WO2003032867A1 - Biomaterial comprising microfeatures - Google Patents
Biomaterial comprising microfeatures Download PDFInfo
- Publication number
- WO2003032867A1 WO2003032867A1 PCT/GB2002/004661 GB0204661W WO03032867A1 WO 2003032867 A1 WO2003032867 A1 WO 2003032867A1 GB 0204661 W GB0204661 W GB 0204661W WO 03032867 A1 WO03032867 A1 WO 03032867A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- biomaterial
- grooves
- width
- microfeature
- microfeatures
- Prior art date
Links
- 239000012620 biological material Substances 0.000 title claims abstract description 171
- 239000007943 implant Substances 0.000 claims abstract description 64
- 239000011148 porous material Substances 0.000 claims abstract description 31
- 230000002062 proliferating effect Effects 0.000 claims abstract description 8
- 230000015572 biosynthetic process Effects 0.000 claims description 21
- 238000003786 synthesis reaction Methods 0.000 claims description 19
- 238000012986 modification Methods 0.000 claims description 5
- 230000004048 modification Effects 0.000 claims description 5
- 238000003780 insertion Methods 0.000 claims description 4
- 230000037431 insertion Effects 0.000 claims description 4
- 230000000063 preceeding effect Effects 0.000 claims 6
- 230000010354 integration Effects 0.000 abstract description 2
- 210000001519 tissue Anatomy 0.000 description 45
- 239000000463 material Substances 0.000 description 34
- 210000004027 cell Anatomy 0.000 description 14
- 210000003708 urethra Anatomy 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 9
- 210000002950 fibroblast Anatomy 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 230000007547 defect Effects 0.000 description 5
- 230000012010 growth Effects 0.000 description 5
- 229920002994 synthetic fiber Polymers 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 238000002513 implantation Methods 0.000 description 4
- 238000010348 incorporation Methods 0.000 description 4
- -1 polypropylene Polymers 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 102000008186 Collagen Human genes 0.000 description 3
- 108010035532 Collagen Proteins 0.000 description 3
- 206010016717 Fistula Diseases 0.000 description 3
- 206010019909 Hernia Diseases 0.000 description 3
- 206010061218 Inflammation Diseases 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 229920001436 collagen Polymers 0.000 description 3
- 230000003890 fistula Effects 0.000 description 3
- 230000004054 inflammatory process Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000004792 Prolene Substances 0.000 description 2
- 206010066218 Stress Urinary Incontinence Diseases 0.000 description 2
- 206010046543 Urinary incontinence Diseases 0.000 description 2
- 206010046814 Uterine prolapse Diseases 0.000 description 2
- 206010046940 Vaginal prolapse Diseases 0.000 description 2
- 230000003187 abdominal effect Effects 0.000 description 2
- 210000005056 cell body Anatomy 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 210000001835 viscera Anatomy 0.000 description 2
- 206010067484 Adverse reaction Diseases 0.000 description 1
- 206010011224 Cough Diseases 0.000 description 1
- 229920000339 Marlex Polymers 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 206010046830 Uterovaginal prolapse Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000006838 adverse reaction Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000000739 chaotic effect Effects 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000003328 fibroblastic effect Effects 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 210000004969 inflammatory cell Anatomy 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000008467 tissue growth Effects 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/146—Porous materials, e.g. foams or sponges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/0077—Special surfaces of prostheses, e.g. for improving ingrowth
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/56—Porous materials, e.g. foams or sponges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/0004—Closure means for urethra or rectum, i.e. anti-incontinence devices or support slings against pelvic prolapse
- A61F2/0031—Closure means for urethra or rectum, i.e. anti-incontinence devices or support slings against pelvic prolapse for constricting the lumen; Support slings for the urethra
- A61F2/0036—Closure means for urethra or rectum, i.e. anti-incontinence devices or support slings against pelvic prolapse for constricting the lumen; Support slings for the urethra implantable
- A61F2/0045—Support slings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2400/00—Materials characterised by their function or physical properties
- A61L2400/18—Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment
Definitions
- the present invention relates to materials for use in the manufacture of surgical devices, in particular the present invention provides improved biomaterials for use in the manufacture of surgical implants.
- the synthetic materials currently used in the manufacture of surgical implants exhibit a wide range of properties . Different materials are therefore used for particular purposes with the aim of achieving optimal performance .
- Metal and carbon fibre meshes have been shown to become work-hardened, inflexible, friable and fragmented in time. Further, implants consisting of metal or carbon fibre material have been observed to protrude through skin or body walls or erode into adjacent tissue or blood vessels.
- a number of synthetic polymeric meshes comprised of DacronTM (MersileneTM) , polypropylene (MarlexTM and ProleneTM) and TeflonTM have been used to manufacture surgical implants. These synthetic surgical implants do not suffer from the disadvantages discussed above of metal and carbon fibre. Further, surgical implants comprised of polymeric mesh material are suitably inert and as such are less likely to degrade or cause an adverse reaction. These synthetic polymeric meshes are also mechanically strong, cheap and easily sterilisable .
- a disadvantage of synthetic polymeric meshes is that they are relatively rigid. This leads to problems in placing the meshes within the body. In addition these polymeric meshes typically have rough surfaces, which although once the implants have been positioned aid the retention of the implant in the body, cause difficulty during the initial positioning of the implant in the desired location.
- Erosion of adjacent tissues by the mesh implants, or rough edges of the implant can also lead to the development of fistula or sinus, abnormal passages between internal organs or between internal organs and the body surface.
- One surgical procedure in which a surgical implant is placed in the body is that used to treat female urinary incontinence.
- a sling of tape material is passed under the urethra such that it is positioned loosely under the urethra and supports the urethra, with a supporting member being suspended between two members such that the supporting member forms a sling under the urethra.
- the sling tape members are comprised of synthetic mesh such as knitted polypropylene (ProleneTM) .
- the sling members are initially placed in position by the surgeon and are subsequently held in place by the rough edges of the sling members via friction between the rough edges of the sling and the surrounding body tissue.
- the surrounding body tissue then grows around the sling members over a period of time securing them to the tissue and holding the supporting member in place.
- tissue engineering features on the surface of the implant do not include tissue engineering features on the surface of the implant and therefore the laydown of collagen on the implant surface is chaotic.
- the lack of tissue engineering features on the sling means that no axial alignment of the fibroblasts proliferating of the surface of the sling mesh members occurs, which results in decreased strength of the tissues surrounding the sling mesh members.
- Due to the lack of mechanical strength of the non-axially aligned fibroblasts in order to be effective, the implanted surgical implant must remain in place in the body to provide the mechanical strength to support the urethra for a long period of time.
- a further disadvantage of the sling mesh members currently used in the TVT procedure is that tissue ingrowth into the material is very slow.
- the pores present in the material which ' typically forms the sling mesh members are not designed to aid tissue ingrowth, and pores present in material used to form such mesh members are too large to promote efficient in-growth of fibroblasts into the material.
- the pores of the mesh material used in the prior art are of dimension 600-1700 ⁇ m.
- the lack of microfeatures to provide and enable tissue ingrowth means that the implant takes a long time to be incorporated into the surrounding tissues. This requires the implant to be of greater mass in order to be of suitable strength and provide suitable support in the body.
- sling mesh members described in the prior art consist of substantial mass. Ideally in order to decrease the risk of inflammation and other complications, as little foreign material should be implanted into the patient as possible.
- a biomaterial having at least one micropattern on at least one surface of the biomaterial, the micropattern including a plurality of substantially parallel grooves said grooves being capable of influencing the orientation and alignment of cells proliferating on the surface of the biomaterial.
- the biomaterial may be synthetic, non absorbable or absorbable and/or biological.
- Non absorbable materials may be preferred where the implant is required to provide additional tissue support.
- absorbable materials which absorb slowly, i.e. between 6 to 12 months after implantation can usefully influence cell proliferation at the requested time, providing support when required before supporting tissue has formed.
- the dimensions of the grooves are such that they are under the size of a typical cell body.
- fibroblasts are typically 20 to 30 ⁇ m in diameter and therefore grooves to influence the orientation and alignment of fibroblasts can be up to 20 ⁇ m wide.
- the grooves are 0.5 to 20 ⁇ m in width and 0.25 to 20 ⁇ m in depth.
- the grooves are 4 co b ⁇ m m wi ⁇ un and 4 to 6 ⁇ m in depth.
- the grooves are 5 ⁇ m in width and 5 ⁇ m in depth.
- the grooves are separated by ridges of between 1.0 to 20 ⁇ m in width.
- the grooves are separated by ridges 4 to 6 ⁇ m in width.
- the grooves are separated by ridges of 5 ⁇ m in .width.
- the grooves present on the surface of the biomaterial are aligned in the same direction.
- the grooves are arranged in groups with the grooves in a particular group being aligned in a similar direction, and different groups of grooves being aligned in different directions.
- the ridges are formed by square pillars and the base of the microgroove is substantially perpendicular to the side walls of the square pillars.
- the ridges are formed by square pillars and the base of the microgrooves is bevelled in relation to the side walls of the square pillars.
- the side walls of the pillars may be arcuate.
- the grooves extend along the length of at least one surface of the biomaterial.
- the grooves extend along a first surface and a second opposite surface of the biomaterial.
- the grooves are only present in a defined area of the biomaterial.
- the biomaterial is between 50 ⁇ .m and 300 ⁇ ,m thick. More preferably the biomaterial is between 100 to 250 ⁇ m thick.
- the biomaterial is 200 ⁇ m thic-k.
- a synthetic biomaterial including at least one microfeature which promotes tissue ingrowth through the biomaterial.
- the microfeature comprises at least one pore which extends through the biomaterial from a first surface of the biomaterial to a second opposite surface of the biomaterial said pore ranging in width across the surface of the biomaterial from 50 ⁇ m to 300 ⁇ m.
- the microfeature comprises at least one pit which indents but does not extend through the biomaterial said pit ranging in width across the surface of the biomaterial from 50 ⁇ m to 300 ⁇ m.
- the microfeature comprises at least one slit which extends through the biomaterial from a first surface of the biomaterial to a second opposite surface in the biomaterial wherein said slit is from 50 ⁇ m to 2mm in length and from 50 ⁇ m to 500 ⁇ m in width.
- the biomaterial comprises at least one slit of length from 50 ⁇ m to 1mm and width lOO ⁇ m.
- the biomaterial comprises at least one slit of length 200 ⁇ m and width 50 ⁇ m.
- the slits of the biomaterial may be orientated such that their longest dimension is parallel to the longitudinal axis of the biomaterial.
- the slits of the biomaterial may be orientated such that their longest dimension is not parallel to the longitudinal axis of the implant.
- the biomaterial comprises pits or pores ranging in width across the biomaterial from 100- 150 ⁇ m.
- microfeatures are distributed across the complete surface of the -biomaterial .
- microfeatures are distributed only in a particular portion of the surface of the biomaterial .
- microfeatures are created by post synthesis modification of synthetic biomaterial.
- microfeatures are created by post synthesis treatment of the surface of synthetic biomaterial by a laser. More preferaby microfeatures are created by post synthesis treatment of the grooved surface of synthetic biomaterial by a laser.
- microfeatures of between 50-200 ⁇ m in width are created during synthesis of the synthetic biomaterial .
- microfeatures formed during the synthesis of synthetic material are formed by spaces between the waft and weave of mono-filament or multi- filament yarns when they are woven to form a mesh.
- microfeatures formed during the synthesis of synthetic material are formed by the inter-filament spaces created when mono-filaments are twisted to create multi-filaments, the multi- filaments then being woven to form a mesh.
- the biomaterial may be a material that is not • absorbed into the surrounding tissues over time.
- the biomaterial may. be absorbable into the surrounding tissues over time.
- the biomaterial is absorbable into the surrounding tissues in less than 12 to 18 months following insertion of the biomaterial into the body. More preferably the biomaterial is absorbable into the surrounding tissue in less than 10 to 12 months following the insertion of the biomaterial into the body
- the biomaterial comprising at least one micropattern further includes at least one microfeature, wherein the microfeature includes at least one pore, pit or slit.
- microfeatures in the biomaterial comprising pores, pits or slits allow fibroblastic through growth of the biomaterial to allow fixation of the biomaterial in the tissue.
- the fixation provides multilevel adhesion of the biomaterial to the tissue along its length.
- Figure 1 shows an illustration of a surgical implant utilising the biomaterial
- Figure 2 shows an illustration of the biomaterial comprising grooves and pores.
- the biomaterial can be utilised to form a surgical implant device 10 to support the 1 urethra and alleviate urinary stress incontinence.
- the surgical implant device 10 comprises two tape
- Tissue anchor members 14 are conjoined to the tape
- the tape members 12 may also comprise 4 microfeatures to promote tissue ingrowth.
- the 5 microfeatures may comprise pores 20 in the range of 6 50-200 ⁇ m in size, which aid the incorporation of 7 fibroplasia into meshes of the surgical implant.
- the microfeatures may also comprise pits which 0 indent the surface of the biomaterial or slits in 1 the biomaterial.
- the biomaterial can consist of 2 only one type of microfeature, for example pores, or may comprise a range of different microfeatures including pores, pits and slits.
- the suburethral support 16 is positioned loosely under the urethra by a surgeon during a procedure to insert the surgical implant device 10 into the body.
- the suburethral support 16 being held in place by the tape members 12, which are attached to the body via the tissue anchors 14.
- the suburethral support 16 supports the urethra and alleviates urinary incontinence by occluding the- mid-urethra at times of raised abdominal pressure induced by coughing or the like.
- sling members used to support the urethra and alleviate urinary stress incontinence of the prior art are comprised of synthetic mesh such as knitted polypropylene (Prolene TM) and following implantation of these prior art surgical implant devices, tissue growth occurs around the surgical implant, the proliferating cells on the surface of the surgical implant not being influenced by the surface of the surgical implant to adopt any particular orientation or alignment. This means that tissue with non optimal structure for support of the urethra and incorporation of the implant into the body is laid down .
- Prolene TM knitted polypropylene
- the biomaterial of the present invention can be synthesised from a suitable polymer material as known in the art which is biologically-acceptable.
- a suitable synthetic material is polycaprolactone, but it is understood that the skilled man would envisage other suitable polymers such as Prolene .
- biomaterial such natural polymers including collagen and polysaccharides .
- micropatterns and microfeatures can be incorporated by suitable means. For instance a laser can be used to form the micropatterns and/or microfeatures. Alternatively mechanical means can be used to provide the micropatters and microfeatures .
- Suitable material for use as a 'biomaterial would have to provide adequate tissue support.
- the material chosen to form the biomaterial would have to have sufficient strength to support the urethra at times of increased abdominal pressure.
- the material forming the biomaterial would require to have suitable strength, pliability, and resilient characteristics.
- the absorbable material would have to remain in the body for a sufficient period of time in order to provide support for instance to the urethra until supporting tissue formed. It would be expected that the biomaterial should remain in the body for at least 6 months from implantation to allow suitable supporting tissue to form. In a particular embodiment the absorbable biomaterial would remain in the body for 12 months from implantation in the body.
- Microgrooves present on the biomaterial of the present invention of between 0.5 to 20 ⁇ m in width and 0.25 to 20 ⁇ m in depth induce cell orientation and cellular alignment along the direction of the grooves such that cellular organisation of the proliferating cells is altered such that the new tissue laid down on the surface of the tape members 12 of the surgical implant show improved qualities of mechanical strength.
- the microgrooves can act to control cell orientation and the shape of the cells being laid down. As the orientation of cells being laid down is controlled by the microgrooves, the direction of cell division will be influenced, the surface of the implant can thus promote the laydown of collagen or types of cells and lead to the formation of a neoligament structure or the growth of other biological structural forms.
- the dimensions of the grooves of the micropatterns are determined by the cells which are to be laid down on the implant. For instance particular widths and depths of microgrooving can be chosen to encourage the lay down and orientation of fibroblasts (typical cell body around 20-30 ⁇ m) , muscle cells or epithelial cells or to minimise the lay down of particular cells such as inflammatory cells on the implant .
- the width and depth of the grooves provided can be restricted within particular ranges such as, grooves with a width and depth of between 1 to 5 ⁇ m, grooves with a width and depth of between 6 to lO ⁇ m, grooves with a width and depth of between 11 to 15 ⁇ m or grooves with a width and depth of between 15 to 20 ⁇ m, depending on the purpose of the groove.
- the grooves may be aligned such that they are substantially parallel to each other providing • the grooved surface of biomaterial with a corrugated appearance at the micrometer scale.
- the ordered laydown of cells on the surface of the biomaterial following the introduction of the material in the body means that the surgical implant can be designed to cope with less mechanical stress.
- This enables the tape members 12 and support member 16 to be formed of material which contains less mass. As previously indicated this is of importance as it decreases the risk of inflammation around the implant following its introduction into the body.
- the presence of microgrooving on the surface of the tape members 12 is capable of orientating and aligning the cells such that cells proliferating on the surface of the surgical tape can have sufficient mechanical 1 strength to support the urethra without the presence
- the tape members can
- microfeatures includes suitably dimensioned pores
- these pores 20 may be incorporated into the material which forms the tape members either during the original synthesis , of the material or during post synthesis modification of the material.
- pores of 50 ⁇ 200 ⁇ m are created by post synthesis modification of the biomaterial in which the biomaterial is scanned by a laser capable of forming pores of a suitable size in the material .
- the pores formed may be of any shape and the. perimeter of the pore may be either smooth or rough.
- tissue ingrowth is only wished for into the tape members 12 and thus no pores 20 are incorporated into the support member 16.
- pores between the size of 50-200 ⁇ m on the tape members means that fibrous tissue and vascularised connective tissue are able to grow through the tape members 12 to strongly attach the tape members 12 to the surrounding tissues.
- pores in the size range 50-200 ⁇ m to materials currently used to manufacture surgical implants via post synthesis means such as lasering would significantly improve the through growth of tissues into these materials.
- the pore size of the meshes currently used in the manufacture of surgical implants such as DacronTM (ProleneTM) , TeflonTM and polypropylene (MarlexTM) created during synthesis of these polymeric meshes are significantly larger than 50-200 ⁇ m.
- the interfibre spaces or spaces between the interfibre networks typically being in the range of llOO ⁇ m, 700 ⁇ m and 1700 ⁇ m for Mesilene, Marlex and Teflon respectively.
- slits may be incorporated into the biomaterial to allow tissue ingrowth.
- the slits may be in the range 50 ⁇ m to 2mm in length and 50 ⁇ m to . 500 ⁇ m in width.
- the actual dimensions of the slit produced in the fabric may be varied within these ranges to optimise both tissue ingrowth required and the ease of manufacture of the implant.
- the slit may be orientated in any preferred fashion in relation to the dimensions of the implant to achieve the desired through growth and/or ease of manufacture.
- biomaterial described herein may be used to form a surgical implant for treatment of uterovaginal prolapse or other bodily hernia.
- biomaterial as described herein to produce surgical implants including meshes or patches for use in vaginal prolapse or hernia operations and to remedy fascial defects can be envisaged.
- minimal implant mass, tissue incorporation into the implant and ordered tissue laydown are preferable.
- biomaterial which incorporates micropatterns and microfeatures suitable for the purpose of the implant would enable improved surgical implants to be provided for use in procedures relating to these problems .
- the biomaterial can be used to form a patch which extends over the site of the fascial defect, strengthening the tissue around the fascial defect and providing a structure to retain any organs, or other bodily parts which are pushed through the fascial defect during times of increased pressure.
- biomaterial described herein may be used to form implants in other regions of the human or animal body which would benefit from through growth of tissues and/or the formation of neoligaments .
- the pores may be created during the synthesis of the polymeric meshes by the interfibre spaces. Alternatively the pores may be created during the synthesis of the polymeric meshes by the spaces between the interfibre network.
- biomaterial may be synthesised or treated such that they comprise pores in the range 50-200 ⁇ m in size, or slits in the range, length 50 ⁇ m - 2mm, width 50 ⁇ m - 500 ⁇ m.
Landscapes
- Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Chemical & Material Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Surgery (AREA)
- Dispersion Chemistry (AREA)
- Dermatology (AREA)
- Medicinal Chemistry (AREA)
- Biomedical Technology (AREA)
- Engineering & Computer Science (AREA)
- Cardiology (AREA)
- Prostheses (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/492,473 US20050043820A1 (en) | 2001-10-12 | 2002-10-14 | Biomaterial comprising microfeatures |
EP02772525A EP1434535A1 (en) | 2001-10-12 | 2002-10-14 | Biomaterial comprising microfeatures |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0124489A GB0124489D0 (en) | 2001-10-12 | 2001-10-12 | Fabric |
GB0124489.6 | 2001-10-12 | ||
US39411402P | 2002-07-05 | 2002-07-05 | |
US60/394,114 | 2002-07-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003032867A1 true WO2003032867A1 (en) | 2003-04-24 |
Family
ID=26246643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2002/004661 WO2003032867A1 (en) | 2001-10-12 | 2002-10-14 | Biomaterial comprising microfeatures |
Country Status (3)
Country | Link |
---|---|
US (1) | US20050043820A1 (en) |
EP (1) | EP1434535A1 (en) |
WO (1) | WO2003032867A1 (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8317808B2 (en) | 2008-02-18 | 2012-11-27 | Covidien Lp | Device and method for rolling and inserting a prosthetic patch into a body cavity |
US8753359B2 (en) | 2008-02-18 | 2014-06-17 | Covidien Lp | Device and method for deploying and attaching an implant to a biological tissue |
US8758373B2 (en) | 2008-02-18 | 2014-06-24 | Covidien Lp | Means and method for reversibly connecting a patch to a patch deployment device |
ITTO20130014A1 (en) * | 2013-01-09 | 2014-07-10 | Univ Degli Studi Torino | POLYMERIC SCAFFOLD FOR CARDIAC REGENERATION AND PROTECTION AGAINST REPERFUSION DAMAGES |
US8808314B2 (en) | 2008-02-18 | 2014-08-19 | Covidien Lp | Device and method for deploying and attaching an implant to a biological tissue |
US8888811B2 (en) | 2008-10-20 | 2014-11-18 | Covidien Lp | Device and method for attaching an implant to biological tissue |
US8906045B2 (en) | 2009-08-17 | 2014-12-09 | Covidien Lp | Articulating patch deployment device and method of use |
US9022920B2 (en) | 2005-04-06 | 2015-05-05 | Boston Scientific Scimed, Inc. | Systems, devices, and methods for sub-urethral support |
US9034002B2 (en) | 2008-02-18 | 2015-05-19 | Covidien Lp | Lock bar spring and clip for implant deployment device |
US9044235B2 (en) | 2008-02-18 | 2015-06-02 | Covidien Lp | Magnetic clip for implant deployment device |
US9081019B2 (en) | 2008-12-01 | 2015-07-14 | Laboratory Corporation Of America Holdings | Methods and assays for measuring p95 and/or p95 complexes in a sample and antibodies specific for p95 |
US9110066B2 (en) | 2009-01-15 | 2015-08-18 | Laboratory Corporation Of America Holdings | HER-3 antibodies and methods of use |
US9107659B2 (en) | 2005-07-13 | 2015-08-18 | Boston Scientific Scimed, Inc. | Snap fit sling anchor system and related methods |
US9113991B2 (en) | 2011-05-12 | 2015-08-25 | Boston Scientific Scimed, Inc. | Anchors for bodily implants and methods for anchoring bodily implants into a patient's body |
US9301826B2 (en) | 2008-02-18 | 2016-04-05 | Covidien Lp | Lock bar spring and clip for implant deployment device |
US9393002B2 (en) | 2008-02-18 | 2016-07-19 | Covidien Lp | Clip for implant deployment device |
US9393093B2 (en) | 2008-02-18 | 2016-07-19 | Covidien Lp | Clip for implant deployment device |
US9398944B2 (en) | 2008-02-18 | 2016-07-26 | Covidien Lp | Lock bar spring and clip for implant deployment device |
US9636201B2 (en) | 2011-05-12 | 2017-05-02 | Boston Scientific Scimed, Inc. | Delivery members for delivering an implant into a body of a patient |
US9675436B2 (en) | 2005-07-25 | 2017-06-13 | Boston Scientific Scimed, Inc. | Pelvic floor repair system |
US9833240B2 (en) | 2008-02-18 | 2017-12-05 | Covidien Lp | Lock bar spring and clip for implant deployment device |
US9999424B2 (en) | 2009-08-17 | 2018-06-19 | Covidien Lp | Means and method for reversibly connecting an implant to a deployment device |
US10416162B2 (en) | 2007-12-20 | 2019-09-17 | Monogram Biosciences, Inc. | Her2 diagnostic methods |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040000540A1 (en) * | 2002-05-23 | 2004-01-01 | Soboyejo Winston O. | Laser texturing of surfaces for biomedical implants |
DE60330860D1 (en) | 2002-06-12 | 2010-02-25 | Boston Scient Ltd The Corporat | MEDICAL SLING |
US8545386B2 (en) | 2003-08-14 | 2013-10-01 | Boston Scientific Scimed, Inc. | Surgical slings |
WO2005016184A1 (en) | 2003-08-14 | 2005-02-24 | Scimed Life System, Inc. | Surgical slings |
US20050182443A1 (en) | 2004-02-18 | 2005-08-18 | Closure Medical Corporation | Adhesive-containing wound closure device and method |
EP1765218B1 (en) | 2004-06-14 | 2014-06-11 | Boston Scientific Limited | An implantable sling for treating urinary incontinence |
US20060009099A1 (en) | 2004-07-12 | 2006-01-12 | Closure Medical Corporation | Adhesive-containing wound closure device and method |
US20100063351A1 (en) * | 2008-09-04 | 2010-03-11 | Coloplast A/S | System for surgical treatment of urinary incontinence and method of use |
US20110087067A1 (en) * | 2009-10-09 | 2011-04-14 | Tyco Healthcare Group Lp | Internal retractor systems |
WO2012006072A2 (en) * | 2010-06-28 | 2012-01-12 | Virginia Commonwealth University | Air impedance electrospinning for controlled porosity |
US20150038892A1 (en) * | 2011-12-22 | 2015-02-05 | Eth Zurich | Patch structures for controlled wound healing |
EP2812041B1 (en) | 2012-02-08 | 2019-01-23 | Boston Scientific Scimed, Inc. | Surgical scaffolds |
US10343385B2 (en) * | 2013-07-18 | 2019-07-09 | Boston Scientific Scimed, Inc. | Bodily implant |
US10792024B2 (en) * | 2016-09-28 | 2020-10-06 | Ethicon, Inc. | Scaffolds with channels for joining layers of tissue at discrete points |
USD848624S1 (en) | 2016-09-29 | 2019-05-14 | Ethicon, Inc. | Release paper for wound treatment devices |
US10687986B2 (en) | 2016-09-29 | 2020-06-23 | Ethicon, Inc. | Methods and devices for skin closure |
US20180271505A1 (en) | 2017-03-23 | 2018-09-27 | Ethicon, Inc. | Scaffolds for Joining Layers of Tissue at Discrete Points |
US10470935B2 (en) | 2017-03-23 | 2019-11-12 | Ethicon, Inc. | Skin closure systems and devices of improved flexibility and stretchability for bendable joints |
US11504446B2 (en) | 2017-04-25 | 2022-11-22 | Ethicon, Inc. | Skin closure devices with self-forming exudate drainage channels |
US10993708B2 (en) | 2018-07-31 | 2021-05-04 | Ethicon, Inc. | Skin closure devices with interrupted closure |
CN111067665A (en) * | 2019-12-24 | 2020-04-28 | 深圳齐康医疗器械有限公司 | Porous artificial leather and preparation method and mold thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4011861A (en) * | 1974-04-03 | 1977-03-15 | Case Western Reserve University | Implantable electric terminal for organic tissue |
US4553272A (en) * | 1981-02-26 | 1985-11-19 | University Of Pittsburgh | Regeneration of living tissues by growth of isolated cells in porous implant and product thereof |
US5798065A (en) * | 1991-05-13 | 1998-08-25 | George J. Picha | Collagen disruptive surface morphology for implants |
US5833641A (en) * | 1994-02-18 | 1998-11-10 | The University Court Of The University Of Glasgow | Wound healing material |
WO2000010623A1 (en) * | 1998-08-25 | 2000-03-02 | Tricardia, L.L.C. | An implantable device for promoting repair of a body lumen |
WO2000032749A2 (en) * | 1998-12-03 | 2000-06-08 | Gore Enterprise Holdings, Inc. | Methods and articles for regenerating living tissue |
WO2001058374A2 (en) * | 2000-02-08 | 2001-08-16 | Biolok International, Inc. | Maxillofacial surgical elements having ordered microgeometric surface patterns |
-
2002
- 2002-10-14 US US10/492,473 patent/US20050043820A1/en not_active Abandoned
- 2002-10-14 EP EP02772525A patent/EP1434535A1/en not_active Withdrawn
- 2002-10-14 WO PCT/GB2002/004661 patent/WO2003032867A1/en not_active Application Discontinuation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4011861A (en) * | 1974-04-03 | 1977-03-15 | Case Western Reserve University | Implantable electric terminal for organic tissue |
US4553272A (en) * | 1981-02-26 | 1985-11-19 | University Of Pittsburgh | Regeneration of living tissues by growth of isolated cells in porous implant and product thereof |
US5798065A (en) * | 1991-05-13 | 1998-08-25 | George J. Picha | Collagen disruptive surface morphology for implants |
US5833641A (en) * | 1994-02-18 | 1998-11-10 | The University Court Of The University Of Glasgow | Wound healing material |
WO2000010623A1 (en) * | 1998-08-25 | 2000-03-02 | Tricardia, L.L.C. | An implantable device for promoting repair of a body lumen |
WO2000032749A2 (en) * | 1998-12-03 | 2000-06-08 | Gore Enterprise Holdings, Inc. | Methods and articles for regenerating living tissue |
WO2001058374A2 (en) * | 2000-02-08 | 2001-08-16 | Biolok International, Inc. | Maxillofacial surgical elements having ordered microgeometric surface patterns |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9022920B2 (en) | 2005-04-06 | 2015-05-05 | Boston Scientific Scimed, Inc. | Systems, devices, and methods for sub-urethral support |
US9107659B2 (en) | 2005-07-13 | 2015-08-18 | Boston Scientific Scimed, Inc. | Snap fit sling anchor system and related methods |
US10251738B2 (en) | 2005-07-25 | 2019-04-09 | Boston Scientific Scimed, Inc. | Pelvic floor repair system |
US9675436B2 (en) | 2005-07-25 | 2017-06-13 | Boston Scientific Scimed, Inc. | Pelvic floor repair system |
US10416162B2 (en) | 2007-12-20 | 2019-09-17 | Monogram Biosciences, Inc. | Her2 diagnostic methods |
US9833240B2 (en) | 2008-02-18 | 2017-12-05 | Covidien Lp | Lock bar spring and clip for implant deployment device |
US8317808B2 (en) | 2008-02-18 | 2012-11-27 | Covidien Lp | Device and method for rolling and inserting a prosthetic patch into a body cavity |
US10695155B2 (en) | 2008-02-18 | 2020-06-30 | Covidien Lp | Device and method for deploying and attaching an implant to a biological tissue |
US9005241B2 (en) | 2008-02-18 | 2015-04-14 | Covidien Lp | Means and method for reversibly connecting a patch to a patch deployment device |
US8808314B2 (en) | 2008-02-18 | 2014-08-19 | Covidien Lp | Device and method for deploying and attaching an implant to a biological tissue |
US9034002B2 (en) | 2008-02-18 | 2015-05-19 | Covidien Lp | Lock bar spring and clip for implant deployment device |
US9044235B2 (en) | 2008-02-18 | 2015-06-02 | Covidien Lp | Magnetic clip for implant deployment device |
US8753359B2 (en) | 2008-02-18 | 2014-06-17 | Covidien Lp | Device and method for deploying and attaching an implant to a biological tissue |
US8758373B2 (en) | 2008-02-18 | 2014-06-24 | Covidien Lp | Means and method for reversibly connecting a patch to a patch deployment device |
US9107726B2 (en) | 2008-02-18 | 2015-08-18 | Covidien Lp | Device and method for deploying and attaching an implant to a biological tissue |
US10182898B2 (en) | 2008-02-18 | 2019-01-22 | Covidien Lp | Clip for implant deployment device |
US10159554B2 (en) | 2008-02-18 | 2018-12-25 | Covidien Lp | Clip for implant deployment device |
US9301826B2 (en) | 2008-02-18 | 2016-04-05 | Covidien Lp | Lock bar spring and clip for implant deployment device |
US9393002B2 (en) | 2008-02-18 | 2016-07-19 | Covidien Lp | Clip for implant deployment device |
US9393093B2 (en) | 2008-02-18 | 2016-07-19 | Covidien Lp | Clip for implant deployment device |
US9398944B2 (en) | 2008-02-18 | 2016-07-26 | Covidien Lp | Lock bar spring and clip for implant deployment device |
US8888811B2 (en) | 2008-10-20 | 2014-11-18 | Covidien Lp | Device and method for attaching an implant to biological tissue |
US10273308B2 (en) | 2008-12-01 | 2019-04-30 | Laboratory Corporation Of America Holdings | Methods of producing antibodies specific for p95 |
US9081019B2 (en) | 2008-12-01 | 2015-07-14 | Laboratory Corporation Of America Holdings | Methods and assays for measuring p95 and/or p95 complexes in a sample and antibodies specific for p95 |
US9766242B2 (en) | 2009-01-15 | 2017-09-19 | Laboratory Corporation Of America Holdings | Methods of determining patient response by measurement of HER-3 and P95 |
US9110066B2 (en) | 2009-01-15 | 2015-08-18 | Laboratory Corporation Of America Holdings | HER-3 antibodies and methods of use |
US10775382B2 (en) | 2009-01-15 | 2020-09-15 | Laboratory Corporation Of America Holdings | Methods of determining patient response by measurement of HER-3 |
US9999424B2 (en) | 2009-08-17 | 2018-06-19 | Covidien Lp | Means and method for reversibly connecting an implant to a deployment device |
US8906045B2 (en) | 2009-08-17 | 2014-12-09 | Covidien Lp | Articulating patch deployment device and method of use |
US9636201B2 (en) | 2011-05-12 | 2017-05-02 | Boston Scientific Scimed, Inc. | Delivery members for delivering an implant into a body of a patient |
US9113991B2 (en) | 2011-05-12 | 2015-08-25 | Boston Scientific Scimed, Inc. | Anchors for bodily implants and methods for anchoring bodily implants into a patient's body |
ITTO20130014A1 (en) * | 2013-01-09 | 2014-07-10 | Univ Degli Studi Torino | POLYMERIC SCAFFOLD FOR CARDIAC REGENERATION AND PROTECTION AGAINST REPERFUSION DAMAGES |
WO2014108814A1 (en) * | 2013-01-09 | 2014-07-17 | Universita' Degli Studi Di Torino | A polymeric scaffold for cardiac regeneration and protection from reperfusion injury |
Also Published As
Publication number | Publication date |
---|---|
EP1434535A1 (en) | 2004-07-07 |
US20050043820A1 (en) | 2005-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20050043820A1 (en) | Biomaterial comprising microfeatures | |
EP0814852B1 (en) | Surgical prostheses | |
US10368971B2 (en) | Implant for parastomal hernia | |
AU2008202439B2 (en) | Mesh implant with an interlocking knitted structure | |
CA2528345C (en) | Expandable tissue support member and method of forming the support member | |
US7022135B2 (en) | Film with highly porous vascular graft prostheses | |
US4520821A (en) | Growing of long-term biological tissue correction structures in vivo | |
US8016841B2 (en) | Mesh implant with an interlocking knitted structure | |
JP4146998B2 (en) | Release knit for isoelastic prosthesis | |
EP0645149B1 (en) | Absorbable structures for ligament and tendon repair | |
JP2002272833A (en) | Reinforced tissue implants and methods of manufacture and use | |
AU2016252274B2 (en) | Absorbable implants for plastic surgery | |
US10792142B2 (en) | Implantable areal device for supporting tissue | |
RU2675316C2 (en) | Method for making lightweight quadriaxial surgical mesh | |
RU2696877C2 (en) | Absorbable and biocompatible graft for prosthetic implantation after excising ipp plaque | |
EP3628763B1 (en) | Bioresorbable knit for hernia repair and method for manufacturing the same | |
AU692365B2 (en) | Surgical prostheses | |
Minns | Tissue Engineered Synthetic Scaffolds for Tissue Repair-A Textile Approach to Implant Design | |
Minns et al. | Biomaterials: Structural and mechanical aspects of prosthetic herniorrhaphy | |
WO2016022968A1 (en) | Hybrid surgical mesh |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VN YU ZA ZM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2002772525 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2002772525 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10492473 Country of ref document: US |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2002772525 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |