WO2002088228A1 - Fluoropolymer curing system - Google Patents

Fluoropolymer curing system Download PDF

Info

Publication number
WO2002088228A1
WO2002088228A1 PCT/US2002/013687 US0213687W WO02088228A1 WO 2002088228 A1 WO2002088228 A1 WO 2002088228A1 US 0213687 W US0213687 W US 0213687W WO 02088228 A1 WO02088228 A1 WO 02088228A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluoropolymer
composition
group
composition according
catalyst
Prior art date
Application number
PCT/US2002/013687
Other languages
French (fr)
Other versions
WO2002088228A8 (en
Inventor
Werner M. A. Grootaert
Robert E. Kolb
Klaus Hintzer
Original Assignee
3M Innovative Properties Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Company filed Critical 3M Innovative Properties Company
Priority to JP2002585522A priority Critical patent/JP4414141B2/en
Priority to AT02734108T priority patent/ATE443731T1/en
Priority to EP02734108A priority patent/EP1397420B1/en
Priority to DE60233792T priority patent/DE60233792D1/en
Publication of WO2002088228A1 publication Critical patent/WO2002088228A1/en
Publication of WO2002088228A8 publication Critical patent/WO2002088228A8/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/19Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group

Definitions

  • This invention relates to curing fluoropolymer compositions having nitrogen-containing cure-site components.
  • Fluorine-containing polymers are a commercially useful class of materials. Fluoropolymers include, for example, crosslinked fluoroelastomers, uncrosslinked fluoroelastomer gums, semi-crystalline fluoroplastics, and or glassy fluoroplastics. Fluoroplastics are generally of high thermal stability and are particularly useful at high temperatures. They may also exhibit extreme toughness and flexibility at very low temperatures. Some have very low dielectric loss and high dielectric strength, and may have unique low friction properties.
  • Fluoroelastomers exhibit significant tolerance to high temperatures and harsh chemical environments. Consequently, they are particularly well-adapted for use as seals, gaskets, and other molded parts in systems that are exposed to elevated temperatures and/or corrosive chemicals. Such parts are widely used in the chemical processing, semiconductor, aerospace, and petroleum industries, among others.
  • Fluoroelastomers often include a cure-site component to facilitate cure in the presence of a catalyst.
  • One class of useful cure-site components includes nitrogen-containing monomers.
  • Organotin catalysts are typically used as cure catalysts. Such catalysts, however, are toxic and can leave undesirable extractable metal residues in the cured product.
  • the invention relates to a composition that includes (a) a fluoropolymer having interpolymerized units derived from a nitrogen-containing cure site monomer, and (b) a catalyst composition that includes a compound having the general formula:
  • R HA is an inorganic or organic acid, e.g., HC1, HNO 3 , C 7 F 15 COOH
  • R ⁇ , R 2 , and R 3 are each, independently, the same or different alkyl groups having from 1 to about 20 carbon atoms, which may be cyclic or heterocyclic, and one R group may instead be a bond to another R group such that the nitrogen is bonded to or part of an alkenyl, cycloalkenyl, or aromatic group.
  • the substituents may also be olefinic, e.g., mono, di, and trialkyl amine salts, and pyridine salts.
  • Rj, R 2 , and R 3 may be fluorinated groups such as Rf(CH 2 ) x - wherein R f is a CpCg linear or branched and at least partially fluorinated (i.e., fluorinated or perfluorinated) alkylene, cycloalkylene, or oxyalkylene, and x is 1 to 4 (more preferably 1 or 2).
  • fluorinated i.e., fluorinated or perfluorinated alkylene, cycloalkylene, or oxyalkylene
  • x is 1 to 4 (more preferably 1 or 2).
  • catalyst compositions include compounds of the formula:
  • the mono, di, and higher salts are also useful.
  • composition may further include a second catalyst composition comprising a
  • R C(OR ) NH, and salts thereof, where R and R are, independently, a substituted or unsubstituted C 1 -C 20 (preferably C 1 -C 10 , more preferably C 1 -C 7 ) alkyl, aryl, aralkyl, alkenyl, cycloalkyl, or cycloalkenyl group.
  • R and R are, independently, a substituted or unsubstituted C 1 -C 20 (preferably C 1 -C 10 , more preferably C 1 -C 7 ) alkyl, aryl, aralkyl, alkenyl, cycloalkyl, or cycloalkenyl group.
  • the invention provides a method for curing this composition, as well as curable and cured articles comprising these compositions.
  • the compositions retain the advantages of the use of nitrogen-containing cure site monomers such as the high temperature performance properties and chemical resistance typically achieved when organotin compounds are used as the catalyst system with such cure site monomers. At the same time, the compositions exhibit markedly improved compression set values.
  • the compositions are useful in applications where polymer stability (e.g., thermal stability) and/or chemical resistance are important. They are also useful in silicon wafer fabrication.
  • Figure 1 is a Fourier Transform Infrared spectrum showing a cured material of the present invention and a comparative cured material.
  • composition of the present invention comprises a fluoropolymer having interpolymerized units derived from a cure site monomer comprising a nitrile group and a catalyst composition of Formula (1).
  • Suitable fluoropolymers include interpolymerized units derived from a nitrile group- containing monomer and, preferably, at least two principal monomers.
  • suitable candidates for the principal monomer(s) include perfluoroolefins (e.g., tetrafluoroethylene (TFE) and hexafluoropropylene (HFP)), perfluorovinyl ethers (e.g., perfluoroalkyl vinyl ethers and perfluoroalkoxy vinyl ethers), and hydrogen-containing monomers such as olefins (e.g., ethylene, propylene, and the like) and vinylidene fluoride (VDF).
  • fluoropolymers include, for example, fluoroelastomer gums and semi-crystalline fluoroplastics. When the fluoropolymer is perhalogenated, preferably perfluorinated, it contains at least
  • the balance of the interpolymerized units of the fluoropolymer (10 to 50 mol%) is made up of one or more perfluoro vinyl ethers and a suitable cure site monomer.
  • the cure site monomer makes up from about 0.1 to about 5 mol% (more preferably from about 0.3 to about 2 mol%) of the elastomer.
  • the fluoropolymer When the fluoropolymer is not perfluorinated, it contains from about 5 to about 90 mol% of its interpolymerized units derived from TFE, CTFE, and/or HFP, from about 5 to about 90 mol% of its interpolymerized units derived from VDF, ethylene, and/or propylene, up to about 40 mol% of its interpolymerized units derived from a vinyl ether, and from about 0.1 to about 5 mol% (more preferably from about 0.3 to about 2 mol%) of a suitable cure site monomer.
  • Suitable perfluorinated vinyl ethers include those of the formula:
  • CF 2 CFO(RfO) a R f (2) where each Rr is, independently, a linear or branched perfluoroalkylene group of 1-6 carbon atoms; and a is 0 or an integer from 1 to 20.
  • a preferred class of perfluoroalkyl vinyl ethers includes compositions of the formula:
  • CF 2 CFO(CF 2 CFXO) d R 4 f (3) wherein X is F or CF 3 ; d is 0-5, and R f is a perfluoroalkyl group of 1 -6 carbon atoms.
  • perfluoroalkyl vinyl ethers are those where, in reference to either Formula (2) or (3) above, d is 0 or 1 , a is 2, and each R f contains 1 -3 carbon atoms.
  • perfluorinated ethers include perfluoromethyl vinyl ether, perfluoroethyl vinyl ether, and perfluoropropyl vinyl ether.
  • CF 2 CFO[(CF 2 ) e (CFZ) g O] h R 4 f (4)
  • R f is a perfluoroalkyl group having 1-6 carbon atoms
  • e is 1 -5
  • g is 0-5
  • h is 0-5
  • Z is F or CF 3 .
  • Preferred members of this class are those in which R is C 3 F- 7 or CF 3 , e is 1-2, g is 0- 1, and h is 1.
  • Perfluoroalkoxy vinyl ethers useful in the invention include those of the formula:
  • CF 2 CFO(CF2) t [CF(CF 3 )] u O(CF 2 O) w C x F 2X+ ⁇ (6) wherein t is 1 -3, u is 0-1, w is 0-3, and x is 1-5, preferably 1.
  • Mixtures of perfluoroalkyl vinyl ethers and perfluoroalkoxy vinyl ethers may also be employed.
  • Perfluoroolefins useful in the invention include those of the formula:
  • CF 2 CF-R 5 f , (7) where R f is fluorine or a perfluoroalkyl of 1 to 8, preferably 1 to 3, carbon atoms.
  • R f is fluorine or a perfluoroalkyl of 1 to 8, preferably 1 to 3, carbon atoms.
  • partially-fluorinated monomers or hydrogen-containing monomers such as olefins (e.g., ethylene, propylene, and the like), and vinylidene fluoride can be used in the fluoropolymer of the invention.
  • One example of a useful fluoropolymer is composed of principal monomer units of TFE and at least one perfluoroalkyl vinyl ether.
  • the copolymerized perfluorinated ether units constitute from about 10 to about 50 mol% (more preferably 15 to 35 mol%) of total monomer units present in the polymer.
  • One or more other fluoropolymers may be incorporated into the fluoropolymer having interpolymerized units derived from a nitrogen-containing cure site monomer.
  • one or more other fluoropolymers may be blended with the fluoropolymer (which may comprise a copolymer) having interpolymerized units derived from a nitrogen-containing cure site monomer.
  • Such other fluoropolymers useful in a blend and/or copolymer include the entire array described above.
  • the other fluoropolymer(s) may lack interpolymerized units derived from a nitrogen-containing cure site monomer and/or may include reactive sites adapted to a selected curative system.
  • two different fluoropolymers, each having interpolymerized units derived from a nitrogen-containing cure site monomer may be blended to provide the fluoropolymer for the present invention.
  • Another fluoropolymer may be included along with another curative, such as described below, to provide particular properties.
  • a fluoropolymer suitable for peroxide curing and a peroxide curative may be included to improve chemical stability.
  • Such a blend balances the thermal stability and the chemical stability of the resultant blend, and also may provide economic benefits.
  • These other curatives also may be used to cure a blend of nitrogen- containing fluoropolymers without the need to include a fluoropolymer nitrogen-containing cure site monomer.
  • the nitrogen-containing fluoropolymer(s) preferably make up enough of the total fluoropolymer to provide increased thermal stability over fluoropolymer lacking the composition of the present invention. This amount is generally at least 25 weight percent (wt%), more preferably at least 50 wt%, of the total fluoropolymer in the invention.
  • the fluoropolymers may be prepared by methods known in the art.
  • the polymerization process can be carried out by free-radical polymerization of the monomers alone or as solutions, emulsions, or dispersions in an organic solvent or water.
  • one route of incorporation is through blending the fluoropolymer latices in the selected ratio, followed by coagulation and drying. Further detail of fluoropolymer preparation can be found in WO 99/48939, U.S. 6,077,609, and U.S. 4,335,238, the disclosures of which are herein incorporated by reference.
  • the cure site component allows one to cure the fluoropolymer.
  • the cure site component generally will comprise at least one nitrogen-containing cure site monomer.
  • the cure site component can be partially or fully fluorinated.
  • Another suitable cure site component useful in the present invention is a fluoropolymer or fluorinated monomer material containing a halogen that is capable of participation in a peroxide cure reaction.
  • a halogen may be present along a fluoropolymer chain and/or in a terminal position.
  • the halogen is bromine or iodine.
  • Copolymerization is preferred to introduce the halogen in a position along a fluoropolymer chain. In this route, a selection of the fluoropolymer components mentioned above are combined with a suitable fluorinated cure site monomer.
  • examples of the bromo- or iodo- fluorolefins include: bromodifluoroethylene, bromotrifluoroethylene, iodotrifluoroethylene, l -bro ⁇ no-2,2-difluoroethylene, and 4-bromo- 3,3,4,4-tetrafluorobutene-l, and the like.
  • non-fluorinated bromo- or iodo- olefins e.g., vinyl bromide and 4-bromo-l -butene
  • the amount of cure site component in a side chain position of the fluoropolymer is generally from about 0.05 to about 5 mol% (more preferably from 0.1 to 2 mol%).
  • the cure site component may also occur in the terminal position of a fluoropolymer chain.
  • Chain transfer agents or initiators are used to introduce the halogen in a terminal position.
  • a suitable chain transfer agent is introduced in the reaction medium during polymer preparation, or derived from a suitable initiator.
  • useful chain transfer agents include those having the formula RrZ x wherein R f is a substituted or unsubstituted CpC ⁇ 2 fluoroalkyl radical, which may be perfluorinated, Z is Br or I, and x is 1 or 2.
  • R f is a substituted or unsubstituted CpC ⁇ 2 fluoroalkyl radical, which may be perfluorinated
  • Z is Br or I
  • x is 1 or 2.
  • bromide include: CF 2 Br 2 , Br(CF 2 ) 2 Br,
  • Br(CF 2 ) 4 Br CF 2 (CI)Br, CF 3 CF(Br)CF 2 Br, and the like.
  • the amount of cure site component in a terminal position in the fluoropolymer is generally from about 0.05 to about 5 mol % (more preferably from 0.1 to 2 mol %).
  • Cure site component combinations are also useful.
  • a fluoropolymer containing a halogen that is capable of participation in a peroxide cure reaction may also contain a nitrogen-containing cure site component.
  • a nitrogen-containing cure site component Generally, from about 0.1 to about 5 mol% (more preferably from about 0.3 to about 2 mol%) of the total cure site component is incorporated into the fluoropolymer.
  • the fluoropolymer compositions are cured, at least in part, using a catalyst composition that includes a compound having the general formula:
  • the catalyst can be added to the fluoropolymer as a compound or form in situ after adding the appropriate precursors to the fluoropolymer.
  • catalyst compositions include compounds of the formula:
  • m and n are, independently, 2 to 20.
  • two of the R groups are included in a heterocyclic group while the third R group is a bond.
  • DBU 1,8-diazabicyclo [5.4.0]undec-7-ene
  • DBN 1,8-diazabicyclo[4.3.0]non-5-ene
  • These salts may be prepared, for example, by reacting DBU or DBN with an organic or inorganic acid in an organic solvent such as methanol or acetone, or they may be prepared in situ.
  • DBU 1,8-diazabicyclo [5.4.0]undec-7-ene
  • 1A is pyridine hydrochloride.
  • An effective amount of catalyst compound is used to cure the fluoropolymer. Generally, this amount is in the range of 0.05 to 10 (more preferably 0.1 to 5) parts curative per hundred parts fluoropolymer.
  • the fluoropolymer compositions can be cured using catalyst compositions, described above, optionally with one or more imidate curatives.
  • the acid can be organic or inorganic, for example C 7 Fi 5 COOH, or any hydrocarbon or fluorine containing carboxylic acid, sulfonic acid, etc., and inorganic acids such as HCl, HNO 3 , etc., that form stable salts.
  • I 2 thereof where R and R are as defined above and further specified below. Imidates may be prepared as described in Zh. Obs. Khimii. vol. 36(5), pp. 862-71 (1966), Ca 65 12206c and J.
  • R and R include fluoroalkyl, perfluoroalkyl, and perfluoro polyether groups (e.g., as described in U.S. 5,266,650).
  • more than one imidate group may be included in a compound.
  • “Substituted” means substituted by substituents that do not interfere with the desired product. Examples of suitable substituents include halogen (e.g., chlorine, fluorine, bromine, iodine), cyano, alkoxy, and carboxy groups.
  • one or more of the carbon atoms may be substituted by a heteroatom such as oxygen or nitrogen.
  • R is preferably part of a readily available imidate, for example, CF 3 O(CF ) m OCF(CF 3 )C(NH)OCH 3 where m is an integer from 1 to 4, and C 3 F 7 (O(CF 3 )CF 2 ) n OCF(CF 3 )C(NH)OCH 3 where n is 0 to 3.
  • R 2 is preferably a lower alkyl having from 1 to 6 carbon atoms or C ⁇ Rf wherein R f is a perfluoroalkyl having from 1 to 10 carbon atoms.
  • Other useful imidates include CF 3 O(CF 2 ) 2 C(NH)OC 8 H 17 and C 7 F 15 C(NH)OC 4 H 9 .
  • An effective amount of the selected imidate is used to cure the fluoropolymer to the desired level in the desired time. Generally, this amount is in the range from about 0.01 to about 5 moles imidate per 100 moles fluoropolymer (mol%), preferably from about 0.2 to about 3 mol%.
  • the combination of the imidate and amine salts results in a synergistic effect of much greater triazine content in press-cured samples when compared to samples made with either material alone. This effect is easily seen when comparing FT-IR spectra of the various samples.
  • Figure 1 shows the spectra (Line B) of a cured material that included an imidate (C 7 F ⁇ 5 C(NH)OC 4 H 9 ) along with an amine (DBU) and an inorganic acid (HCl) and the spectra (Line A) of a cured material that included the same imidate without the DBU or HCl.
  • DBU amine
  • HCl inorganic acid
  • the fluoropolymer compositions can include any of the adjuvants often employed in curable fluoropolymer formulations.
  • one material often blended with a fluoropolymer composition as a part of the peroxide curative system is a coagent (sometimes also referred to as a co-curative) composed of a polyunsaturated compound that is capable of cooperating with the curative to provide a useful cure.
  • coagents can generally be added in an amount equal to between 0.1 and 10 parts coagent per hundred parts fluoropolymer (phr), preferably between 1 and 5 phr.
  • useful coagents include trial lyl cyanurate; triallyl isocyanurate; tri(methylallyl) isocyanurate; tris(diallylamine)-.s , -triazine; triallyl phosphite; N,N- diallyl acrylamide; hexaallyl phosphoramide; N,N,N',N'-tetraalkyl tetraphthalamide; N,N,N',N'- tetraallyl malonamide; trivinyl isocyanurate; 2,4,6-trivinyl methyltrisiloxane; and tri(5- norbornene-2-methylene)cyanurate. Particularly useful is triallyl isocyanurate.
  • Other useful coagents include the t ⁇ -olefins disclosed in EP 0 661 304 Al , EP 0 784 064 A l , EP 0 769 521 Al , and U.S. 5,585,449.
  • the fluoropolymer compositions can also be cured by using other types of curatives along with the catalyst compositions described above.
  • curatives include bis-aminophenols (e.g., as described in U.S. 5,767,204 and U.S. 5,700,879), bis- amidooximes (e.g., as described in U.S. 5,621 , 145), and ammonium salts (e.g., as described in U.S. 5,565,512).
  • Organometallic compounds of arsenic, antimony and tin also can be used, for example as described in U.S. Pat. Nos. 4,281,092 and 5,554,680. Particular examples include al lyl-, propargyl-, triphenyl- allenyl-, and tetraphenyltin and triphenyltin hydroxide.
  • ammonia-generating compounds may be included to modify the rate of cure of a particular composition.
  • ammonia-generating compounds are typically solid or liquid at ambient conditions, and then generate ammonia under conditions of cure.
  • These compounds include, for example, hexamethylene tetramine (urotropin) and dicyan diamid, as well as metal-containing compounds and triazine derivatives. More details regarding such ammonia-generating compounds is found in PCT publication WO 00/09603, which is herein incorporated by reference.
  • onium salts it may be advantageous to add one or more onium salts to the fluoropolymer compositions.
  • suitable onium salts are described in U.S. 4,882,390. Specific examples include triphenylbenzyl phosphonium chloride, tributyl alkyl phosphonium chloride, tributyl benzyl ammonium chloride, tetrabutyl ammonium bromide, and triarylsulfonium chloride.
  • the fluoropolymer compositions can be cured using one or more peroxide curatives along with the catalyst compositions described above.
  • Suitable peroxide curatives generally are those which generate free radicals at curing temperatures, such as those described in WO
  • a di-tertiarybutyl peroxide having a tertiary carbon atom attached to peroxy oxygen atom is particularly useful.
  • peroxides can be selected from such compounds as dicumyl peroxide, dibenzoyl peroxide, tertiarybutyl perbenzoate, a,a'-/>w(t-butylperoxy-diisopropylbenzene), and di[l ,3-dimethyl-3-(t-butylperoxy)-butyl]carbonate.
  • peroxide per 100 parts of fluoropolymer (phr) is used.
  • Another curative useful in the present invention has the general formula
  • Another curative useful with this system involves using divalent metal amine complex catalysts, alone or in various combinations as described in copending patent applications USSN 60/233,386 and USSN 60/233,383 both filed on 18 September 2000.
  • the fluoropolymer compositions also can be cured using a catalyst composition that includes a compound having the general formula ⁇ RAJ ⁇ QR'' ⁇ * wherein R is a hydrogen- containing or partially fluorinated C 1 -C 20 alkyl or alkenyl, C 3 -C 2 n cycloalkyl, C -C 20 cycloalkenyl, or C 6 -C o aryl or alkylaryl, or perfluorinated C 6 -C 2 o aryl or alkylaryl; A is an acid anion or an acid derivative anion, Q is phosphorous, sulfur, nitrogen, arsenic, or antimony, k is the valence of Q, and each R" is, independently, hydrogen or a substituted or unsubstituted Cl - C20 alkyl, aryl, aralkyl, or alkenyl group. More detail is provided in copending applications
  • the combination of catalyst, optional imidate(s), and optional curative(s) is generally from about 0.01 to about 10 mol% (more preferably from about 0.1 to about 5 mol%) of the total fluoropolymer amount.
  • Additives such as carbon black, stabilizers, plasticizers, lubricants, fillers, and processing aids typically utilized in fluoropolymer compounding can be incorporated into the compositions, provided they have adequate stability for the intended service conditions.
  • low temperature performance can be enhanced by incorporation of perfluoropolyethers. See, for example, U.S. Pat No. 5,268,405.
  • Carbon black fillers are typically also employed in fluoropolymers as a means to balance modulus, tensile strength, elongation, hardness, abrasion resistance, conductivity, and processability of the compositions. Suitable examples include MT blacks (medium thermal black) designated N-991 , N-990, N-908, and N-907; FEF N-550; and large particle size furnace blacks. When used, 1 to 70 parts filler per hundred parts fluoropolymer (phr) of large size particle black is generally sufficient. Fluoropolymer fillers may also be present in the compositions. Generally, from 1 to 50 phr of fluoropolymer filler is used.
  • the fluoropolymer filler can be finely divided and easily dispersed as a solid at the highest temperature used in fabrication and curing of the inventive composition.
  • solid it is meant that the filler material, if partially crystalline, will have a crystalline melting temperature above the processing temperature(s) of the curable composition(s).
  • the preferred way to incorporate fluoropolymer filler is by blending latices.
  • One or more acid acceptors can also be added to the formulations. However, where the presence of extractable metallic compounds is undesirable (such as for semiconductor applications) the use of inorganic acid acceptors should be minimized, and preferably avoided altogether.
  • Commonly used acid acceptors include, for example, zinc oxide, calcium hydroxide, calcium carbonate, magnesium oxide, etc. These compounds generally are used in the fluoropolymer formulation to bind any HF or other acids that might be generated at the high temperatures where the fluoropolymers are intended to function.
  • the curable fluoropolymer compositions of the invention may also be combined with other curable fluoropolymer compositions such as peroxide-curable fluoropolymer compositions.
  • Suitable cure site monomers are those which, when combined with a curative (e.g., a peroxide) and, preferably a coagent, will provide a cured composition.
  • a curative e.g., a peroxide
  • these cure site monomers include at least one halo group (e.g., a bromo or an iodo group).
  • the curable fluoropolymer compositions can be prepared by mixing the fluoropolymer, the divalent metal amine complex catalyst, the selected additive or additives, additional curatives
  • the desired amounts of compounding ingredients and other conventional adjuvants or ingredients can be added to the unvulcanized fluorocarbon gum stock and intimately admixed or compounded therewith by employing any of the usual rubber mixing devices such as internal mixers, (e.g., Banbury mixers), roll mills, or any other convenient mixing device.
  • the temperature of the mixture during the mixing process typically should not rise above about 120°C. During mixing, it is preferable to distribute the components and adjuvants uniformly throughout the gum for effective cure.
  • the mixture is then processed and shaped, such as by extrusion (for example, in the shape of a hose or hose lining) or by molding (for example, in the form of an O-ring seal).
  • the shaped article can then be heated to cure the gum composition and form a cured article.
  • Pressing of the compounded mixture usually is conducted at a temperature sufficient to cure the mixture in a desired time duration under a suitable pressure. Generally, this is between about 95°C and about 230°C, preferably between about 150°C and about 205°C, for a period of from about 1 minute to 15 hours, typically from 5 minutes to
  • a pressure of between about 700 kPa and about 20,600 kPa is usually imposed on the compounded mixture in a mold.
  • the molds first may be coated with a release agent and prebaked.
  • the molded vulcanizate is then usually post-cured (e.g., oven-cured) at a temperature and for a time sufficient to complete the curing, usually between about 150°C and about 300°C, typically at about 232°C, for a period of from about 2 hours to 50 hours or more, generally increasing with the cross-sectional thickness of the article.
  • the temperature during the post cure is usually raised gradually from the lower limit of the range to the desired maximum temperature.
  • the maximum temperature used is preferably about 300°C, and this value is held for about 4 hours or more.
  • the article can be heat aged in air.
  • One useful example of a heat aging protocol ages the article in air for about 70 hours at a temperature of about 290°C.
  • the fluoropolymer compositions are useful in production of articles such as O-rings, gaskets, tubing, and seals. Such articles are produced by molding a compounded formulation of the fluoropolymer composition with various additives under pressure, curing the article, and then subjecting it to a post-cure cycle.
  • the curable compositions formulated without inorganic acid acceptors are particularly well suited for applications such as seals and gaskets for manufacturing semiconductor devices, and in seals for high temperature automotive uses.
  • Cure rheology Tests were run on uncured, compounded samples using a Monsanto Moving Die Rheometer (MDR) Model 2000 in accordance with ASTM D 5289-93a at 177°C, no pre-heat, 30 minute elapsed time, and a 0.5 degree arc. Both the minimum torque (ML) and highest torque attained during a specified period of time when no plateau or maximum torque was obtained (MH) were measured. Also measured were the time for the torque to increase 2 units above ML (“t s 2"), the time for the torque to reach a value equal to ML + 0.5(MH - ML) ("t'50”), and the time for the torque to reach M L + 0.9(M H - M L ) ("t'90").
  • MDR Monsanto Moving Die Rheometer
  • Post-Cure Press-cured sample sheets were exposed to heat under nitrogen using the following six stages of conditions: 25 to 200°C over 6 hours; 200°C for 16 hours; 200 to 250°C over 2 hours; 250°C for 8 hours; 250 to 300°C over 2 hours; and 300°C for 16 hours. The samples were returned to ambient temperature before testing.
  • Heat Aging Press-cured and post-cured sample sheets were exposed to heat in air for
  • n Compression set O-ring samples were measured using ASTM 395-89 Method B. The O-rings had a cross-sectional thickness of 0.139 in. (3.5 mm.). Results are reported as a percentage of permanent set.
  • Example 1 A fluoroelastomer was prepared which contained 63.8 mole percent tetrafluoroethylene,
  • Example 1 The procedure of Example 1 was followed except that no TPBPC1 was used. The test results are included in Table 1.
  • Example 1 The procedure of Example 1 was followed except that no DBU-HC1 was used and 2 g of another organic acid, DBU-HOOCC 7 F 15 was included.
  • the acid was made by combining equi- molar amounts of DBU and C Fi 5 COOH in methanol followed by stripping the methanol under vacuum. Test results are included in Table 1.
  • Example 1 The procedure of Example 1 was followed except that 4 g of DBU-C 7 F 15 COOH was added and no TPBPC1, no DBU-HC1, and no CF 3 OCF 2 CF 2 C(NH)OC 8 Hi 7 were included. In addition, 15 g of Thermax MT N990 carbon black was substituted for the N550 carbon black of Example 4. Test results are included in Table 1. After the press cure of this example, sample sheets had small blisters while O-ring samples appeared smooth. Comparative Example CE-1
  • the resulting polymer (100 g) was compounded with: 15 g of FEF N550 carbon black, and 2.0 g of tetraphenyl tin.
  • N/M indicates that the property was not measured.
  • compositions prepared using the inventive catalyst compositions exhibit improved properties relative to compositions prepared using an organotin cure catalyst.
  • the inventive fluoropolymers exhibited substantially lower compression set values.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Gasket Seals (AREA)
  • Sealing Material Composition (AREA)
  • Glass Compositions (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Saccharide Compounds (AREA)

Abstract

A composition of a fluoropolymer comprising interpolymerized units of nitrogen-containing cure site monomer and a catalyst comprising a compound having the formula (I), wherein HA is an acid, each R1, R2, and R3 is independently a C1-C20 alkyl group, which may be cyclic or heterocyclic, or Rf(CH2)x- wherein Rf is a C1-C8 linear or branched and at least partially fluorinated, and x is 1 to 4, and one R group may be a bond to another R group such that the nitrogen is bonded to or part of an alkenyl, cycloalkenyl, or aromatic group. This may further comprise a catalyst composition comprising a compound of the formula R1C(OR2)=NH, and salts thereof, where each R?1 and R2¿ is, independently, a substituted or unsubstituted alkyl, aryl, aralkyl, alkenyl, cycloalkyl, or cycloalkenyl. Also provided are a method of making a fluoropolymer composition and articles prepared from the compositions.

Description

FLUOROPOLYMER CURING SYSTEM
TECHNICAL FIELD
This invention relates to curing fluoropolymer compositions having nitrogen-containing cure-site components.
BACKGROUND
Fluorine-containing polymers (also known as "fluoropolymers") are a commercially useful class of materials. Fluoropolymers include, for example, crosslinked fluoroelastomers, uncrosslinked fluoroelastomer gums, semi-crystalline fluoroplastics, and or glassy fluoroplastics. Fluoroplastics are generally of high thermal stability and are particularly useful at high temperatures. They may also exhibit extreme toughness and flexibility at very low temperatures. Some have very low dielectric loss and high dielectric strength, and may have unique low friction properties.
Fluoroelastomers exhibit significant tolerance to high temperatures and harsh chemical environments. Consequently, they are particularly well-adapted for use as seals, gaskets, and other molded parts in systems that are exposed to elevated temperatures and/or corrosive chemicals. Such parts are widely used in the chemical processing, semiconductor, aerospace, and petroleum industries, among others.
Fluoroelastomers often include a cure-site component to facilitate cure in the presence of a catalyst. One class of useful cure-site components includes nitrogen-containing monomers. Organotin catalysts are typically used as cure catalysts. Such catalysts, however, are toxic and can leave undesirable extractable metal residues in the cured product.
SUMMARY
In one aspect, the invention relates to a composition that includes (a) a fluoropolymer having interpolymerized units derived from a nitrogen-containing cure site monomer, and (b) a catalyst composition that includes a compound having the general formula:
Ri
I
R2-N - HA ( 1 )
I R3 wherein the group HA is an inorganic or organic acid, e.g., HC1, HNO3, C7F15COOH, and wherein R\, R2, and R3 are each, independently, the same or different alkyl groups having from 1 to about 20 carbon atoms, which may be cyclic or heterocyclic, and one R group may instead be a bond to another R group such that the nitrogen is bonded to or part of an alkenyl, cycloalkenyl, or aromatic group. The substituents may also be olefinic, e.g., mono, di, and trialkyl amine salts, and pyridine salts. Rj, R2, and R3 may be fluorinated groups such as Rf(CH2)x- wherein Rf is a CpCg linear or branched and at least partially fluorinated (i.e., fluorinated or perfluorinated) alkylene, cycloalkylene, or oxyalkylene, and x is 1 to 4 (more preferably 1 or 2). Examples of catalyst compositions include compounds of the formula:
Figure imgf000004_0001
(1A) wherein m and n are, independently, 2 to 20.
When a compound has more than one nitrogen atom, the mono, di, and higher salts are also useful.
The composition may further include a second catalyst composition comprising a
1 2 1 2 compound having the formula R C(OR )=NH, and salts thereof, where R and R are, independently, a substituted or unsubstituted C1-C20 (preferably C1-C10, more preferably C1-C7) alkyl, aryl, aralkyl, alkenyl, cycloalkyl, or cycloalkenyl group.
In other aspects, the invention provides a method for curing this composition, as well as curable and cured articles comprising these compositions. The compositions retain the advantages of the use of nitrogen-containing cure site monomers such as the high temperature performance properties and chemical resistance typically achieved when organotin compounds are used as the catalyst system with such cure site monomers. At the same time, the compositions exhibit markedly improved compression set values. The compositions are useful in applications where polymer stability (e.g., thermal stability) and/or chemical resistance are important. They are also useful in silicon wafer fabrication.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and from the claims. BRIEF DESCRIPTION OF THE DRAWING
Figure 1 is a Fourier Transform Infrared spectrum showing a cured material of the present invention and a comparative cured material.
DETAILED DESCRIPTION The composition of the present invention comprises a fluoropolymer having interpolymerized units derived from a cure site monomer comprising a nitrile group and a catalyst composition of Formula (1).
Suitable fluoropolymers include interpolymerized units derived from a nitrile group- containing monomer and, preferably, at least two principal monomers. Examples of suitable candidates for the principal monomer(s) include perfluoroolefins (e.g., tetrafluoroethylene (TFE) and hexafluoropropylene (HFP)), perfluorovinyl ethers (e.g., perfluoroalkyl vinyl ethers and perfluoroalkoxy vinyl ethers), and hydrogen-containing monomers such as olefins (e.g., ethylene, propylene, and the like) and vinylidene fluoride (VDF). Such fluoropolymers include, for example, fluoroelastomer gums and semi-crystalline fluoroplastics. When the fluoropolymer is perhalogenated, preferably perfluorinated, it contains at least
50 mole percent (mol%) of its interpolymerized units derived from TFE and/or CTFE, optionally including HFP. The balance of the interpolymerized units of the fluoropolymer (10 to 50 mol%) is made up of one or more perfluoro vinyl ethers and a suitable cure site monomer. The cure site monomer makes up from about 0.1 to about 5 mol% (more preferably from about 0.3 to about 2 mol%) of the elastomer.
When the fluoropolymer is not perfluorinated, it contains from about 5 to about 90 mol% of its interpolymerized units derived from TFE, CTFE, and/or HFP, from about 5 to about 90 mol% of its interpolymerized units derived from VDF, ethylene, and/or propylene, up to about 40 mol% of its interpolymerized units derived from a vinyl ether, and from about 0.1 to about 5 mol% (more preferably from about 0.3 to about 2 mol%) of a suitable cure site monomer.
Suitable perfluorinated vinyl ethers include those of the formula:
CF2=CFO(RfO)aRf (2) where each Rr is, independently, a linear or branched perfluoroalkylene group of 1-6 carbon atoms; and a is 0 or an integer from 1 to 20. A preferred class of perfluoroalkyl vinyl ethers includes compositions of the formula:
CF2=CFO(CF2CFXO)dR4 f (3) wherein X is F or CF3; d is 0-5, and R f is a perfluoroalkyl group of 1 -6 carbon atoms.
Most preferred perfluoroalkyl vinyl ethers are those where, in reference to either Formula (2) or (3) above, d is 0 or 1 , a is 2, and each Rf contains 1 -3 carbon atoms. Examples of such perfluorinated ethers include perfluoromethyl vinyl ether, perfluoroethyl vinyl ether, and perfluoropropyl vinyl ether.
Other useful perfluorinated monomers include those compounds of the formula: CF2=CFO[(CF2)e(CFZ)gO]hR4 f (4) where R f is a perfluoroalkyl group having 1-6 carbon atoms, e is 1 -5, g is 0-5, h is 0-5, and Z is F or CF3. Preferred members of this class are those in which R is C3F-7 or CF3, e is 1-2, g is 0- 1, and h is 1.
Additional perfluoroalkyl vinyl ether monomers useful in the invention include those of the formula: CF2=CFO[(CF2CF(CF3)O)k(CF2)pO(CF2)q]CrF2r+ι (5) where k is 0 or an integer from 1-10, p is an integer of from 1-6, q is 0-3, and r is 1-5. Preferred members of this class include compounds where k is 0 or 1 , p is 1 -5, q is 0 or 1, and r is 1. Perfluoroalkoxy vinyl ethers useful in the invention include those of the formula:
CF2=CFO(CF2)t[CF(CF3)]uO(CF2O)wCxF2X+ι (6) wherein t is 1 -3, u is 0-1, w is 0-3, and x is 1-5, preferably 1. Specific, representative, examples of useful perfluoroalkoxy vinyl ethers include CF2=CFOCF2OCF2CF CF3, CF2=CFOCF2OCF3, CF2=CFO(CF2)3OCF3, and CF2=CFOCF2CF2OCF3. Mixtures of perfluoroalkyl vinyl ethers and perfluoroalkoxy vinyl ethers may also be employed.
Perfluoroolefins useful in the invention include those of the formula:
CF2=CF-R5 f, (7) where R f is fluorine or a perfluoroalkyl of 1 to 8, preferably 1 to 3, carbon atoms. In addition, partially-fluorinated monomers or hydrogen-containing monomers such as olefins (e.g., ethylene, propylene, and the like), and vinylidene fluoride can be used in the fluoropolymer of the invention.
One example of a useful fluoropolymer is composed of principal monomer units of TFE and at least one perfluoroalkyl vinyl ether. In such copolymers, the copolymerized perfluorinated ether units constitute from about 10 to about 50 mol% (more preferably 15 to 35 mol%) of total monomer units present in the polymer. One or more other fluoropolymers may be incorporated into the fluoropolymer having interpolymerized units derived from a nitrogen-containing cure site monomer. In addition, one or more other fluoropolymers (which may include one or more copolymers) may be blended with the fluoropolymer (which may comprise a copolymer) having interpolymerized units derived from a nitrogen-containing cure site monomer. Such other fluoropolymers useful in a blend and/or copolymer include the entire array described above. The other fluoropolymer(s) may lack interpolymerized units derived from a nitrogen-containing cure site monomer and/or may include reactive sites adapted to a selected curative system. For example, two different fluoropolymers, each having interpolymerized units derived from a nitrogen-containing cure site monomer may be blended to provide the fluoropolymer for the present invention.
Another fluoropolymer may be included along with another curative, such as described below, to provide particular properties. For example, a fluoropolymer suitable for peroxide curing and a peroxide curative may be included to improve chemical stability. Such a blend balances the thermal stability and the chemical stability of the resultant blend, and also may provide economic benefits. These other curatives also may be used to cure a blend of nitrogen- containing fluoropolymers without the need to include a fluoropolymer nitrogen-containing cure site monomer.
The nitrogen-containing fluoropolymer(s) preferably make up enough of the total fluoropolymer to provide increased thermal stability over fluoropolymer lacking the composition of the present invention. This amount is generally at least 25 weight percent (wt%), more preferably at least 50 wt%, of the total fluoropolymer in the invention.
The fluoropolymers may be prepared by methods known in the art. For example, the polymerization process can be carried out by free-radical polymerization of the monomers alone or as solutions, emulsions, or dispersions in an organic solvent or water. When fluoropolymer blends are desired, one route of incorporation is through blending the fluoropolymer latices in the selected ratio, followed by coagulation and drying. Further detail of fluoropolymer preparation can be found in WO 99/48939, U.S. 6,077,609, and U.S. 4,335,238, the disclosures of which are herein incorporated by reference.
The cure site component allows one to cure the fluoropolymer. The cure site component generally will comprise at least one nitrogen-containing cure site monomer. The cure site component can be partially or fully fluorinated. Useful nitrogen-containing cure site monomers include nitrile-containing fluorinated olefins and nitrile-containing fluorinated vinyl ethers, such as: CF2=CFO(CF2) CN (8)
CF2=CFO[CF2CF(CF3)O]q(CF2O)sCF(CF3)CN (9)
CF2=CF[OCF2CF(CF3)]rO(CF2)tCN ( 10) where, in reference to the above formulas, L=2-12; q=0-4; r=l -2; s=0-6; and t=l -4. Representative examples of such monomers include perfluoro(8-cyano-5-methyl-3,6-dioxa-l- octene), CF2=CFO(CF2)5CN, and CF2=CFO(CF2)3OCF(CF3)CN.
Another suitable cure site component useful in the present invention is a fluoropolymer or fluorinated monomer material containing a halogen that is capable of participation in a peroxide cure reaction. Such a halogen may be present along a fluoropolymer chain and/or in a terminal position. Typically the halogen is bromine or iodine. Copolymerization is preferred to introduce the halogen in a position along a fluoropolymer chain. In this route, a selection of the fluoropolymer components mentioned above are combined with a suitable fluorinated cure site monomer. Such a monomer can be selected, for example, from the general formula Z-Rf-Ox- CF=CF2, wherein Z is Br or I, Rf is a substituted or unsubstituted C1-C12 fluoroalkylene, which may be perfluorinated and may contain one or more ether oxygen atoms, and x is 0 or 1 . When x is 0, examples of the bromo- or iodo- fluorolefins include: bromodifluoroethylene, bromotrifluoroethylene, iodotrifluoroethylene, l -broιno-2,2-difluoroethylene, and 4-bromo- 3,3,4,4-tetrafluorobutene-l, and the like. When x is 1, examples of the bromo- or iodo- fluorovinyl ethers include: BrCF2OCF=CF2, BrCF2CF2OCF=CF2, BrCF2CF2CF2OCF=CF2, CF3CF(Br)CF2OCF=CF2, and the like. In addition, non-fluorinated bromo- or iodo- olefins, e.g., vinyl bromide and 4-bromo-l -butene, can be used. The amount of cure site component in a side chain position of the fluoropolymer is generally from about 0.05 to about 5 mol% (more preferably from 0.1 to 2 mol%).
The cure site component may also occur in the terminal position of a fluoropolymer chain. Chain transfer agents or initiators are used to introduce the halogen in a terminal position. Generally, a suitable chain transfer agent is introduced in the reaction medium during polymer preparation, or derived from a suitable initiator.
Examples of useful chain transfer agents include those having the formula RrZx wherein Rf is a substituted or unsubstituted CpCι2 fluoroalkyl radical, which may be perfluorinated, Z is Br or I, and x is 1 or 2. Specific examples involving bromide include: CF2Br2, Br(CF2)2Br,
Br(CF2)4Br, CF2(CI)Br, CF3CF(Br)CF2Br, and the like. Examples of useful initiators include NaO2S(CF2)nX, wherein X is Br or I, and n = 1 -10.
The amount of cure site component in a terminal position in the fluoropolymer is generally from about 0.05 to about 5 mol % (more preferably from 0.1 to 2 mol %).
Cure site component combinations are also useful. For example, a fluoropolymer containing a halogen that is capable of participation in a peroxide cure reaction may also contain a nitrogen-containing cure site component. Generally, from about 0.1 to about 5 mol% (more preferably from about 0.3 to about 2 mol%) of the total cure site component is incorporated into the fluoropolymer.
The fluoropolymer compositions are cured, at least in part, using a catalyst composition that includes a compound having the general formula:
Ri
I
R2-N - HA ( 1 )
I R3
wherein HA, R] ; R2, and R3 are as defined above. The catalyst can be added to the fluoropolymer as a compound or form in situ after adding the appropriate precursors to the fluoropolymer. Examples of catalyst compositions include compounds of the formula:
Figure imgf000009_0001
wherein m and n are, independently, 2 to 20. In this formula, two of the R groups are included in a heterocyclic group while the third R group is a bond.
Preferred examples of Formula (1A) compounds include those wherein m=3 and n=5 and wherein m=4 and n=2. This includes, for example, salts of 1,8-diazabicyclo [5.4.0]undec-7-ene (DBU) and l ,5-diazabicyclo[4.3.0]non-5-ene (DBN). These salts may be prepared, for example, by reacting DBU or DBN with an organic or inorganic acid in an organic solvent such as methanol or acetone, or they may be prepared in situ. Another preferred compound of Formula
1A is pyridine hydrochloride.
An effective amount of catalyst compound is used to cure the fluoropolymer. Generally, this amount is in the range of 0.05 to 10 (more preferably 0.1 to 5) parts curative per hundred parts fluoropolymer. The fluoropolymer compositions can be cured using catalyst compositions, described above, optionally with one or more imidate curatives.
The acid can be organic or inorganic, for example C7Fi5COOH, or any hydrocarbon or fluorine containing carboxylic acid, sulfonic acid, etc., and inorganic acids such as HCl, HNO3, etc., that form stable salts.
1 2
The imidate curatives include compounds having the formula R C(OR )=NH, and salts
I 2 thereof, where R and R are as defined above and further specified below. Imidates may be prepared as described in Zh. Obs. Khimii. vol. 36(5), pp. 862-71 (1966), Ca 65 12206c and J.
Org. Chem.. vol. 30, page 3724 (1965), which are herein incorporated by reference. Examples
1 2 of useful groups for R and R include fluoroalkyl, perfluoroalkyl, and perfluoro polyether groups (e.g., as described in U.S. 5,266,650). In addition, more than one imidate group may be included in a compound. "Substituted" means substituted by substituents that do not interfere with the desired product. Examples of suitable substituents include halogen (e.g., chlorine, fluorine, bromine, iodine), cyano, alkoxy, and carboxy groups. In addition, one or more of the carbon atoms may be substituted by a heteroatom such as oxygen or nitrogen. R is preferably part of a readily available imidate, for example, CF3O(CF )mOCF(CF3)C(NH)OCH3 where m is an integer from 1 to 4, and C3F7(O(CF3)CF2)nOCF(CF3)C(NH)OCH3 where n is 0 to 3. R2 is preferably a lower alkyl having from 1 to 6 carbon atoms or C^Rf wherein Rf is a perfluoroalkyl having from 1 to 10 carbon atoms. Other useful imidates include CF3O(CF2)2C(NH)OC8H17 and C7F15C(NH)OC4H9.
An effective amount of the selected imidate is used to cure the fluoropolymer to the desired level in the desired time. Generally, this amount is in the range from about 0.01 to about 5 moles imidate per 100 moles fluoropolymer (mol%), preferably from about 0.2 to about 3 mol%. The combination of the imidate and amine salts results in a synergistic effect of much greater triazine content in press-cured samples when compared to samples made with either material alone. This effect is easily seen when comparing FT-IR spectra of the various samples. For example, Figure 1 shows the spectra (Line B) of a cured material that included an imidate (C75C(NH)OC4H9) along with an amine (DBU) and an inorganic acid (HCl) and the spectra (Line A) of a cured material that included the same imidate without the DBU or HCl. There is a much higher triazine peak (1556 cm"1) and a much lower nitrile peak (2264 cm"') in the spectra (Line B) of the press-cured material having the combination of the DBU, HCl, and imidate than present in the reference material having the imidate without the DBU-HCI (Line A).
The fluoropolymer compositions can include any of the adjuvants often employed in curable fluoropolymer formulations. For example, one material often blended with a fluoropolymer composition as a part of the peroxide curative system is a coagent (sometimes also referred to as a co-curative) composed of a polyunsaturated compound that is capable of cooperating with the curative to provide a useful cure. These coagents can generally be added in an amount equal to between 0.1 and 10 parts coagent per hundred parts fluoropolymer (phr), preferably between 1 and 5 phr. Examples of useful coagents include trial lyl cyanurate; triallyl isocyanurate; tri(methylallyl) isocyanurate; tris(diallylamine)-.s,-triazine; triallyl phosphite; N,N- diallyl acrylamide; hexaallyl phosphoramide; N,N,N',N'-tetraalkyl tetraphthalamide; N,N,N',N'- tetraallyl malonamide; trivinyl isocyanurate; 2,4,6-trivinyl methyltrisiloxane; and tri(5- norbornene-2-methylene)cyanurate. Particularly useful is triallyl isocyanurate. Other useful coagents include the tø-olefins disclosed in EP 0 661 304 Al , EP 0 784 064 A l , EP 0 769 521 Al , and U.S. 5,585,449.
The fluoropolymer compositions can also be cured by using other types of curatives along with the catalyst compositions described above. Examples of such curatives are known and include bis-aminophenols (e.g., as described in U.S. 5,767,204 and U.S. 5,700,879), bis- amidooximes (e.g., as described in U.S. 5,621 , 145), and ammonium salts (e.g., as described in U.S. 5,565,512). Organometallic compounds of arsenic, antimony and tin also can be used, for example as described in U.S. Pat. Nos. 4,281,092 and 5,554,680. Particular examples include al lyl-, propargyl-, triphenyl- allenyl-, and tetraphenyltin and triphenyltin hydroxide.
In addition, the cure system can be modified by methods known in the art. For example, ammonia-generating compounds may be included to modify the rate of cure of a particular composition. Such ammonia-generating compounds are typically solid or liquid at ambient conditions, and then generate ammonia under conditions of cure. These compounds include, for example, hexamethylene tetramine (urotropin) and dicyan diamid, as well as metal-containing compounds and triazine derivatives. More details regarding such ammonia-generating compounds is found in PCT publication WO 00/09603, which is herein incorporated by reference.
It may be advantageous to add one or more onium salts to the fluoropolymer compositions. Examples of suitable onium salts are described in U.S. 4,882,390. Specific examples include triphenylbenzyl phosphonium chloride, tributyl alkyl phosphonium chloride, tributyl benzyl ammonium chloride, tetrabutyl ammonium bromide, and triarylsulfonium chloride.
The fluoropolymer compositions can be cured using one or more peroxide curatives along with the catalyst compositions described above. Suitable peroxide curatives generally are those which generate free radicals at curing temperatures, such as those described in WO
99/48939, the disclosure of which is herein incorporated by reference. Dialkyl peroxide and bis(dialkyl peroxide), each of which decomposes at a temperature above 50°C, are especially preferred. In many cases it is preferred to use a di-tertiarybutyl peroxide having a tertiary carbon atom attached to peroxy oxygen atom. Among the most useful peroxides of this type are 2,5-dimethyl-2,5-di(tertiarybutylperoxy)hexyne-3 and 2,5-dimeιhyl-2,5-di(tertiarybutyl peroxy)hexane. Other peroxides can be selected from such compounds as dicumyl peroxide, dibenzoyl peroxide, tertiarybutyl perbenzoate, a,a'-/>w(t-butylperoxy-diisopropylbenzene), and di[l ,3-dimethyl-3-(t-butylperoxy)-butyl]carbonate. Generally, about 1 to 3 parts of peroxide per 100 parts of fluoropolymer (phr) is used. Another curative useful in the present invention has the general formula
CH2=CH-Rf-CH=CH2, wherein one or more H atoms may be replaced with halogen atoms, such as F, and R is a Cj-C8 linear or branched and at least partially fluorinated alkylene, cycloalkylene, or oxyalkylene. Similarly, polymers containing pendant groups of CH2=CHRf- are also useful as curatives in the present invention. Such curatives are described, for example, in U.S. Pat. No. 5,585,449.
Another curative useful with this system involves using divalent metal amine complex catalysts, alone or in various combinations as described in copending patent applications USSN 60/233,386 and USSN 60/233,383 both filed on 18 September 2000.
The fluoropolymer compositions also can be cured using a catalyst composition that includes a compound having the general formula {RAJ^QR''^}* wherein R is a hydrogen- containing or partially fluorinated C1-C20 alkyl or alkenyl, C3-C2n cycloalkyl, C -C20 cycloalkenyl, or C6-C o aryl or alkylaryl, or perfluorinated C6-C2o aryl or alkylaryl; A is an acid anion or an acid derivative anion, Q is phosphorous, sulfur, nitrogen, arsenic, or antimony, k is the valence of Q, and each R" is, independently, hydrogen or a substituted or unsubstituted Cl - C20 alkyl, aryl, aralkyl, or alkenyl group. More detail is provided in copending applications
USSN 60/283,535 (Attorney Docket Number 56367USA49) and USSN 10/060,690 (Attorney Docket Number 5631 1 US007). The combination of catalyst, optional imidate(s), and optional curative(s) is generally from about 0.01 to about 10 mol% (more preferably from about 0.1 to about 5 mol%) of the total fluoropolymer amount.
Additives such as carbon black, stabilizers, plasticizers, lubricants, fillers, and processing aids typically utilized in fluoropolymer compounding can be incorporated into the compositions, provided they have adequate stability for the intended service conditions. In particular, low temperature performance can be enhanced by incorporation of perfluoropolyethers. See, for example, U.S. Pat No. 5,268,405.
Carbon black fillers are typically also employed in fluoropolymers as a means to balance modulus, tensile strength, elongation, hardness, abrasion resistance, conductivity, and processability of the compositions. Suitable examples include MT blacks (medium thermal black) designated N-991 , N-990, N-908, and N-907; FEF N-550; and large particle size furnace blacks. When used, 1 to 70 parts filler per hundred parts fluoropolymer (phr) of large size particle black is generally sufficient. Fluoropolymer fillers may also be present in the compositions. Generally, from 1 to 50 phr of fluoropolymer filler is used. The fluoropolymer filler can be finely divided and easily dispersed as a solid at the highest temperature used in fabrication and curing of the inventive composition. By solid, it is meant that the filler material, if partially crystalline, will have a crystalline melting temperature above the processing temperature(s) of the curable composition(s). The preferred way to incorporate fluoropolymer filler is by blending latices.
This procedure, including various kinds of fluoropolymer filler, is described in USSN 09/495,600, filed 01 February 2000, the disclosure of which is herein incorporated by reference.
One or more acid acceptors can also be added to the formulations. However, where the presence of extractable metallic compounds is undesirable (such as for semiconductor applications) the use of inorganic acid acceptors should be minimized, and preferably avoided altogether. Commonly used acid acceptors include, for example, zinc oxide, calcium hydroxide, calcium carbonate, magnesium oxide, etc. These compounds generally are used in the fluoropolymer formulation to bind any HF or other acids that might be generated at the high temperatures where the fluoropolymers are intended to function. The curable fluoropolymer compositions of the invention may also be combined with other curable fluoropolymer compositions such as peroxide-curable fluoropolymer compositions. These additional curable fluoropolymer compositions typically employ small amounts of cure site monomers as a comonomer. Suitable cure site monomers are those which, when combined with a curative (e.g., a peroxide) and, preferably a coagent, will provide a cured composition. Preferably these cure site monomers include at least one halo group (e.g., a bromo or an iodo group).
The curable fluoropolymer compositions can be prepared by mixing the fluoropolymer, the divalent metal amine complex catalyst, the selected additive or additives, additional curatives
(if any), and the other adjuvants, if any, in conventional rubber processing equipment. The desired amounts of compounding ingredients and other conventional adjuvants or ingredients can be added to the unvulcanized fluorocarbon gum stock and intimately admixed or compounded therewith by employing any of the usual rubber mixing devices such as internal mixers, (e.g., Banbury mixers), roll mills, or any other convenient mixing device. The temperature of the mixture during the mixing process typically should not rise above about 120°C. During mixing, it is preferable to distribute the components and adjuvants uniformly throughout the gum for effective cure.
The mixture is then processed and shaped, such as by extrusion (for example, in the shape of a hose or hose lining) or by molding (for example, in the form of an O-ring seal). The shaped article can then be heated to cure the gum composition and form a cured article. Pressing of the compounded mixture (i.e., press cure) usually is conducted at a temperature sufficient to cure the mixture in a desired time duration under a suitable pressure. Generally, this is between about 95°C and about 230°C, preferably between about 150°C and about 205°C, for a period of from about 1 minute to 15 hours, typically from 5 minutes to
30 minutes. A pressure of between about 700 kPa and about 20,600 kPa is usually imposed on the compounded mixture in a mold. The molds first may be coated with a release agent and prebaked. The molded vulcanizate is then usually post-cured (e.g., oven-cured) at a temperature and for a time sufficient to complete the curing, usually between about 150°C and about 300°C, typically at about 232°C, for a period of from about 2 hours to 50 hours or more, generally increasing with the cross-sectional thickness of the article. For thick sections, the temperature during the post cure is usually raised gradually from the lower limit of the range to the desired maximum temperature. The maximum temperature used is preferably about 300°C, and this value is held for about 4 hours or more. Following cure, the article can be heat aged in air. One useful example of a heat aging protocol ages the article in air for about 70 hours at a temperature of about 290°C. The fluoropolymer compositions are useful in production of articles such as O-rings, gaskets, tubing, and seals. Such articles are produced by molding a compounded formulation of the fluoropolymer composition with various additives under pressure, curing the article, and then subjecting it to a post-cure cycle. The curable compositions formulated without inorganic acid acceptors are particularly well suited for applications such as seals and gaskets for manufacturing semiconductor devices, and in seals for high temperature automotive uses.
The invention will now be described further by way of the following examples.
EXAMPLES
In the following examples, indicated results were obtained using the following test methods:
Cure rheology: Tests were run on uncured, compounded samples using a Monsanto Moving Die Rheometer (MDR) Model 2000 in accordance with ASTM D 5289-93a at 177°C, no pre-heat, 30 minute elapsed time, and a 0.5 degree arc. Both the minimum torque (ML) and highest torque attained during a specified period of time when no plateau or maximum torque was obtained (MH) were measured. Also measured were the time for the torque to increase 2 units above ML ("ts2"), the time for the torque to reach a value equal to ML + 0.5(MH - ML) ("t'50"), and the time for the torque to reach ML + 0.9(MH - ML) ("t'90").
Press-Cure: Sample sheets measuring 150 x 150 x 2.0 mm were prepared for physical property determination by pressing at about 6.9 Mega Pascals (MPa) for 30 minutes at 177°C, unless otherwise noted.
Post-Cure: Press-cured sample sheets were exposed to heat under nitrogen using the following six stages of conditions: 25 to 200°C over 6 hours; 200°C for 16 hours; 200 to 250°C over 2 hours; 250°C for 8 hours; 250 to 300°C over 2 hours; and 300°C for 16 hours. The samples were returned to ambient temperature before testing. Heat Aging: Press-cured and post-cured sample sheets were exposed to heat in air for
70 hours at 290°C and then returned to ambient temperature before testing.
Physical Properties: Tensile Strength at Break, Elongation at Break, and Modulus at 100% Elongation were determined using ASTM D 412-92 on samples cut from the press-cure or post-cure sheet with ASTM Die D. Units are reported MPa. Hardness: Samples were measured using ASTM D 2240-85 Method A with a Type A-2
Shore Durometer. Units are reported in points.
n Compression set: O-ring samples were measured using ASTM 395-89 Method B. The O-rings had a cross-sectional thickness of 0.139 in. (3.5 mm.). Results are reported as a percentage of permanent set.
Example 1 A fluoroelastomer was prepared which contained 63.8 mole percent tetrafluoroethylene,
35.0 mole percent perfluoromethyl vinyl ether, and 1.2 mole percent of a nitrogen-containing cure site monomer, CF =CFO(CF2)5CN, by aqueous emulsion polymerization. The resulting polymer (100 g) was compounded with: 15 g of FEF N550 carbon black, 2 g of an imidate, CF3OCF2CF2C(NH)OC8H17, 0.75 g of triphenyl benzyl phosphonium chloride (TPBPC1), and 0.5 g of DBU-HC1, made by combining equi-molar amounts of DBU and HCl gas in methanol followed by stripping the methanol under vacuum.
Cure rheology tests were run on the uncured, compounded sample. A sheet of the compounded admixture was pressed for 45 minutes at 177°C, subsequently post-cured, and heat aged. The results of testing at each stage are included in Table 1 , below.
Example 2
The procedure of Example 1 was followed except that no TPBPC1 was used. The test results are included in Table 1.
Example 3
The procedure of Example 1 was followed except that no DBU-HC1 was used and 2 g of another organic acid, DBU-HOOCC7F15 was included. The acid was made by combining equi- molar amounts of DBU and C Fi5COOH in methanol followed by stripping the methanol under vacuum. Test results are included in Table 1.
Example 4
The procedure of Example 1 was followed except that 4 g of DBU-C7F15COOH was added and no TPBPC1, no DBU-HC1, and no CF3OCF2CF2C(NH)OC8Hi7 were included. In addition, 15 g of Thermax MT N990 carbon black was substituted for the N550 carbon black of Example 4. Test results are included in Table 1. After the press cure of this example, sample sheets had small blisters while O-ring samples appeared smooth. Comparative Example CE-1
A fluoroelastomer was prepared which contained 62.1 mole percent tetrafluoroethylene, 36.8 mole percent perfluoromethyl vinyl ether, and 1.1 mole percent of a nitrogen-containing cure site monomer, CF2=CFO(CF2)5CN, by aqueous emulsion polymerization. The resulting polymer (100 g) was compounded with: 15 g of FEF N550 carbon black, and 2.0 g of tetraphenyl tin.
Cure rheology tests were run on the uncured, compounded sample. Sample sheets of the compounded admixture were press-cured, post-cured, and heat aged. The results of testing at each stage are included in Table 1, below.
In Table 1 , N/M indicates that the property was not measured.
Table 1: Test Results
Figure imgf000018_0001
The results demonstrate that compositions prepared using the inventive catalyst compositions exhibit improved properties relative to compositions prepared using an organotin cure catalyst. Most notably, the inventive fluoropolymers exhibited substantially lower compression set values.
A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention.

Claims

1. A composition comprising:
(a) a fluoropolymer comprising interpolymerized units derived from a nitrogen- containing cure site monomer; (b) a catalyst composition comprising a compound having the general formula:
Ri I R2-N - HA I R3 wherein the group HA is an acid, and each Rj, R2, and R3 is, independently, the same or different C1-C20 alkyl group, which may be cyclic or heterocyclic, or R|{CH2)X- wherein Rf is a Cι-C8 linear or branched and at least partially fluorinated alkylene, cycloalkylene, or oxyalkylene, and x is 1 to 4, and wherein one R group may be a bond to another R group such that the nitrogen is bonded to or part of an alkenyl, cycloalkenyl, or aromatic group.
2. The composition according to claim 1 further comprising a catalyst composition
1 2 1 2 comprising a compound having the formula R C(OR )=NH, and salts thereof, where R and R , independently, are a substituted or unsubstituted C1-C20 alkyl, aryl, aralkyl, alkenyl, cycloalkyl, or cycloalkenyl group.
3. The composition according to claim 1 wherein the catalyst includes a compound having the general formula:
Figure imgf000019_0001
wherein m and n are, independently, 2 to 20.
4. The composition according to claim 3 wherein n and m are, independently, 2 to 5.
5. The composition of claim 4 wherein the catalyst composition contains a group selected from l,8-diazabicyclo[5.4.0]undec-7-ene and l,5-diazabicyclo[4.3.0]non-5-ene.
6. The composition according to any of the above claims wherein HA is selected from inorganic acids, organic carboxylic acids, or organic sulfonic acids.
7. The composition according to any of the above claims wherein the fluoropolymer comprises interpolymerized units derived from (i) tetrafluoroethylene, and optionally, (ii) one or more perfluorovinyl ethers of the formula: CF2=CFO(R|O)aRf wherein each Rf is independently a linear or branched Cι-C6 perfluoroalkylene group; and a is 0 or an integer from 1 to 20.
8. A composition according to any of the above claims wherein the fluoropolymer further comprises interpolymerized units derived from monomers selected from the group consisting of perfluoroolefins, partially-fluorinated olefins, non-fluorinated olefins, vinylidene fluoride, and combinations thereof.
9. A composition according to any of the above claims wherein the cure site monomer is a nitrile-containing monomer having the formula CF2=CFO(CF2)LCN;
CF2=CFO[CF2CF(CF3)O]q(CF2O)yCF(CF3)CN; or CF2=CF[OCF2CF(CF3)]rO(CF2)tCN wherein L = 2-12; q = 0-4; y = 0-6; r = l -2; and t = 1 -4.
10. A composition according to any of the above claims further comprising a filler selected from fluoropolymer filler, carbon black, and combinations thereof.
1 1. A composition according to any of the above claims wherein said catalyst composition further comprises an onium salt.
12. A composition according to any of the above claims further comprising an additional curative, and optionally a coagent.
13. The composition of claim 12 wherein the additional curative is selected from ammonium salts, ammonia-generating compounds, substituted triazine derivatives, unsubstituted triazine derivatives, peroxides, bis-aminophenols, bis-amidooximes, and organo-metallic compounds.
14. The composition of any of the above claims further comprising one or more other fluoropolymer(s).
15. The composition of any of the above claims wherein the catalyst composition is prepared in situ.
16. The composition according to any of the above claims wherein the fluoroelastomer gum further comprises interpolymerized units derived from (i) one or more perfluorovinyl ether(s); (ii) one or more monomer(s) selected from the group consisting of perfluoroolefins, olefins, and vinylidene fluoride; optionally (iii) one or more other nitrogen-containing cure site monomer(s); and (iv) combinations thereof.
17. A method of making a fluoropolymer composition comprising the steps of: a) forming a mixture comprising fluoropolymer(s) and catalyst(s) according to any of the above claims; b) shaping the mixture; c) curing the shaped mixture; and optionally d) heat aging the cured mixture.
18. A cured article prepared according to the method of claim 17.
19. A cured article according to claim 18 wherein said article is selected from a seal, an O-ring, a gasket, and tubing.
PCT/US2002/013687 2001-04-30 2002-04-30 Fluoropolymer curing system WO2002088228A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002585522A JP4414141B2 (en) 2001-04-30 2002-04-30 Fluoropolymer curing system
AT02734108T ATE443731T1 (en) 2001-04-30 2002-04-30 FLUOR RESIN CURING SYSTEM
EP02734108A EP1397420B1 (en) 2001-04-30 2002-04-30 Fluoropolymer curing system
DE60233792T DE60233792D1 (en) 2001-04-30 2002-04-30 FLUORHARZHÄRTUNGSSYSTEM

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US28763401P 2001-04-30 2001-04-30
US60/287,634 2001-04-30
US10/136,020 2002-04-29
US10/136,020 US6794457B2 (en) 2001-04-30 2002-04-29 Fluoropolymer curing system containing a nitrogen cure site monomer

Publications (2)

Publication Number Publication Date
WO2002088228A1 true WO2002088228A1 (en) 2002-11-07
WO2002088228A8 WO2002088228A8 (en) 2005-04-07

Family

ID=26833911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/013687 WO2002088228A1 (en) 2001-04-30 2002-04-30 Fluoropolymer curing system

Country Status (7)

Country Link
US (2) US6794457B2 (en)
EP (1) EP1397420B1 (en)
JP (2) JP4414141B2 (en)
CN (1) CN1256367C (en)
AT (1) ATE443731T1 (en)
DE (1) DE60233792D1 (en)
WO (1) WO2002088228A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6890995B2 (en) * 2001-01-31 2005-05-10 3M Innovative Properties Company Fluoropolymer compositions
US6794457B2 (en) * 2001-04-30 2004-09-21 3M Innovative Properties Company Fluoropolymer curing system containing a nitrogen cure site monomer
WO2004069900A2 (en) 2003-01-29 2004-08-19 Greene, Tweed Of Delaware, Inc. Bisaminophenyl-based curatives and amidine-based curatives and cure accelerators for perfluoroelastomeric compositions
US7247749B2 (en) * 2003-01-29 2007-07-24 Greene, Tweed Of Delaware, Inc. Bisaminophenyl-based curatives and amidine-based curatives and cure accelerators for perfluoroelastomeric compositions
US6956085B2 (en) * 2003-02-14 2005-10-18 3M Innovative Properties Company Fluoroelastomer compositions
US7304115B2 (en) * 2003-12-30 2007-12-04 3M Innovative Properties Company Fluoropolymer coagulation method and composition
US20050143529A1 (en) * 2003-12-30 2005-06-30 3M Innovative Properties Company Fluoropolymer compositions with nitrogen curing
US7514506B2 (en) 2004-03-31 2009-04-07 Greene, Tweed Of Delaware, Inc. Fast curing fluoroelastomeric compositions, adhesive fluoroelastomeric compositions and methods for bonding fluoroelastomeric compositions
WO2006065588A2 (en) * 2004-12-15 2006-06-22 3M Innovative Properties Company Elastomer seals for use in medicinal aerosol devices
US7402630B2 (en) * 2004-12-16 2008-07-22 3M Innovative Properties Company Curing compositions for fluoropolymers
US7294677B2 (en) * 2005-08-25 2007-11-13 3M Innovative Properties Company Catalyst for making fluoroelastomer compositions and methods of using the same
US7592386B2 (en) * 2006-11-20 2009-09-22 3M Innovative Properties Company Dual cure hydrotalcite containing fluoropolymer compositions
JP4571197B2 (en) * 2008-02-28 2010-10-27 ニチアス株式会社 Perfluoroelastomer composition and molded article thereof
KR101595137B1 (en) * 2008-02-29 2016-02-17 쓰리엠 이노베이티브 프로퍼티즈 캄파니 Perfluoroelastomers with low carbonyl endgroup ratios
EP2294121B1 (en) * 2008-06-30 2018-10-17 Daikin Industries, Ltd. Curable composition and molded article made of same
EP2331620B1 (en) * 2008-09-25 2012-08-15 Daikin Industries, Ltd. Curable composition and molded article made of same
US8318850B2 (en) * 2009-02-26 2012-11-27 E I Du Pont De Nemours And Company Cured perfluoroelastomer article
US8906821B2 (en) 2009-06-25 2014-12-09 3M Innovative Properties Company Curing compositions for fluoropolymers
US20110143138A1 (en) * 2009-12-10 2011-06-16 3M Properties Company Perfluoroelastomer bonding
US20110152487A1 (en) * 2009-12-17 2011-06-23 3M Innovative Properties Company Peroxide cured partially fluorinated elastomers
EP3013887B1 (en) 2013-06-27 2017-07-26 3M Innovative Properties Company Fluoropolyether-polysiloxane elastomer compositions and shaped articles
KR20160123329A (en) 2014-02-19 2016-10-25 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Hybrid fluoroelastomer composition, curable composition, and methods of making and using the same
CN110709465B (en) * 2017-06-06 2023-02-17 国立大学法人东京工业大学 Fluorine-containing elastomer composition and molded article thereof
WO2020132203A1 (en) 2018-12-20 2020-06-25 3M Innovative Properties Company Dry powder blends of amorphous perfluorinated polymers, methods of making the same, and articles derived from the dry powder blends
EP3898835A1 (en) 2018-12-20 2021-10-27 3M Innovative Properties Company Latex blends of amorphous perfluorinated polymers and articles derived therefrom
WO2020261088A1 (en) * 2019-06-28 2020-12-30 3M Innovative Properties Company Hydroxy-functionalized triazine compounds. curable fluoropolymer compositions comprising such compounds and cured articles therefrom
WO2024112628A1 (en) * 2022-11-22 2024-05-30 Dupont Specialty Products Usa, Llc Fluoroelastomer compounds

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09183879A (en) * 1995-12-28 1997-07-15 Japan Synthetic Rubber Co Ltd Fluororubber composition
WO2000009603A1 (en) * 1998-08-10 2000-02-24 Dupont Dow Elastomers L.L.C. Curable perfluoroelastomer composition

Family Cites Families (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US689099A (en) * 1901-04-25 1901-12-17 Lane Motor Vehicle Company Feeder for motor-vehicles.
US3523132A (en) 1964-11-25 1970-08-04 Hooker Chemical Corp Perfluorocarboxylic imidates
GB1145445A (en) 1966-02-16 1969-03-12 Du Pont Fluorinated perfluorovinylethers, their preparation and copolymers thereof
US3686143A (en) 1971-03-22 1972-08-22 Du Pont Guanidine and amidine accelerators for vulcanization of fluoroelastomers
US3740369A (en) 1971-06-25 1973-06-19 Du Pont Low viscosity solution of fluoropolymer due to the use of polar organic compounds
US3752787A (en) 1972-01-28 1973-08-14 Du Pont Fluoroelastomer composition containing a triarylphosphorane vulcanization accelerator
US4287320A (en) 1974-08-01 1981-09-01 Minnesota Mining And Manufacturing Company Composition of fluoroelastomer and diorganosulfuroxide
US4035565A (en) 1975-03-27 1977-07-12 E. I. Du Pont De Nemours And Company Fluoropolymer containing a small amount of bromine-containing olefin units
NL189567C (en) 1977-12-14 1993-05-17 Montedison Spa Vulcanizable mixtures based on elastomeric copolymers of vinylidene fluoride, process for vulcanizing them and articles consisting wholly or partly of the vulcanized mixtures thus obtained.
US4281092A (en) 1978-11-30 1981-07-28 E. I. Du Pont De Nemours And Company Vulcanizable fluorinated copolymers
US4335238A (en) 1980-10-06 1982-06-15 E. I. Du Pont De Nemours And Company Fluoropolymer hexafluoropropene, tetrafluorethene and 1,1-difluoroethene
JPS5871906A (en) 1981-10-22 1983-04-28 Daikin Ind Ltd Manufacture of fluorine-containing elastic copolymer
EP0140207A3 (en) 1983-10-06 1986-08-20 E.I. Du Pont De Nemours And Company A process for rapidly curing a brominated fluoroelastomer
IT1174453B (en) 1984-01-06 1987-07-01 Montedison Spa VULCANISABLE COMPOSITIONS OF FLUOROELASTOMERS HAVING IMPROVED SELF-LUBRICATION CHARACTERISTICS AND HIGH VULCANIZATION SPEED
US4564662A (en) 1984-02-23 1986-01-14 Minnesota Mining And Manufacturing Company Fluorocarbon elastomer
US4550132A (en) 1984-03-19 1985-10-29 E. I. Du Pont De Nemours And Company Peroxide-curable bromine-containing fluoroelastomers containing a sulfone
JPS6197347A (en) 1984-10-18 1986-05-15 Asahi Glass Co Ltd Vulcanizable composition
US4677137A (en) 1985-05-31 1987-06-30 Minnesota Mining And Manufacturing Company Supported photoinitiator
US4694045A (en) 1985-12-11 1987-09-15 E. I. Du Pont De Nemours And Company Base resistant fluoroelastomers
JPS6286044A (en) 1985-10-11 1987-04-20 Asahi Glass Co Ltd Vulcanizable composition
US4762891A (en) 1987-02-13 1988-08-09 Minnesota Mining And Manufacturing Company Scorch-resistant, curable fluorinated elastomer
JPH07122013B2 (en) 1987-03-13 1995-12-25 日本メクトロン株式会社 Fluorine-containing elastomer composition
US5349093A (en) 1987-04-25 1994-09-20 Daikin Industries, Ltd. Fluorovinyl ether
US4912171A (en) 1988-04-01 1990-03-27 Minnesota Mining And Manufacturing Company Fluoroelastomer curing process with phosphonium compound
US4882390A (en) 1988-04-01 1989-11-21 Minnesota Mining And Manufacturing Company Fluoroelastomer composition with organo-onium compounds
US4983680A (en) 1988-05-25 1991-01-08 E. I. Du Pont De Nemours And Company Cured perfluoroelastomers and their preparation
US5032655A (en) 1989-05-15 1991-07-16 E. I. Du Pont De Nemours And Company Peroxide-curable fluoroelastomers having bromine and iodine curesites and the preparation thereof
US4972038A (en) 1989-05-19 1990-11-20 E. I. Du Pont De Nemours And Company Cyano-containing perfluoropolymers having iodine curesites
US4948853A (en) 1989-05-19 1990-08-14 E. I. Du Pont De Nemours And Company Bromo-containing perfluoropolymers having iodine curesites
US4973634A (en) 1989-05-19 1990-11-27 E. I. Du Pont De Nemours And Company Preparation of bromo-containing perfluoropolymers having iodine curesites
US5284611A (en) 1989-06-22 1994-02-08 Minnesota Mining And Manufacturing Company Fluoroelastomer composition with improved bonding properties
US5371143A (en) 1989-11-16 1994-12-06 Minnesota Mining And Manufacturing Company Polymer blend composition of fluorinated elastomers, thermoplastic polymers and thermoplastics elastomers
CA2028259A1 (en) 1989-11-20 1991-05-21 Stefan Weigl Tacky photopolymerizable adhesive compositions
CA2043971A1 (en) 1990-07-13 1992-01-14 Jeffrey D. Weigelt Curing fluorocarbon elastomers
US5077178A (en) 1990-07-19 1991-12-31 Minnesota Mining And Manufacturing Company Full color photothermographic imaging system
US5266650A (en) 1990-10-11 1993-11-30 Minnesota Mining And Manufacturing Company Curing fluorocarbon elastomers
US5384374A (en) 1991-01-11 1995-01-24 Minnesota Mining And Manufacturing Company Curing fluorocarbon elastomers
JPH05339536A (en) 1992-06-11 1993-12-21 Minnesota Mining & Mfg Co <3M> Fluorinated rubber composition for coating
US5262490A (en) 1992-08-24 1993-11-16 Minnesota Mining And Manufacturing Company Fluoroelastomer composition with organo-onium compounds
US5285002A (en) 1993-03-23 1994-02-08 Minnesota Mining And Manufacturing Company Fluorine-containing polymers and preparation and use thereof
US5268405A (en) 1993-03-31 1993-12-07 E. I. Du Pont De Nemours And Company Low temperature perfluoroelastomers
US5479475A (en) * 1993-11-15 1995-12-26 Qualcomm Incorporated Method and system for providing communication between standard terminal equipment using a remote communication unit
IT1265461B1 (en) 1993-12-29 1996-11-22 Ausimont Spa FLUOROELASTOMERS INCLUDING MONOMERIC UNITS ARISING FROM A BIS-OLEPHINE
US5554680A (en) 1994-02-16 1996-09-10 E. I. Du Pont De Nemours And Company Heat-resistant perfluoroelastomer composition
US5462324A (en) * 1994-04-15 1995-10-31 Public Transportation Safety Devices Corp. Safety guard
US5447993A (en) 1994-04-19 1995-09-05 E. I. Du Pont De Nemours And Company Perfluoroelastomer curing
US5824749A (en) 1994-10-04 1998-10-20 Nippon Mektron, Limited Fluorine-containing elastomer composition
JP3398492B2 (en) 1994-10-21 2003-04-21 日本メクトロン株式会社 Fluorine-containing elastomer composition
JP2850943B2 (en) 1994-10-21 1999-01-27 日本メクトロン株式会社 Vulcanizing agent for fluoroelastomer composed of bisamidrazone compound
JP2833645B2 (en) 1994-10-21 1998-12-09 日本メクトロン株式会社 Fluorine-containing elastomer composition
JP2770769B2 (en) 1995-02-16 1998-07-02 日本メクトロン株式会社 Bisamidoxime compound, process for producing the same, and fluorine-containing elastomer composition containing the same
JP3223776B2 (en) 1995-03-31 2001-10-29 日本メクトロン株式会社 Fluorine-containing elastomer composition
WO1997000906A1 (en) 1995-06-22 1997-01-09 Dyneon Llc Improved scorch safety of curable fluoroelastomer compositions
US5639837A (en) 1996-06-04 1997-06-17 E. I. Du Pont De Nemours And Company Process for making fluoropolymers
JP2891294B2 (en) 1995-07-13 1999-05-17 日本メクトロン株式会社 Fluorine-containing elastomer composition
JP3082626B2 (en) 1995-07-19 2000-08-28 日本メクトロン株式会社 Fluorine-containing elastomer composition
IT1276979B1 (en) 1995-10-20 1997-11-03 Ausimont Spa FLUOROELASTOMERIC COMPOSITIONS
US5591804A (en) 1995-12-21 1997-01-07 Minnesota Mining And Manufacturing Company Fluorinated onium salts, curable compositions containing same, and method of curing using same
JPH09321922A (en) * 1996-03-25 1997-12-12 Canon Inc Data communication equipment, method and storage medium
JP3671517B2 (en) 1996-04-24 2005-07-13 ユニマテック株式会社 Fluorine-containing copolymer elastomer, production method and composition thereof
US5654375A (en) 1996-05-24 1997-08-05 Minnesota Mining And Manufacturing Company Fluoroelastomer compositions containing organo-onium compounds
US5681881A (en) 1996-05-24 1997-10-28 Minnesota Mining And Manufacturing Company Fluoroelastomer compositions
US5756558A (en) * 1996-07-03 1998-05-26 Air Products And Chemicals, Inc. Hydroxyalkylbis(aminoethyl) ether compositions for the production of polyurethanes
JP3676823B2 (en) 1996-11-25 2005-07-27 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Perfluoroelastomer having improved processability and process for producing the same
US5677389A (en) 1996-11-25 1997-10-14 E. I. Du Pont De Nemours Perfluoroelastomer composition having enhanced curing performance
US5877264A (en) 1996-11-25 1999-03-02 E. I. Du Pont De Nemours And Company Fast-curing perfluoroelastomer composition
US5936060A (en) 1996-11-25 1999-08-10 E. I. Du Pont De Nemours And Company Perfluoroelastomer composition having improved processability
US6114452A (en) 1996-11-25 2000-09-05 E. I. Du Pont De Nemours And Company Perfluoroelastomer composition having excellent heat stability
US5891965A (en) 1997-01-06 1999-04-06 Dyneon Llc Low temperature perfluoroether-containing fluoroelastomers
US5728773A (en) 1997-02-21 1998-03-17 Minnesota Mining And Manufacturing Company Fluoroelastomer composition with organo-onium and blocked-carbonate compounds
US6077609A (en) 1997-06-27 2000-06-20 Dyneon Llc Composite articles including fluoropolymers and non-fluorinated polymers and method for making the same
US6270901B1 (en) 1997-12-19 2001-08-07 Dyneon Llc Compositions for bonding fluoroplastics
US6482522B1 (en) 1997-12-19 2002-11-19 Dyneon Llc Elastomer compositions for bonding to fluoropolymers
BR9908975A (en) 1998-03-23 2000-12-05 Dyneon Llc Peroxide-curable perfluoroelastomeric compound, process to improve the processability of perfluoroelastomers, and, molded article
KR100589103B1 (en) 1998-08-10 2006-06-14 듀폰 퍼포먼스 엘라스토머스 엘.엘.씨. Curable perfluoroelastomer composition
US6294627B1 (en) 1998-08-31 2001-09-25 Dyneon Llc Low temperature fluorocarbon elastomers
JP2000309704A (en) 1999-04-23 2000-11-07 Daikin Ind Ltd Filler for crosslinkable elastomer and crosslinkable elastomer composition filled therewith
CA2377410A1 (en) 1999-07-02 2001-01-11 Dyneon Llc Fluoroelastomer compositions and articles made therefrom
US6255536B1 (en) 1999-12-22 2001-07-03 Dyneon Llc Fluorine containing vinyl ethers
US6255535B1 (en) 1999-12-22 2001-07-03 Dyneon Llc Fluorine containing allylethers and higher homologs
US6593416B2 (en) * 2000-02-01 2003-07-15 3M Innovative Properties Company Fluoropolymers
US6720360B1 (en) 2000-02-01 2004-04-13 3M Innovative Properties Company Ultra-clean fluoropolymers
US6638999B2 (en) 2000-02-08 2003-10-28 Dupont Dow Elastomers Llc. Curable perfluoroelastomer composition
US6657013B2 (en) 2000-09-18 2003-12-02 3M Innovative Properties Company Imidate-containing fluoropolymer compositions
WO2002024772A2 (en) 2000-09-18 2002-03-28 3M Innovative Properties Company Metal amine complex containing fluoropolymer compositions
US6890995B2 (en) 2001-01-31 2005-05-10 3M Innovative Properties Company Fluoropolymer compositions
US6844388B2 (en) 2001-04-12 2005-01-18 3M Innovative Properties Company Fluoropolymer compositions containing a nitrogen cure site monomer
US6803425B2 (en) 2001-04-12 2004-10-12 3M Innovative Properties Company Fluoropolymers having pendant imidate structures
US6794457B2 (en) 2001-04-30 2004-09-21 3M Innovative Properties Company Fluoropolymer curing system containing a nitrogen cure site monomer
US6887927B2 (en) 2002-08-27 2005-05-03 3M Innovative Properties Company Fluoropolymer compositions containing a nitrogen cure site monomer and a sulfone or sulfoxide compound
US6846880B2 (en) 2002-10-11 2005-01-25 3M Innovative Properties Company Fluoropolymer compositions
JP2004285264A (en) 2003-03-24 2004-10-14 Yunimatekku Kk Method for producing fluorine-containing copolymer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09183879A (en) * 1995-12-28 1997-07-15 Japan Synthetic Rubber Co Ltd Fluororubber composition
WO2000009603A1 (en) * 1998-08-10 2000-02-24 Dupont Dow Elastomers L.L.C. Curable perfluoroelastomer composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 199738, Derwent World Patents Index; Class A14, AN 1997-410855, XP002211815 *

Also Published As

Publication number Publication date
EP1397420A1 (en) 2004-03-17
EP1397420B1 (en) 2009-09-23
US20050054783A1 (en) 2005-03-10
CN1256367C (en) 2006-05-17
JP2009062545A (en) 2009-03-26
ATE443731T1 (en) 2009-10-15
US6794457B2 (en) 2004-09-21
JP2004533507A (en) 2004-11-04
DE60233792D1 (en) 2009-11-05
US7208553B2 (en) 2007-04-24
JP4414141B2 (en) 2010-02-10
WO2002088228A8 (en) 2005-04-07
CN1505652A (en) 2004-06-16
US20020183458A1 (en) 2002-12-05

Similar Documents

Publication Publication Date Title
EP1397420B1 (en) Fluoropolymer curing system
EP1549705B1 (en) Fluoropolymer compositions
US6465576B1 (en) Fluoroelastomer compositions and articles made therefrom
EP1824918B1 (en) Curing compositions for fluoropolymers
EP1320557B1 (en) Imidate-containing fluoropolymer compositions
EP2445939B1 (en) Curing compositions for fluoropolymers
EP1379564B1 (en) Fluoropolymers having pendant imidate structures
EP1322706B1 (en) Metal amine complex containing fluoropolymer compositions
EP2044146B1 (en) Scorch safe fluoropolymer compositions
US20050143529A1 (en) Fluoropolymer compositions with nitrogen curing

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ CZ DE DE DK DK DM DZ EC EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002734108

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002585522

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 028090829

Country of ref document: CN

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2002734108

Country of ref document: EP

CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i

Free format text: IN PCT GAZETTE 45/2002 ADD "DECLARATION UNDER RULE 4.17: - AS TO APPLICANT S ENTITLEMENT TO APPLY FOR AND BE GRANTED A PATENT (RULE 4.17(II))."; ADD "DECLARATION UNDER RULE 4.17: - AS TO THE APPLICANT S ENTITLEMENT TO CLAIM THE PRIORITY OF THE EARLIER APPLICATION (RULE 4.17(III)) FOR ALL DESIGNATIONS."