WO2002081957A1 - Corrugation structure for pipe - Google Patents
Corrugation structure for pipe Download PDFInfo
- Publication number
- WO2002081957A1 WO2002081957A1 PCT/US2002/010619 US0210619W WO02081957A1 WO 2002081957 A1 WO2002081957 A1 WO 2002081957A1 US 0210619 W US0210619 W US 0210619W WO 02081957 A1 WO02081957 A1 WO 02081957A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- corrugation
- pipe
- wall
- longitudinal axis
- annular
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L11/00—Hoses, i.e. flexible pipes
- F16L11/14—Hoses, i.e. flexible pipes made of rigid material, e.g. metal or hard plastics
- F16L11/15—Hoses, i.e. flexible pipes made of rigid material, e.g. metal or hard plastics corrugated
Definitions
- the claimed invention relates to a corrugated pipe.
- the invention relates to a corrugation structure for a corrugated pipe.
- Corrugated pipes are oftentimes made of a synthetic material that is generally intended for underground use where a high pressure must be withstood. Such pipes are typically used for water main pipes, sewer pipes, drain pipes, electric and telephone cable conduits, and the like. In installing pipes underground, the pipes are positioned in trenches and then covered with a backfill soil
- a corrugated pipe having a longitudinal axis comprises a plurality of corrugation structures positioned adjacent one another to form a portion of the corrugated pipe.
- Each corrugation structure includes a cylindrical wall centered on the longitudinal axis and an annular U-shaped wall extending from the cylindrical wall.
- the U-shaped wall has a thickness that is uniform or substantially uniform throughout the length thereof.
- the invention also concerns a corrugation structure for a corrugated pipe having a longitudinal axis.
- the corrugation structure comprises an inner cylindrical wall centered on the longitudinal axis, two annular wall portions that extend outwardly from the cylindrical wall, and an annular bowed wall portion. Each of the outwardly extending wall portions have a radially outer end.
- the annular bowed wall portion extends axially between the radially outer ends of the two annular wall portions,
- the bowed wall portion has an inner surface and an outer surface, with the two annular wall portions and the annular bowed wall portion together defining an outer wall that is connected to the inner cylindrical wall.
- the corrugation structure also includes a centroid defined by the corrugation structure. At least a portion of the inner surface of the bowed wall portion has a radius centered on the centroid, and at least a portion of the outer surface of the bowed wall portion has a radius centered on the centroid.
- the invention also relates to a corrugation structure for a corrugated pipe having a longitudinal axis.
- the corrugation structure is symmetric about a plane that is perpendicular to the longitudinal axis of the corrugated pipe and comprises an inner cylindrical wall, two annular wall portions, and a bowed wall portion.
- the inner cylindrical wall is centered on the longitudinal axis of the corrugated pipe and has a wall thickness at the plane of symmetry.
- the two annular wall portions extend outwardly from the cylindrical wall and are spaced from one another, with each outwardly-extending wall having a radially outer end.
- the bowed annular wall portion extends axially between the radially outer ends of the two annular wall portions.
- a cavity is bounded by the inner cylindrical wall, the outwardly extending wall portions and the bowed wall portion.
- the cavity has an inner surface, and the inner surface has at least one inner radius, with the inner radius being equal to or greater than one half the thickness of the inner cylindrical wall at the plane of symmetry.
- the invention also concerns a corrugation structure for a corrugated pipe having a longitudinal axis.
- the annular wall portions have an outer surface, with each outer surface having an outer surface end point at the radially outer end thereof.
- the curved wall portion also has an outer surface.
- a peak point is located on the outer surface of the curved wall portion at the radially outermost point thereof relative to the longitudinal axis.
- An angle formed between a line extending from the peak point to the outer surface end point of the annular wall portions relative to the longitudinal axis is a function of a natural slip angle.
- the invention further relates to a corrugated pipe having a longitudinal axis that comprises first and second corrugation structures positioned adjacent a plurality of corrugation structures to form a portion of the corrugated pipe.
- the first and second corrugation structures are positioned adjacent one another and centered on the longitudinal axis of the corrugation structure.
- Each of the first and second corrugation structures are symmetrical about a plane that is perpendicular to the axis.
- each of the first and second corrugation structures comprises a cylindrical wall centered on the axis.
- Two annular wall portions extend outwardly from the cylindrical wall at spaced locations relative to one another.
- the annular wall portions have outer ends and outer surfaces, and an annular curved wall portion extends axially between the outer ends of the annular wall portions.
- the annular curved wall portion has an outer surface.
- the corrugation structure also includes first and second centroids of the first and second corrugations, and a centroid line extends between the first and second centroids.
- the corrugation structure further includes first and second points of intersection of the centroid line with the outer surfaces of the annular wall portions of the first and second corrugation structures.
- a first line extends from the first point of intersection toward the second corrugation structure and is tangent to the outer surface of the annular curved wall portion of the second corrugation structure.
- the first line is at a first angle relative to the longitudinal axis that is equal to or greater than a predetermined natural slip angle.
- a second line extends from the second point of intersection towards the first corrugation structure and is tangent to the outer surface of the annular curved wall portion of the first corrugation structure.
- the second line is at a second angle relative to the longitudinal axis that is equal to or greater than the predetermined natural slip angle.
- the invention also relates to a method of manufacturing a corrugated pipe which includes manufacturing a first, a second and a third corrugated pipe, each pipe having an inner diameter and an outer diameter.
- the inner and outer diameters of the pipes are chosen such that the first pipe can be telescopically inserted into the second pipe and the second pipe can be telescopically inserted into the third pipe.
- the invention further concerns a method of shipping a plurality of different diameter pipes comprising providing a plurality of pipes each having a different inner and outer diameter from the other pipes.
- the plurality of pipes includes at least a smaller diameter pipe, an intermediate diameter pipe and a larger diameter pipe.
- the smaller diameter pipe has an outer diameter that is smaller than the inner diameter of the intermediate diameter pipe, and the intermediate diameter pipe has a smaller outer diameter than the inner diameter of the larger diameter pipe.
- the method also includes telescopically inserting the intermediate diameter pipe inside the larger diameter pipe to form bundled pipes, and telescopically inserting the smaller diameter pipe inside the intermediate diameter pipe to form bundled pipes.
- the method further includes the step of shipping the bundled pipes to a destination.
- Fig. 1 is a side view of a corrugated pipe according to the invention
- Figs. 2 and 3 are a partial cross-sectional view of the corrugated pipe of Fig. 1, showing two corrugation structures positioned adjacent one another in the wall of the pipe;
- Fig. 4 is an end and a side perspective view of another aspect of the invention, showing multiple diameter pipes inserted inside one another for shipping purposes.
- the present invention utilizes a corrugation profile on a corrugated pipe 2 that is designed to maximize the structural integrity in an installed environment and minimize the material requirements utilized to manufacture the pipe.
- the natural slip angle of common backfill soils is considered in conjunction with the profile dimensions of the corrugation structure of the corrugated pipe to enhance the structural performance of the profile structure, as will be discussed in conjunction with Figs. 1-3 below.
- the invention relates to a corrugation structure located among a series of corrugation structures 10, 12 positioned adjacent one another to form a corrugated pipe 2.
- the corrugated pipe has a longitudinal axis 20 around which the corrugation structures 10, 12 are positioned.
- the corrugation structures 10, 12 are cylindrical and are centered on the longitudinal axis 20 of the pipe 2.
- Each corrugation structure 10, 12 comprises a profile that includes an inner cylindrical wall or liner 22 and an outer annular U-shaped wall 24 extending outwardly from the inner cylindrical wall 22.
- the U-shaped wall 24 has a thickness T 5 that is preferably uniform or substantially uniform throughout the length of the wall 24.
- the outer wall 24 and inner wall 22 together define a cavity 56 in the interior of the corrugation structure.
- Each U-shaped wall 24 of the corrugation structure 10, 12 includes two annular straight wall portions 28, 32 and a bowed or curved wall portion 40.
- the straight wall portions 28, 32 are spaced from each other and are positioned on opposite sides of the U-shaped wall 24.
- the bowed wall portion 40 extends axially between the outer ends of the straight walls 28, 34 such that the straight walls 28, 32 and the bowed wall 40 together form the U-shaped wall 24.
