WO2003000620A1 - Method of providing void spaces in gypsum wallboard and in a gypsum core composition - Google Patents
Method of providing void spaces in gypsum wallboard and in a gypsum core composition Download PDFInfo
- Publication number
- WO2003000620A1 WO2003000620A1 PCT/US2002/019133 US0219133W WO03000620A1 WO 2003000620 A1 WO2003000620 A1 WO 2003000620A1 US 0219133 W US0219133 W US 0219133W WO 03000620 A1 WO03000620 A1 WO 03000620A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air bubbles
- slurry
- gypsum
- foaming agent
- core composition
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/16—Sulfur-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/14—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/10—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
Definitions
- the present invention relates generally to the production of low weight, high strength gypsum wallboard and gypsum core compositions. More specifically, the invention is directed to a method of providing void spaces in gypsum wallboard and in a gypsum core composition.
- a common method of constructing walls and ceilings includes the use of inorganic wallboard panels or sheets, such as gypsum wallboard, often referred to simply as “wallboard” or “drywall.”
- Wallboard can be formulated for interior, exterior, and wet applications.
- the use of wallboard, as opposed to conventional boards made from wet plaster methods, is desirable because the installation of wallboard is ordinarily less costly and less cumbersome when compared to the installation of conventional plaster walls.
- wallboard core A major ingredient of the gypsum wallboard core (hereinafter "wallboard core" or
- core is calcium sulfate hemihydrate, commonly referred to as “calcined gypsum,” “stucco,” or “plaster of Paris.”
- Stucco has a number of desirable physical properties including, but not limited to, its fire resistance, thermal and hydrometric dimensional stability, compressive strength, and neutral pH.
- stucco is prepared by drying, grinding, and calcining natural gypsum rock (i.e., calcium sulfate dihydrate). The drying step in the manufacture of stucco includes passing crude gypsum rock through a rotary kiln to remove any free moisture present in the rock.
- the dried rock is then passed through a roller mill (a type of pulverizer), wherein the rock is ground or comminuted to a desired fineness.
- the degree of comminution is determined by the ultimate use.
- the dried, fine-ground gypsum can be referred to as "land plaster,” regardless of its intended use.
- the land plaster is used as feed in calcination processes for conversion to stucco.
- the calcination step in the manufacture of stucco is performed by heating the land plaster to liberate a portion of the chemically bound water molecules.
- the calcination of stucco can generally be described by the following chemical equation which shows that heating calcium sulfate dihydrate yields calcium sulfate hemihydrate (stucco) and water vapor:
- Uncalcined calcium sulfate i.e., land plaster
- calcined gypsum or stucco
- the setting reaction is a reversal of the above-described chemical reaction that occurs during the calcination step, and is generally described by the following chemical equation showing that calcium sulfate hemihydrate is rehydrated to its dihydrate state:
- the actual time required to complete the setting reaction generally depends upon the type of calciner and the type of gypsum rock that is used to produce the gypsum, and can be controlled within certain limits by the use of additives such as, for example, retarders, set accelerators, and or stabilizers.
- the time required for rehydration can be as little as about two minutes to as long as about eight hours depending on the quantity of retarders, set accelerators, and/or stabilizers present.
- wallboard is produced by enclosing a core of an aqueous slurry of calcined gypsum and other materials between two large sheets of board cover paper.
- Methods for the production of gypsum wallboard generally are described, for example, by Michelsen, T. "Building Materials (Survey),” Kirk-Othmer Encyclopedia of Chemical Technology, (1992 4th ed.), vol. 4, pp. 618-619, the disclosure of which is hereby incorporated herein by reference.
- a conventional process for manufacturing the core composition of gypsum wallboard initially includes the premixing of dry ingredients in a high-speed mixing apparatus.
- the dry ingredients can include calcium sulfate hemihydrate (stucco), an accelerator, and an antidesiccant (e.g., starch).
- the dry ingredients are mixed together with a "wet" (aqueous) portion of the core composition in a pin mixer apparatus.
- the wet portion can include a first component, commonly referred to as a "paper pulp solution,” that includes a mixture of water, paper pulp, and, optionally, one or more fluidity-increasing agents, and set retarders.
- the paper pulp solution provides a major portion of the water that forms the gypsum slurry of the core composition.
- a second wet component can include a mixture of strengthening agents, foaming agents, and other conventional additives, if desired.
- the aforementioned dry and wet portions comprise an aqueous gypsum slurry that eventually forms the gypsum wallboard core.
- various materials such as silicone water repellents, waxes, and asphalt emulsions, can be incorporated into the gypsum wallboard core to impart increased water absorption resistance to the board.
- These materials are typically supplied as water emulsions to facilitate ease of incorporation into the board core, and can be added directly into the mixing apparatus or incorporated into the pulp solution prior to addition to the mixing apparatus.
- cover paper or "cover sheets”
- the two cover sheets typically comprise a pre-folded face paper and a backing paper.
- the backing paper is brought down atop the deposited core slurry and bonded to the prefolded edges of the face paper.
- the core slurry is then allowed to cure or set (i.e., react with the water present in the aqueous slurry), whereby calcium sulfate hemihydrate is converted to calcium sulfate dihydrate.
- the setting reaction produces gypsum crystals which are interwoven.
- the resulting crystal-to-crystal interactions contribute to the strength of the wallboard core.
- the gypsum crystals also preferably interlock with paper fibers protruding from the surface of the cover sheets, thereby bonding the cover sheets to the wallboard core. This bonding-type interaction also increases the strength of the wallboard product.
- Standardized sheets (or panels) of wallboard typically are about four feet (about 1.22 meters) wide and about 8 feet to about 16 feet (about 2.4 meters to about 4.9 meters) in length. Sheets typically are available in thicknesses varying in a range of about l A inch to about one inch (about 0.6 centimeters to about 2.6 centimeters).
- gypsum wallboard In order to provide satisfactory strength, commercially-available gypsum wallboard generally requires a density of about 1675 to 1700 pounds per thousand square feet (lbs/MSF) of one-half inch board. Because heavy or high-density gypsum wallboards are more costly and difficult to manufacture, transport, store, and manually install at job sites when compared with lighter or low-density boards, various attempts have been made to reduce board weight and density without sacrificing board strength. Often, however, where wallboard is formulated to have a density less than about 1675 to 1700 lbs/MSF of one-half inch board, the resulting strength is unacceptable for commercial sale. It has been previously disclosed that reduced density wallboard can be obtained by mixing an aqueous foam into the gypsum slurry.
- the density of the wallboard is reduced because the foam introduces air voids into the gypsum wallboard core composition.
- the foam substantially degrades during mixing of the gypsum slurry and/or while the gypsum core is setting, the gypsum slurry will fill those void spaces left by raptured bubbles, and a reduced board weight will not be achieved.
- many of the lighter and less dense wallboard products obtained by incorporating foams into the gypsum slurry possess inferior mechanical properties which render them ill-suited for commercial use.
- U.S. Patent No. 4,156,615 to Cukier discloses a foaming agent which can be used to introduce air voids into a gypsum wallboard.
- gypsum wallboard produced with this surfactant blend must be formulated at heavier board weights (approximately 1675 lbs/MSF) in order to meet ASTM nail pull standards.
- the foaming agent of the '615 patent produces more stable air bubbles upon foaming.
- U.S. Patent No. 5,240,639 to Diez et al. also discloses a foaming agent which can be used to introduce air voids into a gypsum wallboard.
- Gypsum wallboard produced with this surfactant blend also must be formulated at heavier board weights (approximately 1675 lbs/MSF) in order to meet ASTM nail pull requirements.
- the foaming agent of the '639 patent produces less stable air bubbles which frequently coalesce and rupture during mixing of the gypsum slurry and/or while the gypsum slurry is setting. As a consequence, greater amounts of this foaming agent must be used to achieve significant weight reduction in gypsum wallboards.
- U.S. Patent No. 5,643,510 to Sucech discloses a process for producing "foamed" gypsum board wherein a stable foaming agent comprising alkyl ether sulfates and an unstable foaming agent comprising alkyl sulfates are blended and introduced into a gypsum slurry.
- the foaming agents of the '615 patent and of the '639 patent are both disclosed to be stable foaming agents.
- the present invention provides a method of providing void spaces in a gypsum wallboard such that the board weight is reduced without deleteriously affecting the mechanical properties of the gypsum wallboard.
- the invention also provides a method of providing void spaces in a gypsum wallboard wherein air bubbles do not prematurely rupture during mixing of the gypsum slurry and/or during the setting of the gypsum slurry, thereby allowing the gypsum slurry to fill the void spaces left by the ruptured bubbles.
- the invention further provides a method of providing void spaces in a gypsum wallboard such that high-strength gypsum wallboard having weights and densities generally less than those produced by conventional methods is produced.
- a method of providing void spaces in a gypsum wallboard comprises a step of adding air bubbles to a gypsum slurry.
- the slurry typically comprises calcium sulfate hemihydrate and sufficient water to hydrate the calcium sulfate hemihydrate.
- Air bubbles can be formed by foaming a first foaming agent and a second foaming agent in water.
- the first and second foaming agents produce air bubbles that differ in stability. More specifically, the first foaming agent produces less stable air bubbles and the second foaming agent produces more stable air bubbles. The less stable air bubbles are sufficiently unstable such that they coalesce on contact with each other in the slurry to form larger air bubbles.
- the weight ratio of the less stable air bubbles to the more stable air bubbles initially added to the slurry is such that there are a sufficient number of more stable air bubbles to prevent a majority of the less stable air bubbles from becoming large enough to rupture before the slurry sets sufficiently, and to prevent the slurry from filling void spaces left by ruptured bubbles.
- the method further includes the step of mixing the air bubble-containing gypsum slurry to distribute the air bubbles throughout the slurry.
- the gypsum slurry forms a core composition of the gypsum wallboard.
- the core composition is deposited on a cover sheet, and, a second cover sheet is applied over the resulting core composition to form a gypsum wallboard.
- a method of providing void spaces in a gypsum core composition comprises the step of adding air bubbles to a gypsum slurry.
- the slurry typically comprises calcium sulfate hemihydrate and sufficient water to hydrate the calcium sulfate hemihydrate.
- Air bubbles can be formed by foaming a first foaming agent and a second foaming agent in water.
- the first and second foaming agents produce air bubbles that differ in stability. More specifically, the first foaming agent produces less stable air bubbles and the second foaming agent produces more stable air bubbles.
- the first foaming agent is described by the chemical formula R(OCH 2 CH 2 ) a OSO 3 M ⁇ wherein R represents linear and branched hydrocarbons having a maximum molecular weight of about 169, and mixtures thereof, a is the average number of moles of ethylene oxide per mole of foaming agent and is in the range of 0.4 and 1.3, and, Mj is selected from the group consisting of sodium, potassium, magnesium, ammonium, quaternary ammonium, and mixtures thereof.
- the second foaming agent is described by the chemical formula CH 3 (CH ) b CH 2 (OCH 2 CH 2 ) 0 OSO M wherein the average value of b is in the range of 6.5 and 7.5, c is the average number of moles of ethylene oxide per mole of foaming agent and is in the range of 1.5 and 2.5, and, M 2 is selected from the group consisting of sodium, potassium, magnesium, ammonium, quaternary ammonium, and mixtures thereof.
- the weight ratio of the first foaming agent to the second foaming agent is in the range of 75:25 to 95:5.
- the presence of the more stable air bubbles in the slurry increases the residence time of the less stable bubbles in the slurry, thereby preventing the premature rupturing of the less stable bubbles before the gypsum slurry sets sufficiently, and thereby preventing the slurry from filling the void spaces formed by the ruptured air bubbles.
- the method further includes the steps of mixing the air bubble-containing gypsum slurry to distribute the air bubbles throughout the slurry, the gypsum slurry forming a core composition of the gypsum wallboard, depositing the core composition on a cover sheet, and applying a second cover sheet over the core composition to form a gypsum wallboard.
- a method of providing void spaces in a gypsum wallboard core composition comprises a step of adding air bubbles to a gypsum slurry.
- the slurry typically comprises calcium sulfate hemihydrate and sufficient water to hydrate the calcium sulfate hemihydrate.
- Air bubbles can be formed by foaming a first foaming agent and a second foaming agent in water.
- the first and second foaming agents produce air bubbles that differ in stability. More specifically, the first foaming agent produces less stable air bubbles and the second foaming agent producing more stable air bubbles. The less stable air bubbles are sufficiently unstable such that they coalesce on contact with each other in the slurry to form larger air bubbles.
- the weight ratio of the less stable air bubbles to the more stable air bubbles initially added to the slurry is such that there are a sufficient number of more stable air bubbles to prevent a majority of the less stable air bubbles from becoming large enough to rupture before the slurry sets sufficiently, and to prevent the slurry from filling void spaces left by ruptured bubbles.
- the method further includes the steps of mixing the air bubble-containing gypsum slurry to distribute the air bubbles throughout the slurry, and, depositing the gypsum slurry on a substrate.
- FIG. 1 shows an electron micrograph of a gypsum board prepared with a prior art method of providing void spaces in a gypsum board
- FIG. 2 shows an electron micrograph of a gypsum board prepared with a method of providing void spaces in a gypsum board in accordance with the invention.
- methods of providing void spaces are disclosed for use in the production of panels of gypsum wallboard.
- the invention further provides methods of providing void spaces in a gypsum core composition.
- FIG. 1 illustrates that the diameter of the void spaces in a gypsum board prepared by a prior art method, wherein a high density foam (16 lbs/cf) comprising Cedepal ® FA-406 was used as the sole foaming agent, is approximately 0.35 to 40 microns.
- FIG. 2 demonstrates that the diameter of the void spaces provided in accordance with the methods of the invention are significantly larger, ranging from 300 to 800 microns.
- the method of the invention allows a substantial reduction in board weight and density, while producing wallboard that can meet industry strength standards.
- the methods of the invention can allow for the production of high strength wallboard weighing about 1600 pounds per thousand square feet (based on one-half inch thick board), and even lower in some cases.
- the preferred ingredients of the wallboard core composition of the invention will now be described in more detail.
- the first ingredient of the wallboard core composition of the invention is calcium sulfate hemihydrate, or stucco (CaS0 4 - >H 2 O).
- Calcium sulfate hemihydrate can be produced by the methods described above. Calcium sulfate is described, for example, by Petersen, D.J., et al. "Calcium Compounds (Calcium Sulfate)," Kirk-Othmer Encyclopedia of Chemical Technology, (1992 4th ed.), vol. 4, pp. 812-26, the disclosure of which is hereby incorporated herein by reference.
- Suitable dry ingredients are preferably included in the core composition, including an accelerator which can be used to control, within certain limits, the crystal growth rate and the set time of the stucco.
- suitable accelerators include ball mill accelerators ("BMA") and potassium sulfate, although many others are known to those of skill in the art. In some cases, the invention may require increased amounts of accelerator.
- An antidessicant such as starch may also be included in order to prevent the dehydration of calcium sulfate dihydrate crystals formed during setting of the core composition.
- additional lightweight aggregates e.g., expanded perlite or vermiculite
- the pulp solution comprises water and paper fibers ("paper pulp"), and may also include a retarder, com starch, and/or potash.
- the retarder is used in conjunction with the aforementioned accelerator in order to tailor the set time of the core composition.
- Retarding agents are typically used in the invention at very low rates (if at all), for example, at about 0.0007 weight percent based on the weight of the core composition.
- the paper pulp solution can also include one or more of a number of additives that increase the fluidity of the slurry and/or reduce the water requirements of slurry.
- Materials used as fluidity-enhancing and/or water-reducing agents include "lignosulfonates" which are available commercially either in liquid or powder form.
- Diloflo GB 33 a sodium salt of napthalene sulfonate, available from Henkel Corporation, Ambler, Pennsylvania, may also be used as a water reducing agent.
- Agents supplied in liquid form can be either incorporated in the pulp solution or added directly to the mixing operation.
- the pulp solution can be prepared by blending or mixing the above ingredients with water in a blending apparatus. Alternatively, a concentrated pulp solution using only a small volume of water can be used.
- the remainder of the core mix water requirement is made up by adding additional water.
- An excess of water with respect to the above-described rehydration reaction is preferably included in order to provide satisfactory flowability of the core composition.
- about 75 weight parts water are used per 100 weight parts stucco.
- high shear mixing "pulps" the material, forming a homogenous solution or slurry.
- the pulp solution can be transferred to a holding vessel, from which it can be continuously added to the core composition mix.
- the paper fibers in the pulp solution serve to enhance the flexibility of the gypsum wallboard. Gypsum wallboard made without fibers is typically very brittle and more susceptible to breakage during handling. The paper fibers also aid in evenness of drying during manufacture, as well as enhance the ability of the final wallboard product to accept and hold nails during installation.
- the wet portion of the core composition also preferably includes a component that incorporates both a strength-enhancing agent and foam.
- Strengthening agents in the form of an acrylic polymer emulsion suitable for use in the invention are disclosed in U.S. Patent No. 5,879,825, the disclosure of which is hereby incorporated herein by reference.
- the aqueous foam of the wet portion of the core composition is prepared by mixing a "foaming agent" with water and air, and foaming the mixture in an apparatus which agitates the mixture to produce air bubbles of aqueous foam.
- foaming agent Several such foam generating apparatuses are well known in the art.
- foaming agents may be used in accordance with the methods of the invention.
- the foaming agents may be supplied in either liquid or flake (powdered) form, and may be produced from soap sand surfactants known in the art.
- the methods of the invention require that a foaming agent producing less stable air bubbles be used in conjunction with a foaming agent producing more stable bubbles.
- the foaming agent producing less stable air bubbles may be foamed separately from the foaming agent producing more stable air bubbles. Accordingly, the less stable air bubbles and the more stable air bubbles can be added to the gypsum slurry separately.
- the two foaming agents are mixed, and foamed and added to the gypsum slurry simultaneously.
- the term “less stable air bubbles,” refers to those air bubbles which frequently coalesce upon contacting another unstable air bubble during mixing of the gypsum slurry and or while the gypsum core is setting.
- the term “more stable air bubbles,” as used herein, refers to those air bubbles which have sufficient residence time during mixing of the gypsum slurry and/or while the gypsum core is setting such that a majority of them do not coalesce upon contacting any other air bubble.
- Foaming agents that produce less stable air bubbles in accordance with the invention include alkyl sulfates having at least a ten carbon chain, alkyl ether sulfates having less than an average of 1.3 moles of ethylene oxide per mole of foaming agent, and mixtures thereof. More preferably, the foaming agent that produces less stable air bubbles is selected from the group consisting of ammonium lauryl sulfate, and alkyl ether sulfates having approximately 0.4 to 1.3 moles of ethylene oxide per mole of foaming agent.
- the foaming agent producing less stable air bubbles is described by the chemical formula R(OCH 2 CH 2 ) a OSOM ⁇ wherein R represents linear and branched hydrocarbons having a maximum molecular weight of about 169, and mixtures thereof; a is the average number of moles of ethylene oxide per mole of foaming agent and is in the range of 0.4 and 1.3; and, M ⁇ is selected from the group consisting of sodium, potassium, magnesium, ammonium, quaternary organic derivatives of ammonium, and mixtures thereof Even more preferably, a is approximately 0.8, and Mi is selected from the group consisting of ammonium and quaternary organic derivatives thereof.
- the foaming agent producing less stable air bubbles is Alpha Foamer ® , a commercial product available from the Stepan Company, Northfield, Illinois.
- Foaming agents that produce more stable air bubbles in accordance with the invention include alkyl ether sulfates having at least an average of 1.5 moles of ethylene oxide per mole of foaming agent, alkyl aryl sulfonates, C-12 to C-16 alpha sulfonated methyl esters, alpha olefin sulfonates, and mixtures thereof. More preferably, the foaming agent producing more stable airbubbles is selected from the group consisting of alkyl ether sulfates having on average between 1.5 and 2.5 moles of ethylene oxide per mole of foaming agent, sodium dodecylbenzene sulfonate, and triethanolamine dodecylbenzene sulfonate.
- the foaming agent producing more stable air bubbles is described by the chemical formula CH 3 (CH 2 ) b CH 2 (OCH 2 CH ) a OSO 3 M wherein b has an average value in the range of 6.5 and 7.5; c is the average number of moles of ethylene oxide per mole of foaming agent and is in the range of 1.5 and 2.5; and, M 2 is selected from the group consisting of sodium, potassium, magnesium, ammonium, quaternary ammonium, and mixtures thereof. Even more preferably, c is approximately 2.2, and M 2 is selected from the group consisting of sodium, ammonium, and quaternary organic derivatives of ammonium.
- the foaming agent producing more stable air bubbles is Cedepal® FA-406, a commercial product available from the Stepan Company, Northf ⁇ eld, Illinois.
- the more stable air bubbles control the amount of air bubble coalescence that occurs during mixing of the gypsum slurry and/or while the gypsum slurry is setting because the more stable air bubbles do not frequently coalesce with other air bubbles. Accordingly, in the methods according to the invention, the amount of air bubble coalescence that occurs is limited by adding increased amounts of the more stable air bubbles. In the methods according to the invention, limiting the amount of bubble coalescence is important because ultimately, air bubbles will rupture if they become too large. Further, because the more stable bubbles do not frequently coalesce, incorporating greater amounts of the more stable bubbles into a gypsum slurry introduces an increased number of smaller voids into a gypsum board. A large number of small voids in a gypsum wallboard negatively affects the board's mechanical strength.
- an acceptable weight ratio of the foaming agent producing less stable air bubbles to the foaming agent producing more stable air bubbles must provide a sufficient number of more stable air bubbles to prevent a majority of the less stable air bubbles from becoming so large (from coalescing with other less stable bubbles) that they rupture (before the slurry sets sufficiently) and thereby allow the slurry to fill those void spaces left by ruptured bubbles.
- acceptable foaming agent weight ratios must also allow the less stable bubbles to coalesce so as to provide larger voids in the gypsum composition without becoming so large as to prematurely rupture.
- the foaming agent weight ratio can vary widely depending on which foaming agent is used to produce less stable bubbles and on which foaming agent is used to produce more stable air bubbles.
- the weight ratio of the foaming agent producing less stable air bubbles to the foaming agent producing more stable air bubbles is in the range of 75:25 to 95:5. Even more preferably, the weight ratio of the foaming agent producing less stable air bubbles to the forming agent producing more stable air bubbles is in the range of 85:15 to 95:5. Most preferably, the weight ratio of the foaming agent producing less stable air bubbles to the foaming agent producing more stable air bubbles is approximately 90: 1 0.
- the invention can be better understood in light of the following examples which are intended as an illustration of the practice of the invention and are not meant to limit the scope of the invention in any way.
- low density foam has been generated using the static foam generating apparatus of commonly-owned, co- pending Application Serial Number 09/427,982.
- 10% foaming agent solutions having acceptable foaming agent weight ratios were pumped (at a desired pump setting) into a stream of foam water. Air was injected into the stream of foam water and foaming agent solution before the solution enters the static foam generating apparatus. Foam was generated as the mixture of foam water, foaming agent, and air passed through the foaming apparatus. The density of the foam produced can be controlled by varying the air flow, the surfactant concentration, and the foam water flow.
- low density foam (11.5 to 13 Ibs/cf) was produced by pumping the desired amount of the 10% foaming agent solution into a 1.66 gal/min stream of foam water and injecting 0.6 to 0.66 cf of air per minute.
- gypsum wallboard prepared in accordance with methods according to the invention is compared with gypsum wallboard prepared by prior art methods.
- a statistical line of regression analysis was performed on the board weights and nail pull test data in order to calculate board weights required to achieve various nail pull values and to calculate projected weights at standard nail pull values.
- boards prepared in accordance with the methods of the invention can be formulated at lighter weights while still maintaining sufficient mechanical strength to pass ASTM requirements. Reductions in board weight of in excess of 60 lbs/N4SF can be attained by practicing the methods according to the invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2448888A CA2448888C (en) | 2001-06-22 | 2002-06-17 | Method of providing void spaces in gypsum wallboard and in a gypsum core composition |
EP02746556A EP1401785A1 (en) | 2001-06-22 | 2002-06-17 | Method of providing void spaces in gypsum wallboard and in a gypsum core composition |
MXPA03011791A MXPA03011791A (en) | 2001-06-22 | 2002-06-17 | Method of providing void spaces in gypsum wallboard and in a gypsum core composition. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/887,284 | 2001-06-22 | ||
US09/887,284 US6706128B2 (en) | 2001-06-22 | 2001-06-22 | Method of providing void space in gypsum wallboard and in a gypsum core composition |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003000620A1 true WO2003000620A1 (en) | 2003-01-03 |
Family
ID=25390823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2002/019133 WO2003000620A1 (en) | 2001-06-22 | 2002-06-17 | Method of providing void spaces in gypsum wallboard and in a gypsum core composition |
Country Status (5)
Country | Link |
---|---|
US (1) | US6706128B2 (en) |
EP (1) | EP1401785A1 (en) |
CA (1) | CA2448888C (en) |
MX (1) | MXPA03011791A (en) |
WO (1) | WO2003000620A1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8197952B2 (en) | 2005-06-09 | 2012-06-12 | United States Gypsum Company | High starch light weight gypsum wallboard |
WO2012116162A1 (en) * | 2011-02-23 | 2012-08-30 | Basf Corporation | Gypsum based slurries, foamed gypsum boards and methods for producing foamed gypsum boards |
EP2508316A1 (en) * | 2011-04-08 | 2012-10-10 | Saint-Gobain Placo SAS | Method and apparatus for manufacturing gypsum products |
USRE44070E1 (en) | 2005-06-09 | 2013-03-12 | United States Gypsum Company | Composite light weight gypsum wallboard |
EP3068003A1 (en) | 2015-03-11 | 2016-09-14 | RF-Technologies | Gypsum plate assembly |
US9802866B2 (en) | 2005-06-09 | 2017-10-31 | United States Gypsum Company | Light weight gypsum board |
US9840066B2 (en) | 2005-06-09 | 2017-12-12 | United States Gypsum Company | Light weight gypsum board |
US9889579B2 (en) | 2014-09-03 | 2018-02-13 | National Gypsum Properties, Llc | Gypsum wallboard and method of making same |
US10023464B2 (en) | 2013-05-02 | 2018-07-17 | Easymining Sweden Ab | Production of phosphate compounds from materials containing phosphorus and at least one of iron and aluminium |
US10421251B2 (en) | 2015-06-24 | 2019-09-24 | United States Gypsum Company | Composite gypsum board and methods related thereto |
US11225046B2 (en) | 2016-09-08 | 2022-01-18 | United States Gypsum Company | Gypsum board with perforated cover sheet and system and method for manufacturing same |
US11306028B2 (en) | 2005-06-09 | 2022-04-19 | United States Gypsum Company | Light weight gypsum board |
US11338548B2 (en) | 2005-06-09 | 2022-05-24 | United States Gypsum Company | Light weight gypsum board |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080070026A1 (en) * | 2005-06-09 | 2008-03-20 | United States Gypsum Company | High hydroxyethylated starch and high dispersant levels in gypsum wallboard |
US20110195241A1 (en) * | 2005-06-09 | 2011-08-11 | United States Gypsum Company | Low Weight and Density Fire-Resistant Gypsum Panel |
US20080223258A1 (en) * | 2007-03-12 | 2008-09-18 | Robert Bruce | Method and System for Manufacturing Lightweight, High-Strength Gypsum Products |
US8057915B2 (en) * | 2007-05-31 | 2011-11-15 | United States Gypsum Company | Acoustical gypsum board panel and method of making it |
MX2009013583A (en) | 2007-06-14 | 2010-04-27 | Nat Gypsum Properties Llc | Improved gypsum wallboard and method of making same. |
US7918950B2 (en) * | 2007-12-20 | 2011-04-05 | United States Gypsum Company | Low fiber calcination process for making gypsum fiberboard |
MX348955B (en) | 2011-02-23 | 2017-07-05 | Nat Gypsum Properties Llc | Improved gypsum wallboard slurry and method for making the same. |
US8882943B2 (en) | 2011-09-14 | 2014-11-11 | Certainteed Gypsum, Inc. | System and method for the production of gypsum board using starch pellets |
JP6192713B2 (en) | 2012-05-14 | 2017-09-06 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Moisture resistant gypsum board and slurry for producing the gypsum board |
CA2909294A1 (en) * | 2013-04-17 | 2014-10-23 | Stepan Company | Surfactant composition for use in gypsum wallboard manufacture |
US20150184386A1 (en) * | 2013-12-30 | 2015-07-02 | Saint-Gobain Placo Sas | Non-Uniform Coatings for Building Boards |
WO2015103120A2 (en) | 2013-12-30 | 2015-07-09 | Saint-Gobain Placo Sas | Building boards with increased surface strength |
US10189180B2 (en) | 2014-01-15 | 2019-01-29 | United States Gypsum Company | Foam injection system with variable port inserts for slurry mixing and dispensing apparatus |
US20170096369A1 (en) * | 2015-10-01 | 2017-04-06 | United States Gypsum Company | Foam modifiers for gypsum slurries, methods, and products |
US10662112B2 (en) | 2015-10-01 | 2020-05-26 | United States Gypsum Company | Method and system for on-line blending of foaming agent with foam modifier for addition to cementitious slurries |
EP4349555A1 (en) | 2022-10-05 | 2024-04-10 | Saint-Gobain Placo | Method of forming a gypsum panel, method of analyzing a gypsum core and gypsum core analysis tool |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4156615A (en) | 1977-10-13 | 1979-05-29 | Domtar Inc. | Foaming agents for gypsum board manufacture |
US4618370A (en) * | 1985-09-03 | 1986-10-21 | Millmaster Onyx Group, Inc. | Foam generating compositions |
EP0336749A2 (en) * | 1988-04-07 | 1989-10-11 | Stepan Canada Inc. | Foaming agent |
US5240639A (en) | 1988-04-07 | 1993-08-31 | Stepan Company | Foaming agent |
US5643510A (en) | 1994-09-23 | 1997-07-01 | Usg Corporation | Producing foamed gypsum board using a foaming agent blend |
US5714001A (en) * | 1993-12-13 | 1998-02-03 | Geo Specialty Chemicals, Inc. | Foaming agent composition and process |
US5879825A (en) | 1997-01-07 | 1999-03-09 | National Gypsum Company | Gypsum wallboard and method of making same |
US6422734B1 (en) | 1999-10-27 | 2002-07-23 | National Gypsum Properties, Llc | Static foam generating apparatus and method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4455271A (en) * | 1981-09-17 | 1984-06-19 | National Gypsum Company | Foamed gypsum wallboard |
-
2001
- 2001-06-22 US US09/887,284 patent/US6706128B2/en not_active Expired - Lifetime
-
2002
- 2002-06-17 EP EP02746556A patent/EP1401785A1/en not_active Withdrawn
- 2002-06-17 WO PCT/US2002/019133 patent/WO2003000620A1/en not_active Application Discontinuation
- 2002-06-17 CA CA2448888A patent/CA2448888C/en not_active Expired - Fee Related
- 2002-06-17 MX MXPA03011791A patent/MXPA03011791A/en active IP Right Grant
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4156615A (en) | 1977-10-13 | 1979-05-29 | Domtar Inc. | Foaming agents for gypsum board manufacture |
US4618370A (en) * | 1985-09-03 | 1986-10-21 | Millmaster Onyx Group, Inc. | Foam generating compositions |
EP0336749A2 (en) * | 1988-04-07 | 1989-10-11 | Stepan Canada Inc. | Foaming agent |
US5240639A (en) | 1988-04-07 | 1993-08-31 | Stepan Company | Foaming agent |
US5714001A (en) * | 1993-12-13 | 1998-02-03 | Geo Specialty Chemicals, Inc. | Foaming agent composition and process |
US5643510A (en) | 1994-09-23 | 1997-07-01 | Usg Corporation | Producing foamed gypsum board using a foaming agent blend |
US5879825A (en) | 1997-01-07 | 1999-03-09 | National Gypsum Company | Gypsum wallboard and method of making same |
US6422734B1 (en) | 1999-10-27 | 2002-07-23 | National Gypsum Properties, Llc | Static foam generating apparatus and method |
Non-Patent Citations (2)
Title |
---|
MICHELSEN, T.: "Building Materials (Survey),"Kirk-Othmer Encyclopedia of Chemical Technology.4th ed.", vol. 4, 1992, pages: 618 - 619 |
PETERSEN, D. J. ET AL.: "Kirk-Othmer Encyclopedia of Chemical Technology,4th ed.", vol. 4, 1992, article "Calcium Compounds (Calcium Sulfate)", pages: 812 - 26 |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9802866B2 (en) | 2005-06-09 | 2017-10-31 | United States Gypsum Company | Light weight gypsum board |
US10406779B2 (en) | 2005-06-09 | 2019-09-10 | United States Gypsum Company | Light weight gypsum board |
US8257489B2 (en) | 2005-06-09 | 2012-09-04 | United States Gypsum Company | Slurries and methods of making light weight gypsum board |
US10407345B2 (en) | 2005-06-09 | 2019-09-10 | United States Gypsum Company | Light weight gypsum board |
US11306028B2 (en) | 2005-06-09 | 2022-04-19 | United States Gypsum Company | Light weight gypsum board |
USRE44070E1 (en) | 2005-06-09 | 2013-03-12 | United States Gypsum Company | Composite light weight gypsum wallboard |
US8470461B2 (en) | 2005-06-09 | 2013-06-25 | United States Gypsum Company | Light weight gypsum board |
US11338548B2 (en) | 2005-06-09 | 2022-05-24 | United States Gypsum Company | Light weight gypsum board |
US8197952B2 (en) | 2005-06-09 | 2012-06-12 | United States Gypsum Company | High starch light weight gypsum wallboard |
US9840066B2 (en) | 2005-06-09 | 2017-12-12 | United States Gypsum Company | Light weight gypsum board |
US11884040B2 (en) | 2005-06-09 | 2024-01-30 | United States Gypsum Company | Light weight gypsum board |
US9181132B2 (en) | 2011-02-23 | 2015-11-10 | Basf Corporation | Gypsum slurries and boards and methods of making the same |
US10125049B2 (en) | 2011-02-23 | 2018-11-13 | Basf Se | Gypsum slurries and boards and methods of making the same |
WO2012116162A1 (en) * | 2011-02-23 | 2012-08-30 | Basf Corporation | Gypsum based slurries, foamed gypsum boards and methods for producing foamed gypsum boards |
RU2599392C2 (en) * | 2011-04-08 | 2016-10-10 | Сэн-Гобэн Плако Сас | Method and apparatus for manufacturing gypsum products |
US9434655B2 (en) | 2011-04-08 | 2016-09-06 | Saint-Gobain Placo Sas | Method and apparatus for manufacturing gypsum products |
CN103596736A (en) * | 2011-04-08 | 2014-02-19 | 圣-戈贝恩普拉科公司 | Method and apparatus for manufacturing gypsum products |
WO2012136760A1 (en) * | 2011-04-08 | 2012-10-11 | Saint-Gobain Placo Sas | Method and apparatus for manufacturing gypsum products |
EP2508316A1 (en) * | 2011-04-08 | 2012-10-10 | Saint-Gobain Placo SAS | Method and apparatus for manufacturing gypsum products |
EP3623348A1 (en) | 2013-05-02 | 2020-03-18 | Easymining Sweden AB | Production of phosphate compounds from materials containing phosphorus and at least one of iron and aluminium |
US10745279B2 (en) | 2013-05-02 | 2020-08-18 | Easymining Sweden Ab | Production of phosphate compounds from materials containing phosphorus and at least one of iron and aluminium |
US10023464B2 (en) | 2013-05-02 | 2018-07-17 | Easymining Sweden Ab | Production of phosphate compounds from materials containing phosphorus and at least one of iron and aluminium |
US9889579B2 (en) | 2014-09-03 | 2018-02-13 | National Gypsum Properties, Llc | Gypsum wallboard and method of making same |
EP3068003A1 (en) | 2015-03-11 | 2016-09-14 | RF-Technologies | Gypsum plate assembly |
US10421250B2 (en) | 2015-06-24 | 2019-09-24 | United States Gypsum Company | Composite gypsum board and methods related thereto |
US10421251B2 (en) | 2015-06-24 | 2019-09-24 | United States Gypsum Company | Composite gypsum board and methods related thereto |
US11040513B2 (en) | 2015-06-24 | 2021-06-22 | United States Gypsum Company | Composite gypsum board and methods related thereto |
US12090744B2 (en) | 2015-06-24 | 2024-09-17 | United States Gypsum Company | Composite gypsum board and methods related thereto |
US11225046B2 (en) | 2016-09-08 | 2022-01-18 | United States Gypsum Company | Gypsum board with perforated cover sheet and system and method for manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
US20030010419A1 (en) | 2003-01-16 |
MXPA03011791A (en) | 2004-04-02 |
CA2448888C (en) | 2011-01-25 |
CA2448888A1 (en) | 2003-01-03 |
EP1401785A1 (en) | 2004-03-31 |
US6706128B2 (en) | 2004-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2448888C (en) | Method of providing void spaces in gypsum wallboard and in a gypsum core composition | |
US5879825A (en) | Gypsum wallboard and method of making same | |
EP1112237B1 (en) | Gypsum wallboard, and method of making same | |
US6783587B2 (en) | Lightweight wallboard compositions containing natural polymers | |
RU2416581C2 (en) | Modifiers for gypsum suspensions and method of their application | |
US6525116B2 (en) | Gypsum composition with ionic styrene butadiene latex additive | |
US20080148997A1 (en) | Gypsum compositions with naphthalene sulfonate and modifiers | |
WO2003040055A1 (en) | Lightweight gypsum wallboard and method of making same | |
KR20140000307A (en) | Method of improving gypsum board strength | |
MX2010007052A (en) | Decreased evaporation with retarder for a high water to stucco ratio lightweight board. | |
AU2002339947A1 (en) | Gypsum wallboard composition, wallboard pane, and method of making same | |
CA2690881A1 (en) | Improved gypsum wallboard and method of making same | |
WO2001034534A2 (en) | Gypsum wallboard and method of making same | |
CA2606897A1 (en) | High amylose starch wallboard and method of making same | |
CA3150608A1 (en) | Foamed liquefiers in gypsum boards |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2448888 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2003/011791 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2002746556 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2004103629 Country of ref document: RU Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2002746556 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |