圧縮コイルばね 4 9により、 それぞれの先端部 (図 3の左下端部、 図 4の下端部) に外向フランジ状の鍔部 5 0を形成した 1対の押 圧ピン 5 1を押圧し、 これら両押圧ピン 5 1により、 上記支持軸 2 2 aの両端部 を同方向に押圧している。  Of the two guide rollers 26a and 26b and one movable roller 27, each of which is an intermediate roller, a support shaft 2 that supports both guide rollers 26a and 26b. 2 is fixed in the housing 14 as described above. On the other hand, the support shaft 22 a supporting the movable opening roller 27 freely supports a slight displacement in the circumferential direction and the diametric direction in the housing 14 as described above. . Therefore, the movable roller 27 is also slightly displaceable in the circumferential direction and the diametrical direction in the housing 14. A support shaft 22 a supporting the movable roller 27 is supported by an elastic material of a compression coil spring 49 mounted in a cylinder hole 48 of the lid 16 and the connecting plate 23. The movable roller 27 rotatably supported by 22a is elastically pressed to move toward the narrow portion of the annular space 47. In the example shown in the figure, a pair of pressing pins 5 having outwardly flange-shaped flanges 50 formed at the respective ends (the lower left end in FIG. 3 and the lower end in FIG. 4) by the compression coil spring 49 are provided. 1, and both ends of the support shaft 22a are pressed in the same direction by these two pressing pins 51.
以上に述べた様に構成する変速機 3を組み込んだ本発明の風力発電装置の作用 は、 次の通りである。  The operation of the wind turbine generator of the present invention incorporating the transmission 3 configured as described above is as follows.
風が吹いた場合には前記プロペラ 1が回転する。 前記本体部分 9を設置した前 記装置ハウジング 3 9は、 鉛直方向に配置された前記回転軸 1 1を中心とする回 転自在に支持されており、 上記装置ハウジング 3 9のうちで上記プロペラ 1と反 対側端部には導風板部 5 2が設けられている為、 このプロペラ 1は風の吹いてく る方向に向いて効果的に風を受け、 回転する。  When the wind blows, the propeller 1 rotates. The device housing 39 on which the main body 9 is installed is rotatably supported around the rotating shaft 11 arranged vertically, and the propeller 1 of the device housing 39 is provided. At the opposite end, a wind guide plate 52 is provided, so that the propeller 1 effectively receives the wind and rotates in the direction in which the wind blows.
上記プロペラ 1の回転は、 前記入力軸 2及び連結板 3 5を介して前記外輪 3 2 に伝わり、 この外輪 3 2が図 3の時計方向に回転する。 そして、 この外輪 3 2の 回転が、 この外輪 3 2の内周面である駆動側円筒面 3 3と、 ガイドローラ 2 6 a、 2 6 b及び可動ローラ 2 7の外周面である駆動力伝達用円筒面 3 4、 3 4との当 接部である、 各外径側当接部 5 3 a、 5 3 bを介して、 上記各ガイドローラ 2 6 a、 2 6 b及び可動ローラ 2 7に伝わる。 更に、 これらガイドローラ 2 6 a、 2 6 b及び可動ローラ 2 7の回転は、 上記各駆動力伝達用円筒面 3 4と前記中心口 ーラ 1 7の外周面である被駆動側円筒面 4 6との当接部である、 各内径側当接部 5 4 a , 5 4 bを介して、 上記中心口一ラ 1 7に伝わる。 そして、 この中心ロー ラ 1 7と一体に設けられた前記出力軸 4を兼ねた、 前記発電機 5の回転軸 1 9、 並びにこの回転軸 1 9の周囲に設けた口一夕 6を回転駆動する。 この結果、 この 口一夕 6の周囲に配置した前記ステ一夕 8に起電力が惹起される為、 この電力を 前記ケーブル 1 3により取り出す。 The rotation of the propeller 1 is transmitted to the outer ring 32 via the input shaft 2 and the connecting plate 35, and the outer ring 32 rotates clockwise in FIG. The rotation of the outer ring 32 is driven by the drive-side cylindrical surface 33, which is the inner peripheral surface of the outer ring 32, and the guide rollers 26a, Through the outer diameter side contact portions 5 3 a and 5 3 b which are the contact portions with the driving force transmitting cylindrical surfaces 34 and 34 which are the outer peripheral surfaces of the movable roller 26 and the movable roller 27. The light is transmitted to the guide rollers 26 a and 26 b and the movable roller 27. Further, the rotation of the guide rollers 26 a and 26 b and the movable roller 27 is controlled by the driving force transmitting cylindrical surface 34 and the driven cylindrical surface 4, which is the outer peripheral surface of the central roller 17. It is transmitted to the central opening 17 via the inner diameter side contact portions 54a and 54b, which are the contact portions with 6. The rotating shaft 19 of the generator 5, which also serves as the output shaft 4 provided integrally with the center roller 17, and the mouth 6 provided around the rotating shaft 19 are rotationally driven. I do. As a result, an electromotive force is generated in the stay 8 disposed around the mouth 6, and the power is taken out by the cable 13.
上記外輪 3 2が図 3の時計方向に回転すると、 前記可動ローラ 2 7が、 この外 輪 3 2から加わる力と前記各圧縮コイルばね 4 9の弾力とにより、 上記駆動側、 被駆動側各円筒面 3 3、 4 6同士の間に存在する環状空間 4 7内で、 この環状空 間 4 7の幅の狭い部分 (図 3の下側中央部分) に向け移動する。 この結果、 上記 可動ローラ 2 7の外周面である駆動力伝達用円筒面 3 4が、 上記被駆動側円筒面 4 6と駆動側円筒面 3 3とを強く押圧する。 そして、 この可動ローラ 2 7に関す る駆動力伝達用円筒面 3 4と上記被駆動側円筒面 4 6との当接部である内径側当 接部 5 4 b、 及び、 上記可動ローラ 2 7に関する駆動力伝達用円筒面 3 4と上記 駆動側円筒面 3 3との当接部である外径側当接部 5 3 bの当接圧が高くなる。 上記可動ローラ 2 7に関する内径側、 外径側両当接部 5 4 b、 5 3 bの当接圧 が高くなると、 上記中心ローラ 1 7と外輪 3 2とのうちの少なくとも一方の部材 が、 組み付け隙間、 或は弾性変形等に基づき、 それぞれの直径方向に関して僅か に変位する。 この結果、 残り 2個の中間ローラであるガイドローラ 2 6 a、 2 6 bの外周面である駆動力伝達用円筒面 3 4と上記中心ローラ 1 7の外周面である 被駆動側円筒面 4 6との当接部である 2個所の内径側当接部 5 a、 及び上記各 ガイドローラ 2 6 a、 2 6 bの外周面である駆動力伝達用円筒面 3 4と上記外輪 When the outer ring 32 rotates clockwise in FIG. 3, the movable roller 27 is driven by the force applied from the outer ring 32 and the elasticity of the compression coil springs 49 so that the movable side and the driven side are respectively driven. In the annular space 47 existing between the cylindrical surfaces 33 and 46, the annular space 47 moves toward the narrow portion (the lower central portion in FIG. 3) of the annular space 47. As a result, the driving force transmitting cylindrical surface 34, which is the outer peripheral surface of the movable roller 27, strongly presses the driven-side cylindrical surface 46 and the driving-side cylindrical surface 33. Further, an inner diameter side contact portion 54b which is a contact portion between the driving force transmitting cylindrical surface 34 relating to the movable roller 27 and the driven side cylindrical surface 46, and the movable roller 27 The contact pressure of the outer diameter side contact portion 53b, which is the contact portion between the driving force transmitting cylindrical surface 34 and the driving side cylindrical surface 33, increases. When the contact pressure of both the inner and outer diameter contact portions 54b and 53b with respect to the movable roller 27 increases, at least one of the center roller 17 and the outer ring 32 becomes It is slightly displaced in the diametric direction based on the assembling gap or elastic deformation. As a result, the driving force transmitting cylindrical surface 34, which is the outer peripheral surface of the guide rollers 26a, 26b, which are the remaining two intermediate rollers, and the driven cylindrical surface 4, which is the outer peripheral surface of the center roller 17 described above. 6, the two inner diameter side contact portions 5a which are the contact portions with 6, the driving force transmitting cylindrical surface 34 which is the outer peripheral surface of each of the guide rollers 26a and 26b, and the outer ring