- Each straight wall portion 28, 32 extends outwardly from the inner cylindrical wall 22 in a generally radial or transverse manner while the bowed wall is oriented in a generally parallel manner to the longitudinal axis 20 of the pipe 2.
- the straight walls 28, 32 have a common thickness T 3 that is preferably uniform throughout the length of the straight walls 28, 32.
- the bowed wall 40 has a thickness T that is preferably uniform throughout the length of the bowed wall 40, and that is substantially equal to the thickness T 3 of the straight walls 28, 32. Uniform material distribution throughout the interior of the corrugation structure will provide a uniform cross sectional area. Elimination of material thickness and dimensional thickness variations will improve the corrugation profile stability.
- the corrugation structure 10, 12, as shown in Fig. 2, includes an outer diameter OD and an inner diameter ID, both of which are measured from the longitudinal axis 20 of the pipe 2.
- the corrugation structure profile has a crown or peak point 60 that is positioned at the radially outermost point of the bowed wall portion 40.
- a height of the corrugation structure profile is measured between the inner most surface of the inner cylindrical wall 22 and the peak point 60 of the corrugation structure 10, 12.
- the neutral axis NA of the corrugation structure 10, 12 profile is positioned at the centroid 48, 49 of the corrugation structure.
- the pitch or frequency of the corrugation structures 10, 12 is the length L 2 of each individual structure.
- the corrugation structure profile is symmetric about a plane 44, 46 that is perpendicular to the longitudinal axis 20 of the pipe 2.
- a portion of the inner surface 50 of the bowed wall 40 has a radius R- centered on the centroid 48, 49 (neutral axis NA).
- a portion of the outer surface 52 of the bowed wall 40 has a radius R 2 centered on the centroid 48, 49 (neutral axis NA).
- the inner cylindrical wall 22 has a thickness Ti at the plane of symmetry 44, 46 and a length Li.
- the cavity 56 of the corrugation structure 10, 12 has an inner surface 58 with several inner surface radiuses, such as Ri and R 3 . hi order to insure proper dispersion of local stresses so that stress risers are reduced at the transition points between the various wall portions, all of the inner surface radiuses are preferably equal to or greater than one half the thickness T- of the inner cylindrical wall 22.
- the thickness of each corrugation structure profile component is based on an interdependent relationship with four performance criteria, including: 1) maximum burial depth; 2) resistance to hydraulic compression; 3) a 30% yield test criteria; and 4) AASHTO M294 mandated QC check testing requirements. All dimensions of the corrugation profile are related to these performance criteria by the moment of inertia, cross-sectional area, and location of the neutral axis. Other performance criteria are discussed in further detail below.
- the corrugated pipe 2 may be positioned in a trench and covered with any of a variety of backfill soils.
- Each backfill soil has a natural slip angle.
- Slip angle is directly related to the loads, and thus the actual moments and stresses, that are applied to a pipe structure during use.
- slip angle is directly related to the angle at which loads are applied to the corrugation structure's surface.
- a “maximum slip angle” is the greatest slip angle among the variety of backfill soils that the corrugation structures are expected to be covered with.
- a “minimum slip angle” is the lowest slip angle among the variety of backfill soils that the corrugation structures are expected to be covered with.
- Natural soil slip angle will generally range from a minimum of about 28° to a maximum of about 37.5° for soil types that are more generally encountered. However, the natural soil slip angle may vary from these angles depending upon the type of fill material utilized to cover the pipe 2.
- the corrugation structure profile is designed such that the shape of the bowed wall 40 is a function of the natural slip angle of the backfill soil.
- the profile geometry, as shown in Fig. 3 (Feature C) is designed so that the bowed wall portion 40 of the corrugation structure 10, 12 profile when loaded at the peak point 60 by a force vector F s0 - ⁇ si ⁇ at the minimum slip angle of soil ⁇ forms a maximum resisting moment Ms* on the straight side wall 28, 30 at outer surface end point 36, 38.
- the profile shape is configured so that the peak point 60 is aligned with an outer surface point 36, 38 at each of the radially outer ends of the straight side walls 28, 32 at an angle ⁇ .
- the angle ⁇ is a function of the natural slip angle of backfill soil.
- the angle ⁇ is approximately equal to the minimum slip angle of the soil utilized with the particular corrugated pipe 2, in order to maximize the stability of the corrugation under load.
- each corrugation profile relative to the adjacent profile is also a function of the natural soil slip angle.
- the frequency of the corrugations (or pitch as defined Fig. 2) is specifically located such that a maximum slip angle will have a vector force F so * ⁇ s hP (as illustrated in Fig. 3; Feature F) at or above the neutral axis of the corrugation profile.
- This vector force is based upon an interface with the tangent of the bowed wall portion 40, where friction is at a minimum, with the origin point 72, 74. Locating the force F SO ⁇ s l i at this location will result in a stable profile.
- the stability of the corrugation profile is enhanced by an optimized angle between the side walls of the profile and a vertical axis.
- the side wall portions 28, 32 are oriented such that they can withstand the vertical force so that the corrugation structure does not collapse.
- first 10 and second 12 corrugation structures are shown positioned adjacent one another and centered around the longitudinal axis of the corrugated pipe 2.
- Each of the straight side walls 28, 32 of the U-shaped wall 20 has an outer peripheral surface 64 and bowed wall 40 has an outer peripheral surface 68.
- the corrugation profiles have a centroid 48, 49, which defines the location of the neutral axis NA of the corrugation profile.
- a centroid line 70 is shown to extend between the centroids 48, 49. The centroid line 70 intersects the radially- extending peripheral surfaces 64 of the first and second corrugation structures at first and second points of intersection 72 and 74.
- the corrugation structure profiles are configured such that a first straight line 76 extends from the first point of intersection 72 on the first corrugation structure 10 and is tangent to the bowed peripheral surface 68 of the second corrugation structure 12.
- the first line 76 has a first angle ⁇ *, relative to the longitudinal axis 20 of the pipe, that is equal to or greater than a predetermined natural slip angle of backfill soil.
- a second straight line 78 extends from the second point of intersection 74 on the second corrugation structure 12 and is tangent to the bowed peripheral surface 68 of the first corrugation structure 10.
- the second line 78 has a second angle ⁇ 2 , relative to the central axis 20, that is equal to or greater than the predetermined natural slip angle.
- angles ⁇ i and ⁇ 2 are equal to or greater than the maximum slip angle for the corrugated pipe and are preferably equal to one another.
- the maximum potential for slip results in a minimum lateral soil load at or above the neutral axis of the sidewall of the corrugated profile.
- stress concentration may also be minimized on the corrugations by controlling the wall radius inside the corrugation profile, as shown in Fig. 3 (Feature D).
- Feature D illustrates the area of the corrugation structure 10, 12 that is oftentimes most prone to problems associated with stress concentration.
- the radius R on the interior of the corrugation cavity 56 is unique to the inventive profile. This radius is preferably equal to or greater than one half the thickness T* of the inner cylindrical wall 22.
- the above-described corrugation profile design utilizes the natural soil slip angle in conjunction with the geometric design to enhance the performance of the corrugation profile.
- the corrugation profile design allows for minimized material thicknesses, while creating a structurally stable profile under hydraulic and compressive soil loads.
- liner thickness and widths are specifically designed to withstand hydraulic loading at 10.8 psi.
- the corrugation structure is configured in order to allow for maximum shipping potential.
- shipping costs associated with the shipping of corrugated pipes is very high, primarily because a lot of dead space is found inside the pipes that is not currently utilized and the pipes themselves takes up a lot of space.
- One aspect of the present invention utilizes this dead space in the interior of the pipes to ship smaller diameter pipes. For instance, as many as 14 or more different diameter pipes may be shipped at one time in a single bundle by utilizing the present invention.
- Typical diameters of pipes that are utilized in the industry include 4", 6", 8", 10", 12", 15", 18", 24", 30", 36", 42", 48", 54", and 60" pipes, among others.
- the outside diameter of each size of pipe is designed such that it will fit into each larger size pipe. This is done by designing the size of the corrugation to provide a degree of clearance so that the smaller size pipe may easily be inserted into and removed from the larger diameter pipe. Therefore, the profile design in combination with the dimensions of the various diameter pipes minimizes shipping costs since multiple diameter pipes may be shipped in a single bundle. An example of this is shown in Fig. 4, where first 80, second 90 and third
- each pipe 2 has an inner diameter ID and an outer diameter OD that is different from the other.
- the inner diameter ID and outer diameter OD of each pipe are chosen such that the first pipe 80 can be telescopically inserted into the second pipe 90, and the second pipe 90 can be telescopically inserted into the third pipe 100.
- the middle diameter pipe 90 may be inserted inside the largest diameter pipe 100, which results in reducing cost and size in shipping of the pipes.
- the diameters and corrugation profiles of the pipes are preferably configured in this manner to assist in shipping.
- the pipe 2 is made of a structurally stable HDPE (high density polyethylene).
- the corrugated pipe profile is capable of withstanding hydraulic, axial, longitudinal, soil and ring bending loads.
- the inventive profile maximizes structural integrity and stability while minimizing the material.
- a preferred material is HDPE, other types of materials may also be utilized in forming the pipes of the present invention, such as other types of polyethylene or plastics.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
- Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002443204A CA2443204C (en) | 2001-04-04 | 2002-04-04 | Corrugation structure for pipe |
MXPA03009078A MXPA03009078A (en) | 2001-04-04 | 2002-04-04 | Corrugation structure for pipe. |
US10/468,089 US6840285B2 (en) | 2001-04-04 | 2002-04-04 | Corrugation structure for pipe |
EP02723767A EP1384023A4 (en) | 2001-04-04 | 2002-04-04 | Corrugation structure for pipe |
US10/944,985 US7063108B2 (en) | 2001-04-04 | 2004-09-20 | Corrugation structure for pipe |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US28144101P | 2001-04-04 | 2001-04-04 | |
US60/281,441 | 2001-04-04 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US28144101P Continuation | 2001-04-04 | 2001-04-04 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10468089 A-371-Of-International | 2002-04-04 | ||
US10/944,985 Continuation US7063108B2 (en) | 2001-04-04 | 2004-09-20 | Corrugation structure for pipe |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002081957A1 true WO2002081957A1 (en) | 2002-10-17 |
Family
ID=23077306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2002/010619 WO2002081957A1 (en) | 2001-04-04 | 2002-04-04 | Corrugation structure for pipe |
Country Status (5)
Country | Link |
---|---|
US (2) | US6840285B2 (en) |
EP (1) | EP1384023A4 (en) |
CA (1) | CA2443204C (en) |
MX (1) | MXPA03009078A (en) |
WO (1) | WO2002081957A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL1026383C2 (en) | 2004-06-10 | 2005-12-14 | Wavin Bv | Corrugated pipe. |
EP2423551A1 (en) * | 2010-08-23 | 2012-02-29 | FRÄNKISCHE ROHRWERKE, GEBR. KIRCHNER GmbH & Co. | Compound corrugated pipe |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7597119B2 (en) * | 2005-09-08 | 2009-10-06 | Boettner E Michael | Flexible and extendable hose for holding tank drainage |
US7677271B2 (en) * | 2005-09-08 | 2010-03-16 | Cleveland Tubing Inc. | Portable flexible and extendable drain pipe |
DE102006018374A1 (en) * | 2006-04-20 | 2007-10-25 | Drossbach Gmbh & Co Kg | Corrugated pipe made of thermoplastic material |
JP2009544371A (en) * | 2006-07-28 | 2009-12-17 | レスメド・リミテッド | Providing respiratory therapy |
JP5911189B2 (en) | 2006-12-15 | 2016-04-27 | レスメド・リミテッドResMed Limited | Respiratory therapy |
US8109540B2 (en) * | 2008-05-30 | 2012-02-07 | Contech Construction Products Inc. | Pipe joint and related method |
US8820364B2 (en) * | 2009-01-28 | 2014-09-02 | Plastiflex Group | Flexible hose with smooth inner and/or outer wall |
CA2653137C (en) * | 2009-02-09 | 2016-01-12 | Manfred A. A. Lupke | Non-circular pipe profile |
MX2011012877A (en) * | 2009-06-02 | 2012-04-02 | Prinsco Inc | Rib construction for large diameter pipe fittings. |
DE102010032219A1 (en) * | 2010-07-26 | 2012-01-26 | Continental Automotive Gmbh | Corrugated pipe of a fuel line |
MX368739B (en) * | 2013-08-12 | 2019-10-14 | Prinsco Inc | Coilable dual wall corugated pipe and related method. |
US10655759B2 (en) | 2017-04-10 | 2020-05-19 | Omnimax International, Inc. | Pipe with alternating sections |
USD839401S1 (en) * | 2017-04-10 | 2019-01-29 | Omnimax International, Inc. | Pipe with alternating sections |
DE102018111192A1 (en) * | 2018-05-09 | 2019-11-14 | Montaplast Gmbh | Air line for motor vehicles |
CN109296842A (en) * | 2018-11-23 | 2019-02-01 | 乐昌市联丰科技有限公司 | A kind of internal-rib enhancing two-component helical bellows |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5390704A (en) * | 1992-12-09 | 1995-02-21 | Kanao; Shiro | Synthetic resin pipe including cylindrical inner wall and a spirally extending corrugated outer wall |
US5803132A (en) * | 1994-11-10 | 1998-09-08 | Lupke; Manfred A. A. | Skinned double wall pipe and apparatus for making same |
US5975143A (en) * | 1995-04-03 | 1999-11-02 | Uponor B.V. | Method for manufacturing a corrugated pipe, and a corrugated pipe manufactured by the method |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3926222A (en) * | 1973-12-18 | 1975-12-16 | Hancock Brick & Tile Co | Corrugated tubing with integral coupling means thereon |
US3929359A (en) * | 1974-11-04 | 1975-12-30 | Hancock Brick & Tile Co | Connecting joint structure for corrugated plastic tubing |
US4202568A (en) * | 1975-09-25 | 1980-05-13 | Ab Gustavsberg | Tube joint |
US4082327A (en) * | 1976-08-20 | 1978-04-04 | Hancor, Inc. | Connecting joint for corrugated plastic tubing |
JPS5844583U (en) * | 1981-09-18 | 1983-03-25 | 金尾 史朗 | Synthetic resin corrugated double pipe |
DE3603481A1 (en) * | 1986-02-05 | 1987-08-06 | Wilhelm Hegler | PLASTIC CORRUGATED TUBE WITH MOLDED CONNECTOR |
SE453374B (en) * | 1986-06-23 | 1988-02-01 | Uponor Ab | SET THROUGH WELD WELDING SHARP PIPES WITH A CORRUGHT WALL |
DE3744510A1 (en) * | 1987-12-30 | 1989-07-13 | Wilhelm Hegler | PIPE CONNECTION ELEMENT |
US5148837A (en) * | 1988-05-30 | 1992-09-22 | Uponor N.V. | Pipe for relining underground pipelines |
CA1300527C (en) * | 1988-06-02 | 1992-05-12 | Eldon G. Bonnema | Large diameter corrugated plastic pipe |
DE3921075A1 (en) * | 1989-06-28 | 1991-01-03 | Wilhelm Hegler | PLASTIC TUBE FOR PIPE RENOVATION |
GB2300683B (en) * | 1995-05-06 | 1999-10-20 | Uponor Ltd | Improvements in or relating to flexible pipes |
US5727599A (en) * | 1996-01-16 | 1998-03-17 | Ford Motor Company | Insulating sleeve for a fluid pipe |
US6186182B1 (en) * | 1998-01-08 | 2001-02-13 | Seongho Csp., Ltd. | Double-walled spiral pipe |
US6399002B1 (en) * | 1998-11-23 | 2002-06-04 | Manfred A. A. Lupke | Method of making a pipe with coupling conforming to pipe diameter |
DE10017221A1 (en) * | 2000-04-06 | 2001-10-11 | Ralph Peter Hegler | Sealing ring for connection between the spigot end of a corrugated pipe and pipe socket with a smooth inner wall |
US6607010B1 (en) * | 2001-05-10 | 2003-08-19 | Southeastern Universities Res. Assn, Inc. | Flexible collapse-resistant and length-stable vaccum hose |
US6644357B2 (en) * | 2001-11-09 | 2003-11-11 | Advanced Drainage Systems, Inc. | Corrugated pipe with improved profile stability |
-
2002
- 2002-04-04 EP EP02723767A patent/EP1384023A4/en not_active Withdrawn
- 2002-04-04 US US10/468,089 patent/US6840285B2/en not_active Expired - Lifetime
- 2002-04-04 WO PCT/US2002/010619 patent/WO2002081957A1/en not_active Application Discontinuation
- 2002-04-04 CA CA002443204A patent/CA2443204C/en not_active Expired - Lifetime
- 2002-04-04 MX MXPA03009078A patent/MXPA03009078A/en active IP Right Grant
-
2004
- 2004-09-20 US US10/944,985 patent/US7063108B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5390704A (en) * | 1992-12-09 | 1995-02-21 | Kanao; Shiro | Synthetic resin pipe including cylindrical inner wall and a spirally extending corrugated outer wall |
US5803132A (en) * | 1994-11-10 | 1998-09-08 | Lupke; Manfred A. A. | Skinned double wall pipe and apparatus for making same |
US5975143A (en) * | 1995-04-03 | 1999-11-02 | Uponor B.V. | Method for manufacturing a corrugated pipe, and a corrugated pipe manufactured by the method |
Non-Patent Citations (1)
Title |
---|
See also references of EP1384023A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL1026383C2 (en) | 2004-06-10 | 2005-12-14 | Wavin Bv | Corrugated pipe. |
WO2006004393A1 (en) | 2004-06-10 | 2006-01-12 | Wavin B.V. | Corrugated pipe |
EP2423551A1 (en) * | 2010-08-23 | 2012-02-29 | FRÄNKISCHE ROHRWERKE, GEBR. KIRCHNER GmbH & Co. | Compound corrugated pipe |
WO2012025494A1 (en) * | 2010-08-23 | 2012-03-01 | Fränkische Rohrwerke Gebr. Kirchner Gmbh & Co. Kg | Composite corrugated pipe |
Also Published As
Publication number | Publication date |
---|---|
US20050039810A1 (en) | 2005-02-24 |
US6840285B2 (en) | 2005-01-11 |
US7063108B2 (en) | 2006-06-20 |
EP1384023A1 (en) | 2004-01-28 |
EP1384023A4 (en) | 2008-10-29 |
CA2443204C (en) | 2008-11-25 |
MXPA03009078A (en) | 2004-02-17 |
US20040129328A1 (en) | 2004-07-08 |
CA2443204A1 (en) | 2002-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6840285B2 (en) | Corrugation structure for pipe | |
KR101076060B1 (en) | System for dynamically sealing at least one conduit through which a pipe or cable extends | |
EP1277007B1 (en) | Armoured, flexible pipe and use of same | |
AU692981B2 (en) | Flexible tubular pipe comprising an interlocked armouring web | |
US4359167A (en) | Subterranean plastic tank | |
AU748814B2 (en) | Flexible pipe with I-shaped wire winding | |
US8459306B2 (en) | Flexible pipe having pressure armour layer | |
EP2364412B1 (en) | Armour reinforcement | |
US6889717B2 (en) | Flexible conduit with pressure vault interlocked from below | |
CN101473157A (en) | Radius control | |
US20110203695A1 (en) | flexible pipe | |
CN103290999B (en) | Reinforcement | |
AU603199B2 (en) | Bung type drum | |
US20050115622A1 (en) | Collapsible flexible pipe and method of manufacturing same | |
US6874542B2 (en) | Flexible hose with connect flange and method for obtaining same | |
US9097371B2 (en) | Flexible pipe having pressure armour layer and components thereof | |
CN104520626A (en) | Flexible pipe body and method of providing the same | |
EP0871831B1 (en) | Subsea flexible pipe | |
EP0690256B1 (en) | Gripping element for a pipe coupling | |
JP2009012838A (en) | Underground tank | |
WO1990013768A1 (en) | A pressure pipeline having its parts interconnected with socket-and-spigot joints and use of a ribbed pipe | |
US8651149B2 (en) | Fluid filled jacket for concrete pipe | |
CN215488095U (en) | Novel high-density polyethylene pipe | |
JP7463226B2 (en) | Belt-shaped components for rehabilitating existing pipes | |
CN213776638U (en) | Pressure-bearing prefabricated sealing ring double-wall corrugated pipe with reinforcing ribs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2443204 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2003/009078 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2002723767 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2002723767 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10468089 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |