WO2003008961A1 - Micro-channel sold crossing structural body, and method for forming sold crossing multi-layer flow - Google Patents

Micro-channel sold crossing structural body, and method for forming sold crossing multi-layer flow Download PDF

Info

Publication number
WO2003008961A1
WO2003008961A1 PCT/JP2002/004428 JP0204428W WO03008961A1 WO 2003008961 A1 WO2003008961 A1 WO 2003008961A1 JP 0204428 W JP0204428 W JP 0204428W WO 03008961 A1 WO03008961 A1 WO 03008961A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
microchannel
microchannels
substrate
channel
Prior art date
Application number
PCT/JP2002/004428
Other languages
French (fr)
Japanese (ja)
Inventor
Takehiko Kitamori
Akihide Hibara
Manabu Tokeshi
Kenji Uchiyama
Original Assignee
Kanagawa Academy Of Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Academy Of Science And Technology filed Critical Kanagawa Academy Of Science And Technology
Publication of WO2003008961A1 publication Critical patent/WO2003008961A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/432Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa
    • B01F25/4323Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa using elements provided with a plurality of channels or using a plurality of tubes which can either be placed between common spaces or collectors
    • B01F25/43231Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa using elements provided with a plurality of channels or using a plurality of tubes which can either be placed between common spaces or collectors the channels or tubes crossing each other several times
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/3039Micromixers with mixing achieved by diffusion between layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B1/00Devices without movable or flexible elements, e.g. microcapillary devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates

Definitions

  • the invention of this application relates to a method for forming a microchannel three-dimensional crossover structure and a three-dimensional crossover multilayer liquid. More specifically, the invention of the present application is based on a three-dimensional flow channel that is useful for precision microanalysis, precision separation, or fine chemical synthesis in microchips and the like having a microchannel (microchannel).
  • the present invention relates to a micro-channel structure crossed over a substrate and a method for forming a three-dimensionally cross-linked liquid using the same. Background art
  • the inventors of the present application proposed a new liquid-liquid method for solvent extraction and chemical synthesis in order to solve the problem that conventional versatility is poor and high-level integration is difficult.
  • the invention of this application can greatly improve the degree of integration of the flow channel in the microchip, facilitate continuous operation and multi-stage operation, and have a stable interface and good phase. It is an object of the present invention to provide a new technical means for high integration and formation of a multilayer flow, which can easily realize the separability. Disclosure of the invention
  • the invention of this application solves the above-mentioned problems.
  • a structure in which a substrate on which microchannels are provided is stacked with the microchannel mounting surfaces facing each other, At least a part of the microchannels disposed on the substrate is vertically intersected with each other, and a liquid-liquid interface of the liquid flowing through the microchannel is formed at the three-dimensional intersection.
  • the present invention provides a microchannel three-dimensional intersection structure.
  • the second aspect of the present invention is characterized in that one surface of the upper and lower microphone opening channels constituting the three-dimensional intersection is made hydrophobic and the other surface is made hydrophilic.
  • the pressure difference at the liquid-liquid interface between the aqueous phase and the oily phase is 60%.
  • the present invention provides a microphone-channel stereoscopic crossing structure characterized by being 0 Pa or less.
  • the microchannels of the upper substrate to be crossed are stacked via the upper substrate upper surface or the intermediate substrate.
  • the microchannel crossover structure which is characterized by communicating with the microchannels provided on the lower or upper surface of the upper substrate by through holes, fifthly, the micro opening of each substrate
  • the microchannel three-dimensional intersection structure is provided with a liquid supply part and a drainage part communicating with the channel.
  • the invention of this application is directed to a sixth aspect of the present invention, in which the liquid is circulated through the microphone opening channels of each of the upper and lower substrates by using any of the above-described three-dimensional channel intersection structures, and the liquid-liquid interface is formed at the three-dimensional intersection.
  • a method for forming a three-dimensionally cross-layered liquid which is characterized by forming a multi-layered flow.
  • FIG. 1 is a schematic view illustrating the outline of the structure of the present invention.
  • FIG. 2 is a schematic view different from FIG.
  • FIG. 3 is a cross-sectional view of a main part illustrating a three-dimensional intersection.
  • FIG. 4 is a cross-sectional view of a principal part showing another example different from FIG.
  • FIG. 5 is a graph illustrating a flow velocity difference and a pressure difference between a nitrogen channel and water flowing through the microchannel of the structure of the present invention.
  • Fig. 6 is a conceptual diagram showing the arrangement when there are a plurality of microchannel intersections.
  • FIG. 7 is a process step diagram illustrating the formation of the microchannel of the structure of the present invention.
  • FIG. 8 is a plan view illustrating the arrangement of the three-dimensional intersection of microchannels.
  • FIG. 9 is an exploded perspective view illustrating the structure of the present invention in the embodiment.
  • FIG. 10 is a micrograph illustrating the liquid-liquid interface at the intersection.
  • FIG. 11 is a photograph illustrating the state of the liquid-liquid interface when the ODS process is performed and when it is not performed.
  • FIG. 1 and FIG. 2 schematically illustrate this, for example, as illustrated in FIG. 1, in the structure of the invention of this application.
  • the microchannel (1A1 ) Is formed on the lower substrate (1A) and the lower substrate on which the microchannel (1B1) is formed is the microchannel (1A1) (1B1). ) Are laminated with their forming surfaces facing each other. At the intersection (2), the liquid flowing through each of the upper and lower microchannels A A) (1B1) intersects three-dimensionally to form a liquid-liquid interface (3). I am trying to.
  • FIG. 2 also shows an intersection (2) where such a liquid-liquid interface is formed, but is longer than the intersection (2) of the example of FIG. 1 in the flow direction of the liquid-liquid interface. (L) is longer.
  • This length (L) means the contact length as a multilayer flow, as also shown in FIG.
  • the length (L) of the intersection (2) and the location and number of the intersection (2) can be determined as appropriate according to the operation purpose and application of the structure of the present invention.
  • the microchannel (1B2) formed on the upper surface of the upper substrate (1B) and the through-hole (1B3) can communicate with each other.
  • another substrate or cover plate (4) may be laminated.
  • the degree of freedom in selecting the position of the intersection (2) of the microchannel (1B1) with respect to the microchannel (1A1) of the lower substrate (1A) is increased. growing. Microphone on top This is because the upper liquid can be guided to a predetermined position by the mouth channel (1B2) and a liquid-liquid interface can be formed at the intersection (2) at the predetermined position.
  • a substrate as an intermediate layer may be interposed.
  • the formation of the liquid-liquid interface due to the three-dimensional crossing between the upper and lower liquids is performed in order to form a stable interface between the upper liquid and the lower liquid, and the properties of each liquid, surface tension, specific gravity, compatibility, etc. Points will be taken into account. Naturally, the flow velocity or the liquid temperature is determined in consideration of these points.
  • the means for supplying the fluid to the flow path and the means for discharging the liquid from the flow path are also appropriately determined.
  • the surface of a microchannel formed on a glass substrate can be effectively hydrophobized by subjecting it to a silane treatment with trichloride octadecylsilane (0DS) or the like.
  • a silane treatment with trichloride octadecylsilane (0DS) or the like.
  • the liquid-liquid interface of both the oil phase and the aqueous phase is stably formed when the range of the pressure difference at the liquid-liquid interface of the oil phase and the aqueous phase is 600 Pa or less.
  • This pressure difference can be derived from the flow rate difference between the oil phase and the aqueous phase.
  • Fig. 5 (a) shows the measured flow rates of both liquids when nitrobenzene was used as the oil phase and water was used as the aqueous phase.
  • the upper and lower limits of the flow rate of water for forming a stable liquid-liquid interface when the flow rate of nitrobenzene as the oil phase is 0 to 6 tI / min are shown.
  • D 4 S / 1 Note that S is the cross-sectional area of the microchannel, and 1 indicates the perimeter of the cross-section of the microphone channel.
  • the microphone mouth channel used in the experiment has D of 135 m.
  • Figure 5 (b) shows the upper and lower limits of the pressure difference at the liquid-liquid interface of nitrobenzene and water to form a stable liquid-liquid interface.
  • the density of water was 0.998 g / mL
  • the density of benzene was 1.204 g / mL
  • the viscosity of water was 1.002 mP.
  • the viscosity of a's and nitrobenzene was set at 1.863 mPa ⁇ s.
  • the pressure difference in the counterflow was estimated.
  • the flow rate of nitrobenzene was 3 AtI / min and the flow rate of water was 6 nI / min.
  • FIG. 6 there are four three-dimensional intersections, and the three-dimensional intersections are provided at 5 mm intervals.
  • the pressure drop gradient ⁇ P_L of nitrobenzene is 7900 Pa / m
  • the ⁇ PZL of water is 850 Pa / m
  • the pressure of benzene and the pressure of water between the parts are 39.5 Pa and 42.5 Pa. Between these four crossovers, the pressures of nitrobenzene and water are 18.5 Pa and 12.7 Pa.
  • the range of the pressure difference needs to be 250 Pa or less. Since this value is within the range of the allowable pressure difference of the microchannel, the invention of this application can be applied to the case where there are a plurality of three-dimensional intersections.
  • the width is about 50 Oim or less and the depth is about 20 Otm or less, but is not limited to this.
  • the flow velocity of the fluid is generally considered to be about 20 ⁇ . I Zmin or less, but is not limited thereto.
  • microchannel of the three-dimensional intersection structure of the present invention can be formed by various processing methods such as, for example, lithography and jet etching.
  • FIG. 7 illustrates an example of this method for a glass substrate as a process step including a 0DS hydrophobizing treatment of a lower substrate.
  • a microchannel is formed by photolithography and one-to-one etching, and a lower channel (1A) is formed on the lower substrate (1A).
  • DS (silane) treatment for hydrophobic surface You. It goes without saying that the ODS (silane) treatment may be performed after the resist and metal stripping.
  • the lamination of the lower substrate (1A) and the upper substrate (1B) for forming the three-dimensional intersection (2) may be performed by heat fusion, or by screwing or crimping with a holder. .
  • the three-dimensional formation of the liquid-liquid interface by the microchannel standing crossover structure of the present invention as described above can be performed by separation by solvent extraction or the like, analysis by a reagent reaction, analysis by optical means, Is useful for chemical synthesis methods, etc., and also as a channel formation itself by three-dimensional three-dimensional crossing.
  • a plurality of three-dimensional intersections may be arranged in the flow path. For example, as illustrated in FIG. 8, various forms such as crossing the microchannel (1A1) of the lower substrate and the microchannel (1B1) of the upper substrate are possible.
  • FIG. 10 is an enlarged photograph of a portion where two microchannels processed on the upper and lower surfaces are in contact while intersecting with each other.
  • Benzene benzene is circulated in the oil phase, and fluorescent fine particles are dispersed in the aqueous phase as a probe.
  • the black streamline in Fig. 10 indicates the streamline on the water phase side. It can be seen that each phase contacts and forms a stable interface that crosses three-dimensionally, flows linearly according to the hydrophilicity (hydrophobicity) of the surface, and then completely separates.
  • a stable interface can be easily formed by chemical modification, and integration such as multi-step operation after phase separation can be easily realized.
  • Figure 11 (a) shows the result of modifying the microchannel with triclonal octadecylsilane
  • Figure 11 (b) shows the result without modification.
  • the surface of the microchannel can be effectively hydrophobized by performing a silane treatment with trichloride octadecylsilane (ODS) or the like.
  • ODS trichloride octadecylsilane
  • the invention of this application can greatly improve the degree of integration of channels in microchannels, facilitate continuous operation and multistage operation, and realize stable interfaces and good phase separation.
  • a new technical means for high integration and formation of a multi-layer liquid can be provided.

Abstract

A structural body in which substrates having micro-channels are layered, with micro-channel arrangement surfaces facing to each other. The micro-channels arranged on each substrate cross each other in a three-dimensional manner at least in a part thereof, and a liquid-liquid interface of liquid flowing through the micro-channels is formed at the solid crossing parts.

Description

明 細 書  Specification
マイクロチャンネル立体交差構造体と立体交差多層流の形成方法 技術分野  Method of forming microchannel multilevel crossover structure and multilevel multilevel flow
この出願の発明は、マイクロチャンネル立体交差構造体と立体交 差多層液の形成方法に関するものである。 さらに詳しくは、 この出 願の発明は、 微細流路 (マイクロチャンネル) を有するマイクロチ ップ等において、 精密微量分析や精密分離、 あるいは精密化学合成 等を行うのに有用な、流路が立体的に交差されているマイクロチヤ ンネル構造体と、これを用いた立体交差多層液の形成方法に関する ものである。 背景技術  The invention of this application relates to a method for forming a microchannel three-dimensional crossover structure and a three-dimensional crossover multilayer liquid. More specifically, the invention of the present application is based on a three-dimensional flow channel that is useful for precision microanalysis, precision separation, or fine chemical synthesis in microchips and the like having a microchannel (microchannel). The present invention relates to a micro-channel structure crossed over a substrate and a method for forming a three-dimensionally cross-linked liquid using the same. Background art
ガラス基板等に形成した微細流路を利用して、精密に微量分析や 分離、 あるいは化学合成を行う方法が注目されている。 たとえば、 このような微細流路であるマイク口チャンネルを用いた化学操作 の一つとして、マイクロチャンネル微小空間の特性を活した分離方 法が各種提案されており、電気泳動法ゃクロマ 卜グラフィ一等につ いての検討が進められている。  Attention has been focused on methods of precisely performing microanalysis, separation, or chemical synthesis using fine channels formed in glass substrates and the like. For example, as one of the chemical operations using a micro-channel as such a fine channel, various separation methods utilizing the characteristics of a micro-channel micro space have been proposed, such as electrophoresis and chromatography. Discussions are underway on such matters.
しかしながら、これまでの多くの方法の場合には水溶液系にしか 実際に適用できず、さらには複雑な集積化が必要とされる連続操作 や多段操作に適用することが難しいという問題があった。  However, in the case of many conventional methods, there is a problem that it is practically applicable only to an aqueous solution system, and it is difficult to apply the method to continuous operation or multi-stage operation that requires complicated integration.
このような状況において、 この出願の発明者らは、 従来のような 汎用性に乏しく、高度な集積化が難しいという問題を解決するため に、溶媒抽出法や化学合成のための新しい液液 2層液の形成や気液 界面の形成方法等を開発してきた。  Under these circumstances, the inventors of the present application proposed a new liquid-liquid method for solvent extraction and chemical synthesis in order to solve the problem that conventional versatility is poor and high-level integration is difficult. We have developed methods for forming layer liquids and gas-liquid interfaces.
ただ、 これまでの発明者らによる検討においても、 マイクロチヤ ンネルは同一基板面に形成されたものであることから、マイクロチ ップにおいて構成されるマイクロチヤンネルの集積化には制約が あり、 また、 液液界面の形成についても主として界面張力によるも のであることから、界面の安定性や相分離の困難さなどの問題が残 されていた。 そこで、 この出願の発明は、 以上のとおりの背景を踏まえ、 マイ クロチップへの流路の集積度を大きく向上させることができ、連続 操作や多段操作を容易とし、しかも安定した界面や良好な相分離性 の実現をも容易とすることのできる、高度集積化や多層流形成のた めの新しい技術手段を提供することを課題としている。 発明の開示 However, in the studies conducted by the inventors so far, since the microchannels are formed on the same substrate surface, there are restrictions on the integration of the microchannels configured in the microchip. Since the liquid-liquid interface is also formed mainly by the interfacial tension, problems such as the stability of the interface and the difficulty of phase separation remain. In view of the above, the invention of this application can greatly improve the degree of integration of the flow channel in the microchip, facilitate continuous operation and multi-stage operation, and have a stable interface and good phase. It is an object of the present invention to provide a new technical means for high integration and formation of a multilayer flow, which can easily realize the separability. Disclosure of the invention
この出願の発明は、上記の課題を解決するものとして、第 1 には、 マイクロチャンネルが配設された基板がマイクロチャンネル配設 面を対向させて積層されている構造体であって、各々の基板に配設 されたマイクロチャンネルは、少くともその一部において相互に立 体交差されており、 この立体交差部において、 マイクロチャンネル 内を流通する液体の液液界面が形成されるようにしたことを特徴 とするマイクロチャンネル立体交差構造体を提供する。  The invention of this application solves the above-mentioned problems. First, a structure in which a substrate on which microchannels are provided is stacked with the microchannel mounting surfaces facing each other, At least a part of the microchannels disposed on the substrate is vertically intersected with each other, and a liquid-liquid interface of the liquid flowing through the microchannel is formed at the three-dimensional intersection. The present invention provides a microchannel three-dimensional intersection structure.
また、 この出願は、 第 2には、 立体交差部を構成する上下のマイ ク口チャンネルの一方の表面が疎水性とされ、他方の表面が親水性 とされていることを特徴と前記のマイク口チャンネル立体交差構 造体を提供し、 第 3には、 水性相と油性相を流通させた上記のマイ クロチャンネル立体交差構造において、水性相と油性相の液液界面 における圧力差が 6 0 0 P a以下であることを特徴とするマイク 口チャンネル立体交差構造体を提供し、第 4には、 立体交差される 上部基板のマイクロチャンネルは、上部基板上面もしくは中間基板 を介して積層される上部基板の下面または上面に配設されたマイ クロチャンネルと貫通穴により連通されていることを特徴とする マイクロチャンネル立体交差構造体を、 第 5には、 各々の基板のマ イク口チャンネルに連通する液体供給部と排液部とが配設されて いることを特徴とする前記マイクロチャンネル立体交差構造体を 提供する。 そして、 この出願の発明は第 6には、 以上いずれかのマ ィク口チャンネル立体交差構造体により、上下各々の基板のマイク 口チャンネルに液体を流通させて、立体交差部において液液界面が 形成される多層流とすることを特徴とする立体交差多層液の形成 方法を提供する。 図面の簡単な説明 In addition, the second aspect of the present invention is characterized in that one surface of the upper and lower microphone opening channels constituting the three-dimensional intersection is made hydrophobic and the other surface is made hydrophilic. Thirdly, in the above-mentioned microchannel three-dimensional crossover structure in which the aqueous phase and the oily phase are circulated, the pressure difference at the liquid-liquid interface between the aqueous phase and the oily phase is 60%. The present invention provides a microphone-channel stereoscopic crossing structure characterized by being 0 Pa or less. Fourth, the microchannels of the upper substrate to be crossed are stacked via the upper substrate upper surface or the intermediate substrate. The microchannel crossover structure, which is characterized by communicating with the microchannels provided on the lower or upper surface of the upper substrate by through holes, fifthly, the micro opening of each substrate The microchannel three-dimensional intersection structure is provided with a liquid supply part and a drainage part communicating with the channel. Sixth, the invention of this application is directed to a sixth aspect of the present invention, in which the liquid is circulated through the microphone opening channels of each of the upper and lower substrates by using any of the above-described three-dimensional channel intersection structures, and the liquid-liquid interface is formed at the three-dimensional intersection. Provided is a method for forming a three-dimensionally cross-layered liquid, which is characterized by forming a multi-layered flow. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、この発明の構造体の概要について例示した模式図である, 図 2は、 図 1 とは別の模式図である。  FIG. 1 is a schematic view illustrating the outline of the structure of the present invention. FIG. 2 is a schematic view different from FIG.
図 3は、 立体交差部について例示した要部断面図である。  FIG. 3 is a cross-sectional view of a main part illustrating a three-dimensional intersection.
図 4は、 図 3とは別の例を示した要部断面図である。  FIG. 4 is a cross-sectional view of a principal part showing another example different from FIG.
図 5は、この発明の構造体のマイクロチャンネルにニトロべンゼ ンおよび水を流した場合の、それらの流速差と圧力差を例示したグ ラフである。  FIG. 5 is a graph illustrating a flow velocity difference and a pressure difference between a nitrogen channel and water flowing through the microchannel of the structure of the present invention.
図 6 マイクロチャンネルの立体交差部を複数とした場合の配 置を示した概念図である。  Fig. 6 is a conceptual diagram showing the arrangement when there are a plurality of microchannel intersections.
図 7は、この発明の構造体のマイクロチャンネルの形成について 例示したプロセス工程図である。  FIG. 7 is a process step diagram illustrating the formation of the microchannel of the structure of the present invention.
図 8は、マイクロチャンネルの立体交差の配置について例示した 平面図である。  FIG. 8 is a plan view illustrating the arrangement of the three-dimensional intersection of microchannels.
図 9は、実施例におけるこの発明の構造体を例示した分解斜視図 である。  FIG. 9 is an exploded perspective view illustrating the structure of the present invention in the embodiment.
図 1 0は、交差部での液液界面について例示した顕微鏡写真であ る。  FIG. 10 is a micrograph illustrating the liquid-liquid interface at the intersection.
図 1 1 は、 O D S処理を行った場合と行わない場合の液液界面の 様子を例示した写真である。  FIG. 11 is a photograph illustrating the state of the liquid-liquid interface when the ODS process is performed and when it is not performed.
なお、 図中の符号は次のものを示す。  In addition, the code | symbol in a figure shows the following.
1 A 下部基板  1 A Lower board
1 A 1 マイクロチャンネノレ  1 A 1 Micro Channel
1 B 上部基板  1 B Upper board
1 B 1 、 1 B 2 マイクロチャンネル  1 B 1, 1 B 2 microchannel
1 B 3 貫通穴  1 B 3 Through hole
2 交差部  2 intersection
3 液液界面  3 Liquid-liquid interface
4 カバープレー卜 発明を実施するための最良の形態 この出願の発明は前記のとおりの特徵をもつものであるが、以下 にその実施の形態について説明する。 4 BEST MODE FOR CARRYING OUT THE INVENTION The invention of this application has the features as described above, and embodiments thereof will be described below.
まず、 なによりもこの出願の発明において特徴的なことは、 マイ クロチャンネルによる流路の 3次元集積化と、それにともなう立体 交差液液界面の形成にある。  First of all, what is characteristic of the invention of this application is the three-dimensional integration of flow channels using microchannels and the formation of a liquid-liquid interface with a three-dimensional intersection.
図 1 および図 2はこのことを模式的に例示したものであるが、た とえば図 1 に例示したように、この出願の発明の構造体においては. その上面部にマイクロチャンネル( 1 A 1 )が形成されている下部 基板 ( 1 A) と、 下面部にマイクロチャンネル ( 1 B 1 ) が形成さ れている上部基板 ( 1 B ) とが、 マイクロチャンネル ( 1 A 1 ) ( 1 B 1 ) の形成面を対向させて積層されている。 そして、 上下各々の マイクロチャンネル A Ί ) ( 1 B 1 ) は、 その交差部 ( 2 ) に おいて、 その各々の内部を流通する液体が、 立体交差して液液界面 ( 3 ) が形成されるようにしている。  FIG. 1 and FIG. 2 schematically illustrate this, for example, as illustrated in FIG. 1, in the structure of the invention of this application. The microchannel (1A1 ) Is formed on the lower substrate (1A) and the lower substrate on which the microchannel (1B1) is formed is the microchannel (1A1) (1B1). ) Are laminated with their forming surfaces facing each other. At the intersection (2), the liquid flowing through each of the upper and lower microchannels A A) (1B1) intersects three-dimensionally to form a liquid-liquid interface (3). I am trying to.
図 2の例も、 このような液液界面が形成される交差部 ( 2 ) を例 示しているが、 図 1 の例の交差部 ( 2 ) に比べて、 液液界面の流れ 方向の長さ ( L )はより長いものとなっている。 この長さ ( L )は、 図 3にも部分断面図を示したように、多層流としての接触長さを意 味している。  The example of FIG. 2 also shows an intersection (2) where such a liquid-liquid interface is formed, but is longer than the intersection (2) of the example of FIG. 1 in the flow direction of the liquid-liquid interface. (L) is longer. This length (L) means the contact length as a multilayer flow, as also shown in FIG.
もちろん、 この交差部 ( 2 ) の長さ ( L ) や交差部 ( 2 ) の配設 個所と数は、 この発明の構造体の操作目的、 用途に応じて適宜に定 められることになる。  Of course, the length (L) of the intersection (2) and the location and number of the intersection (2) can be determined as appropriate according to the operation purpose and application of the structure of the present invention.
そして、 この出願の発明においては、 以上のような立体交差部 ( 2 ) によって液液界面 ( 3 ) を形成する上部基板 ( 1 B ) の下面 に形成したマイクロチャンネル ( 1 B 1 ) については、 たとえば部 分断面を例示した図 4のように、 上部基板 ( 1 B ) の上面に形成し たマイクロチヤンネル ( 1 B 2 ) と貫通穴 ( 1 B 3 ) によって連通 させることもできる。 マイクロチャンネル ( 1 B 2 ) の上部には、 さらに別の基板や、 カバープレー卜 (4 ) を積層してもよい。 たと えばこのような構成とすることによって、 下部基板 ( 1 A) のマイ クロチャンネル ( 1 A 1 ) に対し、 マイクロチャンネル ( 1 B 1 ) の交差部 ( 2 ) の位置の選択の自由度が大きくなる。 上面のマイク 口チャンネル( 1 B 2 )によリ所定の位置にまで上部液体を導いて、 所定の位置で交差部( 2 ) において液液界面を形成することができ るからである。 In the invention of this application, the microchannel (1 B 1) formed on the lower surface of the upper substrate (1 B) forming the liquid-liquid interface (3) by the above-mentioned three-dimensional intersection (2) For example, as shown in FIG. 4 exemplifying a partial cross section, the microchannel (1B2) formed on the upper surface of the upper substrate (1B) and the through-hole (1B3) can communicate with each other. On top of the microchannel (1B2), another substrate or cover plate (4) may be laminated. For example, with this configuration, the degree of freedom in selecting the position of the intersection (2) of the microchannel (1B1) with respect to the microchannel (1A1) of the lower substrate (1A) is increased. growing. Microphone on top This is because the upper liquid can be guided to a predetermined position by the mouth channel (1B2) and a liquid-liquid interface can be formed at the intersection (2) at the predetermined position.
このような構成は、 基板をさらに多数枚とすることにより、 たと えば多層プリン卜配線板と同様に、流路回路を三次元に自在に構成 することが可能となる。  In such a configuration, by further increasing the number of substrates, it becomes possible to freely configure the flow path circuit three-dimensionally, for example, similarly to a multilayer printed wiring board.
このため、たとえば中間層としての基板を介在させてもよいこと は言うまでもない。  For this reason, it goes without saying that, for example, a substrate as an intermediate layer may be interposed.
いずれの場合であっても上下立体交差による液液界面の形成に ついては、 上部液体と下部液体との安定した界面の形成のために、 各々液体の性質や、 表面張力、 比重、 相溶性等の点が考慮されるこ とになる。 また、 当然にも、 これらの点を考慮して、 流速、 あるい は液温等が定められることになる。 流路への流体の供給手段、 そし て流路からの液の排出手段も適宜に定められることになる。  In any case, the formation of the liquid-liquid interface due to the three-dimensional crossing between the upper and lower liquids is performed in order to form a stable interface between the upper liquid and the lower liquid, and the properties of each liquid, surface tension, specific gravity, compatibility, etc. Points will be taken into account. Naturally, the flow velocity or the liquid temperature is determined in consideration of these points. The means for supplying the fluid to the flow path and the means for discharging the liquid from the flow path are also appropriately determined.
安定した界面の形成のための手段としては、立体交差上下のマイ クロチャンネルの一方の表面を疎水性とし、他方を親水性とするこ とが有効でもある。たとえばガラス基板に形成したマイクロチャン ネルについては、 トリクロ口才クタデジルシラン (0 D S ) 等によ るシラン処理を施すことで効果的にその表面を疎水化することが できる。 たとえば表面疎水化したマイク口チャンネルには油相 (有 機相) を、 他方の親水性表面を有するマイクロチャンネルには水性 相を流通させ、 上下に立体交差させることが考慮される。  As a means for forming a stable interface, it is also effective to make one surface of the microchannel above and below the steric intersection hydrophobic and make the other hydrophilic. For example, the surface of a microchannel formed on a glass substrate can be effectively hydrophobized by subjecting it to a silane treatment with trichloride octadecylsilane (0DS) or the like. For example, it is considered that an oil phase (organic phase) is circulated through the surface of the microphone channel whose surface is hydrophobized, and an aqueous phase is circulated through the other microchannel having a hydrophilic surface so that the microchannel crosses up and down.
このとき、 油相、 水性相の両液体の液液界面は、 油相、 水性相の 液液界面での圧力差の範囲が 6 0 0 P a以下のときに安定に形成 される。 この圧力差は油相と水性相の流速差から導き出せる。 たとえば、 油相としてニトロベンゼンを用い、 水性相として水を 用いたときの両液体の流速を測定したものを図 5 ( a ) に示す。 同 図においては、油相であるニトロベンゼンの流速が 0〜 6 t I / m i nのときの安定した液液界面を形成するための水の流速の上限 と下限が示されている。  At this time, the liquid-liquid interface of both the oil phase and the aqueous phase is stably formed when the range of the pressure difference at the liquid-liquid interface of the oil phase and the aqueous phase is 600 Pa or less. This pressure difference can be derived from the flow rate difference between the oil phase and the aqueous phase. For example, Fig. 5 (a) shows the measured flow rates of both liquids when nitrobenzene was used as the oil phase and water was used as the aqueous phase. In the figure, the upper and lower limits of the flow rate of water for forming a stable liquid-liquid interface when the flow rate of nitrobenzene as the oil phase is 0 to 6 tI / min are shown.
これらの流速の値を用いて、二卜口ベンゼンと水の液液界面での 圧力損失の値を求めた。 なお、 この計算では開口された出口におい て水の圧力とニトロベンゼンの圧力は一致しているものとした(大 気圧とした)。 チャンネルの長さが Lである場合の液体の圧力損失 △ Pは、 厶 P / L = f p V 2/ D で表される。 ここで、 f は摩擦係数、 iOは密度、 Vは液体の平均速 度である。 Dは平均水圧径に一致し、 Using the values of these flow rates, the value of pressure loss at the liquid-liquid interface of benzene and water was determined. Note that in this calculation, The pressure of water and the pressure of nitrobenzene were assumed to be the same (atmospheric pressure). The pressure loss ΔP of the liquid when the length of the channel is L is expressed as follows: P / L = fp V 2 / D. Where f is the coefficient of friction, iO is the density, and V is the average velocity of the liquid. D corresponds to the average hydraulic diameter,
D = 4 S /1 で表される。 なお Sはマイクロチャンネルの断面積であり、 1はマ イク口チャンネルの断面の周の長さを示している。実験に用いたマ イク口チャンネルは Dが 1 3 5 mのものである。 D = 4 S / 1 Note that S is the cross-sectional area of the microchannel, and 1 indicates the perimeter of the cross-section of the microphone channel. The microphone mouth channel used in the experiment has D of 135 m.
また、 レイノルズ数 ( R e ) は、  Also, the Reynolds number (R e) is
R e = /0 V D / At で表され、この出願の発明のマイクロチャンネル内の液体の R eは 0〜 1 . 9 6であり、 この流れは層流と見なすことができる。 層流 の場合、 f は、 f = 1 6 / R e で表される。上記のような関係により、 油相と水性相の流速差は圧 力差に変換することができる。 R e = / 0 V D / At, the Re of the liquid in the microchannel of the invention of this application is 0 to 1.966, and this flow can be regarded as laminar flow. In the case of laminar flow, f is given by f = 16 / Re. With the above relationship, the flow velocity difference between the oil phase and the aqueous phase can be converted to a pressure difference.
安定な液液界面が形成されるためのニトロベンゼンと水の液液 界面での圧力差の上限下限を図 5 ( b ) に示す。  Figure 5 (b) shows the upper and lower limits of the pressure difference at the liquid-liquid interface of nitrobenzene and water to form a stable liquid-liquid interface.
上記の計算の中で水の密度を 0. 9 9 8 g /m L、 二卜口べンゼ ンの密度を 1 . 2 0 4 g /m L、水の粘度を 1 . 0 0 2 m P a ' s、 ニトロベンゼンの粘度を 1 . 8 6 3 m P a · sとした。  In the above calculations, the density of water was 0.998 g / mL, the density of benzene was 1.204 g / mL, and the viscosity of water was 1.002 mP. The viscosity of a's and nitrobenzene was set at 1.863 mPa · s.
なお、 二卜口ベンゼンの流速が 0 l Zm i nのとき、 許容され る圧力差の範囲は小さいが、停止した液体の水力学特性は流体の水 力学特性とは全く異なるものであるから、この圧力差の許容範囲は 例外的なものと言える。 When the flow rate of benzene is 0 l Zmin, it is allowed. Although the range of the pressure difference is small, the allowable range of the pressure difference is exceptional because the hydraulic characteristics of the stopped liquid are completely different from the hydraulic characteristics of the fluid.
また、図 6に示しているような複数の立体交差部を形成すること が可能であるかどうかを確かめるため、その対向流の圧力差を概算 した。 この概算の際、 ニトロベンゼンの流速が 3 At I /m i nであ リ、 水の流速は 6 n I /m i nとして計算した。 図 6においては、 4つの立体交差部があリ、その立体交差部が 5 mm間隔で設けられ ている。 これらの条件の下で、 ニトロベンゼンの圧力降下勾配△ P _ Lは 7 9 0 0 P a/mであり、水の Δ PZ Lは 8 5 0 0 P a/m であリ、隣の立体交差部との間の二卜口ベンゼンの圧力と水の圧力 は、 3 9. 5 P aと 4 2. 5 P aである。 これら 4つの立体交差部 間において、ニトロベンゼンと水の圧力は 1 1 8. 5 P aと 1 2 7. 5 P aである。  In addition, in order to confirm whether or not it is possible to form a plurality of three-dimensional intersections as shown in Fig. 6, the pressure difference in the counterflow was estimated. In this estimation, the flow rate of nitrobenzene was 3 AtI / min and the flow rate of water was 6 nI / min. In FIG. 6, there are four three-dimensional intersections, and the three-dimensional intersections are provided at 5 mm intervals. Under these conditions, the pressure drop gradient △ P_L of nitrobenzene is 7900 Pa / m, and the ΔPZL of water is 850 Pa / m The pressure of benzene and the pressure of water between the parts are 39.5 Pa and 42.5 Pa. Between these four crossovers, the pressures of nitrobenzene and water are 18.5 Pa and 12.7 Pa.
対向流を実現させるためには、圧力差の範囲が 2 5 0 P a以下で ある必要がある。この値はマイクロチャンネルの許容圧力差の範囲 内であることから、 この出願の発明は、複数の立体交差部を有する 場合にも適用することができる。  In order to realize the counterflow, the range of the pressure difference needs to be 250 Pa or less. Since this value is within the range of the allowable pressure difference of the microchannel, the invention of this application can be applied to the case where there are a plurality of three-dimensional intersections.
また、 マイクロチャンネルそのものについては、 従来と同様に、 その幅について 5 0 O i m以下、深さ 2 0 O t m以下程度とするこ とが考慮されるが、 これに限定されることはない。 また、 流体の流 速については、一般的には 2 0 μ. I Zm i n以下程度が考慮される が、 これに限定されることはない。  As for the microchannel itself, as in the conventional case, it is considered that the width is about 50 Oim or less and the depth is about 20 Otm or less, but is not limited to this. In addition, the flow velocity of the fluid is generally considered to be about 20 μ. I Zmin or less, but is not limited thereto.
この発明の立体交差構造体のマイクロチャンネルについては、た とえばフ才 卜リソグラフィー ·ゥエツ 卜エッチング等の各種の加工 法によって形成することができる。  The microchannel of the three-dimensional intersection structure of the present invention can be formed by various processing methods such as, for example, lithography and jet etching.
たとえば図 7は、この方法の一例を、ガラス基板の場合について、 下部基板の 0 D S疎水化処理をも含めたプロセス工程として例示 したものである。 この例においては、 ガラス基板表面に C r (クロ 厶) および A u (金) をデポジションした後にフォ トリソグラフィ 一 *ゥエツ 卜エッチングによってマイクロチャンネルを形成し、 下 部基板 ( 1 A) に 0 D S (シラン) 処理を施して疎水表面としてい る。 O D S (シラン) 処理は、 レジス卜および金属のス卜リッピン グの後に行ってもよいことは言うまでもない。 For example, FIG. 7 illustrates an example of this method for a glass substrate as a process step including a 0DS hydrophobizing treatment of a lower substrate. In this example, after depositing Cr (chromium) and Au (gold) on the surface of a glass substrate, a microchannel is formed by photolithography and one-to-one etching, and a lower channel (1A) is formed on the lower substrate (1A). DS (silane) treatment for hydrophobic surface You. It goes without saying that the ODS (silane) treatment may be performed after the resist and metal stripping.
また、 立体交差部 ( 2 ) の形成のための下部基板 ( 1 A ) と上部 基板 ( 1 B ) との積層においては、 熱融着によってもよいし、 ネジ 止めやホルダーによる圧着等によってもよい。  The lamination of the lower substrate (1A) and the upper substrate (1B) for forming the three-dimensional intersection (2) may be performed by heat fusion, or by screwing or crimping with a holder. .
たとえば以上のようなこの出願の発明のマイクロチャンネル立 体交差構造体による液液界面の立体的形成は、溶媒抽出等による分 離や試薬反応による分析、光学手段による分析、 さらには液液界面 反応による化学合成法等に有用であり、さらには三次元の立体交差 による流路形成そのものとして有用でもある。 その目的、 用途に 応じて、 立体交差部は流路に複数個所配置されてもよい。 たとえば 図 8に例示したように、 下部基板のマイクロチャンネル ( 1 A 1 ) と上部基板のマイクロチャンネル( 1 B 1 ) を交差させる等の様々 な形態が可能とされる。  For example, the three-dimensional formation of the liquid-liquid interface by the microchannel standing crossover structure of the present invention as described above can be performed by separation by solvent extraction or the like, analysis by a reagent reaction, analysis by optical means, Is useful for chemical synthesis methods, etc., and also as a channel formation itself by three-dimensional three-dimensional crossing. Depending on its purpose and application, a plurality of three-dimensional intersections may be arranged in the flow path. For example, as illustrated in FIG. 8, various forms such as crossing the microchannel (1A1) of the lower substrate and the microchannel (1B1) of the upper substrate are possible.
そこで以下に実施例を示し、さらに実施の形態について説明する ( 実施例 Therefore, an example will be described below, and the embodiment will be further described ( Example
マイクロチップの基板には、 2枚のパイレックスガラスを用いた (上板 ■ 下板)。 図 7のプロセスに沿って両基板にフォ 卜リソダラ フィー■ゥエツ 卜エッチング法によリ、 基板間で交差するマイクロ チャンネルを加工した。下板のみを 卜リクロロォクタデシルシラン で修飾し、 下板のマイクロチャンネル表面を疎水性 (親油性) とし た。 化学修飾を保護するため、 基板同士は熱融着せず、 図 9に例示 したように、ネジ止めとホルダ一による圧力のみにより接着させた, 図 1 0に化学修飾 (疎水処理) したマイクロチャンネルを利用し た油水 2相の流れの様子を示した。 この図 1 0は、 上下面に加工し た 2本のマイクロチャンネルが交差しながら接触している部分の 拡大写真である。 油相側には二卜口ベンゼンを流通させ、 水相側に はプローブとして蛍光微粒子を分散させている。図 1 0の黒い流線 は、 水相側の流線を示している。 各相が接触して立体交差する安定 な界面を形成し、 表面の親水性 (疎水性) に従って直線的に流れ、 その後完全に相分離していることがわかる。 化学修飾により簡単に安定な界面が形成でき、相分離後の多段操 作などの集積化を容易に実現することができる。 Two Pyrex glasses were used for the microchip substrate (upper plate ■ lower plate). According to the process shown in Fig. 7, micro channels crossing between the substrates were processed on both substrates by photolithography-feed etching. Only the lower plate was modified with trichlorooctadecylsilane to make the microchannel surface of the lower plate hydrophobic (lipophilic). In order to protect the chemical modification, the substrates were not heat-sealed, and as shown in Fig. 9, the substrates were bonded only by screwing and pressure from the holder. The flow of the two phases of oil-water used was shown. FIG. 10 is an enlarged photograph of a portion where two microchannels processed on the upper and lower surfaces are in contact while intersecting with each other. Benzene benzene is circulated in the oil phase, and fluorescent fine particles are dispersed in the aqueous phase as a probe. The black streamline in Fig. 10 indicates the streamline on the water phase side. It can be seen that each phase contacts and forms a stable interface that crosses three-dimensionally, flows linearly according to the hydrophilicity (hydrophobicity) of the surface, and then completely separates. A stable interface can be easily formed by chemical modification, and integration such as multi-step operation after phase separation can be easily realized.
また、 トリクロ口才クタデシルシランでマイクロチャンネルを修 飾したものと修飾を行わないものとの比較を行った。その結果を図 In addition, a comparison was made between the microchannels that had been modified with triclonal octadecylsilane and those that had not been modified. Fig.
1 1 に示す。 図 1 1 ( a ) はトリクロ口才クタデシルシランでマイ クロチャンネルを修飾したものであり、 図 1 1 ( b ) は修飾を行わ なかったものである。 Shown in 1 1. Figure 11 (a) shows the result of modifying the microchannel with triclonal octadecylsilane, and Figure 11 (b) shows the result without modification.
図 1 1 からも明らかなように、 トリクロ口才クタデジルシラン ( O D S )等によるシラン処理を施すことで効果的にマイクロチヤ ンネルの表面を疎水化することができる。  As is clear from FIG. 11, the surface of the microchannel can be effectively hydrophobized by performing a silane treatment with trichloride octadecylsilane (ODS) or the like.
産業上の利用可能性 Industrial applicability
以上詳しく説明したとおり、 この出願の発明によって、 マイクロ チャンネルへの流路集積度を大きく向上させることができ、連続操 作や多段操作を容易とし、しかも安定した界面や良好な相分離性の 実現をも容易とすることのできる、高度集積化や多層液形成のため の新しい技術手段が提供される。  As described in detail above, the invention of this application can greatly improve the degree of integration of channels in microchannels, facilitate continuous operation and multistage operation, and realize stable interfaces and good phase separation. A new technical means for high integration and formation of a multi-layer liquid can be provided.

Claims

請求の範囲 The scope of the claims
1 . マイクロチャンネルが配設された基板がマイクロチャンネル 配設面を対向させて積層されている構造体であって、各々の基板に 配設されたマイクロチャンネルは、少くともその一部において相互 に立体交差されており、 この立体交差部において、 マイクロチャン ネル内を流通する液体の液液界面が形成されるようにしたことを 特徴とするマイクロチャンネル立体交差構造体。 1. A structure in which the substrates on which the microchannels are arranged are stacked with the microchannel arrangement surfaces facing each other, and the microchannels arranged on each substrate are at least partially connected to each other. A micro-channel three-dimensional intersection structure, wherein a liquid-liquid interface of a liquid flowing in the micro-channel is formed at the three-dimensional intersection.
2 . 立体交差部を構成する上下のマイクロチャンネルの一方の表 面が疎水性とされ、他方の表面が親水性とされていることを特徴と する請求項 1 のマイクロチャンネル立体交差構造体。  2. The microchannel three-dimensional intersection structure according to claim 1, wherein one surface of the upper and lower microchannels constituting the three-dimensional intersection is made hydrophobic, and the other surface is made hydrophilic.
3 . 水性相と油性相を流通させた請求項 2のマイクロチャンネル 立体交差構造において、水性相と油性相の液液界面における圧力差 が 6 0 0 P a以下であることを特徵とするマイクロチャンネル立 体交差構造体。  3. The microchannel according to claim 2, wherein the aqueous phase and the oily phase are circulated, wherein the pressure difference at the liquid-liquid interface between the aqueous phase and the oily phase is 600 Pa or less in the three-dimensional cross structure. Standing cross structure.
4 . S体交差される上部基板のマイクロチャンネルは、 上部基板 上面もしくは中間基板を介して積層される上部基板の下面または 上面に配設されたマイクロチャンネルと貫通穴により連通されて いることを特徵とする請求項 1 ないし 3のいずれかのマイクロチ ヤンネル立体交差構造体。  4. The microchannels of the upper substrate intersecting the S body are connected to the microchannels disposed on the lower surface or the upper surface of the upper substrate laminated via the upper substrate or the intermediate substrate through through holes. 4. The microchannel three-dimensional intersection structure according to claim 1, wherein:
5 . 各々の基板のマイクロチャンネルに連通する液体供給部と排 液部とが配設されていることを特徴とする請求項 1 ないし 4のい ずれかのマイク口チャンネル立体交差構造体。  5. The microphone-port channel crossover structure according to any one of claims 1 to 4, wherein a liquid supply unit and a drainage unit communicating with the microchannel of each substrate are provided.
6 . 請求項〗 ないし 5のいずれかのマイクロチャンネル立体交差 構造体により、上下各々の基板のマイクロチャンネルに液体を流通 させて、立体交差部において液液界面が形成される多層液とするこ とを特徴とする立体交差多層液の形成方法。  6. With the microchannel three-dimensional intersection structure according to any one of claims 1 to 5, a liquid is allowed to flow through the microchannels of the upper and lower substrates to form a multilayer liquid in which a liquid-liquid interface is formed at the three-dimensional intersection. A method for forming a three-dimensionally intersected multilayer liquid.
PCT/JP2002/004428 2001-07-11 2002-05-07 Micro-channel sold crossing structural body, and method for forming sold crossing multi-layer flow WO2003008961A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-211254 2001-07-11
JP2001211254A JP2003028836A (en) 2001-07-11 2001-07-11 Microchannel solid crossing structure and method for forming solid crossing multilayered stream

Publications (1)

Publication Number Publication Date
WO2003008961A1 true WO2003008961A1 (en) 2003-01-30

Family

ID=19046598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/004428 WO2003008961A1 (en) 2001-07-11 2002-05-07 Micro-channel sold crossing structural body, and method for forming sold crossing multi-layer flow

Country Status (2)

Country Link
JP (1) JP2003028836A (en)
WO (1) WO2003008961A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4599805B2 (en) * 2003-04-08 2010-12-15 東ソー株式会社 Microchannel structure and chemical reaction method using the same
JP4724656B2 (en) * 2004-04-28 2011-07-13 アークレイ株式会社 Electrophoresis chip and electrophoresis apparatus provided with the same
JP2008014791A (en) * 2006-07-05 2008-01-24 Nipro Corp Liquid mixing device, liquid mixing method, and measuring method of very small amount of specimen
JP2008215873A (en) * 2007-02-28 2008-09-18 Yokogawa Electric Corp Sensor unit and microreactor system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10507962A (en) * 1994-10-22 1998-08-04 セントラル リサーチ ラボラトリーズ リミティド Method and apparatus for diffusion transfer between immiscible fluids
WO1999022858A1 (en) * 1997-11-05 1999-05-14 British Nuclear Fuels Plc Reactions of aromatic compounds
JPH11508182A (en) * 1995-06-16 1999-07-21 ザ ユニバーシティ オブ ワシントン Microfabricated differential extraction device and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000298109A (en) * 1999-04-13 2000-10-24 Kanagawa Acad Of Sci & Technol Microchannel structure body
JP2001137613A (en) * 1999-11-11 2001-05-22 Kawamura Inst Of Chem Res Fine chemical device having extraction structure
JP2002001102A (en) * 2000-06-20 2002-01-08 Kanagawa Acad Of Sci & Technol Microchannel structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10507962A (en) * 1994-10-22 1998-08-04 セントラル リサーチ ラボラトリーズ リミティド Method and apparatus for diffusion transfer between immiscible fluids
JPH11508182A (en) * 1995-06-16 1999-07-21 ザ ユニバーシティ オブ ワシントン Microfabricated differential extraction device and method
WO1999022858A1 (en) * 1997-11-05 1999-05-14 British Nuclear Fuels Plc Reactions of aromatic compounds

Also Published As

Publication number Publication date
JP2003028836A (en) 2003-01-29

Similar Documents

Publication Publication Date Title
US20100068105A1 (en) Microfluidic structures and how to make them
Wirth Microreactors in organic chemistry and catalysis
Zhao et al. Control and applications of immiscible liquids in microchannels
KR100927288B1 (en) Support Unit for Micro Fluid System
Jeong et al. Recent developments in scale-up of microfluidic emulsion generation via parallelization
McCreedy Fabrication techniques and materials commonly used for the production of microreactors and micro total analytical systems
WO2001025138A1 (en) Modular microfluidic devices comprising sandwiched stencils
Hibara et al. Stabilization of liquid interface and control of two-phase confluence and separation in glass microchips by utilizing octadecylsilane modification of microchannels
US6210986B1 (en) Microfluidic channel fabrication method
CA2603969C (en) Flow control through plural, parallel connecting channels to/from a manifold
Papautsky et al. A low-temperature IC-compatible process for fabricating surface-micromachined metallic microchannels
Han et al. Multi-layer plastic/glass microfluidic systems containing electrical and mechanical functionality
JPH10507962A (en) Method and apparatus for diffusion transfer between immiscible fluids
WO2007024410A2 (en) Fluidic mixing structure, method for fabricating same, and mixing method
KR20120030130A (en) Fluidic devices with diaphragm valves
WO2001025137A1 (en) Modular microfluidic devices comprising layered circuit board-type substrates
US7537327B2 (en) Internal die filters with multiple passageways which are fluidically in parallel
Angelescu Highly integrated microfluidics design
JP5470642B2 (en) Micro droplet preparation device
Alazzam et al. Microfluidic devices with patterned wettability using graphene oxide for continuous liquid–liquid two-phase separation
EP1607748B1 (en) Nucleic acid extracting kit, and nucleic acid extracting method
KR101229257B1 (en) Method of making film microreactor with 3-dimensional multilayered microchannel
Vasilakis et al. Long-lasting FR-4 surface hydrophilisation towards commercial PCB passive microfluidics
WO2003008961A1 (en) Micro-channel sold crossing structural body, and method for forming sold crossing multi-layer flow
EP1541234B1 (en) Hybrid microfluidic chip and method of manufacture

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)