WO2003034422A1 - Record carrier and apparatus for scanning the record - Google Patents

Record carrier and apparatus for scanning the record Download PDF

Info

Publication number
WO2003034422A1
WO2003034422A1 PCT/IB2002/003956 IB0203956W WO03034422A1 WO 2003034422 A1 WO2003034422 A1 WO 2003034422A1 IB 0203956 W IB0203956 W IB 0203956W WO 03034422 A1 WO03034422 A1 WO 03034422A1
Authority
WO
WIPO (PCT)
Prior art keywords
modulated
record carrier
elements
information
track
Prior art date
Application number
PCT/IB2002/003956
Other languages
French (fr)
Inventor
Cornelis M. Schep
Aalbert Stek
Constant P. M. J. Baggen
Koen Vanhoof
Tamotsu Yamagami
Shoei Kobayashi
Nobuyoshi Kobayashi
Shinichiro Iimura
Original Assignee
Koninklijke Philips Electronics N.V.
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8181057&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2003034422(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to AU2002337404A priority Critical patent/AU2002337404B8/en
Priority to EP02772646A priority patent/EP1440437B1/en
Priority to DE60210117T priority patent/DE60210117T2/en
Priority to IL16134902A priority patent/IL161349A0/en
Priority to JP2003537064A priority patent/JP4105092B2/en
Priority to KR1020047005442A priority patent/KR100933184B1/en
Priority to UA20040402710A priority patent/UA78719C2/en
Application filed by Koninklijke Philips Electronics N.V., Sony Corporation filed Critical Koninklijke Philips Electronics N.V.
Priority to SK177-2004A priority patent/SK1772004A3/en
Priority to EA200400543A priority patent/EA005453B1/en
Priority to NZ532276A priority patent/NZ532276A/en
Publication of WO2003034422A1 publication Critical patent/WO2003034422A1/en
Priority to IL161349A priority patent/IL161349A/en
Priority to HR20040346A priority patent/HRP20040346B1/en
Priority to CY20061100813T priority patent/CY1105052T1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/10Indexing; Addressing; Timing or synchronising; Measuring tape travel
    • G11B27/19Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier
    • G11B27/24Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by sensing features on the record carrier other than the transducing track ; sensing signals or marks recorded by another method than the main recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/21Disc-shaped record carriers characterised in that the disc is of read-only, rewritable, or recordable type
    • G11B2220/215Recordable discs
    • G11B2220/216Rewritable discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/21Disc-shaped record carriers characterised in that the disc is of read-only, rewritable, or recordable type
    • G11B2220/215Recordable discs
    • G11B2220/218Write-once discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2537Optical discs
    • G11B2220/2545CDs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2537Optical discs
    • G11B2220/2562DVDs [digital versatile discs]; Digital video discs; MMCDs; HDCDs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0938Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following servo format, e.g. guide tracks, pilot signals

Abstract

A record carrier is described that has a servo track (4) indicating an information track (9) intended for recording information blocks. The servo track (4) has a periodic variation of a physical parameter at a predetermined frequency and modulated parts for encoding position information at regular intervals. The modulated parts start with a bit sync element and are of a data type having a data bit element or of a word sync type having a word sync element. The bit sync element, word sync element and the data bit element being modulated according to a same predetermined type of modulation of the periodic variation. The distances between all elements constituting the modulated parts are unique. Further a device for reading and/or writing the record carrier is described.

Description

Record carrier and apparatus for scanning the record carrier
The invention relates to a record carrier comprising a servo track indicating an information track intended for recording information blocks represented by marks, which servo track has a periodic variation of a physical parameter at a predetermined frequency and modulated parts for encoding position information at regular intervals, the modulated parts comprising at least one of a bit sync element, a data bit element or a word sync element, said elements being modulated according to a same predetermined type of modulation of the periodic variation.
The invention further relates to recording and/or playback device comprising means for writing and/or reading information blocks in an information track on a record carrier that comprises a servo track indicating the information track, which device comprises means for scanning the servo track and demodulation means for retrieving position information from a signal generated by a variation of a physical parameter of the servo track at a predetermined frequency, which servo track has modulated parts for encoding position information at regular intervals, the modulated parts comprising at least one of a bit sync element, a data bit element or a word sync element, said elements being modulated according to a same predetermined type of modulation of the periodic variation.
The invention further relates to a method for manufacturing the record carrier.
A record carrier and device for reading and/or writing information are known from WO 00/43996 (PHN 17323). The information to be recorded is encoded into an information signal which includes address codes and is subdivided in accordance with the address codes into information blocks. The record carrier is of a recordable type and has a servo track, usually called pregroove, for causing servo signals to be generated when scanning the track. A physical parameter, e.g. the radial position, of the pregroove periodically varies at a predetermined frequency constituting a so-called wobble. During the scanning of the track, this wobble leads to a variation of the radial tracking servo signals and a wobble signal can be generated. The wobble is modulated according to a type of modulation using phase modulation for encoding position information. The phase modulation or frequency modulation used for encoding digital position information is selected to minimally disturb the component of the predetermined frequency in the wobble signal, because that component is used to control the recording speed. Hence a majority of the periodic variations needs to be non modulated, i.e. having the zero crossings not shifted from the nominal positions. During recording the position information is retrieved from the wobble signal and is used for positioning the information blocks by keeping a predefined relation between the address codes in the information blocks and the position information. The addresses are encoded in modulated parts of the wobble starting with a bit sync element followed by either a word sync element or a data bit element. A problem of the known system is that detection of the various elements is not reliable.
It is an object of the invention to provide a record carrier and device in which the synchronization is more reliable.
According to the invention a record carrier as defined in the opening paragraph is characterized in that distances between all said modulated elements are unique. Further, the recording and/or playback device as described in the opening paragraph characterized in that the demodulation means comprise means for detecting a type of the modulated parts by determining the unique distance between preceding and/or following modulated elements. The invention is based on the following recognition. In both the DND+RW and the new format, the address information in the wobble is stored by having short modulated marks in a predominantly single-tone wobble. In DND+RW the modulated marks are inverted wobbles (PSK modulation), in the new format the modulated marks are of the MSK (minimum shift keying) type. It is an advantage to use only one type of modulated mark, because then only one type of modulated mark needs to be detected which is simple. Information is then stored in the combination of multiple marks. The modulated marks are used to indicate bit sync, word sync, data ONE, and data ZERO. From the detection of a single mark, no information can be retrieved without having information also on other marks because it is not known whether the detected mark indicates (part of) a bit sync, word sync, data ONE, or data ZERO. The solution of this invention is to make the distance between each pair of adjacent modulated marks unique, so that from the distance between two subsequent modulated marks all relevant information can be retrieved. The solution of this invention thus makes it possible to have very simple detection: detect single modulated marks and the distance between adjacent marks. Hence reliable detection in combination with minimal disturbance of the periodic variations is achieved by selecting unique distances and using a single modulated element for the bit sync, data bit and word sync elements.
Further preferred embodiments of the method, devices and record carrier according to the invention are given in the further claims.
These and other aspects of the invention will be apparent from and elucidated further with reference to the embodiments described by way of example in the following description and with reference to the accompanying drawings, in which
Fig. la shows a record carrier with a servo track (top view),
Fig. lb shows a servo track (cross section),
Fig. lc shows a wobble of a servo track (detail),
Fig. Id shows a further wobble of a servo track (detail), Fig. 2 shows bi-phase wobble modulation,
Fig. 3 shows MSK wobble modulation, Fig. 4 shows a modulation scheme including unique distances, Fig. 5 shows a device for reading information blocks, Fig. 6 shows a device for writing information blocks. In the Figures, elements which correspond to elements already described have the same reference numerals.
Fig. la shows a disc-shaped record carrier 1 provided with a track 9 intended for recording and a central hole 10. The track 9 is arranged in accordance with a spiral pattern of windings 3. Fig. lb is a cross-section taken on the line b-b of the record carrier 1, in which a transparent substrate 5 is provided with a recording layer 6 and a protective layer 7. The recording layer 6 may be optically writable, for example via phase change, or magneto- optically writable by a device for writing information such as the known CD-Rewritable or CD-Recordable. The recording layer may also be provided with information via a production process, in which first a master disc is made which is subsequently multiplied through pressing. The information is organized in information blocks and is represented by optically readable marks in the form of a succession of areas reflecting much radiation and little radiation such as, for example a succession of pits of different lengths in a CD. In one embodiment, the track 9 on the record carrier of a rewritable type is indicated by a servopattem which is provided during manufacture of the blank record carrier. The servopattem is formed, for example by a pregroove 4 which enables a write head to follow the track 9 during scanning. The pregroove 4 may be implemented as a deeper or a raised part, or as a material property deviating from its ambience. Alternatively, the servopattem may consist of an alternation of elevated and deeper windings, referred to as land and groove patterns, with a transition from land to groove or vice versa taking place per winding. Figs, lc and Id show two examples of a periodical variation of a physical parameter of the pregroove, called wobble. Fig. lc shows variation of the lateral position, and Fig. Id shows variation of the width. This wobble produces a wobble signal in a tracking servosensor. The wobble is, for example, frequency- modulated, and position information such as an address, a time code or winding information is coded in the modulation. A description of a rewritable CD system which is provided with position information in such a way can be found in US 4,901,300 (PHN 12.398). A servopattem may also consist of, for example, regularly distributed sub-patterns which periodically cause tracking signals. Further the servopattem may include modifications of the land area beside the pregroove, e.g. an undulating pregroove having land pre-pits in a specific pattern for encoding position information like in DVD-RW.
The variation of the servo track includes relatively large parts of monotone wobble, so called non modulated parts. Further the servo track has relatively short parts where the frequency and/or phase of the wobble deviates from the predetermined wobble frequency, called modulated parts. In this document any servopattem of a periodic nature in combination with any additional elements encoding information is referred to as a servo track having a periodic variation of a physical parameter at a predetermined frequency, or wobble, that has modulated parts.
Figure 2 shows bi-phase wobble modulation. An upper trace shows the wobble modulation for a word sync pattern, a second and third trace show the wobble modulations for data bits of the address, the total modulation being called Address In Pregroove (ADIP). Predetermined phase patterns are used for indicating a synchronizing symbol (ADIP bit sync) and a synchronization of the full address word (ADIP word sync), and for the respective data bits (ADIP Data='0', and ADIP data = ' 1 '). The ADIP bit sync is indicated by a single inverted wobble (wobble # 0). The ADIP word sync is indicated by three inverted wobbles directly following the ADIP bit sync, whereas data bits have non-inverted wobbles in this area (wobble # 1 to 3). An ADIP Data area comprises a number of wobble periods assigned to represent one data bit, in the Figure the wobble periods numbered 4 up to 7 (= wobble # 4 to 7). The wobble phase in first halve of the ADIP Data area is inverse to the wobble phase in the second halve of the area. As such each bit is represented by two sub-areas having different phases of the wobble, i.e. called bi-phase. Data bits are modulated as follows: ADIP Data='0' is represented by 2 non-inverted wobbles followed by two inverted wobbles, and ADIP data = ' 1 ' vice versa. In this embodiment the modulation for data bits is fully symmetrical, giving equal error probability for both data bit values. However other combinations of wobbles and inverted wobbles, or other phase values may be used. In an embodiment a predetermined modulation is used after a ADIP Word Sync, indicating 'empty', instead of a data bit. Monotone wobbles may be used after the first data bit, or further data bits may be encoded thereafter. Preferably a large majority of the wobbles is not modulated (i.e. has the nominal phase) for ensuring an easy lock and a stable output of a PLL in a detector; in this embodiment the 8 possibly modulated wobbles are followed by 85 not modulated (i.e. monotone) wobbles (wobble # 8 to 92). The output frequency of the PLL has to be as stable as possible, because during writing the write clock is derived from the PLL output.
Figure 3 shows MSK wobble modulation. The Minimum Shift Keying (MSK) modulation uses a first pattern 31 for transferring a first bit value and a second pattern 32 for transferring a second bit value. Further combinations of the patterns 31,32 may be used to transfer synchronisation information. Each MSK pattern has a central part of at least one full wobble period, in the first pattern the central part 34 in non-inverted, while in the second pattern the central part 37 is inverted. Each MSK pattern further has a starting part and an ending part. The left MSK pattern has a starting part 33 and an ending part 35 just being a single wobble period. The right MSK pattern has a starting part 36, which inverts the phase by having a frequency of 1.5 times the wobble frequency, i.e. by having 3 halve sine periods within one wobble frequency period. The ending part is similar to re-invert the phase to the non-inverted state. Detection of MSK data bits is primarily based on the detection of the central part, because both central parts exhibit the maximum difference between the two patterns. In addition the difference of the not modulated starting part 33 and modulated starting part 36, and the not modulated ending part 35 and modulated ending part 38 can be exploited for detection, the total length of these differences is estimated to have 50% of effective strength of detection when compared to the central part. The MSK encoding can be used to encode address bits in a pregroove wobble, but the pregroove wobble needs to be not modulated for the majority of wobble periods. The large majority of not modulated wobbles is needed for reliably controlling the rotation speed of the disc and/or the write clock of the recording process.
Figure 4 shows an modulation scheme with split word sync based on the MSK wobble modulation. In each cell of the matrix shown a zero indicates a not modulated wobble, a one indicates a starting part of 1,5 wobble to invert the phase, a two indicates an inverted wobble, and a three indicates an ending part of 1,5 wobble to re-invert the phase to the normal state, as described above with reference to Figure 3. In each row of the matrix 56 consecutive wobbles are indicated (columns 37-54 all being zero), and each row starts with a bit sync element in columns 0,1,2. A total ADIP address word comprises 83 rows, and the rows are numbered according to their ADIP bit number. The ADIP bits numbered 0,2,4,6 and 8,13,18, etc are isolated bit syncs (40,41). The ADIP word includes several word sync elements, which all comprise two partial elements separated by a number of not modulated wobbles. Such sync elements are referred to as split word sync. In ADIP bit 1 there is a first split word sync element called syncO, and in ADIP bits 3,5,7 there are three further split word sync elements syncl, sync2 and sync3. All split word sync elements have a different location for maximum reliability of detection. Starting at ADIP bit 8 there is a repetitive pattern of 5 rows consisting of one isolated bit sync followed by 4 data bits; the values of the data bit elements in the Figure being arbitrary examples. Hence in total 13 x 4 = 52 data bits are available in the ADIP address word. In the new format we have the following specific implementation. Each ADIP unit has a length of 56 wobbles. Seven different types of ADIP units exist. The following unique distances occur between different adjacent elements.
- distance of 10 wobbles: between the two elements of 1 of the 4 word syncs
- distance of 12 wobbles: between bit sync and data ONE element - distance of 14 wobbles: between bit sync and data ZERO element
- distance of 16 wobbles: between bit sync and first element of syncO
- distance of 18 wobbles: between bit sync and first element of syncl
- distance of 20 wobbles: between bit sync and first element of sync2
- distance of 22 wobbles: between bit sync and first element of sync3 - distance of 24 wobbles: between second element of sync3 and bit sync of next ADIP unit
- distance of 26 wobbles: between second element of sync2 and bit sync of next ADIP unit - distance of 28 wobbles: between second element of syncl and bit sync of next ADIP unit
- distance of 30 wobbles: between second element of syncO and bit sync of next ADIP unit - distance of 42 wobbles: between ZERO element and bit sync of next ADIP unit
- distance of 44 wobbles: between ONE element and bit sync of next ADIP unit
- distance of 56 wobbles: between bit sync and bit sync of next ADIP unit
No other distances between 2 adjacent elements occur in the format. So, from the distance between 2 adjacent MSK elements one can directly derive the meaning of the elements. Note that all distances are larger than 10, so no 2 elements are close together which is an advantage for reducing the PLL distortion. Note that all distances are even, if one of the elements is shifted by 1 wobble because of misdetection one can detect this error (but not correct it). Note that the unique aspect is limited to the adjacent elements, the distance between non- adjacent elements is not unique. For example, the distance 26 also occurs between the bit sync and the second element of syncO (because 26 = 16+10), but in this case there is another element (the first element of syncO) in between. Note that the distance 10 is somewhat special, it occurs for all 4 word syncs (syncO, .., sync3). The disadvantage is that from detecting distance 10 one does not know which word sync is detected. The advantage is that one can use 1 type of detection for all 4 word syncs. Figures 5 shows a reading device for scanning a record carrier 1. Writing and reading of information on optical discs and formatting, error correcting and channel coding rules, are well-known in the art, e.g. from the CD system. The apparatus of Figure 5 is arranged for reading the record carrier 1, which record carrier is identical to the record carriers shown in Figure 1. The device is provided with a read head 52 for scanning the track on the record carrier and read control means comprising drive unit 55 for rotating the record carrier 1, a read circuit 53 for example comprising a channel decoder and an error corrector, tracking unit 51 and a system control unit 56. The read head comprises optical elements of the usual type for generating a radiation spot 66 focused on a track of the recording layer of the record carrier via a radiation beam 65 guided through optical elements. The radiation beam 65 is generated by a radiation source, e.g. a laser diode. The read head further comprises a focusing actuator for focusing the radiation beam 65 on the recording layer and a tracking actuator 59 for fine positioning of the spot 66 in radial direction on the center of the track. The apparatus has a positioning unit 54 for coarsely positioning the read head 52 in the radial direction on the track. The tracking actuator 59 may comprise coils for radially moving an optical element or may be arranged for changing the angle of a reflecting element on a movable part of the read head or on a part on a fixed position in the case part of the optical system is mounted on a fixed position. The radiation reflected by the recording layer is detected by a detector of a usual type, e.g. a four-quadrant diode, for generating a detector signals 57 including a read signal, a tracking error and a focusing error signal. The tracking unit 51 is coupled to the read head for receiving the tracking error signal from the read head and controlling the tracking actuator 59. During reading, the read signal is converted into output information, indicated by arrow 64, in the read circuit 53. The apparatus is provided with a demodulator 50 for detecting and the retrieving address information from the wobble signal included in the detector signals 57 when scanning the servo track of the record carrier. The device is further provided with a system control unit 56 for receiving commands from a controlling computer system or from a user and for controlling the apparatus via control lines 58, e.g. a system bus connected to the drive unit 55, the positioning unit 54, the demodulator 50, the tracking unit 51 and the read circuit 53. To this end, the system control unit comprises control circuitry, for example a microprocessor, a program memory and control gates, for performing the procedures described below. The system control unit 56 may also be implemented as a state machine in logic circuits. The read device is arranged for reading a disc having tracks having a periodic variation, e.g. a continuous wobble. The read control unit are arranged for detecting the periodic variations and for reading in dependence thereon a predetermined amount data from the track. In particular the demodulator 50 is arranged for reading position information from the modulated signal derived from the modulated wobble. The demodulator 50 has a detection unit for detecting modulated wobbles starting at the bit sync elements in the wobble signal which arrive after a long sequence of non modulated wobbles. The demodulator further has a word detection unit for retrieving the words of address information based on the word sync elements. The beginning of such a word is detected from a word synchronisation signal after the bit sync element. The value of a data bit is detected based on the data bit elements encoded by modulated wobbles. Further the device has a synchronisation unit 67 for detecting the unique distances between modulated elements. In the modulation scheme described above with reference to Fig. 4 all modulated elements are separated by a unique interval of not modulated periodic variations. The synchronisation unit 67 detects the modulated elements at the unique distances, and from the result detects the bit sync, word sync, or data bit element. In a preferred embodiment, the demodulator 50 and synchronisation unit 67 share a filter unit for detecting one single type of modulated element, in particular in the case that all modulated parts of the data bits, the word sync element and the bit sync element are equal.
Figure 6 shows a device for writing information on a record carrier according to the invention of a type which is (re)writable in, for example a magneto-optical or optical manner (via phase change or dye) by means of a beam 65 of electromagnetic radiation. The device is also equipped for reading and comprises the same elements as the apparatus for reading described above with Figure 5, except that it has a write/read head 62 and recording control means which comprise the same elements as the read control means, except for a write circuit 60 that comprises for example a formatter, an error encoder and a channel encoder. The write/read head 62 has the same function as the read head 52 together with a write function and is coupled to the write circuit 60. The information presented to the input of the write circuit 60 (indicated by the arrow 63) is distributed over logical and physical sectors according to formatting and encoding rules and converted into a write signal 61 for the write/read head 62. The system control unit 56 is arranged for controlling the write circuit 60 and for performing the position information recovery and positioning procedure as described above for the reading apparatus. During the writing operation, marks representing the information are formed on the record carrier. The recording control means are arranged for detecting the periodic variations, for example by locking a phase locked loop to the periodicity thereof. The demodulator 50 and the synchronisation unit 67 are described above with reference to Figure 5. Although the invention has been explained by embodiments using a wobble modulation, any other suitable parameter of the track may be modulated, e.g. the track width. Also for the record carrier an optical disc has been described, but other media, such as a magnetic disc or tape, may be used. It is noted, that in this document the word 'comprising' does not exclude the presence of other elements or steps than those listed and the word 'a' or 'an' preceding an element does not exclude the presence of a plurality of such elements, that any reference signs do not limit the scope of the claims, that the invention may be implemented by means of both hardware and software, and that several 'means' may be represented by the same item of hardware. Further, the scope of the invention is not limited to the embodiments, and the invention lies in each and every novel feature or combination of features described above.

Claims

CLAIMS:
1. Record carrier comprising a servo track (4) indicating an information track (9) intended for recording information blocks represented by marks, which servo track (4) has a periodic variation of a physical parameter at a predetermined frequency and modulated parts for encoding position information at regular intervals, the modulated parts comprising at least one of a bit sync element, a data bit element or a word sync element, said elements being modulated according to a same predetermined type of modulation of the periodic variation, characterized in that distances between all said modulated elements are unique.
2. Record carrier as claimed in claim 1, wherein the predetermined type of modulation is minimum shift keying modulation of the periodic variation.
3. Record carrier as claimed in claim 1 or 2, wherein a modulated part of a word sync type has two modulated elements at a further unique distance.
4. Record carrier as claimed in claim 3, wherein the further unique distance within the word sync type is 10 periods and the unique distances are larger than 10 periods of the periodic variation.
5. Record carrier as claimed in claim 1 or 2, wherein all unique distances are an even value of periods of the periodic variation.
6. Record carrier as claimed in claim 1 or 2, wherein all modulated elements are equal.
7. Recording and/or playback device comprising means for writing and/or reading information blocks in an information track (9) on a record carrier that comprises a servo track (4) indicating the information track (9), which device comprises means for scanning the servo track (4) and demodulation means (50) for retrieving position information from a signal generated by a variation of a physical parameter of the servo track at a predetermined frequency, which servo track has modulated parts for encoding position information at regular intervals, the modulated parts comprising at least one of a bit sync element, a data bit element or a word sync element, said elements being modulated according to a same predetermined type of modulation of the periodic variation, characterized in that the demodulation means comprise means (67) for detecting a type of the modulated parts by determining the unique distance between preceding and/or following modulated elements.
8. Device as claimed in claim 7, wherein the means for detecting the type of the modulated parts are for detecting the unique distance from modulated elements that are separated by an interval of not modulated periodic variations.
PCT/IB2002/003956 2001-10-15 2002-09-23 Record carrier and apparatus for scanning the record WO2003034422A1 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
NZ532276A NZ532276A (en) 2001-10-15 2002-09-23 Position information modulation on servo track of DVD
UA20040402710A UA78719C2 (en) 2001-10-15 2002-09-23 Data record carrier and a device for readings data records
DE60210117T DE60210117T2 (en) 2001-10-15 2002-09-23 RECORDING MEDIA AND PLAYBACK DEVICE
IL16134902A IL161349A0 (en) 2001-10-15 2002-09-23 Record carrier and apparatus for scanning the record
JP2003537064A JP4105092B2 (en) 2001-10-15 2002-09-23 Record carrier and apparatus for scanning the record carrier
KR1020047005442A KR100933184B1 (en) 2001-10-15 2002-09-23 Record carrier and scanning device for record carrier
SK177-2004A SK1772004A3 (en) 2001-10-15 2002-09-23 Record carrier and apparatus for scanning the record
AU2002337404A AU2002337404B8 (en) 2001-10-15 2002-09-23 Record carrier and apparatus for scanning the record
EP02772646A EP1440437B1 (en) 2001-10-15 2002-09-23 Record carrier and apparatus for scanning the record
EA200400543A EA005453B1 (en) 2001-10-15 2002-09-23 Record carrier and apparatus for scanning the record
IL161349A IL161349A (en) 2001-10-15 2004-04-13 Record carrier and apparatus for scanning the record
HR20040346A HRP20040346B1 (en) 2001-10-15 2004-04-15 Record carrier and apparatus for scanning the record
CY20061100813T CY1105052T1 (en) 2001-10-15 2006-06-19 RECORD CARRIER AND DEVICE FOR SCANNING THE RECORD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP01203876.6 2001-10-15
EP01203876 2001-10-15

Publications (1)

Publication Number Publication Date
WO2003034422A1 true WO2003034422A1 (en) 2003-04-24

Family

ID=8181057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2002/003956 WO2003034422A1 (en) 2001-10-15 2002-09-23 Record carrier and apparatus for scanning the record

Country Status (20)

Country Link
US (1) US7158472B2 (en)
EP (1) EP1440437B1 (en)
JP (2) JP4105092B2 (en)
KR (1) KR100933184B1 (en)
CN (2) CN101673567A (en)
AT (1) ATE321336T1 (en)
AU (1) AU2002337404B8 (en)
CY (1) CY1105052T1 (en)
DE (1) DE60210117T2 (en)
EA (1) EA005453B1 (en)
EG (1) EG23418A (en)
HR (1) HRP20040346B1 (en)
IL (2) IL161349A0 (en)
NZ (1) NZ532276A (en)
PT (1) PT1440437E (en)
SA (1) SA03230562B1 (en)
SK (1) SK1772004A3 (en)
UA (1) UA78719C2 (en)
WO (1) WO2003034422A1 (en)
ZA (1) ZA200304599B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101146038B1 (en) * 2004-07-21 2012-05-15 소니 주식회사 Clock generation circuit and optical disk apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4121264B2 (en) * 2001-10-16 2008-07-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Disk drive device and wobble information detection method
JP4121265B2 (en) * 2001-10-16 2008-07-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Disc-shaped recording medium, disc drive apparatus, disc manufacturing apparatus and method
KR20040017383A (en) * 2002-08-21 2004-02-27 삼성전자주식회사 Apparatus and method for modulating address data, apparatus and method demodulating address data therefor, and recording medium for recording modulated address data
JP2005317179A (en) * 2004-03-31 2005-11-10 Fuji Photo Film Co Ltd Recording medium, and reproduction and recording method for servo signal
TWI301969B (en) * 2004-10-12 2008-10-11 Mediatek Inc Method and apparatus for detecting a physical mark in a signal read from an optical disk
KR101102730B1 (en) * 2010-03-22 2012-01-05 임성훈 String holder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0326206A1 (en) * 1988-01-22 1989-08-02 Koninklijke Philips Electronics N.V. Method of and apparatus for recording an information signal
US5508985A (en) * 1994-10-11 1996-04-16 Eastman Kodak Company Method for detecting and processing synchronization marks extracted from a prerecorded wobbled groove on a compact disk
EP0793234A2 (en) * 1996-03-01 1997-09-03 Sony Corporation Recording/reproducing apparatus and method
US6091681A (en) * 1996-09-03 2000-07-18 U.S. Philips Corporation Information carrier, reading/writing device and reading device for writing and/or reading information blocks
US6266318B1 (en) * 1999-04-15 2001-07-24 Yamaha Corporation CLV-type recordable optical disk and apparatus for recording information onto the optical disk

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1069646A (en) * 1996-08-29 1998-03-10 Ricoh Co Ltd Optical disk medium, optical disk device
PL197778B1 (en) * 1999-01-25 2008-04-30 Koninkl Philips Electronics Nv Record carrier and apparatus for scanning the record carrier
EP1098301A2 (en) * 1999-11-03 2001-05-09 Samsung Electronics Co., Ltd. Physical identification data addressing method using wobble signal, wobble address encoding circuit, method and circuit for detecting wobble address, and recording medium
JP4534387B2 (en) * 2001-03-19 2010-09-01 ソニー株式会社 Recording apparatus and method, reproducing apparatus and method, recording medium, program, and disk medium
JP4652641B2 (en) * 2001-10-11 2011-03-16 ソニー株式会社 Disc recording medium, disc drive apparatus, and playback method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0326206A1 (en) * 1988-01-22 1989-08-02 Koninklijke Philips Electronics N.V. Method of and apparatus for recording an information signal
US5508985A (en) * 1994-10-11 1996-04-16 Eastman Kodak Company Method for detecting and processing synchronization marks extracted from a prerecorded wobbled groove on a compact disk
EP0793234A2 (en) * 1996-03-01 1997-09-03 Sony Corporation Recording/reproducing apparatus and method
US6147945A (en) * 1996-03-01 2000-11-14 Sony Corporation Recording/reproducing apparatus and method
US6091681A (en) * 1996-09-03 2000-07-18 U.S. Philips Corporation Information carrier, reading/writing device and reading device for writing and/or reading information blocks
US6266318B1 (en) * 1999-04-15 2001-07-24 Yamaha Corporation CLV-type recordable optical disk and apparatus for recording information onto the optical disk

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101146038B1 (en) * 2004-07-21 2012-05-15 소니 주식회사 Clock generation circuit and optical disk apparatus

Also Published As

Publication number Publication date
ATE321336T1 (en) 2006-04-15
HRP20040346B1 (en) 2008-06-30
US20030123343A1 (en) 2003-07-03
SK1772004A3 (en) 2004-09-08
EG23418A (en) 2005-06-28
JP2008165978A (en) 2008-07-17
CN101673567A (en) 2010-03-17
NZ532276A (en) 2006-06-30
JP4105092B2 (en) 2008-06-18
KR100933184B1 (en) 2009-12-22
SA03230562B1 (en) 2007-07-23
IL161349A0 (en) 2004-09-27
CN100592398C (en) 2010-02-24
ZA200304599B (en) 2004-06-28
UA78719C2 (en) 2007-04-25
AU2002337404B8 (en) 2009-05-21
IL161349A (en) 2009-09-01
CY1105052T1 (en) 2010-03-03
HRP20040346A2 (en) 2005-02-28
EP1440437A1 (en) 2004-07-28
JP2005505883A (en) 2005-02-24
KR20040045825A (en) 2004-06-02
AU2002337404B2 (en) 2009-05-07
US7158472B2 (en) 2007-01-02
DE60210117T2 (en) 2006-10-19
PT1440437E (en) 2006-07-31
EA005453B1 (en) 2005-02-24
DE60210117D1 (en) 2006-05-11
EA200400543A1 (en) 2004-08-26
EP1440437B1 (en) 2006-03-22
CN1568510A (en) 2005-01-19

Similar Documents

Publication Publication Date Title
USRE44088E1 (en) Record carrier having a servo track with position information in accordance with a modulation type and permanent information in accordance with a different modulation type, and apparatus for scanning the record carrier
EP1374240B1 (en) Record carrier and apparatus for scanning the record carrier
JP2008165978A (en) Record carrier and device scanning the record carrier
US7385908B2 (en) Record carrier including a servo track having first and second modulated parts representing a data type and a word sync type, respectively, and an apparatus for scanning the record carrier
AU2002339218A1 (en) Record carrier and apparatus for scanning the record carrier
AU2002337404A1 (en) Record carrier and apparatus for scanning the record
EP1374238B1 (en) Record carrier and apparatus for scanning the record carrier

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1200400312

Country of ref document: VN

Ref document number: P-475/03

Country of ref document: YU

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2003/04599

Country of ref document: ZA

Ref document number: 200304599

Country of ref document: ZA

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003537064

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002772646

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 161349

Country of ref document: IL

Ref document number: 1772004

Country of ref document: SK

Ref document number: 532276

Country of ref document: NZ

Ref document number: 1020047005442

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002820333X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: P20040346A

Country of ref document: HR

Ref document number: 766/CHENP/2004

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2002337404

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 200400543

Country of ref document: EA

WWP Wipo information: published in national office

Ref document number: 2002772646

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002772646

Country of ref document: EP