WO2002079679A1 - Valve - Google Patents

Valve Download PDF

Info

Publication number
WO2002079679A1
WO2002079679A1 PCT/GB2002/001187 GB0201187W WO02079679A1 WO 2002079679 A1 WO2002079679 A1 WO 2002079679A1 GB 0201187 W GB0201187 W GB 0201187W WO 02079679 A1 WO02079679 A1 WO 02079679A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
inlet
outlet
flexible member
valve body
Prior art date
Application number
PCT/GB2002/001187
Other languages
French (fr)
Inventor
Geoffrey Robert Hammond
Original Assignee
Reckitt Benckiser (Uk) Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reckitt Benckiser (Uk) Limited filed Critical Reckitt Benckiser (Uk) Limited
Priority to BR0208404A priority Critical patent/BR0208404A/en
Priority to US10/473,118 priority patent/US20060175357A1/en
Priority to AT02706940T priority patent/ATE301790T1/en
Priority to AU2002241103A priority patent/AU2002241103B2/en
Priority to MXPA03008792A priority patent/MXPA03008792A/en
Priority to EP20020706940 priority patent/EP1373769B1/en
Priority to CA 2442107 priority patent/CA2442107A1/en
Priority to PL02365061A priority patent/PL365061A1/en
Priority to DE2002605469 priority patent/DE60205469T2/en
Publication of WO2002079679A1 publication Critical patent/WO2002079679A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/60Contents and propellant separated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D47/00Closures with filling and discharging, or with discharging, devices
    • B65D47/04Closures with discharging devices other than pumps
    • B65D47/20Closures with discharging devices other than pumps comprising hand-operated members for controlling discharge
    • B65D47/2018Closures with discharging devices other than pumps comprising hand-operated members for controlling discharge comprising a valve or like element which is opened or closed by deformation of the container or closure
    • B65D47/205Closures with discharging devices other than pumps comprising hand-operated members for controlling discharge comprising a valve or like element which is opened or closed by deformation of the container or closure the valve being formed by a tubular flexible sleeve surrounding a rod-like element provided with at least one radial passageway which is normally closed by the sleeve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/60Contents and propellant separated
    • B65D83/66Contents and propellant separated first separated, but finally mixed, e.g. in a dispensing head
    • B65D83/663Contents and propellant separated first separated, but finally mixed, e.g. in a dispensing head at least a portion of the propellant being separated from the product and incrementally released by means of a pressure regulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/75Aerosol containers not provided for in groups B65D83/16 - B65D83/74
    • B65D83/753Aerosol containers not provided for in groups B65D83/16 - B65D83/74 characterised by details or accessories associated with outlets
    • B65D83/7535Outlet valves opened by the product to be delivered
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/14Check valves with flexible valve members
    • F16K15/141Check valves with flexible valve members the closure elements not being fixed to the valve body
    • F16K15/142Check valves with flexible valve members the closure elements not being fixed to the valve body the closure elements being shaped as solids of revolution, e.g. toroidal or cylindrical rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/14Check valves with flexible valve members
    • F16K15/144Check valves with flexible valve members the closure elements being fixed along all or a part of their periphery
    • F16K15/145Check valves with flexible valve members the closure elements being fixed along all or a part of their periphery the closure elements being shaped as a solids of revolution, e.g. cylindrical or conical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7837Direct response valves [i.e., check valve type]
    • Y10T137/7879Resilient material valve

Definitions

  • the present invention relates to a valve.
  • the valve is particularly but not exclusively intended for use with a pressured or pressurisable container.
  • Manually operated finger or trigger sprays are commonly used to dispense household products such as hard surface cleaners.
  • a problem with such sprays is that they can give a poor spray pattern if the consumer operates the spray at too low a pressure. Also they can dribble.
  • a solution to these problems is sought.
  • a valve comprising a valve body and a flexible member surrounding the valve body, the valve body defining an inlet and an outlet and means for enabling the inlet and outlet to communicate and the flexible member being displaceable under the action of pressure in the inlet from a position in which communication between inlet and outlet is prevented to a position in which communication between inlet and outlet is permitted.
  • the vpJ e body may be moulded from synthetic plastics material or made from metal or any other suitable material .
  • the flexible member preferably comprises a sleeve advantageously made of rubber or synthetic plastics material.
  • An elastomeric material is preferred. Its interior surface is preferably tacky so that it adheres to the valve body. This is a preferred feature because whilst the tackiness of the flexible member will increase the initial pressure required to displace the -H vible member from the position in which communication between inlet and outlet is prevented to a position in which communication between inlet and outlet is permitted, the final pressure at which the flexible member returns to its original position is unchanged.
  • the sleeve may be made of a material which requires more energy to deform/stretch it than the energy that the sleeve can exert through elasticity to return to its original position when the displacing force is removed.
  • a valve of the invention is employed in a pressurisable device, for example a trigger spray.
  • the valve only opens once a threshold operating force has been applied and so releases a high quality spray, without dripping or dribbling.
  • a valve of the invention is employed in a pressurised device, for example a spray canister, and is arranged such that propellant bleeds into the valve, and intermittently trips the valve, without the agency of a user.
  • the means for enabling the inlet and outlet to communicate preferably comprises bores respectively connecting the inlet and outlet with the surface of the valve body.
  • the valve includes more than one bore for either or both of the inlet and outle .
  • Means are provided for retaining the flexible member on the valve body. These means preferably comprise annular formations on the valve body.
  • a device incorporating a valve as defined above .
  • the device is optionally either pressurised, for example an aerosol, or pressurisable .
  • the pressure in the device is generally generated manually (e.g. by a finger pump) or automatically (e.g. chemically or by a mechanical pump) .
  • the device preferably comprises a first chamber containing a pressurised liquid propellant and a second chamber containing liquid material to be issued from the device in dispersed form, wherein there is restricted communication between the chambers such that propellant may bleed into the second chamber.
  • a valve according to the present invention is in communication with the second chamber and in use issues a pulse of the said material once the propellant has raised the pressure within the second chamber to a threshold level required to operate the valve.
  • the dual-chamber device just described could be used with any precompression valve (by which we mean a valve which opens only once a given fluid pressure has been reached; and preferably which closes at a lower pressure) ; such a dual-chamber device with any precompression chamber constitutes a further aspect of the present invention.
  • the valve may be permanently attached to the device or may be coupled when the user replaces the pressurised/pressurisable unit as a refill.
  • Figure 1 is a perspective view of part of one form of valve ;
  • Figure 2 is a cross-sectional view of a valve including the part shown in Figure 1 ;
  • Figure 3 shows a first embodiment of aerosol device having a valve as shown in Figure 2;
  • Figure 4 shows a second embodiment of aerosol device having a valve as shown in Figure 2.
  • the valve comprises a substantially cylindrical valve body 1 and a flexible member 2 which is in the form of a sleeve over the valve body 1.
  • the valve body 1 is injection moulded from synthetic plastics material, but may be made from metal or any other suitable material.
  • the body defines centrally located and axially extending inlet 3 and outlet 4.
  • the body 1 also defines a bore 5 which extends from the surface of the body 1 to the inlet 3, and a bore 6 which extends from the surface of the body to the outlet 4. At the point at which the bore 6 meets the body surface, a recess 7 is formed in the body surface.
  • the recess may be of flat cut-out form as shown in Figure 1 or may be an annular recess extending around the whole or part of the circumference of body 1.
  • Two annular formations 8 and 9 are extensions to the body surface disposed on opposite sides respectively of the recess 7 and bore 5.
  • the flexible member 2 is dimensioned to grip the body 1 wi-m a close fit.
  • the sleeve may be made of rubber, plasticised polyvinylchloride (pvc) or any other suitable material.
  • the material has an adhesive property which provides an attractive force between the member 2 and body 1 when the two are in contact .
  • it may be made of a material which requires more energy to deform/stretch it than the energy that the sleeve can exert through elasticity to return to its original position when the displacing force is removed.
  • valve In use, with insufficient pressure in the inlet 3, the valve will be closed as shown in Figure 2. As the pressure increases in inlet 3, a value is reached which overcomes any attractive force between member 2 and body 1 and/or the force exerted by the elasticity of the sleeve and lifts the member 2 away from the body 1 allowing gas or fluid to flow into the recess 7 and from there via bore 6 to outlet 4. Flow will continue as long as the pressure of the fluid is sufficient to hold the member 2 away from the body 1. When the pressure falls to a value which is insufficient to hold the member 2 away from the body, the member will reseal against the body 1 thus closing off the flow between
  • the closing pressure will normally be less than the opening pressure where the aforementioned attractive force is present.
  • the interaction of the member 2 on the formations 8 and 9 form respective seals opposing any tendency for fluid or gas to escape at opposite axial ends of the member 2.
  • These formations act as retainers to prevent axial movement of the member 2 on the body 1 or leakage from the valve by any route other than by outlet 4 as a higher pressure will be needed to lift sleeve 2 away from formations 8 and 9 than will be needed to lift the sleeve to allow communication between bores 5 and 6.
  • the valve may be used to control the output from a pressurised or pressurisable device.
  • Pressure in the pressurisable device is generally either generated manually (e.g. by finger pump or a trigger pump) or automatically (e.g. by chemical means or by a mechanical pump) . In both cases, once the valve threshold opening pressure is exceeded the valve will open to release a portion of the device ' s contents and close again once the pressure has fallen to the apnropriate lower value.
  • FIG. 3 illustrates a pressurised device 14 incorporating a valve according to the invention.
  • the device has a main chamber 16 containing a pressurised liquid propellant 18, and a smaller chamber 20 on top of the main chamber.
  • the smaller chamber 20 contains an atomisable liquid 22, for example a fragrance.
  • the only communication between the chambers is by means of an upright dip tube 24.
  • the lower end of the dip tube is close to the bottom wall 26 of the main chamber.
  • the upper end of the dip tube tapers to a pinhole 27.
  • the upper end of the dip tube may be closed by a gas-permeable liquid- impermeable membrane.
  • the smaller chamber has an outlet device in the form of the valve of Figures 1 and 2 , arranged upright with the outlet 4 uppermost. It will be seen that the body 4 is formed as one piece with an upright tubular formation 28 within the smaller chamber and passing through the upper wall thereof. The bore 32 of the formation 28 communicates with the inlet 3 of the valve. The lower end of the formation 28 is close to the bottom wall 30 of the upper chamber.
  • the propellant in the main chamber bl,... ⁇ s into the smaller chamber via the dip tube 24 at a rate controlled by the dimensions of its pinhole outlet.
  • the embodiment of Figure 4 is similar to that of Figure 3 except there is no dip tube. Communication be :> ..-.en the chamber is via a short tubular stub 34 whose lower end is in the upper region of the main chamber, in the headspace region of pressurised gas above the liquid propellant, and whose tapered upper end, closed by a gas-permeable liquid-impermeable membrane, is in the lower region of the upper chamber. Like the device of Figure 3 the Figure 4 device operates to give intermittent release of material, typically fragrance.
  • One advantage of the Figure 4 arrangement is that its performance is substantially unaffected by changes in the liquid's viscosity.
  • the force required to operate the valve is supplied by a user.
  • a weak force which might be expected to produce a dribble of liquid in prior devices does not produce any output .
  • a moderate force opens the valve and the pressure is already sufficient to produce a good quality aerosol spray.

Abstract

A valve for an aerosol comprises a valve body (1) and a surrounding rubber sleeve (2). The body defines an inlet and outlet passages (3, 4) and bores (5, 6) connecting these passages to the surface of the valve. When the pressure of fluid in the inlet passage (3) and bore (5) builds to a sufficient value the sleeve is pushed away from the body permitting flow through the bores between the passages. When the pressure falls the sleeve closes the bores to interrupt the flow.

Description

VALVE
The present invention relates to a valve. The valve is particularly but not exclusively intended for use with a pressured or pressurisable container.
Manually operated finger or trigger sprays are commonly used to dispense household products such as hard surface cleaners. A problem with such sprays is that they can give a poor spray pattern if the consumer operates the spray at too low a pressure. Also they can dribble. A solution to these problems is sought.
Also sought is a device which can automatically generate a pulsed release from an aerosol container.
According to a first aspect of the present invention there is provided a valve comprising a valve body and a flexible member surrounding the valve body, the valve body defining an inlet and an outlet and means for enabling the inlet and outlet to communicate and the flexible member being displaceable under the action of pressure in the inlet from a position in which communication between inlet and outlet is prevented to a position in which communication between inlet and outlet is permitted.
In a preferred embodiment of the invention, the vpJ e body may be moulded from synthetic plastics material or made from metal or any other suitable material .
The flexible member preferably comprises a sleeve advantageously made of rubber or synthetic plastics material. An elastomeric material is preferred. Its interior surface is preferably tacky so that it adheres to the valve body. This is a preferred feature because whilst the tackiness of the flexible member will increase the initial pressure required to displace the -H vible member from the position in which communication between inlet and outlet is prevented to a position in which communication between inlet and outlet is permitted, the final pressure at which the flexible member returns to its original position is unchanged.
Suitably, the sleeve may be made of a material which requires more energy to deform/stretch it than the energy that the sleeve can exert through elasticity to return to its original position when the displacing force is removed.
Accordingly there will be a period of time during which gas or liquid can pass from the inlet to the outlet whilst the pressure drops from the initial pressure to the final pressure. Thus by careful selection of the material for the flexible membrane and/or by applying a tackifying coating to the interior surface of the member, the release characteristics of the valve can be selected.
In one embodiment a valve of the invention is employed in a pressurisable device, for example a trigger spray. The valve only opens once a threshold operating force has been applied and so releases a high quality spray, without dripping or dribbling. In another embodiment a valve of the invention is employed in a pressurised device, for example a spray canister, and is arranged such that propellant bleeds into the valve, and intermittently trips the valve, without the agency of a user.
The means for enabling the inlet and outlet to communicate preferably comprises bores respectively connecting the inlet and outlet with the surface of the valve body. Optionally the valve includes more than one bore for either or both of the inlet and outle .
Means are provided for retaining the flexible member on the valve body. These means preferably comprise annular formations on the valve body.
According to the invention there is further provided a device incorporating a valve as defined above . The device is optionally either pressurised, for example an aerosol, or pressurisable . In the latter case, the pressure in the device is generally generated manually (e.g. by a finger pump) or automatically (e.g. chemically or by a mechanical pump) . In the former case the device preferably comprises a first chamber containing a pressurised liquid propellant and a second chamber containing liquid material to be issued from the device in dispersed form, wherein there is restricted communication between the chambers such that propellant may bleed into the second chamber. A valve according to the present invention is in communication with the second chamber and in use issues a pulse of the said material once the propellant has raised the pressure within the second chamber to a threshold level required to operate the valve.
In principle the dual-chamber device just described could be used with any precompression valve (by which we mean a valve which opens only once a given fluid pressure has been reached; and preferably which closes at a lower pressure) ; such a dual-chamber device with any precompression chamber constitutes a further aspect of the present invention.
The valve may be permanently attached to the device or may be coupled when the user replaces the pressurised/pressurisable unit as a refill.
In order that the invention may be more clearly understood, one embodiment thereof will now be described, by way of example, with reference to the accompanying drawings, in which: -
Figure 1 is a perspective view of part of one form of valve ;
Figure 2 is a cross-sectional view of a valve including the part shown in Figure 1 ;
Figure 3 shows a first embodiment of aerosol device having a valve as shown in Figure 2; and
Figure 4 shows a second embodiment of aerosol device having a valve as shown in Figure 2. Referring to the figures, the valve comprises a substantially cylindrical valve body 1 and a flexible member 2 which is in the form of a sleeve over the valve body 1. The valve body 1 is injection moulded from synthetic plastics material, but may be made from metal or any other suitable material. The body defines centrally located and axially extending inlet 3 and outlet 4. The body 1 also defines a bore 5 which extends from the surface of the body 1 to the inlet 3, and a bore 6 which extends from the surface of the body to the outlet 4. At the point at which the bore 6 meets the body surface, a recess 7 is formed in the body surface. The recess may be of flat cut-out form as shown in Figure 1 or may be an annular recess extending around the whole or part of the circumference of body 1. Two annular formations 8 and 9 are extensions to the body surface disposed on opposite sides respectively of the recess 7 and bore 5.
The flexible member 2 is dimensioned to grip the body 1 wi-m a close fit. The sleeve may be made of rubber, plasticised polyvinylchloride (pvc) or any other suitable material. The material has an adhesive property which provides an attractive force between the member 2 and body 1 when the two are in contact . Alternatively it may be made of a material which requires more energy to deform/stretch it than the energy that the sleeve can exert through elasticity to return to its original position when the displacing force is removed.
In use, with insufficient pressure in the inlet 3, the valve will be closed as shown in Figure 2. As the pressure increases in inlet 3, a value is reached which overcomes any attractive force between member 2 and body 1 and/or the force exerted by the elasticity of the sleeve and lifts the member 2 away from the body 1 allowing gas or fluid to flow into the recess 7 and from there via bore 6 to outlet 4. Flow will continue as long as the pressure of the fluid is sufficient to hold the member 2 away from the body 1. When the pressure falls to a value which is insufficient to hold the member 2 away from the body, the member will reseal against the body 1 thus closing off the flow between
3 and outlet . The closing pressure will normally be less than the opening pressure where the aforementioned attractive force is present. The interaction of the member 2 on the formations 8 and 9 form respective seals opposing any tendency for fluid or gas to escape at opposite axial ends of the member 2. These formations act as retainers to prevent axial movement of the member 2 on the body 1 or leakage from the valve by any route other than by outlet 4 as a higher pressure will be needed to lift sleeve 2 away from formations 8 and 9 than will be needed to lift the sleeve to allow communication between bores 5 and 6. Alternatively, external clamps may be used to prevent ] -=-*ι--*ge .
The valve may be used to control the output from a pressurised or pressurisable device. Pressure in the pressurisable device is generally either generated manually (e.g. by finger pump or a trigger pump) or automatically (e.g. by chemical means or by a mechanical pump) . In both cases, once the valve threshold opening pressure is exceeded the valve will open to release a portion of the device ' s contents and close again once the pressure has fallen to the apnropriate lower value.
Figure 3 illustrates a pressurised device 14 incorporating a valve according to the invention. The device has a main chamber 16 containing a pressurised liquid propellant 18, and a smaller chamber 20 on top of the main chamber. The smaller chamber 20 contains an atomisable liquid 22, for example a fragrance. The only communication between the chambers is by means of an upright dip tube 24. The lower end of the dip tube is close to the bottom wall 26 of the main chamber. The upper end of the dip tube tapers to a pinhole 27. In an alternative embodiment the upper end of the dip tube may be closed by a gas-permeable liquid- impermeable membrane.
The smaller chamber has an outlet device in the form of the valve of Figures 1 and 2 , arranged upright with the outlet 4 uppermost. It will be seen that the body 4 is formed as one piece with an upright tubular formation 28 within the smaller chamber and passing through the upper wall thereof. The bore 32 of the formation 28 communicates with the inlet 3 of the valve. The lower end of the formation 28 is close to the bottom wall 30 of the upper chamber.
In operation, the propellant in the main chamber bl,...^s into the smaller chamber via the dip tube 24 at a rate controlled by the dimensions of its pinhole outlet. Once the pressure in the smaller chamber is sufficient to operate the valve, liquid 22 from the chamber is released into the environment and then the valve closes. This process occurs repeatedly. Accordingly the device gives pulsed release of the liquid in the smaller chamber.
The embodiment of Figure 4 is similar to that of Figure 3 except there is no dip tube. Communication be :> ..-.en the chamber is via a short tubular stub 34 whose lower end is in the upper region of the main chamber, in the headspace region of pressurised gas above the liquid propellant, and whose tapered upper end, closed by a gas-permeable liquid-impermeable membrane, is in the lower region of the upper chamber. Like the device of Figure 3 the Figure 4 device operates to give intermittent release of material, typically fragrance. One advantage of the Figure 4 arrangement is that its performance is substantially unaffected by changes in the liquid's viscosity.
It will be appreciated that the above embodiments h: "■'" been described by way of example only and that many variations are possible without departing from the scope of the invention. In one variation, instead of a single bore 5, a plurality of circumferentially spaced bores may be provided to distribute pressure from the inlet passage 3 around the body 1 thus lifting the member 2 away from the body around the circumference rather than simply at one point.
In other embodiments the force required to operate the valve is supplied by a user. A weak force which might be expected to produce a dribble of liquid in prior devices does not produce any output . A moderate force opens the valve and the pressure is already sufficient to produce a good quality aerosol spray.

Claims

1. A valve comprising a valve body and a flexible member surrounding the valve body, the valve body del.,αing an inlet and an outlet and means for enabling the inlet and outlet to communicate and the flexible member being displaceable under the action of pressure in the inlet from a position in which communication between inlet and outlet is prevented to a position in which communication between inlet and outlet is permitted.
2. A valve as claimed in claim 1, in which the valve body is moulded from synthetic plastics material .
3. A valve as claimed in claim 1, in which the valve body is made from metal.
4. A valve as claimed in any one of the preceding claims in which the flexible member comprises a sleeve.
5. A valve as claimed in any one of the preceding claims, in which the flexible member is made from rubber.
6. A valve as claimed in any one of claims 1 to 4, in ' which' the flexible member is made from a synthetic plastics material.
7. A valve as claimed in any one of the preceding claims wherein the interior surface of the flexible member is provided with a tackifying coating.
8. A valve as claimed in any one of the preceding claims wherein the sleeve is constructed of a material which requires greater force to displace it than the force that the sleeve can exert through elasticity to return to its original position when the displacing force is removed.
9. A valve as claimed in any one of the preceding claims, in which the means for enabling the inlet and outlet to communicate comprises bores respectively connecting the inlet and outlet with the surface of the valve body.
10. A valve as claimed in any one of the preceding claims, in which means are provided for retaining the flexible member on the valve body.
11. A valve as claimed in claim 10, in which the means comprise annular formations on the valve body.
12. A device incorporating a valve as claimed in any one of the preceding claims .
13. A device as claimed in claim 12 which is pressurisable.
14. A device as claimed in claim 13 wherein the pressure in the device is generated by means of a manual pump .
15. A device as claimed in claim 12 which has a pressurised container.
16. A device as claimed in claim 15 which provides a pulsed release of the contents of the pressurised container.
17. A device comprising a first chamber containing a pressurised liquid propellant and a second chamber containing in liquid form a material to be issued from the device in dispersed form, wherein there is restricted communication between the chambers such that propellant may bleed into the second chamber, and wherein a valve providing intermittent communication between the second chamber and the exterior of the device issues a pulse of the said material once the propellant has raised the pressure within the second chamber to a threshold level required to operate the valve .
18. A device as claimed in claim 17 wherein the valve is as claimed in any of claims 1 to 11.
19. A valve or valve-containing device substantially as hereinbefore described with reference to any of Figures 1, 2, 4 and 4.
PCT/GB2002/001187 2001-03-29 2002-03-27 Valve WO2002079679A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
BR0208404A BR0208404A (en) 2001-03-29 2002-03-27 Valve
US10/473,118 US20060175357A1 (en) 2001-03-29 2002-03-27 Valve
AT02706940T ATE301790T1 (en) 2001-03-29 2002-03-27 VALVE
AU2002241103A AU2002241103B2 (en) 2001-03-29 2002-03-27 Valve
MXPA03008792A MXPA03008792A (en) 2001-03-29 2002-03-27 Valve.
EP20020706940 EP1373769B1 (en) 2001-03-29 2002-03-27 Valve
CA 2442107 CA2442107A1 (en) 2001-03-29 2002-03-27 Valve
PL02365061A PL365061A1 (en) 2001-03-29 2002-03-27 Valve
DE2002605469 DE60205469T2 (en) 2001-03-29 2002-03-27 VALVE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0107858.3 2001-03-29
GB0107858A GB0107858D0 (en) 2001-03-29 2001-03-29 Device

