WO2003012801A1 - Material for magnetic refrigeration, preparation and application - Google Patents
Material for magnetic refrigeration, preparation and application Download PDFInfo
- Publication number
- WO2003012801A1 WO2003012801A1 PCT/NL2002/000463 NL0200463W WO03012801A1 WO 2003012801 A1 WO2003012801 A1 WO 2003012801A1 NL 0200463 W NL0200463 W NL 0200463W WO 03012801 A1 WO03012801 A1 WO 03012801A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- material according
- powder mixture
- general formula
- mnfe
- range
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 76
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 22
- 238000005057 refrigeration Methods 0.000 title claims abstract description 14
- 238000002360 preparation method Methods 0.000 title description 3
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 14
- 229910052785 arsenic Inorganic materials 0.000 claims abstract description 10
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 7
- 229910052787 antimony Inorganic materials 0.000 claims abstract description 6
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 6
- 229910052742 iron Inorganic materials 0.000 claims abstract description 5
- 229910052796 boron Inorganic materials 0.000 claims abstract description 4
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 3
- 239000000203 mixture Substances 0.000 claims description 25
- 229910045601 alloy Inorganic materials 0.000 claims description 21
- 239000000956 alloy Substances 0.000 claims description 21
- 239000000843 powder Substances 0.000 claims description 21
- 239000011572 manganese Substances 0.000 claims description 20
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 14
- 238000002844 melting Methods 0.000 claims description 7
- 230000008018 melting Effects 0.000 claims description 7
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 6
- 239000012298 atmosphere Substances 0.000 claims description 6
- 239000006187 pill Substances 0.000 claims description 6
- 238000000137 annealing Methods 0.000 claims description 4
- 239000012300 argon atmosphere Substances 0.000 claims description 4
- 229910052732 germanium Inorganic materials 0.000 claims description 4
- FDKAYGUKROYPRO-UHFFFAOYSA-N iron arsenide Chemical compound [Fe].[As]=[Fe] FDKAYGUKROYPRO-UHFFFAOYSA-N 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 239000007858 starting material Substances 0.000 claims description 3
- 229910005343 FeSb2 Inorganic materials 0.000 claims description 2
- PRPNWWVBZXJBKY-UHFFFAOYSA-N antimony iron Chemical compound [Fe].[Sb] PRPNWWVBZXJBKY-UHFFFAOYSA-N 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims description 2
- 238000005245 sintering Methods 0.000 claims description 2
- 238000000227 grinding Methods 0.000 claims 1
- 238000002156 mixing Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 description 20
- 238000001816 cooling Methods 0.000 description 10
- 230000002349 favourable effect Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- 150000003624 transition metals Chemical class 0.000 description 3
- 239000000126 substance Substances 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000001495 arsenic compounds Chemical class 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 229940035564 duration Drugs 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005323 ferromagnetic ordering Effects 0.000 description 1
- 229940093920 gynecological arsenic compound Drugs 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000007096 poisonous effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/012—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials adapted for magnetic entropy change by magnetocaloric effect, e.g. used as magnetic refrigerating material
- H01F1/017—Compounds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B21/00—Machines, plants or systems, using electric or magnetic effects
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
Definitions
- the invention relates to a material that can be used for magnetic refrigeration.
- MR magnetic refrigeration
- a draw-back of the known materials that can be used for magnetic refrigeration is that they are not optimally applicable in the temperature range from approxi- mately 250 to 320 K. Also, the known materials that are suitable for magnetic refrigeration such as the above- mentioned Gds (Si ⁇ Ge ⁇ - ⁇ ) 4 alloys are very expensive, which hinders their use on a large scale.
- A is selected from Mn and Co; B is selected from Fe and Cr;
- C and D are different and are selected from P, As, B, Se, Ge, Si and Sb; and x and y each is a number in the range 0 - 1, and ⁇ is a number from (-0.1) to (+0.1).
- the cooling capacity of the materials according to the present invention may therefore be higher than that of the best Gd-based materials referred to in the article by Gschneidner Jr. et al . . (see above).
- the maximum cooling capacity covers a much more useful range of temperature with regard to the application in, for example, an air conditioner.
- a further advantage of the materials according to the present invention is that they are comprised of widely occurring elements, so that large-scale application is possible.
- the magnetocaloric effect is so strong that it becomes possible to work with a magnetic field generated by permanent magnets instead of (optionally superconductive) electromagnets.
- a further advantage is that the materials according to the present invention do not or not readily dis- solve in water.
- At least 90%, preferably at least 95% of A is Mn; at least 90%, preferably at least 95% of B is Fe; at least 90%, preferably at least 95% of C is P; and at least 90%, preferably at least 95% of D is As or Sb.
- an alloy having a composition wherein a part of the As is replaced by Si and/or Ge is particularly preferred.
- the material has the general formula MnFe (P ⁇ - x As x ) or MnFe(P ⁇ - x Sb x ) . These two materials produce a high cooling capacity in the temperature range of 250 to 320 K. Of these two materials MnFe (P ⁇ - x As x ) is the most preferred, because of its exceptionally strong magnetocaloric effect.
- the ferromagnetic ordering temperature at which an optimal magnetic refrigeration effect is obtained will be adjusted from 150 to 320 K.
- a material according to the invention in which the material substantially has the general formula MnFePo.45Aso.55.
- the alloy then has a composition having the formula MnFePo.45Aso.45Sio.10 or MnFePo.45Aso.45Geo.10-
- the present invention also relates to a method for the manufacture of the material having the general formula MnFe (P ⁇ - x As x ) or MnFe (P ⁇ - x Sb x ) , wherein powders of iron arsenide (FeAs 2 ) or iron antimony (FeSb 2 ) ; manganese phosphide (Mn 3 P 2 ) ; iron (Fe) ; and manganese (Mn) are mixed, mechanically alloyed and sintered in suitable quantities to produce a powder mixture that complies with the general formula MnFe (P ⁇ - x As x ) or MnFe (P ⁇ - x Sb x ) and the powder mixture is subsequently molten under an inert atmosphere and an- nealed.
- a particularly preferable method starts out from Fe 2 P, MnAs 2 , Mn and P in suitable weight proportions, these are mixed, the powder mixture is melted, and the resulting alloy is finally annealed.
- the starting materials may, for example, be treated in a ball mill to produce an alloy. This alloy is subsequently sintered under an inert atmosphere and then annealed, for example, in a suitable furnace.
- an alloy of the composition MnFePo.45Aso.55 in which preferably a portion of the As is replaced with Si and/or Ge, preferably an alloy of the composition
- MnFePo.45Aso.45Sio.10 or the composition MnFePo.45Aso.45Geo.10 will exhibit a magnetocaloric effect at room temperature that is stronger than the one found when using pure Gd. This is contrary to the general expectation because based on the usual models, strong magnetocaloric effects are only expected in rare earth materials, as the magnetic moments in these materials are by a factor 2 or even more greater than in transition metal alloys. However, those models apply only at low temperatures. At room temperature a stronger magnetocaloric effect may occur in suitable alloys based on transition metals according to the invention.
- this inert atmosphere When melting the powder mixture under an inert atmosphere, it has been shown to be advantageous for this inert atmosphere to be an argon atmosphere. This reduces the occurrence of contaminants in the material during melting.
- the molten powder mixture prefferably be annealed at a temperature in the 750 - 900°C range, e.g. 780°C. This results in a low concentration gradient in the material.
- the present invention relates to the application of the material according to the invention with magnetic refrigeration in the 250 - 320 K range.
- the material according to the present invention may be used, among other things, for food refrigerators, air conditioners, computers, etc.
- FeAs 2 iron arsenide
- FeAs 2 powder AlfaAesar Research Chemicals Catalogue, 2N5 stock# 36191
- 1.4262 g manganese phosphide Mn 3 P 2 , 2N stock# 14020
- 1.1250 g iron Fe, 3N stock# 10213
- 0.5882 g manganese Mn, 3N stock# 10236
- the powder mixture was compressed to a pill and subsequently melted under argon atmosphere.
- the nominal composition of the pill was Mn1.01FePo.43Aso.62. Subsequently, the molten pill was annealed for 3 days at 780°C.
- Fig. 1 shows the temperature-dependence of the magnetisation ("M" in emu/g) of MnFe (P ⁇ - x As x ) in the temperature range 0 - 400 K in a magnetic field of 0.05 T.
- the "A" after MnFe (P ⁇ - x As x ) indicates that the material was first subjected to a heat-treatment (72 hours at 780°C) .
- the strongest magnetisation for x 0.6 is obtained approximately at room temperature (ca. 298 K) .
- this material produces a good magnetisation at room temperature and at a very small magnetic-field change.
- Fig. 2 shows the magnetocaloric effect ⁇ S m of the materials at a magnetic field changes of 0 - 2 T and
- Fig. 3 shows the cooling capacity of some MnFe (P ⁇ - ⁇ As x ) materials and of the Gd and Gds(Si 2 Ge 2 ) materials referred to in the article by Gschneidner Jr. et al . . , at a field change of 0 - 5 T.
- the materials according to the present invention do indeed exhibit a lower cooling capacity than the most effective prior art materials mentioned in the article by Gschneidner Jr. et al . . , but the maximum cooling capacity of the materials according to the invention lies in a temperature range that is much more useful for application in, for example, an air conditioner or a computer.
- Example 2 As starting materials Fe 2 P, MnAs 2 , Mn and P in the form of powders, were mixed in suitable quantities in a ball mill in order to produce a mixture with the general formula MnFePo.45Aso.55.
- the powder mixture is heated in an ampoule under an argon atmosphere. Heating takes place at a temperature of 1273 K.
- the alloy is subsequently homogenised at 923 K.
- the first step of this heat treatment, sintering takes approximately 5 days, as does the second step, annealing at 923 K.
- the minimum duration for carrying out the first step is 1 hour, while the minimum dura- tion for the second step is 1 day.
- the magnetocaloric effect at room temperature of the alloy obtained by this method is stronger than that obtained when using pure Gd.
- a general advantage of the preparation according to this example is, among other things, that there are no weight losses and that the material becomes more homogeneous.
- the appended figures 4-7 show the advantages of the alloy according to the invention as prepared in accor- dance with the above described method.
- Fig. 4 shows the magnetic transition temperature as function of the applied field.
- Fig. 5 shows the magnetisation curves at several temperatures around T c .
- Fig. 6 shows the change of the magnetic entropy for various field changes.
- the values of the change of the magnetic entropy of a prior art material namely the one according to the article by Gschneidner Jr. et al.., is represented.
- the material according to the invention provides an excellent effect.
- FIG. 7 shows the cooling capacity for various fields applied to the material.
- the values for the cooling capacity of Gd and the material referred to in the article by Gschneidner Jr. et al . . are represented.
- the advantages of the material according to the invention are quite obvious.
- the present invention is not limited to the embodiment shown in the figures and described in the exemplary embodiment. More particularly, part of the As may be replaced with Si and/or Ge, as explained in more detail in the specification. They may be varied in numerous ways within the protective scope established by the claims.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Hard Magnetic Materials (AREA)
- Soft Magnetic Materials (AREA)
- Powder Metallurgy (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
- Materials For Medical Uses (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT02746212T ATE435494T1 (en) | 2001-07-31 | 2002-07-12 | USE OF A MATERIAL FOR MAGNETIC COOLING AND A METHOD FOR PRODUCING THE SAME |
BRPI0211602A BRPI0211602B1 (en) | 2001-07-31 | 2002-07-12 | material for use as magnetic refrigerant, its preparation methods and its application |
JP2003517889A JP4125229B2 (en) | 2001-07-31 | 2002-07-12 | Magnetic cooling materials, preparation and application |
DE60232798T DE60232798D1 (en) | 2001-07-31 | 2002-07-12 | USE OF A MATERIAL FOR MAGNETIC COOLING AND A METHOD FOR THE PRODUCTION THEREOF |
EP02746212A EP1415311B1 (en) | 2001-07-31 | 2002-07-12 | Use of a material for magnetic refrigeration and a method for the manufacturing thereof |
DK02746212T DK1415311T3 (en) | 2001-07-31 | 2002-07-12 | Use of a material for magnetic cooling as well as a method for making it |
CA2454440A CA2454440C (en) | 2001-07-31 | 2002-07-12 | Material for magnetic refrigeration, preparation and application |
US10/769,658 US7069729B2 (en) | 2001-07-31 | 2004-01-30 | Material for magnetic refrigeration preparation and application |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL1018668 | 2001-07-31 | ||
NL1018668A NL1018668C2 (en) | 2001-07-31 | 2001-07-31 | Material suitable for magnetic cooling, method of preparing it and application of the material. |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/769,658 Continuation-In-Part US7069729B2 (en) | 2001-07-31 | 2004-01-30 | Material for magnetic refrigeration preparation and application |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003012801A1 true WO2003012801A1 (en) | 2003-02-13 |
Family
ID=19773812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/NL2002/000463 WO2003012801A1 (en) | 2001-07-31 | 2002-07-12 | Material for magnetic refrigeration, preparation and application |
Country Status (14)
Country | Link |
---|---|
US (1) | US7069729B2 (en) |
EP (1) | EP1415311B1 (en) |
JP (1) | JP4125229B2 (en) |
AT (1) | ATE435494T1 (en) |
BR (1) | BRPI0211602B1 (en) |
CA (1) | CA2454440C (en) |
CY (1) | CY1109448T1 (en) |
DE (1) | DE60232798D1 (en) |
DK (1) | DK1415311T3 (en) |
ES (1) | ES2329449T3 (en) |
NL (1) | NL1018668C2 (en) |
PL (1) | PL207833B1 (en) |
PT (1) | PT1415311E (en) |
WO (1) | WO2003012801A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2107575A1 (en) | 2008-03-31 | 2009-10-07 | Université Henri Poincaré - Nancy 1 | New intermetallic compounds, their use and a process for preparing the same |
US9245673B2 (en) | 2013-01-24 | 2016-01-26 | Basf Se | Performance improvement of magnetocaloric cascades through optimized material arrangement |
JP2016514360A (en) * | 2013-01-24 | 2016-05-19 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Improving the performance of magnetocaloric cascades by optimizing material alignment |
WO2016096509A1 (en) | 2014-12-18 | 2016-06-23 | Basf Se | Magnetocaloric cascade and method for fabricating a magnetocaloric cascade |
US9784483B2 (en) | 2013-05-08 | 2017-10-10 | Basf Se | Use of rotating magnetic shielding system for a magnetic cooling device |
Families Citing this family (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4663328B2 (en) * | 2003-01-29 | 2011-04-06 | スティッチング ヴォール デ テクニッシェ ヴェッテンシャッペン | Magnetic material having cooling capacity, method for producing the material, and method for using the material |
US20050217278A1 (en) * | 2004-03-31 | 2005-10-06 | Mongia Rajiv K | Apparatus to use a magnetic based refrigerator in mobile computing device |
JP4413804B2 (en) * | 2005-03-24 | 2010-02-10 | 株式会社東芝 | Magnetic refrigeration material and manufacturing method thereof |
GB0519843D0 (en) * | 2005-09-29 | 2005-11-09 | Univ Cambridge Tech | Magnetocaloric refrigerant |
CN101765892B (en) * | 2007-02-12 | 2013-10-02 | 真空熔焠有限两合公司 | Article for magnetic heat exchange and method of manufacturing same |
TW201003024A (en) * | 2008-04-28 | 2010-01-16 | Basf Se | Open-cell porous shaped bodies for heat exchangers |
AU2010227586A1 (en) * | 2009-03-24 | 2011-11-10 | Basf Se | Printing method for producing thermomagnetic form bodies for heat exchangers |
DE102009002640A1 (en) | 2009-04-24 | 2011-01-20 | Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. | Magnetic alloy material and process for its production |
US20110041513A1 (en) * | 2009-08-18 | 2011-02-24 | Technology Foundation Stw | Polycrystalline magnetocaloric materials |
TWI403682B (en) * | 2009-09-17 | 2013-08-01 | Delta Electronics Inc | Magnetocaloric structure |
RU2554496C9 (en) * | 2009-09-21 | 2016-06-20 | Технисе Университейт Делфт | Substrates containing switchable ferromagnetic nanoparticles |
TW201145319A (en) * | 2010-01-11 | 2011-12-16 | Basf Se | Magnetocaloric materials |
US20110220838A1 (en) * | 2010-03-11 | 2011-09-15 | Basf Se | Magnetocaloric materials |
RU2012143308A (en) * | 2010-03-11 | 2014-04-20 | Басф Се | MAGNETO-CALORIC MATERIALS |
KR101223036B1 (en) * | 2010-04-21 | 2013-01-18 | 나기오 | Alloys magnetic refrigerant materials for environmental magnetic refrigerator |
TWI551803B (en) | 2010-06-15 | 2016-10-01 | 拜歐菲樂Ip有限責任公司 | Cryo-thermodynamic valve device, systems containing the cryo-thermodynamic valve device and methods using the cryo-thermodynamic valve device |
DE102010063061B3 (en) * | 2010-12-14 | 2012-06-14 | Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. | Use of a rare earth metal-free substance as a magnetocalorically active material |
US20140157793A1 (en) * | 2012-12-07 | 2014-06-12 | General Electric Company | Novel magnetic refrigerant materials |
US10465951B2 (en) | 2013-01-10 | 2019-11-05 | Haier Us Appliance Solutions, Inc. | Magneto caloric heat pump with variable magnetization |
US10126025B2 (en) | 2013-08-02 | 2018-11-13 | Haier Us Appliance Solutions, Inc. | Magneto caloric assemblies |
EP3044494A1 (en) | 2013-09-13 | 2016-07-20 | Biofilm IP, LLC | Magneto-cryogenic valves, systems and methods for modulating flow in a conduit |
US9851128B2 (en) | 2014-04-22 | 2017-12-26 | Haier Us Appliance Solutions, Inc. | Magneto caloric heat pump |
US9797630B2 (en) | 2014-06-17 | 2017-10-24 | Haier Us Appliance Solutions, Inc. | Heat pump with restorative operation for magneto caloric material |
US10254020B2 (en) | 2015-01-22 | 2019-04-09 | Haier Us Appliance Solutions, Inc. | Regenerator including magneto caloric material with channels for the flow of heat transfer fluid |
US10299655B2 (en) | 2016-05-16 | 2019-05-28 | General Electric Company | Caloric heat pump dishwasher appliance |
US10006673B2 (en) | 2016-07-19 | 2018-06-26 | Haier Us Appliance Solutions, Inc. | Linearly-actuated magnetocaloric heat pump |
US10006675B2 (en) | 2016-07-19 | 2018-06-26 | Haier Us Appliance Solutions, Inc. | Linearly-actuated magnetocaloric heat pump |
US9915448B2 (en) | 2016-07-19 | 2018-03-13 | Haier Us Appliance Solutions, Inc. | Linearly-actuated magnetocaloric heat pump |
US10047980B2 (en) | 2016-07-19 | 2018-08-14 | Haier Us Appliance Solutions, Inc. | Linearly-actuated magnetocaloric heat pump |
US10274231B2 (en) | 2016-07-19 | 2019-04-30 | Haier Us Appliance Solutions, Inc. | Caloric heat pump system |
US10006674B2 (en) | 2016-07-19 | 2018-06-26 | Haier Us Appliance Solutions, Inc. | Linearly-actuated magnetocaloric heat pump |
US10222101B2 (en) | 2016-07-19 | 2019-03-05 | Haier Us Appliance Solutions, Inc. | Linearly-actuated magnetocaloric heat pump |
US10006672B2 (en) | 2016-07-19 | 2018-06-26 | Haier Us Appliance Solutions, Inc. | Linearly-actuated magnetocaloric heat pump |
US10281177B2 (en) | 2016-07-19 | 2019-05-07 | Haier Us Appliance Solutions, Inc. | Caloric heat pump system |
US10295227B2 (en) | 2016-07-19 | 2019-05-21 | Haier Us Appliance Solutions, Inc. | Caloric heat pump system |
US10047979B2 (en) | 2016-07-19 | 2018-08-14 | Haier Us Appliance Solutions, Inc. | Linearly-actuated magnetocaloric heat pump |
US9869493B1 (en) | 2016-07-19 | 2018-01-16 | Haier Us Appliance Solutions, Inc. | Linearly-actuated magnetocaloric heat pump |
US10443585B2 (en) | 2016-08-26 | 2019-10-15 | Haier Us Appliance Solutions, Inc. | Pump for a heat pump system |
US9857106B1 (en) | 2016-10-10 | 2018-01-02 | Haier Us Appliance Solutions, Inc. | Heat pump valve assembly |
US9857105B1 (en) | 2016-10-10 | 2018-01-02 | Haier Us Appliance Solutions, Inc. | Heat pump with a compliant seal |
US10288326B2 (en) | 2016-12-06 | 2019-05-14 | Haier Us Appliance Solutions, Inc. | Conduction heat pump |
US10386096B2 (en) | 2016-12-06 | 2019-08-20 | Haier Us Appliance Solutions, Inc. | Magnet assembly for a magneto-caloric heat pump |
US10527325B2 (en) | 2017-03-28 | 2020-01-07 | Haier Us Appliance Solutions, Inc. | Refrigerator appliance |
US11009282B2 (en) | 2017-03-28 | 2021-05-18 | Haier Us Appliance Solutions, Inc. | Refrigerator appliance with a caloric heat pump |
US10451320B2 (en) | 2017-05-25 | 2019-10-22 | Haier Us Appliance Solutions, Inc. | Refrigerator appliance with water condensing features |
US10422555B2 (en) | 2017-07-19 | 2019-09-24 | Haier Us Appliance Solutions, Inc. | Refrigerator appliance with a caloric heat pump |
US10451322B2 (en) | 2017-07-19 | 2019-10-22 | Haier Us Appliance Solutions, Inc. | Refrigerator appliance with a caloric heat pump |
US10520229B2 (en) | 2017-11-14 | 2019-12-31 | Haier Us Appliance Solutions, Inc. | Caloric heat pump for an appliance |
US11022348B2 (en) | 2017-12-12 | 2021-06-01 | Haier Us Appliance Solutions, Inc. | Caloric heat pump for an appliance |
US10876770B2 (en) | 2018-04-18 | 2020-12-29 | Haier Us Appliance Solutions, Inc. | Method for operating an elasto-caloric heat pump with variable pre-strain |
US10830506B2 (en) | 2018-04-18 | 2020-11-10 | Haier Us Appliance Solutions, Inc. | Variable speed magneto-caloric thermal diode assembly |
US10557649B2 (en) | 2018-04-18 | 2020-02-11 | Haier Us Appliance Solutions, Inc. | Variable temperature magneto-caloric thermal diode assembly |
US10648704B2 (en) | 2018-04-18 | 2020-05-12 | Haier Us Appliance Solutions, Inc. | Magneto-caloric thermal diode assembly |
US10782051B2 (en) | 2018-04-18 | 2020-09-22 | Haier Us Appliance Solutions, Inc. | Magneto-caloric thermal diode assembly |
US10551095B2 (en) | 2018-04-18 | 2020-02-04 | Haier Us Appliance Solutions, Inc. | Magneto-caloric thermal diode assembly |
US10648705B2 (en) | 2018-04-18 | 2020-05-12 | Haier Us Appliance Solutions, Inc. | Magneto-caloric thermal diode assembly |
US10641539B2 (en) | 2018-04-18 | 2020-05-05 | Haier Us Appliance Solutions, Inc. | Magneto-caloric thermal diode assembly |
US10648706B2 (en) | 2018-04-18 | 2020-05-12 | Haier Us Appliance Solutions, Inc. | Magneto-caloric thermal diode assembly with an axially pinned magneto-caloric cylinder |
US10989449B2 (en) | 2018-05-10 | 2021-04-27 | Haier Us Appliance Solutions, Inc. | Magneto-caloric thermal diode assembly with radial supports |
US11054176B2 (en) | 2018-05-10 | 2021-07-06 | Haier Us Appliance Solutions, Inc. | Magneto-caloric thermal diode assembly with a modular magnet system |
US11015842B2 (en) | 2018-05-10 | 2021-05-25 | Haier Us Appliance Solutions, Inc. | Magneto-caloric thermal diode assembly with radial polarity alignment |
US10684044B2 (en) | 2018-07-17 | 2020-06-16 | Haier Us Appliance Solutions, Inc. | Magneto-caloric thermal diode assembly with a rotating heat exchanger |
US11092364B2 (en) | 2018-07-17 | 2021-08-17 | Haier Us Appliance Solutions, Inc. | Magneto-caloric thermal diode assembly with a heat transfer fluid circuit |
US11149994B2 (en) | 2019-01-08 | 2021-10-19 | Haier Us Appliance Solutions, Inc. | Uneven flow valve for a caloric regenerator |
US11274860B2 (en) | 2019-01-08 | 2022-03-15 | Haier Us Appliance Solutions, Inc. | Mechano-caloric stage with inner and outer sleeves |
US11168926B2 (en) | 2019-01-08 | 2021-11-09 | Haier Us Appliance Solutions, Inc. | Leveraged mechano-caloric heat pump |
US11193697B2 (en) | 2019-01-08 | 2021-12-07 | Haier Us Appliance Solutions, Inc. | Fan speed control method for caloric heat pump systems |
US11112146B2 (en) | 2019-02-12 | 2021-09-07 | Haier Us Appliance Solutions, Inc. | Heat pump and cascaded caloric regenerator assembly |
US11015843B2 (en) | 2019-05-29 | 2021-05-25 | Haier Us Appliance Solutions, Inc. | Caloric heat pump hydraulic system |
CN110605386B (en) * | 2019-07-24 | 2021-09-03 | 南京理工大学 | Mo-doped Mn-Fe-P-Si-based magnetic refrigeration material and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0400263A1 (en) * | 1989-05-31 | 1990-12-05 | International Business Machines Corporation | New class of magnetic materials for solid state devices |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4849017A (en) * | 1985-02-06 | 1989-07-18 | Kabushiki Kaisha Toshiba | Magnetic refrigerant for magnetic refrigeration |
US5641424A (en) * | 1995-07-10 | 1997-06-24 | Xerox Corporation | Magnetic refrigerant compositions and processes for making and using |
-
2001
- 2001-07-31 NL NL1018668A patent/NL1018668C2/en not_active IP Right Cessation
-
2002
- 2002-07-12 ES ES02746212T patent/ES2329449T3/en not_active Expired - Lifetime
- 2002-07-12 DK DK02746212T patent/DK1415311T3/en active
- 2002-07-12 BR BRPI0211602A patent/BRPI0211602B1/en not_active IP Right Cessation
- 2002-07-12 WO PCT/NL2002/000463 patent/WO2003012801A1/en active Application Filing
- 2002-07-12 PT PT02746212T patent/PT1415311E/en unknown
- 2002-07-12 CA CA2454440A patent/CA2454440C/en not_active Expired - Fee Related
- 2002-07-12 PL PL366733A patent/PL207833B1/en not_active IP Right Cessation
- 2002-07-12 DE DE60232798T patent/DE60232798D1/en not_active Expired - Lifetime
- 2002-07-12 EP EP02746212A patent/EP1415311B1/en not_active Expired - Lifetime
- 2002-07-12 AT AT02746212T patent/ATE435494T1/en not_active IP Right Cessation
- 2002-07-12 JP JP2003517889A patent/JP4125229B2/en not_active Expired - Fee Related
-
2004
- 2004-01-30 US US10/769,658 patent/US7069729B2/en not_active Expired - Lifetime
-
2009
- 2009-09-30 CY CY20091101018T patent/CY1109448T1/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0400263A1 (en) * | 1989-05-31 | 1990-12-05 | International Business Machines Corporation | New class of magnetic materials for solid state devices |
Non-Patent Citations (2)
Title |
---|
K.SATO ET AL: "Transport properties of Mn2-xCrxSb near antiferro-ferrimagnetic transition point", JOURNAL OF APPLIED PHYSICS., vol. 55, no. 6, 15 March 1984 (1984-03-15), AMERICAN INSTITUTE OF PHYSICS. NEW YORK., US, pages 2036 - 2038, XP001108898, ISSN: 0021-8979 * |
T.BITHER ET AL: "New modified Mn2Sb compositions showing exchange inversion", JOURNAL OF APPLIED PHYSICS., vol. 33, no. 3, March 1962 (1962-03-01), AMERICAN INSTITUTE OF PHYSICS. NEW YORK., US, pages 1346 - 1347, XP002217192, ISSN: 0021-8979 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2107575A1 (en) | 2008-03-31 | 2009-10-07 | Université Henri Poincaré - Nancy 1 | New intermetallic compounds, their use and a process for preparing the same |
US9245673B2 (en) | 2013-01-24 | 2016-01-26 | Basf Se | Performance improvement of magnetocaloric cascades through optimized material arrangement |
JP2016514360A (en) * | 2013-01-24 | 2016-05-19 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Improving the performance of magnetocaloric cascades by optimizing material alignment |
US9915447B2 (en) | 2013-01-24 | 2018-03-13 | Basf Se | Performance improvement of magnetocaloric cascades through optimized material arrangement |
US9784483B2 (en) | 2013-05-08 | 2017-10-10 | Basf Se | Use of rotating magnetic shielding system for a magnetic cooling device |
WO2016096509A1 (en) | 2014-12-18 | 2016-06-23 | Basf Se | Magnetocaloric cascade and method for fabricating a magnetocaloric cascade |
US10229775B2 (en) | 2014-12-18 | 2019-03-12 | Basf Se | Magnetocaloric cascade and method for fabricating a magnetocaloric cascade |
Also Published As
Publication number | Publication date |
---|---|
ES2329449T3 (en) | 2009-11-26 |
DE60232798D1 (en) | 2009-08-13 |
JP4125229B2 (en) | 2008-07-30 |
EP1415311B1 (en) | 2009-07-01 |
CY1109448T1 (en) | 2014-08-13 |
CA2454440A1 (en) | 2003-02-13 |
BR0211602A (en) | 2004-08-24 |
PL366733A1 (en) | 2005-02-07 |
JP2004537852A (en) | 2004-12-16 |
PT1415311E (en) | 2009-10-06 |
CA2454440C (en) | 2014-12-02 |
DK1415311T3 (en) | 2009-11-02 |
BRPI0211602B1 (en) | 2015-09-15 |
EP1415311A1 (en) | 2004-05-06 |
US7069729B2 (en) | 2006-07-04 |
US20040250550A1 (en) | 2004-12-16 |
NL1018668C2 (en) | 2003-02-03 |
PL207833B1 (en) | 2011-02-28 |
ATE435494T1 (en) | 2009-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2454440C (en) | Material for magnetic refrigeration, preparation and application | |
US8211326B2 (en) | Magnetic material with cooling capacity, a method for the manufacturing thereof and use of such material | |
US8109100B2 (en) | Magnetocaloric refrigerant | |
JP4481949B2 (en) | Magnetic material for magnetic refrigeration | |
EP2107575A1 (en) | New intermetallic compounds, their use and a process for preparing the same | |
WO2010038099A1 (en) | Article for use in magnetic heat exchange, intermediate article and method for producing an article for use in magnetic heat exchange | |
EP2687618B1 (en) | Magnetic refrigeration material | |
Sharma et al. | Enhanced magnetocaloric properties and critical behavior of (Fe0. 72Cr0. 28) 3Al alloys for near room temperature cooling | |
CN103668008B (en) | Thulium base metal glass, preparation method and application | |
EP2730673B1 (en) | Magnetic refrigeration material and magnetic refrigeration device | |
KR102589531B1 (en) | Magneto-caloric alloy and preparing method thereof | |
CN116344136A (en) | Continuous gradient magnetocaloric material and preparation method thereof | |
Saito et al. | Development of synthesis process of magnetocaloric material of La (Fe, Co, Si) 13 | |
Sharma et al. | Magnetocaloric Behavior of Fe 75-x Mn x Al 25 Alloys for Near Room Temperature Cooling | |
WO2013007212A1 (en) | La(fe,si)13-based magnetic refrigerant prepared from industrially pure mixed rare-earth, preparation method and uses thereof | |
PL209262B1 (en) | A magnetic material with cooling capacity, a method for the manufacturing thereof and use of such material | |
JPH031502A (en) | Permanent magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VN YU ZA ZM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2002746212 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2454440 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003517889 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10769658 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 2002746212 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |