WO2002087506A2 - Method and apparatus for computer modeling diabetes - Google Patents

Method and apparatus for computer modeling diabetes Download PDF

Info

Publication number
WO2002087506A2
WO2002087506A2 PCT/US2002/013563 US0213563W WO02087506A2 WO 2002087506 A2 WO2002087506 A2 WO 2002087506A2 US 0213563 W US0213563 W US 0213563W WO 02087506 A2 WO02087506 A2 WO 02087506A2
Authority
WO
WIPO (PCT)
Prior art keywords
biological
defect
diabetes
code
biological processes
Prior art date
Application number
PCT/US2002/013563
Other languages
French (fr)
Other versions
WO2002087506A8 (en
WO2002087506A3 (en
Inventor
Paul Brazhnik
Kevin Hall
Dave Polidori
Scott Siler
Jeff Trimmer
Original Assignee
Entelos, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Entelos, Inc. filed Critical Entelos, Inc.
Priority to AU2002311865A priority Critical patent/AU2002311865A1/en
Priority to CA002445598A priority patent/CA2445598A1/en
Priority to IL15868102A priority patent/IL158681A0/en
Priority to JP2002584858A priority patent/JP2005508025A/en
Priority to EP02739199A priority patent/EP1389998A4/en
Publication of WO2002087506A2 publication Critical patent/WO2002087506A2/en
Publication of WO2002087506A3 publication Critical patent/WO2002087506A3/en
Publication of WO2002087506A8 publication Critical patent/WO2002087506A8/en

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/12Antidiuretics, e.g. drugs for diabetes insipidus
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B5/00ICT specially adapted for modelling or simulations in systems biology, e.g. gene-regulatory networks, protein interaction networks or metabolic networks
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B5/00ICT specially adapted for modelling or simulations in systems biology, e.g. gene-regulatory networks, protein interaction networks or metabolic networks
    • G16B5/30Dynamic-time models
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B5/00ICT specially adapted for modelling or simulations in systems biology, e.g. gene-regulatory networks, protein interaction networks or metabolic networks
    • G16B5/10Boolean models

Definitions

  • the present invention relates generally to a computer model of diabetes. More specifically, the present invention relates to a computer model of diabetes (e.g., human type 2 diabetes) within the framework of multiple macronutrient metabolism.
  • a computer model of diabetes e.g., human type 2 diabetes
  • Diabetes is a complex disease resulting from alterations in normal metabolism that are manifest in elevated fasting and post-prandial blood glucose, impaired insulin sensitivity in muscle, liver and adipose tissue, as well as impaired pancreatic function.
  • the development of pharmaceutical treatments for this disease typically focuses on affecting these general pathways. Complex interactions between these and other pathways, however, make the selection of the appropriate intervention sites and the efficacy of drug candidates difficult to predict.
  • diabetes is typically characterized by abnormal glucose regulation, impaired fat and protein metabolism play an important role (McGarry, Science, 258: 766-70, 1992).
  • the present invention relates generally to a mathematical and computer model of diabetes related disorders (e.g., human type 2 diabetes) within the framework of multiple macronutrient metabolism.
  • the model includes a representation of complex physiological control mechanisms related to, for example, fat metabolism, protein metabolism and/or carbohydrate metabolism.
  • the model can account for the interconversion between macronutrients, as well as their digestion, absorption, storage, mobilization, and adaptive utilization, as well as the endocrine control of these processes.
  • the model can simulate, for example, a heterogeneous group of diabetes related disorders, from insulin resistant to severe diabetic, and can predict the likely effects of therapeutic interventions.
  • the model includes modeling of fat and/or protein metabolism without explicitly modeling carbohydrate metabolism.
  • FIG. 1 illustrates an example of an Effect Diagram, which shows the dynamic relationships that exist among the elements of the physiologic system.
  • FIG. 2 illustrates an enlargement of the upper left portion of the Effect Diagram shown in FIG. 1.
  • FIG. 3 illustrates an example of a Summary Diagram from the Effect Diagram of FIG. 1.
  • FIG. 4 illustrates an example of a module diagram for one of the anatomical elements shown in the Summary Diagram of FIG. 3.
  • FIG. 5 illustrates an example of a browser screen that lists, by biological areas, lesions (or defects) for type 2 diabetes that can be modeled.
  • FIG. 6 illustrates an example of a user-interface screen for the parameter set of a type 2 diabetes lesion.
  • FIG. 7 illustrates a graph comparing the model results against measured data for an oral glucose tolerance test.
  • FIGS. 8A-H graphically illustrate an example of the model results for a 24-hour simulation of an obese diabetic patient eating 3 typical meals.
  • FIG. 9 illustrates a graph showing an example of the model results for an oral glucose tolerance test.
  • FIG. 10 shows a system block diagram of a computer system within which the methods described above can operate via software code, according to an embodiment of the present invention.
  • FIG. 11 shows an example of the module diagram for the glucose uptake functions of the muscle, according to an embodiment of the present invention.
  • FIG. 12 shows a graph of the function f(/) (representing the effect of insulin on GLUT4 membrane content) versus the interstitial insulin concentration, /.
  • Embodiments of the present invention relate to a computer model of diabetes (e.g., human type 2 diabetes) within the framework of multiple macronutrient metabolism.
  • the computer model of diabetes-related disorders includes modeling the metabolism of fat and/or protein metabolism in addition to, or in place of, carbohydrate metabolism.
  • the present invention relates to a computer model of diabetes-related disorders that includes modeling fat and/or protein metabolism without explicitly modeling carbohydrate metabolism.
  • the computer executable software code numerically solves the mathematical equations of the model under various simulated experimental conditions.
  • the computer executable software code can facilitate visualization and manipulation of the model equations and their associated parameters to simulate different patients subject to a variety of stimuli. See, e.g., U.S. Patent 6,078,739, entitled "Managing objects and parameter values associated with the objects within a simulation model," the disclosure of which is incorporated herein by reference.
  • the computer model can be used to rapidly test hypotheses and investigate potential drug targets or therapeutic strategies.
  • the mathematical model of the computer-executable software code represents the dynamic biological processes controlling multiple macronutrient metabolism.
  • the form of the mathematical equations employed may include, for example partial differential equations, stochastic differential equations, differential algebraic equations, difference equations, cellular automata, coupled maps, equations of networks of Boolean or fuzzy logical networks, etc.
  • the form of the mathematical equations used in the model are ordinary differential equations:
  • dx/dt f(x, p, t), where x is an N dimensional vector whose elements represent the biological variables of the system (for example plasma glucose, insulin, free fatty acids, etc.), t is time, dx/dt is the rate of change of x, p is an M dimensional set of system parameters (for example basal muscle glucose uptake rate, level of physical activity, nutrient composition of diet, etc.), and f is a function that represents the complex interactions among biological variables.
  • x is an N dimensional vector whose elements represent the biological variables of the system (for example plasma glucose, insulin, free fatty acids, etc.)
  • t time
  • dx/dt is the rate of change of x
  • p is an M dimensional set of system parameters (for example basal muscle glucose uptake rate, level of physical activity, nutrient composition of diet, etc.)
  • f is a function that represents the complex interactions among biological variables.
  • multiple macronutrient metabolism refers to the biological processes related to the metabolism of at least one of the macronutrients, i.e., carbohydrates, fats, and/or proteins. In particular, in the present invention, this term could refer to processes related to metabolism of at least two of the macronutrients, i.e. carbohydrates and fats, or carbohydrates and proteins, or fats and proteins.
  • the diabetes model only includes the biological processes related to fat metabolism. In another embodiment, the diabetes model only includes the biological processes related to protein metabolism.
  • biological variables refers to the extra-cellular and/or intra-cellular constituents that make up a biological process.
  • the biological variables can include metabolites, DNA, RNA, proteins, enzymes, hormones, cells, organs, tissues, portions of cells, tissues, or organs, subcellular organelles, chemically reactive molecules like H + , superoxides, ATP, citric acid, protein albumin, as well as combinations or aggregate representations of these types of biological variables.
  • biological process is defined herein to mean an interaction or series of interactions between biological variables.
  • the above function f mathematically represents the biological processes in the model.
  • Biological processes can include, for example, digestion, absorption, storage, and oxidation of carbohydrate, fat, and protein, as well as the endocrine control of these processes.
  • Each biological variable of the biological process can be influenced, for example, by at least one other biological variable in the biological process by some biological mechanism, which need not be specified or even understood.
  • biological state is used herein to mean the result of the occurrence of a series of biological processes. As the biological processes change relative to each other, the biological state also undergoes changes.
  • One measurement of a biological state is the level of activity of biologic variables, parameters, and/or processes at a specified time and under specified experimental or environmental conditions.
  • the biological state can be mathematically defined by the values of x and p at a given time. Once a biological state of the model is mathematically specified, numerical integration of the above equation using a computer determines, for example, the time evolution of the biological variables x(t) and hence the evolution of the biological state over time.
  • simulation is used herein to mean the numerical or analytical integration of a mathematical model.
  • a biological state can include, for example, the state of an individual cell, an organ, a tissue, and/or a multi-cellular organism.
  • a biological state can also include the state of a nutrient or hormone concentration in the plasma, interstitial fluid, intracellular fluid, and/or cerebrospinal fluid; e.g. the states of hypoglycemia or hypoinsulinemia are low blood sugar or low blood insulin. These conditions can be imposed experimentally, or may be conditions present in a patient type.
  • a biological state of a neuron can include the state in which the neuron is at rest, the state in which the neuron is firing an action potential, and the state in which the neuron is releasing neurotransmitter.
  • the biological states of the collection of plasma nutrients can include the state in which the person awakens from an overnight fast, the state just after a meal, and the state between meals.
  • biological attribute is used herein to mean clinical signs and diagnostic criteria associated with a disease state.
  • the biological attributes of a disease state can be quantified with measurements of biological variables, parameters, and/or processes.
  • the biological attributes can include fasting plasma glucose, casual plasma glucose, or oral glucose tolerance test (OGTT) value.
  • disease state is used herein to mean a biological state where one or more biological processes are related to the cause or the clinical signs of the disease.
  • a disease state can be, for example, of a diseased cell, a diseased organ, a diseased tissue, and/or a diseased multi-cellular organism. Such diseases can include, for example, diabetes, asthma, obesity, and rheumatoid arthritis.
  • a diseased multi-cellular organism can be, for example, an individual human patient, a specific group of human patients, or the general human population as a whole.
  • a diseased state could also include, for example, a diseased protein (such as a defective glucose transporter) or a diseased process, such as defects in clearance, degradation or synthesis or a system constituent, which may occur in several different organs.
  • the term "reference pattern of the disease state" is used herein to mean a set of biological attributes that are measured in a diseased biological system under specified experimental conditions.
  • the measurements may be performed on blood samples at some specified time following a particular glucose or insulin stimulus.
  • measurements may be performed on biopsy samples, or cell cultures derived from a diseased human or animal.
  • diseasesd biological systems include cellular or animal models of diabetes, including a human diabetic patient.
  • the computer model of diabetes includes the biological processes related to multiple macronutrient metabolism.
  • the model includes the processes related to the metabolism of all three macronutrients, i.e., carbohydrates, fats, and proteins.
  • the model includes the processes related to fat metabolism.
  • the model includes the processes related to protein metabolism.
  • the model includes processes related to the metabolism of two macronutrients, i.e., carbohydrates and fats, carbohydrates and proteins, or fats and proteins.
  • the biological processes can include the processes of digestion and absorption of carbohydrates, fat, and/or proteins.
  • the appropriate hormonal responses to carbohydrates, fat, and/or proteins can be included.
  • the model can include, for example, muscle glucose uptake regulation; muscle glycogen regulation; lactate metabolism; hepatic carbohydrate regulation including gluconeogenesis (i.e. creation of glucose 6-phosphate) from lactate, glycerol, and amino acids, glycogenolysis and glycogen synthesis, and glucose uptake and output; brain glucose uptake and utilization; adipose tissue glucose uptake for triglyceride esterification (i.e. fat storage); carbohydrate oxidation in tissues other than the brain and skeletal muscle; and renal glucose excretion.
  • muscle glucose uptake regulation i.e. creation of glucose 6-phosphate
  • lactate metabolism hepatic carbohydrate regulation including gluconeogenesis (i.e. creation of glucose 6-phosphate) from lactate, glycerol, and amino acids, glycogenolysis and glycogen synthesis, and glucose uptake and output
  • brain glucose uptake and utilization i.e. creation of glucose 6-phosphate
  • the model can include, for example, the regulation of adipose tissue uptake of free fatty acids (FFA) from circulating FFA and lipoproteins
  • FFA free fatty acids
  • chylomicra and VLDL very low density lipoprotein
  • adipose tissue lipolysis i.e. the release of FFA and glycerol from fat cells
  • regulation of adipose tissue triglyceride esterification i.e. the release of FFA and glycerol from fat cells
  • regulation of adipose tissue triglyceride esterification i.e. the release of FFA and glycerol from fat cells
  • regulation of adipose tissue triglyceride esterification i.e. the release of FFA and glycerol from fat cells
  • regulation of adipose tissue triglyceride esterification i.e. the release of FFA and glycerol from fat cells
  • regulation of adipose tissue triglyceride esterification i.e. the release of FFA and glycerol from fat cells
  • the model can include, for example, the regulation of skeletal muscle protein turnover in response to activity, exercise, fat mass, dietary composition, and insulin; production of amino acids from carbohydrate in the muscle; hepatic gluconeogenesis from amino acid substrate; and oxidation of amino acids in muscle and other tissues (primarily the liver).
  • FIG. 10 shows a system block diagram of a computer system within which the methods described above can operate via software code,- according to an embodiment of the present invention.
  • the computer system 100 includes a processor 102, a main memory 103 and a static memory 104, which are coupled by bus 106.
  • the computer system 100 can further include a video display unit 108 (e.g., a liquid crystal display (LCD) or cathode ray tube (CRT)) on which a user interface can be displayed.
  • LCD liquid crystal display
  • CRT cathode ray tube
  • the computer system 100 can also include an alpha-numeric input device 110 (e.g., a keyboard), a cursor control device 112 (e.g., a mouse), a disk drive unit 114, a signal generation device 1 16 (e.g., a speaker) and a network interface device medium 118.
  • the disk drive unit 114 includes a computer- readable medium 115 on which software 120 can be stored.
  • the software can also reside, completely or partially, within the main memory 103 and/or within the processor 102.
  • the software 120 can also be transmitted or received via the network interface device 118.
  • computer-readable medium is used herein to include any medium which is capable of storing or encoding a sequence of instructions or codes for performing the methods described herein and can include, but not limited to, optical and/or magnetic storage devices and/or disks, and carrier wave signals.
  • a computer model can be used to implement at least some embodiments of the present invention.
  • the computer model can be used for a variety of purposes.
  • the computer model can enable a researcher to: (1) simulate the dynamics of the biological state associated with type 2 diabetes, (2) visualize key metabolic pathways and the feedback within and between these pathways, (3) gain a better understanding of the metabolism and physiology of type 2 diabetes, (4) explore and test hypotheses about type 2 diabetes and normal metabolisms, (5) identify and prioritize potential therapeutic targets, (6) identify patient types and their responses to various interventions, (7) identify surrogate markers of disease progression, and (8) organize knowledge and data that relate to type 2 diabetes.
  • the computer model can include a built-in database of references to the scientific literature on which the model is based. Users can augment this database with additional references or other commentary and can link the information to the relevant disease component.
  • the computer model can be a multi-user system in which the information can be shared throughout an organization. Thus, the computer model can be a specialized knowledge management system focused on diabetes.
  • the computer model contains software code allowing visual representation of the mathematical model equations as well as the interrelationships between the biological variables, parameters, and processes.
  • This visual representation can be referred to as an "Effect Diagram", illustrated in FIG. 1.
  • the Effect Diagram comprises multiple modules or functional areas that, when grouped together, represent the large complex physiology model. These modules represent and encode sets of ordinary differential equations for numerical integration, as discussed more fully below in the section entitled "Mathematical Equations Encoded in the Effect Diagram.”
  • the Effect Diagram depicted in FIG. 1 includes a Summary Diagram in the upper left comer 1.
  • FIG. 2 is an enlargement of the upper left portion of the Effect Diagram showing that the Summary Diagram can provide navigational links to modules of the model.
  • the navigational tools can relate to a functional view or the anatomical view since the Effect Diagram can include the modules for the various anatomical elements of the human physiologic system, and a given function may involve multiple anatomical structures.
  • a user can select any of these related user-interface screens by selecting such a screen from the Summary Diagram (e.g., by clicking a hyperlink to a related user-interface screen).
  • FIG. 3 illustrates an example of a Summary Diagram from the Effect Diagram of FIG. 1. As shown in FIG.
  • the Summary Diagram can provide an overview of the contents of the Effect Diagram and can contain nodes that link to modules in the Effect Diagram. These modules can be based on, for example, the anatomical elements of the human physiology such as stomach and intestines, portal vein, liver, pancreas, etc. (as shown in the Anatomical View of the Summary Diagram).
  • FIG. 4 illustrates an example of a module diagram for one of the anatomical elements shown in the Summary Diagram of FIG. 3. More specifically, FIG. 4 illustrates a module diagram for the carbohydrate storage and oxidation functions of the muscle. Both the biological relationships as well as the mathematical equations are represented through the use of diagrammatic symbols. Through the use of these symbols, the complex and dynamic mathematical relationships for the various elements of the physiologic system are represented in a user-friendly manner.
  • Pages A-1 through A-39 of Appendix A lists additional examples of user-interface screens for other modules for anatomical elements and physiologic functions shown in the
  • the Effect Diagram is a visual representation of the model equations. This section describes how the diagram encodes a set of ordinary differential equations. Note that although the discussion below regarding state and function nodes refers to biological variables for consistency, the discussion also relates to variables of any appropriate type and need not be limited to just biological variables.
  • State and function nodes display the names of the biological variables they represent and their location in the model. Their arrows and modifiers indicate their relation to other nodes within the model. State and function nodes also contain the parameters and equations that are used to compute the values or their biological variables in simulated experiments. In one embodiment of the computer model, the state and function nodes are generated according to the method described in U.S. Patent 6,051,029 and co-pending application 09/588,855, both of which are entitled “Method of generating a display for a dynamic simulation model utilizing node and link representations," and both of which are incorporated herein by reference. Further examples of state and function nodes are further discussed below.
  • State Node 1 represent biological variables in the system the values of which are determined by the cumulative effects of its inputs over time.
  • State node values are defined by differential equations.
  • the predefined parameters for a state node include its initial value (S 0 ) and its status.
  • State nodes that have a half-life have the additional parameter of a half-life (h) and are labeled with a half-life %5 «symbol.
  • Function nodes are defined by algebraic functions of their inputs.
  • the predefined parameters for a function node include its initial value (F 0 ) and its status.
  • Setting the status of a node effects how the value of the node is determined.
  • the status of a state or function node can be:
  • State and function nodes can appear more than once in the Effect Diagram as alias nodes. Alias nodes are indicated by one or more dots, as in the state node illustration above.
  • All nodes are also defined by their position, with respect to arrows and other nodes, as being either source nodes (S) or target nodes (T).
  • Source nodes are located at the tails of arrows, and target nodes are located at the heads of arrows.
  • Nodes can be active or inactive. Active nodes are white. Inactive nodes match the background color of the Effect Diagram.
  • S is the node value
  • t is time
  • S(t) is the node value at time
  • t is the half-life.
  • the three dots at the end of the equation indicate there are additional terms in the equation resulting from any effect arrows leading into it and by any conversion arrows that lead out of it. If h is equal to 0, then the half-life calculation is not performed and dS/dt is determined solely by the arrows attached to the node.
  • State Node Specified Data S(t) is defined by specified data entered for the state node.
  • State node values can be limited to a minimum value of zero and a maximum value of one. If limited at zero, S can never be less than zero and the value for S is reset to zero if it goes negative. If limited at one, S cannot be greater than one and is reset to one if it exceeds one.
  • Function node equations are computed by evaluating the specified function of the values of the nodes with arrows pointing into the function node (arguments), plus any object and Effect Diagram parameters used in the function expression. To view the specified function, click the Evaluation tab in the function node Object window.
  • Arrows link source nodes to target nodes and represent the mathematical relationship between the nodes. Arrows can be labeled with circles that indicate the activity of the arrow. A key to the annotations in the circles is located in the upper left comer of each module in the Effect Diagram. If an arrowhead is solid, the effect is positive. If the arrowhead is hollow, the effect is negative. Arrow Types
  • Effect arrows the thin arrows on the Effect Diagram, link source state or A**" function nodes to target state nodes. Effect arrows cause changes to target nodes but have no effect on source nodes. They are labeled with circles that indicate the activity of the arrow.
  • Conversion arrows represent the way the contents of state nodes are converted into the contents of the attached state nodes. They are labeled with circles that indicate the activity of the arrow. The activity may effect the source node or the target node or both nodes. The conversion can go either way.
  • Argument arrows specify which nodes are input arguments for function nodes. They do not contain parameters or equations and are not labeled with activity circles.
  • Effect or conversion arrows can be constant, proportional, or interactive. constant have a break in the arrow shaft. They are used w en the rate o c ange of the target is independent of the values of the source and target nodes.
  • Arrow Properties can be displayed in an Object window (not shown).
  • the window may also include tabs for displaying Notes and Arguments associated with the arrow. If Notes are available in the Object window, the arrow is labeled with a red dot (•).
  • Proportional Effect Arrow The rate of change of target tracks source node value.
  • T is the target node
  • C is a coefficient
  • S is the source node
  • a is an exponent
  • T is the target node and K is a constant.
  • T is the target node
  • S is the source node
  • a and b are exponents. This equation can vary depending on the operation selected in the Object window. The operations available are S+T, S-T, S*T, T/S, and S/T.
  • Proportional Conversion Arrow The rate of change of the target tracks the value of source node.
  • T is the target node
  • S is the source node
  • C is a coefficient
  • R is a conversion ratio
  • a is an exponent
  • Constant Conversion Arrow The rates of change of target and source are constant such that an increase in target corresponds to a decrease in source. dT _
  • T is the target node
  • S is the source node
  • K is a constant
  • R is a conversion ratio
  • Interaction Conversion Arrow The rates of change of the target and source depend on both source and target node values such that an increase in target corresponds to a decrease in source.
  • T is the target node
  • S is the source node
  • a and b are exponents
  • R is a conversion ratio. This equation can vary depending on the operation selected in the Object window.
  • the operations available are S+ T, S-T, S*T ,
  • Modifiers indicate the effects nodes have on the arrows to which they are connected.
  • the type of modification is qualitatively indicated by a symbol in the box.
  • a node can allow ( ⁇ l, block U_J, regulate LzJ, inhibit L , or stimulate l ⁇ Jan arrow rate.
  • a key to the modifier annotations is located in the upper left comer of each module.
  • Modifier Properties can be displayed in the Object Window.
  • the window may also include tabs for displaying the notes, arguments, and specified data associated with the modifier. If notes are available in the Object window, the modifier is labeled with a red dot
  • T is the target node
  • N is a normalization constant
  • f() is a function (either linear or specified by a transform curve)
  • arrowterm is an equation fragment from the attached arrow.
  • conversion arrow modifiers affect both the source and target arrow terms. However, in some cases, a unilateral, modifier is used. Such modifier will affect either a source arrow term or on target arrow term; it does not affect both arrow terms.
  • the equation for a source and target modifier uses both the Source Only equation and the Target Only equation.
  • Target node (al+a2+Al+A2) * (ml *m2) * (M1*M2)
  • Source node (al+a2) * (ml *m2)
  • Model Component Skeletal Muscle Glucose Uptake
  • FIG. 11 shows an example of a module diagram for the glucose uptake functions of the muscle. Note that for illustration purposes, this module diagram is a rearranged version of the module diagram depicted on page A9 in Appendix A. FIG 11 illustrates the primary factors involved in the muscle glucose uptake, whereas the module depicted on page A9 in Appendix A also includes the secondary effects of free fatty acids, activity and exercise.
  • the relevant physiological components for the glucose uptake functions of the muscle include: node 200, muscle glucose uptake rate (MGU); node 210, GLUTl kinetics; node 220, GLUT4 kinetics; node 230, Vmax for GLUTl; node 240, Vmax for GLUT4; and node 250, insulin effect on GLUT4 Vmax.
  • MGU muscle glucose uptake rate
  • node 210 GLUTl kinetics
  • node 220 GLUT4 kinetics
  • node 240, Vmax for GLUT4
  • insulin effect on GLUT4 Vmax insulin effect on GLUT4 Vmax.
  • Skeletal muscle glucose uptake is a facilitated diffusion process mediated primarily by transmembrane GLUTl and GLUT4 proteins. Both GLUTl and GLUT4 obey Michaelis
  • MGU muscle glucose uptake
  • g e extracellular glucose concentration
  • g is intracellular glucose concentration
  • i is interstitial insulin concentration
  • K m ⁇ and K m4 are the Michaelis Menten constants for
  • V max ⁇ is the maximal unidirectional flux for GLUTl mediated transportation
  • V max4 is the maximal unidirectional flux for GLUT4 mediated transportation as a function of insulin.
  • V ⁇ H) rV mml f(i)
  • the function, f(z) represents the effect of insulin on GLUT4 membrane content.
  • the function f( ) is a sigmoidal function having a value under basal concentrations of f(f) equal to 1.
  • the function f( ⁇ ) is selected to match steady state MGU during hyperinsulinemic clamps.
  • the values for the parameters within equations for V max ⁇ and V max4 can be obtained, for example, from publicly available information.
  • the normal basal MGU, B can be assigned a value of 30 mg/min and the normal basal extracellular concentration, ⁇ g e , can be assigned a value of 90 mg/dl; see, e.g., Dela, F., et al., Am. J. Physiol. 263:E1134-43 (1992).
  • the normal basal intracellular concentration, ⁇ g can be assigned a value of 2 mg/dl; see, e.g., Cline, G.W., et al., NEJM 341 :240-6 (1999).
  • the normal basal interstitial insulin concentration, ⁇ can be assigned a value of 5 ⁇ U/ml; see, e.g., Sjostrand, M., et al., Am. J. Physiol. 276:E151-4 (1999).
  • GLUTl, r can be assigned a value 4; see, e.g., Marette, A., et al., Am. J. Physiol. 263:C443-52 (1992).
  • the normal Michaelis constant for GLUTl, K m ⁇ can be assigned a value of 2 mM or 36 mg/dl; see, e.g., Shepherd, P. R., et al., NEJM 341 :248-57 (1999).
  • the normal Michaelis constant for GLUT4, K m can be assigned a value of 16 mM or 290 mg/dl; see, e.g., Ploug, T., et al., Am. J. Physiol., 264:E270-8 (1993).
  • the above-described equations can be related to nodes 200 through 250 of FIG. 11. More specifically, the mathematical relationships associated with node 200 corresponds to the equation for MGU above, where nodes 210 and 220 correspond to each of the respective GLUTl and GLUT4 transport terms in the MGU equation.
  • the above-derived equations for V max ⁇ and V max4 (/ ' ) are defined in nodes 230 and 240 respectively.
  • the mathematical relationship associated with node 250 corresponds to the above-derived function f(/).
  • the components of the Effects Diagram represent mathematical relationships that define the elements of the physiologic system. These mathematical relationships can be developed with the aid of appropriate publicly available information on the relevant physiological components.
  • the Effect Diagrams indicate that type of mathematical relationships that are modeled within a given model component. The publicly available information can then be put into a form that matches the stmcture of the Effect Diagram. In this way, the stmcture of the model can be developed.
  • defects means an imperfection, failure, or absence of a biological variable or a biological process associated with a disease state.
  • Diabetes including type 2 diabetes, is a disease resulting from a heterogeneous combination of defects.
  • the computer model can be designed so that a user can simulate defects of varying severity, in isolation or combination, in order to create various diabetic and prediabetic patient types.
  • the model thus can provide several simulated patient types of varying degrees of diabetes.
  • skeletal muscle glucose uptake is defective in patients with type 2 diabetes.
  • people with type 2 diabetes generally have basal rates of MGU comparable to that of normal people without type 2 diabetes. Consequently, type 2 diabetic skeletal muscle is likely insulin resistant.
  • Such a defect can be introduced within the computer model by altering the shape of the function f(z) (representing the effect of insulin on GLUT4 membrane content), as shown in FIG. 12.
  • FIG. 12 shows a graph of the function f( ⁇ ) (representing the effect of insulin on GLUT4 membrane content) versus the interstitial insulin concentration, /.
  • FIG. 12 shows curve 300 for a normal person and curve 310 for a person with type 2 diabetes. The curves differ in that insulin has less effect in the case of curve 310 compared to curve 300 thereby representing insulin resistance known to occur in the type 2 diabetic skeletal muscle. Mathematically, the curves 300 and 310 differ by parameter values that define the shape of the curve.
  • a user can select the specific defects (relevant for diabetes) from a browser screen.
  • FIG. 5 illustrates an example of a browser screen that lists, by biological areas, defect indicators associated with defects for diabetes that can be modeled.
  • the term "defect indicators" relates to the display, for example, via the browser screen of defects relevant for diabetes.
  • the user can select a particular defect indicator, for example, by a mouse click or keyboard selection.
  • FIG. 5 illustrates various biologic areas such as adipose issue and lipid metabolism, other tissues, pancreas, muscle and liver.
  • the browser illustrated in FIG. 5 lists various defect indicators associated with defects that can be specified for that biologic area.
  • a user can select specific defect indicators to indicate defects for modeling and then can customize the parameters for that defect.
  • the user can then specify the values for parameters associated with physiology of the various elements of the physiology system.
  • FIG. 6 illustrates an example of a user-interface screen for the parameter set of a type 2 diabetes defect. More specifically, FIG.
  • a parameter set is based on the method described in U.S. Patent 6,069,629, entitled “Method of providing access to object parameters within a simulation model,” the disclosure of which is incorporated herein by reference.
  • the user-interface screen allows a user to specify alternative value sets to the baseline value sets associated with a normal physiology.
  • the baseline value sets and the alternative value sets associated with the various type 2 diabetes defects can be based on, for example, real physiological values relied upon from the related literature.
  • the user can specify alternative value sets according to the method described in U.S. Patent 6,078,739, entitled "Managing objects and parameter values associated with the objects within a simulation model," the disclosure of which is incorporated herein by reference.
  • FIG. 6 only shows a single example of a user-interface screen for a parameter set of a type 2 diabetes defect, many other parameters sets are possible relating to other various physiological elements.
  • a user can select the defect relating to insulin resistance of the type 2 diabetic skeletal muscle through a browser screen described above in reference to FIG. 5.
  • the browser screen that lists defects for diabetes can include an entry for insulin resistance of the type 2 diabetic skeletal muscle.
  • parameter sets and value sets can be created for processes not listed above.
  • Many systems not involved in creating the pathophysiology of diabetes are nevertheless affected by those changes (e.g. gastric emptying). Some of these systems can use alternate parameterization to that representing a normal individual.
  • the computer model can represent the progression of diabetes.
  • one means of including diabetes progression in the computer model can involve replacing defect parameters, formerly fixed at a particular value, with biological variables (defect variables) that evolve over time.
  • the time-evolution of the new defect variables can be specified either as a direct function of time, an algebraic function of other biological or defect variables, or via a dynamical systems equation such as an ordinary differential equation.
  • the defect variables change over time, the progression of the disease can be modeled. For example, the parameters that specify the insulin sensitivity of skeletal muscle GLUT4 translocation to can be made to decrease over time.
  • the depiction of progression of diabetes in the computer model can be used to study, for example, the progress of a normal human to an obese patient to an obese-insulin-resistant patient to ultimately a diabetic patient. Also, pharmaceutical treatments can be explored to prevent or reverse the progression of diabetes.
  • the Effect Diagram defines a set of ordinary differential equations as described above, once the initial values of the biological variables are specified, along with the values for the model parameters, the equations can be solved numerically by a computer using standard algorithms. See, for example, William H. Press et al. Numerical Recipes in C: The Art of Scientific Computing, 2nd edition (January 1993) Cambridge Univ. Press. As illustrated above in the muscle glucose uptake example, one can derive equations, obtain initial conditions, and estimate parameter values from the public literature. Likewise, other initial conditions and parameter values can be estimated under different conditions and can be used to simulate the time evolution of the biological state.
  • model parameters can also be used to specify stimuli and environmental factors as well as intrinsic biological properties.
  • model parameters can be chosen to simulate in vivo experimental protocols including: pancreatic clamps; infusions of glucose, insulin, glucagon, somatostatin, and FFA; intravenous glucose tolerance test (IVGTT); oral glucose tolerance test (OGTT); and insulin secretion experiments demonstrating acute and steady state insulin response to plasma glucose steps.
  • model parameters can be chosen to represent various environmental changes such as diets with different nutrient compositions, as well as various levels of physical activity and exercise.
  • the time evolution of all biological variables in the model can be obtained, for example, as a result of the numerical simulation.
  • the computer model can provide, for example, outputs including any biological variable or function of one or more biological variables.
  • the outputs are useful for interpreting the results of simulations performed using the computer model. Since the computer model can be used to simulate various experimental tests (e.g. glucose-insulin clamps, glucose tolerance tests, etc.), and clinical measurements (e.g. %HbAlc, fructosamine), the model outputs can be compared directly with the results of such experimental and clinical tests.
  • the model can be configured so as to compute many outputs including: biological variables like plasma glucose, insulin, C-peptide, FFA, triglycerides, lactate, glycerol, amino acids, glucagon, epinephrine, muscle glycogen, liver glycogen; body weight and body mass index; respiratory quotient and other measures of substrate utilization; clinical indices of long-term hyperglycemia including glycosylated hemoglobin (%HbAlc) and fructosamine; substrate and energy balances; as well as metabolic fluxes including muscle glucose uptake, hepatic glucose output, glucose disposal rate, lipolysis rate, glycogen synthesis, and glycogenolysis rates.
  • the outputs can also be presented in several commonly used units.
  • FIGS. 7 through 9 provide examples of outputs of the computer model under various conditions.
  • FIG. 7 illustrates a graph comparing the model results against measured data for an oral glucose tolerance test.
  • An oral glucose tolerance test was simulated based on the metabolic characteristics of a simulated lean control, simulated lean type 2 diabetic and a simulated obese type 2 diabetic.
  • the simulation time for the patients considered was two years. The measurements were made at a time that corresponds to an ovemight-fasted individual shortly after waking.
  • the model results were compared to measured data from Group et al., J. Clin. Endocrin. Metab., 72:96-107 (1991).
  • the results shown in FIG. 7 demonstrate the ability of the model to simulate accurately oral glucose tolerance tests in lean and obese type 2 diabetic patients as well as controls.
  • FIGS. 8A-H illustrate an example of model outputs for a 24-hour simulation of an obese diabetic patient consuming three meals (55% carbohydrates, 30% fat, 15% protein). While all model biological variables are simulated, the results are shown for circulating levels of glucose (FIG. 8A), insulin (FIG. 8B), free fatty acids (FFA) (FIG. 8G), gluconeogenic precursors: lactate, amino acids, and glycerol (FIG. 8E), as well as the dynamics of processes like hepatic glucose output (FIG. 8C), muscle glucose uptake (FIG. 8D), relative contributions of whole-body carbohydrate, fat and amino acid oxidation (FIG. 8H).
  • FIG. 8F The expansion and depletion of the muscle and liver glycogen storage pools are also shown (FIG. 8F).
  • the simulated responses of these and other biological variables are in agreement with data measured in obese type 2 diabetic patients.
  • the glucose and insulin results can be compared with data presented in Palonsky et al., N. Engl. J. Med., 318(19): 1231-1239 (1988).
  • the computer model can simulate therapeutic treatments.
  • a therapy can be modeled in a static manner by modifying the parameter set of the appropriate tissue(s) to represent the affect of the treatment on that tissue(s).
  • therapeutic treatments can be modeled in a dynamic manner by allowing the user to specify the delivery of a treatment(s), for example, in a time- varying (and/or periodic) manner.
  • the computer model includes pharmacokinetic representations of various therapeutic classes (e.g., injectable insulins, insulin secretion enhancers, and/or insulin sensitizers) and how these therapeutic treatments can interact with the various tissues in a dynamic manner.
  • FIG. 9 illustrates a graph showing an example of model results for an oral glucose tolerance test.
  • the graph shown in FIG. 9 is based on a simulated obese type 2 diabetic patient following treatment with muscle insulin sensitizer or pancreatic glucose-induced insulin secretion enhancer.
  • An oral glucose tolerance test was simulated in obese diabetic patients with or without two theoretical interventions. One simulated patient received a muscle insulin sensitizer, while the other received a pancreatic glucose-induced insulin secretion enhancer. Note that the simulated post-prandial glucose excursions were considerably lower in treated patients as compare to simulated diabetic controls, indicating the potential effectiveness of these theoretical agents.
  • the computer model allows a user to simulate a variety of diabetic and pre-diabetic patients by combining defects in various combinations where those defects have various degrees of severity. This can allow a more effective modeling of the type 2 diabetes population, which is heterogeneous. In other words, diabetes can have a wide range of impairment, some of which can be distinguished clinically. Furthermore, clinically similar diabetics can have differences in their physiology that can be modeled by using different defect combinations. Consequently, the computer model can be used to better understand and classify the real patient population for type 2 diabetes and to anticipate what d g target may work best on certain classes of patients, thereby improving the design of clinical trials and target prioritization.
  • the computer model can enable a researcher, for example, to: (1) simulate the dynamics of hyperglycemia in type 2 diabetes, (2) visualize key metabolic pathways and the feedback within and between these pathways, (3) gain a better understanding of the metabolism and physiology of type 2 diabetes, (4) explore and test hypotheses about type 2 diabetes and normal metabolisms, (5) identify and prioritize potential therapeutic targets, (6) identify patient types and their responses to various interventions, and (7) organize knowledge and data that relate to type 2 diabetes.
  • the computer model should behave similar to the biological state they represent as closely as possible.
  • the responses of the computer model can be validated against biological responses.
  • the computer model can be validated, for example, with in vitro and in vivo data obtained using reference patterns of the biological state being modeled. Methods for validation of computer models are described in co-pending application entitled “Developing, analyzing and validating a computer-based model,” filed on May 17, 2001, Application Number 60/292,175.
  • the diabetic patients produced with the diabetes computer model can be validated by running the following tests on the computer model: ovemight-fasted concentrations of glucose, post-prandial concentrations of glucose, metabolic response to 24 hour fast, oral glucose tolerance test (OGTT), intravenous glucose tolerance test (IVGTT), euglycemic- hyperinsulinemic clamp, hyperglycemic clamp, normal everyday behavior.
  • the computer model of diabetes can be considered a valid model if the simulated biological attribute obtained is substantially consistent with a corresponding biological attribute obtained from a cellular or whole animal model of diabetes or human diabetic patient.
  • FIG. 7 shows examples of model simulation results that are "substantially consistent” with the corresponding biological attributes obtained from glucose following a glucose tolerance test.
  • Table 1 lists the values for the responses that can be evaluated in a non-diabetic and diabetic following over night fasting.
  • One means of validation of a diabetes computer model would be to verify that the model produces results substantially consistent with those present in Table 1 for a non-diabetic and a diabetic. As the understanding of diabetes evolves in the art, the responses against which the computer model is validated can be modified.
  • Plasma triglycerides 100 mg/dl 150-1000 mg/dl
  • Table 2 lists the values for post-prandial responses that can be evaluated in a non- diabetic and a diabetic. Another means of validation of a diabetes computer model would be to verify that the model produces results substantially consistent with those present in
  • Table 2 for a non-diabetic and a diabetic. As the understanding of diabetes evolves in the art, the responses against which the computer model is validated can be modified.
  • Table 3 lists other tests that can be used to obtain responses in a non-diabetic and a diabetic. Yet another means of validation of a diabetes computer model would be to verify that the model produces results substantially consistent with those present in Table 3 for a non-diabetic and a diabetic. As the understanding of diabetes evolves in the art, the responses against which the computer model is validated can be modified.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Evolutionary Biology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Data Mining & Analysis (AREA)
  • Primary Health Care (AREA)
  • Diabetes (AREA)
  • Pathology (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The present invention relates to a mathematical and computer model of diabetes related disorders within the framework of multiple macronutrient mechanisms metabolism. The model includes modeling the metabolism of fat and/or protein metabolism in addition to or in place of, carbohydrate metabolism.

Description

METHOD AND APPARATUS FOR COMPUTER MODELING DIABETES
COPYRIGHT NOTICE
[0001] A portion of the disclosure of the patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document of the patent disclosure, as it appears in the Patent and
Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
CROSS-REFERENCE TO RELATED APPLICATION
[0002] The present invention is related to and claims priority to U.S. Provisional Patent Application Serial No. 60/287,702, filed May 2, 2001 , entitled "Method and Apparatus for
Computer Modeling Type 2 Diabetes," and U.S. Patent Application Serial No. 10/040,373, filed January 9, 2002, entitled "Method and Apparatus for Computer Modeling Diabetes" which are incorporated herein by reference.
BACKGROUND OF THE INVENTION
[0003] The present invention relates generally to a computer model of diabetes. More specifically, the present invention relates to a computer model of diabetes (e.g., human type 2 diabetes) within the framework of multiple macronutrient metabolism.
[0004] The process of extracting energy from the environment and using it to maintain life is called metabolism. Every cell in the human body requires a constant supply of energy in order to avoid the decay to thermodynamic equilibrium (i.e. death). The required energy comes from the ingestion of food and the carefully controlled oxidation of the carbon based macronutrients: carbohydrates, fats, and protein. The fact that humans don't eat continuously, and can survive for some period of time without food, implies that we have the ability to store nutrients for use between meals. Evolution has provided us with complex control mechanisms involving multiple organ systems that direct the storage, mobilization, and utilization of various fuels under a variety of environmental conditions including feeding of various diets, fasting, and performing physical activity.
[0005] Diabetes is a complex disease resulting from alterations in normal metabolism that are manifest in elevated fasting and post-prandial blood glucose, impaired insulin sensitivity in muscle, liver and adipose tissue, as well as impaired pancreatic function. The development of pharmaceutical treatments for this disease typically focuses on affecting these general pathways. Complex interactions between these and other pathways, however, make the selection of the appropriate intervention sites and the efficacy of drug candidates difficult to predict. Furthermore, although diabetes is typically characterized by abnormal glucose regulation, impaired fat and protein metabolism play an important role (McGarry, Science, 258: 766-70, 1992).
[0006] Because of the complexity of metabolic control mechanisms, mathematical and computer models of the processes directing metabolism can be used to help better understand human metabolism and make useful predictions. For example, several researchers have constmcted simple mathematical models of glucose regulation and its hormonal control (Cobelli et al., Math. Biosci., 58:27-60, 1982, Guyton et al., Diabetes, 27:1027-42, 1978. Srinivasan et al., Comp. Biomed. Res., 3:146-66, 1970, Cramp et al., Biological Systems, Modeling and Control, DA Linkens ed. pp. 171-201, 1979). Some researchers have attempted to represent diabetes related disorders, but these models were restricted to glucose regulation and did not represent the important interactions with fat or protein metabolism (Cobelli et al., Math. Biosci., 58:27-60, 1982). Fat metabolism in particular is thought to play a major role in diabetes related disorders (McGarry, Science, 258: 766-70, 1992).
[0007] Hence, there is a need to develop a computer model of diabetes within the framework of multiple macronutrient metabolism.
SUMMARY OF THE INVENTION
[0008] The present invention relates generally to a mathematical and computer model of diabetes related disorders (e.g., human type 2 diabetes) within the framework of multiple macronutrient metabolism. The model includes a representation of complex physiological control mechanisms related to, for example, fat metabolism, protein metabolism and/or carbohydrate metabolism. In one embodiment, for example, the model can account for the interconversion between macronutrients, as well as their digestion, absorption, storage, mobilization, and adaptive utilization, as well as the endocrine control of these processes. In this embodiment, the model can simulate, for example, a heterogeneous group of diabetes related disorders, from insulin resistant to severe diabetic, and can predict the likely effects of therapeutic interventions. In another embodiment, the model includes modeling of fat and/or protein metabolism without explicitly modeling carbohydrate metabolism.
BRIEF DESCRIPTION OF THE DRAWINGS
[0009] FIG. 1 illustrates an example of an Effect Diagram, which shows the dynamic relationships that exist among the elements of the physiologic system.
[0010] FIG. 2 illustrates an enlargement of the upper left portion of the Effect Diagram shown in FIG. 1.
[0011] FIG. 3 illustrates an example of a Summary Diagram from the Effect Diagram of FIG. 1. [0012] FIG. 4 illustrates an example of a module diagram for one of the anatomical elements shown in the Summary Diagram of FIG. 3.
[0013] FIG. 5 illustrates an example of a browser screen that lists, by biological areas, lesions (or defects) for type 2 diabetes that can be modeled.
[0014] FIG. 6 illustrates an example of a user-interface screen for the parameter set of a type 2 diabetes lesion.
[0015] FIG. 7 illustrates a graph comparing the model results against measured data for an oral glucose tolerance test.
[0016] FIGS. 8A-H graphically illustrate an example of the model results for a 24-hour simulation of an obese diabetic patient eating 3 typical meals. [0017] FIG. 9 illustrates a graph showing an example of the model results for an oral glucose tolerance test.
[0018] FIG. 10 shows a system block diagram of a computer system within which the methods described above can operate via software code, according to an embodiment of the present invention. [0019] FIG. 11 shows an example of the module diagram for the glucose uptake functions of the muscle, according to an embodiment of the present invention.
[0020] FIG. 12 shows a graph of the function f(/) (representing the effect of insulin on GLUT4 membrane content) versus the interstitial insulin concentration, /. DETAILED DESCRIPTION
Overview
[0021] Embodiments of the present invention relate to a computer model of diabetes (e.g., human type 2 diabetes) within the framework of multiple macronutrient metabolism. The computer model of diabetes-related disorders includes modeling the metabolism of fat and/or protein metabolism in addition to, or in place of, carbohydrate metabolism. Furthermore, the present invention relates to a computer model of diabetes-related disorders that includes modeling fat and/or protein metabolism without explicitly modeling carbohydrate metabolism. [0022] In one embodiment, the computer executable software code numerically solves the mathematical equations of the model under various simulated experimental conditions. Furthermore, the computer executable software code can facilitate visualization and manipulation of the model equations and their associated parameters to simulate different patients subject to a variety of stimuli. See, e.g., U.S. Patent 6,078,739, entitled "Managing objects and parameter values associated with the objects within a simulation model," the disclosure of which is incorporated herein by reference. Thus, the computer model can be used to rapidly test hypotheses and investigate potential drug targets or therapeutic strategies.
Mathematical Model
[0023] The mathematical model of the computer-executable software code represents the dynamic biological processes controlling multiple macronutrient metabolism. The form of the mathematical equations employed may include, for example partial differential equations, stochastic differential equations, differential algebraic equations, difference equations, cellular automata, coupled maps, equations of networks of Boolean or fuzzy logical networks, etc. In one embodiment, the form of the mathematical equations used in the model are ordinary differential equations:
dx/dt = f(x, p, t), where x is an N dimensional vector whose elements represent the biological variables of the system (for example plasma glucose, insulin, free fatty acids, etc.), t is time, dx/dt is the rate of change of x, p is an M dimensional set of system parameters (for example basal muscle glucose uptake rate, level of physical activity, nutrient composition of diet, etc.), and f is a function that represents the complex interactions among biological variables.
[0024] The term "multiple macronutrient metabolism" refers to the biological processes related to the metabolism of at least one of the macronutrients, i.e., carbohydrates, fats, and/or proteins. In particular, in the present invention, this term could refer to processes related to metabolism of at least two of the macronutrients, i.e. carbohydrates and fats, or carbohydrates and proteins, or fats and proteins. In one embodiment, the diabetes model only includes the biological processes related to fat metabolism. In another embodiment, the diabetes model only includes the biological processes related to protein metabolism.
[0025] The term "biological variables" refers to the extra-cellular and/or intra-cellular constituents that make up a biological process. For example, the biological variables can include metabolites, DNA, RNA, proteins, enzymes, hormones, cells, organs, tissues, portions of cells, tissues, or organs, subcellular organelles, chemically reactive molecules like H+, superoxides, ATP, citric acid, protein albumin, as well as combinations or aggregate representations of these types of biological variables.
[0026] The term "biological process" is defined herein to mean an interaction or series of interactions between biological variables. Thus, the above function f mathematically represents the biological processes in the model. Biological processes can include, for example, digestion, absorption, storage, and oxidation of carbohydrate, fat, and protein, as well as the endocrine control of these processes. Each biological variable of the biological process can be influenced, for example, by at least one other biological variable in the biological process by some biological mechanism, which need not be specified or even understood.
[0027] The term "biological state" is used herein to mean the result of the occurrence of a series of biological processes. As the biological processes change relative to each other, the biological state also undergoes changes. One measurement of a biological state, is the level of activity of biologic variables, parameters, and/or processes at a specified time and under specified experimental or environmental conditions.
[0028] In one embodiment the biological state can be mathematically defined by the values of x and p at a given time. Once a biological state of the model is mathematically specified, numerical integration of the above equation using a computer determines, for example, the time evolution of the biological variables x(t) and hence the evolution of the biological state over time.
[0029] The term "simulation" is used herein to mean the numerical or analytical integration of a mathematical model. For example, simulation can mean the numerical integration of the mathematical model of the biological state defined by the above equation, i.e. dx/dt = f(x, p, t).
[0030] A biological state can include, for example, the state of an individual cell, an organ, a tissue, and/or a multi-cellular organism. A biological state can also include the state of a nutrient or hormone concentration in the plasma, interstitial fluid, intracellular fluid, and/or cerebrospinal fluid; e.g. the states of hypoglycemia or hypoinsulinemia are low blood sugar or low blood insulin. These conditions can be imposed experimentally, or may be conditions present in a patient type. For example, a biological state of a neuron can include the state in which the neuron is at rest, the state in which the neuron is firing an action potential, and the state in which the neuron is releasing neurotransmitter. In another example, the biological states of the collection of plasma nutrients can include the state in which the person awakens from an overnight fast, the state just after a meal, and the state between meals.
[0031] The term "biological attribute" is used herein to mean clinical signs and diagnostic criteria associated with a disease state. The biological attributes of a disease state can be quantified with measurements of biological variables, parameters, and/or processes. For example, for the disease state of diabetes, the biological attributes can include fasting plasma glucose, casual plasma glucose, or oral glucose tolerance test (OGTT) value.
[0032] The term "disease state" is used herein to mean a biological state where one or more biological processes are related to the cause or the clinical signs of the disease. A disease state can be, for example, of a diseased cell, a diseased organ, a diseased tissue, and/or a diseased multi-cellular organism. Such diseases can include, for example, diabetes, asthma, obesity, and rheumatoid arthritis. A diseased multi-cellular organism can be, for example, an individual human patient, a specific group of human patients, or the general human population as a whole. A diseased state could also include, for example, a diseased protein (such as a defective glucose transporter) or a diseased process, such as defects in clearance, degradation or synthesis or a system constituent, which may occur in several different organs.
[0033] The term "reference pattern of the disease state" is used herein to mean a set of biological attributes that are measured in a diseased biological system under specified experimental conditions. For example, the measurements may be performed on blood samples at some specified time following a particular glucose or insulin stimulus. Alternatively, measurements may be performed on biopsy samples, or cell cultures derived from a diseased human or animal. Examples of diseased biological systems include cellular or animal models of diabetes, including a human diabetic patient.
[0034] The computer model of diabetes includes the biological processes related to multiple macronutrient metabolism. In one embodiment, the model includes the processes related to the metabolism of all three macronutrients, i.e., carbohydrates, fats, and proteins. In another embodiment, the model includes the processes related to fat metabolism. In yet another embodiment, the model includes the processes related to protein metabolism. In other embodiments of the invention, the model includes processes related to the metabolism of two macronutrients, i.e., carbohydrates and fats, carbohydrates and proteins, or fats and proteins. These different embodiments enable a researcher to understand the pathophysiology of diabetes in the presence of one, two, or all three macronutrients.
[0035] To represent metabolism of macronutrients, the biological processes can include the processes of digestion and absorption of carbohydrates, fat, and/or proteins. In addition, the appropriate hormonal responses to carbohydrates, fat, and/or proteins can be included.
[0036] To represent carbohydrate metabolism, the model can include, for example, muscle glucose uptake regulation; muscle glycogen regulation; lactate metabolism; hepatic carbohydrate regulation including gluconeogenesis (i.e. creation of glucose 6-phosphate) from lactate, glycerol, and amino acids, glycogenolysis and glycogen synthesis, and glucose uptake and output; brain glucose uptake and utilization; adipose tissue glucose uptake for triglyceride esterification (i.e. fat storage); carbohydrate oxidation in tissues other than the brain and skeletal muscle; and renal glucose excretion.
[0037] To represent fat metabolism, the model can include, for example, the regulation of adipose tissue uptake of free fatty acids (FFA) from circulating FFA and lipoproteins
(chylomicra and VLDL (very low density lipoprotein)); the regulation of adipose tissue lipolysis (i.e. the release of FFA and glycerol from fat cells); regulation of adipose tissue triglyceride esterification; hepatic lipoprotein regulation; and muscle FFA uptake and utilization.
[0038] To represent amino acid metabolism, the model can include, for example, the regulation of skeletal muscle protein turnover in response to activity, exercise, fat mass, dietary composition, and insulin; production of amino acids from carbohydrate in the muscle; hepatic gluconeogenesis from amino acid substrate; and oxidation of amino acids in muscle and other tissues (primarily the liver).
Computer System
[0039] FIG. 10 shows a system block diagram of a computer system within which the methods described above can operate via software code,- according to an embodiment of the present invention. The computer system 100 includes a processor 102, a main memory 103 and a static memory 104, which are coupled by bus 106. The computer system 100 can further include a video display unit 108 (e.g., a liquid crystal display (LCD) or cathode ray tube (CRT)) on which a user interface can be displayed. The computer system 100 can also include an alpha-numeric input device 110 (e.g., a keyboard), a cursor control device 112 (e.g., a mouse), a disk drive unit 114, a signal generation device 1 16 (e.g., a speaker) and a network interface device medium 118. The disk drive unit 114 includes a computer- readable medium 115 on which software 120 can be stored. The software can also reside, completely or partially, within the main memory 103 and/or within the processor 102. The software 120 can also be transmitted or received via the network interface device 118.
[0040] The term "computer-readable medium" is used herein to include any medium which is capable of storing or encoding a sequence of instructions or codes for performing the methods described herein and can include, but not limited to, optical and/or magnetic storage devices and/or disks, and carrier wave signals.
Computer Model
[0041] Suitably, a computer model can be used to implement at least some embodiments of the present invention. The computer model can be used for a variety of purposes. For example, the computer model can enable a researcher to: (1) simulate the dynamics of the biological state associated with type 2 diabetes, (2) visualize key metabolic pathways and the feedback within and between these pathways, (3) gain a better understanding of the metabolism and physiology of type 2 diabetes, (4) explore and test hypotheses about type 2 diabetes and normal metabolisms, (5) identify and prioritize potential therapeutic targets, (6) identify patient types and their responses to various interventions, (7) identify surrogate markers of disease progression, and (8) organize knowledge and data that relate to type 2 diabetes.
[0042] In addition to simulation capabilities, the computer model can include a built-in database of references to the scientific literature on which the model is based. Users can augment this database with additional references or other commentary and can link the information to the relevant disease component. The computer model can be a multi-user system in which the information can be shared throughout an organization. Thus, the computer model can be a specialized knowledge management system focused on diabetes.
Effect Diagram and Summary Diagram
[0043] In one embodiment, the computer model contains software code allowing visual representation of the mathematical model equations as well as the interrelationships between the biological variables, parameters, and processes. This visual representation can be referred to as an "Effect Diagram", illustrated in FIG. 1. The Effect Diagram comprises multiple modules or functional areas that, when grouped together, represent the large complex physiology model. These modules represent and encode sets of ordinary differential equations for numerical integration, as discussed more fully below in the section entitled "Mathematical Equations Encoded in the Effect Diagram."
[0044] The Effect Diagram depicted in FIG. 1 includes a Summary Diagram in the upper left comer 1. FIG. 2 is an enlargement of the upper left portion of the Effect Diagram showing that the Summary Diagram can provide navigational links to modules of the model. The navigational tools can relate to a functional view or the anatomical view since the Effect Diagram can include the modules for the various anatomical elements of the human physiologic system, and a given function may involve multiple anatomical structures. From the Summary Diagram, a user can select any of these related user-interface screens by selecting such a screen from the Summary Diagram (e.g., by clicking a hyperlink to a related user-interface screen). [0045] FIG. 3 illustrates an example of a Summary Diagram from the Effect Diagram of FIG. 1. As shown in FIG. 3, the Summary Diagram can provide an overview of the contents of the Effect Diagram and can contain nodes that link to modules in the Effect Diagram. These modules can be based on, for example, the anatomical elements of the human physiology such as stomach and intestines, portal vein, liver, pancreas, etc. (as shown in the Anatomical View of the Summary Diagram).
[0046] FIG. 4 illustrates an example of a module diagram for one of the anatomical elements shown in the Summary Diagram of FIG. 3. More specifically, FIG. 4 illustrates a module diagram for the carbohydrate storage and oxidation functions of the muscle. Both the biological relationships as well as the mathematical equations are represented through the use of diagrammatic symbols. Through the use of these symbols, the complex and dynamic mathematical relationships for the various elements of the physiologic system are represented in a user-friendly manner.
[0047] Pages A-1 through A-39 of Appendix A lists additional examples of user-interface screens for other modules for anatomical elements and physiologic functions shown in the
Summary Diagram.
Mathematical Equations Encoded in the Effect Diagram
[0048] As mentioned above, the Effect Diagram is a visual representation of the model equations. This section describes how the diagram encodes a set of ordinary differential equations. Note that although the discussion below regarding state and function nodes refers to biological variables for consistency, the discussion also relates to variables of any appropriate type and need not be limited to just biological variables.
State and Function Nodes
[0049] State and function nodes display the names of the biological variables they represent and their location in the model. Their arrows and modifiers indicate their relation to other nodes within the model. State and function nodes also contain the parameters and equations that are used to compute the values or their biological variables in simulated experiments. In one embodiment of the computer model, the state and function nodes are generated according to the method described in U.S. Patent 6,051,029 and co-pending application 09/588,855, both of which are entitled "Method of generating a display for a dynamic simulation model utilizing node and link representations," and both of which are incorporated herein by reference. Further examples of state and function nodes are further discussed below.
[0050] State nodes, the single-border ovals in the Effect Diagram,
State Node 1 represent biological variables in the system the values of which are determined by the cumulative effects of its inputs over time.
[0051] State node values are defined by differential equations. The predefined parameters for a state node include its initial value (S0) and its status. State nodes that have a half-life have the additional parameter of a half-life (h) and are labeled with a half-life %5«symbol.
10 [0052] Function nodes, the double-border ovals in the Effect
(Function yi Diagram, represent biological variables in the system the values of which, at Node JJ -^ any point in time, are determined by inputs at that same point in time.
[0053] Function nodes are defined by algebraic functions of their inputs. The predefined parameters for a function node include its initial value (F0) and its status.
[0054] Setting the status of a node effects how the value of the node is determined. The status of a state or function node can be:
• Computed — the value is calculated as a result of its inputs
• Specified-Locked — the value is held constant over time
• Specified Data — the value varies with time according to predefined data points.
[0055] State and function nodes can appear more than once in the Effect Diagram as alias nodes. Alias nodes are indicated by one or more dots, as in the state node illustration above.
All nodes are also defined by their position, with respect to arrows and other nodes, as being either source nodes (S) or target nodes (T). Source nodes are located at the tails of arrows, and target nodes are located at the heads of arrows. Nodes can be active or inactive. Active nodes are white. Inactive nodes match the background color of the Effect Diagram.
State Node Equations
[0056] The computational status of a state node can be Computed, Specified-Locked, or Specified Data. [sum of arrowterms when h = 0
State Node Computed dS dt S(t) + εumqf arrowterms when h > 0 h
[0057] Where S is the node value, t is time, S(t) is the node value at time, t, and h is the half-life. The three dots at the end of the equation indicate there are additional terms in the equation resulting from any effect arrows leading into it and by any conversion arrows that lead out of it. If h is equal to 0, then the half-life calculation is not performed and dS/dt is determined solely by the arrows attached to the node.
State Node Specified- Locked S ι) = S for all t
State Node Specified Data S(t) is defined by specified data entered for the state node.
[0058] State node values can be limited to a minimum value of zero and a maximum value of one. If limited at zero, S can never be less than zero and the value for S is reset to zero if it goes negative. If limited at one, S cannot be greater than one and is reset to one if it exceeds one.
Function Node Equations
[0059] Function node equations are computed by evaluating the specified function of the values of the nodes with arrows pointing into the function node (arguments), plus any object and Effect Diagram parameters used in the function expression. To view the specified function, click the Evaluation tab in the function node Object window.
The Effect Diagram — Arrows
[0060] Arrows link source nodes to target nodes and represent the mathematical relationship between the nodes. Arrows can be labeled with circles that indicate the activity of the arrow. A key to the annotations in the circles is located in the upper left comer of each module in the Effect Diagram. If an arrowhead is solid, the effect is positive. If the arrowhead is hollow, the effect is negative. Arrow Types
^-^ [0061] Effect arrows, the thin arrows on the Effect Diagram, link source state or A**" function nodes to target state nodes. Effect arrows cause changes to target nodes but have no effect on source nodes. They are labeled with circles that indicate the activity of the arrow.
Figure imgf000015_0001
Conversion arrows, the thick arrows on the Effect Diagram, represent the way the contents of state nodes are converted into the contents of the attached state nodes. They are labeled with circles that indicate the activity of the arrow. The activity may effect the source node or the target node or both nodes. The conversion can go either way.
[0063] Argument arrows specify which nodes are input arguments for function nodes. They do not contain parameters or equations and are not labeled with activity circles.
Arrow Characteristics
[0064] Effect or conversion arrows can be constant, proportional, or interactive. constant have a break in the arrow shaft. They are used
Figure imgf000015_0002
w en the rate o c ange of the target is independent of the values of the source and target nodes.
[0066] Arrows that are proportional have solid, unbroken shafts and are used when ^^the rate of change is dependent on, or is a function of, the values of the source node.
are interactive have a loop from the activity circle to the target that the rate of change of the target is dependent on, or a
Figure imgf000015_0003
function of, the value of both the source node and the target node.
[0068] Arrow Properties can be displayed in an Object window (not shown). The window may also include tabs for displaying Notes and Arguments associated with the arrow. If Notes are available in the Object window, the arrow is labeled with a red dot (•). Arrow Equations: Effect Arrows
[0069] Proportional Effect Arrow: The rate of change of target tracks source node value.
— = C»S(t)a + ... dt
Where T is the target node, C is a coefficient, S is the source node, and a is an exponent.
Constant Effect Arrow: The rate of change of the target is constant.
£ - *♦... dt Where T is the target node and K is a constant.
[0070] Interaction Effect Arrow: The rate of change of the target depends on both the source node and target node values.
Figure imgf000016_0001
Where T is the target node, S is the source node, and a and b are exponents. This equation can vary depending on the operation selected in the Object window. The operations available are S+T, S-T, S*T, T/S, and S/T.
Arrow Equations: Conversion Arrows
[0071] Proportional Conversion Arrow: The rate of change of the target tracks the value of source node.
— = oR-s(ty2 +... dt
— = -C *S(t)a + ... dt
Where T is the target node, S is the source node, C is a coefficient, R is a conversion ratio, and a is an exponent.
[0072] Constant Conversion Arrow: The rates of change of target and source are constant such that an increase in target corresponds to a decrease in source. dT _
- K* R + dt ' dS _
-K + .. dt
Where T is the target node, S is the source node, K is a constant, and R is a conversion ratio.
[0073] Interaction Conversion Arrow: The rates of change of the target and source depend on both source and target node values such that an increase in target corresponds to a decrease in source.
Figure imgf000017_0001
Where T is the target node, S is the source node, a and b are exponents, and R is a conversion ratio. This equation can vary depending on the operation selected in the Object window. The operations available are S+ T, S-T, S*T ,
T/S , and S/7
Modifiers
[0074] Modifiers indicate the effects nodes have on the arrows to which they are connected. The type of modification is qualitatively indicated by a symbol in the box. For example, a node can allow (Λl, block U_J, regulate LzJ, inhibit L , or stimulate l±Jan arrow rate.
[0075] A key to the modifier annotations is located in the upper left comer of each module.
[0076] Modifier Properties can be displayed in the Object Window. The window may also include tabs for displaying the notes, arguments, and specified data associated with the modifier. If notes are available in the Object window, the modifier is labeled with a red dot
Figure imgf000018_0001
[0077] Effect Arrow, Modifier Equation :
Where T is the target node, Mis a multiplier constant, N is a normalization constant, f() is a function (either linear or specified by a transform curve), and arrowterm is an equation fragment from the attached arrow.
Modifier Effect
[0078] By default, conversion arrow modifiers affect both the source and target arrow terms. However, in some cases, a unilateral, modifier is used. Such modifier will affect either a source arrow term or on target arrow term; it does not affect both arrow terms.
[0079] Conversion arrow, Source Only Modifier Equation:
other attacked arrow terms
Figure imgf000018_0002
[0080] Conversion arrow, Target Only Modifier Equation: + other attached arrow terms
Figure imgf000018_0003
[0081] The equation for a source and target modifier uses both the Source Only equation and the Target Only equation.
[0082] When multiplicative and additive modifiers are combined, effect is given precedence. For example, if the following modifiers are on an arrow,
al,a2: Additive, Source and Target ml,m2: Multiplicative, Source and Target A1,A2: Additive, Target Only Ml ,M2: Multiplicative, Target Only then the rates are modified by
Target node: (al+a2+Al+A2) * (ml *m2) * (M1*M2) Source node: (al+a2) * (ml *m2) Example of a Model Component: Skeletal Muscle Glucose Uptake
[0083] The following discussion provides an example of a process by which the modules of the above-described computer model can be developed. As discussed above, the various elements of the physiologic system are represented by the components shown in the Effect Diagram. These components are denoted by state and function nodes, which represent mathematical relationships that define the elements of the physiologic system. In general, these mathematical relationships are developed with the aid of appropriate publicly available information on the relevant physiological components. The development of the mathematical relationships underlying the module diagram for glucose uptake functions of the muscle will be discussed here as an example.
[0084] FIG. 11 shows an example of a module diagram for the glucose uptake functions of the muscle. Note that for illustration purposes, this module diagram is a rearranged version of the module diagram depicted on page A9 in Appendix A. FIG 11 illustrates the primary factors involved in the muscle glucose uptake, whereas the module depicted on page A9 in Appendix A also includes the secondary effects of free fatty acids, activity and exercise.
[0085] As FIG. 11 illustrates, the relevant physiological components for the glucose uptake functions of the muscle include: node 200, muscle glucose uptake rate (MGU); node 210, GLUTl kinetics; node 220, GLUT4 kinetics; node 230, Vmax for GLUTl; node 240, Vmax for GLUT4; and node 250, insulin effect on GLUT4 Vmax. The following discussion relates to deriving the underlying mathematical relationships for these physiological components based on the appropriate publicly available information. Although not discussed herein, the remaining physiological components for the glucose uptake functions can be similarly derived from publicly available information.
[0086] Skeletal muscle glucose uptake is a facilitated diffusion process mediated primarily by transmembrane GLUTl and GLUT4 proteins. Both GLUTl and GLUT4 obey Michaelis
Menten kinetics and the rate of glucose uptake is distributed through GLUTl and GLUT4 according to their relative membrane content and their kinetic parameters. Following meals, glucose levels in the circulation rise causing increased pancreatic insulin secretion and concomitant elevations in muscle interstitial insulin. Increased insulin leads to a complex signaling cascade finally causing an increased number of transmembrane GLUT4 thereby increasing glucose uptake. These biological processes are well known and are reviewed in (PR Shepherd et al. New Eng. J. Med. 341 :248-57, 1999).
[0087] Since GLUTl and GLUT4 obey Michaelis Menton kinetics, the equation for muscle glucose uptake (MGU) has two terms: bi-directional glucose mediated flux by GLUT land bi-directional glucose meditated flux by GLUT4:
Figure imgf000020_0001
where, ge is extracellular glucose concentration; g, is intracellular glucose concentration; i is interstitial insulin concentration; Kmι and Km4 are the Michaelis Menten constants for
GLUTl and GLUT4, respectively; Vmaxι is the maximal unidirectional flux for GLUTl mediated transportation; Vmax4( is the maximal unidirectional flux for GLUT4 mediated transportation as a function of insulin.
[0088] Insulin's action on MGU is via an increase in effective GLUT4 number. Consequently, interstitial insulin concentration only enters the computation for MGU through Vmax4. Under basal concentrations of glucose and insulin (~ge, ~g,, ϊ,), the basal MGU, denoted by B, and the ratio of the membrane GLUT4 and the GLUTl denoted by r; the values for Vmaxι and Vmaχ4 can be obtained from the following equations
Figure imgf000020_0002
V^H) = rVmmlf(i)
[0089] The function, f(z), represents the effect of insulin on GLUT4 membrane content. The function f( ) is a sigmoidal function having a value under basal concentrations of f(f) equal to 1. The function f(ι) is selected to match steady state MGU during hyperinsulinemic clamps. Some studies, for example, use leg A-V balance technique to measure leg glucose uptake. See, e.g., Dela, F. et al., Am. J. Physiol. 263:E1134-43 (1992). Thus, for each steady state, the MGU can be computed as the LGU divided by the leg fraction of body muscle, f. The leg fraction of body muscle, f, is for example, about V* for normal people.
[0090] The values for the parameters within equations for Vmaxι and Vmax4 can be obtained, for example, from publicly available information. For example, the normal basal MGU, B, can be assigned a value of 30 mg/min and the normal basal extracellular concentration, ~ge, can be assigned a value of 90 mg/dl; see, e.g., Dela, F., et al., Am. J. Physiol. 263:E1134-43 (1992). The normal basal intracellular concentration, ~g„ can be assigned a value of 2 mg/dl; see, e.g., Cline, G.W., et al., NEJM 341 :240-6 (1999). The normal basal interstitial insulin concentration, ϊ, can be assigned a value of 5 μU/ml; see, e.g., Sjostrand, M., et al., Am. J. Physiol. 276:E151-4 (1999). The normal basal ratio of membrane GLUT4 and
GLUTl, r, can be assigned a value 4; see, e.g., Marette, A., et al., Am. J. Physiol. 263:C443-52 (1992). The normal Michaelis constant for GLUTl, Kmι, can be assigned a value of 2 mM or 36 mg/dl; see, e.g., Shepherd, P. R., et al., NEJM 341 :248-57 (1999). The normal Michaelis constant for GLUT4, Km , can be assigned a value of 16 mM or 290 mg/dl; see, e.g., Ploug, T., et al., Am. J. Physiol., 264:E270-8 (1993).
[0091] Returning to FIG. 11 , the above-described equations can be related to nodes 200 through 250 of FIG. 11. More specifically, the mathematical relationships associated with node 200 corresponds to the equation for MGU above, where nodes 210 and 220 correspond to each of the respective GLUTl and GLUT4 transport terms in the MGU equation. The above-derived equations for Vmaxι and Vmax4(/') are defined in nodes 230 and 240 respectively. Similarly, the mathematical relationship associated with node 250 (for the insulin effect on GLUT4γmax) corresponds to the above-derived function f(/).
[0092] As this example of glucose uptake model component generally illustrates, the components of the Effects Diagram, denoted by state and function nodes, represent mathematical relationships that define the elements of the physiologic system. These mathematical relationships can be developed with the aid of appropriate publicly available information on the relevant physiological components. In other words, the Effect Diagrams indicate that type of mathematical relationships that are modeled within a given model component. The publicly available information can then be put into a form that matches the stmcture of the Effect Diagram. In this way, the stmcture of the model can be developed.
Simulation of Biological Attributes of Diabetes
[0093] Once a normal physiology has been defined, a user can then select specific defects in the normal physiology by which the physiology for diabetes (e.g., type 2 diabetes) can be modeled and simulated. The term "defect" as used herein means an imperfection, failure, or absence of a biological variable or a biological process associated with a disease state.
Diabetes, including type 2 diabetes, is a disease resulting from a heterogeneous combination of defects. The computer model can be designed so that a user can simulate defects of varying severity, in isolation or combination, in order to create various diabetic and prediabetic patient types. The model thus can provide several simulated patient types of varying degrees of diabetes.
[0094] For example, it is known that skeletal muscle glucose uptake is defective in patients with type 2 diabetes. In spite of having abnormally high basal glucose and insulin levels, people with type 2 diabetes generally have basal rates of MGU comparable to that of normal people without type 2 diabetes. Consequently, type 2 diabetic skeletal muscle is likely insulin resistant. Such a defect can be introduced within the computer model by altering the shape of the function f(z) (representing the effect of insulin on GLUT4 membrane content), as shown in FIG. 12.
[0095] FIG. 12 shows a graph of the function f(ι) (representing the effect of insulin on GLUT4 membrane content) versus the interstitial insulin concentration, /. FIG. 12 shows curve 300 for a normal person and curve 310 for a person with type 2 diabetes. The curves differ in that insulin has less effect in the case of curve 310 compared to curve 300 thereby representing insulin resistance known to occur in the type 2 diabetic skeletal muscle. Mathematically, the curves 300 and 310 differ by parameter values that define the shape of the curve.
[0096] In one embodiment, a user can select the specific defects (relevant for diabetes) from a browser screen. FIG. 5 illustrates an example of a browser screen that lists, by biological areas, defect indicators associated with defects for diabetes that can be modeled. The term "defect indicators" relates to the display, for example, via the browser screen of defects relevant for diabetes. The user can select a particular defect indicator, for example, by a mouse click or keyboard selection.
[0097] For example, FIG. 5 illustrates various biologic areas such as adipose issue and lipid metabolism, other tissues, pancreas, muscle and liver. For each of the biologic areas, the browser illustrated in FIG. 5 lists various defect indicators associated with defects that can be specified for that biologic area. To define a specific diabetes physiology, a user can select specific defect indicators to indicate defects for modeling and then can customize the parameters for that defect. [0098] For each selected defect, the user can then specify the values for parameters associated with physiology of the various elements of the physiology system. FIG. 6 illustrates an example of a user-interface screen for the parameter set of a type 2 diabetes defect. More specifically, FIG. 6 illustrates the user-interface screen for the parameter set to modify the physiology of muscle glucose uptake and phosphorylation. In one embodiment of the computer model, a parameter set is based on the method described in U.S. Patent 6,069,629, entitled "Method of providing access to object parameters within a simulation model," the disclosure of which is incorporated herein by reference.
[0099] As FIG. 6 illustrates, the user-interface screen allows a user to specify alternative value sets to the baseline value sets associated with a normal physiology. The baseline value sets and the alternative value sets associated with the various type 2 diabetes defects can be based on, for example, real physiological values relied upon from the related literature. In one embodiment of the computer model, the user can specify alternative value sets according to the method described in U.S. Patent 6,078,739, entitled "Managing objects and parameter values associated with the objects within a simulation model," the disclosure of which is incorporated herein by reference. Although FIG. 6 only shows a single example of a user-interface screen for a parameter set of a type 2 diabetes defect, many other parameters sets are possible relating to other various physiological elements.
[0100] Thus, a user can select the defect relating to insulin resistance of the type 2 diabetic skeletal muscle through a browser screen described above in reference to FIG. 5. In other words, the browser screen that lists defects for diabetes can include an entry for insulin resistance of the type 2 diabetic skeletal muscle. When a user selects such an entry, curve 300 (for a normal person without type 2 diabetes) is substituted within the computer model with curve 310 (for a person with type 2 diabetes). Of course, when a user deselects such an entry curve 310 is substituted with curve 300.
[0101] In addition to the defects listed above, parameter sets and value sets can be created for processes not listed above. Many systems not involved in creating the pathophysiology of diabetes are nevertheless affected by those changes (e.g. gastric emptying). Some of these systems can use alternate parameterization to that representing a normal individual.
[0102] As described above, simulation of the biological attributes of diabetes is done in a cross-sectional manner, where defects are introduced statically via parameter changes. Alternatively, the computer model can represent the progression of diabetes. For example, one means of including diabetes progression in the computer model can involve replacing defect parameters, formerly fixed at a particular value, with biological variables (defect variables) that evolve over time. The time-evolution of the new defect variables can be specified either as a direct function of time, an algebraic function of other biological or defect variables, or via a dynamical systems equation such as an ordinary differential equation. As the defect variables change over time, the progression of the disease can be modeled. For example, the parameters that specify the insulin sensitivity of skeletal muscle GLUT4 translocation to can be made to decrease over time. The depiction of progression of diabetes in the computer model can be used to study, for example, the progress of a normal human to an obese patient to an obese-insulin-resistant patient to ultimately a diabetic patient. Also, pharmaceutical treatments can be explored to prevent or reverse the progression of diabetes.
Numerical Solution of the Mathematical Equations and Outputs of the Computer Model
[0103] Since the Effect Diagram defines a set of ordinary differential equations as described above, once the initial values of the biological variables are specified, along with the values for the model parameters, the equations can be solved numerically by a computer using standard algorithms. See, for example, William H. Press et al. Numerical Recipes in C: The Art of Scientific Computing, 2nd edition (January 1993) Cambridge Univ. Press. As illustrated above in the muscle glucose uptake example, one can derive equations, obtain initial conditions, and estimate parameter values from the public literature. Likewise, other initial conditions and parameter values can be estimated under different conditions and can be used to simulate the time evolution of the biological state.
[0104] Note that parameters can also be used to specify stimuli and environmental factors as well as intrinsic biological properties. For example, model parameters can be chosen to simulate in vivo experimental protocols including: pancreatic clamps; infusions of glucose, insulin, glucagon, somatostatin, and FFA; intravenous glucose tolerance test (IVGTT); oral glucose tolerance test (OGTT); and insulin secretion experiments demonstrating acute and steady state insulin response to plasma glucose steps. Furthermore, model parameters can be chosen to represent various environmental changes such as diets with different nutrient compositions, as well as various levels of physical activity and exercise. [0105] The time evolution of all biological variables in the model can be obtained, for example, as a result of the numerical simulation. Thus, the computer model can provide, for example, outputs including any biological variable or function of one or more biological variables. The outputs are useful for interpreting the results of simulations performed using the computer model. Since the computer model can be used to simulate various experimental tests (e.g. glucose-insulin clamps, glucose tolerance tests, etc.), and clinical measurements (e.g. %HbAlc, fructosamine), the model outputs can be compared directly with the results of such experimental and clinical tests.
[0106] The model can be configured so as to compute many outputs including: biological variables like plasma glucose, insulin, C-peptide, FFA, triglycerides, lactate, glycerol, amino acids, glucagon, epinephrine, muscle glycogen, liver glycogen; body weight and body mass index; respiratory quotient and other measures of substrate utilization; clinical indices of long-term hyperglycemia including glycosylated hemoglobin (%HbAlc) and fructosamine; substrate and energy balances; as well as metabolic fluxes including muscle glucose uptake, hepatic glucose output, glucose disposal rate, lipolysis rate, glycogen synthesis, and glycogenolysis rates. The outputs can also be presented in several commonly used units.
[0107] FIGS. 7 through 9 provide examples of outputs of the computer model under various conditions. FIG. 7 illustrates a graph comparing the model results against measured data for an oral glucose tolerance test. An oral glucose tolerance test was simulated based on the metabolic characteristics of a simulated lean control, simulated lean type 2 diabetic and a simulated obese type 2 diabetic. The simulation time for the patients considered was two years. The measurements were made at a time that corresponds to an ovemight-fasted individual shortly after waking. The model results were compared to measured data from Group et al., J. Clin. Endocrin. Metab., 72:96-107 (1991). The results shown in FIG. 7 demonstrate the ability of the model to simulate accurately oral glucose tolerance tests in lean and obese type 2 diabetic patients as well as controls.
[0108] FIGS. 8A-H illustrate an example of model outputs for a 24-hour simulation of an obese diabetic patient consuming three meals (55% carbohydrates, 30% fat, 15% protein). While all model biological variables are simulated, the results are shown for circulating levels of glucose (FIG. 8A), insulin (FIG. 8B), free fatty acids (FFA) (FIG. 8G), gluconeogenic precursors: lactate, amino acids, and glycerol (FIG. 8E), as well as the dynamics of processes like hepatic glucose output (FIG. 8C), muscle glucose uptake (FIG. 8D), relative contributions of whole-body carbohydrate, fat and amino acid oxidation (FIG. 8H). The expansion and depletion of the muscle and liver glycogen storage pools are also shown (FIG. 8F). The simulated responses of these and other biological variables are in agreement with data measured in obese type 2 diabetic patients. For example, the glucose and insulin results can be compared with data presented in Palonsky et al., N. Engl. J. Med., 318(19): 1231-1239 (1988).
[0109] Note that the computer model can simulate therapeutic treatments. For example, a therapy can be modeled in a static manner by modifying the parameter set of the appropriate tissue(s) to represent the affect of the treatment on that tissue(s). Alternatively, therapeutic treatments can be modeled in a dynamic manner by allowing the user to specify the delivery of a treatment(s), for example, in a time- varying (and/or periodic) manner. To do this, the computer model includes pharmacokinetic representations of various therapeutic classes (e.g., injectable insulins, insulin secretion enhancers, and/or insulin sensitizers) and how these therapeutic treatments can interact with the various tissues in a dynamic manner.
[0110] FIG. 9 illustrates a graph showing an example of model results for an oral glucose tolerance test. The graph shown in FIG. 9 is based on a simulated obese type 2 diabetic patient following treatment with muscle insulin sensitizer or pancreatic glucose-induced insulin secretion enhancer. An oral glucose tolerance test was simulated in obese diabetic patients with or without two theoretical interventions. One simulated patient received a muscle insulin sensitizer, while the other received a pancreatic glucose-induced insulin secretion enhancer. Note that the simulated post-prandial glucose excursions were considerably lower in treated patients as compare to simulated diabetic controls, indicating the potential effectiveness of these theoretical agents.
[0111] The computer model allows a user to simulate a variety of diabetic and pre-diabetic patients by combining defects in various combinations where those defects have various degrees of severity. This can allow a more effective modeling of the type 2 diabetes population, which is heterogeneous. In other words, diabetes can have a wide range of impairment, some of which can be distinguished clinically. Furthermore, clinically similar diabetics can have differences in their physiology that can be modeled by using different defect combinations. Consequently, the computer model can be used to better understand and classify the real patient population for type 2 diabetes and to anticipate what d g target may work best on certain classes of patients, thereby improving the design of clinical trials and target prioritization.
[0112] In sum, the computer model can enable a researcher, for example, to: (1) simulate the dynamics of hyperglycemia in type 2 diabetes, (2) visualize key metabolic pathways and the feedback within and between these pathways, (3) gain a better understanding of the metabolism and physiology of type 2 diabetes, (4) explore and test hypotheses about type 2 diabetes and normal metabolisms, (5) identify and prioritize potential therapeutic targets, (6) identify patient types and their responses to various interventions, and (7) organize knowledge and data that relate to type 2 diabetes.
Validation of the Computer Model
[0113] Typically, the computer model should behave similar to the biological state they represent as closely as possible. Thus, the responses of the computer model can be validated against biological responses. The computer model can be validated, for example, with in vitro and in vivo data obtained using reference patterns of the biological state being modeled. Methods for validation of computer models are described in co-pending application entitled "Developing, analyzing and validating a computer-based model," filed on May 17, 2001, Application Number 60/292,175.
[0114] The diabetic patients produced with the diabetes computer model can be validated by running the following tests on the computer model: ovemight-fasted concentrations of glucose, post-prandial concentrations of glucose, metabolic response to 24 hour fast, oral glucose tolerance test (OGTT), intravenous glucose tolerance test (IVGTT), euglycemic- hyperinsulinemic clamp, hyperglycemic clamp, normal everyday behavior. The computer model of diabetes can be considered a valid model if the simulated biological attribute obtained is substantially consistent with a corresponding biological attribute obtained from a cellular or whole animal model of diabetes or human diabetic patient. The term
"substantially consistent" as used herein does not mean that the biological attributes have to be identical. The term "substantially consistent" can be, for example, relative changes that are similar but with different absolute values. FIG. 7 shows examples of model simulation results that are "substantially consistent" with the corresponding biological attributes obtained from glucose following a glucose tolerance test. Table 1 lists the values for the responses that can be evaluated in a non-diabetic and diabetic following over night fasting. One means of validation of a diabetes computer model would be to verify that the model produces results substantially consistent with those present in Table 1 for a non-diabetic and a diabetic. As the understanding of diabetes evolves in the art, the responses against which the computer model is validated can be modified.
TABLE 1
Response Value for Non-diabetic Value for Diabetic
[Overnight fasted]
Plasma glucose 90 mg/dl 126-300 mg/dll
Plasma insulin 10 μU/ml 5-30 μU/ml
Plasma FFA 500 μM 500-900 μM
Plasma lactate 8 mg/dl 8-10 mg/dl
Plasma glycerol 0.5 mg/dl 0.65 mg/dll
Plasma amino acids 32 mg/dl 32 mg/dl
Plasma triglycerides 100 mg/dl 150-1000 mg/dl
Plasma glucagon 75 mg/dl 80 mg/dl
Muscle glycogen 400 g 200 g
Liver glycogen 72 g 40 g
Muscle glucose uptake rate 28 mg/min 28-35 mg/min
Hepatic glucose output 140 mg/min 155-275 mg/min
[0115] Table 2 lists the values for post-prandial responses that can be evaluated in a non- diabetic and a diabetic. Another means of validation of a diabetes computer model would be to verify that the model produces results substantially consistent with those present in
Table 2 for a non-diabetic and a diabetic. As the understanding of diabetes evolves in the art, the responses against which the computer model is validated can be modified.
TABLE 2
Response Value for Non-diabetic Value for Diabetic
[Post-prandial]
Plasma glucose Increase 40% Increase 50% Plasma insulin Increase 490% Increase 240% Plasma FFA Decrease 38% Decrease 50% Plasma lactate Increase 10% Increase 20% [0116] Table 3 lists other tests that can be used to obtain responses in a non-diabetic and a diabetic. Yet another means of validation of a diabetes computer model would be to verify that the model produces results substantially consistent with those present in Table 3 for a non-diabetic and a diabetic. As the understanding of diabetes evolves in the art, the responses against which the computer model is validated can be modified.
TABLE 3
Response Value for Non-diabetic Value for Diabetic
[Other tests]
2 hr OGTT glucose value 98-120 mg/dl 230-350 mg/dl
Euglycemic, hyperinsulinemic 7.2 mg/kg LBM/min 3,42 mg/kg LBM/min clamp glucose disposal rate
Hyperglycemic clamp 1st phase, 2nd phase 2nd phase only insulin response
[0117] While various embodiments of the invention have been described above, it should be understood that they have been presented by way of example only, and not limitation.
Thus, the breadth and scope of the present invention should not be limited by any of the above-described embodiments, but should be defined only in accordance with the following claims and their equivalents.
[0118] The previous description of the embodiments is provided to enable any person skilled in the art to make or use the invention. While the invention has been particularly shown and described with reference to embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention.
[0119] For example, although a certain embodiment of a computer system is described above, other embodiments are possible. Such computer system embodiments can be, for example, a networked or distributed computer system.
Figure imgf000030_0001
A-1 29
Figure imgf000031_0001
Figure imgf000032_0001
A-3 31
Figure imgf000033_0001
Figure imgf000034_0001
Figure imgf000035_0001
Figure imgf000036_0001
Figure imgf000037_0001
Figure imgf000038_0001
Figure imgf000039_0001
Figure imgf000040_0001
Figure imgf000041_0001
Figure imgf000042_0001
Figure imgf000043_0001
Figure imgf000044_0001
A- 15 43
Figure imgf000045_0001
Figure imgf000046_0001
Figure imgf000047_0001
A- 18 46
Figure imgf000048_0001
A- 19
47
Figure imgf000049_0001
A -20 48
Figure imgf000050_0001
Figure imgf000051_0001
A -22 50
Figure imgf000052_0001
Figure imgf000053_0001
Figure imgf000054_0001
Figure imgf000055_0001
Figure imgf000056_0001
Figure imgf000057_0001
Figure imgf000058_0001
Figure imgf000059_0001
A -30 58
Figure imgf000060_0001
Figure imgf000061_0001
Figure imgf000062_0001
Figure imgf000063_0001
A -34 62
Figure imgf000064_0001
Figure imgf000065_0001
Figure imgf000066_0001
Figure imgf000067_0001
Figure imgf000068_0001
A-39 67

Claims

What is claimed is:
1. A method for creating a computer model of diabetes, comprising: identifying data relating to diabetes, the data relating changes in biological states to biological attributes of diabetes; identifying a plurality of biological processes related to the data, the plurality of biological processes defining at least one portion of the disease state of diabetes; and combining the plurality of biological processes to form a simulation of glucose metabolism in the context of multiple macronutrient metabolism.
2. The method of claim 1 , further comprising: producing a simulated biological attribute associated with the disease state of diabetes; comparing the simulated biological attribute with a corresponding biological attribute associated with a reference pattern of diabetes; and identifying the computer model as a valid computer model of diabetes if the simulated biological attribute is substantially consistent with the biological attribute associated with a reference pattern of diabetes.
3. The method of claim 1, wherein the combining the plurality of biological processes includes: forming a first mathematical relation among biological variables associated with a first biological process from the plurality of biological processes; and forming a second mathematical relation among biological variables associated with the first biological process and biological variables associated with a second biological process from the plurality of biological processes.
4. The method of claim 3, further comprising: creating a set of parametric changes in the first mathematical relation and the second mathematical relation; and producing a simulated biological attribute based on at least one parametric change from the set of parametric changes, the simulated biological attribute being substantially consistent with at least one biological attribute associated with a reference pattern of diabetes.
68
5. The method of claim 3, further comprising: creating a set of parametric changes in the first mathematical relation and a set of parametric changes in the second mathematical relation, the set of parametric changes in the first mathematical relation being associated with a first diabetes defect having its own degree of severity, the set of parametric changes in the second mathematical relation being associated with a second diabetes defect having its own degree of severity.
6. The method of claim 3, further comprising converting at least one biological variable from the group of the first mathematical relation or second mathematical relation into a biological variable that evolves over time; and producing a series of simulated biological attributes based on the converted biological variable, the series of simulated biological attributes being substantially consistent with a corresponding biological attribute associated with a reference pattern of diabetes, the series of simulated biological attributes representing the disease progression in the reference pattern of diabetes.
7. A computer model of a disease state of diabetes, comprising: a computer-readable memory storing: code to define a set of biological processes related to the disease state of diabetes, and code to define a set of mathematical relations related to interactions among biological variables associated with the biological processes, at least two biological processes from the set of biological processes being associated with the set of mathematical relationships, a combination of the code to define the set of biological processes and the code to define the set of mathematical relationships defining a simulation of glucose metabolism in the context of multiple macronutrient metabolism; and a processor coupled to the computer-readable memory, the processor configured to execute the codes.
8. The computer model of claim 7, wherein, upon execution of the codes, the processor is configured to produce a simulated biological attribute for the disease state of diabetes, the
69 simulated biological attribute being substantially consistent with at least one biological attribute associated with a reference pattern of diabetes.
9. The computer model of claim 7, wherein the codes further define a set of defects associated with diabetes, the set of defects including a first defect and a second defect, the first defect is a modification of a first biological process from the set of biological processes, the first biological process is related to biological attributes of diabetes in a reference pattern of diabetes, the second defect is a modification of the first biological process or a second biological process from the set of biological processes, the second biological process is related to biological attributes of diabetes in the reference pattern of diabetes.
10. A computer executable software code, comprising: code to define a normal biological state through a set of biological processes, each biological process from the set of biological processes having its own associated parameter set, the set of biological processes being related to glucose metabolism in the context of multiple macronutrient metabolism; code to provide a plurality of predefined defect indicators, each predefined defect indicator from the plurality of predefined defect indicators being uniquely associated with a defect from a plurality of defects associated with a disease state of diabetes, each defect from the plurality of defects being associated with at least one biological process from the set of biological processes; and code to receive a user-specified identification of a first defect indicator from the plurality of predefined defect indicators, a first defect from the plurality of defects being associated with the first defect indicator, the parameter set associated with each biological processes that is associated with the first defect being changed based on the user-specified identification.
1 1. The computer executable software code of claim 10, further comprising: code to determine at least one simulated biological attribute based on the modified biological process associated with the first defect, the simulated biological attribute being substantially consistent with at least one corresponding biological attribute associated with diabetes in a reference pattern of diabetes.
12. The computer executable software code of claim 10, further comprising:
70 code to receive a user-specified identification of a second defect indicator from the plurality of predefined defect indicators, a second defect from the plurality of defects being associated with the second defect indicator, the parameter set associated with each biological processes that is associated with the second defect being changed based on the user-specified identification.
13. The computer executable software code of claim 12, wherein: the first defect has an associated severity based on the change to the at least one associated parameter set; and the second defect has an associated severity based on the change to the at least one associated parameter set, the severity associated with the first defect being different from the severity associated with the second defect.
14. The computer executable software code of claim 12, wherein: the first defect has an associated severity based on the change to the at least one associated parameter set; and the second defect has an associated severity based on the change to the at least one associated parameter set, the severity associated with the first defect being substantially similar to the severity associated with the second defect.
15. The computer executable software code of claim 10, further comprising: code to produce a simulated biological attribute based on the parameter set associated with each biological processes that is associated with the first defect, the simulated biological attribute being substantially consistent with biological attributes of a reference pattern of diabetes.
16. A computer executable software code, comprising: code to provide a plurality of predefined defect indicators, each predefined defect indicator from the plurality of predefined defect indicators being uniquely associated with a defect from a plurality of defects associated with a disease state, each defect from the plurality of defects being associated with at least one biological process from a set of biological processes, the set of biological processes being related to glucose metabolism in the context of multiple macronutrient metabolism; code to receive a user-specified identification of a first defect indicator from the plurality of predefined defect indicators, a first defect from the plurality of defects being
71 associated with the first defect indicator, the first defect being associated with at least one biological process and its associated parameter set, the at least one parameter set associated with the first defect being changed based on the user-specified identification; and code to receive a user-specified identification of a second defect indicator from the plurality of predefined defect indicators, a second defect from the plurality of defects being associated with the second defect indicator, the second defect being associated with at least one biological process and its associated parameter set, the at least one parameter set associated with the second defect being changed based on the user-specified identification.
17. The computer executable software code of claim 16, wherein: the first defect having an associated severity based on the change to the at least one associated parameter set, the second defect having an associated severity based on the change to the at least one associated parameter set, the severity associated with the first defect being different from the severity associated with the second defect.
18. The computer executable software code of claim 16, further comprising: code to define a normal biological state through the set of biological processes, each biological process from the set of biological processes being associated with its own parameter set.
19. The computer executable software code of claim 16, wherein the plurality of defects are associated with type 2 diabetes.
20. A computer executable software code, comprising: code to define a plurality of biological processes related to a disease state of diabetes including: code to define a set of mathematical relations associated with a first biological process from the plurality of biological processes and associated with interactions among biological variables associated with the first biological process, and code to define a set of mathematical relations associated with a second biological process from the plurality of biological processes and associated with interactions among biological variables associated with the second biological process,
72 a first biological process from the plurality of biological processes being associated with metabolism of at least two from the group of carbohydrates, fats and proteins, a second biological process from the plurality of biological processes being associated with metabolism of glucose.
21. The computer executable software code of claim 20, further comprising: code to define a set of parametric changes for a first biological process; and code to receive a user-specified identification of a first defect indicator from a plurality of predefined defect indicators, the first defect indicator from the plurality of defect indicators being uniquely associated with a first defect from a plurality of defects that is associated with a disease state of diabetes, the set of parametric changes being changed based on the user-specified identification.
22. The computer executable software code of claim 21, further comprising: code to receive a user-specified identification of a second defect indicator from the plurality of predefined defect indicators, the second defect indicator from the plurality of defect indicators being uniquely associated with a second defect from the plurality of defects that is associated with the disease state of diabetes, the second defect being associated with at least one biological process and its associated parameter set, the at least one parameter set associated with the second defect being changed based on the user- specified identification, the first defect having an associated severity based on the change to the at least one associated parameter set, the second defect having an associated severity based on the change to the at least one associated parameter set, the severity associated with the first defect being different from the severity associated with the second defect.
23. The computer executable software code of claim 20, further comprising: code to receive a user selection of a link representation from a set of predefined link representations, each predefined link representation in the set of predefined link representations being associated with a different mathematical relationship, the user- selected link representation being associated with the interrelationship between a first biological variable and a second biological variable, a first link representation from the set of predefined link representations being a representation of the first biological variable having an effect on the second biological variable,
73 a second link representation from the set of predefined link representations being a representation of instances of the first biological variable being converted to instances of the second biological variable.
24. A method for creating a computer model of diabetes, comprising: receiving a plurality of user-selected indications to define a plurality of biological processes, each biological process from the plurality of biological processes being based on data that relates changes in biological states to biological attributes of diabetes; producing a representation of the plurality of biological processes based on the user- selected indications, the plurality of biological processes defining at least one portion of the disease state of diabetes; producing a simulated biological attribute associated with at least one biological attribute of diabetes based on the combined plurality of biology processes; and assessing a validity of the computer model based on a comparison between the simulated biological attribute and a corresponding biological attribute associated with a reference pattern of diabetes.
25. A method for creating a computer model of diabetes, comprising: identifying data relating to diabetes, the data relating changes in biological states to biological attributes of diabetes; identifying a plurality of biological processes related to the data, the plurality of biological processes defining at least one portion of the disease state of diabetes; and combining the plurality of biological processes to form a simulation of at least one biological attribute of diabetes in the context of fat metabolism.
26. A method for creating a computer model of diabetes, comprising: identifying data relating to diabetes, the data relating changes in biological states to biological attributes of diabetes; identifying a plurality of biological processes related to the data, the plurality of biological processes defining at least one portion of the disease state of diabetes; and combining the plurality of biological processes to form a simulation of at least one biological attribute of diabetes in the context of protein metabolism.
27. A computer model of a disease state of diabetes, comprising: a computer-readable memory storing:
74 code to define a set of biological processes related to the disease state of diabetes, and code to define a set of mathematical relations related to interactions among biological variables associated with the biological processes, at least two biological processes from the set of biological processes being associated with the set of mathematical relationships, a combination of the code to define the set of biological processes and the code to define the set of mathematical relationships defining a simulation of at least one biological attribute of diabetes in the context of fat metabolism; and a processor coupled to the computer-readable memory, the processor configured to execute the codes.
28. A computer model of a disease state of diabetes, comprising: a computer-readable memory storing: code to define a set of biological processes related to the disease state of diabetes, and code to define a set of mathematical relations related to interactions among biological variables associated with the biological processes, at least two biological processes from the set of biological processes being associated with the set of mathematical relationships, a combination of the code to define the set of biological processes and the code to define the set of mathematical relationships defining a simulation of at least one biological attribute of diabetes in the context of protein metabolism; and a processor coupled to the computer-readable memory, the processor configured to execute the codes.
75
PCT/US2002/013563 2001-05-02 2002-04-29 Method and apparatus for computer modeling diabetes WO2002087506A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2002311865A AU2002311865A1 (en) 2001-05-02 2002-04-29 Method and apparatus for computer modeling diabetes
CA002445598A CA2445598A1 (en) 2001-05-02 2002-04-29 Method and apparatus for computer modeling diabetes
IL15868102A IL158681A0 (en) 2001-05-02 2002-04-29 Method and apparatus for computer modeling diabetes
JP2002584858A JP2005508025A (en) 2001-05-02 2002-04-29 Diabetes computer modeling method and apparatus
EP02739199A EP1389998A4 (en) 2001-05-02 2002-04-29 Method and apparatus for computer modeling diabetes

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US28770201P 2001-05-02 2001-05-02
US60/287,702 2001-05-02
US10/040,373 US7353152B2 (en) 2001-05-02 2002-01-09 Method and apparatus for computer modeling diabetes
US10/040,373 2002-01-09

Publications (3)

Publication Number Publication Date
WO2002087506A2 true WO2002087506A2 (en) 2002-11-07
WO2002087506A3 WO2002087506A3 (en) 2003-03-20
WO2002087506A8 WO2002087506A8 (en) 2003-09-04

Family

ID=26717016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/013563 WO2002087506A2 (en) 2001-05-02 2002-04-29 Method and apparatus for computer modeling diabetes

Country Status (7)

Country Link
US (2) US7353152B2 (en)
EP (1) EP1389998A4 (en)
JP (2) JP2005508025A (en)
AU (1) AU2002311865A1 (en)
CA (1) CA2445598A1 (en)
IL (1) IL158681A0 (en)
WO (1) WO2002087506A2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005267042A (en) * 2004-03-17 2005-09-29 Sysmex Corp Diabetes mellitus medical care support system
JP2005353050A (en) * 2004-05-11 2005-12-22 Sysmex Corp Simulation system and computer program
EP1664763A2 (en) * 2003-09-11 2006-06-07 Entelos, Inc. Apparatus and method for identifying therapeutic targets using a computer model
US7069534B2 (en) 2003-12-17 2006-06-27 Sahouria Emile Y Mask creation with hierarchy management using cover cells
EP1696790A2 (en) * 2003-11-19 2006-09-06 Entelos, Inc. Apparatus and methods for assessing metabolic substrate utilization
EP1722311A1 (en) * 2005-05-09 2006-11-15 Sysmex Corporation Simulation system for functions of biological organs and recording medium in which program therefor is recorded
WO2006132899A2 (en) * 2005-06-03 2006-12-14 Medtronic Minimed, Inc. Virtual patient software system for educating and treating individuals with diabetes
EP1839191A2 (en) * 2004-12-16 2007-10-03 Entelos, Inc. Methods and models for cholesterol metabolism
DE102006030210A1 (en) * 2006-06-30 2008-01-03 Salzsieder, Eckhard, Dipl.-Phys., Dr. rer.nat. Method and arrangement for the computer-aided determination of the characteristic daily profile of the individual glucose metabolism
CN100412877C (en) * 2006-09-01 2008-08-20 清华大学 Computer simulation method for visualized information of substance metabolism functions inside human body
WO2008157781A1 (en) 2007-06-21 2008-12-24 University Of Virginia Patent Foundation Method, system and computer simulation environment for testing of monitoring and control strategies in diabetes
US7844431B2 (en) 2004-02-20 2010-11-30 The Mathworks, Inc. Method and apparatus for integrated modeling, simulation and analysis of chemical and biochemical reactions
US8554486B2 (en) 2004-02-20 2013-10-08 The Mathworks, Inc. Method, computer program product, and apparatus for selective memory restoration of a simulation
US8712748B2 (en) 2007-06-27 2014-04-29 Roche Diagnostics Operations, Inc. Medical diagnosis, therapy, and prognosis system for invoked events and methods thereof
US8818782B2 (en) 2007-06-27 2014-08-26 Roche Diagnostics Operations, Inc. System for developing patient specific therapies based on dynamic modeling of patient physiology and method thereof
DE202006021307U1 (en) 2006-06-30 2015-08-06 Eckhard Salzsieder Arrangement for the computer-aided determination of the characteristic daily profile of the individual glucose metabolism
US9501949B2 (en) 2004-10-07 2016-11-22 Novo Nordisk A/S Method and system for self-management of a disease

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004533053A (en) * 2001-05-17 2004-10-28 エンテロス,インコーポレイティド Apparatus and method for validating a computer model
US8949032B2 (en) * 2002-03-29 2015-02-03 Genomatica, Inc. Multicellular metabolic models and methods
US8460243B2 (en) 2003-06-10 2013-06-11 Abbott Diabetes Care Inc. Glucose measuring module and insulin pump combination
US7722536B2 (en) 2003-07-15 2010-05-25 Abbott Diabetes Care Inc. Glucose measuring device integrated into a holster for a personal area network device
JP2007507814A (en) * 2003-10-07 2007-03-29 エンテロス・インコーポレーテッド Simulation of patient-specific results
US20060010098A1 (en) 2004-06-04 2006-01-12 Goodnow Timothy T Diabetes care host-client architecture and data management system
WO2006066263A1 (en) * 2004-12-17 2006-06-22 Entelos, Inc. Assessing insulin resistance using biomarkers
CA2596816A1 (en) * 2005-02-04 2006-08-10 Entelos, Inc. Method for defining virtual patient populations
JP5100979B2 (en) * 2005-05-11 2012-12-19 シスメックス株式会社 Biological simulation system and computer program
JP4756906B2 (en) * 2005-05-11 2011-08-24 シスメックス株式会社 Biological simulation system and computer program
JP4781710B2 (en) * 2005-05-12 2011-09-28 シスメックス株式会社 Treatment effect prediction system and program thereof
JP4822204B2 (en) * 2005-07-06 2011-11-24 国立大学法人神戸大学 Antihyperglycemic action prediction system
WO2007022020A2 (en) * 2005-08-12 2007-02-22 Archimedes, Inc. Dynamic healthcare modeling
JP4861687B2 (en) * 2005-11-21 2012-01-25 シスメックス株式会社 Medical simulation system and computer program thereof
EP1830333A1 (en) * 2006-01-27 2007-09-05 Sysmex Corporation Medical simulation system, computer system and computer program product
JP2007272427A (en) * 2006-03-30 2007-10-18 Sysmex Corp Artificial test computer system for living body, computer program thereof, and artificial test method of living body
US20070198300A1 (en) * 2006-02-21 2007-08-23 Duckert David W Method and system for computing trajectories of chronic disease patients
US8548544B2 (en) 2006-06-19 2013-10-01 Dose Safety System, method and article for controlling the dispensing of insulin
US20080262745A1 (en) * 2007-04-20 2008-10-23 David Charles Polidori Method for Determining Insulin Sensitivity and Glucose Absorption
US20090106004A1 (en) * 2007-10-17 2009-04-23 Pa Consulting Group Systems and methods for evaluating interventions
WO2009064817A1 (en) * 2007-11-13 2009-05-22 Entelos, Inc. Simulating patient-specific outcomes
US8185325B2 (en) * 2008-02-11 2012-05-22 Pavel Nosovitskiy Multi-functional, discrete and mutually exclusive method for determining concentrations of gases in a gaseous mixture
US9164073B1 (en) 2008-02-11 2015-10-20 Pavel Nosovitskiy Multi-functional, discrete determination of concentrations of gases in a gaseous mixture
US20100145725A1 (en) * 2008-02-12 2010-06-10 Alferness Clifton A System and method for managing type 1 diabetes mellitus through a personal predictive management tool
US20100137786A1 (en) * 2008-02-12 2010-06-03 Alferness Clifton A System and method for actively managing type 1 diabetes mellitus on a personalized basis
US20100198020A1 (en) * 2008-02-12 2010-08-05 Alferness Clifton A System And Method For Computer-Implemented Method For Actively Managing Increased Insulin Resistance In Type 2 Diabetes Mellitus
US20110077930A1 (en) * 2008-02-12 2011-03-31 Alferness Clifton A Computer-implemented method for providing a personalized tool for estimating 1,5-anhydroglucitol
US20100138453A1 (en) * 2008-02-12 2010-06-03 Alferness Clifton A System and method for generating a personalized diabetes management tool for diabetes mellitus
US20100138203A1 (en) * 2008-02-12 2010-06-03 Alferness Clifton A System and method for actively managing type 2 diabetes mellitus on a personalized basis
US20100145670A1 (en) * 2008-02-12 2010-06-10 Alferness Clifton A System and method for managing type 2 diabetes mellitus through a personal predictive management tool
US20100145173A1 (en) * 2008-02-12 2010-06-10 Alferness Clifton A System and method for creating a personalized tool predicting a time course of blood glucose affect in diabetes mellitus
US20100198021A1 (en) * 2008-02-12 2010-08-05 Alferness Clifton A Computer-implemented method for providing a tunable personalized tool for estimating glycated hemoglobin
JPWO2010001584A1 (en) * 2008-06-30 2011-12-15 シスメックス株式会社 Insulin resistance evaluation support system, insulin resistance evaluation support method, and computer program
US8660823B2 (en) * 2009-04-26 2014-02-25 Lester F. Ludwig Nonlinear and lie algebra structural analysis system for enzyme cascades, metabolic signal transduction, signaling pathways, catalytic chemical reaction networks, and immunology
US11238990B2 (en) 2009-06-26 2022-02-01 University Of Virginia Patent Foundation System, method and computer simulation environment for in silico trials in pre-diabetes and type 2 diabetes
WO2011041531A1 (en) 2009-09-30 2011-04-07 Abbott Diabetes Care Inc. Interconnect for on-body analyte monitoring device
US10136845B2 (en) 2011-02-28 2018-11-27 Abbott Diabetes Care Inc. Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
US8756043B2 (en) 2012-07-26 2014-06-17 Rimidi Diabetes, Inc. Blood glucose meter and computer-implemented method for improving glucose management through modeling of circadian profiles
US8768673B2 (en) 2012-07-26 2014-07-01 Rimidi Diabetes, Inc. Computer-implemented system and method for improving glucose management through cloud-based modeling of circadian profiles
US8744828B2 (en) 2012-07-26 2014-06-03 Rimidi Diabetes, Inc. Computer-implemented system and method for improving glucose management through modeling of circadian profiles
US10453562B2 (en) * 2014-05-08 2019-10-22 ProductVisionaries, LLC Consumer-oriented biometrics data management and analysis system
US11158413B2 (en) 2018-04-23 2021-10-26 Medtronic Minimed, Inc. Personalized closed loop medication delivery system that utilizes a digital twin of the patient
US11986629B2 (en) 2019-06-11 2024-05-21 Medtronic Minimed, Inc. Personalized closed loop optimization systems and methods

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5956501A (en) * 1997-01-10 1999-09-21 Health Hero Network, Inc. Disease simulation system and method
US5980096A (en) 1995-01-17 1999-11-09 Intertech Ventures, Ltd. Computer-based system, methods and graphical interface for information storage, modeling and stimulation of complex systems
US5930154A (en) 1995-01-17 1999-07-27 Intertech Ventures, Ltd. Computer-based system and methods for information storage, modeling and simulation of complex systems organized in discrete compartments in time and space
WO1996022574A1 (en) 1995-01-20 1996-07-25 The Board Of Trustees Of The Leland Stanford Junior University System and method for simulating operation of biochemical systems
US6291172B1 (en) * 1995-03-03 2001-09-18 Mitokor Diagnostic assay for diabetes mellitus based on mutational burden
US5657255C1 (en) * 1995-04-14 2002-06-11 Interleukin Genetics Inc Hierarchic biological modelling system and method
US6108635A (en) 1996-05-22 2000-08-22 Interleukin Genetics, Inc. Integrated disease information system
US5947899A (en) 1996-08-23 1999-09-07 Physiome Sciences Computational system and method for modeling the heart
US6246975B1 (en) * 1996-10-30 2001-06-12 American Board Of Family Practice, Inc. Computer architecture and process of patient generation, evolution, and simulation for computer based testing system
EP0910023A2 (en) * 1997-10-17 1999-04-21 Siemens Aktiengesellschaft Method and device for the neuronal modelling of a dynamic system with non-linear stochastic behavior
US6051029A (en) 1997-10-31 2000-04-18 Entelos, Inc. Method of generating a display for a dynamic simulation model utilizing node and link representations
US6078739A (en) 1997-11-25 2000-06-20 Entelos, Inc. Method of managing objects and parameter values associated with the objects within a simulation model
US6069629A (en) 1997-11-25 2000-05-30 Entelos, Inc. Method of providing access to object parameters within a simulation model
WO1999027443A1 (en) 1997-11-25 1999-06-03 Entelos, Inc. A method of monitoring values within a simulation model
US6279908B1 (en) * 1998-03-16 2001-08-28 Glenn E. Hunsberger Diabetes mellitus game
US6368272B1 (en) * 1998-04-10 2002-04-09 Proactive Metabolics Company Equipment and method for contemporaneous decision supporting metabolic control
US6248527B1 (en) * 1998-10-21 2001-06-19 Millennium Pharmaceuticals, Inc. Method of detecting risk of type II diabetes based on mutations found in carboxypeptidase E
WO2000063793A2 (en) 1999-04-16 2000-10-26 Entelos, Inc. Method and apparatus for conducting linked simulation operations utilizing a computer-based system model
JP2002543502A (en) 1999-04-21 2002-12-17 フィジオム・サイエンスィズ・インコーポレーテッド Systems and methods for modeling genetic, biochemical, biophysical, and anatomical information
CA2399272A1 (en) 2000-02-07 2001-08-09 Gregory Scott Lett System and method for modeling genetic, biochemical, biophysical and anatomical information: in silico cell
NZ520461A (en) * 2000-02-14 2005-03-24 First Opinion Corp Automated diagnostic system and method
US6246957B1 (en) * 2000-03-31 2001-06-12 The Mitre Corporation Method of dynamically generating navigation route data
EP1311972A2 (en) 2000-06-22 2003-05-21 Physiome Sciences, Inc. Computational system for modelling protein expression in an organ
US20020091666A1 (en) 2000-07-07 2002-07-11 Rice John Jeremy Method and system for modeling biological systems
WO2002044992A2 (en) 2000-11-28 2002-06-06 Physiome Sciences, Inc. System for modeling biological pathways
US20030018457A1 (en) 2001-03-13 2003-01-23 Lett Gregory Scott Biological modeling utilizing image data
US20030009099A1 (en) 2001-07-09 2003-01-09 Lett Gregory Scott System and method for modeling biological systems
EP1432984A4 (en) 2001-08-30 2009-01-14 Univ Pittsburgh Algorithm for estimating the outcome of inflammation following injury or infection
US6909030B2 (en) * 2001-10-15 2005-06-21 Cedars-Sinai Medical Center PTTG knockout rodent as a model to study mechanisms for various physiological phenomena, including diabetes
US20050125158A1 (en) * 2001-12-19 2005-06-09 Kaiser Foundation Health Plan Inc. Generating a mathematical model for diabetes
US7136787B2 (en) 2001-12-19 2006-11-14 Archimedes, Inc. Generation of continuous mathematical model for common features of a subject group

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
COBELLI ET AL., MATH. BIOSCI., vol. 58, 1982, pages 27 - 60
CRAMP ET AL.: "Biological Systems, Modeling and Control", 1979, pages: 171 - 201
GUYTON ET AL., DIABETES, vol. 27, 1978, pages 1027 - 42
MCGARRY, SCIENCE, vol. 258, 1992, pages 766 - 70
See also references of EP1389998A4
SRINIVASAN ET AL., COMP. BIOMED RES., vol. 3, 1970, pages 146 - 66

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1664763A2 (en) * 2003-09-11 2006-06-07 Entelos, Inc. Apparatus and method for identifying therapeutic targets using a computer model
EP1664763A4 (en) * 2003-09-11 2008-03-12 Entelos Inc Apparatus and method for identifying therapeutic targets using a computer model
EP1696790A2 (en) * 2003-11-19 2006-09-06 Entelos, Inc. Apparatus and methods for assessing metabolic substrate utilization
EP1696790A4 (en) * 2003-11-19 2007-12-26 Entelos Inc Apparatus and methods for assessing metabolic substrate utilization
US7069534B2 (en) 2003-12-17 2006-06-27 Sahouria Emile Y Mask creation with hierarchy management using cover cells
US8554486B2 (en) 2004-02-20 2013-10-08 The Mathworks, Inc. Method, computer program product, and apparatus for selective memory restoration of a simulation
US8234098B2 (en) 2004-02-20 2012-07-31 The Mathworks, Inc. Method and apparatus for integrated modeling, simulation and analysis of chemical and biochemical reactions
US7844431B2 (en) 2004-02-20 2010-11-30 The Mathworks, Inc. Method and apparatus for integrated modeling, simulation and analysis of chemical and biochemical reactions
JP2005267042A (en) * 2004-03-17 2005-09-29 Sysmex Corp Diabetes mellitus medical care support system
JP2005353050A (en) * 2004-05-11 2005-12-22 Sysmex Corp Simulation system and computer program
US9501949B2 (en) 2004-10-07 2016-11-22 Novo Nordisk A/S Method and system for self-management of a disease
EP1839191A4 (en) * 2004-12-16 2008-01-23 Entelos Inc Methods and models for cholesterol metabolism
EP1839191A2 (en) * 2004-12-16 2007-10-03 Entelos, Inc. Methods and models for cholesterol metabolism
JP2006313481A (en) * 2005-05-09 2006-11-16 Sysmex Corp Function simulation system for organ of organism, and program therefor
EP1722311A1 (en) * 2005-05-09 2006-11-15 Sysmex Corporation Simulation system for functions of biological organs and recording medium in which program therefor is recorded
WO2006132899A3 (en) * 2005-06-03 2007-05-18 Medtronic Minimed Inc Virtual patient software system for educating and treating individuals with diabetes
WO2006132899A2 (en) * 2005-06-03 2006-12-14 Medtronic Minimed, Inc. Virtual patient software system for educating and treating individuals with diabetes
DE102006030210A1 (en) * 2006-06-30 2008-01-03 Salzsieder, Eckhard, Dipl.-Phys., Dr. rer.nat. Method and arrangement for the computer-aided determination of the characteristic daily profile of the individual glucose metabolism
DE202006021307U1 (en) 2006-06-30 2015-08-06 Eckhard Salzsieder Arrangement for the computer-aided determination of the characteristic daily profile of the individual glucose metabolism
CN100412877C (en) * 2006-09-01 2008-08-20 清华大学 Computer simulation method for visualized information of substance metabolism functions inside human body
WO2008157781A1 (en) 2007-06-21 2008-12-24 University Of Virginia Patent Foundation Method, system and computer simulation environment for testing of monitoring and control strategies in diabetes
EP2203112A4 (en) * 2007-06-21 2013-08-07 Univ Virginia Patent Found Method, system and computer simulation environment for testing of monitoring and control strategies in diabetes
EP2203112A1 (en) * 2007-06-21 2010-07-07 University Of Virginia Patent Foundation Method, system and computer simulation environment for testing of monitoring and control strategies in diabetes
US10546659B2 (en) 2007-06-21 2020-01-28 University Of Virginia Patent Foundation Method, system and computer simulation environment for testing of monitoring and control strategies in diabetes
US8712748B2 (en) 2007-06-27 2014-04-29 Roche Diagnostics Operations, Inc. Medical diagnosis, therapy, and prognosis system for invoked events and methods thereof
US8818782B2 (en) 2007-06-27 2014-08-26 Roche Diagnostics Operations, Inc. System for developing patient specific therapies based on dynamic modeling of patient physiology and method thereof

Also Published As

Publication number Publication date
US20090070088A1 (en) 2009-03-12
EP1389998A2 (en) 2004-02-25
WO2002087506A8 (en) 2003-09-04
US20030058245A1 (en) 2003-03-27
AU2002311865A1 (en) 2002-11-11
CA2445598A1 (en) 2002-11-07
JP2005508025A (en) 2005-03-24
WO2002087506A3 (en) 2003-03-20
US7353152B2 (en) 2008-04-01
EP1389998A4 (en) 2008-03-12
IL158681A0 (en) 2004-05-12
JP2009187588A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
US7353152B2 (en) Method and apparatus for computer modeling diabetes
JP5529307B2 (en) System for chronic disease management of patients
Eddy et al. Archimedes: a trial-validated model of diabetes
US7914449B2 (en) Diagnostic support system for diabetes and storage medium
US8712748B2 (en) Medical diagnosis, therapy, and prognosis system for invoked events and methods thereof
de Graaf et al. Nutritional systems biology modeling: from molecular mechanisms to physiology
US20050131663A1 (en) Simulating patient-specific outcomes
Karim et al. After-meal blood glucose level prediction using an absorption model for neural network training
JP2009134749A (en) Apparatus and method for validating computer model
Lehmann et al. Computer assisted diabetes care: a 6-year retrospective
Zarkogianni et al. Personal health systems for diabetes management, early diagnosis and prevention
Silfvergren et al. Digital twin predicting diet response before and after long-term fasting
Nyman et al. Requirements for multi-level systems pharmacology models to reach end-usage: the case of type 2 diabetes
Olçomendy et al. Towards the integration of an islet-based biosensor in closed-loop therapies for patients with type 1 diabetes
Blagev et al. The evolution of eProtocols that enable reproducible clinical research and care methods
Contador et al. Glucose forecasting using genetic programming and latent glucose variability features
Carson Decision support systems in diabetes: a systems perspective
Mosquera-Lopez et al. Digital twins and artificial intelligence in metabolic disease research
Lehmann et al. Validation of a metabolic prototype to assist in the treatment of insulin-dependent diabetes mellitus
Parkin et al. 10th annual symposium on self-monitoring of blood glucose, April 27–29, 2017, Warsaw, Poland
Rahmawati et al. The Effectiveness of Electronic Health Uptake in Diabetes Mellitus Patients: A Meta-Analysis
Lehmann Simulating glycosylated hemoglobin (HbA1c) levels in diabetes using an interactive educational virtual diabetes patient simulator
El Gemayel Behavioral approach for validation and system testing of embedded systems: Application in medical embedded devices
Maimone Data and knowledge acquisition in case-based reasoning for diabetes management
Koutny Sirael: Virtual Metabolic Machine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
CFP Corrected version of a pamphlet front page

Free format text: UNDER (57) PUBLISHED ABSTRACT REPLACED BY CORRECT ABSTRACT

WWE Wipo information: entry into national phase

Ref document number: 2445598

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 158681

Country of ref document: IL

Ref document number: 1795/DELNP/2003

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2002584858

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002739199

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002739199

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642