Publications (1)

Publication Number Publication Date
WO2002079679A1 true WO2002079679A1 (en) 2002-10-10

Family

ID=9911823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2002/001187 WO2002079679A1 (en) 2001-03-29 2002-03-27 Valve

Country Status (15)

Country Link
US (1) US20060175357A1 (en)
EP (1) EP1373769B1 (en)
CN (1) CN1274985C (en)
AR (1) AR033075A1 (en)
AT (1) ATE301790T1 (en)
AU (1) AU2002241103B2 (en)
BR (1) BR0208404A (en)
CA (1) CA2442107A1 (en)
DE (1) DE60205469T2 (en)
ES (1) ES2245729T3 (en)
GB (2) GB0107858D0 (en)
MX (1) MXPA03008792A (en)
PL (1) PL365061A1 (en)
WO (1) WO2002079679A1 (en)
ZA (1) ZA200307305B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006053478A1 (en) * 2006-11-14 2008-07-10 Georg Menshen Gmbh & Co. Kg Sealing device for pressurized containers holding a liquid or a gel has a delivery channel leading to a delivery opening and allowing removal liquid container contents
WO2008110387A2 (en) 2007-03-15 2008-09-18 Seaquist Perfect Dispensing Gmbh Dispensing device
EP2218476A1 (en) * 2009-02-11 2010-08-18 F. Hoffmann-La Roche AG Leaf spring valve and cone membrane valve
WO2011018127A1 (en) * 2009-08-13 2011-02-17 Gl Gmbh Metall- Und Werkstatttechnik Fluid connection device
EP2537772A1 (en) * 2011-06-21 2012-12-26 Weibel CDS AG Device for holding and dispensing a fluid
US8381951B2 (en) 2007-08-16 2013-02-26 S.C. Johnson & Son, Inc. Overcap for a spray device
US8887954B2 (en) 2004-10-12 2014-11-18 S.C. Johnson & Son, Inc. Compact spray device
US9089622B2 (en) 2008-03-24 2015-07-28 S.C. Johnson & Son, Inc. Volatile material dispenser
US9108782B2 (en) 2012-10-15 2015-08-18 S.C. Johnson & Son, Inc. Dispensing systems with improved sensing capabilities
US9205437B2 (en) 2006-03-15 2015-12-08 Aptar Dortmund Gmbh Dispensing device

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE383315T1 (en) 2004-10-12 2008-01-15 Johnson & Son Inc S C AUTOMATIC SPRAYER
WO2008028189A2 (en) * 2006-09-01 2008-03-06 Polytop Corporation Dispensing closure with obstructed, offset, non-linear flow profile
US7980432B2 (en) * 2006-09-01 2011-07-19 Polytop Corporation Dispensing closure having a flow conduit with key-hole shape
US7637402B2 (en) * 2006-09-01 2009-12-29 Polytop Corporation Dispensing cap with center channel and helical flow profile
US7735699B2 (en) * 2006-09-01 2010-06-15 Polytop Corporation Dispensing closure having a flow conduit with key-hole shape
US8336745B2 (en) 2006-09-01 2012-12-25 Mwv Slatersville, Llc Dispensing closure having a flow conduit with key-hole shape
US8590743B2 (en) * 2007-05-10 2013-11-26 S.C. Johnson & Son, Inc. Actuator cap for a spray device
US8469244B2 (en) 2007-08-16 2013-06-25 S.C. Johnson & Son, Inc. Overcap and system for spraying a fluid
US8556122B2 (en) 2007-08-16 2013-10-15 S.C. Johnson & Son, Inc. Apparatus for control of a volatile material dispenser
US8459499B2 (en) 2009-10-26 2013-06-11 S.C. Johnson & Son, Inc. Dispensers and functional operation and timing control improvements for dispensers
DE102011001603A1 (en) 2010-11-15 2012-05-16 Illinois Tool Works, Inc. Device for dispensing tire sealant from a container
US10603214B2 (en) 2011-01-14 2020-03-31 Ecole Polytechnique Federale De Lausanne (Epfl) Apparatus and methods for treating excess intraocular fluid
EP2694221B1 (en) 2011-04-04 2018-08-22 Silgan Dispensing Systems Corporation Pre-compression trigger sprayers
CN108916391A (en) * 2018-07-05 2018-11-30 张达宇 A kind of direct drinking switch
WO2021176332A1 (en) * 2020-03-06 2021-09-10 Ecole Polytechnique De Lausanne (Epfl) Apparatus for treating excess intraocular fluid having an elastic membrane

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2107596A (en) * 1934-06-12 1938-02-08 Michelin & Cie Pressure compensating device for multiple gas chambers
US2927722A (en) * 1954-11-10 1960-03-08 Melvin R Metzger Vacuum type valve-equipped containers
US4077542A (en) * 1974-12-02 1978-03-07 Petterson Tor H Unattended aerosol dispenser
US5305783A (en) * 1991-12-31 1994-04-26 Reseal International Limited Partnership Elastomeric sleeve and method for assembling the sleeve on a one-way valve body
US6116465A (en) * 1996-06-13 2000-09-12 Bouzaglo; Gabriel Container stopper with shut-off valve

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3739952A (en) * 1971-07-09 1973-06-19 Gillette Co Intermittent dispensing device
US3991768A (en) * 1973-03-16 1976-11-16 Portnoy Harold D Shunt system resistant to overdrainage and siphoning and valve therefor
NZ193280A (en) * 1979-04-13 1981-05-15 Univ Minnesota Check valve catheter tip for unidirectional flow
US4265373A (en) * 1979-05-23 1981-05-05 Stoody William R Pressurized dispenser with dip tube extending through sac-in-can
US4722731A (en) * 1985-04-08 1988-02-02 Vailancourt Vincent L Air check valve
US4789082A (en) * 1986-12-22 1988-12-06 Sampson Renick F Container discharge control
US4846810A (en) * 1987-07-13 1989-07-11 Reseal International Limited Partnership Valve assembly
US5092855A (en) * 1990-01-22 1992-03-03 Reseal International Limited Partnership Enclosing sleeve for one-way valve
US5080138A (en) * 1990-10-31 1992-01-14 Reseal International Limited Partnership Valve assembly with multi-part valve body
US5447258A (en) * 1992-06-17 1995-09-05 Yoshino Kogyosho Co., Ltd. Spout for liquid pump
US5305786A (en) * 1993-01-14 1994-04-26 Reseal International Limited Partnership One-way valve assembly
GB2280489B (en) * 1993-07-29 1997-08-20 Valeo Wiper Systems Ltd A non-return valve
US5556386A (en) * 1995-04-03 1996-09-17 Research Medical, Inc. Medical pressure relief valve
US6533141B1 (en) * 2001-10-31 2003-03-18 S. C. Johnson & Son, Inc. Intermittent aerosol dispensing valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2107596A (en) * 1934-06-12 1938-02-08 Michelin & Cie Pressure compensating device for multiple gas chambers
US2927722A (en) * 1954-11-10 1960-03-08 Melvin R Metzger Vacuum type valve-equipped containers
US4077542A (en) * 1974-12-02 1978-03-07 Petterson Tor H Unattended aerosol dispenser
US5305783A (en) * 1991-12-31 1994-04-26 Reseal International Limited Partnership Elastomeric sleeve and method for assembling the sleeve on a one-way valve body
US6116465A (en) * 1996-06-13 2000-09-12 Bouzaglo; Gabriel Container stopper with shut-off valve

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10011419B2 (en) 2004-10-12 2018-07-03 S. C. Johnson & Son, Inc. Compact spray device
US9457951B2 (en) 2004-10-12 2016-10-04 S. C. Johnson & Son, Inc. Compact spray device
US8887954B2 (en) 2004-10-12 2014-11-18 S.C. Johnson & Son, Inc. Compact spray device
US9205437B2 (en) 2006-03-15 2015-12-08 Aptar Dortmund Gmbh Dispensing device
DE102006053478A1 (en) * 2006-11-14 2008-07-10 Georg Menshen Gmbh & Co. Kg Sealing device for pressurized containers holding a liquid or a gel has a delivery channel leading to a delivery opening and allowing removal liquid container contents
WO2008110387A2 (en) 2007-03-15 2008-09-18 Seaquist Perfect Dispensing Gmbh Dispensing device
WO2008110387A3 (en) * 2007-03-15 2008-11-13 Seaquist Perfect Dispensing Dispensing device
US8381951B2 (en) 2007-08-16 2013-02-26 S.C. Johnson & Son, Inc. Overcap for a spray device
US9089622B2 (en) 2008-03-24 2015-07-28 S.C. Johnson & Son, Inc. Volatile material dispenser
EP2218476A1 (en) * 2009-02-11 2010-08-18 F. Hoffmann-La Roche AG Leaf spring valve and cone membrane valve
EP2218476B1 (en) 2009-02-11 2018-12-19 F. Hoffmann-La Roche AG Leaf spring valve and cone membrane valve
WO2011018127A1 (en) * 2009-08-13 2011-02-17 Gl Gmbh Metall- Und Werkstatttechnik Fluid connection device
US8511713B2 (en) 2009-08-13 2013-08-20 GL GmbH Metall—und Werkstatttechnik Fluid connection device
US9650187B2 (en) 2011-06-21 2017-05-16 Weibel Cds Ag Device for receiving and dispensing a fluid
WO2012175465A1 (en) * 2011-06-21 2012-12-27 Weibel Cds Ag Device for receiving and dispensing a fluid
EP2537772A1 (en) * 2011-06-21 2012-12-26 Weibel CDS AG Device for holding and dispensing a fluid
US9108782B2 (en) 2012-10-15 2015-08-18 S.C. Johnson & Son, Inc. Dispensing systems with improved sensing capabilities

Also Published As

Publication number Publication date
ZA200307305B (en) 2004-09-20
AR033075A1 (en) 2003-12-03
DE60205469D1 (en) 2005-09-15
CN1274985C (en) 2006-09-13
CN1498321A (en) 2004-05-19
GB2376057A (en) 2002-12-04
EP1373769B1 (en) 2005-08-10
CA2442107A1 (en) 2002-10-10
GB0207218D0 (en) 2002-05-08
ES2245729T3 (en) 2006-01-16
DE60205469T2 (en) 2006-04-20
AU2002241103B2 (en) 2007-06-14
PL365061A1 (en) 2004-12-27
MXPA03008792A (en) 2004-02-27
GB2376057B (en) 2003-12-03
GB0107858D0 (en) 2001-05-23
BR0208404A (en) 2004-03-30
EP1373769A1 (en) 2004-01-02
US20060175357A1 (en) 2006-08-10
ATE301790T1 (en) 2005-08-15

Similar Documents

Publication Publication Date Title
EP1373769B1 (en) Valve
AU2002241103A1 (en) Valve
US4230242A (en) Triple seal valve member for an atomizing pump dispenser
US3401849A (en) Low force metering valve
US6364163B1 (en) Refillable dispenser and cartridge
US7575134B2 (en) Self-sealing nozzle for dispensing apparatus
US5509578A (en) Dispensing pump
US4228931A (en) Manually operated pump for dispensing micronized liquids at a predetermined pressure
US7793807B2 (en) Metering valve and a fluid dispenser device including such a valve
EP2599558B1 (en) Airless pump system
EP0352915A1 (en) Unit dose dispenser
US4872595A (en) Mechanically pressurized aerosol dispenser
US20030152417A1 (en) Toilet cleaning apparatus
JP2001508696A (en) Dispensing device for dispensing fluid, comprising a sealing device
GB2367809A (en) Metering valve with collapsible chamber
US5865350A (en) Spray bottle with built-in pump
US2552857A (en) Aerosol bomb
JP6454374B2 (en) Fluid pump
US2698015A (en) Medicament dispenser
JP4226736B2 (en) Aerosol container delayed injection device
CN106102930A (en) There is the fluid distribution equipment of pre-compression outlet valve
ATE380158T1 (en) HAND OPERATED PUMP SPRAYER
WO1990009936A1 (en) Valve for aerosol container
US10117495B2 (en) Refillable liquid dispensing device
CN114072239A (en) Refillable fluid product dispenser

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003/07305

Country of ref document: ZA

Ref document number: 200307305

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 2442107

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 028071905

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: PA/A/2003/008792

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2002241103

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1681/CHENP/2003

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2002706940

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002706940

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

ENP Entry into the national phase

Ref document number: 2006175357

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10473118

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2002706940

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP

WWP Wipo information: published in national office

Ref document number: 10473118

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2002241103

Country of ref document: AU