WO2003033174A1 - Ultrasonic oscillator drive apparatus - Google Patents

Ultrasonic oscillator drive apparatus Download PDF

Info

Publication number
WO2003033174A1
WO2003033174A1 PCT/JP2002/010698 JP0210698W WO03033174A1 WO 2003033174 A1 WO2003033174 A1 WO 2003033174A1 JP 0210698 W JP0210698 W JP 0210698W WO 03033174 A1 WO03033174 A1 WO 03033174A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
ultrasonic transducer
driving device
drive
circuit
Prior art date
Application number
PCT/JP2002/010698
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroaki Nagata
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2003033174A1 publication Critical patent/WO2003033174A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0223Driving circuits for generating signals continuous in time
    • B06B1/0238Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave
    • B06B1/0246Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave with a feedback signal
    • B06B1/0253Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave with a feedback signal taken directly from the generator circuit

Definitions

  • the present invention relates to an ultrasonic transducer driving device having a phase lock circuit for fixing a driving phase of an ultrasonic transducer.
  • a conventional ultrasonic vibrator driving device has a phase locked circuit (PLL [Phase-Locked-Loop] circuit), as disclosed in Japanese Patent Application Laid-Open No. 63-123746. What is made is common.
  • PLL Phase-Locked-Loop
  • the driving phase of the ultrasonic vibrator is fixed so that the driving frequency of the ultrasonic vibrator is between the resonance frequency and the anti-resonance frequency. Control is performed.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an ultrasonic vibrator driving device capable of always optimally driving an ultrasonic vibrator without requiring phase adjustment by a user. I do.
  • an ultrasonic transducer driving device comprises: In an ultrasonic transducer driving device having a phase fixing circuit for fixing a driving phase of a moving element, the phase is determined based on a conduction current of the ultrasonic transducer or a conduction current substitute signal indicating equivalent behavior.
  • the drive phase of the ultrasonic transducer fixed by the fixing circuit is automatically adjusted.
  • FIG. 1 is a block diagram showing an embodiment of an ultrasonic transducer driving device according to the present invention
  • FIG. 2 is a circuit diagram (a) showing an embodiment of a phase delay circuit 1 and points A to C in respective parts.
  • FIG. 3 is a diagram illustrating impedance characteristics of the ultrasonic vibrator 10 and the choke coil 9
  • FIG. 4 is a diagram illustrating an embodiment of the phase delay circuit 1 and the second phase adjustment circuit 15.
  • FIG. 5 is a flowchart illustrating the automatic adjustment operation of the drive phase by the microcomputer 12. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a block diagram showing an embodiment of an ultrasonic transducer driving device according to the present invention.
  • the ultrasonic transducer driving device includes a phase delay circuit 1 for giving a predetermined phase delay to an input pulse signal, and a pulse signal output from the phase delay circuit 1.
  • Inverted signal generation circuit 2 for inverting logic, first and second drivers 3 and 4 for outputting pulse signals whose logic is inverted, inverter circuit 5 for generating AC voltage from DC voltage, and specific frequency components Band-pass adjustment filter 6 that passes only the signal, a first phase adjustment circuit 7 that performs phase adjustment based on the output signal of the band-pass adjustment filter 6, and an analog signal output from the first phase adjustment circuit 7 as a digital pulse signal.
  • a microcomputer 12 that controls the automatic adjustment of the drive phase based on the voltage signal obtained by the current transformer 11, a nonvolatile memory 13 that retains the stored contents even when power is not supplied,
  • a Hall element or other current detector may be used instead of the current transformer 11.
  • the inverter circuit 5 includes FETs 51, 52, a double insulating transformer 53, and a resistor 54.
  • the gates of the FETs 51 and 52 are connected to the output terminals of the first and second drivers 3 and 4, respectively.
  • the sources of the FETs 51 and 52 are grounded via the resistor 54 and are also connected to the primary-side current detection terminal of the microcomputer 12.
  • the double insulating transformer 53 includes coils 53a, 53b, 53c and a core 53d that magnetically couples the coils.
  • One end of the coil 53 a is connected to the drain of FET 51, and the other end is connected to the drain of FET 52.
  • the center tap of the coil 53a is connected to the load power supply.
  • a series circuit including the choke coil 9 and the ultrasonic vibrator 10 is connected between both ends of the coil 53b. Both ends of the coil 53 c are connected to the input terminals of the pan-pass adjustment filter 6.
  • the double insulation transformer 5 was used to strengthen the insulation between the primary side and the secondary side. If it is not necessary to use insulation reinforcement, use a normal insulation transformer.
  • FIG. 2 is a circuit diagram (a) showing an embodiment of the phase delay circuit 1 and a voltage waveform diagram (b) at points A to C of each section.
  • the phase delay circuit 1 of the present embodiment is a fixed delay circuit including logic circuits IC 1 and IC 2, a capacitor C 1, and a resistor R 1.
  • the configuration of the phase delay circuit 1 is not limited to this, and another method may be used.
  • a pulse signal having a period T is input from the zero-cross pulse conversion circuit 8 to the point A of the phase delay circuit 1.
  • the potential at the point A that is, the input to the logic circuit IC1
  • the output of the logic circuit IC1 changes from High to Low
  • the charging voltage of the capacitor C1 passes through the resistor R1.
  • the potential at point B Changes from High to Low with a predetermined time constant.
  • the input of the logic circuit IC2 is turned off from High.
  • the output of the logic circuit IC 2 is inverted from Low to High. That is, in the phase delay circuit 1, the logical inversion of the potential at the point C with respect to the potential at the point A is delayed by the time t1 due to the time constant of the capacitor C1 and the resistance R1. As a result, a phase difference corresponding to time t1 occurs in the drive phase of the ultrasonic oscillator 10. Also, when the input of the logic circuit IC1 changes from High to Low, the logic inversion of the potential at the point C with respect to the potential at the point A is delayed by the time t1 to generate a phase difference, similarly to the above.
  • the inverted signal generation circuit 2 logically inverts the pulse signal output from the phase delay circuit 1 and supplies the inverted signal to the second driver 4.
  • the first and second drivers 3 and 4 each output a signal whose logic is inverted, so that the FETs 51 and FET 52 constituting the skipper circuit 5 are turned on alternately. Therefore, the current from the load power supply alternately flows through the center tap of the coil 53a to the FETs 51 and 52, so that the direction of the current flowing through the coil 53a is repeatedly reversed, and the secondary side An AC voltage is induced in the coil 53b.
  • the secondary current obtained by the coil 53 b is supplied to the ultrasonic vibrator 10 via the choke coil 9.
  • a voltage signal indicating the driving phase current waveform of the ultrasonic transducer 10 is generated in the coil 53 c of the double insulating transformer 53, and the voltage signal is sent to the bandpass adjustment filter 6.
  • the band-pass adjustment filter 6 allows only a specific frequency component to pass.
  • the band-pass adjustment filter 6 is composed of a parallel circuit of a coil and a capacitor (not shown), and by adjusting the inductance of the coil divided by the capacitance of the capacitor, the ultrasonic transducer 1 At a desired frequency including a range between the resonance frequency of 0 and the antiresonance frequency, the impedance of the bandpass adjustment filter 6 is adjusted to be the lowest. Therefore, of the frequency components included in the voltage signal input from the coil 53 c, the frequency components other than the resonance frequency and the anti-resonance frequency of the ultrasonic vibrator 10 are attenuated by the bandpass adjustment filter 6.
  • the internal configuration of the bandpass adjustment filter 6 is limited to a parallel circuit of a coil and a capacitor. However, other methods may be used.
  • the output signal of the band-pass adjustment filter 6 is input to the first phase adjustment circuit 7.
  • the first phase adjusting circuit 7 adjusts the phase difference so as to keep the phase difference of the entire loop at 180 degrees, together with the phase delay circuit 1 that creates a fixed phase difference.
  • the above-described band-pass adjustment filter 6 and first phase adjustment circuit 7 are generally initially adjusted at the time of production of the ultrasonic vibrator driving device, and thereafter are often used with fixed values. In the ultrasonic transducer driving device capable of manually performing the adjustment, the first phase adjustment circuit 7 is often adjusted.
  • the zero-cross pulse conversion circuit 8 is a circuit that converts the sine-wave analog signal output from the first phase adjustment circuit 7 into a digital pulse signal whose High / Low is inverted at 50% duty with reference to the zero-cross potential. This has the purpose of simplifying the subsequent signal processing. In addition, since the drive phase can be automatically adjusted with the pulsed digital signal, automatic adjustment with high accuracy that is less affected by signal voltage fluctuations can be realized. Note that the digital pulse signal generated by the zero-cross pulse conversion circuit 8 is sent to the phase delay circuit 1 as described above.
  • the zero-cross pulse conversion circuit 8 forms a PLL closed circuit that fixes the drive phase of the ultrasonic transducer 10.
  • elements having a large effect on the drive phase fluctuation of the ultrasonic transducer 10 include a capacitor in the phase delay circuit 1 and a capacitor in the bandpass adjustment filter 6. And a capacitor in the first phase adjustment circuit 7.
  • 3A and 3B are diagrams for explaining the impedance characteristics of the ultrasonic vibrator 10 and the choke coil 9.
  • FIG. 3A shows the impedance characteristic of the ultrasonic vibrator 10 alone, and FIG.
  • the phase angle characteristics of the series circuit composed of the choke coil 9 are shown, and (c) shows the impedance characteristics of the series circuit composed of the ultrasonic vibrator 10 and the choke coil 9.
  • the horizontal axes of (a) to (c) indicate frequencies, and the right side of the paper is the high frequency side.
  • the drive frequency of the ultrasonic vibrator 10 is desirably between the resonance point and the anti-resonance point, as shown in FIG.
  • the maximum point of the series circuit impedance consisting of the ultrasonic vibrator 10 and the choke coil 9 is the point where the phase angle becomes 0 degree.
  • the frequency at which the current flowing through the ultrasonic torsion element 10 becomes minimum is the frequency at which the phase angle of the series circuit composed of the ultrasonic vibrator 10 and the choke coil 9 becomes 0 degree, and Since the impedance is the highest, it is optimal as a reference point for the drive phase, and can achieve accurate automatic calibration.
  • FIG. 4 is a circuit diagram showing an embodiment of the phase delay circuit 1 and the second phase adjustment circuit 15.
  • the second phase adjustment circuit 15 of the present embodiment includes a switch SW a, SW b, SW c and an adjustment resistor Ra, R b, R c in parallel with the resistor R 1 constituting the phase delay circuit 1. It consists of three series circuits connected. With such a configuration, by performing on / off control of the switches SWa to SWc, the adjusting resistors Ra to Rc can be incorporated into the phase delay circuit 1 in eight combinations.
  • the time constant of the phase delay circuit 1 is determined by the capacitance value and the resistance value of the circuit, and a phase difference t 1 corresponding to the time constant occurs in the driving phase of the ultrasonic vibrator 10. Therefore, if the switches SW a to SW c of the second phase adjustment circuit 15 are turned on and off by the microcomputer 12, the resistance value that determines the time constant of the phase delay circuit 1 can be changed, and the result is Thus, it is possible to adjust the phase difference t1 generated in the drive phase of the ultrasonic vibrator 10.
  • the configuration of the second phase adjustment circuit 15 is not limited to the above, and the configuration in which the number of combinations of switches and adjustment resistors is increased or decreased, or the configuration in which the resistance R 1 of the phase delay circuit 1 is connected in series with the resistor R 1 Various changes are possible, such as a configuration in which an adjusting resistor is inserted.
  • an adjustment capacitor may be connected in parallel (or in series) to the capacitor C1 of the phase delay circuit 1 to change the capacitance value.
  • the contact switches are used as the switches SWa to SWc for switching the connection of the adjustment resistors R a to R c, but the type of the switches is not limited to this.
  • FIG. 5 is a flowchart for explaining the automatic adjustment operation of the drive phase by the microcomputer 12.
  • a description will be given of a configuration in which the resistance value of the phase delay circuit 1 is changed to adjust the drive phase of the ultrasonic vibrator 10 as an example, and the description of the change in the capacitance value is omitted.
  • the drive phase of the ultrasonic transducer 10 is determined by the current supplied to the ultrasonic transducer 10 (the voltage signal output from the current transformer 11) or the current-current substitute signal (resistance).
  • the automatic adjustment is performed by detecting the primary-side current signal of the double-insulated transformer 53 that has been voltage-converted in 54. In the following, the phase is adjusted based on the voltage signal output from the current transformer 11
  • the case where the adjustment operation is performed will be described as an example, and the description of the other configuration for detecting the current-carrying-current alternative signal is omitted.
  • step F1 when the operation of the ultrasonic vibrator 10 is started, in the subsequent step F2, the microcomputer 12 instructs the notification unit 14 to drive the ultrasonic vibrator 10 now.
  • An instruction is sent to notify that the phase is being automatically adjusted, and the notification unit 14 that receives the instruction performs lighting / flashing of the light emitting diode, buzzer output, and the like.
  • the user can confirm that it is necessary to wait for a while to use the ultrasonic vibrator 10, thereby increasing the convenience.
  • step F3 the setting state of the resistance value (or a previously registered initial value) determined at the previous adjustment is read out from the nonvolatile memory 13 connected to the microcomputer 12 and the following step F At 4, the previously determined value is set as the initial resistance value at the start of this automatic adjustment.
  • the time required for the automatic adjustment can be reduced.
  • the previously determined value can be called when the microcomputer 12 is supplied with power again.
  • step F5 when the oscillation of the ultrasonic transducer driving device is started, in step F6, the voltage signal of the current transformer 11 in the above state is detected. Further, in the following step F7, by switching the switches SWa to SWc, the resistance value of the phase delay circuit 1 is decreased in the direction in which the drive frequency of the ultrasonic vibrator 10 is lowered (delay time in the phase delay circuit 1). In the following step F8, the output voltage signal of the current transformer 11 in this state is detected.
  • step F9 the voltage signal detected in step F6 is compared with the voltage signal detected in step F8.
  • the flow proceeds to the following step F10, and if not, the flow proceeds to step F16.
  • step F9 If it is determined in step F9 that the voltage signal has dropped, it means that the current drive frequency is approaching the reference frequency between the resonance frequency and the anti-resonance frequency of the ultrasonic vibrator 10. . Therefore, in step F10, the resistance value of the phase delay circuit 1 is switched one step lower, and in the subsequent step F11, the output voltage signal of the current transformer 11 in this state is detected.
  • step F12 the voltage signal detected in step F8 is compared with the voltage signal detected in step F11.
  • step F13 it is determined whether or not the switching state of the switches SWa to SWc is the minimum setting.
  • the switching state of the switches SWa to SWc is not the minimum setting, the flow returns to the above-described step F10, and the current driving frequency is set between the resonance frequency and the anti-resonance frequency of the ultrasonic vibrator 10. , The resistance of the phase delay circuit 1 is switched one step lower.
  • step F10 the resistance value change (F10) of the phase delay circuit 1 and the voltage signal detection Z comparison (F11, F12) of the current transformer 11 are repeated. If the state has reached the minimum setting, in step F13, it is determined that the resistance value of the phase delay circuit 1 cannot be set any lower, and the flow proceeds to the subsequent step F14.
  • the ultrasonic vibrator driving device is designed such that the reference frequency between the resonance frequency and the antiresonance frequency of the ultrasonic vibrator 10 is within the switching range of the switches SWa to SWc. Therefore, if the output voltage of the current transformer 11 is still lower than immediately before, even though the switches SWa to SWc are at the minimum setting, it can be determined that some sort of component failure has occurred. Therefore, in step F14, the oscillating operation of the ultrasonic transducer driving device is stopped, and in subsequent step F15, an error display (notification) is performed. Thereafter, the above-described series of adjustment operations is terminated. In this way, when a problem occurs in the automatic adjustment means of the drive phase, the operation is stopped and an error is displayed (notified), so that the user can accurately recognize the state of the malfunction of the automatic adjustment means. can do.
  • step F9 if it is determined in step F9 that the voltage signal in step F8 is higher than the voltage signal in step F6, the current driving frequency is changed to the resonance frequency of the ultrasonic vibrator 10. It means that it is far from the reference frequency between and the anti-resonance frequency. Therefore, in step F16, the resistance value of the phase delay circuit 1 is switched to two steps higher (that is, one step higher than the previously determined value read in step F3), and the subsequent step F1 At 7, the output voltage signal of the current transformer 11 in this state is detected.
  • step F18 the voltage signal detected in step F6 and the step A comparison is made with the voltage signal detected at step F17.
  • the flow proceeds to the following step F19, and if not, the flow proceeds to step F'21.
  • step F19 it is determined whether or not the switching state of the switches SWa to SWc is at the maximum setting.
  • the switching state of the switches SWa to SWc is not the highest setting, the flow proceeds to step F20, and the current drive frequency is set to a reference between the resonance frequency of the ultrasonic vibrator 10 and the anti-resonance frequency. In order to approach the frequency, the resistance of phase delay circuit 1 is switched one step higher. Thereafter, the flow returns to step F17 described above.
  • step F20 the resistance value change (F20) of the phase delay circuit 1 and the voltage signal detection comparison (F17, F18) of the current transformer 11 are repeated. If is set to the highest value, in step F19, it is determined that the resistance value of the phase delay circuit 1 cannot be set any higher, and the flow proceeds to step F14 described above. Then, in steps F14 and F15, the oscillation operation of the ultrasonic vibrator driving device is stopped and an error display (notification) is performed, and the above-described series of adjustment operations is completed.
  • step F12 or F18 If it is determined in step F12 or F18 that the current voltage signal is higher than the immediately preceding voltage signal, the immediately preceding driving frequency is higher than the current driving frequency. This also means that the reference frequency was close to the reference frequency between the resonance frequency and the anti-resonance frequency of the ultrasonic transducer 10. Therefore, in step F21, the immediately preceding resistance value of the phase delay circuit 1 is set as the final value, and in the following step F22, the previous final value in the nonvolatile memory 13 is rewritten with the final value.
  • step F23 a correction such as raising or lowering the reference frequency determined in step F21 by one step is performed as necessary.
  • information necessary for the correction operation may be stored in the microcomputer 12 in advance. Then, when the automatic adjustment of the driving phase is completed in step F24, in subsequent step F25, the light emitting diode in the notification unit 14 is turned off, the buzzer output is stopped, and the like. Then, the ultrasonic transducer driving device shifts to the normal operation.
  • the microcomputer 12 detects the current flowing through the ultrasonic vibrator 10 and digitally determines the capacitance value or the current value based on the current value. Since the resistance value is changed, there is no analog judgment error and automatic adjustment by control software can be realized.
  • the oscillation operation can be continued by setting the previously determined value or the initial value read in step F3 as a tentative determined value.
  • the ultrasonic transducer driving device is preferably applied to all apparatuses having an ultrasonic transducer (such as an ultrasonic cleaning machine).
  • ADVANTAGE OF THE INVENTION According to this invention, the optimal drive phase of the ultrasonic transducer which was initially adjusted will shift
  • the initial phase lock circuit band-pass adjustment filter or phase adjustment circuit

Abstract

An ultrasonic oscillator drive apparatus includes a phase delay circuit composed of a time constant circuit, a microcomputer for detecting flowing current of the ultrasonic oscillator, and a phase adjusting circuit for varying the time constant of the phase delay circuit according to an instruction of the microcomputer. The phase adjusting circuit is controlled so as to minimize the flowing current of the ultrasonic oscillator. With this configuration, it is possible to obtain optimal drive of the ultrasonic oscillator without manually performing phase adjustment

Description

明細書 超音波振動子駆動装置 技術分野  Description Ultrasonic transducer drive Technical field
本発明は、 超音波振動子の駆動位相を固定する位相固定回路を有して成る超音 波振動子駆動装置に関する。 背景技術  The present invention relates to an ultrasonic transducer driving device having a phase lock circuit for fixing a driving phase of an ultrasonic transducer. Background art
従来の超音波振動子駆動装置は、 特開昭 6 3 - 1 2 3 4 7 6号公報などで開示 されるように、 位相固定回路 (P L L [Phase-Locked- Loop] 回路) を有して成 るものが一般的である。 このような従来の超音波振動子駆動装置では、 超音波振 動子の駆動周波数が共振周波数と反共振周波数との間となるように駆動位相を固 定する方式で、 超音波振動子の駆動制御が行われる。  A conventional ultrasonic vibrator driving device has a phase locked circuit (PLL [Phase-Locked-Loop] circuit), as disclosed in Japanese Patent Application Laid-Open No. 63-123746. What is made is common. In such a conventional ultrasonic vibrator driving device, the driving phase of the ultrasonic vibrator is fixed so that the driving frequency of the ultrasonic vibrator is between the resonance frequency and the anti-resonance frequency. Control is performed.
しかしながら、 上記構成から成る従来の超音波振動子駆動装置では、 超音波振 動子の駆 «I位相を初期調整時に固定していたため、 回路部品の温度変化や経年変 化により回路定数が変化すると駆動位相がずれてしまい、 超音波振動子の駆動周 波数が適切な範囲に入らなくなるという課題があった。 また、 位相調整を手動で 行える超音波振動子駆動装置も提案されているが、 使用中の超音波振動子の温度 上昇により共振周波数等が変化して駆動位相がずれてしまうこともあるため、 頻 繁に位相調整をやり直す必要があった。 特に、 Qの高い超音波振動子組品では、 共振周波数と反共振周波数の差が小さく、 少しの駆動位相ずれでも駆動位相が大 きく変化するため、 性能への影響が大きかった。 発明の開示  However, in the conventional ultrasonic vibrator driving device having the above configuration, since the drive I phase of the ultrasonic vibrator is fixed at the time of the initial adjustment, if the circuit constant changes due to a temperature change or aging of circuit components. There is a problem that the driving phase is shifted and the driving frequency of the ultrasonic vibrator does not fall within an appropriate range. An ultrasonic transducer driving device that can manually adjust the phase has also been proposed.However, since the resonance frequency and the like may change due to a rise in the temperature of the ultrasonic transducer in use, the driving phase may be deviated. Frequently it was necessary to redo the phase adjustment. In particular, with ultrasonic transducer assemblies with high Q, the difference between the resonance frequency and the anti-resonance frequency was small, and even a small drive phase shift drastically changed the drive phase, which had a large effect on performance. Disclosure of the invention
本発明は、 上記の問題点に鑑み、 使用者による位相調整を要することなく、 常 に超音波振動子を最適駆動することが可能な超音波振動子駆動装置を提供するこ. とを目的とする。  The present invention has been made in view of the above problems, and an object of the present invention is to provide an ultrasonic vibrator driving device capable of always optimally driving an ultrasonic vibrator without requiring phase adjustment by a user. I do.
上記目的を達成するために、 本発明に係る超音波振動子駆動装置は、 超音波振 動子の駆動位相を固定する位相固定回路を有して成る超音波振動子駆動装置にお いて、 前記超音波振動子の通電電流または同等の挙動を示す通電電流代替信号に 基づいて、 前記位相固定回路で固定される前記超音波振動子の駆動位相を自動調 整する構成としている。 図面の簡単な説明 In order to achieve the above object, an ultrasonic transducer driving device according to the present invention comprises: In an ultrasonic transducer driving device having a phase fixing circuit for fixing a driving phase of a moving element, the phase is determined based on a conduction current of the ultrasonic transducer or a conduction current substitute signal indicating equivalent behavior. The drive phase of the ultrasonic transducer fixed by the fixing circuit is automatically adjusted. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明に係る超音波振動子駆動装置の一実施形態を示すプロック図であ り、 図 2は位相遅延回路 1の一実施形態を示す回路図 (a ) と各部 A〜C点での 電圧波形図 (b ) 、 図 3は超音波振動子 1 0及ぴチョークコイル 9のインピーダ ンス特性を説明する図、 図 4は位相遅延回路 1と第 2位相調整回路 1 5の一実施 形態を示す回路図、 図 5はマイコン 1 2による駆動位相の自動調整動作を説明す るフローチヤ一トである。 発明を実施するための最良の形態  FIG. 1 is a block diagram showing an embodiment of an ultrasonic transducer driving device according to the present invention, and FIG. 2 is a circuit diagram (a) showing an embodiment of a phase delay circuit 1 and points A to C in respective parts. FIG. 3 is a diagram illustrating impedance characteristics of the ultrasonic vibrator 10 and the choke coil 9, and FIG. 4 is a diagram illustrating an embodiment of the phase delay circuit 1 and the second phase adjustment circuit 15. FIG. 5 is a flowchart illustrating the automatic adjustment operation of the drive phase by the microcomputer 12. BEST MODE FOR CARRYING OUT THE INVENTION
図 1は本発明に係る超音波振動子駆動装置の一実施形態を示すプロック図であ る。 本図に示すように、 本実施形態の超音波振動子駆動装置は、 入力されたパル ス信号に所定の位相遅延を与える位相遅延回路 1と、 位相遅延回路 1から出力さ れたパルス信号を論理反転させる反転信号生成回路 2と、 互いに論理が反転しだ パルス信号を出力する第 1、 第 2 ドライバ 3、 4と、 直流電圧から交流電圧を生 成するインバータ回路 5と、 特定の周波数成分のみを通過させるパンドパス調整 フィルタ 6と、 バンドパス調整フィルタ 6の出力信号に基づいて位相調整を行う 第 1位相調整回路 7と、 第 1位相調整回路 7から出力されるアナログ信号をディ ジタノレパルス信号に変換するゼロクロスパノレス変換回路 8と、 チョークコィノレ 9 と、 超音波振動子 1 0と、 超音波振動子 1 0の通電電流を電圧信号として検出す るカレント トランス 1 1 と、 カレント トランス 1 1で得られた電圧信号に基づい て駆動位相の自動調整を制御するマイコン 1 2と、 非通電時であっても記憶内容 を保持する不揮発性メモリ 1 3と、 発光ダイォードゃプザ一等から成る報知部 1 4と、 マイコン 1 2からの指示に従って位相遅延回路 1の位相調整を行う第 2位 相調整回路 1 5と、 を有して成る。 なお、 超音波振動子 1 0の通電電流を検出す る手段としては、 カレント トランス 1 1の代わりにホール素子やその他の電流検 出器を用いても構わない。 ― ィンバータ回路 5は、 F ET 5 1、 5 2と、 2重絶縁トランス 5 3と、 抵抗 5 4を有して成る。 F E T 5 1、 5 2の各ゲートは、 第 1、 第 2 ドライバ 3、 4の 出力端子に接続されている。 F ET 5 1、 5 2の两ソースは、 抵抗 54を介して 接地される一方、 マイコン 1 2の 1次側電流検出端子にも接続されている。 FIG. 1 is a block diagram showing an embodiment of an ultrasonic transducer driving device according to the present invention. As shown in the figure, the ultrasonic transducer driving device according to the present embodiment includes a phase delay circuit 1 for giving a predetermined phase delay to an input pulse signal, and a pulse signal output from the phase delay circuit 1. Inverted signal generation circuit 2 for inverting logic, first and second drivers 3 and 4 for outputting pulse signals whose logic is inverted, inverter circuit 5 for generating AC voltage from DC voltage, and specific frequency components Band-pass adjustment filter 6 that passes only the signal, a first phase adjustment circuit 7 that performs phase adjustment based on the output signal of the band-pass adjustment filter 6, and an analog signal output from the first phase adjustment circuit 7 as a digital pulse signal. A zero-crossing panless conversion circuit 8, a choke coil 9, an ultrasonic vibrator 10 and a current transformer for detecting a current flowing through the ultrasonic vibrator 10 as a voltage signal. A microcomputer 12 that controls the automatic adjustment of the drive phase based on the voltage signal obtained by the current transformer 11, a nonvolatile memory 13 that retains the stored contents even when power is not supplied, A notification unit 14 including a light emitting diode pumper and the like, and a second phase adjustment circuit 15 for adjusting the phase of the phase delay circuit 1 in accordance with an instruction from the microcomputer 12 are provided. Note that the current flowing through the ultrasonic vibrator 10 is detected. As an alternative, a Hall element or other current detector may be used instead of the current transformer 11. -The inverter circuit 5 includes FETs 51, 52, a double insulating transformer 53, and a resistor 54. The gates of the FETs 51 and 52 are connected to the output terminals of the first and second drivers 3 and 4, respectively. The sources of the FETs 51 and 52 are grounded via the resistor 54 and are also connected to the primary-side current detection terminal of the microcomputer 12.
2重絶縁トランス 5 3は、 コイル 5 3 a、 5 3 b、 5 3 c と、 各コィノレを磁気 的に結合するコア 5 3 dと、 を有して成る。 コイル 5 3 aの一端は F E T 5 1の ドレインに接続されており、 他端は F E T 5 2のドレインに接続されている。 ま た、 コイル 5 3 aのセンタータップは負荷電源に接続されている。 コイル 5 3 b の両端間には、 チョークコイル 9と超音波振動子 1 0から成る直列回路が接続さ れている。 コィノレ 5 3 cの両端はパンドパス調整フィルタ 6の入力端子に接続さ れている。 2重絶縁トランス 5を用いたのは 1次側と 2次側の絶縁を強化するた めであり、 絶縁強化の必要のない場合は通常の絶縁トランスを用いて ょい。 なお、 本実施形態の超音波振動子駆動装置では、 超音波振動子 1 0や制御系回 路への電力を全て外部供給としている。 また、 マイコン 1 2への始動指示や停止 指示等は、 外部との通信によって行われる。 ただし、 使用者がマイコン 1 2に接 続されたキースィッチ (図示せず) 等によって直接操作することも可能である。 続いて、 上記構成から成る超音波振動子駆動装置の動作について説明する。 図 2は位相遅延回路 1の一実施形態を示す回路図 (a) と各部 A〜C点での電圧波 形図 (b) である。 本図に示すように、 本実施形態の位相遅延回路 1は、 論理回 路 I C 1、 I C 2と、 コンデンサ C 1と、 抵抗 R 1と、 を有して成る固定遅延回 路である。 ただし、 位相遅延回路 1の構成はこれに限定されるものではなく、 他 の方式を用いてもよい。  The double insulating transformer 53 includes coils 53a, 53b, 53c and a core 53d that magnetically couples the coils. One end of the coil 53 a is connected to the drain of FET 51, and the other end is connected to the drain of FET 52. The center tap of the coil 53a is connected to the load power supply. A series circuit including the choke coil 9 and the ultrasonic vibrator 10 is connected between both ends of the coil 53b. Both ends of the coil 53 c are connected to the input terminals of the pan-pass adjustment filter 6. The double insulation transformer 5 was used to strengthen the insulation between the primary side and the secondary side. If it is not necessary to use insulation reinforcement, use a normal insulation transformer. Note that, in the ultrasonic vibrator driving device of the present embodiment, all the power to the ultrasonic vibrator 10 and the control system circuit is externally supplied. Further, a start instruction and a stop instruction to the microcomputer 12 are performed by communication with the outside. However, it is also possible for the user to directly operate with a key switch (not shown) connected to the microcomputer 12 or the like. Next, the operation of the ultrasonic transducer driving device having the above configuration will be described. FIG. 2 is a circuit diagram (a) showing an embodiment of the phase delay circuit 1 and a voltage waveform diagram (b) at points A to C of each section. As shown in the figure, the phase delay circuit 1 of the present embodiment is a fixed delay circuit including logic circuits IC 1 and IC 2, a capacitor C 1, and a resistor R 1. However, the configuration of the phase delay circuit 1 is not limited to this, and another method may be used.
本実施形態の超音波振動子駆動装置が運転されているとき、 位相遅延回路 1の A点には、 ゼロクロスパルス変換回路 8から周期 Tのパルス信号が入力される。 A点電位 (すなわち論理回路 I C 1への入力) が L o wから H i g hになると、 論理回路 I C 1の出力は H i g hから L o wに変わり、 コンデンサ C 1の充電電 圧は抵抗 R 1を経由して論理回路 I C 1の出力へ放電される。 従って、 B点電位 は所定の時定数で H i g hから L o wに変化していく。 このとき、 B点電位が論 理回路 I C 2のスレッシュレベルを下回ると、 論理回路 I C 2の入力は H i g h からし。 wになり、 論理回路 I C 2の出力は L o wから H i g hに反転する。 つまり、 位相遅延回路 1では、 コンデンサ C 1と抵抗 R 1の時定数により、 A 点電位に対する C点電位の論理反転が時間 t 1だけ遅れる。 その結果、 超音波振 動子 1 0の駆動位相には時間 t 1に相当する位相差が生じる。 なお、 論理回路 I C 1の入力が H i g hから L o wに変わる場合も、 上記と同様に、 A点電位に対 する C点電位の論理反転が時間 t 1だけ遅れて位相差が生じる。 When the ultrasonic transducer driving device of the present embodiment is operating, a pulse signal having a period T is input from the zero-cross pulse conversion circuit 8 to the point A of the phase delay circuit 1. When the potential at the point A (that is, the input to the logic circuit IC1) changes from Low to High, the output of the logic circuit IC1 changes from High to Low, and the charging voltage of the capacitor C1 passes through the resistor R1. And discharged to the output of the logic circuit IC1. Therefore, the potential at point B Changes from High to Low with a predetermined time constant. At this time, if the potential at the point B falls below the threshold level of the logic circuit IC2, the input of the logic circuit IC2 is turned off from High. It becomes w, and the output of the logic circuit IC 2 is inverted from Low to High. That is, in the phase delay circuit 1, the logical inversion of the potential at the point C with respect to the potential at the point A is delayed by the time t1 due to the time constant of the capacitor C1 and the resistance R1. As a result, a phase difference corresponding to time t1 occurs in the drive phase of the ultrasonic oscillator 10. Also, when the input of the logic circuit IC1 changes from High to Low, the logic inversion of the potential at the point C with respect to the potential at the point A is delayed by the time t1 to generate a phase difference, similarly to the above.
反転信号生成回路 2は、 位相遅延回路 1から出力されたパルス信号を論理反転 させて第 2 ドライバ 4に供給する。 これにより、 第 1、 第 2 ドライバ 3、 4は、 各々論理反転した信号を出力することになるため、 ィンパータ回路 5を構成する F E T 5 1、 F E T 5 2は交互にオンすることになる。 従って、 負荷電源からの 電流は、 コイル 5 3 aのセンタータップを経由して F E T 5 1と F E T 5 2に交 互に流れるので、 コイル 5 3 aに流れる電流方向が繰り返し反転され、 2次側の コイル 5 3 bに交流電圧が誘起される。 コイル 5 3 bで得られた 2次側電流は、 チョークコィノレ 9を介して超音波振動子 1 0に供給される。  The inverted signal generation circuit 2 logically inverts the pulse signal output from the phase delay circuit 1 and supplies the inverted signal to the second driver 4. As a result, the first and second drivers 3 and 4 each output a signal whose logic is inverted, so that the FETs 51 and FET 52 constituting the skipper circuit 5 are turned on alternately. Therefore, the current from the load power supply alternately flows through the center tap of the coil 53a to the FETs 51 and 52, so that the direction of the current flowing through the coil 53a is repeatedly reversed, and the secondary side An AC voltage is induced in the coil 53b. The secondary current obtained by the coil 53 b is supplied to the ultrasonic vibrator 10 via the choke coil 9.
このとき、 2重絶縁トランス 5 3のコイル 5 3 cには、 超音波振動子 1 0の駆 動位相電流波形を示す電圧信号が生じ、 該電圧信号がバンドパス調整フィルタ 6 に送出される。 ただし、 コイル 5 3 b、 5 3 cは卷き方向が異なるため、 コイル 5 3 cに生じた電圧位相は、 2次側電流と位相が 1 8 0度ずれた逆位相となる。 バンドパス調整フィルタ 6は、 前述した通り、 特定の周波数成分のみを通過さ せるものである。 なお、 本実施形態のバンドパス調整フィルタ 6は、 コイルとコ ンデンサの並列回路 (図示せず) から成り、 コイルのインダクタンス値ゃコンデ ンサの静電容量を調節することで、 超音波振動子 1 0の共振周波数や反共振周波 数の間を含む所望周波数で、 バンドパス調整フィルタ 6のインピーダンスが最も 低くなるように調整されている。 従って、 コイル 5 3 cから入力された電圧信号 に含まれる周波数成分のうち、 超音波振動子 1 0の共振周波数や反共振周波数以 外の周波数成分は、 バンドパス調整フィルタ 6によって減衰される。 ただし、 バ ンドパス調整フィルタ 6の内部構成は、 コイルとコンデンサの並列回路に限定さ れるものではなく、 他の方式を用いてもよい。 At this time, a voltage signal indicating the driving phase current waveform of the ultrasonic transducer 10 is generated in the coil 53 c of the double insulating transformer 53, and the voltage signal is sent to the bandpass adjustment filter 6. However, since the winding directions of the coils 53b and 53c are different, the voltage phase generated in the coil 53c is opposite to the secondary current by 180 degrees. As described above, the band-pass adjustment filter 6 allows only a specific frequency component to pass. The band-pass adjustment filter 6 according to the present embodiment is composed of a parallel circuit of a coil and a capacitor (not shown), and by adjusting the inductance of the coil divided by the capacitance of the capacitor, the ultrasonic transducer 1 At a desired frequency including a range between the resonance frequency of 0 and the antiresonance frequency, the impedance of the bandpass adjustment filter 6 is adjusted to be the lowest. Therefore, of the frequency components included in the voltage signal input from the coil 53 c, the frequency components other than the resonance frequency and the anti-resonance frequency of the ultrasonic vibrator 10 are attenuated by the bandpass adjustment filter 6. However, the internal configuration of the bandpass adjustment filter 6 is limited to a parallel circuit of a coil and a capacitor. However, other methods may be used.
バンドパス調整フィルタ 6の出力信号は、 第 1位相調整回路 7に入力される。 第 1位相調整回路 7は、 固定位相差を作る位相遅延回路 1とともに、 全体ループ の位相差を 1 8 0度に保つように位相差を調整する。  The output signal of the band-pass adjustment filter 6 is input to the first phase adjustment circuit 7. The first phase adjusting circuit 7 adjusts the phase difference so as to keep the phase difference of the entire loop at 180 degrees, together with the phase delay circuit 1 that creates a fixed phase difference.
なお、 上記のバンドパス調整フィルタ 6や第 1位相調整回路 7は、 一般的に超 音波振動子駆動装置の生産時に初期調整されて、 以後は固定値で使用される場合 が多いが、 位相調整を手動で行える超音波振動子駆動装置においては、 第 1位相 調整回路 7の調整を行うことが多い。  The above-described band-pass adjustment filter 6 and first phase adjustment circuit 7 are generally initially adjusted at the time of production of the ultrasonic vibrator driving device, and thereafter are often used with fixed values. In the ultrasonic transducer driving device capable of manually performing the adjustment, the first phase adjustment circuit 7 is often adjusted.
ゼロクロスパルス変換回路 8は、 第 1位相調整回路 7から出力される正弦波状 アナログ信号を、 そのゼロクロス電位を基準として、 5 0 %デューティで H i g h / L o wが反転するディジタルパルス信号に変換する回路であり、 以降の信号 処理を簡易化する目的を有する。 また、 パルス化されたディジタル信号で駆動位 相の自動調整処理が行えるため、 信号電圧変動の影響を受けにくい精度の髙ぃ自 動調整が実現できる。 なお、 ゼロクロスパルス変換回路 8で生成されたディジタ ルパルス信号は、 前述した通り、 位相遅延回路 1に送出される。  The zero-cross pulse conversion circuit 8 is a circuit that converts the sine-wave analog signal output from the first phase adjustment circuit 7 into a digital pulse signal whose High / Low is inverted at 50% duty with reference to the zero-cross potential. This has the purpose of simplifying the subsequent signal processing. In addition, since the drive phase can be automatically adjusted with the pulsed digital signal, automatic adjustment with high accuracy that is less affected by signal voltage fluctuations can be realized. Note that the digital pulse signal generated by the zero-cross pulse conversion circuit 8 is sent to the phase delay circuit 1 as described above.
以上で説明したように、 位相遅延回路 1 と、 反転信号生成回路 2と、 第 1、 第 2ドライバ 3、 4と、 インバータ回路 5と、 パンドパス調整フィルタ 6と、 第 1 位相調整回路 7と、 ゼロクロスパルス変換回路 8によって、 超音波振動子 1 0の 駆動位相を固定する P L L閉回路が形成されている。 なお、 本実施形態の超音波 振動子駆動装置内で、 超音波振動子 1 0の駆動位相変動に対する影響が大きい素 子としては、 位相遅延回路 1内のコンデンサ、 バンドパス調整フィルタ 6内のコ ィルまたはコンデンサ、 及び第 1位相調整回路 7内のコンデンサが挙げられる。 次に、 超音波振動子 1 0及ぴチョークコイル 9のィンピーダンス特性について 説明を行う。 図 3は超音波振動子 1 0及びチョークコイル 9のインピーダンス特 性を説明する図であり、 (a ) は超音波振動子 1 0単独のインピーダンス特性、 ( b ) は超音波振動子 1 0とチョークコイル 9から成る直列回路の位相角特性、 ( c ) は超音波振動子 1 0とチョークコイル 9から成る直列回路のインピーダン ス特性、 をそれぞれ示している。 なお、 (a ) 〜 (c ) の横軸は、 いずれも周波 数を示しており、 紙面右側が高周波数側である。 超音波振動子 1 0の駆動周波数としては、 図中 (a ) に示すように、 共振点と 反共振点の間が望ましい。 一方、 超音波振動子 1 0とチョークコイル 9から成る 直列回路インピーダンスの極大点 (図中 (c ) 参照) は、 位相角が 0度となる点As described above, the phase delay circuit 1, the inversion signal generation circuit 2, the first and second drivers 3, 4, the inverter circuit 5, the bandpass adjustment filter 6, the first phase adjustment circuit 7, The zero-cross pulse conversion circuit 8 forms a PLL closed circuit that fixes the drive phase of the ultrasonic transducer 10. In the ultrasonic transducer driving device of the present embodiment, elements having a large effect on the drive phase fluctuation of the ultrasonic transducer 10 include a capacitor in the phase delay circuit 1 and a capacitor in the bandpass adjustment filter 6. And a capacitor in the first phase adjustment circuit 7. Next, the impedance characteristics of the ultrasonic vibrator 10 and the choke coil 9 will be described. 3A and 3B are diagrams for explaining the impedance characteristics of the ultrasonic vibrator 10 and the choke coil 9. FIG. 3A shows the impedance characteristic of the ultrasonic vibrator 10 alone, and FIG. The phase angle characteristics of the series circuit composed of the choke coil 9 are shown, and (c) shows the impedance characteristics of the series circuit composed of the ultrasonic vibrator 10 and the choke coil 9. The horizontal axes of (a) to (c) indicate frequencies, and the right side of the paper is the high frequency side. The drive frequency of the ultrasonic vibrator 10 is desirably between the resonance point and the anti-resonance point, as shown in FIG. On the other hand, the maximum point of the series circuit impedance consisting of the ultrasonic vibrator 10 and the choke coil 9 (see (c) in the figure) is the point where the phase angle becomes 0 degree.
(図中 (b ) 参照) に相当し、 超音波振動子 1 0とチョークコイル 9から成る直 列回路に流れる電流の極小点となる。 このとき、 カレント トランス 1 1の 2次側 コィルに誘起される電圧信号も極小値になるため、 該電圧信号の極小値を探し出 せば、 常に最適状態で超音波振動子 1 0を駆動するための基準点 (基準周波数) を決定することができる。 (See (b) in the figure), which is the minimum point of the current flowing in the series circuit composed of the ultrasonic vibrator 10 and the choke coil 9. At this time, since the voltage signal induced in the secondary coil of the current transformer 11 also has a minimum value, if the minimum value of the voltage signal is found, the ultrasonic transducer 10 is always driven in an optimum state. The reference point (reference frequency) for the can be determined.
このように、 超音波捩動子 1 0の通電電流が最小となる周波数は、 超音波振動 子 1 0とチョークコイル 9から成る直列回路の位相角が 0度となる周波数であり 該直列回路のインピーダンスが最も高くなるため、 駆動位相の基準ボイントとし て最適で、 正確な自動捕正が実現できる。  As described above, the frequency at which the current flowing through the ultrasonic torsion element 10 becomes minimum is the frequency at which the phase angle of the series circuit composed of the ultrasonic vibrator 10 and the choke coil 9 becomes 0 degree, and Since the impedance is the highest, it is optimal as a reference point for the drive phase, and can achieve accurate automatic calibration.
続いて、 上記で説明した位相調整を行う構成についての詳細な説明を行う。 図 4は位相遅延回路 1と第 2位相調整回路 1 5の一実施形態を示す回路図である。 本実施形態の第 2位相調整回路 1 5は、 位相遅延回路 1を構成する抵抗 R 1に並 列に、 スィッチ S W a、 S W b、 S W cと調整用抵抗 R a、 R b、 R cから成る 3組の直列回路を接続して成る。 このような構成とすることにより、 スィッチ S W a〜S W cのオン/オフ制御を行うことで、 調整用抵抗 R a〜R cを 8通りの 組み合わせで位相遅延回路 1に組み込むことができる。  Subsequently, a detailed description will be given of the configuration for performing the phase adjustment described above. FIG. 4 is a circuit diagram showing an embodiment of the phase delay circuit 1 and the second phase adjustment circuit 15. The second phase adjustment circuit 15 of the present embodiment includes a switch SW a, SW b, SW c and an adjustment resistor Ra, R b, R c in parallel with the resistor R 1 constituting the phase delay circuit 1. It consists of three series circuits connected. With such a configuration, by performing on / off control of the switches SWa to SWc, the adjusting resistors Ra to Rc can be incorporated into the phase delay circuit 1 in eight combinations.
前述した通り、 位相遅延回路 1の時定数は回路を構成する容量値と抵抗値によ つて決定され、 超音波振動子 1 0の駆動位相には該時定数に応じた位相差 t 1が 生じる。 従って、 第 2位相調整回路 1 5のスィッチ S W a〜S W cをマイコン 1 2でオン Zオフ制御すれば、 位相遅延回路 1の時定数を決定する抵抗値を変化す ることができるので、 結果的に、 超音波振動子 1 0の駆動位相に生じる位相差 t 1を調整することが可能となる。  As described above, the time constant of the phase delay circuit 1 is determined by the capacitance value and the resistance value of the circuit, and a phase difference t 1 corresponding to the time constant occurs in the driving phase of the ultrasonic vibrator 10. . Therefore, if the switches SW a to SW c of the second phase adjustment circuit 15 are turned on and off by the microcomputer 12, the resistance value that determines the time constant of the phase delay circuit 1 can be changed, and the result is Thus, it is possible to adjust the phase difference t1 generated in the drive phase of the ultrasonic vibrator 10.
また、 コンデンサと抵抗による簡易な C R時定数回路で調整を行うため、 回路 構成の簡略化とコストメリットが実現できる。 さらに、 容量値または抵抗値を変 化させて最適な駆動位相を探す方式のため、 位相遅延回路 1や第 2位相調整回路 1 5を構成するコンデンサ及び抵抗の誤差や経年変化の影響を受けにくい自動調 02 10698 一 7 - 整が実現できる。 In addition, since adjustment is performed using a simple CR time constant circuit using capacitors and resistors, the circuit configuration can be simplified and cost advantages can be realized. In addition, because the method of searching for the optimal drive phase by changing the capacitance value or the resistance value is less susceptible to errors and aging of the capacitors and resistors that constitute the phase delay circuit 1 and the second phase adjustment circuit 15. Automatic adjustment 02 10698 1 7-Adjustment can be realized.
なお、 第 2位相調整回路 1 5の構成は上記に限定されるものではなく、 スイツ チと調整用抵抗の組み合わせ数を増減した構成や、 位相遅延回路 1を構成する抵 抗 R 1に直列に調整用抵抗を挿入した構成'など種々の変更が可能である。 また、 図示していないが、 位相遅延回路 1を構成するコンデンサ C 1に並列 (或いは直 列) に調整用コンデンサを接続して、 容量値を変化させる構成としてもよい。 また、 本実施形態の第 2位相調整回路 1 5では、 調整用抵抗 R a ~ R cの接続 を切り換えるスィッチ S W a〜S W cとして接点スィツチを用いているが、 スィ ツチ種類はこれに限定されるものではなく、 F E T等の半導体スィツチング素子 や F E Tが複数個収納された I C、 或いは通信制御で抵抗値を変化させ得る I C 等を使用することもできる。 もちろん、 容量値を切り換える場合も同様である。 次に、 上記した駆動位相の自動調整動作について説明する。 図 5はマイコン 1 2による駆動位相の自動調整動作を説明するフローチャートである。 なお、 以下 では、 位相遅延回路 1の抵抗値を変化.させて超音波振動子 1 0の駆動位相を調整 する構成を例に挙げて説明を行い、 容量値の変化については説明を省略する。 また、 超音波振 ¾子 1 0の駆動位相は、 超音波振動子 1 0の通電電流 (カレン トトランス 1 1から出力される電圧信号) や、 同等の挙動を示す通電電流代替信 号 (抵抗 5 4にて電圧変換された 2重絶縁トランス 5 3の 1次側電流信号等) を 検知することで自動調整されるが、 以下では、 カレント トランス 1 1から出力さ れる電圧信号に基づいて位相調整動作を行う場合を例に挙げて説明を行い、 その 他の通電電流代替信号を検出する構成については説明を省略する。  Note that the configuration of the second phase adjustment circuit 15 is not limited to the above, and the configuration in which the number of combinations of switches and adjustment resistors is increased or decreased, or the configuration in which the resistance R 1 of the phase delay circuit 1 is connected in series with the resistor R 1 Various changes are possible, such as a configuration in which an adjusting resistor is inserted. Although not shown, an adjustment capacitor may be connected in parallel (or in series) to the capacitor C1 of the phase delay circuit 1 to change the capacitance value. Further, in the second phase adjustment circuit 15 of the present embodiment, the contact switches are used as the switches SWa to SWc for switching the connection of the adjustment resistors R a to R c, but the type of the switches is not limited to this. Instead, a semiconductor switching element such as an FET, an IC containing a plurality of FETs, or an IC that can change the resistance value by communication control can be used. Of course, the same is true when switching the capacitance value. Next, the operation for automatically adjusting the driving phase will be described. FIG. 5 is a flowchart for explaining the automatic adjustment operation of the drive phase by the microcomputer 12. In the following, a description will be given of a configuration in which the resistance value of the phase delay circuit 1 is changed to adjust the drive phase of the ultrasonic vibrator 10 as an example, and the description of the change in the capacitance value is omitted. The drive phase of the ultrasonic transducer 10 is determined by the current supplied to the ultrasonic transducer 10 (the voltage signal output from the current transformer 11) or the current-current substitute signal (resistance The automatic adjustment is performed by detecting the primary-side current signal of the double-insulated transformer 53 that has been voltage-converted in 54. In the following, the phase is adjusted based on the voltage signal output from the current transformer 11 The case where the adjustment operation is performed will be described as an example, and the description of the other configuration for detecting the current-carrying-current alternative signal is omitted.
まず、 ステップ F 1で、 超音波振動子 1 0の運転が開始されると、 続くステツ プ F 2では、 マイコン 1 2から報知部 1 4に対して、 現在、 超音波振動子 1 0の 駆動位相を自動調整中である旨を報知するように指示が送られ、 該指示を受けた 報知部 1 4では、 発光ダイオードの点灯/点滅やブザー出力等が行われる。 この ような報知動作により、 使用者は超音波振動子 1 0の使用をしばらく待機する必 要があることを確認できるので、 利便性が高まる。  First, in step F1, when the operation of the ultrasonic vibrator 10 is started, in the subsequent step F2, the microcomputer 12 instructs the notification unit 14 to drive the ultrasonic vibrator 10 now. An instruction is sent to notify that the phase is being automatically adjusted, and the notification unit 14 that receives the instruction performs lighting / flashing of the light emitting diode, buzzer output, and the like. By such a notification operation, the user can confirm that it is necessary to wait for a while to use the ultrasonic vibrator 10, thereby increasing the convenience.
また、 超音波振動子 1 0の運転開始直後に、 駆動位相の自動調整を毎回実施す る構成であれば、 経年的な部品変化だけでなく、 そのときの温度条件などにも最 適な自動調整となり、 常に超音波振動子 1 0の性能確保を図ることができる。 その後、 ステップ F 3では、 マイコン 1 2に接続された不揮発性メモリ 1 3か ら前回調整時に確定された抵抗値 (或いは、 予め登録された初期値) の設定状態 が読み出され、 続くステップ F 4にて、 今回の自動調整開始時における初期抵抗 値として前回確定値が設定される。 このように前回確定値を基準値として自動調 整を開始する構成であれば、 自動調整時間の短縮を図ることができる。 また、 前 回確定値を不揮発性メモリ 1 3に記憶させておくことにより、 マイコン 1 2への 通電が切れても、 再度マイコン 1 2に通電された時には前回確定値が呼び出すこ とができる。 In addition, if the configuration is such that the drive phase is automatically adjusted immediately after the operation of the ultrasonic vibrator 10 is started, not only changes over time but also temperature conditions at that time will be minimized. Appropriate automatic adjustment is achieved, and the performance of the ultrasonic vibrator 10 can always be ensured. Then, in step F3, the setting state of the resistance value (or a previously registered initial value) determined at the previous adjustment is read out from the nonvolatile memory 13 connected to the microcomputer 12 and the following step F At 4, the previously determined value is set as the initial resistance value at the start of this automatic adjustment. With the configuration in which the automatic adjustment is started using the previously determined value as the reference value, the time required for the automatic adjustment can be reduced. In addition, by storing the previously determined value in the nonvolatile memory 13, even if the power supply to the microcomputer 12 is cut off, the previously determined value can be called when the microcomputer 12 is supplied with power again.
その後、 ステップ F 5にて、 超音波振動子駆動装置の発振が開始されると、 続 くステップ F 6では、 上記状態におけるカレント トランス 1 1の電圧信号が検知 される。 さらに、 続くステップ F 7では、 スィッチ S W a ~ S W cを切り換える ことで、 位相遅延回路 1の.抵抗値が、 超音波振動子 1 0の駆動周波数を低くする 方向 (位相遅延回路 1における遅延時間 t 1を大きくする方向) に 1段階変化さ れ、 続くステップ F 8では、 該状態における力レントトランス 1 1の出力電圧信 号が検知される。  Thereafter, in step F5, when the oscillation of the ultrasonic transducer driving device is started, in step F6, the voltage signal of the current transformer 11 in the above state is detected. Further, in the following step F7, by switching the switches SWa to SWc, the resistance value of the phase delay circuit 1 is decreased in the direction in which the drive frequency of the ultrasonic vibrator 10 is lowered (delay time in the phase delay circuit 1). In the following step F8, the output voltage signal of the current transformer 11 in this state is detected.
その後、 ステップ F 9では、 ステップ F 6で検知された電圧信号と、 ステップ F 8で検出された電圧信号との比較が行われる。 ここで、 ステップ F 8での電圧 信号がステップ F 6での電圧信号よりも低ければフローは続くステップ F 1 0に 進められ、 低くなければフロー.はステップ F 1 6に進められる。  Then, in step F9, the voltage signal detected in step F6 is compared with the voltage signal detected in step F8. Here, if the voltage signal at step F8 is lower than the voltage signal at step F6, the flow proceeds to the following step F10, and if not, the flow proceeds to step F16.
ステップ F 9にて、 電圧信号が低下したと判定された場合、 現在の駆動周波数 が、 超音波振動子 1 0の共振周波数と反共振周波数との間の基準周波数に近づい ていることを意味する。 そこで、 ステップ F 1 0では、 位相遅延回路 1の抵抗値 がさらに 1段階低めに切り換えられ、 続くステップ F 1 1では、 該状態における カレント トランス 1 1の出力電圧信号が検知される。  If it is determined in step F9 that the voltage signal has dropped, it means that the current drive frequency is approaching the reference frequency between the resonance frequency and the anti-resonance frequency of the ultrasonic vibrator 10. . Therefore, in step F10, the resistance value of the phase delay circuit 1 is switched one step lower, and in the subsequent step F11, the output voltage signal of the current transformer 11 in this state is detected.
その後、 ステップ F 1 2では、 ステップ F 8で検知された電圧信号と、 ステツ プ F 1 1で検出された電圧信号との比較が行われる。 ここで、 ステップ F 1 1で の電圧信号が、 ステップ F 8での電圧信号よりも低ければフローは続くステップ F 1 3に進められ、 低くなければフローはステップ F 2 1に進められる。 ステップ F l 2にて、 電圧信号がさらに低下した.と判定された場合、 ステップ F 1 3では、 スィツチ SWa〜SWcの切換状態が最低設定になっているか否か の'判定が行われる。 ここで、 スィッチ SWa ~SWcの切換状態が最低設定でな ければフローは前述のステップ F 1 0に戻され、 現在の駆動周波数を超音波振動 子 1 0の共振周波数と反共振周波数との間の基準周波数に近づけるために、 位相 遅延回路 1の抵抗値がさらに 1段階低めに切り換えられる。 Then, in step F12, the voltage signal detected in step F8 is compared with the voltage signal detected in step F11. Here, if the voltage signal in step F11 is lower than the voltage signal in step F8, the flow proceeds to the following step F13, and if not, the flow proceeds to step F21. When it is determined in step F12 that the voltage signal has further decreased, in step F13, it is determined whether or not the switching state of the switches SWa to SWc is the minimum setting. Here, if the switching state of the switches SWa to SWc is not the minimum setting, the flow returns to the above-described step F10, and the current driving frequency is set between the resonance frequency and the anti-resonance frequency of the ultrasonic vibrator 10. , The resistance of the phase delay circuit 1 is switched one step lower.
一方、 上記した位相遅延回路 1の抵抗値変化 (F 1 0) とカレント トランス 1 1の電圧信号検出 Z比較 (F 1 1、 F 1 2) を繰り返していく うちに、 スィツチ SWa〜SWcの切換状態が最低設定となった場合、 ステップ F 1 3では、 位相 遅延回路 1の抵抗値がそれ以上低く設定できないと判断され、 フローは続くステ ップ F 1 4に進められる。  On the other hand, as the resistance value change (F10) of the phase delay circuit 1 and the voltage signal detection Z comparison (F11, F12) of the current transformer 11 are repeated, the switches SWa to SWc are switched. If the state has reached the minimum setting, in step F13, it is determined that the resistance value of the phase delay circuit 1 cannot be set any lower, and the flow proceeds to the subsequent step F14.
元来、 超音波振動子駆動装置は、 スィッチ SWa〜SWcの切換範囲内に超音 波振動子 1 0の共振周波数と反共振周波数の間の基準周波数があるように設計さ れている。 そのため、 スィッチ SWa〜SWcが最低設定であるにも拘わらず、 なおもカレント トランス 1 1の出力電圧が直前より低下した場合には、 何らかの 部品故障等が発生したものと判断することができる。 そこで、 ステップ F 1 4で は、 超音波振動子駆動装置の発振動作が停止され、 続くステップ F 1 5では、 ェ ラー表示 (報知) が行われる。 その後、 上記した一連の調整動作は終了される。 このように、 駆動位相の自動調整手段に不具合が発生した場合には、 運転を停止 してエラー表示 (報知) する構成とすることにより、 使用者は自動調整手段の不 具合状況を的確に認知することができる。  Originally, the ultrasonic vibrator driving device is designed such that the reference frequency between the resonance frequency and the antiresonance frequency of the ultrasonic vibrator 10 is within the switching range of the switches SWa to SWc. Therefore, if the output voltage of the current transformer 11 is still lower than immediately before, even though the switches SWa to SWc are at the minimum setting, it can be determined that some sort of component failure has occurred. Therefore, in step F14, the oscillating operation of the ultrasonic transducer driving device is stopped, and in subsequent step F15, an error display (notification) is performed. Thereafter, the above-described series of adjustment operations is terminated. In this way, when a problem occurs in the automatic adjustment means of the drive phase, the operation is stopped and an error is displayed (notified), so that the user can accurately recognize the state of the malfunction of the automatic adjustment means. can do.
一方、 ステップ F 9にて、 ステップ F 8での電圧信号がステップ F 6での電圧 信号よりも高くなつていると判定された場合、 現在の駆動周波数が、 超音波振動 子 1 0の共振周波数と反共振周波数との間の基準周波数から遠ざかつていること を意味する。 そこで、 ステップ F 1 6では、 位相遅延回路 1の抵抗値が、 2段階 高め (すなわち、 ステップ F 3で読み出された前回確定値よりも 1段高め) に切 り換えられ、 続くステップ F 1 7では、 該状態におけるカレント トランス 1 1の 出力電圧信号が検知される。  On the other hand, if it is determined in step F9 that the voltage signal in step F8 is higher than the voltage signal in step F6, the current driving frequency is changed to the resonance frequency of the ultrasonic vibrator 10. It means that it is far from the reference frequency between and the anti-resonance frequency. Therefore, in step F16, the resistance value of the phase delay circuit 1 is switched to two steps higher (that is, one step higher than the previously determined value read in step F3), and the subsequent step F1 At 7, the output voltage signal of the current transformer 11 in this state is detected.
その後、 ステップ F 1 8では、 ステップ F 6で検知された電圧信号と、 ステツ プ F 1 7で検出された電圧信号との比較が行われる。 ここで、 ステップ F 1 7で の電圧信号が、 ステップ F 6での電圧信号よりも低ければフローは続くステップ F 1 9に進められ、 低くなければフローはステップ F'2 1に進められる。 Then, in step F18, the voltage signal detected in step F6 and the step A comparison is made with the voltage signal detected at step F17. Here, if the voltage signal at step F17 is lower than the voltage signal at step F6, the flow proceeds to the following step F19, and if not, the flow proceeds to step F'21.
ステップ F 1 8にて、 電圧信号が低下したと判定された場合、 ステップ F 1 9 では、 スィツチ SWa ~SWcの切換状態が最高設定になっているか否かの判定 が行われる。 ここで、 スィッチ SWa ~SWcの切換状態が最高設定でなければ フローはステップ F 2 0に進められ、 現在の駆動周波数を超音波振動子 1 0の共 振周波数と反共振周波数との間の基準周波数に近づけるために、 位相遅延回路 1 の抵抗値がさらに 1段階高めに切り換えられる。 その後、 フローは前述のステツ プ F 1 7に戻される。  When it is determined in step F18 that the voltage signal has dropped, in step F19, it is determined whether or not the switching state of the switches SWa to SWc is at the maximum setting. Here, if the switching state of the switches SWa to SWc is not the highest setting, the flow proceeds to step F20, and the current drive frequency is set to a reference between the resonance frequency of the ultrasonic vibrator 10 and the anti-resonance frequency. In order to approach the frequency, the resistance of phase delay circuit 1 is switched one step higher. Thereafter, the flow returns to step F17 described above.
一方、 上記した位相遅延回路 1の抵抗値変化 (F 2 0) とカレント トランス 1 1の電圧信号検出 比較 (F 1 7、 F 1 8) を繰り返していく うちに、 スィッチ SWa〜SWcの切換状態が最高設定となった場合、 ステップ F 1 9では、 位相 遅延回路 1の抵抗値がそれ以上高く設定できないと判断され、 フローは前述のス テツプ F 1 4に進められる。 そして、 ステップ F 1 4、 F 1 5では、 超音波振動 子駆動装置の発振動作停止並びにエラー表示 (報知) が行われ、 上記した一連の 調整動作が終了される。  On the other hand, as the resistance value change (F20) of the phase delay circuit 1 and the voltage signal detection comparison (F17, F18) of the current transformer 11 are repeated, the switching state of the switches SWa to SWc is changed. If is set to the highest value, in step F19, it is determined that the resistance value of the phase delay circuit 1 cannot be set any higher, and the flow proceeds to step F14 described above. Then, in steps F14 and F15, the oscillation operation of the ultrasonic vibrator driving device is stopped and an error display (notification) is performed, and the above-described series of adjustment operations is completed.
また、 上記のステップ F 1 2或いはステップ F 1 8にて、 現在の電圧信号が直 前の電圧信号よりも高くなっていると判定された場合、 直前の駆動周波数の方が 現在の駆動周波数よりも、 超音波振動子 1 0の共振周波数と反共振周波数との間 の基準周波数に近かったことを意味する。 そこで、 ステップ F 2 1では、 位相遅 延回路 1の直前抵抗値が確定値とされ、 続くステップ F 2 2では、 該確定値で不 揮発性メモリ 1 3内の前回確定値が書き換えられる。  If it is determined in step F12 or F18 that the current voltage signal is higher than the immediately preceding voltage signal, the immediately preceding driving frequency is higher than the current driving frequency. This also means that the reference frequency was close to the reference frequency between the resonance frequency and the anti-resonance frequency of the ultrasonic transducer 10. Therefore, in step F21, the immediately preceding resistance value of the phase delay circuit 1 is set as the final value, and in the following step F22, the previous final value in the nonvolatile memory 13 is rewritten with the final value.
ただし、 位相遅延回路 1における抵抗値の可変分解能が低い場合、 ステップ F 2 1にて確定されたスィツチ設定では、 必ずしも超音波振動子 1 0の駆動周波数 を最適周波数とすることができない場合がある。 そこで、 ステップ F 2 3では、 ステップ F 2 1にて確定された基準周波数を 1段高めまたは低めなどとする修正 が、 必要に応じて実施される。 なお、 該修正動作に必要な情報 (例えば、 抵抗値 と駆動周波数との相関関係) は、 予めマイコン 1 2に格納しておくとよい。 その後、 ステップ F 2 4で、 駆動位相の自動調整が終了されると、 続くステツ プ F 2 5では、 報知部 1 4における発光ダイオードの消灯やブザー出力の停止等 が行われる。 そして、 超音波振動子駆動装置は通常運転に移行する。 However, if the variable resolution of the resistance value in the phase delay circuit 1 is low, the drive frequency of the ultrasonic vibrator 10 may not always be the optimal frequency with the switch setting determined in step F21. . Therefore, in step F23, a correction such as raising or lowering the reference frequency determined in step F21 by one step is performed as necessary. Note that information necessary for the correction operation (for example, a correlation between the resistance value and the driving frequency) may be stored in the microcomputer 12 in advance. Then, when the automatic adjustment of the driving phase is completed in step F24, in subsequent step F25, the light emitting diode in the notification unit 14 is turned off, the buzzer output is stopped, and the like. Then, the ultrasonic transducer driving device shifts to the normal operation.
上記のように、 本実施形態の超音波振動子駆動装置では、 マイコン 1 2で超音 波振動子 1 0の通電電流を検知し、 該通電電流値に基づいて、 ディジタル的に容 量値または抵抗値を変化させるので、 アナログ的な判断誤差もなく、 制御ソフト による自動調整が実現できる。  As described above, in the ultrasonic vibrator driving device of the present embodiment, the microcomputer 12 detects the current flowing through the ultrasonic vibrator 10 and digitally determines the capacitance value or the current value based on the current value. Since the resistance value is changed, there is no analog judgment error and automatic adjustment by control software can be realized.
なお、 図 5中には記載していないが、 上記の自動調整動作において、 確定値の 決定ができなかった場合でも、 超音波振動子 1 0の通電電流を検知するカレント トランス 1 1のみが故障している場合もあるので、 ステップ F 3で読み出された 前回確定値または初期値を暫定的な確定値として設定することで、 発振動作を継 続することも可能である。 このような構成とすることにより、 自動調整手段に不 具合が発生した場合でも、 修理までの間、 とりあえずの運転が可能となる。  Although not shown in FIG. 5, only the current transformer 11 that detects the current flowing through the ultrasonic vibrator 10 fails even if the final value cannot be determined in the above automatic adjustment operation. In some cases, the oscillation operation can be continued by setting the previously determined value or the initial value read in step F3 as a tentative determined value. By adopting such a configuration, even if a problem occurs in the automatic adjusting means, it is possible to operate the apparatus for a while until repair.
また、 同様に図 5中には記載していないが、 上記の自動調整動作において、 確 定値の決定ができなかった場合でも、 再度ステップ F 4に戻って自動調整をやり 直すことも可能である。 このような構成とすれば、 より安定性のある自動調整が 実現できる。 産業上の利用可能性  Similarly, although not shown in FIG. 5, in the above-described automatic adjustment operation, even if the determined value cannot be determined, it is also possible to return to step F4 and perform the automatic adjustment again. . With such a configuration, more stable automatic adjustment can be realized. Industrial applicability
本発明に係る超音波振動子駆動装置は、 超音波振動子を有する装置全般 (超音 波洗浄機など) に適用するとよい。 本発明によれば、 超音波振動子や超音波振動 子駆動装置の部品の温度変化や、 長期に亘る部品の経年変化によって、 初期調整 された超音波振動子の最適な駆動位相がずれてしまったとしても、 使用者の勘に 頼った手動調整を行う必要がない。 従って、 使用者にとって非常に利便性が高い ばかりでなく、 様々な条件変化や長期に亘る条件変化に対しての性能維持を図る ことができる。 さらに、 超音波振動子の Qが低い場合 (すなわち、 共振周波数と 反共振周波数の差が大きい場合) などには、 上記に加えて、 位相固定回路 (バン ドパス調整フィルタや位相調整回路) の初期調整も不要となる。 従って、 超音波 振動子駆動装置の生産効率が大幅に改善できる利点もある。  The ultrasonic transducer driving device according to the present invention is preferably applied to all apparatuses having an ultrasonic transducer (such as an ultrasonic cleaning machine). ADVANTAGE OF THE INVENTION According to this invention, the optimal drive phase of the ultrasonic transducer which was initially adjusted will shift | deviate by the temperature change of the components of an ultrasonic vibrator and an ultrasonic vibrator drive device, or the aging of components over a long period. Even if it does, there is no need to make manual adjustments depending on the intuition of the user. Therefore, not only is the convenience very high for the user, but also the performance can be maintained for various conditions and long-term conditions. In addition, when the Q of the ultrasonic vibrator is low (that is, when the difference between the resonance frequency and the antiresonance frequency is large), in addition to the above, the initial phase lock circuit (band-pass adjustment filter or phase adjustment circuit) is added. No adjustment is required. Therefore, there is also an advantage that the production efficiency of the ultrasonic transducer driving device can be greatly improved.

Claims

請求の範囲 ' The scope of the claims '
1 . 超音波振動子の駆動位相を固定する位相固定回路を有して成る超音波振動子 駆動装置において、 1. An ultrasonic transducer driving device having a phase fixing circuit for fixing the driving phase of the ultrasonic transducer,
前記超音波振動子の通電電流または同等の挙動を示す通電電流代替信号に基づ いて、 前記位相固定回路で固定される前記超音波振動子の駆動位相を自動調整す ることを特徴とする超音波振動子駆動装置。  A drive phase of the ultrasonic vibrator fixed by the phase fixing circuit is automatically adjusted based on a current flowing through the ultrasonic vibrator or a current-supplying current signal showing an equivalent behavior. Sonic vibrator drive.
2 . 前記位相固定回路を構成する C R時定数回路の時定数を変化させることで、 前記超音波振動子の駆動位相を自動調整することを特徴とする請求項 1に記載の 超音波振動子駆動装置。 2. The ultrasonic vibrator drive according to claim 1, wherein the drive phase of the ultrasonic vibrator is automatically adjusted by changing a time constant of a CR time constant circuit constituting the phase lock circuit. apparatus.
3 . 前記超音波振動子の通電電流または同等の挙動を示す通電電流代替信号を検 知するマイコンを有し、 該マイコンの指令で前記 C R時定数回路の時定数を変化 させることを特徴とする請求項 2に記載の超音波振動子駆動装置。 3. It has a microcomputer which detects a current flowing through the ultrasonic vibrator or a current alternative signal showing an equivalent behavior, and changes a time constant of the CR time constant circuit according to a command from the microcomputer. 3. The ultrasonic transducer driving device according to claim 2.
4 . 前記マイコンは、 前記超音波振動子の通電電流または同等の挙動を示す通電 電流代替信号が極小となるように、 前記 C R時定数回路の時定数を変化させるこ とを特徴とする請求項 3に記載の超音波振動子駆動装置。 4. The microcomputer changes a time constant of the CR time constant circuit so that a current flowing through the ultrasonic vibrator or a current-carrying alternative signal exhibiting an equivalent behavior is minimized. 4. The ultrasonic transducer driving device according to 3.
5 . 非通電時であっても記憶内容を保持する不揮発性メモリを有し、 前記駆動位 相の自動調整によって得られた新たな駆動位相に相当するデータを、 該自動調整 による確定値として前記不揮発性メモリに格納することを特徴とする請求項 1に 記載の超音波振動子駆動装置。 5. It has a non-volatile memory that retains the stored contents even when the power is not supplied, and the data corresponding to the new drive phase obtained by the automatic adjustment of the drive phase is used as the fixed value by the automatic adjustment. 2. The ultrasonic transducer driving device according to claim 1, wherein the ultrasonic transducer driving device is stored in a nonvolatile memory.
6 . 前記駆動位相の自動調整は、 前記不揮発性メモリに格納された前回確定値を 参照して行われることを特微とする請求項 5に記載の超音波振動子駆動装置。 6. The ultrasonic transducer driving device according to claim 5, wherein the automatic adjustment of the driving phase is performed with reference to a previously determined value stored in the nonvolatile memory.
7 . 前記駆動位相の自動調整が完了しなかった場合、 前記不揮発性メモリに格納 された前回確定値または予め登録された初期値を、 暫定的な確定値として設定す ることを特徴とする請求項 6に記載の超音波振動子駆動装置。 7. If the drive phase automatic adjustment is not completed, store it in the nonvolatile memory. 7. The ultrasonic transducer driving device according to claim 6, wherein the previously determined value or the previously registered initial value is set as a tentative determined value.
8 . 前記駆動位相の自動調整が完了しなかった場合、 その旨を報知するとともに、 前記超音波振動子の駆動を停止することを特徴とする請求項 1に記載の超音波振 動子駆動装置。 8. The ultrasonic vibrator driving device according to claim 1, wherein, when the automatic adjustment of the driving phase is not completed, a notification to that effect is made and the driving of the ultrasonic vibrator is stopped. .
9 . 前記超音波振動子の駆動を停止した場合、 所定期間後に該超音波振動子の駆 動を再開し、 改めて前記駆動位相の自動調整を試みることを特徴とする請求項 8 に記載の超音波振動子駆動装置。 9. The ultrasonic transducer according to claim 8, wherein when the drive of the ultrasonic transducer is stopped, the drive of the ultrasonic transducer is restarted after a predetermined period, and the automatic adjustment of the drive phase is attempted again. Sonic vibrator drive.
1 0 . 前記駆動位相の自動調整は、 パルス変換されたディジタル位相信号に基づ いて行われることを特徴とする請求項 1〜請求項 9のいずれかに記載の超音波振 動子駆動装置。 10. The ultrasonic transducer driving device according to claim 1, wherein the automatic adjustment of the driving phase is performed based on a pulse-converted digital phase signal.
1 1 . 前記駆動位相の自動調整は、 前記超音波振動子の駆動開始直後に行われる ことを特徴とする請求項 1〜請求項 9のいずれかに記載の超音波振動子駆動装置。 11. The ultrasonic vibrator driving device according to claim 1, wherein the automatic adjustment of the driving phase is performed immediately after the driving of the ultrasonic vibrator is started.
1 2 . 前記駆動位相の自動調整中は、 その旨を報知することを特徴とする請求項 1〜請求項 9のいずれかに記載の超音波振動子駆動装置。 12. The ultrasonic vibrator driving device according to claim 1, wherein a notification is given during automatic adjustment of the driving phase.
PCT/JP2002/010698 2001-10-17 2002-10-15 Ultrasonic oscillator drive apparatus WO2003033174A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001319066A JP2003117485A (en) 2001-10-17 2001-10-17 Ultrasonic vibrator driving device
JP2001-319066 2001-10-17

Publications (1)

Publication Number Publication Date
WO2003033174A1 true WO2003033174A1 (en) 2003-04-24

Family

ID=19136669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/010698 WO2003033174A1 (en) 2001-10-17 2002-10-15 Ultrasonic oscillator drive apparatus

Country Status (5)

Country Link
JP (1) JP2003117485A (en)
KR (1) KR100575508B1 (en)
CN (1) CN1571705A (en)
TW (1) TW550121B (en)
WO (1) WO2003033174A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2416458B (en) * 2004-07-20 2008-11-26 Sra Dev Ltd Ultrasonic generator system
US8695544B2 (en) * 2009-01-29 2014-04-15 Toyota Jidosha Kabushiki Kaisha High expansion ratio internal combustion engine
JP6801335B2 (en) * 2016-09-27 2020-12-16 オムロンヘルスケア株式会社 Ultrasonic oscillator drive and mesh nebulizer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02116359A (en) * 1988-10-27 1990-05-01 Olympus Optical Co Ltd Ultrasonic aspirator device
US5001649A (en) * 1987-04-06 1991-03-19 Alcon Laboratories, Inc. Linear power control for ultrasonic probe with tuned reactance
JPH10191363A (en) * 1996-12-20 1998-07-21 Canon Inc Image pickup device
EP0877429A2 (en) * 1997-05-08 1998-11-11 Seiko Instruments Inc. Ultrasonic wave motor device and electronic apparatus having ultrasonic wave motor device
EP0926745A2 (en) * 1997-12-09 1999-06-30 Seiko Instruments Inc. Ultrasonic motor and control circuitry thereof
JP2000140760A (en) * 1998-03-17 2000-05-23 Sumitomo Bakelite Co Ltd Driving device for ultrasonic vibrator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5001649A (en) * 1987-04-06 1991-03-19 Alcon Laboratories, Inc. Linear power control for ultrasonic probe with tuned reactance
JPH02116359A (en) * 1988-10-27 1990-05-01 Olympus Optical Co Ltd Ultrasonic aspirator device
JPH10191363A (en) * 1996-12-20 1998-07-21 Canon Inc Image pickup device
EP0877429A2 (en) * 1997-05-08 1998-11-11 Seiko Instruments Inc. Ultrasonic wave motor device and electronic apparatus having ultrasonic wave motor device
EP0926745A2 (en) * 1997-12-09 1999-06-30 Seiko Instruments Inc. Ultrasonic motor and control circuitry thereof
JP2000140760A (en) * 1998-03-17 2000-05-23 Sumitomo Bakelite Co Ltd Driving device for ultrasonic vibrator

Also Published As

Publication number Publication date
KR20050036869A (en) 2005-04-20
KR100575508B1 (en) 2006-05-03
JP2003117485A (en) 2003-04-22
CN1571705A (en) 2005-01-26
TW550121B (en) 2003-09-01

Similar Documents

Publication Publication Date Title
EP0343005B1 (en) Driving circuit for driving a piezoelectric vibrator
JP3139534B2 (en) Resonant switching power supply
US5963437A (en) Power circuit
WO2003033174A1 (en) Ultrasonic oscillator drive apparatus
KR20040040463A (en) Converter for converting an input voltage to an output voltage
JP4386743B2 (en) Resonant circuit
JPH08242590A (en) Drive circuit for power converting apparatus
KR100296007B1 (en) Driving method of piezoelecric transformer and driving circuit for the same
JP4135070B2 (en) Discharge lamp lighting device
JP2617459B2 (en) Discharge lamp lighting device
US4736192A (en) Excitation circuit for piezo-electric sound generators
JPH05304415A (en) Self-excited oscillation circuit for driving gas discharge lamp to be especially used for automobile
JP4343416B2 (en) Ultrasonic transducer drive circuit
JPH05217682A (en) Discharge lamp lighting device
JP3269460B2 (en) Piezoelectric transformer drive circuit and drive method
JPH09271174A (en) Power supply equipment and control equipment of vibration wave actuator
JP2512531B2 (en) Induction heating cooker
JPH04233193A (en) Electroluminescence (el)element driving circuit
JP3477136B2 (en) Resonant DC-DC converter circuit and DC-DC converter circuit
JPH06327265A (en) Inverter device
JPH04247269A (en) Piezoelectric vibrator driving circuit
JPH11299090A (en) Power supply adapter
JP3143341B2 (en) Inverter control method
KR100206840B1 (en) Switching circuit for electronic cooker
JPH05101925A (en) Electromagnet apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 20028205413

Country of ref document: CN

Ref document number: 1020047005636

Country of ref document: KR