3 2の内周面である駆動側円筒面 3 3との当接部である 2個所の外径側当接部 5 3 aの当接圧が高くなる。 そして、 上記中心ローラ 1 7が、 図 3の反時計方向に 回転する。 上記可動ローラ 2 7を、 上記環状空間 4 7内でこの環状空間 4 7の幅の狭い部 分に向け移動させようとする力は、 上記外輪 3 2から上記中心ローラ 1 7に伝達 するトルクの大きさに応じて変化する。 即ち、 前記プロペラ 1から上記外輪 3 2 に、 前記入力軸 2を通じて伝達されるトルクが大きくなる程、 上記可動ローラ 2 7を上記環状空間 4 7の幅の狭い部分に向け移動させようとする力が大きくなる。 そして、 この力が大きくなる程、 上記各内径側、 外径側両当接部 5 4 a、 5 4 b、 5 3 a、 5 3 bの当接圧が大きくなる。 逆に言えば、 上記駆動トルクが小さい場 合には、 これら各内径側、 外径側両当接部 5 4 a、 5 4 b、 5 3 a、 5 3 bの当 接圧が小さい。 この為、 上記各内径側、 外径側両当接部 5 4 a、 5 4 b、 5 3 a , 5 3 bの当接圧を、 前記入力軸 2と前記出力軸 4との間で伝達すべきトルクの大 きさに応じた適正値にできて、 摩擦ローラ式変速機の伝達効率を高くできる。 一方、 例えば風向きが急変し、 前記本体部分 9の向きが変わる前に上記プロべ ラ 1が風を受けてこのプロペラが逆回転した場合の如く、 前記中心ローラ 1 7が 停止した状態のまま上記外輪 3 2が図 3の反時計方向に回転する (外輪 3 2の速 度が負になる) 場合も含めて、 上記中心ローラ 1 7の回転速度が上記入力軸 2の 回転速度に見合う速度よりも速くなる様な場合には、 上記可動ローラ 2 7が、 上 記中心ローラ 1 7或は上記外輪 3 2から加わる力により、 前記各圧縮コイルばね 4 9の弾力に杭し、 上記環状空間 4 7内で、 この環状空間 4 7の幅の広い部分 (図 3の右側中央部分) に向け移動する。 この結果、 上記可動ローラ 2 7の外周 面である駆動力伝達用円筒面 3 4が、 上記被駆動側円筒面 4 6と駆動側円筒面 3 3とを押圧しなくなる。 そして、 この可動ローラ 2 7並びに前記各ガイドローラ 2 6 a、 2 6 bに関する駆動力伝達用円筒面 3 4と上記被駆動側円筒面 4 6との 当接部である外径側当接部 5 3 a、 5 3 b、 及び、 上記可動ローラ 2 7並びに前 記各ガイドロ一ラ 2 6 a、 2 6 bに関する駆動力伝達用円筒面 3 4と上記駆動側 円筒面 3 3との当接部である内径側当接部 5 4 a、 5 4 bの当接圧が、 低下若し くは喪失する。 この結果、 上記外輪 3 2の回転が上記回転軸 1 9にまで伝達され なくなる。 この為、 前記発電機 5が直流式の場合でも、 この発電機 5に逆方向の 起電力が惹起される事はない。 The contact pressure of the two outer diameter side contact portions 53 a which is the contact portion with the drive side cylindrical surface 33 which is the inner peripheral surface of 32 becomes high. Then, the center roller 17 rotates counterclockwise in FIG. The force for moving the movable roller 27 toward the narrow portion of the annular space 47 in the annular space 47 is the torque transmitted from the outer ring 32 to the center roller 17. It changes according to the size. That is, as the torque transmitted from the propeller 1 to the outer ring 32 through the input shaft 2 increases, the force for moving the movable roller 27 toward the narrow portion of the annular space 47 increases. Becomes larger. And, as this force increases, the contact pressures of the inner and outer contact portions 54a, 54b, 53a, 53b increase. Conversely, when the driving torque is small, the contact pressures of the inner and outer contact portions 54a, 54b, 53a, 53b are small. Therefore, the contact pressure of the inner and outer contact portions 54a, 54b, 53a, 53b is transmitted between the input shaft 2 and the output shaft 4. The transmission efficiency of the friction roller type transmission can be increased by setting the appropriate value according to the magnitude of the torque to be performed. On the other hand, for example, as in the case where the wind direction suddenly changes and the propeller 1 receives the wind before the main body portion 9 changes direction and the propeller rotates in the reverse direction, the center roller 17 is stopped and the above-mentioned state is maintained. Including the case where the outer ring 32 rotates counterclockwise in FIG. 3 (the speed of the outer ring 32 becomes negative), the rotation speed of the center roller 17 is higher than the rotation speed corresponding to the rotation speed of the input shaft 2. In such a case, the movable roller 27 is piled on the elasticity of each of the compression coil springs 49 by the force applied from the central roller 17 or the outer ring 32, and Within 7, move toward the wide part (the central part on the right side in FIG. 3) of this annular space 47. As a result, the driving force transmitting cylindrical surface 34, which is the outer peripheral surface of the movable roller 27, does not press the driven-side cylindrical surface 46 and the driving-side cylindrical surface 33. An outer diameter side contact portion which is a contact portion between the driving force transmitting cylindrical surface 34 and the driven cylindrical surface 46 relating to the movable roller 27 and the guide rollers 26 a and 26 b. 5 3 a, 5 3 b and the contact between the movable roller 27 and the driving force transmitting cylindrical surface 34 on the guide rollers 26 a and 26 b and the driving-side cylindrical surface 33 The contact pressure of the inner diameter side contact portions 54a and 54b, which are the portions, is reduced or lost. As a result, the rotation of the outer ring 32 is not transmitted to the rotating shaft 19. Therefore, even when the generator 5 is of a DC type, no electromotive force is generated in the generator 5 in the reverse direction.
更に、 図示の摩擦ローラ式の変速機 3の場合には、 上記各ガイドローラ 2 6 a、 2 6 bの外径や取付位置が多少ずれたり、 構成各部材が弾性変形したり、 更には 上記外輪 3 2が熱膨張した場合でも、 これら各ガイドローラ 2 6 a、 2 6 bの外 周面である駆動力伝達用円筒面 3 4と、 上記中心ローラ 1 7の外周面である被駆 動側円筒面 4 6及び上記外輪 3 2の内周面である駆動側円筒面 3 3との接触部の 接触面圧を、 設計値通りに規制できる。 即ち、 上記各ガイドローラ 2 6 a、 2 6 bの外径や取付位置がずれた場合には、 上記可動ローラ 2 7が上記環状空間 4 7 の幅寸法が狭い部分に変位するのに伴って、 上記外輪 3 2がラジアル方向に変位 する。 そして、 上記ガイドローラ 2 6 a、 2 6 b及び上記可動ローラ 2 7の外周 面である、 上記各駆動力伝達用円筒面 3 4と、 上記中心ローラ 1 7の外周面であ る被駆動側円筒面 4 6及び上記外輪 3 2の内周面である駆動側円筒面 3 3との接 触部の接触面圧を設計値通りにする。 従って、 上記外径や取付位置が多少ずれた り、 或は構成部材が弹性変形した場合でも、 高い伝達効率を得られる。 又、 組み 付け誤差や強風による外力等により、 前記入力軸 2の中心軸と上記外輪 3 2の中 心軸とが多少ずれた場合でも、 前記各突片 4 2と前記各切り欠き 4 3との係合部 がこのずれを吸収して、 上記変速機 3の構成各部に過大な応力が加わる事を防止 する。 Further, in the case of the friction roller type transmission 3 shown in the figure, the above guide rollers 26 a, Even if the outer diameter and mounting position of 26 b are slightly displaced, the constituent members are elastically deformed, and even if the outer ring 32 thermally expands, the outer circumference of each of these guide rollers 26 a and 26 b Of the driving force transmitting cylindrical surface 34, which is the outer peripheral surface of the center roller 17, and the driving cylindrical surface 33, which is the inner peripheral surface of the outer ring 32. The contact surface pressure at the contact part can be regulated as designed. That is, when the outer diameters and mounting positions of the guide rollers 26a and 26b are shifted, the movable roller 27 is displaced to a portion where the width dimension of the annular space 47 is narrow. The outer ring 32 is displaced in the radial direction. The driving force transmitting cylindrical surfaces 34, which are the outer peripheral surfaces of the guide rollers 26a and 26b and the movable roller 27, and the driven side, which is the outer peripheral surface of the center roller 17 The contact surface pressure of the contact portion between the cylindrical surface 46 and the drive-side cylindrical surface 33 that is the inner peripheral surface of the outer ring 32 is set to the designed value. Therefore, high transmission efficiency can be obtained even when the outer diameter or the mounting position is slightly displaced, or when the constituent members are deformed in nature. Further, even when the center axis of the input shaft 2 and the center axis of the outer ring 32 are slightly displaced due to an assembly error, an external force due to a strong wind, etc., the protruding pieces 4 2 and the notches 4 3 The engaging portion of the transmission 3 absorbs this shift, thereby preventing excessive stress from being applied to each component of the transmission 3.
変速機 3として、 上述の様なくさびローラ式の摩擦ローラ式変速機を組み込ん だ、 本発明の風力発電装置は、 一般家庭や小規模事業所等にも容易に設置でき、 しかも発電効率を良好にできる。  The wind turbine generator of the present invention incorporating the wedge roller type friction roller type transmission as described above as the transmission 3 can be easily installed in ordinary households and small business establishments, and has good power generation efficiency. Can be.
即ち、 風を受けて回転するプロペラ 1の回転を上記変速機 3により増速して発 電機 5に伝達するので、 風速が低い場合でもこの発電機 5のロータ 6を高速で回 転させて、 効率の良い発電を行なえる。 特に、 くさびローラ式の摩擦ローラ式変 速機は、 停止状態では、 上記可動ローラ 2 7及びガイドローラ 2 6 a、 2 6 bの 外周面である駆動力伝達用円筒面 3 4と、 上記中心ローラ 1 7の外周面である上 記被駆動側円筒面 4 6及び上記外輪 3 2の内周面である上記駆動側円筒面 3 3と の当接部の面圧が低い。 従って、 この外輪 3 2に結合した前記入力軸 2の回転を 開始させる為に要するトルク (起動トルク) が小さい。 この為、 微風時にも上記 プロペラ 1の回転を開始させる事ができて、 その分、 発電効率の向上を図れる。 又、 上記変速機 3は摩擦ローラ式変速機である為、 遊星歯車式等の歯車式の変 速機を使用する場合に比べて、 運転時に生じる音が小さく、 民家の近く等、 人が 住む場所近くに設置する場合でも、 騒音問題が発生しにくい。 特に、 上記プロべ ラ 1から上記発電機 5に至る動力伝達系中に、 騒音を発生し易い歯車やベルトを 一切使用しない為、 優れた騒音防止効果を得られる。 That is, since the speed of the rotation of the propeller 1 that rotates by receiving the wind is increased by the transmission 3 and transmitted to the generator 5, even when the wind speed is low, the rotor 6 of the generator 5 is rotated at a high speed, Power generation can be performed efficiently. In particular, when the wedge roller type friction roller type variable speed gear is stopped, the driving force transmitting cylindrical surface 34 which is the outer peripheral surface of the movable roller 27 and the guide rollers 26a and 26b, and the center The contact pressure between the driven-side cylindrical surface 46, which is the outer peripheral surface of the roller 17, and the drive-side cylindrical surface 33, which is the inner peripheral surface of the outer ring 32, is low. Therefore, the torque (starting torque) required to start the rotation of the input shaft 2 connected to the outer ring 32 is small. Therefore, the rotation of the propeller 1 can be started even in a light wind, and the power generation efficiency can be improved accordingly. In addition, since the transmission 3 is a friction roller type transmission, a gear type such as a planetary gear type may be used. The noise generated during operation is lower than when using a high-speed gear, and noise problems are less likely to occur even when installed near a place where people live, such as near a private house. In particular, since no gears or belts that easily generate noise are used in the power transmission system from the above-mentioned probe 1 to the above-mentioned generator 5, an excellent noise prevention effect can be obtained.
又、 上記摩擦ローラ式の変速機 3はくさびローラ式のものであり、 上記各駆動 力伝達用円筒面 3 4と上記被駆動側円筒面 4 6及び駆動側円筒面 3 3との当接部 の面圧は、 前記入力軸 2から出力軸 4に伝達する回転力 (トルク) の大きさに応 じて適正に変化する。 この為、 風速に応じて変化する上記プロペラ 1の回転力の 変動に拘らず、 このプロペラ 1の回転力を上記発電機 3のロータ 6まで、 効率良 く伝達できる。 尚、 上記可動ローラ 2 7の働きにより前記各外径側当接部 5 3 a、 5 3 b及び前記各内径側当接部 5 4 a、 5 4 bの当接圧が上昇するのは、 上記プ 口ペラ 1が回転し始めた後である。 この為、 この面圧上昇に伴う、 上記変速機 3 の入力軸 2の回転抵抗の上昇が、 上記プロペラ 1の回転開始の妨げとはならない。 更に、 上記変速機 3は大きな増速比を得られるので、 上記プロペラ 1の回転速 度を低く設定して、 このプロペラ 1が発生する風切り音を低く抑える事ができる。 次に、 図 5は、 本発明の実施の形態の第 2例を示している。 上述の第 1例の場 合、 変速機 3を収納する為のハウジング 1 4を構成する蓋体 1 6に、 発電機ケー ス 7の開口部を塞ぐ役目も持たせていた。 言い換えれば、 上記第 1例の場合には、 変速機 3と発電機 5とを一体的に構成していた。 これに対して本例の場合には、 変速機 3 aと発電機 5 aとに、 それぞれ独立したハウジング 1 4 a或は発電機ケ ース 7 aを持たせて、 互いに独立して構成している。 但し、 上記変速機 3 aの中 心ローラは、 発電機 5 aの回転軸 1 9 aの先端部に、 この回転軸 1 9 aと一体に 設けている。  The friction roller type transmission 3 is a wedge roller type, and a contact portion between the driving force transmitting cylindrical surface 34, the driven cylindrical surface 46, and the driving cylindrical surface 33. The surface pressure changes appropriately according to the magnitude of the torque (torque) transmitted from the input shaft 2 to the output shaft 4. For this reason, the rotational force of the propeller 1 can be efficiently transmitted to the rotor 6 of the generator 3 irrespective of the fluctuation of the rotational force of the propeller 1 that changes according to the wind speed. The contact pressure of the outer diameter side contact portions 53a, 53b and the inner diameter side contact portions 54a, 54b increases due to the action of the movable roller 27. After the above-mentioned mouthpiece 1 starts rotating. Therefore, the increase in the rotational resistance of the input shaft 2 of the transmission 3 due to the increase in the surface pressure does not hinder the rotation of the propeller 1 from starting. Further, since the transmission 3 can obtain a large speed increase ratio, the rotational speed of the propeller 1 can be set low, and the wind noise generated by the propeller 1 can be suppressed low. Next, FIG. 5 shows a second example of the embodiment of the present invention. In the case of the first example described above, the lid 16 constituting the housing 14 for accommodating the transmission 3 also has a function of closing the opening of the generator case 7. In other words, in the case of the first example, the transmission 3 and the generator 5 are integrally configured. On the other hand, in the case of this example, the transmission 3a and the generator 5a have independent housings 14a or generator cases 7a, respectively, and are configured independently of each other. ing. However, the center roller of the transmission 3a is provided integrally with the rotating shaft 19a at the tip of the rotating shaft 19a of the generator 5a.
図 1〜2から明らかな通り、 くさびローラ式の摩擦ローラ式変速機の中心ロー ラ 1 7は、 ガイドローラ 2 6 a , 2 6 b及び可動ローラ 2 7の内側に、 容易に抜 き差しできる。 従って、 互いに独立して構成した上記変速機 3 aと上記発電機 5 aとを、 図 5に示す様に組み立てる作業は容易に行なえる。 この為、 一般家庭用 の風力発電機をキットとして販売し、 これを購入したものが組み立てる作業を容 易にできる。 その他の部分の構成及び作用は、 上述した第 1例の場合と同様であるから、 重 複する図示並びに説明は省略する。 As is clear from Figs. 1 and 2, the center roller 17 of the friction roller type transmission of the wedge roller type can be easily inserted and removed inside the guide rollers 26a, 26b and the movable roller 27. . Therefore, the work of assembling the transmission 3a and the generator 5a independently formed from each other as shown in FIG. 5 can be easily performed. For this reason, it is possible to sell wind turbines for general household use as a kit and to assemble the purchased generators easily. The configuration and operation of the other parts are the same as in the case of the above-described first example, and overlapping drawings and descriptions are omitted.
次に、 図 6〜9は、 本発明の実施の形態の第 3例を示している。 本例の場合に は、 次の①〜③の作用 ·効果を得るべく、 前述の図 1〜4に示した第 1例の構造 に対し改良を加えている。  Next, FIGS. 6 to 9 show a third example of the embodiment of the present invention. In the case of this example, the structure of the first example shown in Figs. 1 to 4 is improved to obtain the following operations and effects of 1) to 3).
① 強風時にプロペラ 1が受ける風を少なくして、 支柱 1 0 aを含む各構造部分 に加わる力を低減し、 これら各構造部分の破損を防止する。  ① Reduce the wind received by the propeller 1 in strong winds, reduce the force applied to each structural part including the column 10a, and prevent damage to these structural parts.
② 回転抵抗の上昇を抑えて発電効率を確保しつつ、 空気中に浮遊する塵芥等の 異物が変速機 3 b内に進入する事を効果的に防止する。  ② Effectively prevent foreign substances such as dust floating in the air from entering the transmission 3b while suppressing the rise in rotational resistance and ensuring power generation efficiency.
③ 大型化を防止しつつ、 発電機 5 b自体の発電効率を向上させる。  ③ Improve the power generation efficiency of the generator 5b itself while preventing its size from increasing.
尚、 本発明の基本構造である、 プロペラ 1と発電機 5 bとの間に、 摩擦ローラ 式の変速機 3 bを組み込む点に関しては、 前述の図 1〜 4に記載した第 1例の場 合と同様であるから、 同等部分に関する説明は省略若しくは簡略にし、 以下、 本 例の特徴である、 上記①〜③の点に就いて説明する。  Regarding the basic structure of the present invention, in which the friction roller type transmission 3b is incorporated between the propeller 1 and the generator 5b, the case of the first example shown in FIGS. The description of the equivalent parts is omitted or simplified because it is the same as the case described above, and the points (1) to (3) above, which are the features of this example, will be described below.
先ず、 上記①の作用 ·効果を得る為の部分に就いて、 図 6により説明する。 屋 根面等に固定する基板 5 5の上面に植設した支柱 1 0 aの上端部に回転ブラケッ ト 5 6を、 それぞれが深溝型の玉軸受等、 ラジアル荷重及びアキシアル荷重を支 承自在な、 上下 1対の転がり軸受 5 7により、 回転自在に支持している。 そして、 上記回転ブラケット 5 6の上部外周面に固設した支持腕 5 8に設けた横軸 5 9に より、 発電装置の本体部分 9 aを、 揺動自在に支持している。 この為に、 発電機 ケース 7 bを囲む状態で設けられて上記本体部分 9 aを構成する、 ケ一シング 6 0の底面の軸方向中間部に突設した揺動腕 6 1の下端部を、 上記横軸 5 9に枢支 している。 又、 上記ケ一シング 6 0の底面の軸方向前端部 (プロペラ 1側の端部 で、 図 6の左端部) には、 着座ブラケット 6 3を固設している。 この着座ブラケ ット 6 3は、 上記プロペラ 1により最も効率良く風を捉えるべく、 上記本体部分 9 aが図 6で最も反時計方向に回転した場合に、 同図に示す様に、 上記回転ブラ ケット 5 6の上面に広い面積で当接し、 上記本体部分 9 a及び上記プロペラ 1の 重量を支える。  First, the part for obtaining the operation and effect of the above ① will be described with reference to FIG. A rotating bracket 56 is mounted on the upper end of a pillar 10a planted on the upper surface of a board 55 fixed to the roof surface, etc., and each can support radial and axial loads, such as a deep groove ball bearing. It is rotatably supported by a pair of upper and lower rolling bearings 57. The main body 9a of the power generator is swingably supported by a horizontal shaft 59 provided on a supporting arm 58 fixed to the upper outer peripheral surface of the rotating bracket 56. For this purpose, the lower end of the swing arm 61 protruding from the bottom of the casing 60 in the axial direction is provided so as to surround the generator case 7b and constitute the main body 9a. It is pivoted on the horizontal axis 59. A seating bracket 63 is fixedly provided at the front end in the axial direction of the bottom surface of the casing 60 (the end on the propeller 1 side, the left end in FIG. 6). In order to catch the wind most efficiently by the propeller 1, the seat bracket 63 is used when the main body 9a is rotated most counterclockwise in FIG. 6, as shown in FIG. Abuts the upper surface of the bracket 56 with a large area to support the weight of the main body 9a and the propeller 1.
これに対して上記本体部分 9 aは、 このプロペラ 1が受ける風が強くなつた場 合 (強風時) には、 上記横軸 5 9を中心として図 6で時計方向に揺動し、 上記プ 口ペラ 1の回転中心軸と水平方向とのなす角度を次第に大きくする。 この結果、 このプロペラ 1が風を受ける有効面積が減少し、 このプロペラ 1の回転速度が過 度に高くなる事が防止されると共に、 前記支柱 1 0 aを含む、 このプロペラ 1の 支持構造部分に過大な力が加わる事を防止して、 この支持構造部分の破損を防止 する。 尚、 風速が低下した場合に、 上記本体部分 9 aが図 6に示した位置に自動 的に復帰する様に、 この本体部分に対し、 水平方向に対する上記プロペラ 1の回 転中心軸の傾斜角度を小さくする方向の復元力を付与している。 この為に、 上記 本体部分 9 a及び上記プロペラ 1を含む、 上記横軸 5 9を中心として揺動する部 分の重心が、 この横軸 5 9を通過する鉛直線を越えて後方 (図 6の右方) に移動 しない様にしたり、 或は、 上記本体部分 9 aと前記回転ブラケット 5 6との間に リタ一ンスプリングを設ける。 このリターンスプリングとしては、 上記本体部分' 9 aの前端部 (図 6の左端部) と上記回転ブラケット 5 6との間に設けた引っ張 りばね、 或は前記支持腕 5 8と揺動腕 6 1との間に掛け渡した捻りコイルばね等 が採用可能である。 On the other hand, the main unit 9a is used when the wind receiving this propeller 1 is strong. In the case of a strong wind, the rocker swings clockwise in FIG. 6 around the horizontal axis 59 and gradually increases the angle between the rotation center axis of the port propeller 1 and the horizontal direction. As a result, the effective area of the propeller 1 that receives the wind is reduced, so that the rotation speed of the propeller 1 is prevented from becoming excessively high, and at the same time, the support structure portion of the propeller 1 including the strut 10 a is included. This prevents excessive force from being applied to the support structure and prevents the support structure from being damaged. The inclination angle of the rotation center axis of the propeller 1 with respect to the horizontal direction with respect to the main body so that the main body 9a automatically returns to the position shown in Fig. 6 when the wind speed decreases. Is provided in the direction of reducing the force. For this reason, the center of gravity of the part that swings around the horizontal axis 59, including the main body 9a and the propeller 1, moves rearward beyond the vertical line passing through the horizontal axis 59 (Fig. 6). Or a return spring is provided between the main body 9a and the rotating bracket 56. The return spring may be a tension spring provided between the front end (the left end in FIG. 6) of the main body portion 9a and the rotating bracket 56, or the support arm 58 and the swing arm 6 A torsion coil spring or the like spanned between them can be used.
次に、 前記②の作用 ·効果を得る為の部分に就いて、 図 7により説明する。 前 述の図 1〜 4に示した第 1例の場合と同様の構造を有する、 摩擦ローラ式の変速 機 3 bを構成する外輪 3 2の中心部で入力軸 2の基端部を結合した部分に設けた ボス部 3 7 a及びこの入力軸 2の中間部基端寄り部分を、 上記変速機 3 bを収納 するハウジング 1 4 bのハウジング本体 1 5 aの中央部に形成した支持筒部 3 8 aに、 それぞれが深溝型或はアンギユラ型の玉軸受である、 1対の転がり軸受 4 0 a、 4 O bにより、 回転自在に支持している。 尚、 これら両転がり軸受 4 0 a、 4 0 bのうち、 上記プロペラ 1の重量を多く支承する為に大きな負荷が加わる、 このプロペラ 1寄りの転がり軸受 4 0 aの負荷容量を、 比較的小さな負荷しか加 わらない、 変速機 3 b側の転がり軸受 4 0 bの負荷容量よりも大きくしている。 更に、 上記支持筒部 3 8 aの先端部 (図 7の左端部) 内周面と上記入力軸 2の中 間部外周面との間に、 シールリング 4 1を設けている。 この為に本例の場合には、 上記支持筒部 3 8 aの軸方向寸法を、 前述の第 1例の支持筒部 3 8 (図 2参照) の軸方向寸法よりも大きくしている。 又、 上記支持筒部 3 8 aの先端部外周面に土手状の突出部 6 4を形成して、 こ の先端部の外径を中間部の外径よりも大きくしている。 一方、 上記入力軸 2の先 端部で上記支持筒部 3 8 aから突出した部分に、 この入力軸 2に上記プロペラ 1 の基端部を結合固定する為の結合ブラケット 6 5を設けている。 この結合ブラケ ット 6 5と入力軸 2とはキ一係合させて、 上記プロペラ 1の回転がこの入力軸 2 に、 上記結合ブラケット 6 5を介して確実に伝達される様にしている。 この様な 結合ブラケット 6 5の後背面 (図 7の右側面) で上記支持筒部 3 8 aを囲む部分 にカバーブラケット 6 6を、 ねじ止め固定している。 このカバ一ブラケット 6 6 は、 断面クランク型で全体を円環状としており、 その基端部を上記結合ブラケッ ト 6 5に結合固定した状態でその先端縁を、 上記支持筒部 3 8 aの外周面中間部 に近接対向させている。 そして、 この先端縁と上記突出部 6 4とにより、 上記支 持筒部 3 8 aと上記カバ一ブラケット 6 6との間に、 屈曲したラピリンス隙間 6 7を形成している。 本例の場合、 この様なラビリンス隙間 6 7を形成する事によ り、 上記シールリング 4 1の内周縁と上記入力軸 2の外周面との摺接部に達する、 塵芥等の異物を減少させて、 この摺接部のシール性を、 長期間に亙って良好に保 つ様にしている。 Next, a part for obtaining the operation and effect of the above ① will be described with reference to FIG. The base end of the input shaft 2 is connected to the center of the outer ring 32 of the friction roller type transmission 3b having the same structure as that of the first example shown in FIGS. 1 to 4 described above. The boss portion 37a provided in the portion and the portion near the base end of the intermediate portion of the input shaft 2 are provided in the center of the housing body 15a of the housing 14b accommodating the transmission 3b. 38a is rotatably supported by a pair of rolling bearings 40a and 40b, each of which is a deep groove type or angular type ball bearing. Of these two rolling bearings 40a and 40b, a large load is applied to support the large weight of the propeller 1, and the load capacity of the rolling bearing 40a closer to the propeller 1 is relatively small. The load capacity is larger than the load capacity of the rolling bearing 40b on the transmission 3b side, which applies only a load. Furthermore, a seal ring 41 is provided between the inner peripheral surface of the support cylinder 38 a (the left end in FIG. 7) and the outer peripheral surface of the intermediate portion of the input shaft 2. For this reason, in the case of the present example, the axial dimension of the above-described support cylindrical portion 38a is larger than the axial size of the above-described first example of the support cylindrical portion 38 (see FIG. 2). A bank-shaped protrusion 64 is formed on the outer peripheral surface of the distal end of the support cylindrical portion 38a, and the outer diameter of the distal end is made larger than the outer diameter of the intermediate portion. On the other hand, a coupling bracket 65 for coupling and fixing the base end of the propeller 1 to the input shaft 2 is provided at a portion of the input shaft 2 protruding from the support cylindrical portion 38a at the front end. . The coupling bracket 65 and the input shaft 2 are engaged with each other so that the rotation of the propeller 1 is reliably transmitted to the input shaft 2 via the coupling bracket 65. A cover bracket 66 is screwed and fixed to a portion surrounding the support cylinder 38a on the rear side (right side in FIG. 7) of such a coupling bracket 65. The cover bracket 66 has a crank-shaped cross section and is formed in an annular shape. The distal end of the cover bracket 66 is fixed to the connecting bracket 65 and the outer edge of the support bracket 38a. It is close to the middle part of the surface. The tip edge and the protruding portion 64 form a bent lapillin gap 67 between the support cylinder 38 a and the cover bracket 66. In the case of this example, by forming such a labyrinth gap 67, foreign substances such as dust reaching the sliding contact portion between the inner peripheral edge of the seal ring 41 and the outer peripheral surface of the input shaft 2 are reduced. Thus, the sealing property of the sliding contact portion is kept good over a long period of time.
次に、 前記③の作用 ·効果を得る為の部分に就いて、 図 7に図 8〜 9を加えて 説明する。 本例に使用する発電機 5 bは、 アキシアル型スロットレス発電機とし ている。 この発電機 5 bを構成する為、 前記ケーシング 6 0内に発電機ケース 7 bを、 前記変速機 3 bとの間を仕切る蓋体 1 6 aを介して支持固定している。 そ して、 この変速機 3 bの出力軸 4を兼ねた回転軸 1 9の基端部を上記発電機ケー ス 7 bの底部に、 中間部先端寄り部分を上記蓋体 1 6 aの略中央部に設けた通孔 1 8の内側に、 それぞれ転がり軸受 2 0を介して回転自在に支持している。  Next, the part for obtaining the function and effect of the above ③ will be described with reference to Fig. 7 and Figs. The generator 5b used in this example is an axial type slotless generator. In order to configure the generator 5b, a generator case 7b is supported and fixed in the casing 60 via a lid 16a that separates the generator case 7b from the transmission 3b. Then, the base end of the rotary shaft 19 also serving as the output shaft 4 of the transmission 3b is located at the bottom of the generator case 7b, and the portion near the front end of the intermediate portion is approximately the cover 16a. Each is rotatably supported via a rolling bearing 20 inside a through hole 18 provided at the center.
この様にして上記発電機ケース 7 bの中心部に回転自在に支持した回転軸 1 9 の中間部で上記 1対の転がり軸受 2 0の間部分に、 それぞれが積層鋼板等の磁性 材により円輪状に形成された複数枚のヨーク 6 8を、 軸方向に間隔をあけて固定 している。 この為に本例の場合には、 上記回転軸 1 9の中間部基端寄り部分に係 止した止め輪 6 9とこの回転軸 1 9の中間部先端寄り部分に螺合したナツト 7 0 との間で、 上記各ヨーク 6 8と、 軸方向に隣り合うヨーク 6 8同士の間に介在さ せた円筒状のスぺ一サ 7 1とを挟持している。 尚、 図示の例では、 上記回転軸 1 9の中間部に欠円筒状のスリーブ 7 2を外嵌し、 上記各ヨーク 6 8及び上記各ス ぺーサ 7 1を、 このスリーブ 7 2に外嵌している。 又、 これら各ヨーク 6 8と上 記回転軸 1 9との間にキー 7 3を掛け渡す事により、 これら各ョ一ク 6 8がこの 回転軸 1 9と共に回転する様にしている。 In this way, the intermediate portion of the rotating shaft 19 rotatably supported at the center of the generator case 7b, the portion between the pair of rolling bearings 20 is a circle made of a magnetic material such as a laminated steel plate. A plurality of yokes 68 formed in a ring shape are fixed at intervals in the axial direction. For this reason, in the case of the present example, a retaining ring 69 engaged with a portion near the base end of the rotating shaft 19 and a nut 70 screwed with a portion near the center end of the rotating shaft 19 are provided. Between the yokes 68 and the yokes 68 adjacent in the axial direction. And a cylindrical spacer 71 held between them. In the example shown in the figure, a cylindrical sleeve 72 is externally fitted to the intermediate portion of the rotary shaft 19, and the yokes 68 and the spacers 71 are externally fitted to the sleeve 72. are doing. Further, by hanging a key 73 between each of the yokes 68 and the rotary shaft 19, each of the yokes 68 rotates together with the rotary shaft 19.
そして、 これら各ヨーク 6 8のうち、 最も先端寄りのヨークを除く他のヨーク 6 8の軸方向片側面 (図 7の左側面) に、 永久磁石 7 4を添設している。 これら 各永久磁石 7 4は、 図 8に示す様に、 それぞれが略四分の一円弧状 (扇形) に形 成された素子 7 5 a、 7 5 bを 4枚、 円環状に配列して成る。 これら各素子 7 5 a、 7 5 bは、 それぞれ軸方向 (図 7の左右方向、 図 8の表裏方向) に着磁され ており、 円周方向に隣り合う素子 7 5 a、 7 5 b同士の間で、 着磁方向を逆にし ている。 従って、 上記各永久磁石 7 4の先端側側面には、 S極と N極とが、 円周 方向に交互に配置されている。  A permanent magnet 74 is attached to one side in the axial direction (the left side in FIG. 7) of the other yoke 68 except for the yoke closest to the tip. As shown in FIG. 8, each of these permanent magnets 74 is formed by arranging four elements 75a and 75b, each of which is formed in a substantially quarter-arc shape (sector shape), in an annular shape. Become. These elements 75 a and 75 b are magnetized in the axial direction (left and right in FIG. 7 and front and back in FIG. 8), and the elements 75 a and 75 b adjacent to each other in the circumferential direction are mutually magnetized. The magnetization direction is reversed between. Therefore, S poles and N poles are alternately arranged in the circumferential direction on the tip side surface of each permanent magnet 74.
一方、 前記発電機ケース 7 bの内周面で、 軸方向に関する位相が上記各ヨーク 6 8から外れた部分に、 複数のコイルホルダ 7 6を固定している。 これら各コィ ルホルダ 7 6は、 アルミニウム合金、 合成樹脂等の非磁性材により全体を円輪状 に形成したもので、 軸方向に隣り合うコイルホルダ 7 6同士の間に円筒状のスぺ ーサ 7 7を挟持した状態で、 上記発電機ケース 7 bの内周面軸方向中間部に内嵌 固定している。 この状態で、 上記各コイルホルダ 7 6は、 軸方向に隣り合う、 上 記ョ一ク 6 8と永久磁石 7 4との間に、 これら両部材 6 8、 7 4と近接対向した 状態 (非接触状態) で位置する。  On the other hand, a plurality of coil holders 76 are fixed to portions of the inner peripheral surface of the generator case 7b whose phases in the axial direction deviate from the yokes 68. Each of the coil holders 76 is made of a nonmagnetic material such as an aluminum alloy or a synthetic resin, and is formed in a ring shape as a whole. A cylindrical spacer 7 is provided between the coil holders 76 adjacent in the axial direction. 7 is fixedly fitted inside the generator case 7b at the axially intermediate portion of the inner peripheral surface of the generator case 7b. In this state, each of the coil holders 76 is positioned between the above-mentioned yoke 68 and the permanent magnet 74 adjacent to each other in the axial direction, in a state in which these two members 68, 74 are closely opposed to each other. (Contact state).
この様にして上記発電機ケース 7 bの内周面に固定された、 上記各コイルホル ダ 7 6の軸方向片側面 (図 7の左側面) にコイル 7 8を、 図 9に示す様に、 これ ら各コイルホルダ 7 6毎に複数個ずつ (図示の例では 6個ずつ)、 上記回転軸 1 9を中心とする円弧上に、 円周方向に関して互いに等間隔に配置している。 上記 各コイル 7 8は、 上記各コイルホルダ 7 6の軸方向片側面に凹設した、 それぞれ が円輪状の凹部であるボビン 7 9内に導線を巻回したもので、 上記各ヨーク 6 8 の軸方向他側面 (図 7の右側面) に近接対向している。  As shown in FIG. 9, a coil 78 is mounted on one axial side (left side in FIG. 7) of each coil holder 76 fixed to the inner peripheral surface of the generator case 7b in this manner. A plurality (six in the illustrated example) of each of the coil holders 76 are arranged at equal intervals in the circumferential direction on an arc centered on the rotating shaft 19. Each of the coils 78 is formed by winding a conductive wire in a bobbin 79 which is a recess in one side in the axial direction of each of the coil holders 76 and is a circular recess. It faces the other side in the axial direction (the right side in Fig. 7).
前記プロペラ 1が風を受けて、 前記変速機 3 bを介して前記回転軸 1 9が回転 すると、 上記各ヨーク 6 8及びこれら各ヨーク 6 8に支持された前記各永久磁石 7 4が回転する。 この結果、 上記各コイル 7 8が、 これら各永久磁石 7 4から出 る磁束を横切る状態となり、 これら各コイル 7 8に電力が惹起される。 そこで、 この電力を、 図示しないフレキシブルコードを通じて前記回転ブラケット 5 6内 の配線に送り、 更に図示しないスリップリングを介して、 前記基盤 5 5の上面等 の固定の部分に設けた配電設備に送れば、 前記発電機 5 bで発電した電力を取り 出せる。 The propeller 1 receives the wind, and the rotating shaft 19 rotates via the transmission 3b. Then, the yokes 68 and the permanent magnets 74 supported by the yokes 68 rotate. As a result, each of the coils 78 crosses the magnetic flux emitted from each of the permanent magnets 74, and power is generated in each of the coils 78. Therefore, if this electric power is sent to the wiring in the rotating bracket 56 through a flexible cord (not shown), and further sent to power distribution equipment provided on a fixed portion such as the upper surface of the base 55 through a slip ring (not shown) The power generated by the generator 5b can be taken out.
この様な本例の場合には、 上記発電機 5 bとしてアキシアル型スロットレス発 電機を使用している為、 ラジアル型スロットレス発電機を使用する場合に比べて、 小型の構造で、 大きな発電量を得る事ができる。 この点に就いて、 図 1 0〜 1 3 を参照しつつ説明する。  In the case of this example, since the axial type slotless generator is used as the generator 5b, a smaller structure and larger power generation are used as compared with the case where the radial type slotless generator is used. You can get the quantity. This point will be described with reference to FIGS.
図 1 0は、 永久磁石とコイルとをラジアル方向に対向させた、 一般的なスロッ トレス発電機を示している。 この発電機 8 0は、 回転軸 1 9の周囲に固定した永 久磁石 8 1の外周面と、 発電機ケース 8 2の内周面にステ一夕 8 3を介して支持 したコイル 8 4の内周面とを対向させている。 スロットレス発電機の場合には、 一般的なブラシレス発電機の場合に比べて、 ヨークの不連続部分であるスロッ卜 の存在に基づくコギングの発生を防止して、 安定した運転状態を実現できる。 この様なラジアル型スロットレス発電機の発電量を多くする為には、 図 1 1に 示す様に、 永久磁石 8 1 aと、 発電機ケース 8 2 aと、 ステ一夕 8 3 aと、 コィ ル 8 4 aとを大径化したり、 図 1 2に示す様に、 永久磁石 8 l bと、 発電機ケー ス 8 2 bと、 ステ一夕 8 3 bと、 コイル 8 4 bとの軸方向寸法を長くする事等が 考えられる。 伹し、 図 1 1に示す様に大径化する構造の場合には、 発電機 8 0 a の外径寸法が大きくなるだけでなく、 運転時に発生する大きな遠心力に基づき、 永久磁石 8 1 aが破損し易くなる。 又、 図 1 2に示す様に軸方向寸法を長くする 場合には、 発電機 8 0 bの長さ寸法が大きくなるだけでなく、 永久磁石 8 l bの 外周面とコイル 8 4 bの内周面との間の隙間を僅少にする事が難しくなり、 効率 が低下し易い。 この様な長尺化に伴う効率低下を防止する為には、 図 1 3に示す 様に、 3組の発電機 8 0を軸方向に直列に配置する事が考えられる。 伹し、 この 図 1 3に示す様な構造によれば、 隣り合う発電機 8 0同士の間に無駄な空間が生 じ、 全体としての軸方向寸法がより嵩んでしまう。 これに対して、 図 6〜9に示 した第 3例に使用するアキシアル型スロットレス発電機は、 特に大型化する事な く、 十分な発電量を確保できる。 FIG. 10 shows a general slotless generator in which a permanent magnet and a coil are radially opposed to each other. This generator 80 is composed of a permanent magnet 81 fixed around the rotating shaft 19 and a coil 84 supported on the inner peripheral surface of the generator case 82 via a stay 83. The inner peripheral surface is opposed. In the case of a slotless generator, the occurrence of cogging due to the presence of the slot, which is a discontinuous portion of the yoke, can be prevented, and a stable operating state can be realized, as compared with a general brushless generator. To increase the amount of power generated by such a radial type slotless generator, as shown in Fig. 11, a permanent magnet 81a, a generator case 82a, a stay case 83a, The diameter of the coil 84a can be increased, or as shown in Fig. 12, the axis of the permanent magnet 8lb, the generator case 82b, the stay case 83b, and the coil 84b It is conceivable to increase the dimension in the direction. However, in the case of a structure with a large diameter as shown in Fig. 11, not only the outer diameter of the generator 80a becomes large, but also the permanent magnet 81 a is easily damaged. When the axial dimension is increased as shown in Fig. 12, not only does the length of the generator 80b increase, but also the outer circumference of the permanent magnet 8 lb and the inner circumference of the coil 84b. It is difficult to make the gap between the surfaces small, and the efficiency tends to decrease. In order to prevent such a decrease in efficiency due to the lengthening, it is conceivable to arrange three sets of generators 80 in series in the axial direction as shown in FIG. However, according to the structure as shown in FIG. 13, a wasteful space is generated between the adjacent generators 80. In other words, the overall axial dimension becomes larger. On the other hand, the axial-type slotless generator used in the third example shown in Figs. 6 to 9 can secure a sufficient amount of power generation without particularly increasing the size.
尚、 上述の様なアキシアル型スロットレス発電機は、 駆動トルクが小さくて済 む等、 発電効率が良い為、 プロペラと発電機との間にくさびローラ式の摩擦口一 ラ式変速機を組み込んで回転軸 1 9を高速回転させる場合は勿論、 変速機を組み 込まずにプロペラと発電機とを直結した場合でも、 必要な発電量を得る事が可能 になる。 更に、 発電機の駆動速度を低く抑えても或る程度の発電量を確保できる 為、 歯車式の変速機を使用した場合でも、 この変速機部分で発生する騒音を低く 抑える事ができる。 従って、 上記アキシアル型スロットレス発電機を使用する場 合には、 (使用する事が好ましいが) 必ずしも上記くさびローラ式の摩擦ローラ 式変速機を使用しなくても、 前述した課題を解決できる。 産業上の利用の可能性  The axial-type slotless generator as described above requires a small driving torque and has a high power generation efficiency.Therefore, a wedge roller type friction-port type transmission is installed between the propeller and the generator. In addition to the case where the rotating shaft 19 is rotated at a high speed, it is possible to obtain a necessary power generation amount even when the propeller and the generator are directly connected without incorporating a transmission. Furthermore, since a certain amount of power generation can be ensured even when the driving speed of the generator is kept low, even when a gear-type transmission is used, the noise generated in this transmission can be kept low. Therefore, when the axial-type slotless generator is used, the above-mentioned problem can be solved without necessarily using the wedge-roller-type friction roller-type transmission (although it is preferable to use it). Industrial applicability
本発明は、 以上に述べた通り構成され作用するので、 一般家庭や小規模事業所 等にも容易に設置でき、 しかも運転音が静かで、 且つ、 発電効率の良好な風力発 電装置を実現できる。 尚、 本発明の風力発電装置と同様の機構を、 小川や農水路 の水流を利用した、 小型の水力発電機の駆動機構にも利用できる。  Since the present invention is configured and operates as described above, a wind power generation device that can be easily installed in a general household or a small business establishment, has a quiet operation sound, and has good power generation efficiency is realized. it can. It should be noted that the same mechanism as that of the wind power generator of the present invention can also be used for a drive mechanism of a small hydroelectric generator using water flow in a stream or agricultural waterway.

Claims

請求の範囲 The scope of the claims
1 . 風を受けて回転するプロペラと、 このプロペラを入力軸の端部に結合した変 速機と、 この変速機の出力軸により回転駆動される発電機とを備えた風力発電装 置に於いて、 この変速機は、 上記入力軸の回転に伴って回転する、 内周面を駆動 側円筒面とした外輪と、 上記出力軸と共に回転する、 外周面を被駆動側円筒面と した中心ローラと、 この被駆動側円筒面と上記駆動側円筒面との間の環状空間内 に、 上記中心ローラと平行に配置された複数本の支持軸と、 これら各支持軸によ り回転自在に支持され、 それぞれの外周面を駆動力伝達用円筒面とした複数個の 中間ローラとを備え、 上記中心ローラの中心と上記入力軸及び外輪の中心とを偏 心させる事により、 上記環状空間の径方向に関する幅寸法を円周方向に関して不 同にすると共に、 上記複数個の中間ローラのうちの何れかの中間ローラを、 少な くとも上記環状空間の円周方向に変位自在に支持して可動ローラとし、 残りの中 間口一ラをガイドローラとして、 上記中心口一ラ及び外輪が所定方向に上記出力 軸と入力軸との間の変速比に見合う速度比で回転する場合に、 上記可動ローラと なる中間ローラを上記環状空間の幅の狭い部分に向け移動自在とした、 くさび口 —ラ式の摩擦ローラ式変速機である事を特徴とする風力発電装置。 1. A wind turbine generator including a propeller that rotates in response to wind, a transmission in which the propeller is coupled to an end of an input shaft, and a generator that is rotationally driven by an output shaft of the transmission. The transmission includes an outer ring rotating with the rotation of the input shaft, an outer ring having an inner peripheral surface as a driving cylindrical surface, and a center roller rotating with the output shaft, having an outer peripheral surface as a driven cylindrical surface. A plurality of support shafts arranged in parallel with the center roller in an annular space between the driven-side cylindrical surface and the drive-side cylindrical surface; and rotatably supported by the respective support shafts. And a plurality of intermediate rollers each having an outer peripheral surface having a cylindrical surface for transmitting driving force. The center of the central roller and the centers of the input shaft and the outer ring are eccentric to form the diameter of the annular space. The width dimension in the direction is uneven in the circumferential direction In addition, at least one of the plurality of intermediate rollers is displaceably supported at least in the circumferential direction of the annular space to be a movable roller, and the remaining intermediate roller is a guide roller. When the center opening and the outer ring rotate in a predetermined direction at a speed ratio corresponding to a speed ratio between the output shaft and the input shaft, the intermediate roller serving as the movable roller is formed into a narrow portion of the annular space. A wind power generator characterized by a wedge opening-type friction roller type transmission that is movable toward the wind turbine.
2 . 変速機と発電機とを収納した発電装置の本体部分が、 鉛直軸を中心とする回 転自在に支持された回転ブラケットの一部に、 横軸を中心とする揺動変位を可能 に枢支されており、 上記本体部分に対し、 水平方向に対するプロペラの回転中心 軸の傾斜角度を小さくする方向の復元力を付与している、 請求項 1に記載した風  2. The main body of the power generator, which houses the transmission and the generator, has a part of a rotatable bracket that is rotatably supported about a vertical axis, and is capable of swinging displacement about a horizontal axis. 2. The wind according to claim 1, wherein the wind is pivotally supported, and applies a restoring force to the main body in a direction in which a tilt angle of a rotation center axis of the propeller with respect to a horizontal direction is reduced.
3 . 発電機が、 発電機ケースと、 この発電機ケース内に回転自在に支持されて変 速機の出力軸と共に回転する回転軸と、 この回転軸の外周面に軸方向に間隔をあ けて固定された、 それぞれが磁性材製である複数のヨークと、 このヨークの軸方 向側面に支持された、 S極と N極とを円周方向に交互に配置した永久磁石と、 上 記発電機ケースの内周面で軸方向に関する位相が上記各ヨークから外れた部分に 固定された複数のコイルホルダと、 これら各コイルホルダの軸方向側面にそれぞ れ複数ずつ支持されて、 それぞれ上記永久磁石に対向するコイルとを備えたアキ シアル型スロットレス発電機である、 請求項 1〜2の何れかに記載した風力発電 3. A generator is provided with a generator case, a rotating shaft rotatably supported in the generator case and rotating with the output shaft of the transmission, and an outer circumferential surface of the rotating shaft being spaced apart in the axial direction. A plurality of yokes, each made of a magnetic material, fixed on the yoke, and a permanent magnet supported on the axial side surface of the yoke and having alternately arranged S and N poles in the circumferential direction; A plurality of coil holders whose phases in the axial direction on the inner peripheral surface of the generator case are fixed to portions deviating from the respective yokes, and a plurality of the coil holders are respectively supported on the axial side surfaces of the respective coil holders. A coil having a coil facing a permanent magnet The wind power generator according to claim 1, wherein the wind power generator is a sial type slotless generator.
4 . 風を受けて回転するプロペラと、 このプロペラにより回転駆動される発電機 とを備えた風力発電装置に於いて、 この発電機が、 発電機ケースと、 この発電機 ケース内に回転自在に支持されて変速機の出力軸と共に回転する回転軸と、 この 回転軸の外周面に軸方向に間隔をあけて固定された、 それぞれが磁性材製である 複数のヨークと、 このヨークの軸方向側面に支持された、 S極と N極とを円周方 向に交互に配置した永久磁石と、 上記発電機ケースの内周面で軸方向に関する位 相が上記各ヨークから外れた部分に固定された複数のコイルホルダと、 これら各 コイルホルダの軸方向側面にそれぞれ複数ずつ支持されて、 それぞれ上記永久磁 石に対向するコイルとを備えたアキシアル型スロットレス発電機である事を特徴 とする風力発電装置。 4. In a wind turbine generator having a propeller that rotates in response to wind and a generator that is rotated by the propeller, the generator is rotatably mounted in a generator case and the generator case. A rotating shaft that is supported and rotates together with the output shaft of the transmission; a plurality of yokes, each made of a magnetic material, fixed to an outer peripheral surface of the rotating shaft at an axial distance; and an axial direction of the yoke. Permanent magnets supported on the side and having S poles and N poles arranged alternately in the circumferential direction, and the phase in the axial direction on the inner peripheral surface of the generator case fixed to the part outside the yokes An axial-type slotless generator comprising: a plurality of coil holders; and a plurality of coils supported on the axial side surface of each of the coil holders and facing the permanent magnet. Wind Power generation equipment.
PCT/JP2001/010880 2001-10-25 2001-12-12 Wind power generator WO2003036083A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/487,257 US20040247437A1 (en) 2001-10-25 2001-12-12 Wind power generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-327424 2001-10-25
JP2001327424A JP2002221263A (en) 2000-11-27 2001-10-25 Wind power generating system

Publications (1)

Publication Number Publication Date
WO2003036083A1 true WO2003036083A1 (en) 2003-05-01

Family

ID=19143654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010880 WO2003036083A1 (en) 2001-10-25 2001-12-12 Wind power generator

Country Status (2)

Country Link
US (1) US20040247437A1 (en)
WO (1) WO2003036083A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005075822A1 (en) * 2004-02-04 2005-08-18 Siemens Aktiengesellschaft Wind turbine comprising driving gear that is integrated into the generator

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7588507B2 (en) * 2001-04-13 2009-09-15 Unitta Company Thin autotensioner
DE102004046563B4 (en) * 2004-09-24 2008-01-03 Aerodyn Energiesysteme Gmbh Wind energy plant with fully integrated machine set
US7391128B2 (en) * 2004-12-30 2008-06-24 Rozlev Corp., Llc Wind generator system using attractive magnetic forces to reduce the load on the bearings
NZ565921A (en) * 2005-07-15 2011-05-27 Southwest Windpower Inc Wind turbine and method of manufacture
BE1016856A5 (en) * 2005-11-21 2007-08-07 Hansen Transmissions Int A GEARBOX FOR A WIND TURBINE.
US7679207B2 (en) * 2007-05-16 2010-03-16 V3 Technologies, L.L.C. Augmented wind power generation system using continuously variable transmission and method of operation
US7538446B2 (en) * 2007-06-21 2009-05-26 General Electric Company Gear integrated generator for wind turbine
NO327276B1 (en) * 2007-11-08 2009-06-02 Chapdrive As Wind turbine with electric swivel
ES2320082B1 (en) 2007-11-16 2010-03-01 GAMESA INNOVATION & TECHNOLOGY, SL. TRANSMISSION OF HIGH NUMERICAL RELATIONSHIP FOR A WIND FARMER.
US7815536B2 (en) * 2009-01-16 2010-10-19 General Electric Company Compact geared drive train
US8358029B2 (en) * 2009-09-24 2013-01-22 General Electric Company Rotor-shaft integrated generator drive apparatus
WO2011089036A1 (en) * 2010-01-22 2011-07-28 Hansen Transmissions International Nv Planetary gear unit with rotating ring gear
US8246191B2 (en) * 2010-04-08 2012-08-21 Sun-Yuan Hu Wind-driven light-emitting device
DE102011014094A1 (en) * 2011-03-11 2012-09-13 Uni Wind GmbH Electric generator for a wind turbine
US9127646B2 (en) 2012-03-09 2015-09-08 V3 Technologies, Llc Toroidal augmented wind power generation system using a modified and integrated vertical axis wind turbine rotor and generator assembly
DE102012012098A1 (en) * 2012-06-18 2013-12-19 Robert Bosch Gmbh Planet bridge for connecting two planetary web cheeks
US10233997B2 (en) * 2015-07-29 2019-03-19 Sikorsky Aircraft Corporation Planetary gear sets for power transmissions
DE102016207428A1 (en) * 2016-04-29 2017-11-02 Siemens Aktiengesellschaft Drive system for the individual driving of single propellers of a double propeller
JP6631475B2 (en) 2016-11-15 2020-01-15 株式会社デンソー Rotary actuator
BG67342B1 (en) * 2018-07-11 2021-06-15 Георгиев Василев Явор Friction planetary drive with permanent gear-reduction ratio

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2222031A (en) * 1988-07-26 1990-02-21 Rolls Royce Plc High speed axial field electrical generator has rotor with permanent magnets in a prestressed assembly
JPH0828430A (en) * 1994-07-22 1996-01-30 Mitsubishi Heavy Ind Ltd Wind power generating device
WO1996029774A1 (en) * 1995-03-21 1996-09-26 Zond Energy Systems, Inc. Doubly-salient permanent-magnet machine
EP1045140A2 (en) * 1999-04-12 2000-10-18 A. Friedr. Flender Ag Gear box for a wind turbine

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1785965A (en) * 1929-02-01 1930-12-23 George D Major Motor generator
US2784332A (en) * 1951-03-27 1957-03-05 Kober William Dynamo voltage control
US4691119A (en) * 1985-06-20 1987-09-01 Westinghouse Electric Corp. Permanent magnet alternator power generation system
US4720640A (en) * 1985-09-23 1988-01-19 Turbostar, Inc. Fluid powered electrical generator
US4703189A (en) * 1985-11-18 1987-10-27 United Technologies Corporation Torque control for a variable speed wind turbine
US4966525A (en) * 1988-02-01 1990-10-30 Erik Nielsen Yawing device and method of controlling it
DE4421428C1 (en) * 1994-06-18 1995-07-27 Fichtel & Sachs Ag Planetary gearing esp. for electric drive of road vehicle wheel
US5746576A (en) * 1996-10-15 1998-05-05 World Power Technologies, Inc. Wind energy conversion device with angled governing mechanism
WO2000031413A1 (en) * 1998-11-26 2000-06-02 Aloys Wobben Azimuthal driving system for wind turbines
US6304002B1 (en) * 2000-04-19 2001-10-16 Dehlsen Associates, L.L.C. Distributed powertrain for high torque, low electric power generator
NL1013129C2 (en) * 1999-09-24 2001-03-27 Lagerwey Windturbine B V Windmill.
US6800956B2 (en) * 2002-01-30 2004-10-05 Lexington Bartlett Wind power system
US6731017B2 (en) * 2002-06-03 2004-05-04 Clipper Windpower Technology, Inc. Distributed powertrain that increases electric power generator density

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2222031A (en) * 1988-07-26 1990-02-21 Rolls Royce Plc High speed axial field electrical generator has rotor with permanent magnets in a prestressed assembly
JPH0828430A (en) * 1994-07-22 1996-01-30 Mitsubishi Heavy Ind Ltd Wind power generating device
WO1996029774A1 (en) * 1995-03-21 1996-09-26 Zond Energy Systems, Inc. Doubly-salient permanent-magnet machine
EP1045140A2 (en) * 1999-04-12 2000-10-18 A. Friedr. Flender Ag Gear box for a wind turbine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005075822A1 (en) * 2004-02-04 2005-08-18 Siemens Aktiengesellschaft Wind turbine comprising driving gear that is integrated into the generator

Also Published As

Publication number Publication date
US20040247437A1 (en) 2004-12-09

Similar Documents

Publication Publication Date Title
WO2003036083A1 (en) Wind power generator
US7409891B2 (en) Drive unit with reducer
JP5543371B2 (en) Coaxial reversal type coreless generator
US20080236318A1 (en) Compact Axial Flux Motor Drive
WO2004047255A3 (en) Axial flux motor assembly
JP5110449B2 (en) Rotary actuator
JP2007270696A (en) Displacement type compressor
JP2002221263A (en) Wind power generating system
CN109424701A (en) Retarder and motor with retarder
US7812490B2 (en) Electric motor with two opposite independent shafts
JP2008508843A (en) Motor-related or generator-related configuration
US6972502B2 (en) Device for transmitting motion between the rotor of a synchronous permanent-magnet motor and a working part
CN212875583U (en) One-way motor
JP2002303333A (en) Binding cutoff device
CN219139734U (en) Speed reducing mechanism, hub motor and electric bicycle
JP3562228B2 (en) Friction roller type transmission
KR0119420Y1 (en) Brushless motor
CN111406358B (en) Novel motor with rotating structure
CN118413018A (en) Stepping motor
JP5315007B2 (en) Fixed shaft type flat vibration motor
JP2001263437A (en) Planetary gear device
KR200370458Y1 (en) Aerogenerator
JP4635826B2 (en) Scroll compressor
KR100235204B1 (en) Inversion dc motor
JP2002136093A (en) Stepping motor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10487257

Country of ref document: US

122 Ep: pct application non-entry in european phase