WO2002088933A1 - Procede de contre-mesure dans un composant electronique mettant en oeuvre un algorithme cryptographique du type a cle publique sur une courbe elliptique - Google Patents
Procede de contre-mesure dans un composant electronique mettant en oeuvre un algorithme cryptographique du type a cle publique sur une courbe elliptique Download PDFInfo
- Publication number
- WO2002088933A1 WO2002088933A1 PCT/FR2002/001434 FR0201434W WO02088933A1 WO 2002088933 A1 WO2002088933 A1 WO 2002088933A1 FR 0201434 W FR0201434 W FR 0201434W WO 02088933 A1 WO02088933 A1 WO 02088933A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- point
- curve
- elliptic curve
- countermeasure method
- isomorphic
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/60—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
- G06F7/72—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
- G06F7/724—Finite field arithmetic
- G06F7/725—Finite field arithmetic over elliptic curves
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/60—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
- G06F7/72—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
- G06F7/724—Finite field arithmetic
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2207/00—Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F2207/72—Indexing scheme relating to groups G06F7/72 - G06F7/729
- G06F2207/7219—Countermeasures against side channel or fault attacks
- G06F2207/7223—Randomisation as countermeasure against side channel attacks
- G06F2207/7228—Random curve mapping, e.g. mapping to an isomorphous or projective curve
Definitions
- the present invention relates to a countermeasure method in an electronic component using a cryptographic algorithm of the public key type on an elliptical curve.
- Public key algorithms on an elliptical curve allow cryptographic applications such as encryption, signature verification, authentication, etc.
- the set of points (x, y) and the point at infinity form an abelian group, in which the point at infinity is the neutral element and in which the group operation is the addition of points, denoted + and given by the well-known rule of the secant and of the tangent.
- the pair (x, y), where the abscissa x and the ordinate y are elements of the body IK forms the affine coordinates of a point P of the elliptic curve.
- the number of elements of the body is always expressed in the form p n , where p is a prime number, p is the characteristic of the body.
- Two classes of elliptic curves are more particularly used in cryptographic systems: those defined on a finite field of characteristic p different from 2 and 3 and those defined on a body of characteristic equal to 2.
- the public key cryptographic algorithms on an elliptical curve are thus based on the scalar multiplication of a point P selected on the curve, by a predetermined number d, the secret key.
- the result of this scalar multiplication dP is a point Q on the elliptical curve.
- the point Q obtained is the public key which is used for the encryption of a message.
- a simple or differential hidden channel attack is understood to mean an attack based on a measurable physical quantity from outside the device, the direct analysis of which (simple attack) or the analysis according to a statistical method (differential attack) allows discover information contained and manipulated in processing in the device. These attacks can thus allow the discovery of confidential information. These attacks were notably exposed by Paul Kocher (Advances in Cryptology - CRYPTO '99, vol. 1966 of Lecture Notes in Computer Science, pp. 388-397. Springer-Verlag, 1999). Among the physical quantities that can be exploited for these purposes, we can cite the consumption in current, the electromagnetic field ... These attacks are based on the fact that the manipulation of a bit, ie its processing by a particular instruction, has a particular imprint on the physical quantity considered according to its value.
- All these algorithms use formulas of operations of doubling and addition defined on the elliptic curves.
- the well-known doubling and addition algorithm is particularly sensitive to attacks of simple type hidden channels, since it includes an operation conditional on the value of a bit of the secret key d.
- Countermeasure methods applying this principle are known. Such countermeasure methods are notably described in an article by Jean-Sébastien Coron (Cryptography Hardware and Embedded Systems, volume 1717 of Lecture Notes in Computer Science, pages 292-302. Springer-Verlag, 1999). In particular, in this article, a countermeasure method consists in masking the point P using projective coordinates of this point, defined randomly.
- a point on the elliptical curve E (different from the point at infinity) is in fact uniquely defined on this curve by its affine coordinates (x, y). But we can represent this point by projective coordinates (X: Y: Z) and there is an exponential number of representations in projective coordinates. In the described countermeasure method, we thus draw a random number t IK and we represent the point P by projective coordinates as a function of this random number.
- An object of the present invention is a method of countermeasure, in particular with respect to hidden channel differential attacks.
- Another object of the invention is a countermeasure method which is easy to implement.
- the proposed method has the advantage of being faster and being applicable equally in affine and projective coordinates.
- the idea underlying the invention is to use group isomorphisms, to transpose scalar multiplication calculations on an elliptical curve E_u obtained by applying a group isomorphism ⁇ u , defined with respect to a random number u, non-zero, element of the body IK.
- the countermeasure method then consists in drawing a non-zero random number u, to define a random isomorphic elliptical curve.
- the group isomorphism applied to the elliptical curves is applied, to randomly mask the point P to which the exponentiation algorithm is applied.
- an exponentiation algorithm of type Q dP, where Q and P are points of a defined elliptic curve E.
- E_u ⁇ u (E)
- This process can be applied to any exponentiation algorithm of its choice and in the coordinate system, affine or projective, of its choice.
- P ' (x '1: y' 1: 1).
- P ' (x '1: y' 1: 1).
- the coordinate in Z being equal to 1, the number of operations to calculate dP 'is then reduced.
- a random value u is drawn each time the cryptographic algorithm is requested.
- a random value u is derived from the personalization of the electronic component. This value is then stored in a rewritable memory portion of the electronic component, like the secret key d.
- it is possible in particular to pre-calculate the value u -1 which makes it possible to calculate the coordinates of the points P 'and Q' and we will store it in rewritable memory. This is particularly advantageous in applications in which the processing speed is very high, and in which the rewritable memory has sufficient capacity.
- the calculation of the point Q + dP 'in step d) of this process can be done with the algorithm of its choice, and in the coordinate system of its choice.
- the use of projective coordinates (homogeneous or Jacobian) for the point P '4 is particularly interesting if one represents P' with its coordinate in Z equal 1 since the number of operations to calculate d P 'is then reduced.
- P ' (u ⁇ 2 xl: u ⁇ 3 yl: 1)
- the countermeasure method according to the invention can be generalized.
- the elliptical curves can be given by parametrizations other than those of Weierstrass.
- step b). of the method detailed above thus consists in calculating parameters of the isomorphic elliptic equation, starting from the random number u and parameters of the elliptic curve on which the cryptographic system is based. Only the parameters used in the operations on the elliptical curve (addition of two points, doubling) are to be calculated. In the example detailed above, only the parameter a is to be calculated.
- the countermeasure method can be applied to the various prior art exponentiation algorithms, since it only transposes this algorithm onto another elliptical curve.
- this countermeasure method can be used in all cryptographic systems on an elliptical curve. It applies in particular to electronic components intended for smart cards.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Computational Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- General Engineering & Computer Science (AREA)
- Complex Calculations (AREA)
- Storage Device Security (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP02727698A EP1381936B1 (fr) | 2001-04-27 | 2002-04-25 | Procede de contre-mesure dans un composant electronique mettant en oeuvre un algorithme cryptographique du type a cle publique sur une courbe elliptique |
US10/475,174 US20040228478A1 (en) | 2001-04-27 | 2002-04-25 | Countermeasure method in an electronic component using a public key cryptographic algorithm on an elliptic curve |
DE60204955T DE60204955T2 (de) | 2001-04-27 | 2002-04-25 | Gegenmassnahmen in einem elektronischen baustein zur ausführung eines krypto-algorithmus mit auf elliptischen kurven basierendem öffentlichen schlüssel |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0105759A FR2824210B1 (fr) | 2001-04-27 | 2001-04-27 | Procede de contre-mesure dans un composant electronique mettant en oeuvre un algorithme cryptographique du type a cle publique sur une courbe elliptique |
FR0105759 | 2001-04-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002088933A1 true WO2002088933A1 (fr) | 2002-11-07 |
Family
ID=8862815
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2002/001434 WO2002088933A1 (fr) | 2001-04-27 | 2002-04-25 | Procede de contre-mesure dans un composant electronique mettant en oeuvre un algorithme cryptographique du type a cle publique sur une courbe elliptique |
Country Status (6)
Country | Link |
---|---|
US (1) | US20040228478A1 (fr) |
EP (1) | EP1381936B1 (fr) |
DE (1) | DE60204955T2 (fr) |
ES (1) | ES2247326T3 (fr) |
FR (1) | FR2824210B1 (fr) |
WO (1) | WO2002088933A1 (fr) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2854997B1 (fr) * | 2003-05-16 | 2005-07-22 | Gemplus Card Int | Procede de contre-mesure dans un composant electronique mettant en oeuvre un algorithme cryptographique du type a cle publique sur une courbe elliptique definie sur un corps de caracteristique deux |
US7961873B2 (en) * | 2004-03-03 | 2011-06-14 | King Fahd University Of Petroleum And Minerals | Password protocols using XZ-elliptic curve cryptography |
US7961874B2 (en) * | 2004-03-03 | 2011-06-14 | King Fahd University Of Petroleum & Minerals | XZ-elliptic curve cryptography with secret key embedding |
US7379546B2 (en) * | 2004-03-03 | 2008-05-27 | King Fahd University Of Petroleum And Minerals | Method for XZ-elliptic curve cryptography |
FR2880149B1 (fr) | 2004-12-23 | 2007-03-30 | Oberthur Card Syst Sa | Procede de traitement de donnees et dispositif associe |
DE602005020702D1 (de) * | 2005-10-18 | 2010-05-27 | Telecom Italia Spa | Verfahren zur skalarmultiplikation in gruppen elliptischer kurven über primkörpern für nebenkanal-attacken-beständige kryptosysteme |
DE602005020991D1 (de) * | 2005-10-28 | 2010-06-10 | Telecom Italia Spa | Verfahren zur skalarmultiplikation in gruppen ellir nebenkanalattacken-beständige kryptosysteme |
US7885406B2 (en) * | 2006-10-10 | 2011-02-08 | Microsoft Corporation | Computing endomorphism rings of Abelian surfaces over finite fields |
US8559625B2 (en) * | 2007-08-07 | 2013-10-15 | Inside Secure | Elliptic curve point transformations |
US8233615B2 (en) | 2008-01-15 | 2012-07-31 | Inside Secure | Modular reduction using a special form of the modulus |
US8619977B2 (en) * | 2008-01-15 | 2013-12-31 | Inside Secure | Representation change of a point on an elliptic curve |
DE102008018001A1 (de) * | 2008-04-09 | 2009-10-22 | Siemens Aktiengesellschaft | Verfahren und Vorrichtung zur Übertragung von Nachrichten in Echtzeit |
US8699701B2 (en) | 2010-12-01 | 2014-04-15 | King Fahd University | Method of performing XZ-elliptic curve cryptography for use with network security protocols |
US20120140921A1 (en) * | 2010-12-01 | 2012-06-07 | King Fahd University Of Petroleum And Minerals | Rsa-analogous xz-elliptic curve cryptography system and method |
US8509426B1 (en) | 2010-12-01 | 2013-08-13 | King Fahd University Of Petroleum And Minerals | XZ-elliptic curve cryptography system and method |
FR2972064B1 (fr) * | 2011-02-25 | 2013-03-15 | Inside Secure | Procede de cryptographie comprenant une operation d'exponentiation |
EP2916215B1 (fr) * | 2014-03-03 | 2016-12-07 | Thomson Licensing | Procédé de traitement cryptographique de données sur des courbes elliptiques, dispositif électronique correspondant et produit de programme informatique |
CN105959108A (zh) * | 2016-06-27 | 2016-09-21 | 收付宝科技有限公司 | 对云支付限制密钥进行加密及解密的方法、装置和系统 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999030458A1 (fr) * | 1997-12-05 | 1999-06-17 | Secured Information Technology, Inc. | Procedes de transformation pour l'optimisation de calculs de courbes elliptiques |
FR2791496A1 (fr) * | 1999-03-26 | 2000-09-29 | Gemplus Card Int | Procedes de contre-mesure dans un composant electronique mettant en oeuvre un algorithme de crytographie a cle publique de type courbe elliptique |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6212277B1 (en) * | 1998-03-05 | 2001-04-03 | Matsushita Electric Industrial Co., Ltd. | Elliptic curve transformation device, utilization device and utilization system |
-
2001
- 2001-04-27 FR FR0105759A patent/FR2824210B1/fr not_active Expired - Fee Related
-
2002
- 2002-04-25 US US10/475,174 patent/US20040228478A1/en not_active Abandoned
- 2002-04-25 WO PCT/FR2002/001434 patent/WO2002088933A1/fr not_active Application Discontinuation
- 2002-04-25 DE DE60204955T patent/DE60204955T2/de not_active Expired - Lifetime
- 2002-04-25 EP EP02727698A patent/EP1381936B1/fr not_active Expired - Lifetime
- 2002-04-25 ES ES02727698T patent/ES2247326T3/es not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999030458A1 (fr) * | 1997-12-05 | 1999-06-17 | Secured Information Technology, Inc. | Procedes de transformation pour l'optimisation de calculs de courbes elliptiques |
FR2791496A1 (fr) * | 1999-03-26 | 2000-09-29 | Gemplus Card Int | Procedes de contre-mesure dans un composant electronique mettant en oeuvre un algorithme de crytographie a cle publique de type courbe elliptique |
Also Published As
Publication number | Publication date |
---|---|
DE60204955T2 (de) | 2006-04-27 |
ES2247326T3 (es) | 2006-03-01 |
FR2824210B1 (fr) | 2003-05-30 |
DE60204955D1 (de) | 2005-08-11 |
EP1381936A1 (fr) | 2004-01-21 |
EP1381936B1 (fr) | 2005-07-06 |
US20040228478A1 (en) | 2004-11-18 |
FR2824210A1 (fr) | 2002-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1381936B1 (fr) | Procede de contre-mesure dans un composant electronique mettant en oeuvre un algorithme cryptographique du type a cle publique sur une courbe elliptique | |
EP1166494B1 (fr) | Procedes de contre-mesure dans un composant electronique mettant en oeuvre un algorithme de cryptographie a cle publique de type courbe elliptique | |
EP1358732B2 (fr) | Procede de cryptage securise et composant utilisant un tel procede de cryptage | |
EP1362451A1 (fr) | Procede de securisation d'un ensemble electronique mettant en oeuvre un algorithme cryptographique utilisant des operations booleennes et des operations arithmetiques, et systeme embarque correspondant | |
FR2809893A1 (fr) | Procede de contre-mesure dans un composant electronique mettant en oeuvre un algorithme de cryptographie a cle publique sur courbe elliptique | |
EP1421473B1 (fr) | Procédé de calcul universel appliqué à des points d'une courbe elliptique | |
EP1166495A1 (fr) | Procede de contre-mesure dans un composant electronique mettant en oeuvre un algorithme de cryptographie a cle publique de type courbe elliptique | |
EP1291763A1 (fr) | Procédé de brouillage d'un calcul à quantité secrète | |
EP1224765B1 (fr) | Procede de contre-mesure dans un composant electronique mettant en oeuvre un algorithme de cryptographie a cle publique de type rsa | |
EP1994465A1 (fr) | Procede de securisation d'un calcul d'une exponentiation ou d'une multiplication par un scalaire dans un dispositif electronique | |
EP1639451A2 (fr) | Procédé de contre-mesure par masquage de l'accumulateur | |
WO2006067057A1 (fr) | Procede d'exponentiation securisee et compacte pour la cryptographie | |
EP1254408B1 (fr) | Procede de calcul d'exponentation modulaire dans un composant electronique mettant en oeuvre un algorithme de chiffrement a cle publique | |
EP1639450A1 (fr) | Procede de contre-mesure dans un composant electronique | |
FR2854997A1 (fr) | Procede de contre-mesure dans un composant electronique mettant en oeuvre un algorithme cryptographique du type a cle publique sur une courbe elliptique definie sur un corps de caracteristique deux | |
FR2818846A1 (fr) | Procede de contre-mesure dans un composant electronique mettant en oeuvre un algorithme de cryptographie | |
WO2004017193A2 (fr) | Procede de calcul universel applique a des points d'une courbe elliptique | |
WO2001097009A1 (fr) | Procede de calcul cryptographique comportant une routine d'exponentiation modulaire | |
WO2002093411A1 (fr) | Dispositif destine a realiser des calculs d"exponentiation appliques a des points d"une courbe elliptique | |
FR3010562A1 (fr) | Procede de traitement de donnees et dispositif associe | |
WO2002099624A1 (fr) | Procede de securisation d'un calcul d'exponentiation dans un dispositif electronique | |
FR2818473A1 (fr) | Procedes de contre-mesure dans un composant electronique mettant en oeuvre un algorithme de cryptographie a cle publique de type rsa | |
FR2797126A1 (fr) | Procede d'amelioration de performance de l'operation de multiplication sur corps fini de caracteristique 2 | |
FR3013476A1 (fr) | Securisation de procede de cryptographie sur courbes elliptiques | |
WO2002082257A1 (fr) | Dispositif destine a realiser des calculs d'exponentiation securisee et utilisation d'un tel dispositif |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2002727698 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2002727698 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10475174 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWG | Wipo information: grant in national office |
Ref document number: 2002727698 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |