WO2003004143A1 - Verfahren und vorrichtung zur herstellung von granulaten in einer zirkulierenden wirbelschicht, und nach diesem verfahren erhaltende granulate - Google Patents

Verfahren und vorrichtung zur herstellung von granulaten in einer zirkulierenden wirbelschicht, und nach diesem verfahren erhaltende granulate Download PDF

Info

Publication number
WO2003004143A1
WO2003004143A1 PCT/EP2002/004693 EP0204693W WO03004143A1 WO 2003004143 A1 WO2003004143 A1 WO 2003004143A1 EP 0204693 W EP0204693 W EP 0204693W WO 03004143 A1 WO03004143 A1 WO 03004143A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
chamber
flow
particle size
fluidized bed
Prior art date
Application number
PCT/EP2002/004693
Other languages
English (en)
French (fr)
Inventor
Hans Christian Alt
Andreas Geisselmann
Natalia Hinrichs
Hermanus Gerhardus Jozef Lansink Rotgerink
Original Assignee
Degussa Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa Ag filed Critical Degussa Ag
Publication of WO2003004143A1 publication Critical patent/WO2003004143A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B15/00Fluidised-bed furnaces; Other furnaces using or treating finely-divided materials in dispersion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/26Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/16Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by suspending the powder material in a gas, e.g. in fluidised beds or as a falling curtain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/38Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it
    • B01J8/384Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only
    • B01J8/388Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only externally, i.e. the particles leaving the vessel and subsequently re-entering it
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/145After-treatment of oxides or hydroxides, e.g. pulverising, drying, decreasing the acidity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • C01F7/025Granulation or agglomeration
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3009Physical treatment, e.g. grinding; treatment with ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3009Physical treatment, e.g. grinding; treatment with ultrasonic vibrations
    • C09C1/3036Agglomeration, granulation, pelleting
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3615Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3615Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • C09C1/3638Agglomeration, granulation, pelleting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00327Controlling the temperature by direct heat exchange
    • B01J2208/00336Controlling the temperature by direct heat exchange adding a temperature modifying medium to the reactants
    • B01J2208/00353Non-cryogenic fluids
    • B01J2208/00371Non-cryogenic fluids gaseous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • B29B2009/166Deforming granules to give a special form, e.g. spheroidizing, rounding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Definitions

  • the invention relates to a method for granulation in a circulating fluidized bed, a device for carrying out this method and granules obtained by this method and their use.
  • the products produced should be dust-free and free-flowing, and should have a narrow particle size distribution 20 and the highest possible bulk density.
  • the particle size distribution can be varied within limits by the choice and setting of the atomizing device. Depending on the atomizer used achieved a more or less broad particle size distribution. The particle size distribution always depends on the properties of the products used.
  • the minimum possible grain size is determined by the performance of the atomizer and is in the range of approx. 5 - 10 ⁇ m.
  • the maximum possible drying time specified by the size / geometry of the spray dryer limits the size of the spray drops that can just be dried (approx. 500 ⁇ m). Due to the width of the grain size distributions, a dust content is always to be expected.
  • fluidized-bed spray granulation can produce approximately spherical, massive particles for a wide range of applications.
  • An overview of known methods and devices for continuous fluidized bed spray granulation is in Hans Uhlemann, Chem. -Ing.-Tech. 62 (1990) pp. 822-834.
  • An essential feature of fluidized bed spray granulation is the formation of a stable fluidized bed within the granulator. This means that the velocity of the inflow medium must be selected so that the particles to be dried are fluidized, but pneumatic conveyance is avoided. This ensures that no particles formed are discharged, but the particles constantly change their place so that drops have an even probability of impact.
  • the proportion of fines discharged and possibly returned is less than 10 times the mass (hold up) per hour that is constantly in the granulator.
  • the fines discharged can be separated from the exhaust air and fed back to the granulator as germs.
  • Achievable particle sizes are in the range from approx. 300 ⁇ m to approx. 30 mm. If this method is operated with an integrated classifier, the one obtained is also the one obtained Grain size distribution is particularly narrow and free of fines.
  • the lower limit of the particle size is essentially determined by material properties such as solid density, tendency to stick and swirl behavior. It must also be noted that very fine particles can only be flowed at at very low speed if they are not to be removed from the granulator. Since the flow medium is the energy source in these processes, the performance decreases extremely. As a result, the build-up rates that can be achieved are so low that the granulation process can then no longer be operated economically.
  • the known fluidized bed agglomeration is the combination of spray drying and fluidized bed.
  • the spray jet which is not completely dry, is intercepted by a drying fluidized bed. Due to the tendency of the solid, which is still moist, to stick, individual particles combine to form agglomerates, which then grow and dry.
  • the process can be done through the
  • Operating parameters of the fluidized bed and the residual moisture can be controlled in the dried spray jet.
  • the object of the invention is to develop a method for producing approximately spherical, massive particles with a narrow particle size distribution in the particle size range of less than 100 ⁇ m from a relatively low-concentration solid suspension or solution. This object is achieved by a continuous process for the production of at least approximately spherical, essentially solid particles, in which the particles are granulated in a circulating fluidized bed.
  • a drying gas flows through the chamber at a speed sufficient to effect pneumatic conveyance of already partially dried or agglomerated particles
  • the dry gas advantageously flows through the chamber counter to the force of gravity and is introduced into the chamber via an inflow floor.
  • Fluidized bed spray granulation is not a stationary fluidized bed, but a circulating fluidized bed (Circulating Fluidized Bed CFB).
  • the flow rate of the dry gas flow is chosen so that it is above the limit at which the transition from the stable fluidized bed to the pneumatic Funding takes place. This means that the flow velocity of the gas stream is set so high that a considerable part of the solid mass leaves the granulator upwards, whereby it is separated from the gas stream and returned to the granulator.
  • the inflow velocity is preferably 2 to 10 times, particularly preferably 3 to 6 times the velocity that is necessary to discharge particles of the desired particle size with the dry gas stream.
  • the process according to the invention can achieve high build-up rates and that particles in the size range less than 100 ⁇ m can also be accessed by spray granulation.
  • the solid can be an inorganic or organic material or a mixture of several such materials, optionally with the addition of one or more additional binders or others
  • Act auxiliaries It is preferably an inorganic oxide or a mixture of several inorganic oxides.
  • the inorganic oxides can be selected from the following group: A1 2 0 3 , Si0 2 , Ti0 2 , Zr0 2 , Nb 2 ⁇ 5, zeolites, aluminosilicates. In a preferred one
  • Embodiment of the invention can be used as a suspension medium water.
  • the particles are calcined at 100-1200 ° C. after separation.
  • the dried and optionally calcined particles thus produced are very particularly suitable for use as a catalyst support in fluidized bed or suspension processes, in particular in olefin polymerization.
  • Another object of the invention is a device for performing the method according to the invention, which has the following features:
  • a solids separation system (2) which is connected to the chamber via this discharge opening and which contains an exhaust pipe, optionally provided with a filter unit, for discharging the gas stream,
  • FIG. 1 The device according to the invention, in which the method according to the invention can be carried out, is shown in FIG. 1.
  • the device consists of a preferably cylindrical and high granulation chamber 1 with a diameter to height ratio of 1: 1 to 1: 5, preferably 1: 2.5. It is provided with a suitable inflow floor at the lower end. The pressure drop in the floor must be such that the inflow medium is distributed evenly over the full cross-section of the apparatus and there are no dead zones.
  • the cylindrical part of the exhaust gas duct of the granulator opens into the separating system 2, for example via one or more separating cyclones connected in series and an exhaust air filter in the exhaust gas chimney.
  • the solids separators are with solids return lines in the
  • the granulation chamber is supplied with hot drying gas (e.g. flue gas, air, nitrogen) via a fan and a suitable gas heater.
  • hot drying gas e.g. flue gas, air, nitrogen
  • a visible discharge tube 3 which can have various shapes, is preferably attached in the center at the lower end of the granulation chamber and opens into a recess in the inflow base. It can be equipped with internals to enhance the classifier performance, or can be connected to a classifier.
  • a defined upward sifting flow can be set in the classifier tube via a gas supply that is independent of the main flow. Contrary to this flow, the solid can be discharged via a further pneumatic seal.
  • Pneumatic nozzles and pressure nozzles can be used to atomize the suspension or solution.
  • a combined dual-substance pressure nozzle is preferably used, the suspension being conveyed to the nozzle via a multi-stage, low-pulsation high-pressure pump.
  • a three-substance nozzle or a multi-substance nozzle can also be used.
  • the pressure used by this nozzle should be such that a high pressure drop is achieved with the flow rates under operating conditions.
  • the Pressure atomization overlaid by an additional two-substance atomization using compressed air.
  • the nozzle is preferably located at the bottom above the inflow floor, centrally in the middle of the granulation chamber above the classifier opening with the spray direction upwards.
  • the nozzle jet and thus the opening angle can be adjusted with an adjustable air cap.
  • the inflow speed of the hot dry gas in the granulation chamber is significantly higher than the discharge speed of the particles to be produced.
  • the nozzle is used to spray a suspension or solution containing solids into the granulation chamber which is operated with hot drying gas but is still free of solids.
  • the liquid evaporates there and solids remain.
  • the particle stream forming in the granulation chamber is completely discharged from this chamber and is separated, for example with the aid of cyclones, and recycled into the chamber. This is preferably done with a very high circulation rate.
  • Preferred circulation rates are 10-1000 times, particularly preferably 100-1000 times the mass hold-up in the granulator per hour.
  • a pressure loss measurement for example via the first cyclone, can be used as a measurement for the circulating mass flow be used. With higher solids loading, the pressure drop across the cyclone increases under otherwise identical operating conditions. If the cyclone is overloaded and breaks down, the differential pressure then reaches a maximum value that does not increase any further. The desired operating point is slightly below this level.
  • the recycled solid In the upward flow of the drying chamber, the recycled solid is conveyed upwards past the nozzle. Solid particles and spray droplets meet in the jet stream. The liquid dries on the
  • the particles grow in the circulation layer.
  • the spray drops In order to achieve granules that are as spherical as possible, the spray drops must be significantly smaller than the granules which are circulated.
  • the circulating mass must be kept constant, so that after building up a sufficient mass hold-up in the granulator, part of the mass contained therein must be continuously discharged.
  • the classifier is controlled so that the mass circulating in the system remains constant.
  • the grain size to be achieved in the discharge is of
  • Germ balance in the granulator dependent This is largely determined by the equilibrium of nucleation due to abrasion or spray drops not falling and the granulate build-up.
  • the grain size can be targeted either by choosing the drying parameters or. on the other hand, can be increased by adding binders.
  • binders increases the granulate strength, which reduces abrasion. This creates fewer germs. Again, the average grain size of the granules increases.
  • the process according to the invention can be supplemented by product drying integrated in the process.
  • An aqueous suspension with 10% by weight of Aerosil 380 is atomized in the device according to the invention.
  • An aqueous suspension with 5% by weight of Aerosil 300 and approximately 5% by weight of Aerosil 200 is atomized in the device according to the invention.
  • the settings supply air volume flow 500 m N 3 / h, supply air temperature 230 ° C and suspension mass flow 65 kg / h lead to a
  • An aqueous suspension with 10% by weight of Aerosil 300 and 0.05% by weight of tylose is atomized in the device according to the invention.
  • Example 1 The particles described in Example 1 are treated at 500 ° C. for 6 hours under nitrogen. Using these particles as catalyst supports, a catalyst is prepared according to the method described in US 4,427,573.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geology (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Kontinuierliches Verfahren zur Herstellung von zumindest annähernd sphärischen im wesentlichen massiven Teilchen, in dem die Teilchen in einer zirkulierenden Wirbelschicht granuliert werden. Dies kann insbesondere erreicht werden, in dem man: a) eine Suspension oder eine Lösung des die Teilchen bildenden Feststoffs in einer Kammer versprüht, b) ein Trockengas die Kammer mit einer Geschwindigkeit durchströmen lässt, die ausreicht, um eine pneumatische Förderung von bereits teilweise getrockneten oder agglomerierten Teilchen zu bewirken, c) die vom Trockengasstrom geförderten Teilchen aus dem Abgasstrom abtrennt, d) die aus dem Abgasstrom abgetrennten Teilchen der Kammer zumindest teilweise wieder zuführt und e) Teilchen mit einer Größe innerhalb des gewünschten Teilchengrößenbereichs kontinuierlich aus der Kammer austrägt, so dass die sich in der Kammer befindliche Masse konstant bleibt. Weiterhin betrifft die vorliegende Erfindung eine Vorrichtung zur Durchführung dieses Verfahrens, die nach dem Verfahren erhältlichen Teilchen sowie deren Verwendung.

Description

VERFAHREN UND VORRICHTUNG ZUR HERSTELLUNG VON GRANULATEN IN EINER ZIRKULIERENDEN WIRBELSCHICHT, UND NACH DIESEM VERFAHREN ERHALTENDE GRANULATE
Die Erfindung betrifft ein Verfahren zur Granulation in einer zirkulierenden Wirbelschicht, eine Vorrichtung zur Durchführung dieses Verfahrens und nach diesem Verfahren erhaltene Granulate sowie deren Verwendung.
10 Um Flüssigkeiten wie zum Beispiel Suspensionen, Lösungen und Schmelzen in marktgängige Feststoffe zu überführen, werden bekannte formgebende Trocknungsverfahren, wie Sprühtrocknung, Wirbelschicht-Sprühgranulation oder Wirbelschicht-Agglomeration, eingesetzt. Sie führen zu mehr
15 oder weniger kugelförmigen Granulaten oder Agglomeraten.
An diese Granulate oder Agglomerate werden vermehrt hohe Anforderungen hinsichtlich ihrer Schüttguteigenschaften gestellt. So sollten die erzeugten Produkte staubfrei und gut rieselfähig sein sowie eine enge Korngrößenverteilung 20 und eine möglichst hohe Schüttdichte aufweisen.
Aus F.V. Shaw, "Role of Spray Drying in Produktion of Catalysts and Catalyst Supports", American Chemical Society New York City Meeting, 25-30 August, 1991 geht hervor, dass bekannte Sprühtrocknungsverfahren zwar nahezu kugelförmige
25 Partikel ergeben können, es dabei jedoch nicht selten zur
Bildung von Hohlkugeln oder Ringen kommt. Diese weisen eine geringere Stabilität als massive Partikel auf, so daß es beim Handling zu Abrieb und damit zu unerwünschter Staubbildung kommt. Außerdem wird die Schüttdichte durch
30 derartige hohle Strukturen reduziert.
Die Partikelgrößenverteilung kann durch Wahl und Einstellung des Zerstäubungsorgans in Grenzen variiert werden. Abhängig vom verwendeten Zerstäubungsorgan wird eine mehr oder weniger breite Partikelgrößenverteilung erzielt. Die Partikelgrößenverteilung hängt immer auch von den Eigenschaften der eingesetzten Produkte ab. Die minimal mögliche Korngröße wird von der Leistungsfähigkeit des Zerstäuberorgans bestimmt und liegt im Bereich von ca. 5 - 10 μm. Nach oben begrenzt die von der Größe/Geometrie des Sprühtrockners vorgegebene maximal mögliche Trocknungszeit die Größe der gerade noch trockenbaren Sprühtropfen (ca. 500 μm) . Durch die Breite der Korngrößenverteilungen ist immer auch mit einem Staubanteil zu rechnen.
Durch das bekannte Verfahren der Wirbelschicht- Sprühgranulation können annähernd sphärische, massive Partikel für einen weiten Anwendungsbereich hergestellt werden. Eine Übersicht über bekannte Verfahren und Vorrichtungen zur kontinuierlichen Wirbelschicht- Sprühgranulation ist in Hans Uhlemann, Chem. -Ing.-Tech. 62 (1990) S. 822-834 angegeben. Ein wesentliches Merkmal der Wirbelschicht-Sprühgranulation ist die Ausbildung einer stabilen Wirbelschicht innerhalb des Granulators. Das bedeutet, dass die Geschwindigkeit des Anströmmediums so gewählt werden muss, dass es zur Fluidisierung der zu trocknenden Teilchen kommt, aber pneumatische Förderung vermieden wird. Somit wird sichergestellt, dass keine gebildeten Teilchen ausgetragen werden, aber ein ständiger Platzwechsel der Teilchen stattfindet, damit einen gleichmäßige Auftreffwahrscheinlichkeit für Tropfen gegeben ist. In üblichen Verfahren beträgt der Anteil an ausgetragenem und eventuell zurückgeführtem Feingut weniger als das 10-fache der sich konstant im Granulator befindlichen Masse (hold up) pro Stunde. Das ausgetragene Feingut kann von der Abluft abgetrennt werden und als Keime dem Granulator wieder zugeführt werden. Erzielbare Partikelgrößen liegen im Bereich von ca. 300 μm bis ca. 30 mm. Wird dieses Verfahren mit einem integriertem Sichter betrieben, so ist außerdem die erhaltene Korngrößenverteilung noch besonders eng und frei von Feinanteil.
Die untere Grenze der Teilchengröße wird wesentlich von stofflichen Eigenschaften, wie Feststoffdichte, Klebeneigung und Wirbelverhalten, bestimmt. Weiter muß auch beachtet werden, daß sehr feine Partikel nur mit sehr niedriger Geschwindigkeit angeströmt werden können, sollen sie nicht aus dem Granulator ausgetragen werden. Da bei diesen Verfahren das Anströmmedium der Energieträger ist, geht die Leistungsfähigkeit extrem zurück. Dadurch werden die erzielbaren Aufbauraten so gering, daß das Granulationsverfahren dann nicht mehr wirtschaftlich betrieben werden kann.
Unter der bekannten Wirbelschicht-Agglomeration ist die Kombination von Sprühtrocknung und Wirbelschicht zu verstehen. Der nicht ganz durchgetrocknete Spray-Strahl wird von einer Trocknungswirbelschicht abgefangen. Durch die Klebeneigung des noch feuchten Feststoffs verbinden sich Einzelpartikel zu Agglomeraten, die im weiteren Verlauf anwachsen und trocknen. Der Prozeß kann über die
Betriebsparameter der Wirbelschicht und der Restfeuchte im angetrockneten Spray-Strahl gesteuert werden.
Der für dieses Verfahren mögliche Korngrößenbereich der erzeugten Partikel beträgt ca. 0,2 bis 3 mm.' Es werden sehr unregelmäßig geformte Agglo erate mit einer sehr breiten Korngrößenverteilung erhalten. Die Agglomerate sind nicht sehr dicht aber staubfrei und sehr gut löslich oder redispergierbar.
Die Aufgabe der Erfindung ist es, ein Verfahren zu entwickeln, um näherungsweise sphärische, massive Partikel mit enger Partikelgrößenverteilung im Partikelgrößenbereich kleiner als 100 μm aus einer relativ niedrig konzentrierten FeststoffSuspension oder Lösung herzustellen. Diese Aufgabe wird durch ein kontinuierliches Verfahren zur Herstellung von zumindest annähernd sphärischen im wesentlichen massiven Teilchen, in dem die Teilchen in einer zirkulierenden Wirbelschicht granuliert werden, gelöst.
Eine Ausführungsform der vorliegenden Erfindung betrifft ein Verfahren, in dem man
a) eine Suspension oder eine Lösung des die Teilchen bildenden Feststoffs in einer Kammer versprüht,
b) ein Trockengas die Kammer mit einer Geschwindigkeit durchströmen lässt, die ausreicht, um eine pneumatische Förderung von bereits teilweise getrockneten oder agglomerierten Teilchen zu bewirken,
c) die vom Trockengasstrom geförderten Teilchen aus dem Abgasstrom abtrennt,
d) die aus dem Abgasstrom abgetrennten Teilchen der Kammer zumindest teilweise wieder zuführt und
e) Teilchen mit einer Größe innerhalb des gewünschten Teilchengroßenbereichs kontinuierlich aus der Kammer austrägt, so dass die sich in der Kammer befindliche Masse konstant bleibt.
Vorteilhafterweise durchströmt das Trockengas die Kammer entgegen der Gravitationskraft und wird über einen Anströmboden in die Kammer eingeleitet.
Im Unterschied zu den bekannten Verfahren der
Wirbelschicht-Sprühgranulation wird keine stationäre Wirbelschicht, sondern eine zirkulierende Wirbelschicht (Circulating Fluidised Bed CFB) aufgebaut. Die Strömungsgeschwindigkeit des Trockengasstroms wird dabei so wählt, dass sie oberhalb des Grenzwerts liegt, bei dem der Übergang von der stabilen Wirbelschicht zur pneumatischen Förderung stattfindet. Das bedeutet, dass die Anströmgeschwindigkeit des Gasstromes so hoch eingestellt wird, dass ein beachtlicher Teil der Feststoffmasse den Granulator nach oben verlässt, wobei er vom Gasstrom abgetrennt und in den Granulator zurückgeführt wird.
Vorzugsweise wird beträgt die Anströmgeschwindigkeit das 2- 10-fache, besonders bevorzugt das 3-6-fache der Geschwindigkeit, die notwendig ist, um Teilchen der gewünschten Teilchengröße mit dem Trockengasstrom auszutragen.
Es wurde überraschenderweise festgestellt, dass mit dem erfindungsgemässen Verfahren im Gegensatz zu bekannten Verfahren der Wirbelschicht-Sprühgranulation hohe Aufbauraten realisiert werden können und auch Partikel im Größenbereich kleiner 100 μm über eine Sprühgranulation zugänglich sind.
Bei dem Feststoff kann es sich um ein anorganisches oder organisches Material oder eine Mischung von mehreren solcher Materialien gegebenenfalls mit Beimischung eines oder mehrerer zusätzlicher Bindemittel oder anderer
Hilfsstoffe handeln. Vorzugsweise handelt es sich um ein anorganisches Oxid beziehungsweise eine Mischung mehrerer anorganischer Oxide. Die anorganischen Oxide können aus folgender Gruppe gewählt werden: A1203, Si02, Ti02, Zr02, Nb2θ5, Zeolithe, Alumosilikate. In einer bevorzugten
Ausführungsform der Erfindung kann als Suspensionsmedium Wasser eingesetzt werden.
Gemäß einer weiteren bevorzugten Ausführungsform werden die Teilchen nach der Abtrennung bei 100 - 1200°C calciniert.
Die so hergestellten getrockneten und gegebenenfalls calcinierten Teilchen sind ganz besonders geeignet für die Verwendung als Katalysatorträger in Wirbelschicht- oder Suspensionsverfahren, insbesondere bei der Olefinpoly erisation. Ein weiterer Gegenstand der Erfindung ist eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens, welche folgende Merkmale aufweist:
a) eine Granulatorkammer (1) mit einem Durchmesser-Höhe- Verhältnis von 1:1 bis 1:5, die einen Anströmboden enthält,
b) ein in dieser Kammer angeordneten Zerstäubungsorgan für die Suspension oder Lösung,
c) Zuführorgan für das Fluidisier- bzw. Trocknungsmedium
d) eine im oberen Teil der Kammer angeordnete
Austragsöffnung für das zu recyclierende Produkt,
e) ein Feststoffabscheidesystem (2), das über diese Austragsöffnung mit der Kammer verbunden wird, und das ein gegebenenfalls mit einer Filtereinheit versehenes Abluftröhr zur Abführung des Gasstromes enthält,
f) eine Rückführung für das zu recyclierende Produkt, die ausgehend von der Austragsöffnung in dem unteren Teil der Kammer mündet,
g) gegebenenfalls ein Sichter (3) , das am unteren Teil der Kammer angebracht ist.
Die erfindungsgemäße Vorrichtung, in der das erfindungsgemäße Verfahren durchgeführt werden kann, ist in Fig. 1 dargestellt.
Die Vorrichtung besteht aus einer vorzugsweise zylindrischen und hohen Granulationskammer 1 mit einem Durchmesser zu Höhe Verhältnis von 1:1 bis 1:5, vorzugsweise 1:2,5. Sie ist am unteren Ende mit einem geeigneten Anströmboden versehen. Der Druckverlust des Bodens muß so bemessen sein, dass sich das Anströmmedium gleichmäßig auf den vollen Apparatequerschnitt verteilt und keine Totzonen vorhanden sind. Nach einem weiteren zylindrischen Teil mündet die Abgasführung des Granulators in das Abscheidesystem 2, beispielsweise über ein oder mehrere in Reihe geschaltete Abscheidezyklone und einen Abluftfilter in den Abgaskamin. Die Feststoffabscheider sind mit Feststoffrückführleitungen in die
Granulationskammer knapp über dem Anströmboden versehen. Zum pneumatischen Abschluß der Feststoffabscheider werden geeignete Apparate wie zum Beispiel Zellradschleusen eingesetzt. Die Granulationskammer wird über einen Ventilator und einen geeigneten Gaserhitzer mit heißem Trocknungsgas (zum Beispiel Rauchgas, Luft, Stickstoff) versorgt.
Ein sichtendes Austragsrohr 3, das vielfältige Formen besitzen kann, ist vorzugsweise am unteren Ende der Granulationskammer mittig angebracht und mündet in einer Aussparung des Anströmbodens. Es kann mit Einbauten zur Verstärkung der Sichterleistung versehen werden, oder mit einer Sichter ammer verbunden sein. Über eine vom Hauptstrom unabhängige Gasversorgung kann im Sichterrohr eine definierte sichtende Aufwärtsströmung eingestellt werden. Entgegen dieser Strömung kann der Feststoff über einen weiteren pneumatischen Abschluß ausgetragen werden.
Um annähernd sphärische Teilchen zu erzeugen, ist es vorteilhaft, die Suspension oder Lösung in sehr feine Tröpfchen zu zerteilen. Zur Zerstäubung der Suspension oder Lösung können pneumatische Düsen und Druckdüsen eingesetzt werden. Vorzugsweise kommt eine kombinierte Zweistoffdruckdüse zum Einsatz, wobei die Suspension über eine vielstufige pulsationsarme Hochdruckpumpe zur Düse gefördert wird. Es können auch eine Dreistoffdüse oder Mehrstoffdüse eingesetzt werden. Der Druckeinsatz dieser Düse sollte so bemessen sein, dass mit den Durchflußraten unter Betriebsbedingungen ein hoher Druckabfall erzielt wird. Um ein sehr feines Spray zu erhalten, wird dabei die Druckzerstäubung noch durch eine zusätzliche ZweistoffZerstäubung mittels Pressluft überlagert.
Die Düse sitzt vorzugsweise unten über dem Anströmboden zentral in der Mitte der Granulationskammer über der Sichteröffnung mit der Sprührichtung nach oben. Mit einer verstellbaren Luftkappe kann der Düsenstrahl und damit der Öffnungswinkel eingestellt werden.
Die Granulation von Feststoffen in der zirkulierenden Wirbelschicht (CFB) erfolgt auf die im folgendem beschriebene Weise. Wesentlich ist, dass die
Anströmgeschwindigkeit des heißen Trockengases in der Granulationskammer deutlich über der Austragsgeschwindigkeit der herzustellenden Partikel liegt.
Mit der Düse wird eine feststoffhaltige Suspension oder Lösung in die mit heißem Trocknungsgas betriebene aber noch feststofffreie Granulationskammer gesprüht. Dort verdampft die Flüssigkeit und Feststoffe bleiben übrig. Der sich in der Granulationskammer bildende Partikelstrom wird komplett aus dieser Kammer ausgetragen und wird zum Beispiel mit Hilfe von Zyklonen abgeschieden und in die Kammer rezykliert. Dies geschieht vorzugsweise mit einer sehr hohen Zirkulationsrate. Bevorzugte Zirkulationsraten betragen das 10 -1000 -fache, besonders bevorzugt das 100 - 1000 -fache des Massen-hold-ups im Granulator pro Stunde.
Um genügend Sprühkeime zur Aufnahme der
Suspensionströpfchen in dieser zirkulierenden Masse zu haben, ist es erforderlich, einen ausreichenden Massen- hold-up im System zu halten, was mit einem hohen zirkulierenden Massenstrom einhergeht. Die Auslegung der Feststoffabscheidung des Abgasstroms ist diesem hohen Durchsatz anzupassen.
Als Messgröße für den zirkulierenden Massenstrom kann eine Druckverlustmessung zum Beispiel über den ersten Zyklon eingesetzt werden. Mit höherer Feststoffbeladung erhöht sich bei sonst gleichen Betriebsbedingungen der Druckabfall über den Zyklon. Ist der Zyklon überladen und schlägt durch, erreicht der Differenzdruck dann einen nicht weiter ansteigenden Maximalwert. Der anzustrebende Betriebspunkt ist etwas unter diesem Niveau.
In der Aufwärtsströmung der Trockenkammer wird der rezyklierte Feststoff an der Düse vorbei nach oben gefördert. Im Düsenstrahl treffen sich Feststoffteilchen und Sprühtröpfchen. Die Flüssigkeit trocknet auf der
Oberfläche der Partikel ab, und es verbleibt der enthaltene Feststoff. Dadurch wachsen die Partikel in der Zirkulationsschicht an. Um möglichst sphärische Granulate zu erzielen, müssen die Sprühtropfen wesentlich kleiner als die im Kreis geführten Granulate sein.
Die zirkulierende Masse muß konstant gehalten werden, so dass nach dem Aufbau eines ausreichenden Massen-hold-ups im Granulator ein Teil der darin befindlichen Masse kontinuierlich ausgetragen werden muß. Durch Zurücknahme der Gasströmung des integrierten Sichters werden nur die groben Teilchen ausgetragen und das Feingut verbleibt zum weiteren Granulataufbau im Granulator. Der Sichter wird so geregelt, daß die im System zirkulierende Masse konstant bleibt.
Die im Austrag zu erzielende Korngröße ist von der
Keimbilanz im Granulator abhängig. Diese wird wesentlich vom Gleichgewicht von Keimbildung durch Abrieb oder nicht treffende Sprühtropfen und dem Granulataufbau bestimmt. Gezielt kann die Korngröße einerseits durch die Wahl der Trocknungsparameter oder. andererseits durch Zugabe von Bindemittel erhöht werden.
So können andere Trocknungsparameter durch die Erhöhung der Feedmenge eingestellt werden. Dadurch sinkt die Ablufttemperatur und es werden mehr Sprühtröpfchen erzeugt, 3/004143
10
die langsamer trocknen. Damit erhöht sich die
Trefferwahrscheinlichkeit auf die Granulatkeime, zu dem bleibt die Granulatoberfläche länger feucht. Es bilden sich im Mittel größere Keime.
Der Zusatz von Bindemittel erhöht die Granulatfestigkeit, wodurch der Abrieb verringert wird. Damit entstehen weniger Keime. Wiederum erhöht sich die mittlere Korngröße der Granulate.
Das erfindungsgemäße Verfahren kann durch eine in das Verfahren integrierte Produkttrocknung ergänzt werden.
Die vorliegende Erfindung wird anhand von Beispielen näher erläutert.
Beispiel 1:
Eine wässrige Suspension mit 10 Gew.-% Aerosil 380 wird in der erfindungsgemäßen Vorrichtung verdüst. Die Einstellungen Zuluftvolumenstrom 500 mN 3 /h, Zulufttemperatur 230 °C und Suspensionsmassenstrom 60 kg/h führen zu einer Partikelgrößenverteilung mit dχo = 25 μm, dso = 50 μm, dgo = 75 μm.
Beispiel 2:
Eine wässrige Suspension mit 5 Gew.-% Aerosil 300 und ca. 5 Gew.-% Aerosil 200 wird in der erfindungsgemäßen Vorrichtung verdüst. Die Einstellungen Zuluftvolumenstrom 500 mN 3 /h, Zulufttemperatur 230 °C und Suspensionsmassenstrom 65 kg/h führen zu einer
Partikelgrößenverteilung mit dχ0 = 35 μm, dso = 60 V^r dgo = 95 μm.
Beispiel 3:
Eine wässrige Suspension mit 10 Gew.-% Aerosil 300 und 0,6 Gew.-% Titandioxid P 25 werden in der erfindungsgemäßen
Vorrichtung verdüst. Die Einstellungen Zuluftvolumenstrom 900 mN 3 /h, Zulufttemperatur 135 °C und Suspensionsmassenstrom 60 kg/h führen zu einer Partikelgrößenverteilung mit dι0 = 45 μm, d50 = 75 μm, dg0 = 120 μm.
Beispiel 4:
Eine wässrige Suspension mit 10 Gew.-% Aerosil 300 und 0,05 Gew.-% Tylose werden in der erfindungsgemäßen Vorrichtung verdüst. Die Einstellungen Zuluftvolumenstrom 500 mN 3 /h, Zulufttemperatur 300 °C und Suspensionsmassenstrom 75 kg/h führen zu einer Partikelgrößenverteilung mit dχ0 = 55 μm, d50 = 85 μm, d90 = 145 μm.
Beispiel 5a:
Präparation eines Polymerisationskatalysators:
Die in Beispiel 1 beschriebenen Teilchen werden bei 500 °C 6h unter Stickstoff behandelt. Unter Verwendung dieser Teilchen als Katalysatorträger wird nach der in US 4,427,573 beschriebenen Methode ein Katalysator präpariert.
Beispiel 5b:
Polymerisation von Ethen:
Es wird in Suspension (Suspensionsmedium: 250 ml EC 180) bei 70°C und einem Ethylendruck von 6 bar unter Zugabe von 0,9 ml IM Lösung von Triethylaluminium in Hexan polymerisiert. Die Katalysatormenge wird so bemessen, dass sich 0,0055 nmol Titan im Reaktor befinden.

Claims

Patentansprüche :
1. Kontinuierliches Verfahren zur Herstellung von zumindest annähernd sphärischen im wesentlichen massiven Teilchen, in dem die Teilchen in einer zirkulierenden Wirbelschicht granuliert werden.
2. Verfahren nach Anspruch 1, in dem man:
a) eine Suspension .oder eine Lösung des die Teilchen bildenden Feststoffs in einer Kammer versprüht,
b) ein Trockengas die Kammer mit einer Geschwindigkeit durchströmen lässt, die ausreicht, um eine pneumatische Förderung von bereits teilweise getrockneten oder agglomerierten Teilchen zu bewirken,
c) die vom Trockengasstrom geförderten Teilchen aus dem Abgasstrom abtrennt,
d) die aus dem Abgasstrom abgetrennten Teilchen der Kammer zumindest teilweise wieder zuführt und
e) Teilchen mit einer Größe innerhalb des gewünschten Teilchengroßenbereichs kontinuierlich aus der Kammer austrägt, so dass die sich in der Kammer befindliche Masse konstant bleibt.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass man das Trockengas die Kammer entgegen der Gravitationskraft durchströmen lässt und über einen Anströmboden in die Kammer einleitet.
4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass man die Strömungsgeschwindigkeit des Trockengasstroms so wählt, dass sie oberhalb des Grenzwerts liegt, bei dem der Übergang von der stabilen Wirbelschicht zur pneumatischen Förderung stattfindet.
5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Anströmgeschwindigkeit des Trockengases höher ist als die Geschwindigkeit, die notwendig ist, um Teilchen der gewünschten Teilchengröße mit dem Trockengasstrom auszutragen.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Anströmgeschwindigkeit das 2-10-fache, vorzugsweise das 3-6-fache der Geschwindigkeit beträgt, die notwendig ist, um Teilchen der gewünschten Teilchengröße mit dem Trockengasstrom auszutragen.
7. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass man die Teilchen mit einer Teilchengröße innerhalb des gewünschten Bereichs über einen Sichtstrom austrägt.
8. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei dem Feststoff um ein anorganisches Oxid oder Mischungen mehrere anorganischer Oxide gegebenenfalls mit Beimischung eines oder mehrerer zusätzlicher Bindemittel oder organischer Hilfsstoffe handelt.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die anorganischen Oxide aus der Gruppe bestehend aus A1203, Si02, Ti02, Zr02, Nb205, Zeolithe und Alumosilikate .
10. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Suspensionsmedium oder Lösungsmittel Wasser ist.
11. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Teilchen nach der Abtrennung bei 100 - 1200 °C calciniert werden.
12. Teilchen erhältlich nach dem Verfahren nach einem der Ansprüche 1-11.
13. Teilchen nach Anspruch 11, dadurch gekennzeichnet, dass sie eine Teilchengröße von kleiner 100 μm aufweisen.
14. Verwendung der Teilchen nach einem der Ansprüche 11 und 12 als Katalysatorträger in Wirbelschicht- oder Suspensionsverfahren, insbesondere bei der Olefinpolymerisatio .
15. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 - 11, welche folgende Merkmale aufweist:
a) eine Granulatorkammer (1) mit einem Durchmesser- Höhe-Verhältnis von 1:1 bis 1:5, die einen Anströmboden enthält,
b) ein in dieser Kammer angeordneten Zerstäubungsorgan für die Suspension oder Lösung,
c) Zuführorgan für das Fluidisier- bzw. Trocknungsmedium,
d) eine im oberen Teil der Kammer angeordnete Austragsöffnung für das zu recyclierende Produkt,
e) ein Feststoffabscheidesystem (2) , das über diese Austragsöffnung mit der Kammer verbunden wird und das ein gegebenenfalls mit einer Filtereinheit versehenes Abluftrohr zur Abführung des Gasstromes enthält,
f) eine Rückführung für das zu recyclierende Produkt, die ausgehend von der Austragsöffnung in dem unteren
Teil der Kammer mündet.
PCT/EP2002/004693 2001-07-03 2002-04-27 Verfahren und vorrichtung zur herstellung von granulaten in einer zirkulierenden wirbelschicht, und nach diesem verfahren erhaltende granulate WO2003004143A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10132177.5 2001-07-03
DE10132177A DE10132177A1 (de) 2001-07-03 2001-07-03 Verfahren zur Herstellung von Granulaten in einer zirkulierenden Wirbelschicht, Vorrichtung zur Durchführung dieses Verfahrens und nach diesem Verfahren erhaltene Granulate

Publications (1)

Publication Number Publication Date
WO2003004143A1 true WO2003004143A1 (de) 2003-01-16

Family

ID=7690424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/004693 WO2003004143A1 (de) 2001-07-03 2002-04-27 Verfahren und vorrichtung zur herstellung von granulaten in einer zirkulierenden wirbelschicht, und nach diesem verfahren erhaltende granulate

Country Status (3)

Country Link
US (1) US20030037415A1 (de)
DE (1) DE10132177A1 (de)
WO (1) WO2003004143A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007076990A2 (de) 2005-12-23 2007-07-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Agglomeratpartikel, verfahren zur herstellung von nanokompositen sowie deren verwendung
EP3033168A4 (de) * 2013-08-12 2016-09-21 United Technologies Corp Pulverkugelglühen über wirbelschicht
US9555474B2 (en) 2013-08-12 2017-01-31 United Technologies Corporation High temperature fluidized bed for powder treatment
EP3384980A1 (de) * 2017-04-06 2018-10-10 SASOL Germany GmbH Verfahren zur herstellung von verschleissstabilen granulierten materialien
CN116272652A (zh) * 2023-04-11 2023-06-23 江苏金旺智能科技有限公司 干悬浮剂造粒系统及方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10256530A1 (de) * 2002-12-04 2004-06-24 Degussa Ag Verfahren zur Herstellung von wasserfreiem Alkalisulfid
DE10331366A1 (de) * 2003-07-11 2005-01-27 Degussa Ag Verfahren zur Granulation eines Tierfuttermittel-Zusatzes
KR101310130B1 (ko) * 2012-02-10 2013-09-24 나노인텍 주식회사 원료의 미립자 가공을 위한 분쇄 및 분산장치
CN109502553B (zh) * 2019-01-19 2023-08-22 广西晶联光电材料有限责任公司 一种制备金属氧化物粉体的装置和方法
CN112624806B (zh) * 2020-12-23 2022-10-21 嘉施利(宜城)化肥有限公司 一种复合肥中微量元素的配制方法
KR20230100375A (ko) * 2021-12-28 2023-07-05 씨제이제일제당 (주) 유동성이 개선된 바이오매스 과립 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3884645A (en) * 1970-04-13 1975-05-20 Stauffer Chemical Co Production of anhydrous sodium metasilicate in a fluidized bed
US4946654A (en) * 1984-04-07 1990-08-07 Bayer Aktiengesellschaft Process for preparing granulates
US5165998A (en) * 1984-09-17 1992-11-24 Bp Chemicals Limited Prepolymers of olefins containing a chromiumoxide and a granular refractory oxide support
WO1996014927A1 (en) * 1994-11-09 1996-05-23 G.S. S.R.L. Coating System Method and apparatus for coating particles
DE19719481A1 (de) * 1997-05-07 1998-11-12 Metallgesellschaft Ag Verfahren zur Einstellung einer zirkulierenden Wirbelschicht und Verwendung des Verfahrens

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6025448A (en) * 1989-08-31 2000-02-15 The Dow Chemical Company Gas phase polymerization of olefins
DE19520411C1 (de) * 1995-06-09 1996-12-19 Metallgesellschaft Ag Verfahren zum Erzeugen eines Meta-Kaolin-Weißpigments aus Kaolinit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3884645A (en) * 1970-04-13 1975-05-20 Stauffer Chemical Co Production of anhydrous sodium metasilicate in a fluidized bed
US4946654A (en) * 1984-04-07 1990-08-07 Bayer Aktiengesellschaft Process for preparing granulates
US5165998A (en) * 1984-09-17 1992-11-24 Bp Chemicals Limited Prepolymers of olefins containing a chromiumoxide and a granular refractory oxide support
WO1996014927A1 (en) * 1994-11-09 1996-05-23 G.S. S.R.L. Coating System Method and apparatus for coating particles
DE19719481A1 (de) * 1997-05-07 1998-11-12 Metallgesellschaft Ag Verfahren zur Einstellung einer zirkulierenden Wirbelschicht und Verwendung des Verfahrens

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007076990A2 (de) 2005-12-23 2007-07-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Agglomeratpartikel, verfahren zur herstellung von nanokompositen sowie deren verwendung
WO2007076990A3 (de) * 2005-12-23 2007-12-06 Fraunhofer Ges Forschung Agglomeratpartikel, verfahren zur herstellung von nanokompositen sowie deren verwendung
EP3033168A4 (de) * 2013-08-12 2016-09-21 United Technologies Corp Pulverkugelglühen über wirbelschicht
US9555474B2 (en) 2013-08-12 2017-01-31 United Technologies Corporation High temperature fluidized bed for powder treatment
US10376961B2 (en) 2013-08-12 2019-08-13 United Technologies Corporation Powder spheroidizing via fluidized bed
EP3384980A1 (de) * 2017-04-06 2018-10-10 SASOL Germany GmbH Verfahren zur herstellung von verschleissstabilen granulierten materialien
WO2018185194A1 (en) * 2017-04-06 2018-10-11 Sasol Germany Gmbh Process for production of attrition stable granulated material
CN116272652A (zh) * 2023-04-11 2023-06-23 江苏金旺智能科技有限公司 干悬浮剂造粒系统及方法
CN116272652B (zh) * 2023-04-11 2023-10-27 江苏金旺智能科技有限公司 干悬浮剂造粒系统及方法

Also Published As

Publication number Publication date
DE10132177A1 (de) 2003-01-23
US20030037415A1 (en) 2003-02-27

Similar Documents

Publication Publication Date Title
DE69712226T2 (de) Methode und vorrichtung zur sprühtrocknung sowie reinigungsmethode für eine solche vorrichtung
DE69325595T2 (de) Verfahren und sprühtrocknungsgerät zum erzeugen von agglomeriertem pulver
EP0087039B1 (de) Verfahren zum gleichzeitigen Sichten und geregelten, kontinuierlichen Austrag von körnigem Gut aus Wirbelbettreaktoren
EP0141437B1 (de) Verfahren zum Herstellen von Granulaten
DE3116778C2 (de) Verfahren zur Herstellung von aus einem Kern und einer Hülle aufgebauten Körnern
EP2707127B2 (de) Vorrichtung zur kontinuierlichen behandlung von feststoffen in einem wirbelschichtapparat
DE2230158A1 (de) Verfahren zur Herstellung von granalienförmigem wasserhaltigem Natriumsilikat
DE2908136A1 (de) Verfahren und vorrichtung zur herstellung von harnstoffkoernchen
WO1996033009A1 (de) Verfahren und vorrichtung zur herstellung von granulaten durch wirbelschicht-sprühgranulation
WO2003004143A1 (de) Verfahren und vorrichtung zur herstellung von granulaten in einer zirkulierenden wirbelschicht, und nach diesem verfahren erhaltende granulate
DD215573A5 (de) Verfahren und vorrichtung zur beseitigung von schwefeloxiden aus heissem rauchgas
EP1126017B1 (de) Verfahren zur Herstellung von Vollwaschmitteln und Vollwaschmittelkomponenten
DE69100807T2 (de) Verfahren und vorrichtung zur herstellung eines granulates durch sprühtrocknen.
DE69424036T2 (de) Verfahren ZUR KLASSIFIZIERUNG FEINER TEILCHEN
DE69312941T2 (de) Verfahren und Vorrichtung zur Trocknung von festem Material aus einer Suspension
DE69404045T2 (de) Sprühtrocknungsvorrichtung
WO2004108911A2 (de) Enzym-granulat-herstellungsverfahren und erhältliche enzym-granulate
DE10326231B4 (de) Verfahren zur Herstellung von Enzym-Granulaten
DE10146778B4 (de) Verfahren und Wirbelschichtanlage zur Herstellung von kompakten Feststoffpartikeln
EP1407814B1 (de) Verfahren und Vorrichtung mit Wirbelschichtanlage zur Herstellung von Granulaten
DE60204035T2 (de) Verfahren zur Herstellung oder Beschichtung von Granulaten, Vorrichtung zur Durchführung des Verfahrens und hiernach erhältliche Granulate
EP0870537A1 (de) Alkoholhaltige Granulate
EP0112521B1 (de) Verfahren und Anlage zur Herstellung von Alkalipolyphosphaten
DE4201615C2 (de) Verfahren zur Herstellung von keramischen Kugeln
EP1609848B1 (de) Verfahren zur Granulation von Malzextrakten

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WD Withdrawal of designations after international publication

Free format text: AP (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW); EA (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM); OA (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP