WO2003000784A1 - Crosslinking agent for room-temperature curing and room-temperature-curable elastomer composition containing the crosslinking agent - Google Patents

Crosslinking agent for room-temperature curing and room-temperature-curable elastomer composition containing the crosslinking agent Download PDF

Info

Publication number
WO2003000784A1
WO2003000784A1 PCT/JP2002/006037 JP0206037W WO03000784A1 WO 2003000784 A1 WO2003000784 A1 WO 2003000784A1 JP 0206037 W JP0206037 W JP 0206037W WO 03000784 A1 WO03000784 A1 WO 03000784A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
crosslinking agent
room temperature
formula
crosslinking
Prior art date
Application number
PCT/JP2002/006037
Other languages
French (fr)
Japanese (ja)
Inventor
Tsuyoshi Itagaki
Mitsuru Kishine
Kazuyoshi Mimura
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to JP2003507181A priority Critical patent/JP4096878B2/en
Publication of WO2003000784A1 publication Critical patent/WO2003000784A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/32Oximes
    • C07C251/34Oximes with oxygen atoms of oxyimino groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • C07C251/36Oximes with oxygen atoms of oxyimino groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with the carbon atoms of the oxyimino groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C251/38Oximes with oxygen atoms of oxyimino groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with the carbon atoms of the oxyimino groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of a saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/32Compounds containing nitrogen bound to oxygen
    • C08K5/33Oximes

Definitions

  • Akira Itoda Sho Includes a crosslinking agent for curing at room temperature and the crosslinking agent
  • the present invention relates to a novel crosslinking agent suitable for curing an elastomer composition at room temperature, and a room temperature-curable elastomer composition using the same.
  • thermosetting resin composition As the curable composition, a thermosetting resin composition is best known, and is literally crosslinked and cured by applying high-temperature heat.
  • U.S. Pat. No. 4,316,035 and U.S. Pat. No. 3,028,266 propose a crosslinked system of an elastomer having 1,2,4-oxadazole as a crosslinked structure.
  • This cross-linking reaction is a reaction in which a bisadoxime compound acts as a cross-linking agent on a cyano group-containing elastomer to form a 1,2,4-oxadiazole structure and cross-links the resulting cured product. Excellent compression set.
  • the crosslinking temperature is described as 40 to 100 in the above-mentioned U.S. Pat.No. 4,316,035, and the crosslinking temperature at 50 ° C. is as long as 89 hours. Is required.
  • Japanese Patent No. 3 082 266 a high crosslinking temperature of 150 to 220 ° C. is adopted. Disclosure of the invention
  • the crosslinking reaction proceeds sufficiently at room temperature, and the elastomer molded body is deepened.
  • An object of the present invention is to provide a novel cross-linking agent which can be cured by the above method and a room temperature curable elastomer composition using the same.
  • the present invention provides a compound represented by the formula (I):
  • the present invention relates to a crosslinking agent for curing at room temperature, comprising a bischloroaldoxime compound represented by the formula:
  • a in the formula (I) is not particularly limited as long as it is a divalent organic group.
  • a in the above formula (I) is an alkylene group or alkylidene group having 1 to 10 carbon atoms which may contain an oxygen atom, or a C 1 to 10 carbon atom which may contain an oxygen atom.
  • B is an alkylene group or alkylidene group having 1 to 6 carbon atoms, a perfluoroalkylene group or a perfluoroalkylidene group having 1 to 6 carbon atoms, a single bond, o o
  • At least one selected from the group consisting of an optionally substituted bisphenylene group represented by 1 o-) is preferable.
  • the present invention also provides a crosslinking agent comprising the bischloroaldoxime compound represented by the formula (I), an elastomer having a crosslinking group capable of reacting with the crosslinking agent, and a crosslinking capable of dehydrochlorinating the crosslinking agent. It relates to a room temperature curable elastomer composition containing an accelerator.
  • the crosslinkable group is a cyano group, a formyl group, a carbonyl group, At least one selected from the group consisting of a quinyl group, an alkenyl group, a thiocarbonyl group and an imidoyl group is preferred.
  • crosslinkable group is preferably a cyano group.
  • the crosslinking accelerator is preferably an organic base or an inorganic base.
  • the present invention provides a bischloroaldoxime compound represented by the formula (I), wherein the compound represented by the formula (III):
  • the present invention provides a compound of formula (I):
  • the present invention relates to a crosslinking agent for curing at room temperature, comprising a bischloroaldoxime compound represented by the formula:
  • the chloroaldoxime group is dehydrochlorinated and converted to a nitriloxide group.
  • This series of reactions proceeds sufficiently at a low temperature of 0 to 40 ° C and, unlike water crosslinking systems and energy beam crosslinking systems, is a reaction by a crosslinking agent incorporated inside. Is achieved to the depth of
  • the crosslinking agent of the present invention that achieves this crosslinking reaction is the bischloroaldoxime compound represented by the above formula (I). Since the cross-linking reaction proceeds as described above, the structure (1A-) connecting two chloroaldoxime groups is not particularly limited as long as there are two chloroaldoxime groups. However, if the chain is too long, the raw materials for the reaction become expensive, and the solubility is lowered to reduce the reaction. Therefore, the following is preferred.
  • An alkylene group or alkylidene group having 1 to 10 carbon atoms which may contain an oxygen atom, and an alkylene group or alkylidene group having 2 to 8 carbon atoms is preferable from the viewpoint of cost and reactivity. . If the carbon number exceeds 10, purification of the cross-linking agent becomes difficult, and the properties of the cross-linking agent itself tend to have a large effect on the cured product.
  • phenylene group which may be substituted include a phenylene group,
  • represents an alkylene group or an alkylidene group having 1 to 6 carbon atoms, a perfluoroalkylene group or a perfluoroalkylidene group having 1 to 6 carbon atoms, a single bond,
  • An optionally substituted bisphenylene group is preferred.
  • the number of carbon atoms of the alkylene group or the alkylidene group is more preferably 1 to 3, and the carbon number of the perfluoroalkylene group or the perfluoroalkylidene group is more preferable.
  • the number is more preferably 1 to 3.
  • bisphenylene group which may be substituted include 2,2-bis (phenyl) hexafluoropropylidene,
  • 2,2-bis (phenyl) hexafluoropropylidene 2,2-bis is advantageous in terms of cost and reactivity, and gives a crosslinked product with excellent heat resistance and chemical resistance.
  • (Phenyl) propylidene (a group derived from so-called pisphenol A) is preferred.
  • the bisaldoxime compound (V) is dissolved in an organic solvent (for example, DMF), and chlorine gas or N-chlorosuccinimide (at least twice the molar amount (1 equivalent) of the bisaldoxime compound (V)) is dissolved.
  • an organic solvent for example, DMF
  • chlorine gas or N-chlorosuccinimide at least twice the molar amount (1 equivalent) of the bisaldoxime compound (V)
  • NCS N-chlorosuccinimide
  • the crosslinkable group of the elastomer having the crosslinkable group suitable for the composition is selected from the group consisting of a cyano group, a formyl group, a carbonyl group, an alkynyl group, an alkenyl group, a thiocarbonyl group and an imidoyl group.
  • a cyano group is preferred from the viewpoint of good reactivity and stability of the product.
  • the elastomer body is not particularly limited.
  • NR natural rubber
  • IR isoprene rubber
  • BR butadiene rubber
  • CR chloroprene rubber
  • IIR butyl rubber
  • NBR acrylonitrile butadiene rubber
  • SBR butadiene rubber
  • EPDM ethylene-propylene-butadiene rubber
  • acrylic rubber epichlorohydrin rubber
  • silicone rubber fluorine rubber
  • urethane rubber urethane rubber
  • the elastomer used in the present invention may be a high molecular weight elastomer, but a relatively low molecular weight elastomer, particularly a liquid elastomer at room temperature, is preferred from the viewpoint of effectively utilizing the advantage of room temperature curability. is there.
  • “Liquid at room temperature” refers to a state having a viscosity of 1000 voids or less at room temperature. If it exceeds 100,000, there is a tendency that good flowability at the time of molding cannot be obtained. Specifically, although it differs depending on the type of the elastomer, it is usually one having a number average molecular weight of 1,000 to 500,000. If the number average molecular weight is less than 100, a good crosslinked product tends not to be obtained. If it exceeds 500, good flowability tends not to be obtained.
  • a conventionally known method can be employed as a method for introducing the crosslinkable group into these elastomers.
  • a method for introducing the crosslinkable group into these elastomers a conventionally known method can be employed.
  • a method of copolymerizing a monomer having a crosslinkable group (copolymerization method)
  • a method of modifying a functional group of the elastomer into a crosslinkable group (functional group modification method)
  • functional group modification method a method of modifying a functional group of the elastomer into a crosslinkable group
  • elastomers one that makes the cross-linking group electron-withdrawing, such as fluorine, because it facilitates the 1,3-cycloaddition reaction with ditolyloxide generated by dehydrochlorination of the cross-linking agent. Rubber and perfluoroelastomer are preferred.
  • the crosslinking accelerator is not particularly limited as long as it is a compound that functions to promote the crosslinking reaction by dehydrochlorinating a bischloroaldoxime compound as a crosslinking agent to convert it to nitriloxide.
  • the reaction system Any compound capable of promoting the dehydrochlorination by making it alkaline (alkaline) and capturing hydrogen chloride may be a compound that generates a base in situ of the reaction system.
  • Preferred crosslinking promoters are, for example Toryechiruamin, triethanolamine ⁇ Min, Anirin, pyridine, organic bases such as polyvinylpyridine; Anmo Nia, NaOH, K_ ⁇ _H, inorganic bases exemplified such as K 2 C0 3, N a HC_ ⁇ 3 it can. Of these, triethylamine and ammonia (gas) are preferred because of their low cost and excellent reactivity.
  • the room temperature-curable elastomer composition has a crosslinking agent of 0.2 to 50 PHR, preferably 0.3 to 20 PHR, based on 100 parts by weight of the elastomer (hereinafter referred to as “PHR”).
  • the crosslinking promoter is 0.1 to 15 PHR, preferably 0.3 to 3 PHR.
  • the cross-linking agent is less than 0.2 PHR, there is a tendency that the elastomer cannot be sufficiently cured. If it exceeds 50 PHR, the number of functional groups of the cross-linking agent becomes very large with respect to the functional groups of the elastomer, and there is a tendency that effective cross-linking is not achieved.
  • the preferred lower limit of the crosslinking accelerator is 0.1 PHR, and the preferred upper limit is 15 PHR.
  • additives can be added to the composition according to the purpose of use, required physical properties, required cost, and the like.
  • examples of the additive include a filler, an antioxidant, and an ultraviolet absorber.
  • a preferred method for preparing the composition is to dissolve the elastomer in a solvent.
  • a crosslinking agent and a crosslinking accelerator is added to the liquid elastomer, and the other is blended when used (cured). It is preferable to use a liquid type.
  • a mixing method use a static mixer, dynamic mixer, three-roll mill, etc. Then, a method of mixing in a solventless system is preferable.
  • the feature of the composition is that it can be cured (cross-linked) at room temperature and can be easily installed on site. Therefore, as a curing method, it is only necessary to mix a crosslinking agent, an elastomer and a crosslinking accelerator and leave the mixture at room temperature (or an ambient temperature, usually 0 to 40 ° C). Curing depends on the type and amount of the elastomer used and its crosslinkable group, crosslinking agent, crosslinking accelerator, etc., ambient temperature, ambient humidity, etc., but curing is usually completed in 0.5 to 24 hours. . To complete the curing in a short time, heating may be performed if necessary.
  • the room temperature stiffening elastomer composition is cured to form a 1,2,4-year-old oxadiazole crosslinked structure, it is possible to provide a crosslinked product excellent in chemical resistance, heat resistance, compression set and the like. . Therefore, it can be suitably used for the following applications, for example.
  • O-rings for architectural sealants, semiconductor manufacturing equipment, etc. gaskets for automotive electronic components, etc.
  • Hydrogenated NBR (Zetpo 12000, manufactured by Zeon Corporation) was dissolved in a mixed solvent of tetrahydrofuran / toluene (2Z1) to prepare a hydrogenated NBR solution having a concentration of 5%.
  • a mixed solvent of tetrahydrofuran / toluene (2Z1) To 40 g of the hydrogenated NBR solution, 0.3 g of the bischloroaldoxime compound of the formula (III) synthesized in Example 1 was added, and the mixture was sufficiently stirred. Then add 0.13 g of triethylamine, pour the mixed solution into a tray, leave at room temperature for 24 hours, and cast about 200 m thick A film was prepared.
  • the cast film obtained was sufficiently cured.
  • the 100% modulus, tensile strength at break (Tb) and elongation (Eb) measured at 23 ° C (tensile speed: 20 Omm / min) according to JIS K6301 were respectively 1.38 MPa, 4.08 MPa and 337%.
  • Example 3 An uncured hydrogenated NBR (raw rubber) cast film was prepared in the same manner as in Example 3 except that the bischloroaldoxime compound of the formula ( ⁇ I) was not used in Example 3, and the same procedure as in Example 3 was carried out. Mechanical properties were measured. As a result, the 100% modulus was 0.72 MPa, Tb was 0.84 MPa, and Eb was 1045%.
  • Tetrafluoroethylene (TFE), perfluoromethyl vinyl ether (PMVE), and CF 2 CFOCF 2 CF (CF 3 ) OCF 2 CF 2 CN (Example 1 of WO00 / 29479 specification) CNVE) Copolymer (composition: TFE / PMVEZCNVE 56. 6/42. 3/1. 1) is dissolved in perfluoro (butyltetrahydrofuran) (FC 75, manufactured by Sumitomo 3LEM), and a 1% concentration polymer solution is dissolved.
  • perfluoro (butyltetrahydrofuran) FC 75, manufactured by Sumitomo 3LEM
  • the novel crosslinking agent which can fully bridge
  • the room temperature curable elastomer composition comprising the cross-linking agent, the cross-linking accelerator, and the elastomer provides a cured product having excellent heat resistance, compression set, chemical resistance, etc., and sealants, elastomer adhesives, paints, etc. Can be provided as a construction material of the above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A novel crosslinking agent with which an elastomer can be sufficiently crosslinked throughout at room temperature; and a room-temperature-curable elastomer composition which contains the crosslinking agent and gives a cured article excellent in heat resistance, compression set, chemical resistance, etc. The crosslinking agent comprises a bischloroaldoxime compound represented by the formula (I): HON=CCl-A-CCl=NOH (wherein A is a divalent organic group). The composition comprises this crosslinking agent, a crosslinking accelerator, and an elastomer.

Description

明 糸田 書 室温硬化用架橋剤および該架橋剤を含む  Akira Itoda Sho Includes a crosslinking agent for curing at room temperature and the crosslinking agent
室温硬化性エラストマ一組成物 技術分野  Room temperature curable elastomer composition
本発明は、 エラストマ一組成物を室温で硬化させるのに適した新規架橋 剤、 およびそれを用いた室温硬化性エラストマ一組成物に関する。 背景技術  The present invention relates to a novel crosslinking agent suitable for curing an elastomer composition at room temperature, and a room temperature-curable elastomer composition using the same. Background art
硬化性組成物としては熱硬化性樹脂組成物が最も良く知られており、 文 字通り高温の熱を掛けることによって架橋させ、 硬化させている。  As the curable composition, a thermosetting resin composition is best known, and is literally crosslinked and cured by applying high-temperature heat.
一方、 特に建築材料の分野では、 建築用シーラント、 建築用塗料、 接着 剤などの用途で比較的低温 (1 0 0 °C以下) 、 特に室温 (周囲温度) で硬 化する材料が求められている。 今までに、 イソシァネート基やメルカプト 基の反応性を利用した架橋反応により硬化する材料、 加水分解性シリル基 を水分 (湿気) により縮重合させて硬化させる材料、 ヒドロシリル化反応 により比較的低温で熱硬化させる材料などが検討され、 一部は実施されて いる。  On the other hand, especially in the field of building materials, materials that harden at relatively low temperature (100 ° C or lower), especially at room temperature (ambient temperature) for applications such as building sealants, building paints, and adhesives are required. I have. Until now, materials that are cured by a cross-linking reaction utilizing the reactivity of isocyanate groups and mercapto groups, materials that are cured by condensation polymerization of hydrolyzable silyl groups with water (moisture), and heat treatment at a relatively low temperature by a hydrosilylation reaction Materials to be cured have been studied and some have been implemented.
しかし、 ィソシァネー卜基を利用する材料では毒性があり現場施工が困 難なほか、 得られる硬化物も耐熱性に欠けるものである。 メルカプト基を 利用する材料は強い異臭があり、 現場では使用しづらい。 加水分解性シリ ル基を有する材料は毒性や臭気については問題ないが、 外部からの水分を 必須とするため、 成形体の内部の硬化 (深部硬化) が不充分になる。 また、 ヒドロシリル化反応を利用する架橋系の場合、 室温で架橋反応が進行する ように設計するとポットライフが短くなりすぎるため、 1 0 0〜1 5 0 °C で急激に架橋反応が進行するように設計されている。 このように、 室温硬 化が強く望まれている建築材料の分野ですら、 欠点のない室温硬化性材料 は開発されていない。 However, materials that use an isocyanate group are toxic and difficult to construct on site, and the resulting cured products lack heat resistance. Materials utilizing mercapto groups have strong off-flavors and are difficult to use on site. Materials having a hydrolyzable silyl group have no problem with toxicity or odor, but require external moisture, so the inside of the molded product (deep curing) is insufficient. In the case of a cross-linking system utilizing a hydrosilylation reaction, if the cross-linking reaction is designed to proceed at room temperature, the pot life becomes too short, so It is designed so that the crosslinking reaction proceeds rapidly. Thus, even in the field of building materials where room temperature hardening is strongly desired, no room temperature curable material having no defects has been developed.
また、 近年、 電子部品の組み立て工場内においても、 電子部品にダメー ジを与えることを避けるためや生産コストを下げるため、 室温硬化性の材 料が求められており、 上記の材料の系統のほか、 紫外線などのエネルギー 線照射による架橋が検討されている。 しかし、 照射されるエネルギー線が 成形体の深部まで充分到達せず深部硬化が不充分となる問題が残つている。 このように、 現在のところ、 室温で深部まで充分に硬化し得る架橋系は 存在しない。  In recent years, room temperature curable materials have also been required in electronic component assembly factories to avoid damaging electronic components and to reduce production costs. Crosslinking by irradiation with energy rays such as ultraviolet rays is being studied. However, there remains a problem that the irradiated energy beam does not sufficiently reach the deep part of the molded body and the deep curing is insufficient. Thus, at present, there is no cross-linking system that can fully cure at room temperature to the depth.
こうした硬化性樹脂における問題はそのままエラストマ一組成物の室温 架橋系についても当てはまり、 室温で充分な硬化状態を提供できる架橋系 はない。  Such a problem in the curable resin is directly applied to the room temperature crosslinking system of the elastomer composition, and there is no crosslinking system capable of providing a sufficient cured state at room temperature.
たとえば米国特許第 4 3 1 6 0 3 5号明細書および特許第 3 0 8 2 6 2 6号公報には、 1 , 2, 4一ォキサジァゾ一ルを架橋構造にもつエラスト マーの架橋系が提案されている。 この架橋反応は、 シァノ基含有エラスト マーにビスアドキシム化合物を架橋剤として作用させて 1, 2 , 4ーォキ サジァゾール構造を形成して架橋させる反応であり、 得られる硬化物は耐 薬品性や耐熱性、 圧縮永久歪みなどに優れている。 しかし、 架橋温度は前 記米国特許第 4 3 1 6 0 3 5号明細書においては 4 0〜1 0 0 と記載さ れており、 しかも 5 0 °Cでの架橋に 8 9時間と長時間を要している。 一方 特許第 3 0 8 2 6 2 6号公報では、 1 5 0〜2 2 0 °Cという高温の架橋温 度が採用されている。 発明の開示  For example, U.S. Pat. No. 4,316,035 and U.S. Pat. No. 3,028,266 propose a crosslinked system of an elastomer having 1,2,4-oxadazole as a crosslinked structure. Have been. This cross-linking reaction is a reaction in which a bisadoxime compound acts as a cross-linking agent on a cyano group-containing elastomer to form a 1,2,4-oxadiazole structure and cross-links the resulting cured product. Excellent compression set. However, the crosslinking temperature is described as 40 to 100 in the above-mentioned U.S. Pat.No. 4,316,035, and the crosslinking temperature at 50 ° C. is as long as 89 hours. Is required. On the other hand, in Japanese Patent No. 3 082 266, a high crosslinking temperature of 150 to 220 ° C. is adopted. Disclosure of the invention
本発明は、 室温で充分架橋反応が進行し、 エラストマ一成形体を深部ま で硬化させることができる新規架橋剤およびそれを用いた室温硬化性エラ ストマー組成物を提供することを目的とする。 According to the present invention, the crosslinking reaction proceeds sufficiently at room temperature, and the elastomer molded body is deepened. An object of the present invention is to provide a novel cross-linking agent which can be cured by the above method and a room temperature curable elastomer composition using the same.
すなわち本発明は、 式 (I) :  That is, the present invention provides a compound represented by the formula (I):
HO N= C C 1 - A- C C 1 =N O H ( I )  HO N = C C 1-A- C C 1 = N O H (I)
(式中、 Aは 2価の有機基) で示されるビスクロロアルドキシム化合物か らなる室温硬化用架橋剤に関する。  (Wherein, A is a divalent organic group). The present invention relates to a crosslinking agent for curing at room temperature, comprising a bischloroaldoxime compound represented by the formula:
式(I)中の Aとしては 2価の有機基であれば特に限定されない。  A in the formula (I) is not particularly limited as long as it is a divalent organic group.
さらに、 前記式 (I ) 中の Aが、 酸素原子を含んでいてもよい炭素数 1 〜1 0のアルキレン基またはアルキリデン基、 酸素原子を含んでいてもよ い炭素数 1〜 1 0のパーフルォロアルキレン基またはパ一フルォロアルキ リデン基、 置換されていてもよいフエ二レン基、 および式(Π) :  Further, A in the above formula (I) is an alkylene group or alkylidene group having 1 to 10 carbon atoms which may contain an oxygen atom, or a C 1 to 10 carbon atom which may contain an oxygen atom. A fluoroalkylene group or a perfluoroalkylidene group, an optionally substituted phenylene group, and a compound represented by the formula (Π):
(I I)(I I)
Figure imgf000004_0001
Figure imgf000004_0001
(式中、 Bは炭素数 1〜6のアルキレン基またはアルキリデン基、 炭素数 1〜6のパ一フルォロアルキレン基またはパ一フルォロアルキリデン基、 単結合、 o o  (Wherein, B is an alkylene group or alkylidene group having 1 to 6 carbon atoms, a perfluoroalkylene group or a perfluoroalkylidene group having 1 to 6 carbon atoms, a single bond, o o
II II  II II
— S— — C—  — S— — C—
または一 o—) で示される置換されていてもよいビスフエ二レン基からな る群から選択される少なくとも 1種が好ましい。 Alternatively, at least one selected from the group consisting of an optionally substituted bisphenylene group represented by 1 o-) is preferable.
本発明はまた、 前記式(I)で示されるビスクロロアルドキシム化合物か らなる架橋剤、 前記架橋剤と反応し得る架橋性基を有するエラストマ一、 および前記架橋剤を脱塩化水素化し得る架橋促進剤を含む室温硬化性ェラ ストマー組成物に関する。  The present invention also provides a crosslinking agent comprising the bischloroaldoxime compound represented by the formula (I), an elastomer having a crosslinking group capable of reacting with the crosslinking agent, and a crosslinking capable of dehydrochlorinating the crosslinking agent. It relates to a room temperature curable elastomer composition containing an accelerator.
さらに、 前記架橋性基が、 シァノ基、 ホルミル基、 カルボ二ル基、 アル キニル基、 アルケニル基、 チォカルボニル基およびイミドイル基からなる 群から選択される少なくとも 1種が好ましい。 Further, the crosslinkable group is a cyano group, a formyl group, a carbonyl group, At least one selected from the group consisting of a quinyl group, an alkenyl group, a thiocarbonyl group and an imidoyl group is preferred.
さらに、 前記架橋性基が、 シァノ基が好ましい。  Further, the crosslinkable group is preferably a cyano group.
さらに、 前記架橋促進剤が、 有機塩基または無機塩基が好ましい。  Further, the crosslinking accelerator is preferably an organic base or an inorganic base.
さらに、 本発明は、 前記式(I)で示されるビスクロロアルドキシム化合 物のうち、 式(III) :  Further, the present invention provides a bischloroaldoxime compound represented by the formula (I), wherein the compound represented by the formula (III):
Figure imgf000005_0001
Figure imgf000005_0001
で示されるビスクロロアルドキシム化合物に関する 発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a bischloroaldoxime compound represented by the formula:
本発明は、 式(I) :  The present invention provides a compound of formula (I):
HON=CC 1 -A-CC 1 =NOH (I)  HON = CC 1 -A-CC 1 = NOH (I)
(式中、 Aは 2価の有機基) で示されるビスクロロアルドキシム化合物か らなる室温硬化用架橋剤に関する。  (Wherein, A is a divalent organic group). The present invention relates to a crosslinking agent for curing at room temperature, comprising a bischloroaldoxime compound represented by the formula:
本発明の架橋剤の架橋反応は H〇N=CC 1—基 (クロロアルドキシム 基) を架橋点として、 次のように進行するものと考えられる。  The cross-linking reaction of the cross-linking agent of the present invention is considered to proceed as follows, using the H〇N = CC 1- group (chloroaldoxime group) as a cross-linking point.
まず、 架橋反応系を塩基性の架橋促進剤でアル力リ性にすることにより、 クロロアルドキシム基の脱塩化水素化が生じ、 二トリルォキサイド基に変 化する。  First, by making the crosslinking reaction system more basic with a basic crosslinking accelerator, the chloroaldoxime group is dehydrochlorinated and converted to a nitriloxide group.
(HON = CC 1-^-2— A + 塩基 (架橋促進剤)  (HON = CC 1-^-2— A + base (crosslinking accelerator)
~~ *· (0 ≡C -2 ~ A + HC I ついでエラストマ一の架橋性基 (次の式ではシァノ基としている) と二 トリルオキサイド基が 1, 3—双極性環化付加反応を起こし、 1, 2, 4 —ォキサジァゾール構造を形成し架橋を完成する。 ~~ * · (0 ≡C -2 ~ A + HC I Next, the crosslinkable group of the elastomer (in the following formula, a cyano group) and the ditolyl oxide group undergo a 1,3-dipolar cycloaddition reaction. , 1, 2, 4 —Complete cross-linking by forming an oxadiazole structure.
Figure imgf000006_0001
Figure imgf000006_0001
この一連の反応は 0〜4 0 °Cという低温で充分に進行し、 しかも水架橋 系やエネルギー線架橋系と異なり内部に配合された架橋剤による反応であ るから、 室温で硬化が成形体の深部まで充分達成される。  This series of reactions proceeds sufficiently at a low temperature of 0 to 40 ° C and, unlike water crosslinking systems and energy beam crosslinking systems, is a reaction by a crosslinking agent incorporated inside. Is achieved to the depth of
この架橋反応を達成する本発明の架橋剤は、 前記の式(I)で示されるビ スクロロアルドキシム化合物である。 架橋反応は前記のとおりに進行する ので、 クロロアルドキシム基が 2個あればそれらを結合している構造 (一 A—) は特に限定されない。 しかし、 鎖が長くなりすぎると反応原料が高 価になるほか、 溶解性が低下して反応が低下するので、 次のものが好まし い。  The crosslinking agent of the present invention that achieves this crosslinking reaction is the bischloroaldoxime compound represented by the above formula (I). Since the cross-linking reaction proceeds as described above, the structure (1A-) connecting two chloroaldoxime groups is not particularly limited as long as there are two chloroaldoxime groups. However, if the chain is too long, the raw materials for the reaction become expensive, and the solubility is lowered to reduce the reaction. Therefore, the following is preferred.
次に、 式 (I ) 中の Aについて説明する。  Next, A in the formula (I) will be described.
(a)酸素原子を含んでいてもよい炭素数 1〜 1 0のアルキレン基または アルキリデン基、 さらに、 コストおよび反応性の点で有利なことから炭素 数 2〜8のアルキレン基またはアルキリデン基が好ましい。 炭素数が 1 0 を超えると架橋剤の精製が難しくなったり、 架橋剤自身の特性が硬化物に 与える影響が大きくなる傾向がある。  (a) An alkylene group or alkylidene group having 1 to 10 carbon atoms which may contain an oxygen atom, and an alkylene group or alkylidene group having 2 to 8 carbon atoms is preferable from the viewpoint of cost and reactivity. . If the carbon number exceeds 10, purification of the cross-linking agent becomes difficult, and the properties of the cross-linking agent itself tend to have a large effect on the cured product.
次に、 Aが、 前記アルキレン基またはアルキリデン基であるビスクロロ アルドキシム化合物の具体例としては、 CC I =NOH、 Next, A is a specific example of the bischloroaldoxime compound in which the alkylene group or the alkylidene group is CC I = NOH,
HON=CC  HON = CC
HON=CC -CC I =NOH, HON = CC -CC I = NOH,
OO
HON=CC CC NOH、 HON = CC CC NOH,
CH CH
HON=CC C—— CC I =NOH HON = CC C—— CC I = NOH
CH CH
があげられる。 Is raised.
(b)酸素原子を含んでいてもよい炭素数 1〜 10のパ一フルォロアルキ レン基またはパーフルォロアルキリデン基、 さらに、 コストおよび反応性 の点で有利なことから炭素数 4〜 8のパーフルォロアルキレン基またはパ —フルォロアルキリデン基が好ましい。 炭素数が 10を超えると架橋剤の 精製が難しくなったり、 架橋剤自身の特性が硬化物に与える影響が大きく なる傾向がある。  (b) a perfluoroalkylene group or a perfluoroalkylidene group having 1 to 10 carbon atoms which may contain an oxygen atom, and further having 4 to 8 carbon atoms because of its advantages in terms of cost and reactivity. Fluoroalkylene or perfluoroalkylidene groups are preferred. If the number of carbon atoms exceeds 10, purification of the cross-linking agent becomes difficult, and the properties of the cross-linking agent itself tend to have a greater effect on the cured product.
次に、 Aが、 前記パーフルォロアルキレン基またはパ一フルォロアルキ リデン基であるビスクロロアルドキシム化合物の具体例としては、  Next, as a specific example of the bischloroaldoxime compound wherein A is the perfluoroalkylene group or the perfluoroalkylidene group,
HON = CC I -C F2CF2CF CF2-CC Ι =ΝΟΗ、 HON = CC I -CF 2 CF 2 CF CF 2 -CC Ι = ΝΟΗ,
HON = CC I - CF2CF OCF, 2C^F 1 , 2-CC I = NOH、 HON = CC I-CF 2 CF OCF, 2C ^ F 1 , 2-CC I = NOH,
HON = CC I一 C FCF2OCF_CC I =NOH HON = CC I-C FCF 2 OCF_CC I = NOH
C C F  C C F
があげられる。 Is raised.
(c)置換されていてもよいフエ二レン基、 さらに、 コストおよび反応性 の点で有利なことからフエニレン基が好ましい。 (c) an optionally substituted phenylene group, as well as cost and reactivity A phenylene group is preferred from the viewpoint of advantage.
次に、 前記置換されていてもよいフエ二レン基の具体例としては、 フエ二レン基、  Next, specific examples of the phenylene group which may be substituted include a phenylene group,
Figure imgf000008_0001
Figure imgf000008_0001
があげられる。 Is raised.
(d)式(I I) :
Figure imgf000008_0002
(d) Formula (II):
Figure imgf000008_0002
(式中、 Βは炭素数 1〜6のアルキレン基またはアルキリデン基、 炭素数 1〜 6のパ一フルォロアルキレン基またはパ一フルォロアルキリデン基、 単結合、
Figure imgf000008_0003
(In the formula, Β represents an alkylene group or an alkylidene group having 1 to 6 carbon atoms, a perfluoroalkylene group or a perfluoroalkylidene group having 1 to 6 carbon atoms, a single bond,
Figure imgf000008_0003
または _〇—) で示される置換されていてもよいビスフエ二レン基、 さら に、 コストおよび反応性の点で有利なことから、 Βが、 単結合、 Or _〇—) optionally substituted bisphenylene group, and な is a single bond, since it is advantageous in terms of cost and reactivity.
C C H  C C H
C C C C
C C H C C H
である置換されていてもよいビスフエ二レン基が好ましい。 An optionally substituted bisphenylene group is preferred.
アルキレン基またはアルキリデン基の炭素数は、 さらに 1〜 3が好まし く、 パ一フルォロアルキレン基またはパーフルォロアルキリデン基の炭素 数は、 さらに 1〜3が好ましい。 アルキレン基またはアルキリデン基の炭 素数が 6を超えると合成が困難となる傾向がある。 パーフルォロアルキレ ン基またはパ一フルォロアルキリデン基の炭素数が 6を超えると合成が困 難となる傾向がある。 The number of carbon atoms of the alkylene group or the alkylidene group is more preferably 1 to 3, and the carbon number of the perfluoroalkylene group or the perfluoroalkylidene group is more preferable. The number is more preferably 1 to 3. When the number of carbon atoms in the alkylene group or the alkylidene group exceeds 6, synthesis tends to be difficult. When the number of carbon atoms in the perfluoroalkylene group or the perfluoroalkylidene group exceeds 6, the synthesis tends to be difficult.
次に、 前記置換されていてもよいビスフエニレン基の具体例としては、 2 , 2一ビス (フエニル) へキサフルォロプロピリデン、  Next, specific examples of the bisphenylene group which may be substituted include 2,2-bis (phenyl) hexafluoropropylidene,
Figure imgf000009_0001
Figure imgf000009_0001
があげられる。 Is raised.
これらのうち、 コストおよび反応性の点で有利なこと、 耐熱性および耐 薬品性に優れた架橋物を与える点から 2, 2—ビス (フエニル) へキサフ ルォロプロピリデン、 2, 2—ビス (フエニル) プロピリデン (いわゆる ピスフエノール Aから誘導される基) などが好ましい。  Of these, 2,2-bis (phenyl) hexafluoropropylidene, 2,2-bis is advantageous in terms of cost and reactivity, and gives a crosslinked product with excellent heat resistance and chemical resistance. (Phenyl) propylidene (a group derived from so-called pisphenol A) is preferred.
また、 前記式(I I I)で示される化合物は新規化合物である。  Further, the compound represented by the above formula (III) is a novel compound.
式(I)のビスクロ口アルドキシム化合物は、 次のようにして得ることが できる。 たとえば式(IV) :
Figure imgf000010_0001
The bisclonal aldoxime compound of the formula (I) can be obtained as follows. For example, formula (IV):
Figure imgf000010_0001
(I V)  (I V)
(式中、 Aは前記と同じ) で示されるジアルデヒド化合物をアルコールと 水の混合溶媒中で水酸化ナトリゥムなどの塩基性化合物の存在下に、 ジァ ルデヒド化合物の 2倍モル量以上のヒドロキシルァミンと反応させること により、 式 (V) :
Figure imgf000010_0002
(Wherein A is the same as described above) in a mixed solvent of alcohol and water, in the presence of a basic compound such as sodium hydroxide, in the presence of a basic compound such as sodium hydroxide. By reacting with amine, formula (V):
Figure imgf000010_0002
(V)  (V)
(式中、 Aは前記と同じ) で示されるビスアルドキシム化合物 (V)を合成 する。 この反応は、 o t〜室温にて数時間で容易に進行する。  (Wherein A is the same as described above), to synthesize a bisaldoxime compound (V). This reaction proceeds easily in a few hours at ot to room temperature.
ついで前記ビスアルドキシム化合物 (V)を有機溶媒 (たとえば DM Fな ど) に溶解し、 ビスアルドキシム化合物 (V)の 2倍モル量 (1当量) 以上 の塩素ガスや N—クロロコハク酸イミド (N C S ) と反応させることによ り、 式(I)のビスクロロアルドキシム化合物を合成できる。 この反応も室 温にて数時間で完了する。  Then, the bisaldoxime compound (V) is dissolved in an organic solvent (for example, DMF), and chlorine gas or N-chlorosuccinimide (at least twice the molar amount (1 equivalent) of the bisaldoxime compound (V)) is dissolved. By reacting with NCS), the bischloroaldoxime compound of the formula (I) can be synthesized. This reaction is completed within a few hours at room temperature.
次に、 前記架橋剤、 前記架橋剤と反応し得る架橋性基を有するエラスト マー、 および前記架橋剤を脱塩化水素化し得る架橋促進剤を含む室温硬化 性エラストマ一組成物について説明する。  Next, a room temperature curable elastomer composition containing the crosslinking agent, an elastomer having a crosslinking group capable of reacting with the crosslinking agent, and a crosslinking accelerator capable of dehydrochlorinating the crosslinking agent will be described.
前記組成物に使用する好適な前記架橋性基を有するエラストマ一の架橋 性基は、 シァノ基、 ホルミル基、 カルポニル基、 アルキニル基、 アルケニ ル基、 チォカルポニル基およびイミドイル基からなる群から選択される少 なくとも 1種があげられる。 特に反応性が良好で生成物が安定な点からシ ァノ基が好ましい。 エラストマ一本体は特に限定されず、 天然ゴム (N R) のほか、 イソプ レンゴム (I R) 、 ブタジエンゴム (B R) 、 クロロプレンゴム (C R) 、 ブチルゴム (I I R) 、 アクリロニトリルブタジエンゴム (N B R) 、 ス チレン—ブタジエンゴム (S B R) 、 エチレン一プロピレン一ブタジエン ゴム (E P DM) 、 アクリルゴム、 ェピクロルヒドリンゴム、 シリコーン ゴム、 フッ素ゴム、 ウレタンゴムなどの合成ゴムが使用できる。 The crosslinkable group of the elastomer having the crosslinkable group suitable for the composition is selected from the group consisting of a cyano group, a formyl group, a carbonyl group, an alkynyl group, an alkenyl group, a thiocarbonyl group and an imidoyl group. There is at least one species. Particularly, a cyano group is preferred from the viewpoint of good reactivity and stability of the product. The elastomer body is not particularly limited. In addition to natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), chloroprene rubber (CR), butyl rubber (IIR), acrylonitrile butadiene rubber (NBR), styrene- Synthetic rubbers such as butadiene rubber (SBR), ethylene-propylene-butadiene rubber (EPDM), acrylic rubber, epichlorohydrin rubber, silicone rubber, fluorine rubber, and urethane rubber can be used.
本発明で使用するエラストマ一は、 高分子量のエラストマ一でもよいが、 室温硬化性という利点を有効に利用する点から、 比較的低分子量のェラス トマ一、 特に室温で液状のエラストマ一が好適である。 「室温で液状」 と は、 室温で 1 0 0 0 0ボイズ以下の粘度を有する状態のことをいう。 1 0 0 0 0ボイズを超えると成形加工時の良好な流れ性を得られなくなる傾向 がある。 具体的には、 エラストマ一の種類によって異なるが、 通常、 数平 均分子量が 1 0 0 0〜 5 0 0 0 0のものである。 数平均分子量が 1 0 0 0 より小さいと良好な架橋体を得られなくなる傾向がある。 5 0 0 0 0を超 えると良好な流れ性を得られなくなる傾向がある。  The elastomer used in the present invention may be a high molecular weight elastomer, but a relatively low molecular weight elastomer, particularly a liquid elastomer at room temperature, is preferred from the viewpoint of effectively utilizing the advantage of room temperature curability. is there. “Liquid at room temperature” refers to a state having a viscosity of 1000 voids or less at room temperature. If it exceeds 100,000, there is a tendency that good flowability at the time of molding cannot be obtained. Specifically, although it differs depending on the type of the elastomer, it is usually one having a number average molecular weight of 1,000 to 500,000. If the number average molecular weight is less than 100, a good crosslinked product tends not to be obtained. If it exceeds 500, good flowability tends not to be obtained.
これらのエラストマ一に前記架橋性基を導入する方法としては、 従来公 知の方法が採用できる。 たとえば、 架橋性基を有するモノマーを共重合す る方法 (共重合法) 、 エラストマ一が有する官能基を架橋性基に変性する 方法 (官能基変性法) などが例示できる。  As a method for introducing the crosslinkable group into these elastomers, a conventionally known method can be employed. For example, a method of copolymerizing a monomer having a crosslinkable group (copolymerization method), a method of modifying a functional group of the elastomer into a crosslinkable group (functional group modification method), and the like can be exemplified.
これらのエラストマ一のなかでも、 架橋剤を脱塩化水素化して生ずる二 トリルォキサイドとの 1, 3—環化付加反応を容易にする点から、 架橋性 基を電子吸引性にするエラストマ一、 たとえばフッ素ゴム、 さらにパ一フ ルォロエラストマ一が好ましい。  Among these elastomers, one that makes the cross-linking group electron-withdrawing, such as fluorine, because it facilitates the 1,3-cycloaddition reaction with ditolyloxide generated by dehydrochlorination of the cross-linking agent. Rubber and perfluoroelastomer are preferred.
前記架橋促進剤は、 前記のとおり、 架橋剤であるビスクロロアルドキシ ム化合物を脱塩化水素化して二トリルォキサイドに変換し、 架橋反応を促 進する働きをする化合物であれば特に限定されない。 また、 反応系を塩基 性 (アルカリ性) にして脱塩化水素化を促進し、 かつ塩化水素を捕捉し得 るものであれば、 反応系のその場 (in situ) で塩基を発生させる化合物 でもよい。 As described above, the crosslinking accelerator is not particularly limited as long as it is a compound that functions to promote the crosslinking reaction by dehydrochlorinating a bischloroaldoxime compound as a crosslinking agent to convert it to nitriloxide. In addition, the reaction system Any compound capable of promoting the dehydrochlorination by making it alkaline (alkaline) and capturing hydrogen chloride may be a compound that generates a base in situ of the reaction system.
好ましい架橋促進剤は、 たとえばトリェチルァミン、 トリエタノールァ ミン、 ァニリン、 ピリジン、 ポリビニルピリジンなどの有機塩基;ァンモ ニァ、 NaOH、 K〇H、 K2C03、 N a HC〇 3などの無機塩基が例示 できる。 なかでも、 特に低価格で反応性の点で優れることから、 トリェチ ルァミン、 アンモニア (ガス) が好適である。 Preferred crosslinking promoters are, for example Toryechiruamin, triethanolamine § Min, Anirin, pyridine, organic bases such as polyvinylpyridine; Anmo Nia, NaOH, K_〇_H, inorganic bases exemplified such as K 2 C0 3, N a HC_〇 3 it can. Of these, triethylamine and ammonia (gas) are preferred because of their low cost and excellent reactivity.
前記室温硬化性エラストマ一組成物は、 エラストマ一 100重量部に対 して (以下、 「PHR」 という) 、 架橋剤が 0. 2〜50PHR、 好まし くは 0. 3〜20 PHR。 架橋促進剤が 0. 1〜15 PHR、 好ましくは 0. 3〜3PHRである。  The room temperature-curable elastomer composition has a crosslinking agent of 0.2 to 50 PHR, preferably 0.3 to 20 PHR, based on 100 parts by weight of the elastomer (hereinafter referred to as “PHR”). The crosslinking promoter is 0.1 to 15 PHR, preferably 0.3 to 3 PHR.
架橋剤が、 0. 2 PHRより少ないとエラストマ一の硬化を充分に行え なくなる傾向がある。 50PHRを超えるとエラストマ一の官能基に対し て架橋剤の官能基数が非常に多くなり有効な架橋とはならない傾向がある。 架橋促進剤の好ましい下限は 0. 1PHRであり、 好ましい上限は 15 PHRである。  If the cross-linking agent is less than 0.2 PHR, there is a tendency that the elastomer cannot be sufficiently cured. If it exceeds 50 PHR, the number of functional groups of the cross-linking agent becomes very large with respect to the functional groups of the elastomer, and there is a tendency that effective cross-linking is not achieved. The preferred lower limit of the crosslinking accelerator is 0.1 PHR, and the preferred upper limit is 15 PHR.
そのほか、 前記組成物には、 使用目的、 要求物性、 または要求コストな どに応じて、 各種の公知の添加剤を配合することができる。 添加剤として は、 たとえば充填剤、 酸化防止剤、 紫外線吸収剤などがあげられる。  In addition, various known additives can be added to the composition according to the purpose of use, required physical properties, required cost, and the like. Examples of the additive include a filler, an antioxidant, and an ultraviolet absorber.
前記組成物を調製する方法としては、 高分子量のエラストマ一を使用す るときは、 溶剤にエラストマ一を溶解させる方法が好ましい。 また、 液状 ゴムの形態のエラストマ一を使用するときは、 この液状のエラストマ一に 架橋剤または架橋促進剤のいずれか一方を添加しておき、 使用 (硬化) 時 に他の一方を配合する 2液型とするのが好ましい。 混合方法としては、 ス タティックミキサー、 ダイナミックミキサー、 3本ロールミルなどを使用 して無溶剤系で混合する方法が好ましい。 When a high molecular weight elastomer is used, a preferred method for preparing the composition is to dissolve the elastomer in a solvent. When an elastomer in the form of a liquid rubber is used, one of a crosslinking agent and a crosslinking accelerator is added to the liquid elastomer, and the other is blended when used (cured). It is preferable to use a liquid type. As a mixing method, use a static mixer, dynamic mixer, three-roll mill, etc. Then, a method of mixing in a solventless system is preferable.
前記組成物の特徴は室温で硬化 (架橋) でき、 現場施工が容易に実施で きる点にある。 したがって、 硬化方法としては架橋剤、 エラストマ一およ び架橋促進剤とを混合し室温 (または周囲温度。 通常 0〜4 0 °C) で放置 するだけでよい。 硬化は、 使用するエラストマ一およびその架橋性基、 架 橋剤、 架橋促進剤などの種類、 量、 周囲温度、 周囲湿度などによって異な るが、 通常 0 . 5〜 2 4時間で硬化が完了する。 硬化を短時間で完了する ためには、 必要なら加熱してもよい。  The feature of the composition is that it can be cured (cross-linked) at room temperature and can be easily installed on site. Therefore, as a curing method, it is only necessary to mix a crosslinking agent, an elastomer and a crosslinking accelerator and leave the mixture at room temperature (or an ambient temperature, usually 0 to 40 ° C). Curing depends on the type and amount of the elastomer used and its crosslinkable group, crosslinking agent, crosslinking accelerator, etc., ambient temperature, ambient humidity, etc., but curing is usually completed in 0.5 to 24 hours. . To complete the curing in a short time, heating may be performed if necessary.
前記室温硬ィ匕性エラストマ一組成物は、 硬化して 1, 2 , 4一才キサジ ァゾール架橋構造を形成するので、 耐薬品性、 耐熱性、 圧縮永久歪みなど に優れた架橋物を提供できる。 したがって、 たとえば次のような用途に好 適に使用できる。  Since the room temperature stiffening elastomer composition is cured to form a 1,2,4-year-old oxadiazole crosslinked structure, it is possible to provide a crosslinked product excellent in chemical resistance, heat resistance, compression set and the like. . Therefore, it can be suitably used for the following applications, for example.
シール材分野: Seal material field:
建築用シーラント、 半導体製造装置などの O—リング、 自動車の電子部 品などのガスケッ卜など  O-rings for architectural sealants, semiconductor manufacturing equipment, etc., gaskets for automotive electronic components, etc.
塗料分野: Paint field:
高耐候性塗料など  High weather resistant paint, etc.
成形体: Molded body:
OA機器などの各種ロール、 輸送機のダイヤフラム、 化学プラントな どのライニングなど  Rolls for OA equipment, diaphragms for transport equipment, linings for chemical plants, etc.
つぎに本発明を実施例に基づいて説明するが、 本発明はかかる実施例の みに限定されるものではない。  Next, the present invention will be described based on examples, but the present invention is not limited to only these examples.
実施例 1 (1) 式 (VI) のビスアルドキシム化合物の合成 Example 1 (1) Synthesis of bisaldoxime compound of formula (VI)
Figure imgf000014_0001
Figure imgf000014_0001
(VI)  (VI)
2, 2—ビス (4一ホルミルフエニル) へキサフルォロプロパン 4. 4 g (12. 2ミリモル) をエタノール 10m 1 /水 10m 1混合液に溶解 させ、 0°Cの下、 攪拌しながらヒドロキシルァミン塩酸塩 1. 87 g (2 6. 9ミリモル) および 50%水酸化ナトリウム水溶液 4. 87 g (61 . 1ミリモル) を滴下した。 室温にて 2時間攪拌して反応させた後、 水 3 0mlを加え、 エーテルで 2回抽出し、 飽和食塩水で洗浄後、 無水硫酸マ グネシゥムを用いて乾燥した。 エーテルを減圧留去後、 再結晶 (クロロホ ルム /へキサン) して式 (VI)で示される 2, 2—ビス (4一アルドキシフ ェニル) へキサフルォロプロパン 3. 87 gを得た (収率: 83%) 。 (物性)  Dissolve 4.4 g (12.2 mmol) of 2,2-bis (4-formylphenyl) hexafluoropropane in a mixture of 10 ml of ethanol and 10 ml of water, and stir at 0 ° C with hydroxyl. 1.87 g (26.9 mmol) of amine hydrochloride and 4.87 g (61.1 mmol) of a 50% aqueous sodium hydroxide solution were added dropwise. After reacting by stirring at room temperature for 2 hours, 30 ml of water was added, and the mixture was extracted twice with ether, washed with a saturated saline solution, and dried using anhydrous magnesium sulfate. After distilling out the ether under reduced pressure, the residue was recrystallized (chloroform / hexane) to obtain 3.87 g of 2,2-bis (4-aldoxyphenyl) hexafluoropropane represented by the formula (VI) ( Yield: 83%). (Physical properties)
H-NMR (CDC 13、 p pm) : H-NMR (CDC 1 3, p pm):
7. 37 (4H, d, J = 8. 4Hz) 、 7. 62 (4H, d, J = 8 . 4Hz) 、 8. 08 (2H, s) 、 10. 52 (2H, s)  7.37 (4H, d, J = 8.4 Hz), 7.62 (4H, d, J = 8.4 Hz), 8.08 (2H, s), 10.52 (2H, s)
F-NMR (CDC 13, p pm) (CFC 13基準) : F-NMR (CDC 1 3, p pm) (CFC 1 3 reference):
-64. 0 (s)  -64.0 (s)
FT- I R (KB r , cm-1) : 3334、 2988、 1244 FT-IR (KB r, cm -1 ): 3334, 2988, 1244
MS : MS:
390 (M/Z)  390 (M / Z)
H -MAS S : H-MAS S:
計算値: 390. 08030  Calculated value: 390.08030
実測値: 390. 07944  Found: 390. 07944
(2) 式 (III) で示されるビスクロ口アルドキシム化合物の合成  (2) Synthesis of bis-clonal aldoxime compound represented by formula (III)
Figure imgf000015_0001
Figure imgf000015_0001
(III) (III)
前記式 (VI) のビスアルドキシム化合物 1. 5 g (3. 85ミリモル) をジメチルホルムアミド 15m 1に溶解させ、 室温の下、 攪拌しながら N —クロロコハク酸イミド 1. O g (7. 70ml) を加えた。 室温にて 2 時間攪拌しながら反応させた後、 水 30mlを加え、 エーテルで 2回抽出 し、 飽和食塩水で洗浄後、 無水硫酸マグネシウムを用いて乾燥した。 ェ一 テルを減圧留去後、 再結晶 (クロ口ホルム Zへキサン) して式(III)で示 される 2, 2一ビス ( 4一クロ口アルドキシフエニル) へキサフルォロプ 口パン 1. 9 gを得た (収率: 100%) 。  1.5 g (3.85 mmol) of the bisaldoxime compound of the formula (VI) is dissolved in 15 ml of dimethylformamide, and N-chlorosuccinimide 1.O g (7.70 ml) is stirred at room temperature with stirring. Was added. After reacting with stirring at room temperature for 2 hours, 30 ml of water was added, and the mixture was extracted twice with ether, washed with brine and dried over anhydrous magnesium sulfate. After distilling off the ether under reduced pressure, the crystal was recrystallized (form-form Z hexane) to give 2,2-bis (4-form-aldoxyphenyl) hexafluoropropane represented by the formula (III) 1. 9 g was obtained (yield: 100%).
(物性)  (Physical properties)
H-N R (CDC 13、 p pm) : 7. 43 (4H, d, J = 8. 4Hz) 、 7. 86 (4H, d, J =8 . 4Hz) > 8. 87 (2H, s) HN R (CDC 1 3, p pm): 7.43 (4H, d, J = 8.4 Hz), 7.86 (4H, d, J = 8.4 Hz)> 8.87 (2H, s)
F-NMR (CDC 13、 p pm) (CFC 13基準) : F-NMR (CDC 1 3, p pm) (CFC 1 3 reference):
-64. 0 (s)  -64.0 (s)
FT - I R (KB r , cm -1) : FT-IR (KBr, cm- 1 ):
3342, 2991、 1250  3342, 2991, 1250
MS : MS:
458 (M/Z)  458 (M / Z)
HR-MAS S : HR-MAS S:
計算値: 458. 00235 (C 1 = 35)  Calculated value: 458. 00235 (C 1 = 35)
実測値: 458. 00206  Found: 458. 00206
実施例 2 (1, 2, 4—ォキサジァゾール架橋構造の形成) Example 2 (Formation of 1,2,4-oxadiazole crosslinked structure)
2 Two
2
Figure imgf000016_0001
式 (III) のビスクロロアルドキシム化合物 30 Omg (0. 65ミリ モル) をベンゼン 5m 1に溶解させ、 0°Cの下、 攪拌しながらトリェチル ァミン 182 1 (1 · 31ミリモル) を加えた。 さらにパーフルォロォ ク夕ノ二トリル 652 1 (1. 567ミリモル) を加えた。 室温にて 1 6時間攪拌しながら反応させた後、 水 3 Om 1を加え、 エーテルで 2回抽 出し、 飽和食塩水で洗浄後、 無水硫酸マグネシウムを用いて乾燥した。 ェ 一テルを減圧留去後、 シリカゲルクロマトグラフィにより精製し、 式 (VII )で示されるビスォキサジァゾ一ル化合物 588mgを得た (収率: 77 %) 。
Two
Figure imgf000016_0001
30 Omg (0.65 mmol) of the bischloroaldoxime compound of the formula (III) was dissolved in 5 ml of benzene, and triethylamine 1821 (1.31 mmol) was added with stirring at 0 ° C. Further, perfluorok-yunonitrile 652 1 (1.567 mmol) was added. After reacting with stirring at room temperature for 16 hours, 3 Om1 of water was added, extracted twice with ether, washed with saturated saline, and dried with anhydrous magnesium sulfate. After distilling off the ether under reduced pressure, the residue was purified by silica gel chromatography to obtain 588 mg of a bisoxaziazole compound represented by the formula (VII) (yield: 77%).
(物性)  (Physical properties)
H-NMR (CDC 13、 p pm) : H-NMR (CDC 1 3, p pm):
7. 58 (4H, d, J = 8. 4Hz) 、 8. 18 (4H, d, J = 8 . 4Hz)  7.58 (4H, d, J = 8.4Hz), 8.18 (4H, d, J = 8.4Hz)
F-NMR (CDC 13, p m) (CFC 13基準) : F-NMR (CDC 1 3, pm) (CFC 1 3 reference):
-64. 0 (6 F, s) 、 -81. 3 (6F, t, J = 1 OHz) 、 一 1 1 3. 4 (4F, t, J = 12 H z ) 、 -121. 0〜一 124. 0 ( -64.0 (6 F, s), -81.3 (6F, t, J = 1 OHz), 1 1 13.4 (4F, t, J = 12 Hz), -121. 0 to 1 124.0 (
16 F, m) 、 - 126. 6 126. 7 (4 F, m) 16 F, m),-126.6 126.7 (4 F, m)
FT— I R (KB r, cm -1) : FT—IR (KB r, cm- 1 ):
1254  1254
MS : MS:
1 176 (M/Z)  1 176 (M / Z)
HR-MAS S : HR-MAS S:
計算値: 1176. 007  Calculated value: 1176.007
実測値: 1176. 009  Found: 1176. 009
比較例 1 (モノアルドキシム化合物とパーフルォロニトリル化合物の反応 )
Figure imgf000018_0001
Comparative Example 1 (Reaction between monoaldoxime compound and perfluoronitrile compound)
Figure imgf000018_0001
(IX)  (IX)
式 (VIII) のべンズアルドキシム 15 Omg (1. 103ミリモル) を クロ口ホルム 5m 1に溶解させ、 室温の下、 攪拌しながらパ一フルォロォ クタノニトリル 310 1 (1. 1323ミリモル) を滴下した。 室温に て 18時間攪拌しながら反応させたところ固体物質が析出した。 そこでこ の析出物を再結晶 (クロ口ホルム) して分析したところ、 ォキサジァゾ一 ル化合物は生成しておらず、 式 (IX) で示される付加化合物のみであった 15 Omg (1.103 mmol) of the benzaldoxime of the formula (VIII) was dissolved in 5 ml of chloroform, and perfluorooctanonitrile 3101 (1.1323 mmol) was added dropwise at room temperature with stirring. When the reaction was carried out at room temperature with stirring for 18 hours, a solid substance was deposited. Therefore, the precipitate was recrystallized (cloth form) and analyzed. As a result, no oxaziazole compound was formed, and only the adduct represented by the formula (IX) was found.
(収率: 100%) 。 (Yield: 100%).
実施例 3 (室温硬化反応) Example 3 (room temperature curing reaction)
水素化 NBR (Zetpo 12000、 日本ゼオン株式会社製) をテトラヒドロフ ラン/トルエン (2Z1) 混合溶媒に溶解させて濃度 5%の水素化 NBR 溶液を調製した。 この水素化 NBR溶液 40 gに対して実施例 1で合成し た式(III)のビスクロロアルドキシム化合物 0. 3 gを添加し、 充分に攪 拌した。 ついでトリェチルァミン 0. 13 gを添加した後、 トレーに混合 溶液を流し込み、 室温にて 24時間放置し、 厚さ約 200 mのキャスト フィルムを作製した。 Hydrogenated NBR (Zetpo 12000, manufactured by Zeon Corporation) was dissolved in a mixed solvent of tetrahydrofuran / toluene (2Z1) to prepare a hydrogenated NBR solution having a concentration of 5%. To 40 g of the hydrogenated NBR solution, 0.3 g of the bischloroaldoxime compound of the formula (III) synthesized in Example 1 was added, and the mixture was sufficiently stirred. Then add 0.13 g of triethylamine, pour the mixed solution into a tray, leave at room temperature for 24 hours, and cast about 200 m thick A film was prepared.
得られたキャストフィルムは充分硬化しており、 J I S K6301に したがって 23°Cで測定 (引張り速度: 20 Omm/分) した 100 %モ ジュラス、 引張破断強度 (Tb) および伸び (Eb) は、 それぞれ 1. 3 8MP a、 4. 08MP aおよび 337 %であった。  The cast film obtained was sufficiently cured. The 100% modulus, tensile strength at break (Tb) and elongation (Eb) measured at 23 ° C (tensile speed: 20 Omm / min) according to JIS K6301 were respectively 1.38 MPa, 4.08 MPa and 337%.
比較例 2 (未硬化水素化 N B Rの機械的物性) Comparative Example 2 (Mechanical properties of uncured hydrogenated NBR)
実施例 3で式(Π I)のビスクロロアルドキシム化合物を配合しなかつた ほかは実施例 3と同様にして未硬化水素化 NBR (生ゴム) のキャストフ イルムを作製し、 実施例 3と同様にして機械物性を測定した。 その結果、 100%モジュラスは 0. 72MP a、 Tbは 0. 84MP a、 および E bは 1045 %であった。  An uncured hydrogenated NBR (raw rubber) cast film was prepared in the same manner as in Example 3 except that the bischloroaldoxime compound of the formula (ΠI) was not used in Example 3, and the same procedure as in Example 3 was carried out. Mechanical properties were measured. As a result, the 100% modulus was 0.72 MPa, Tb was 0.84 MPa, and Eb was 1045%.
実施例 4 Example 4
WO00/29479明細書の実施例 1に記載のテトラフルォロェチレ ン (TFE) 、 パーフルォロメチルビニルエーテル (PMVE) 、 および、 CF2 = CFOCF2CF (CF3) OCF2CF2CN (CNVE) 共重合 体 (組成: TFE/PMVEZCNVE 56. 6/42. 3/1. 1) をパーフルォロ (ブチルテトラヒドロフラン) (FC 75、 住友スリーェ ム社製) に溶解させて、 濃度 1%のポリマー溶液とした。 このポリマー溶 液 80 gに実施例 1で合成した式 (III) のビスクロロアルドキシム化合 物 0. 1 gを充分に撹拌したのち、 トレイに流し込み、 減圧下、 80でで 乾燥を行い、 キャストフィルムを得た。 このトレィ上のフィルムをステン レス製オートクレープに入れ、 窒素置換を行ったのち、 アンモニアガスで 0. IMP aに加圧して室温で 24時間放置し、 その後、 50でにて 2時 間加熱した。 室温まで冷却後、 アンモニアガスを放出し、 アンモニア処理 フィルムを得た。 このフィルムは充分に硬化しており、 FC 75に再度浸 漬しても溶解しなかった。 産業上の利用可能性 Tetrafluoroethylene (TFE), perfluoromethyl vinyl ether (PMVE), and CF 2 = CFOCF 2 CF (CF 3 ) OCF 2 CF 2 CN (Example 1 of WO00 / 29479 specification) CNVE) Copolymer (composition: TFE / PMVEZCNVE 56. 6/42. 3/1. 1) is dissolved in perfluoro (butyltetrahydrofuran) (FC 75, manufactured by Sumitomo 3LEM), and a 1% concentration polymer solution is dissolved. And After thoroughly stirring 0.1 g of the bischloroaldoxime compound of the formula (III) synthesized in Example 1 in 80 g of the polymer solution, pour the mixture into a tray, dry under reduced pressure at 80, and cast. A film was obtained. The film on this tray was placed in a stainless steel autoclave, purged with nitrogen, pressurized to 0.IMPa with ammonia gas, allowed to stand at room temperature for 24 hours, and then heated at 50 for 2 hours. . After cooling to room temperature, ammonia gas was released to obtain an ammonia-treated film. The film was sufficiently cured and did not dissolve when immersed again in FC75. Industrial applicability
本発明によれば、 エラストマ一を室温で充分に内部まで架橋することが できる新規な架橋剤を提供できる。 この架橋剤と架橋促進剤とエラストマ 一からなる室温硬化性エラストマ一組成物は、 耐熱性、 圧縮永久歪み、 耐 薬品性などに優れた硬化物を与え、 シーラント、 エラストマ一接着剤、 塗 料などの建築用資材として現場施工可能な材料を提供することができる。  ADVANTAGE OF THE INVENTION According to this invention, the novel crosslinking agent which can fully bridge | crosslink an elastomer at room temperature to an inside can be provided. The room temperature curable elastomer composition comprising the cross-linking agent, the cross-linking accelerator, and the elastomer provides a cured product having excellent heat resistance, compression set, chemical resistance, etc., and sealants, elastomer adhesives, paints, etc. Can be provided as a construction material of the above.

Claims

言青求の範囲 Scope of Word
1. 式 (I) : 1. Formula (I):
HO N = C C 1 - A- C C 1 =N OH  HO N = C C 1-A- C C 1 = N OH
(式中、 Aは 2価の有機基) で示されるビスクロロアルドキシム化合物 からなる室温硬化用架橋剤。  (Wherein A is a divalent organic group) a crosslinking agent for room temperature curing comprising a bischloroaldoxime compound represented by the formula:
2. 式(I)中の Aが、 酸素原子を含んでいてもよい炭素数 1〜1 0のアル キレン基またはアルキリデン基、 酸素原子を含んでいてもよい炭素数 1 〜 1 0のパーフルォロアルキレン基またはパーフルォ口アルキリデン基、 置換されていてもよいフエ二レン基、 および式(I I) :
Figure imgf000021_0001
2. In the formula (I), A is an alkylene group or an alkylidene group having 1 to 10 carbon atoms which may contain an oxygen atom, or a perfluene having 1 to 10 carbon atoms which may contain an oxygen atom. A fluoroalkylene group or a perfluoroalkylidene group, an optionally substituted phenylene group, and a compound represented by the formula (II):
Figure imgf000021_0001
(式中、 Bは炭素数 1〜 6のアルキレン基またはアルキリデン基、 炭素 数 1〜 6のパーフルォロアルキレン基またはパーフルォ口アルキリデン 基、 単結合、  (Wherein B is an alkylene or alkylidene group having 1 to 6 carbon atoms, a perfluoroalkylene group or a perfluoroalkylidene group having 1 to 6 carbon atoms, a single bond,
0 0  0 0
II ]1  II] 1
—— S— — c—  —— S— — c—
または一 o—) で示される置換されていてもよいビスフエ二レン基から なる群から選択される少なくとも 1種である請求の範囲第 1項記載の架 橋剤。  Or the crosslinking agent according to claim 1, wherein the crosslinking agent is at least one selected from the group consisting of a bisphenylene group which may be substituted and represented by 1 o-).
3. 請求の範囲第 1項記載の架橋剤、 前記架橋剤と反応し得る架橋性基を 有するエラストマ一、 および前記架橋剤を脱塩化水素化し得る架橋促進 剤を含む室温硬化性エラストマ一組成物。  3. A room temperature curable elastomer composition comprising the crosslinking agent according to claim 1, an elastomer having a crosslinking group capable of reacting with the crosslinking agent, and a crosslinking accelerator capable of dehydrochlorinating the crosslinking agent. .
4. 前記架橋性基が、 シァノ基、 ホルミル基、 カルボニル基、 アルキニル 基、 アルケニル基、 チォカルボニル基およびイミドイル基からなる群か ら選択される少なくとも 1種である請求の範囲第 3項記載の室温硬化性 エラストマ一組成物。 4. The method according to claim 3, wherein the crosslinkable group is at least one selected from the group consisting of a cyano group, a formyl group, a carbonyl group, an alkynyl group, an alkenyl group, a thiocarbonyl group and an imidoyl group. Room temperature curing Elastomer composition.
5. 前記架橋性基が、 シァノ基である請求の範囲第 3項記載の室温硬化性 エラストマ一組成物。  5. The room temperature curable elastomer composition according to claim 3, wherein the crosslinkable group is a cyano group.
6. 前記架橋促進剤が、 有機塩基または無機塩基である請求の範囲第 3項 記載の室温硬化性エラストマ一組成物。  6. The room temperature curable elastomer composition according to claim 3, wherein the crosslinking accelerator is an organic base or an inorganic base.
7. 式 (I I I) :  7. Formula (I I I):
Figure imgf000022_0001
Figure imgf000022_0001
で示されるビスクロロアルドキシム化合物。  A bischloroaldoxime compound represented by the formula:
PCT/JP2002/006037 2001-06-22 2002-06-18 Crosslinking agent for room-temperature curing and room-temperature-curable elastomer composition containing the crosslinking agent WO2003000784A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003507181A JP4096878B2 (en) 2001-06-22 2002-06-18 Cross-linking agent for room temperature curing and room-temperature curable elastomer composition containing the cross-linking agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-189812 2001-06-22
JP2001189812 2001-06-22

Publications (1)

Publication Number Publication Date
WO2003000784A1 true WO2003000784A1 (en) 2003-01-03

Family

ID=19028673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/006037 WO2003000784A1 (en) 2001-06-22 2002-06-18 Crosslinking agent for room-temperature curing and room-temperature-curable elastomer composition containing the crosslinking agent

Country Status (2)

Country Link
JP (1) JP4096878B2 (en)
WO (1) WO2003000784A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011516693A (en) * 2008-04-08 2011-05-26 グリーン, ツイード オブ デラウェア, インコーポレイテッド Oxygen-resistant plasma composition characterized by low viscosity and related methods
CN109517240A (en) * 2018-10-30 2019-03-26 西北工业大学 A kind of preparation method of the nitrile rubber with dynamic crosslinking structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3504017A (en) * 1966-10-04 1970-03-31 Hercules Inc Polyfunctional carbonyl nitrile oxides
DE2200268A1 (en) * 1971-01-05 1972-07-27 Ciba Geigy Ag Sealing compositions
US3681301A (en) * 1970-08-03 1972-08-01 Ciba Geigy Corp Moisture curable resin compositions
US3681299A (en) * 1970-05-01 1972-08-01 Ciba Geigy Corp Process for crosslinking polymers containing mercaptan groups
US3796714A (en) * 1971-07-01 1974-03-12 Hercules Inc Lactone and sultone adducts of bicyclic tertiary amines
GB1366722A (en) * 1972-01-04 1974-09-11 Ciba Geigy Ag Sealant compositions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3504017A (en) * 1966-10-04 1970-03-31 Hercules Inc Polyfunctional carbonyl nitrile oxides
US3681299A (en) * 1970-05-01 1972-08-01 Ciba Geigy Corp Process for crosslinking polymers containing mercaptan groups
US3681301A (en) * 1970-08-03 1972-08-01 Ciba Geigy Corp Moisture curable resin compositions
DE2200268A1 (en) * 1971-01-05 1972-07-27 Ciba Geigy Ag Sealing compositions
US3796714A (en) * 1971-07-01 1974-03-12 Hercules Inc Lactone and sultone adducts of bicyclic tertiary amines
GB1366722A (en) * 1972-01-04 1974-09-11 Ciba Geigy Ag Sealant compositions

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011516693A (en) * 2008-04-08 2011-05-26 グリーン, ツイード オブ デラウェア, インコーポレイテッド Oxygen-resistant plasma composition characterized by low viscosity and related methods
CN109517240A (en) * 2018-10-30 2019-03-26 西北工业大学 A kind of preparation method of the nitrile rubber with dynamic crosslinking structure
CN109517240B (en) * 2018-10-30 2021-01-05 西北工业大学 Preparation method of nitrile rubber with dynamic cross-linking structure

Also Published As

Publication number Publication date
JPWO2003000784A1 (en) 2004-10-07
JP4096878B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
US5378734A (en) UV and moisture-curable organopolysiloxane compositions, cured products therof, and method for making
FI113660B (en) Moisture-curing sealant composition of modified acrylic polymer
WO2007049469A1 (en) Crosslinkable composition and molded article made of same
JP6767390B2 (en) Use of acrylate rubber with improved cold properties and good oil resistance to produce vulcanizable mixtures and vulcanized products
JP5289244B2 (en) Modified polymer material modified with nitrile oxide and method for producing the same
JP2011208117A (en) Crosslinking agent, crosslinked polymer material, and method for producing the crosslinked polymer material
JP2007138080A (en) Modified polycarbodiimide composition and modified polycarbodiimide
Feng et al. Preparation and characterization of silicone rubber cured via catalyst-free aza-Michael reaction
JPWO2011058918A1 (en) Diphenylamine compound, anti-aging agent, and polymer composition
TWI358425B (en) Curable composition, molded article using the same
WO2022004511A1 (en) Curing catalyst used for curing of polymer, method for producing same, moisture-curable composition, and method for producing cured product
JPH06299062A (en) Curable composition
JP5569720B2 (en) Method for producing moisture curable composition
JP2013506752A (en) Triazine-containing fluoropolyether elastomers having very low glass transition temperatures, compositions containing them and methods for their production
JPH02117955A (en) Curable composition
JP5769031B2 (en) Halogen-terminated sulfur-containing polymer
JP5923451B2 (en) Method of using polyorganosiloxane, method of vulcanizing rubber, vulcanized rubber, vulcanizing agent for rubber, masterbatch and mixture
CA3081648A1 (en) Recyclable cross-linked diene elastomers comprising furanyl groups and precursors thereof
WO2003000784A1 (en) Crosslinking agent for room-temperature curing and room-temperature-curable elastomer composition containing the crosslinking agent
JP3892270B2 (en) One-part moisture-curing flexible resin composition
JPH11140161A (en) Rapidly curable epoxy resin composition
JP6462509B2 (en) Glycoluril compound having thioether bond and silyl group, method for synthesizing the compound, and polyorganosiloxane composition
TW200911906A (en) Fluorine-containing elastomer composition and sealing material made of same
JPH01151591A (en) Organosilicone compound
EP3889220B1 (en) Perfluoropolyether-based rubber composition, cured object obtained therefrom, and product including same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003507181

Country of ref document: JP

122 Ep: pct application non-entry in european phase