WO2002079406A2 - Isolated human g-protein coupled receptors, nucleic acid molecules encoding human gpcr protein, and uses thereof - Google Patents
Isolated human g-protein coupled receptors, nucleic acid molecules encoding human gpcr protein, and uses thereof Download PDFInfo
- Publication number
- WO2002079406A2 WO2002079406A2 PCT/US2002/009317 US0209317W WO02079406A2 WO 2002079406 A2 WO2002079406 A2 WO 2002079406A2 US 0209317 W US0209317 W US 0209317W WO 02079406 A2 WO02079406 A2 WO 02079406A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nucleic acid
- seq
- amino acid
- protein
- peptide
- Prior art date
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 238
- 150000007523 nucleic acids Chemical class 0.000 title claims abstract description 220
- 102000039446 nucleic acids Human genes 0.000 title claims abstract description 201
- 108020004707 nucleic acids Proteins 0.000 title claims abstract description 201
- 102000004169 proteins and genes Human genes 0.000 title description 172
- 108020003175 receptors Proteins 0.000 title description 92
- 102000005962 receptors Human genes 0.000 title description 91
- 101000887490 Homo sapiens Guanine nucleotide-binding protein G(z) subunit alpha Proteins 0.000 title description 2
- 102000052301 human GNAZ Human genes 0.000 title description 2
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 188
- 238000000034 method Methods 0.000 claims abstract description 95
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 79
- 125000003275 alpha amino acid group Chemical group 0.000 claims abstract description 59
- 230000014509 gene expression Effects 0.000 claims description 103
- 125000003729 nucleotide group Chemical group 0.000 claims description 73
- 239000002773 nucleotide Substances 0.000 claims description 72
- 239000012634 fragment Substances 0.000 claims description 69
- 239000013598 vector Substances 0.000 claims description 54
- 230000000694 effects Effects 0.000 claims description 45
- 239000003795 chemical substances by application Substances 0.000 claims description 33
- 238000001514 detection method Methods 0.000 claims description 29
- 150000001413 amino acids Chemical class 0.000 claims description 28
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 26
- 239000013604 expression vector Substances 0.000 claims description 25
- 230000009261 transgenic effect Effects 0.000 claims description 23
- 108091034117 Oligonucleotide Proteins 0.000 claims description 22
- 201000010099 disease Diseases 0.000 claims description 14
- 230000001404 mediated effect Effects 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 230000000295 complement effect Effects 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- 108091005804 Peptidases Proteins 0.000 claims description 4
- 102000035195 Peptidases Human genes 0.000 claims description 2
- 239000008194 pharmaceutical composition Substances 0.000 claims description 2
- 239000004365 Protease Substances 0.000 claims 3
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 claims 2
- 238000012258 culturing Methods 0.000 claims 2
- 239000003937 drug carrier Substances 0.000 claims 1
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 abstract description 217
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 abstract description 205
- 235000018102 proteins Nutrition 0.000 description 170
- 210000004027 cell Anatomy 0.000 description 144
- 239000000523 sample Substances 0.000 description 62
- 150000001875 compounds Chemical class 0.000 description 61
- 210000001519 tissue Anatomy 0.000 description 47
- 230000027455 binding Effects 0.000 description 44
- 241001465754 Metazoa Species 0.000 description 43
- 238000003556 assay Methods 0.000 description 38
- 239000003446 ligand Substances 0.000 description 33
- 235000001014 amino acid Nutrition 0.000 description 30
- 241000282412 Homo Species 0.000 description 28
- 108020004414 DNA Proteins 0.000 description 27
- 210000004072 lung Anatomy 0.000 description 26
- 108020004999 messenger RNA Proteins 0.000 description 26
- 230000001105 regulatory effect Effects 0.000 description 26
- 230000001605 fetal effect Effects 0.000 description 25
- 210000000265 leukocyte Anatomy 0.000 description 25
- 210000001525 retina Anatomy 0.000 description 25
- 238000011282 treatment Methods 0.000 description 25
- 238000004458 analytical method Methods 0.000 description 24
- 210000004556 brain Anatomy 0.000 description 24
- 230000006870 function Effects 0.000 description 24
- 230000035772 mutation Effects 0.000 description 24
- 210000000952 spleen Anatomy 0.000 description 23
- 210000001550 testis Anatomy 0.000 description 23
- 108091006027 G proteins Proteins 0.000 description 21
- 102000030782 GTP binding Human genes 0.000 description 21
- 108091000058 GTP-Binding Proteins 0.000 description 21
- 210000003734 kidney Anatomy 0.000 description 21
- 239000002299 complementary DNA Substances 0.000 description 20
- 108091028043 Nucleic acid sequence Proteins 0.000 description 18
- 108060003345 Adrenergic Receptor Proteins 0.000 description 17
- 102000017910 Adrenergic receptor Human genes 0.000 description 17
- 239000003814 drug Substances 0.000 description 17
- 238000009396 hybridization Methods 0.000 description 17
- 238000013518 transcription Methods 0.000 description 17
- 230000035897 transcription Effects 0.000 description 17
- 230000019491 signal transduction Effects 0.000 description 16
- 239000000126 substance Substances 0.000 description 16
- 230000004913 activation Effects 0.000 description 15
- 229940079593 drug Drugs 0.000 description 15
- 230000004927 fusion Effects 0.000 description 15
- IVOMOUWHDPKRLL-KQYNXXCUSA-N Cyclic adenosine monophosphate Chemical compound C([C@H]1O2)OP(O)(=O)O[C@H]1[C@@H](O)[C@@H]2N1C(N=CN=C2N)=C2N=C1 IVOMOUWHDPKRLL-KQYNXXCUSA-N 0.000 description 14
- IVOMOUWHDPKRLL-UHFFFAOYSA-N UNPD107823 Natural products O1C2COP(O)(=O)OC2C(O)C1N1C(N=CN=C2N)=C2N=C1 IVOMOUWHDPKRLL-UHFFFAOYSA-N 0.000 description 14
- 229940095074 cyclic amp Drugs 0.000 description 14
- 238000011161 development Methods 0.000 description 14
- 230000018109 developmental process Effects 0.000 description 14
- 108020001507 fusion proteins Proteins 0.000 description 14
- 102000037865 fusion proteins Human genes 0.000 description 14
- 238000003752 polymerase chain reaction Methods 0.000 description 14
- 238000006467 substitution reaction Methods 0.000 description 14
- 102100028927 Secretin receptor Human genes 0.000 description 13
- 108700019146 Transgenes Proteins 0.000 description 13
- 238000002493 microarray Methods 0.000 description 13
- 108700027603 secretin receptor Proteins 0.000 description 13
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 12
- 108010000818 Purinergic P2Y Receptors Proteins 0.000 description 12
- 102000002298 Purinergic P2Y Receptors Human genes 0.000 description 12
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 12
- 208000035475 disorder Diseases 0.000 description 12
- 230000037361 pathway Effects 0.000 description 12
- 230000004044 response Effects 0.000 description 12
- 230000001225 therapeutic effect Effects 0.000 description 12
- 108091023040 Transcription factor Proteins 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 11
- 239000003153 chemical reaction reagent Substances 0.000 description 11
- 230000003834 intracellular effect Effects 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- QZAYGJVTTNCVMB-UHFFFAOYSA-N serotonin Chemical compound C1=C(O)C=C2C(CCN)=CNC2=C1 QZAYGJVTTNCVMB-UHFFFAOYSA-N 0.000 description 11
- 125000000539 amino acid group Chemical group 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 238000012216 screening Methods 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 230000007306 turnover Effects 0.000 description 10
- 102000004190 Enzymes Human genes 0.000 description 9
- 108090000790 Enzymes Proteins 0.000 description 9
- 102000030621 adenylate cyclase Human genes 0.000 description 9
- 108060000200 adenylate cyclase Proteins 0.000 description 9
- 239000000556 agonist Substances 0.000 description 9
- 239000012472 biological sample Substances 0.000 description 9
- 239000012707 chemical precursor Substances 0.000 description 9
- 229940088598 enzyme Drugs 0.000 description 9
- 230000001965 increasing effect Effects 0.000 description 9
- 230000003993 interaction Effects 0.000 description 9
- 230000004060 metabolic process Effects 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 108091026890 Coding region Proteins 0.000 description 8
- 108091092195 Intron Proteins 0.000 description 8
- 102000002808 Pituitary adenylate cyclase-activating polypeptide Human genes 0.000 description 8
- 108010004684 Pituitary adenylate cyclase-activating polypeptide Proteins 0.000 description 8
- MMWCIQZXVOZEGG-HOZKJCLWSA-N [(1S,2R,3S,4S,5R,6S)-2,3,5-trihydroxy-4,6-diphosphonooxycyclohexyl] dihydrogen phosphate Chemical compound O[C@H]1[C@@H](O)[C@H](OP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H](O)[C@H]1OP(O)(O)=O MMWCIQZXVOZEGG-HOZKJCLWSA-N 0.000 description 8
- 230000001594 aberrant effect Effects 0.000 description 8
- 238000003491 array Methods 0.000 description 8
- 230000001413 cellular effect Effects 0.000 description 8
- 230000000875 corresponding effect Effects 0.000 description 8
- -1 e.g. Proteins 0.000 description 8
- 230000002068 genetic effect Effects 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- UFTCZKMBJOPXDM-XXFCQBPRSA-N pituitary adenylate cyclase-activating polypeptide Chemical compound C([C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(N)=O)C1=CN=CN1 UFTCZKMBJOPXDM-XXFCQBPRSA-N 0.000 description 8
- 229920001184 polypeptide Polymers 0.000 description 8
- 238000000746 purification Methods 0.000 description 8
- 230000028327 secretion Effects 0.000 description 8
- CNWINRVXAYPOMW-FCNJXWMTSA-N 1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-1D-myo-inositol 4,5-biphosphate Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(=O)O[C@H](COC(=O)CCCCCCCCCCCCCCCCC)COP(O)(=O)O[C@@H]1[C@H](O)[C@H](O)[C@@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@H]1O CNWINRVXAYPOMW-FCNJXWMTSA-N 0.000 description 7
- 108020005544 Antisense RNA Proteins 0.000 description 7
- 201000003883 Cystic fibrosis Diseases 0.000 description 7
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 7
- 102000040945 Transcription factor Human genes 0.000 description 7
- 238000012217 deletion Methods 0.000 description 7
- 230000037430 deletion Effects 0.000 description 7
- 238000000338 in vitro Methods 0.000 description 7
- 239000003550 marker Substances 0.000 description 7
- 238000010369 molecular cloning Methods 0.000 description 7
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 7
- 230000004853 protein function Effects 0.000 description 7
- 230000014616 translation Effects 0.000 description 7
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 6
- 108091006146 Channels Proteins 0.000 description 6
- 102000015554 Dopamine receptor Human genes 0.000 description 6
- 108050004812 Dopamine receptor Proteins 0.000 description 6
- 241000699670 Mus sp. Species 0.000 description 6
- 108010086019 Secretin Proteins 0.000 description 6
- 102100037505 Secretin Human genes 0.000 description 6
- 102100023038 WD and tetratricopeptide repeats protein 1 Human genes 0.000 description 6
- 230000009471 action Effects 0.000 description 6
- 239000000674 adrenergic antagonist Substances 0.000 description 6
- 230000003321 amplification Effects 0.000 description 6
- 230000000692 anti-sense effect Effects 0.000 description 6
- 210000000170 cell membrane Anatomy 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 239000003184 complementary RNA Substances 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 6
- 239000003623 enhancer Substances 0.000 description 6
- 238000005755 formation reaction Methods 0.000 description 6
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 238000003780 insertion Methods 0.000 description 6
- 230000037431 insertion Effects 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 238000003199 nucleic acid amplification method Methods 0.000 description 6
- 150000003905 phosphatidylinositols Chemical class 0.000 description 6
- 230000026731 phosphorylation Effects 0.000 description 6
- 238000006366 phosphorylation reaction Methods 0.000 description 6
- 229960002101 secretin Drugs 0.000 description 6
- OWMZNFCDEHGFEP-NFBCVYDUSA-N secretin human Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(N)=O)[C@@H](C)O)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)C1=CC=CC=C1 OWMZNFCDEHGFEP-NFBCVYDUSA-N 0.000 description 6
- 238000012163 sequencing technique Methods 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 206010004446 Benign prostatic hyperplasia Diseases 0.000 description 5
- 102100037600 P2Y purinoceptor 1 Human genes 0.000 description 5
- 102100028045 P2Y purinoceptor 2 Human genes 0.000 description 5
- 102100028070 P2Y purinoceptor 4 Human genes 0.000 description 5
- 208000004403 Prostatic Hyperplasia Diseases 0.000 description 5
- 102000003923 Protein Kinase C Human genes 0.000 description 5
- 108090000315 Protein Kinase C Proteins 0.000 description 5
- 108010028935 Purinergic P2Y1 Receptors Proteins 0.000 description 5
- 102000016927 Purinergic P2Y1 Receptors Human genes 0.000 description 5
- 108020004511 Recombinant DNA Proteins 0.000 description 5
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 5
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 5
- 108010091086 Recombinases Proteins 0.000 description 5
- 102000018120 Recombinases Human genes 0.000 description 5
- 102000014384 Type C Phospholipases Human genes 0.000 description 5
- 108010079194 Type C Phospholipases Proteins 0.000 description 5
- 230000002759 chromosomal effect Effects 0.000 description 5
- 238000003776 cleavage reaction Methods 0.000 description 5
- 238000010367 cloning Methods 0.000 description 5
- 210000003527 eukaryotic cell Anatomy 0.000 description 5
- 210000003917 human chromosome Anatomy 0.000 description 5
- 230000037427 ion transport Effects 0.000 description 5
- 230000002974 pharmacogenomic effect Effects 0.000 description 5
- 230000007017 scission Effects 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 102000040125 5-hydroxytryptamine receptor family Human genes 0.000 description 4
- 108091032151 5-hydroxytryptamine receptor family Proteins 0.000 description 4
- 108090000994 Catalytic RNA Proteins 0.000 description 4
- 102000053642 Catalytic RNA Human genes 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 4
- 241000238631 Hexapoda Species 0.000 description 4
- 241000124008 Mammalia Species 0.000 description 4
- 241000699666 Mus <mouse, genus> Species 0.000 description 4
- 108700026244 Open Reading Frames Proteins 0.000 description 4
- 108050008996 P2Y purinoceptor 1 Proteins 0.000 description 4
- 108700008625 Reporter Genes Proteins 0.000 description 4
- 108090000820 Rhodopsin Proteins 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 4
- 230000000890 antigenic effect Effects 0.000 description 4
- 230000004071 biological effect Effects 0.000 description 4
- 238000000423 cell based assay Methods 0.000 description 4
- 210000004671 cell-free system Anatomy 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000007878 drug screening assay Methods 0.000 description 4
- 239000012636 effector Substances 0.000 description 4
- 238000003366 endpoint assay Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 4
- 230000001939 inductive effect Effects 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 210000002569 neuron Anatomy 0.000 description 4
- 210000000287 oocyte Anatomy 0.000 description 4
- 230000035790 physiological processes and functions Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 108091092562 ribozyme Proteins 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 230000004936 stimulating effect Effects 0.000 description 4
- 238000013519 translation Methods 0.000 description 4
- 238000011277 treatment modality Methods 0.000 description 4
- 241001515965 unidentified phage Species 0.000 description 4
- NCYCYZXNIZJOKI-IOUUIBBYSA-N 11-cis-retinal Chemical compound O=C/C=C(\C)/C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C NCYCYZXNIZJOKI-IOUUIBBYSA-N 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- 102000014914 Carrier Proteins Human genes 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- 230000004568 DNA-binding Effects 0.000 description 3
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 3
- 102000027582 GPCRs class B Human genes 0.000 description 3
- 108091008883 GPCRs class B Proteins 0.000 description 3
- 102000051325 Glucagon Human genes 0.000 description 3
- 108010024636 Glutathione Proteins 0.000 description 3
- UXDDRFCJKNROTO-UHFFFAOYSA-N Glycerol 1,2-diacetate Chemical compound CC(=O)OCC(CO)OC(C)=O UXDDRFCJKNROTO-UHFFFAOYSA-N 0.000 description 3
- 101000986821 Homo sapiens P2Y purinoceptor 4 Proteins 0.000 description 3
- 108060001084 Luciferase Proteins 0.000 description 3
- 239000005089 Luciferase Substances 0.000 description 3
- 101710096700 P2Y purinoceptor 2 Proteins 0.000 description 3
- 102000003982 Parathyroid hormone Human genes 0.000 description 3
- 108090000445 Parathyroid hormone Proteins 0.000 description 3
- 208000018737 Parkinson disease Diseases 0.000 description 3
- 102000007079 Peptide Fragments Human genes 0.000 description 3
- 108010033276 Peptide Fragments Proteins 0.000 description 3
- 108010085249 Purinergic P2 Receptors Proteins 0.000 description 3
- 102100040756 Rhodopsin Human genes 0.000 description 3
- 102000055135 Vasoactive Intestinal Peptide Human genes 0.000 description 3
- 108010003205 Vasoactive Intestinal Peptide Proteins 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- 238000007792 addition Methods 0.000 description 3
- 230000001800 adrenalinergic effect Effects 0.000 description 3
- 239000000048 adrenergic agonist Substances 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 239000000164 antipsychotic agent Substances 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 108091008324 binding proteins Proteins 0.000 description 3
- 230000031018 biological processes and functions Effects 0.000 description 3
- 229960002685 biotin Drugs 0.000 description 3
- 235000020958 biotin Nutrition 0.000 description 3
- 239000011616 biotin Substances 0.000 description 3
- 150000003943 catecholamines Chemical class 0.000 description 3
- 238000004587 chromatography analysis Methods 0.000 description 3
- 210000000349 chromosome Anatomy 0.000 description 3
- 210000000805 cytoplasm Anatomy 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 229960003638 dopamine Drugs 0.000 description 3
- 230000003291 dopaminomimetic effect Effects 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- MASNOZXLGMXCHN-ZLPAWPGGSA-N glucagon Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 MASNOZXLGMXCHN-ZLPAWPGGSA-N 0.000 description 3
- 229960004666 glucagon Drugs 0.000 description 3
- 229960003180 glutathione Drugs 0.000 description 3
- 230000013595 glycosylation Effects 0.000 description 3
- 238000006206 glycosylation reaction Methods 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 230000002163 immunogen Effects 0.000 description 3
- 238000007901 in situ hybridization Methods 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- VBUWHHLIZKOSMS-RIWXPGAOSA-N invicorp Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)C(C)C)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=C(O)C=C1 VBUWHHLIZKOSMS-RIWXPGAOSA-N 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- 210000004962 mammalian cell Anatomy 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 239000002858 neurotransmitter agent Substances 0.000 description 3
- 239000000123 paper Substances 0.000 description 3
- 239000000199 parathyroid hormone Substances 0.000 description 3
- 229960001319 parathyroid hormone Drugs 0.000 description 3
- 230000007170 pathology Effects 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- 230000008488 polyadenylation Effects 0.000 description 3
- 230000004224 protection Effects 0.000 description 3
- 230000004952 protein activity Effects 0.000 description 3
- 208000020016 psychiatric disease Diseases 0.000 description 3
- 108091008146 restriction endonucleases Proteins 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 201000000980 schizophrenia Diseases 0.000 description 3
- 238000007423 screening assay Methods 0.000 description 3
- 230000003248 secreting effect Effects 0.000 description 3
- 230000011664 signaling Effects 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- 230000004083 survival effect Effects 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 238000010361 transduction Methods 0.000 description 3
- 230000026683 transduction Effects 0.000 description 3
- 238000001890 transfection Methods 0.000 description 3
- 241000701161 unidentified adenovirus Species 0.000 description 3
- 241000701447 unidentified baculovirus Species 0.000 description 3
- 241001430294 unidentified retrovirus Species 0.000 description 3
- 210000003708 urethra Anatomy 0.000 description 3
- SFLSHLFXELFNJZ-QMMMGPOBSA-N (-)-norepinephrine Chemical compound NC[C@H](O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-QMMMGPOBSA-N 0.000 description 2
- UCTWMZQNUQWSLP-VIFPVBQESA-N (R)-adrenaline Chemical compound CNC[C@H](O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-VIFPVBQESA-N 0.000 description 2
- 229930182837 (R)-adrenaline Natural products 0.000 description 2
- 230000005730 ADP ribosylation Effects 0.000 description 2
- 108700028369 Alleles Proteins 0.000 description 2
- 108020004491 Antisense DNA Proteins 0.000 description 2
- 102100026189 Beta-galactosidase Human genes 0.000 description 2
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 2
- 108091033380 Coding strand Proteins 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- 102000008130 Cyclic AMP-Dependent Protein Kinases Human genes 0.000 description 2
- 108010049894 Cyclic AMP-Dependent Protein Kinases Proteins 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 108010004460 Gastric Inhibitory Polypeptide Proteins 0.000 description 2
- 102100039994 Gastric inhibitory polypeptide Human genes 0.000 description 2
- 206010071602 Genetic polymorphism Diseases 0.000 description 2
- 108060003199 Glucagon Proteins 0.000 description 2
- 239000000095 Growth Hormone-Releasing Hormone Substances 0.000 description 2
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 description 2
- 108090000144 Human Proteins Proteins 0.000 description 2
- 102000003839 Human Proteins Human genes 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 2
- 108010021466 Mutant Proteins Proteins 0.000 description 2
- 102000008300 Mutant Proteins Human genes 0.000 description 2
- 101710163270 Nuclease Proteins 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 208000008589 Obesity Diseases 0.000 description 2
- 102100028074 P2Y purinoceptor 6 Human genes 0.000 description 2
- 108010084214 Peptide PHI Proteins 0.000 description 2
- 239000000132 Peptide PHI Substances 0.000 description 2
- 108010001441 Phosphopeptides Proteins 0.000 description 2
- 108091000080 Phosphotransferase Proteins 0.000 description 2
- 102000004257 Potassium Channel Human genes 0.000 description 2
- 208000032236 Predisposition to disease Diseases 0.000 description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 description 2
- 102000007466 Purinergic P2 Receptors Human genes 0.000 description 2
- 102000000033 Purinergic Receptors Human genes 0.000 description 2
- 108010080192 Purinergic Receptors Proteins 0.000 description 2
- 101710146873 Receptor-binding protein Proteins 0.000 description 2
- 238000012300 Sequence Analysis Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 102100022831 Somatoliberin Human genes 0.000 description 2
- 101710142969 Somatoliberin Proteins 0.000 description 2
- 108010090804 Streptavidin Proteins 0.000 description 2
- 206010047139 Vasoconstriction Diseases 0.000 description 2
- 108090000643 Vasopressin Receptors Proteins 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- UCTWMZQNUQWSLP-UHFFFAOYSA-N adrenaline Chemical compound CNCC(O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-UHFFFAOYSA-N 0.000 description 2
- 238000001042 affinity chromatography Methods 0.000 description 2
- 210000001552 airway epithelial cell Anatomy 0.000 description 2
- 102000030619 alpha-1 Adrenergic Receptor Human genes 0.000 description 2
- 108020004102 alpha-1 Adrenergic Receptor Proteins 0.000 description 2
- 239000005557 antagonist Substances 0.000 description 2
- 230000006907 apoptotic process Effects 0.000 description 2
- 238000002820 assay format Methods 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 108010005774 beta-Galactosidase Proteins 0.000 description 2
- 238000004166 bioassay Methods 0.000 description 2
- 239000013060 biological fluid Substances 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- 229910001424 calcium ion Inorganic materials 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 230000024245 cell differentiation Effects 0.000 description 2
- 239000013592 cell lysate Substances 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 206010012601 diabetes mellitus Diseases 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 230000000857 drug effect Effects 0.000 description 2
- 238000007877 drug screening Methods 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 238000001976 enzyme digestion Methods 0.000 description 2
- 229960005139 epinephrine Drugs 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 2
- 230000006251 gamma-carboxylation Effects 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical class O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 230000033444 hydroxylation Effects 0.000 description 2
- 238000005805 hydroxylation reaction Methods 0.000 description 2
- 238000001114 immunoprecipitation Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 229960000367 inositol Drugs 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 210000001161 mammalian embryo Anatomy 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 230000011987 methylation Effects 0.000 description 2
- 238000007069 methylation reaction Methods 0.000 description 2
- 238000000520 microinjection Methods 0.000 description 2
- 229960002748 norepinephrine Drugs 0.000 description 2
- SFLSHLFXELFNJZ-UHFFFAOYSA-N norepinephrine Natural products NCC(O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-UHFFFAOYSA-N 0.000 description 2
- 238000003499 nucleic acid array Methods 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 235000020824 obesity Nutrition 0.000 description 2
- YLBIOQUUAYXLJJ-WZUUGAJWSA-N peptide histidine methionine Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1N=CNC=1)C(C)C)[C@@H](C)O)C1=CC=C(O)C=C1 YLBIOQUUAYXLJJ-WZUUGAJWSA-N 0.000 description 2
- 102000020233 phosphotransferase Human genes 0.000 description 2
- 230000006461 physiological response Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 102000054765 polymorphisms of proteins Human genes 0.000 description 2
- 102000040430 polynucleotide Human genes 0.000 description 2
- 108091033319 polynucleotide Proteins 0.000 description 2
- 239000002157 polynucleotide Substances 0.000 description 2
- 230000004481 post-translational protein modification Effects 0.000 description 2
- 108020001213 potassium channel Proteins 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 210000002307 prostate Anatomy 0.000 description 2
- 238000001243 protein synthesis Methods 0.000 description 2
- QVDSEJDULKLHCG-UHFFFAOYSA-N psilocybin Chemical compound C1=CC(OP(O)(O)=O)=C2C(CCN(C)C)=CNC2=C1 QVDSEJDULKLHCG-UHFFFAOYSA-N 0.000 description 2
- 108010026311 purinoceptor P2Y6 Proteins 0.000 description 2
- 239000012857 radioactive material Substances 0.000 description 2
- 239000000018 receptor agonist Substances 0.000 description 2
- 229940044601 receptor agonist Drugs 0.000 description 2
- 238000010188 recombinant method Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 2
- 229940076279 serotonin Drugs 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 210000001082 somatic cell Anatomy 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 230000019635 sulfation Effects 0.000 description 2
- 238000005670 sulfation reaction Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- 230000004614 tumor growth Effects 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- 210000005166 vasculature Anatomy 0.000 description 2
- 230000025033 vasoconstriction Effects 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- 239000006226 wash reagent Substances 0.000 description 2
- DNXIKVLOVZVMQF-UHFFFAOYSA-N (3beta,16beta,17alpha,18beta,20alpha)-17-hydroxy-11-methoxy-18-[(3,4,5-trimethoxybenzoyl)oxy]-yohimban-16-carboxylic acid, methyl ester Natural products C1C2CN3CCC(C4=CC=C(OC)C=C4N4)=C4C3CC2C(C(=O)OC)C(O)C1OC(=O)C1=CC(OC)=C(OC)C(OC)=C1 DNXIKVLOVZVMQF-UHFFFAOYSA-N 0.000 description 1
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- IHWDSEPNZDYMNF-UHFFFAOYSA-N 1H-indol-2-amine Chemical compound C1=CC=C2NC(N)=CC2=C1 IHWDSEPNZDYMNF-UHFFFAOYSA-N 0.000 description 1
- ODHCTXKNWHHXJC-VKHMYHEASA-N 5-oxo-L-proline Chemical compound OC(=O)[C@@H]1CCC(=O)N1 ODHCTXKNWHHXJC-VKHMYHEASA-N 0.000 description 1
- CJIJXIFQYOPWTF-UHFFFAOYSA-N 7-hydroxycoumarin Natural products O1C(=O)C=CC2=CC(O)=CC=C21 CJIJXIFQYOPWTF-UHFFFAOYSA-N 0.000 description 1
- 102000012440 Acetylcholinesterase Human genes 0.000 description 1
- 108010022752 Acetylcholinesterase Proteins 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 239000000275 Adrenocorticotropic Hormone Substances 0.000 description 1
- 108010000239 Aequorin Proteins 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 102000008936 Biogenic Amine Receptors Human genes 0.000 description 1
- 108010088628 Biogenic Amine Receptors Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241000345998 Calamus manan Species 0.000 description 1
- 102400000113 Calcitonin Human genes 0.000 description 1
- 108060001064 Calcitonin Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 102000003922 Calcium Channels Human genes 0.000 description 1
- 108090000312 Calcium Channels Proteins 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 208000016216 Choristoma Diseases 0.000 description 1
- 108700010070 Codon Usage Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 102400000739 Corticotropin Human genes 0.000 description 1
- 101800000414 Corticotropin Proteins 0.000 description 1
- 108010051219 Cre recombinase Proteins 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 108700020473 Cyclic AMP Receptor Proteins 0.000 description 1
- 241000701022 Cytomegalovirus Species 0.000 description 1
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 239000003298 DNA probe Substances 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- XPDXVDYUQZHFPV-UHFFFAOYSA-N Dansyl Chloride Chemical compound C1=CC=C2C(N(C)C)=CC=CC2=C1S(Cl)(=O)=O XPDXVDYUQZHFPV-UHFFFAOYSA-N 0.000 description 1
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 description 1
- 241001466109 Deuterostomia Species 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 241000168726 Dictyostelium discoideum Species 0.000 description 1
- 108091007265 Dopamine D2-Like Receptors Proteins 0.000 description 1
- 208000005189 Embolism Diseases 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 108010013369 Enteropeptidase Proteins 0.000 description 1
- 102100029727 Enteropeptidase Human genes 0.000 description 1
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- 108091029865 Exogenous DNA Proteins 0.000 description 1
- 108010046276 FLP recombinase Proteins 0.000 description 1
- 108010074860 Factor Xa Proteins 0.000 description 1
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 description 1
- 230000035519 G0 Phase Effects 0.000 description 1
- 108091008881 GPCRs class D Proteins 0.000 description 1
- 108010001515 Galectin 4 Proteins 0.000 description 1
- 102100039556 Galectin-4 Human genes 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 208000011688 Generalised anxiety disease Diseases 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 208000034826 Genetic Predisposition to Disease Diseases 0.000 description 1
- 108010063919 Glucagon Receptors Proteins 0.000 description 1
- 102400000326 Glucagon-like peptide 2 Human genes 0.000 description 1
- 101800000221 Glucagon-like peptide 2 Proteins 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 102000005720 Glutathione transferase Human genes 0.000 description 1
- 108010070675 Glutathione transferase Proteins 0.000 description 1
- 108010001483 Glycogen Synthase Proteins 0.000 description 1
- 108091006068 Gq proteins Proteins 0.000 description 1
- 102000052606 Gq-G11 GTP-Binding Protein alpha Subunits Human genes 0.000 description 1
- 206010062713 Haemorrhagic diathesis Diseases 0.000 description 1
- 101001017968 Homo sapiens Leukotriene B4 receptor 1 Proteins 0.000 description 1
- 101100296085 Homo sapiens P2RY2 gene Proteins 0.000 description 1
- 101001120086 Homo sapiens P2Y purinoceptor 12 Proteins 0.000 description 1
- 101000986836 Homo sapiens P2Y purinoceptor 2 Proteins 0.000 description 1
- 101000986826 Homo sapiens P2Y purinoceptor 6 Proteins 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 208000023105 Huntington disease Diseases 0.000 description 1
- 108700002232 Immediate-Early Genes Proteins 0.000 description 1
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 1
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 1
- 206010062717 Increased upper airway secretion Diseases 0.000 description 1
- 108020005350 Initiator Codon Proteins 0.000 description 1
- CIPFCGZLFXVXBG-FTSGZOCFSA-N Inositol 1,3,4,5-tetraphosphate Chemical compound O[C@H]1C(OP(O)(O)=O)[C@H](O)[C@@H](OP(O)(O)=O)C(OP(O)(O)=O)[C@H]1OP(O)(O)=O CIPFCGZLFXVXBG-FTSGZOCFSA-N 0.000 description 1
- 108090000862 Ion Channels Proteins 0.000 description 1
- 102000004310 Ion Channels Human genes 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- LEVWYRKDKASIDU-IMJSIDKUSA-N L-cystine Chemical compound [O-]C(=O)[C@@H]([NH3+])CSSC[C@H]([NH3+])C([O-])=O LEVWYRKDKASIDU-IMJSIDKUSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- 102100033374 Leukotriene B4 receptor 1 Human genes 0.000 description 1
- 102000004086 Ligand-Gated Ion Channels Human genes 0.000 description 1
- 108090000543 Ligand-Gated Ion Channels Proteins 0.000 description 1
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 102000016193 Metabotropic glutamate receptors Human genes 0.000 description 1
- 108010010914 Metabotropic glutamate receptors Proteins 0.000 description 1
- 208000019695 Migraine disease Diseases 0.000 description 1
- 229940123685 Monoamine oxidase inhibitor Drugs 0.000 description 1
- 101100018717 Mus musculus Il1rl1 gene Proteins 0.000 description 1
- 108010057466 NF-kappa B Proteins 0.000 description 1
- 102000003945 NF-kappa B Human genes 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 201000005118 Nephrogenic diabetes insipidus Diseases 0.000 description 1
- 108010025020 Nerve Growth Factor Proteins 0.000 description 1
- 102000007072 Nerve Growth Factors Human genes 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 208000025966 Neurological disease Diseases 0.000 description 1
- 102000004108 Neurotransmitter Receptors Human genes 0.000 description 1
- 108090000590 Neurotransmitter Receptors Proteins 0.000 description 1
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 1
- 108091005461 Nucleic proteins Chemical group 0.000 description 1
- 208000021384 Obsessive-Compulsive disease Diseases 0.000 description 1
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 102400000319 Oxyntomodulin Human genes 0.000 description 1
- 101800001388 Oxyntomodulin Proteins 0.000 description 1
- 101150056192 P2RY6 gene Proteins 0.000 description 1
- 102100037602 P2X purinoceptor 7 Human genes 0.000 description 1
- 101710189965 P2X purinoceptor 7 Proteins 0.000 description 1
- 101710096698 P2Y purinoceptor 3 Proteins 0.000 description 1
- 108050009478 P2Y purinoceptor 4 Proteins 0.000 description 1
- 101710096702 P2Y purinoceptor 6 Proteins 0.000 description 1
- 101150072940 P2ry1 gene Proteins 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 208000037273 Pathologic Processes Diseases 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 108010067902 Peptide Library Proteins 0.000 description 1
- 108010004729 Phycoerythrin Proteins 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 102100024819 Prolactin Human genes 0.000 description 1
- 108010057464 Prolactin Proteins 0.000 description 1
- 206010051482 Prostatomegaly Diseases 0.000 description 1
- 206010037211 Psychomotor hyperactivity Diseases 0.000 description 1
- 102000002294 Purinergic P2X Receptors Human genes 0.000 description 1
- 108010000836 Purinergic P2X Receptors Proteins 0.000 description 1
- 108010029812 Purinergic P2Y2 Receptors Proteins 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- LCQMZZCPPSWADO-UHFFFAOYSA-N Reserpilin Natural products COC(=O)C1COCC2CN3CCc4c([nH]c5cc(OC)c(OC)cc45)C3CC12 LCQMZZCPPSWADO-UHFFFAOYSA-N 0.000 description 1
- QEVHRUUCFGRFIF-SFWBKIHZSA-N Reserpine Natural products O=C(OC)[C@@H]1[C@H](OC)[C@H](OC(=O)c2cc(OC)c(OC)c(OC)c2)C[C@H]2[C@@H]1C[C@H]1N(C2)CCc2c3c([nH]c12)cc(OC)cc3 QEVHRUUCFGRFIF-SFWBKIHZSA-N 0.000 description 1
- 206010038910 Retinitis Diseases 0.000 description 1
- 206010038997 Retroviral infections Diseases 0.000 description 1
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 101150006985 STE2 gene Proteins 0.000 description 1
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 1
- 108091081021 Sense strand Proteins 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- 201000001880 Sexual dysfunction Diseases 0.000 description 1
- 206010041250 Social phobia Diseases 0.000 description 1
- 108050001286 Somatostatin Receptor Proteins 0.000 description 1
- 102000011096 Somatostatin receptor Human genes 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 241000701093 Suid alphaherpesvirus 1 Species 0.000 description 1
- 206010043118 Tardive Dyskinesia Diseases 0.000 description 1
- 108020005038 Terminator Codon Proteins 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 108010022394 Threonine synthase Proteins 0.000 description 1
- 108090000190 Thrombin Proteins 0.000 description 1
- 208000001435 Thromboembolism Diseases 0.000 description 1
- 208000000323 Tourette Syndrome Diseases 0.000 description 1
- 208000016620 Tourette disease Diseases 0.000 description 1
- 108020004566 Transfer RNA Proteins 0.000 description 1
- 229940123445 Tricyclic antidepressant Drugs 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- DRTQHJPVMGBUCF-XVFCMESISA-N Uridine Chemical class O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-XVFCMESISA-N 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 102000004136 Vasopressin Receptors Human genes 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 102000003734 Voltage-Gated Potassium Channels Human genes 0.000 description 1
- 108090000013 Voltage-Gated Potassium Channels Proteins 0.000 description 1
- 206010047700 Vomiting Diseases 0.000 description 1
- BLGXFZZNTVWLAY-CCZXDCJGSA-N Yohimbine Natural products C1=CC=C2C(CCN3C[C@@H]4CC[C@@H](O)[C@H]([C@H]4C[C@H]33)C(=O)OC)=C3NC2=C1 BLGXFZZNTVWLAY-CCZXDCJGSA-N 0.000 description 1
- MMWCIQZXVOZEGG-NCGNNJKGSA-N [(1r,2s,3s,4r,5r,6r)-2,3,5-trihydroxy-4,6-diphosphonooxycyclohexyl] dihydrogen phosphate Chemical compound O[C@H]1[C@H](O)[C@@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@H](O)[C@@H]1OP(O)(O)=O MMWCIQZXVOZEGG-NCGNNJKGSA-N 0.000 description 1
- INAPMGSXUVUWAF-GCVPSNMTSA-N [(2r,3s,5r,6r)-2,3,4,5,6-pentahydroxycyclohexyl] dihydrogen phosphate Chemical compound OC1[C@H](O)[C@@H](O)C(OP(O)(O)=O)[C@H](O)[C@@H]1O INAPMGSXUVUWAF-GCVPSNMTSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- OIPILFWXSMYKGL-UHFFFAOYSA-N acetylcholine Chemical compound CC(=O)OCC[N+](C)(C)C OIPILFWXSMYKGL-UHFFFAOYSA-N 0.000 description 1
- 229960004373 acetylcholine Drugs 0.000 description 1
- 229940022698 acetylcholinesterase Drugs 0.000 description 1
- 230000003504 ach effect Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000036982 action potential Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000009056 active transport Effects 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 238000001261 affinity purification Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000008484 agonism Effects 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 238000012867 alanine scanning Methods 0.000 description 1
- 102000004305 alpha Adrenergic Receptors Human genes 0.000 description 1
- 108090000861 alpha Adrenergic Receptors Proteins 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 150000001408 amides Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000012870 ammonium sulfate precipitation Methods 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 150000001450 anions Chemical group 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 230000008485 antagonism Effects 0.000 description 1
- 230000002788 anti-peptide Effects 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 239000003816 antisense DNA Substances 0.000 description 1
- 239000000074 antisense oligonucleotide Substances 0.000 description 1
- 238000012230 antisense oligonucleotides Methods 0.000 description 1
- 229940127217 antithrombotic drug Drugs 0.000 description 1
- 230000010516 arginylation Effects 0.000 description 1
- 210000004507 artificial chromosome Anatomy 0.000 description 1
- 210000001106 artificial yeast chromosome Anatomy 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000004421 aryl sulphonamide group Chemical group 0.000 description 1
- 230000003305 autocrine Effects 0.000 description 1
- 230000002567 autonomic effect Effects 0.000 description 1
- 239000013602 bacteriophage vector Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- MYEFHJZLNOFLNK-UHFFFAOYSA-N benzenesulfonamide;1,3-thiazole Chemical class C1=CSC=N1.NS(=O)(=O)C1=CC=CC=C1 MYEFHJZLNOFLNK-UHFFFAOYSA-N 0.000 description 1
- QLMRCWPSQHCLOE-UHFFFAOYSA-N benzenesulfonamide;oxadiazole Chemical class C1=CON=N1.NS(=O)(=O)C1=CC=CC=C1 QLMRCWPSQHCLOE-UHFFFAOYSA-N 0.000 description 1
- BLGXFZZNTVWLAY-UHFFFAOYSA-N beta-Yohimbin Natural products C1=CC=C2C(CCN3CC4CCC(O)C(C4CC33)C(=O)OC)=C3NC2=C1 BLGXFZZNTVWLAY-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000000035 biogenic effect Effects 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 210000002459 blastocyst Anatomy 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 230000004641 brain development Effects 0.000 description 1
- 230000003925 brain function Effects 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- 230000007883 bronchodilation Effects 0.000 description 1
- 230000011496 cAMP-mediated signaling Effects 0.000 description 1
- 229960004015 calcitonin Drugs 0.000 description 1
- BBBFJLBPOGFECG-VJVYQDLKSA-N calcitonin Chemical compound N([C@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(N)=O)C(C)C)C(=O)[C@@H]1CSSC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1 BBBFJLBPOGFECG-VJVYQDLKSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 230000003185 calcium uptake Effects 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 210000000748 cardiovascular system Anatomy 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000011748 cell maturation Effects 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 238000002659 cell therapy Methods 0.000 description 1
- 230000033077 cellular process Effects 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 238000012412 chemical coupling Methods 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 230000035605 chemotaxis Effects 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 108700010039 chimeric receptor Proteins 0.000 description 1
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 1
- 230000001713 cholinergic effect Effects 0.000 description 1
- 230000008711 chromosomal rearrangement Effects 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- IDLFZVILOHSSID-OVLDLUHVSA-N corticotropin Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)NC(=O)[C@@H](N)CO)C1=CC=C(O)C=C1 IDLFZVILOHSSID-OVLDLUHVSA-N 0.000 description 1
- 229960000258 corticotropin Drugs 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000009260 cross reactivity Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 229960003067 cystine Drugs 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 230000017858 demethylation Effects 0.000 description 1
- 238000010520 demethylation reaction Methods 0.000 description 1
- 239000003398 denaturant Substances 0.000 description 1
- 238000003935 denaturing gradient gel electrophoresis Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 150000001982 diacylglycerols Chemical class 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 102000004419 dihydrofolate reductase Human genes 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 231100000676 disease causative agent Toxicity 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000002996 emotional effect Effects 0.000 description 1
- 230000002124 endocrine Effects 0.000 description 1
- 210000000750 endocrine system Anatomy 0.000 description 1
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 1
- 230000037149 energy metabolism Effects 0.000 description 1
- 201000010063 epididymitis Diseases 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 230000008622 extracellular signaling Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 230000022244 formylation Effects 0.000 description 1
- 238000006170 formylation reaction Methods 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- 210000004051 gastric juice Anatomy 0.000 description 1
- 230000030135 gastric motility Effects 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 108091006104 gene-regulatory proteins Proteins 0.000 description 1
- 102000034356 gene-regulatory proteins Human genes 0.000 description 1
- 208000029364 generalized anxiety disease Diseases 0.000 description 1
- 230000007614 genetic variation Effects 0.000 description 1
- 238000003205 genotyping method Methods 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- TWSALRJGPBVBQU-PKQQPRCHSA-N glucagon-like peptide 2 Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(O)=O)C(O)=O)[C@@H](C)CC)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)CC)C1=CC=CC=C1 TWSALRJGPBVBQU-PKQQPRCHSA-N 0.000 description 1
- 125000000291 glutamic acid group Chemical group N[C@@H](CCC(O)=O)C(=O)* 0.000 description 1
- 150000003278 haem Chemical group 0.000 description 1
- 239000000380 hallucinogen Substances 0.000 description 1
- 208000031169 hemorrhagic disease Diseases 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000000742 histaminergic effect Effects 0.000 description 1
- 210000003630 histaminocyte Anatomy 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 102000043971 human P2RY12 Human genes 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000004191 hydrophobic interaction chromatography Methods 0.000 description 1
- 238000002169 hydrotherapy Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000012872 hydroxylapatite chromatography Methods 0.000 description 1
- 206010020718 hyperplasia Diseases 0.000 description 1
- 239000000601 hypothalamic hormone Substances 0.000 description 1
- 229940043650 hypothalamic hormone Drugs 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 238000003365 immunocytochemistry Methods 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000030214 innervation Effects 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- 230000003914 insulin secretion Effects 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 230000006662 intracellular pathway Effects 0.000 description 1
- 230000031146 intracellular signal transduction Effects 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 230000026045 iodination Effects 0.000 description 1
- 238000006192 iodination reaction Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 108020001756 ligand binding domains Proteins 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- HWYHZTIRURJOHG-UHFFFAOYSA-N luminol Chemical compound O=C1NNC(=O)C2=C1C(N)=CC=C2 HWYHZTIRURJOHG-UHFFFAOYSA-N 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 208000024714 major depressive disease Diseases 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000028161 membrane depolarization Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 108020004083 metabotropic receptors Proteins 0.000 description 1
- 102000006239 metabotropic receptors Human genes 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 150000002741 methionine derivatives Chemical class 0.000 description 1
- 230000027939 micturition Effects 0.000 description 1
- 206010027599 migraine Diseases 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000002297 mitogenic effect Effects 0.000 description 1
- 230000009149 molecular binding Effects 0.000 description 1
- PXZWGQLGAKCNKD-DPNMSELWSA-N molport-023-276-326 Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(O)=O)[C@@H](C)O)C(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 PXZWGQLGAKCNKD-DPNMSELWSA-N 0.000 description 1
- 239000002899 monoamine oxidase inhibitor Substances 0.000 description 1
- 210000000472 morula Anatomy 0.000 description 1
- 230000003551 muscarinic effect Effects 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 230000002107 myocardial effect Effects 0.000 description 1
- 230000007498 myristoylation Effects 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 210000004498 neuroglial cell Anatomy 0.000 description 1
- 230000003961 neuronal insult Effects 0.000 description 1
- 230000004112 neuroprotection Effects 0.000 description 1
- 239000003900 neurotrophic factor Substances 0.000 description 1
- 230000002474 noradrenergic effect Effects 0.000 description 1
- 239000002853 nucleic acid probe Substances 0.000 description 1
- 238000001668 nucleic acid synthesis Methods 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000002751 oligonucleotide probe Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000001582 osteoblastic effect Effects 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 208000019906 panic disease Diseases 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000009054 pathological process Effects 0.000 description 1
- 230000001991 pathophysiological effect Effects 0.000 description 1
- 239000000813 peptide hormone Substances 0.000 description 1
- 108010011903 peptide receptors Proteins 0.000 description 1
- 102000014187 peptide receptors Human genes 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 238000011170 pharmaceutical development Methods 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 238000011422 pharmacological therapy Methods 0.000 description 1
- 238000001050 pharmacotherapy Methods 0.000 description 1
- 208000026435 phlegm Diseases 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 229940080469 phosphocellulose Drugs 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 238000005222 photoaffinity labeling Methods 0.000 description 1
- 108091008695 photoreceptors Proteins 0.000 description 1
- 125000005544 phthalimido group Chemical group 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 230000001817 pituitary effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000001242 postsynaptic effect Effects 0.000 description 1
- 230000001323 posttranslational effect Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- IENZQIKPVFGBNW-UHFFFAOYSA-N prazosin Chemical compound N=1C(N)=C2C=C(OC)C(OC)=CC2=NC=1N(CC1)CCN1C(=O)C1=CC=CO1 IENZQIKPVFGBNW-UHFFFAOYSA-N 0.000 description 1
- 229960001289 prazosin Drugs 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000013823 prenylation Effects 0.000 description 1
- GCYXWQUSHADNBF-AAEALURTSA-N preproglucagon 78-108 Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1N=CNC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 GCYXWQUSHADNBF-AAEALURTSA-N 0.000 description 1
- 230000003518 presynaptic effect Effects 0.000 description 1
- 239000013615 primer Substances 0.000 description 1
- 239000002987 primer (paints) Substances 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 229940097325 prolactin Drugs 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 230000009145 protein modification Effects 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- 230000010344 pupil dilation Effects 0.000 description 1
- 230000001696 purinergic effect Effects 0.000 description 1
- 108010026302 purinoceptor P2Y4 Proteins 0.000 description 1
- 229940043131 pyroglutamate Drugs 0.000 description 1
- 230000006340 racemization Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000003127 radioimmunoassay Methods 0.000 description 1
- 239000002287 radioligand Substances 0.000 description 1
- 235000012950 rattan cane Nutrition 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000003259 recombinant expression Methods 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000027425 release of sequestered calcium ion into cytosol Effects 0.000 description 1
- 238000009256 replacement therapy Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000033458 reproduction Effects 0.000 description 1
- BJOIZNZVOZKDIG-MDEJGZGSSA-N reserpine Chemical compound O([C@H]1[C@@H]([C@H]([C@H]2C[C@@H]3C4=C([C]5C=CC(OC)=CC5=N4)CCN3C[C@H]2C1)C(=O)OC)OC)C(=O)C1=CC(OC)=C(OC)C(OC)=C1 BJOIZNZVOZKDIG-MDEJGZGSSA-N 0.000 description 1
- 229960003147 reserpine Drugs 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- MDMGHDFNKNZPAU-UHFFFAOYSA-N roserpine Natural products C1C2CN3CCC(C4=CC=C(OC)C=C4N4)=C4C3CC2C(OC(C)=O)C(OC)C1OC(=O)C1=CC(OC)=C(OC)C(OC)=C1 MDMGHDFNKNZPAU-UHFFFAOYSA-N 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000008786 sensory perception of smell Effects 0.000 description 1
- 210000002265 sensory receptor cell Anatomy 0.000 description 1
- 108091008691 sensory receptors Proteins 0.000 description 1
- 102000027509 sensory receptors Human genes 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000002864 sequence alignment Methods 0.000 description 1
- 230000000862 serotonergic effect Effects 0.000 description 1
- 230000002295 serotoninergic effect Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 231100000004 severe toxicity Toxicity 0.000 description 1
- 231100000872 sexual dysfunction Toxicity 0.000 description 1
- 239000013605 shuttle vector Substances 0.000 description 1
- 230000007781 signaling event Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 210000002460 smooth muscle Anatomy 0.000 description 1
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- NHXLMOGPVYXJNR-ATOGVRKGSA-N somatostatin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CSSC[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N1)[C@@H](C)O)NC(=O)CNC(=O)[C@H](C)N)C(O)=O)=O)[C@H](O)C)C1=CC=CC=C1 NHXLMOGPVYXJNR-ATOGVRKGSA-N 0.000 description 1
- 229960000553 somatostatin Drugs 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 208000010110 spontaneous platelet aggregation Diseases 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 230000004960 subcellular localization Effects 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000000946 synaptic effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- NQRYJNQNLNOLGT-UHFFFAOYSA-N tetrahydropyridine hydrochloride Natural products C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 238000003161 three-hybrid assay Methods 0.000 description 1
- 229960004072 thrombin Drugs 0.000 description 1
- 230000001732 thrombotic effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000005026 transcription initiation Effects 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000017105 transposition Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 239000003029 tricyclic antidepressant agent Substances 0.000 description 1
- 238000003160 two-hybrid assay Methods 0.000 description 1
- 238000010396 two-hybrid screening Methods 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 238000010798 ubiquitination Methods 0.000 description 1
- 230000034512 ubiquitination Effects 0.000 description 1
- HFTAFOQKODTIJY-UHFFFAOYSA-N umbelliferone Natural products Cc1cc2C=CC(=O)Oc2cc1OCC=CC(C)(C)O HFTAFOQKODTIJY-UHFFFAOYSA-N 0.000 description 1
- ORHBXUUXSCNDEV-UHFFFAOYSA-N umbelliferone Chemical compound C1=CC(=O)OC2=CC(O)=CC=C21 ORHBXUUXSCNDEV-UHFFFAOYSA-N 0.000 description 1
- 230000009452 underexpressoin Effects 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 108010033000 uridine triphosphate receptors Proteins 0.000 description 1
- 229940124549 vasodilator Drugs 0.000 description 1
- 239000003071 vasodilator agent Substances 0.000 description 1
- 230000001196 vasorelaxation Effects 0.000 description 1
- 230000029812 viral genome replication Effects 0.000 description 1
- 230000008673 vomiting Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 238000001086 yeast two-hybrid system Methods 0.000 description 1
- BLGXFZZNTVWLAY-SCYLSFHTSA-N yohimbine Chemical compound C1=CC=C2C(CCN3C[C@@H]4CC[C@H](O)[C@@H]([C@H]4C[C@H]33)C(=O)OC)=C3NC2=C1 BLGXFZZNTVWLAY-SCYLSFHTSA-N 0.000 description 1
- 229960000317 yohimbine Drugs 0.000 description 1
- AADVZSXPNRLYLV-UHFFFAOYSA-N yohimbine carboxylic acid Natural products C1=CC=C2C(CCN3CC4CCC(C(C4CC33)C(O)=O)O)=C3NC2=C1 AADVZSXPNRLYLV-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/05—Animals comprising random inserted nucleic acids (transgenic)
Definitions
- the present invention is in the field of G-Protein coupled receptors (GPCRs) that are related to the secretin receptor subfamily, recombinant DNA molecules, and protein production.
- GPCRs G-Protein coupled receptors
- the present invention specifically provides novel GPCR peptides and proteins and nucleic acid molecules encoding such peptide and protein molecules, all of which are useful in the development of human therapeutics and diagnostic compositions and methods.
- GPCRs G-protein coupled receptors
- GPCRs constitute a major class of proteins responsible for transducing a signal within a cell.
- GPCRs have three structural domains: an amino terminal extracellular domain, a transmembrane domain containing seven transmembrane segments, three extracellular loops, and three intracellular loops, and a carboxy terminal intracellular domain.
- a signal is transduced within the cell that results in a change in a biological or physiological property of the cell.
- GPCRs, along with G- proteins and effectors are the components of a modular signaling system that connects the state of intracellular second messengers to extracellular inputs.
- GPCR genes and gene-products are potential causative agents of disease (Spiegel et al.,J. Clin. Invest. 92: 119-1125 (1993); McKusick etal., J. Med. Genet. 30:1-26 (1993)).
- Specific defects in the rhodopsin gene and the V2 vasopressin receptor gene have been shown to cause various forms of retinitis pigmentosum (Nathans et al,Annu. Rev. Genet. 26:403-424(1992)), and nephrogenic diabetes insipidus (Holtzman et al, Hum. Mol. Genet. 2:1201-1204 (1993)).
- These receptors are of critical importance to both the central nervous system and peripheral physiological processes.
- GPCR protein superfamily can be divided into five families: Family I, receptors typified by rhodopsin and the ⁇ 2-purinergic receptor and currently represented by over 200 unique members (Dohlman et al, Annu. Rev. Biochem.
- Drosophila expresses a photoreceptor-specific protein, bride of sevenless (boss), a seven- transmembrane-segment protein that has been extensively studied and does not show evidence of being a GPCR (Hart et al, Proc. Natl. Acad. Sci. USA P0:5047-5051 (1993)).
- the gene frizzled (fz) in Drosophila is also thought to be a protein with seven transmembrane segments.
- G proteins represent a family of heterotrimeric proteins composed of ⁇ , ⁇ and ⁇ subunits, that bind guanine nucleotides. These proteins are usually linked to cell surface receptors, e.g., receptors containing seven transmembrane segments. Following ligand binding to the GPCR, a conformational change is transmitted to the G protein, which causes the ⁇ -subunit to exchange a bound GDP molecule for a GTP molecule and to dissociate from the ⁇ -subunits.
- the GTP-bound form of the ⁇ -subunit typically functions as an effector-modulating moiety, leading to the production of second messengers, such as cAMP (e.g., by activation of adenyl cyclase), diacylglycerol or inositol phosphates.
- second messengers such as cAMP (e.g., by activation of adenyl cyclase), diacylglycerol or inositol phosphates.
- cAMP e.g., by activation of adenyl cyclase
- diacylglycerol diacylglycerol
- inositol phosphates inositol phosphates.
- G proteins include Gi, Go, Gq, Gs and Gt. G proteins are described extensively in Lodish et al, Molecular Cell Biology, (Scientific American Books Inc., New York, N. Y., 1995), the contents of
- biogenic amines One family of the GPCRS, Family II, contains receptors for acetylcholine, catecholamine, and indoleamine ligands (hereafter referred to as biogenic amines).
- the biogenic amine receptors represent a large group of GPCRs that share a common evolutionary ancestor and which are present in both vertebrate (deuterostome), and invertebrate (protostome) lineages.
- This family of GPCRs includes, but is not limited to the 5-HT-like, the dopamine-like, the acetylcholine-like, the adrenaline-like and the melatonin-like GPCRs.
- Dopamine receptors The understanding of the dopaminergic system relevance in brain function and disease developed several decades ago from three diverse observations following drug treatments. These were the observations that dopamine replacement therapy improved Parkinson's disease symptoms, depletion of dopamine and other catecholamines by reserpine caused depression and antipsychotic drugs blocked dopamine receptors. The finding that the dopamine receptor binding affinities of typical antipsychotic drugs correlate with their clinical potency led to the dopamine overactivity hypothesis of schizophrenia (Snyder, S.H., Am J Psychiatry 133, 197-202 (1976); Seeman, P. and Lee, T., Science 188, 1217-9 (1975)).
- dopamine receptors are crucial targets in the pharmacological therapy of schizophrenia, Parkinson's disease, Tourette's syndrome, tardive dyskinesia and Huntington's disease.
- the dopaminergic system includes the nigrostriatal, mesocorticolimbic and toberoinfundibular pathways.
- the nigrostriatal pathway is part of the striatal motor system and its degeneration leads to Parkinson's disease; the mesocorticolimbic pathway plays a key role in reinforcement and in emotional expression and is the desired site of action of antipsychotic drugs; the tuberoinfundibular pathways regulates prolactin secretion from the pituitary.
- Dopamine receptors are members of the G protein coupled receptor superfamily, a large group proteins that share a seven helical membrane-spanning structure and transduce signals through coupling to heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins).
- Dopamine receptors are classified into subfamilies: Dl-like (Dl and D5) and D2-like (D2, D3 and D4) based on their different ligand binding profiles, signal transduction properties, sequence homologies and genomic organizations (Civelli, O., Bunzow, J.R. and Grandy, D.K., Annu Rev Pharmacol Toxicol 33, 281-307 (1993)).
- the Dl-like receptors, Dl and D5 stimulate cAMP synthesis through coupling with Gs-like proteins and their genes do not contain introns within their protein coding regions.
- the D2-like receptors, D2, D3 and D4 inhibit cAMP synthesis through their interaction with Gi-like proteins and share a similar genomic organization which includes introns within their protein coding regions.
- Serotonin (5-Hydroxytryptamine; 5-HT) was first isolated from blood serum, where it was shown to promote vasoconstriction (Rapport, M.M., Green, A.A. and Page, I.H., JBiol Chem 176, 1243-1251 (1948).
- Interest on a possible relationship between 5-HT and psychiatric disease was spurred by the observations that hallucinogens such as LSD and psilocybin inhibit the actions of 5- HT on smooth muscle preparations (Gaddum, J.H. and Hameed, K.A., Br J Pharmacol 9, 240-248 (1954)). This observation lead to the hypothesis that brain 5-HT activity might be altered in psychiatric disorders (Wooley, D.W.
- Serotonin receptors represent a very large and diverse family of neurotransmitter receptors. To date thirteen 5-HT receptor proteins coupled to G proteins plus one ligand-gated ion channel receptor (5-HT3) have been described in mammals. This receptor diversity is thought to reflect serotonin's ancient origin as a neurotransmitter and a hormone as well as the many different roles of 5-HT in mammals. The 5-HT receptors have been classified into seven subfamilies or groups according to their different ligand-binding affinity profiles, molecular structure and intracellular transduction mechanisms (Hoyer, D. et al., Pharmacol Rev. 46, 157-203 (1994)).
- the adrenergic receptors comprise one of the largest and most extensively characterized families within the G-protein coupled receptor "superfamily". This superfamily includes not only adrenergic receptors, but also muscarinic, cholinergic, dopaminergic, serotonergic, and histaminergic receptors. Numerous peptide receptors include glucagon, somatostatin, and vasopressin receptors, as well as sensory receptors for vision (rhodopsin), taste, and olfaction, also belong to this growing family. Despite the diversity of signalling molecules, G-protein coupled receptors all possess a similar overall primary structure, characterized by 7 putative membrane-spanning .alpha, helices (Probst et al., 1992).
- adrenergic receptors are the physiological sites of action of the catecholamines, epinephrine and norepinephrine.
- Adrenergic receptors were initially classified as either .alpha, or .beta, by Ahlquist, who demonstrated that the order of potency for a series of agonists to evoke a physiological response was distinctly different at the 2 receptor subtypes (Ahlquist, 1948).
- .alpha adrenergic receptors were shown to control vasoconstriction, pupil dilation and uterine inhibition, while .beta, adrenergic receptors were implicated in vasorelaxation, myocardial stimulation and bronchodilation (Regan et al., 1990).
- pharmacologists realized that these responses resulted from activation of several distinct adrenergic receptor subtypes, .beta, adrenergic receptors in the heart were defined as .beta..sub.l, while those in the lung and vasculature were termed .beta.. sub.2 (Lands et al., 1967). .alpha.
- Adrenergic receptors meanwhile, were first classified based on their anatomical location, as either pre or post-synaptic (.alpha..sub.2 and .alpha..sub.l, respectively) (Langer et al., 1974). This classification scheme was confounded, however, by the presence of .alpha..sub.2 receptors in distinctly non-synaptic locations, such as platelets (Berthelsen and Pettinger, 1977). With the development of radioligand binding techniques, .alpha, adrenergic receptors could be distinguished pharmacologically based on their affinities for the antagonists prazosin or yohimbine (Stark, 1981).
- the adrenergic receptor family has expanded to include 3 subtypes of .beta, receptors (Emorine et al., 1989), 3 subtypes of .alpha..sub.l receptors (Schwinn et al., 1990), and 3 distinct types of .beta..sub.2 receptors (Lomasney et al., 1990).
- alpha 1 receptor subtypes The cloning, sequencing and expression of alpha receptor subtypes from animal tissues has led to the subclassification of the alpha 1 receptors into alpha Id (formerly known as alpha la or la/Id), alpha lb and alpha la (formerly known as alpha lc) subtypes. Each alpha 1 receptor subtype exhibits its own pharmacologic and tissue specificities.
- alpha la is the appellation recently approved by the IUPHAR Nomenclature Committee for the previously designated “alpha lc” cloned subtype as outlined in the 1995 Receptor and Ion Channel Nomenclature Supplement (Watson and Girdlestone, 1995).
- alpha la is used throughout this application to refer to this subtype.
- alpha la was renamed alpha Id.
- the new nomenclature is used throughout this application. Stable cell lines expressing these alpha 1 receptor subtypes are referred to herein; however, these cell lines were deposited with the American Type Culture Collection (ATCC) under the old nomenclature.
- ATCC American Type Culture Collection
- alpha 1 adrenoceptor subtypes see, Martin C. Michel, et al., Naunyn-Schmiedeberg's Arch. Pharmacol. (1995) 352:1-10.
- the differences in the alpha adrenergic receptor subtypes have relevance in pathophysiologic conditions.
- Benign prostatic hyperplasia also known as benign prostatic hypertrophy or BPH
- BPH benign prostatic hypertrophy
- the symptoms of the condition include, but are not limited to, increased difficulty in urination and sexual dysfunction. These symptoms are induced by enlargement, or hyperplasia, of the prostate gland. As the prostate increases in size, it impinges on free-flow of fluids through the male urethra. Concommitantly, the increased noradrenergic innervation of the enlarged prostate leads to an increased adrenergic tone of the bladder neck and urethra, further restricting the flow of urine through the urethra.
- the .alpha..sub.2 receptors appear to have diverged rather early from either .beta, or .alpha..sub.l receptors.
- the .alpha..sub.2 receptors have been broken down into 3 molecularly distinct subtypes termed .alpha..sub.2 C2, .alpha.. sub.2 C4, and .alpha..sub.2 CIO based on their chromosomal location. These subtypes appear to correspond to the pharmacologically defined .alpha.. sub.2B, .alpha.. sub.2C, and .alpha.. sub.2A subtypes, respectively (Bylund et al., 1992).
- adrenergic receptors While all the receptors of the adrenergic type are recognized by epinephrine, they are pharmacologically distinct and are encoded by separate genes. These receptors are generally coupled to different second messenger pathways that are linked through G-proteins.
- adrenergic receptors .beta.. sub.l and .beta..sub.2 receptors activate the adenylate cyclase
- .alpha..sub.2 receptors inhibit adenylate cyclase
- .alpha..sub.l receptors activate phospholipase C pathways, stimulating breakdown of polyphosphoinositides (Chung, F. Z. et al., J. Biol. Chem., 263:4052 (1988)).
- .alpha..sub.l and .alpha..sub.2 adrenergic receptors differ in their cell activity for drugs.
- P2 purinoceptors have been broadly classified as P2X receptors which are ATP-gated channels; P2Y receptors, a family of G protein-coupled receptors, and P2Z receptors, which mediate nonselective pores in mast cells. Numerous subtypes have been identified for each of the P2 receptor classes. P2Y receptors are characterized by their selective responsiveness towards ATP and its analogs. Some respond also to UTP. Based on the recommendation for nomenclature of P2 purinoceptors, the P2Y purinoceptors were numbered in the order of cloning. P2Y1, P2Y2 and P2Y3 have been cloned from a variety of species.
- P2Y1 responds to both ADP and ATP.
- Analysis of P2 Y receptor subtype expression in human bone and 2 osteoblastic cell lines by RT-PCR showed that all known human P2Y receptor subtypes were expressed: P2Y1, P2Y2, P2Y4, P2Y6, and P2Y7 (Maier et al. 1997).
- analysis of brain-derived cell lines suggested that a selective expression of P2Y receptor subtypes occurs in brain tissue.
- Leon et al. generated P2Yl-null mice to define the physiologic role of the P2Y1 receptor. (J. Clin. Invest. 104: 1731-1737(1999)) These mice were viable with no apparent abnormalities affecting their development, survival, reproduction, or morphology of platelets, and the platelet count in these animals was identical to that of wildtype mice. However, platelets from P2Y1- def ⁇ cient mice were unable to aggregate in response to usual concentrations of ADP and displayed impaired aggregation to other agonists, while high concentrations of ADP induced platelet aggregation without shape change.
- the chloride ion secretory pathway that is defective in cystic fibrosis (CF) can be bypassed by an alternative pathway for chloride ion transport that is activated by extracellular nucleotides. Accordingly, the P2 receptor that mediates this effect is a therapeutic target for improving chloride secretion in CF patients.
- Parr et al. reported the sequence and functional expression of a cDNA cloned from human airway epithelial cells that encodes a protein with properties of a P2Y nucleotide receptor. (Proc. Nat. Acad. Sci.91: 3275-3279 (1994)) The human P2RY2 gene was mapped to chromosome Ilql3.5-ql4.1.
- Purinoceptor P2RY4 The P2RY4 receptor appears to be activated specifically by UTP and UDP, but not by ATP and ADP. Activation of this uridine nucleotide receptor resulted in increased inositol phosphate formation and calcium mobilization.
- the UNR gene is located on chromosome Xql3.
- Somers et al. mapped the P2RY6 gene to 1 lql3.5, between polymorphic markers DllS1314 and DllS916, and P2RY2 maps within less than 4 cM of P2RY6. (Genomics 44: 127- 130 (1997)) This was the first chromosomal clustering of this gene family to be described.
- Adenine and uridine nucleotides in addition to their well established role in intracellular energy metabolism, phosphorylation, and nucleic acid synthesis, also are important extracellular signaling molecules.
- P2Y metabotropic receptors are GPCRs that mediate the effects of extracellular nucleotides to regulate a wide variety of physiological processes. At least ten subfamilies of P2Y receptors have been identified. These receptor subfamilies differ greatly in their sequences and in their nucleotide agonist selectivities and efficacies.
- P2Y1 receptors are strongly expressed in the brain, but the P2Y2, P2Y4 and P2Y6 receptors are also present.
- the localisation of one or more of these subtypes on neurons, on glia cells, on brain vasculature or on ventricle ependimal cells was found by in situ mRNA hybridisation and studies on those cells in culture.
- the P2Y1 receptors are prominent on neurons.
- the coupling of certain P2Y receptor subtypes to N-type Ca2+ channels or to particular K+ channels was also demonstrated.
- P2Y receptors mediate potent growth stimulatory effects on smooth muscle cells by stimulating intracellular pathways including Gq-proteins, protein kinase C and tyrosine phosphorylation, leading to increased immediate early gene expression, cell number, DNA and protein synthesis. It has been further demonstrated that P2Y regulation plays a mitogenic role in response to the development of artherosclerosis.
- P2Y receptors play a critical role in cystic fibrosis.
- the volume and composition of the liquid that lines the airway surface is modulated by active transport of ions across the airway epithelium. This in turn is regulated both by autonomic agonists acting on basolateral receptors and by agonists acting on luminal receptors.
- extracellular nucleotides present in the airway surface liquid act on luminal P2Y receptors to control both CI- secretion and Na+ absorption. Since nucleotides are released in a regulated manner from airway epithelial cells, it is likely that their control over airway ion transport forms part of an autocrine regulatory system localised to the luminal surface of airway epithelia.
- P2Y receptor agonists have the potential to be of crucial benefit in the treatment of CF, a disorder of epithelial ion transport.
- the airways of people with CF have defective Cl- secretion and abnormally high rates of Na+ absorption. Since P2Y receptor agonists can regulate both these ion transport pathways they have the potential to pharmacologically bypass the ion transport defects in CF.
- the novel human protein, and encoding gene, provided by the present invention is related to the secretin receptor subfamily of GPCRs, as well as related peptides/molecules such as glycosylated cell surface molecules such as mucin and mucin-like cell-surface molecules.
- the secretin receptor family includes receptors for the vasoactive intestinal peptide (VIP)/secretin/glucagon family of peptide hormones.
- VIP vasoactive intestinal peptide
- the protein of the present invention shows similarity to HE6 (also referred to as GPCR 64), a GPCR that is expressed in epithelial cells lining the epididymal duct (Osterhoff etal, DNA Cell Biol 1997 Apr;16(4):379-89). Secretin inhibits adrenocorticotropic hormone release (Nussdorfer et al, Peptides 2000
- Secretin as well as VIP, are thought to promote growth of tumor cells (Habal et al, JSurg Oncol 2000 Dec;75(4):306-0); thus, inhibition of secretin receptors may inhibit tumor growth.
- the secretin receptor family may utilize adenylate cyclase/protein kinase A and phospholipase C/protein kinase C signaling cascades.
- the NIP/secretin/glucagon family includes, but is not limited to, such members as secretin, NIP, glucagons, glucagon-like peptide-1 (GLP-1), GLP-2, gastric inhibitory polypeptide, glucose- dependent insulinotropic polypeptide, parathyroid hormone (PTH), pituitary adenylate cyclase- activating polypeptide (PACAP), growth hormone-releasing factor (GRF), peptide histidine- methionine (PHM), oxyntomodulin, and exendins.
- GLP-1 glucagon-like peptide-1
- GLP-2 gastric inhibitory polypeptide
- glucose- dependent insulinotropic polypeptide glucose- dependent insulinotropic polypeptide
- PTH parathyroid hormone
- PACAP pituitary adenylate cyclase- activating polypeptide
- GRF growth hormone-releasing factor
- PLM peptide histidine- methionine
- PACAP is involved in cellular proliferation, differentiation, and apoptosis and is important for regulating metabolism and the cardiovascular, endocrine, and immune systems (Sherwood et al, Endocr Rev 2000 Dec;21(6):619-70).
- PACAP also functions as hypothalamic hormone, neurotransmitter, neuromodulator, vasodilator and neurotrophic factor that may be important in brain development.
- PACAP also stimulates insulin release and may be important in germ cell maturation.
- PACAP appears to provide neuroprotection to prevent neuronal damage from various insults (Shioda, Kaibogaku Zasshi 2000 Dec;75(6):487-507 and Arimura, Jpn J Physiol 1998 Oct;48(5):301-31).
- PACAP has effects on various tumor cell types (Naudry et al, Pharmacol Rev 2000 Jun;52(2):269-324). PACAP-38 was found to increase survival of cerebellar neurons by decreasing apoptosis (Journot et al, AnnNYAcadSci 1998 Dec 11;865:100-10).
- GPCRs particularly members of the secretin receptor subfamily, are a major target for drug action and development. Accordingly, it is valuable to the field of pharmaceutical development to identify and characterize previously unknown GPCRs.
- the present invention advances the state of the art by providing a previously unidentified human GPCR.
- the present invention is based in part on the identification of nucleic acid sequences that encode amino acid sequences of human GPCR peptides and proteins that are related to the secretin receptor subfamily, allelic variants thereof and other mammalian orthologs thereof. These unique peptide sequences, and nucleic acid sequences that encode these peptides, can be used as models for the development of human therapeutic targets, aid in the identification of therapeutic proteins, and serve as targets for the development of human therapeutic agents.
- the proteins of the present inventions are GPCRs that participate in signaling pathways mediated by the secretin receptor subfamily in cells that express these proteins.
- a “signaling pathway” refers to the modulation (e.g., stimulation or inhibition) of a cellular function/activity upon the binding of a ligand to the GPCR protein.
- Examples of such functions include mobilization of intracellular molecules that participate in a signal transduction pathway, e.g., phosphatidylinositol 4,5-bisphosphate (PIP 2 ), inositol 1,4,5-triphosphate (IP 3 ) and adenylate cyclase; polarization of the plasma membrane; production or secretion of molecules; alteration in the structure of a cellular component; cell proliferation, e.g., synthesis of DNA; cell migration; cell differentiation; and cell survival
- the response mediated by the receptor protein depends on the type of cell it is expressed on.
- Some information regarding the types of cells that express other members of the subfamily of GPCRs of the present invention is already known in the art (see references cited in Background and information regarding closest homologous protein provided in Figure 2; Experimental data as provided in Figure 1 indicates expression in humans in fetal retina and a mixed brain/heart/kidney/lung/spleen/testis/leukocyte sample. ).
- binding of a ligand to the receptor protein may stimulate an activity such as release of compounds, gating of a channel, cellular adhesion, migration, differentiation, etc., through phosphatidylinositol or cyclic AMP metabolism and turnover while in other cells, the binding of the ligand will produce a different result.
- the receptor protein is a GPCR and interacts with G proteins to produce one or more secondary signals, in a variety of intracellular signal transduction pathways, e.g., through phosphatidylinositol or cyclic AMP metabolism and turnover, in a cell thus participating in a biological process in the cells or tissues that express the GPCR.
- phosphatidylinositol turnover and metabolism refers to the molecules involved in the turnover and metabolism of phosphatidylinositol 4,5-bisphosphate (PIP 2 ) as well as to the activities of these molecules.
- PIP 2 is a phospholipid found in the cytosolic leaflet of the plasma membrane.
- IP 3 1,2-diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP 3 ).
- DAG 1,2-diacylglycerol
- IP 3 inositol 1,4,5-triphosphate
- IP 3 receptor e.g., a calcium channel protein containing an IP 3 binding site. IP3 binding can induce opening of the channel, allowing calcium ions to be released into the cytoplasm.
- IP 3 can also be phosphorylated by a specific kinase to form inositol 1 ,3,4,5-tetraphosphate (TP 4 ), a molecule that can cause calcium entry into the cytoplasm from the extracellular medium.
- IP3 and IP 4 can subsequently be hydrolyzed very rapidly to the inactive products inositol 1,4-biphosphate (IP 2 ) and inositol 1,3,4-triphosphate, respectively. These inactive products can be recycled by the cell to synthesize PIP .
- the other second messenger produced by the hydrolysis of PIP 2 namely 1,2-diacylglycerol (DAG), remains in the cell membrane where it can serve to activate the enzyme protein kinase C.
- DAG 1,2-diacylglycerol
- Protein kinase C is usually found soluble in the cytoplasm of the cell, but upon an increase in the intracellular calcium concentration, this enzyme can move to the plasma membrane where it can be activated by DAG.
- the activation of protein kinase C in different cells results in various cellular responses such as the phosphorylation of glycogen synthase, or the phosphorylation of various transcription factors, e.g., NF-kB.
- phosphatidylinositol activity refers to an activity of PIP 2 or one of its metabolites.
- Cyclic AMP is a second messenger produced in response to ligand-induced stimulation of certain G protein coupled receptors.
- binding of a ligand to a GPCR can lead to the activation of the enzyme adenyl cyclase, which catalyzes the synthesis of cAMP.
- the newly synthesized cAMP can in turn activate a cAMP-dependent protein kinase.
- This activated kinase can phosphorylate a voltage-gated potassium channel protein, or an associated protein, and lead to the inability of the potassium channel to open during an action potential.
- the inability of the potassium channel to open results in a decrease in the outward flow of potassium, which normally repolarizes the membrane of a neuron, leading to prolonged membrane depolarization.
- the signaling activity and biological process mediated by the receptor can be agonized or antagonized in specific cells and tissues.
- Experimental data as provided in Figure 1 indicates expression in humans in fetal retina and a mixed brain/heart/kidney/lung/spleen/testis/leukocyte sample.
- agonism and antagonism serves as a basis for modulating a biological activity in a therapeutic context (mammalian therapy) or toxic context (anti-cell therapy, e.g. anti-cancer agent).
- FIGURE 1 provides the nucleotide sequence of a cDNA molecule that encodes the GPCR of the present invention. (SEQ ID NO:l)
- structure and functional information is provided, such as ATG start, stop and tissue distribution, where available, that allows one to readily determine specific uses of inventions based on this molecular sequence.
- Experimental data as provided in Figure 1 indicates, expression in humans in fetal retina and a mixed brain/heart/kidney/lung/spleen/testis/leukocyte sample.
- FIGURE 2 provides the predicted amino acid sequence of the GPCR of the present invention.
- SEQ ID NO:2 In addition structure and functional information such as protein family, function, and modification sites is provided where available, allowing one to readily determine specific uses of inventions based on this molecular sequence.
- FIGURE 3 provides genomic sequences that span the gene encoding the GPCR protein of the present invention.
- SEQ ID NO:3 In addition structure and functional information, such as intron/exon structure, promoter location, etc., is provided where available, allowing one to readily determine specific uses of inventions based on this molecular sequence. As illustrated in Figure 3, SNPs were identified at 25 different nucleotide positions.
- the present invention is based on the sequencing of the human genome.
- analysis of the sequence information revealed previously unidentified fragments of the human genome that encode peptides that share structural and/or sequence homology to protein/peptide/domains identified and characterized within the art as being a GPCR protein or part of a GPCR protein, that are related to the secretin receptor subfamily.
- additional genomic sequences were assembled and transcript and/or cDNA sequences were isolated and characterized.
- the present invention provides amino acid sequences of human GPCR peptides and proteins that are related to the secretin receptor subfamily, nucleic acid sequences in the form of transcript sequences, cDNA sequences and or genomic sequences that encode these GPCR peptides and proteins, nucleic acid variation (allelic information), tissue distribution of expression, and information about the closest art known protein/peptide/domain that has structural or sequence homology to the GPCR of the present invention.
- the peptides that are provided in the present invention are selected based on their ability to be used for the development of commercially important products and services. Specifically, the present peptides are selected based on homology and/or structural relatedness to known GPCR proteins of the secretin receptor subfamily and the expression pattern observed.
- Experimental data as provided in Figure 1 indicates expression in humans in fetal retina and a mixed brain/heart/kidney/lung/spleen/testis/leukocyte sample. The art has clearly established the commercial importance of members of this family of proteins and proteins that have expression patterns similar to that of the present gene.
- the present invention provides nucleic acid sequences that encode protein molecules that have been identified as being members of the GPCR family of proteins and are related to the secretin receptor subfamily (protein sequences are provided in Figure 2, transcript/cDNA sequences are provided in Figure 1 and genomic sequences are provided in Figure 3).
- the peptide sequences provided in Figure 2, as well as the obvious variants described herein, particularly allelic variants as identified herein and using the information in Figure 3, will be referred herein as the GPCR peptides of the present invention, GPCR peptides, or peptides/proteins of the present invention.
- the present invention provides isolated peptide and protein molecules that consist of, consist essentially of, or comprise the amino acid sequences of the GPCR peptides disclosed in Figure 2, (encoded by the nucleic acid molecule shown in Figure 1, transcript cDNA sequence, or Figure 3, genomic sequence), as well as all obvious variants of these peptides that are within the art to make and use. Some of these variants are described in detail below.
- a peptide is said to be “isolated” or “purified” when it is substantially free of cellular material or free of chemical precursors or other chemicals.
- the peptides of the present invention can be purified to homogeneity or other degrees of purity. The level of purification will be based on the intended use.
- the critical feature is that the preparation allows for the desired function of the peptide, even if in the presence of considerable amounts of other components (the features of an isolated nucleic acid molecule is discussed below).
- substantially free of cellular material includes preparations of the peptide having less than about 30% (by dry weight) other proteins (i.e., contaminating protein), less than about 20% other proteins, less than about 10% other proteins, or less than about 5% other proteins.
- the peptide when it is recombinantly produced, it can also be substantially free of culture medium, i.e., culture medium represents less than about 20% of the volume of the protein preparation.
- the language "substantially free of chemical precursors or other chemicals” includes preparations of the peptide in which it is separated from chemical precursors or other chemicals that are involved in its synthesis.
- the language "substantially free of chemical precursors or other chemicals” includes preparations of the GPCR peptide having less than about 30% (by dry weight) chemical precursors or other chemicals, less than about 20% chemical precursors or other chemicals, less than about 10% chemical precursors or other chemicals, or less than about 5% chemical precursors or other chemicals.
- the isolated GPCR peptide can be purified from cells that naturally express it, purified from cells that have been altered to express it (recombinant), or synthesized using known protein synthesis methods.
- Experimental data as provided in Figure 1 indicates expression in humans in fetal retina and a mixed brain/heartMdney lung spleentestis/leukocyte sample.
- a nucleic acid molecule encoding the GPCR peptide is cloned into an expression vector, the expression vector introduced into a host cell and the protein expressed in the host cell.
- the protein can then be isolated from the cells by an appropriate purification scheme using standard protein purification techniques. Many of these techniques are described in detail below.
- the present invention provides proteins that consist of the amino acid sequences provided in Figure 2 (SEQ ID NO:2), for example, proteins encoded by the transcript/cDNA nucleic acid sequences shown in Figure 1 (SEQ ID NO:l) and the genomic sequences provided in Figure 3 (SEQ ID NO:3).
- the amino acid sequence of such a protein is provided in Figure 2.
- a protein consists of an amino acid sequence when the amino acid sequence is the final amino acid sequence of the protein.
- the present invention further provides proteins that consist essentially of the amino acid sequences provided in Figure 2 (SEQ ID NO:2), for example, proteins encoded by the transcript/cDNA nucleic acid sequences shown in Figure 1 (SEQ ID NO:l) and the genomic sequences provided in Figure 3 (SEQ ID NO:3).
- a protein consists essentially of an amino acid sequence when such an amino acid sequence is present with only a few additional amino acid residues, for example from about 1 to about 100 or so additional residues, typically from 1 to about 20 additional residues in the final protein.
- the present invention further provides proteins that comprise the amino acid sequences provided in Figure 2 (SEQ ID NO:2), for example, proteins encoded by the transcript/cDNA nucleic acid sequences shown in Figure 1 (SEQ ID NO:l) and the genomic sequences provided in Figure 3 (SEQ ID NO:3).
- a protein comprises an amino acid sequence when the amino acid sequence is at least part of the final amino acid sequence of the protein. In such a fashion, the protein can be only the peptide or have additional amino acid molecules, such as amino acid residues (contiguous encoded sequence) that are naturally associated with it or heterologous amino acid residues/peptide sequences. Such a protein can have a few additional amino acid residues or can comprise several hundred or more additional amino acids.
- the preferred classes of proteins that are comprised of the GPCR peptides of the present invention are the naturally occurring mature proteins. A brief description of how various types of these proteins can be made/isolated is provided below.
- the GPCR peptides of the present invention can be attached to heterologous sequences to form chimeric or fusion proteins.
- Such chimeric and fusion proteins comprise a GPCR peptide operatively linked to a heterologous protein having an amino acid sequence not substantially homologous to the GPCR peptide. "Operatively linked" indicates that the GPCR peptide and the heterologous protein are fused in-frame.
- the heterologous protein can be fused to the N-terminus or C-terminus of the GPCR peptide. In some uses, the fusion protein does not affect the activity of the GPCR peptide er se.
- the fusion protein can include, but is not limited to, enzymatic fusion proteins, for example beta-galactosidase fusions, yeast two-hybrid GAL fusions, poly-His fusions, MYC-tagged, HI- tagged and Ig fusions.
- enzymatic fusion proteins for example beta-galactosidase fusions, yeast two-hybrid GAL fusions, poly-His fusions, MYC-tagged, HI- tagged and Ig fusions.
- Such fusion proteins, particularly poly-His fusions can facilitate the purification of recombinant GPCR peptide.
- expression and/or secretion of a protein can be increased by using a heterologous signal sequence.
- a chimeric or fusion protein can be produced by standard recombinant DNA techniques.
- DNA fragments coding for the different protein sequences are ligated together in- frame in accordance with conventional techniques.
- the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers.
- PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and re-amplified to generate a chimeric gene sequence (see Ausubel et al, Current Protocols in Molecular Biology, 1992).
- many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST protein).
- a GPCR peptide-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in- frame to the GPCR peptide.
- the present invention also provides and enables obvious variants of the amino acid sequence of the proteins of the present invention, such as naturally occurring mature forms of the peptide, allelic/sequence variants of the peptides, non-naturally occurring recombinantly derived variants of the peptides, and orthologs and paralogs of the peptides.
- variants can readily be generated using art-known techniques in the fields of recombinant nucleic acid technology and protein biochemistry. It is understood, however, that variants exclude any amino acid sequences disclosed prior to the invention.
- variants can readily be identified/made using molecular techniques and the sequence information disclosed herein. Further, such variants can readily be distinguished from other peptides based on sequence and/or structural homology to the GPCR peptides of the present invention. The degree of homology/identity present will be based primarily on whether the peptide is a functional variant or non-functional variant, the amount of divergence present in the paralog family and the evolutionary distance between the orthologs.
- the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes).
- the length of a reference sequence aligned for comparison purposes is at least 30%, 40%, 50%, 60%, 70%, 80%, or 90% or more of the length of the reference sequence. The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared.
- amino acid or nucleic acid “identity” is equivalent to amino acid or nucleic acid "homology”).
- the percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.
- the percent identity between two amino acid sequences is determined using the Needleman and Wunsch (J. Mol. Biol. (48):444-453 (1970)) algorithm which has been incorporated into the GAP program in the GCG software package (available at http://www.gcg.com), using either a Blossom 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6.
- the percent identity between two nucleotide sequences is determined using the GAP program in the GCG software package (Devereux, J., et al, Nucleic Acids Res.
- the percent identity between two amino acid or nucleotide sequences is determined using the algorithm of E. Meyers and W. Miller (CABIOS, 4:11-17 (1989)) wliich has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.
- the nucleic acid and protein sequences of the present invention can further be used as a "query sequence" to perform a search against sequence databases to, for example, identify other family members or related sequences.
- search can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul, et al. (J. Mol Biol 215:403-10 (1990)).
- Gapped BLAST can be utilized as described in Altschul et al. (Nucleic Acids Res. 25(17):3389-3402 (1997)).
- the default parameters of the respective programs e.g., XBLAST and NBLAST
- XBLAST and NBLAST can be used.
- Full-length pre-processed forms, as well as mature processed forms, of proteins that comprise one of the peptides of the present invention can readily be identified as having complete sequence identity to one of the GPCR peptides of the present invention as well as being encoded by the same genetic locus as the GPCR peptide provided herein.
- the gene encoding the novel GPCR protein of the present invention is located on a genome component that has been mapped to human chromosome X (as indicated in Figure 3), which is supported by multiple lines of evidence, such as STS and BAC map data.
- GPCR peptide can readily be identified as being a human protein having a high degree (significant) of sequence homology/identity to at least a portion of the GPCR peptide as well as being encoded by the same genetic locus as the GPCR peptide provided herein. Genetic locus can readily be determined based on the genomic information provided in Figure 3, such as the genomic sequence mapped to the reference human.
- the gene encoding the novel GPCR protein of the present invention is located on a genome component that has been mapped to human chromosome X (as indicated in Figure 3), which is supported by multiple lines of evidence, such as STS and BAC map data.
- two proteins have significant homology when the amino acid sequences are typically at least about 70-80%, 80- 90%, and more typically at least about 90-95% or more homologous.
- a significantly homologous amino acid sequence will be encoded by a nucleic acid sequence that will hybridize to a GPCR peptide encoding nucleic acid molecule under stringent conditions as more fully described below.
- Figure 3 provides information on SNPs that have been found in the gene encoding the GPCR protein of the present invention. SNPs were identified at 25 different nucleotide positions. Some of these SNPs that are located outside the ORF and in introns may affect gene transcription.
- Paralogs of a GPCR peptide can readily be identified as having some degree of significant sequence homology/identity to at least a portion of the GPCR peptide, as being encoded by a gene from humans, and as having similar activity or function.
- Two proteins will typically be considered paralogs when the amino acid sequences are typically at least about 60% or greater, and more typically at least about 70% or greater homology through a given region or domain.
- Such paralogs will be encoded by a nucleic acid sequence that will hybridize to a GPCR peptide encoding nucleic acid molecule under moderate to stringent conditions as more fully described below.
- Orthologs of a GPCR peptide can readily be identified as having some degree of significant sequence homology/identity to at least a portion of the GPCR peptide as well as being encoded by a gene from another organism.
- Preferred orthologs will be isolated from mammals, preferably primates, for the development of human therapeutic targets and agents. Such orthologs will be encoded by a nucleic acid sequence that will hybridize to a GPCR peptide encoding nucleic acid molecule under moderate to stringent conditions, as more fully described below, depending on the degree of relatedness of the two organisms yielding the proteins.
- Non-naturally occurring variants of the GPCR peptides of the present invention can readily be generated using recombinant techniques.
- Such variants include, but are not limited to deletions, additions and substitutions in the amino acid sequence of the GPCR peptide.
- one class of substitutions are conserved amino acid substitution.
- Such substitutions are those that substitute a given amino acid in a GPCR peptide by another amino acid of like characteristics.
- conservative substitutions are the replacements, one for another, among the aliphatic amino acids Ala, Val, Leu, and He; interchange of the hydroxyl residues Ser and Thr; exchange of the acidic residues Asp and Glu; substitution between the amide residues Asn and Gin; exchange of the basic residues Lys and Arg; and replacements among the aromatic residues Phe and
- Variant GPCR peptides can be fully functional or can lack function in one or more activities, e.g. ability to bind ligand, ability to bind G-protein, ability to mediate signaling, etc.
- Fully functional variants typically contain only conservative variation or variation in non-critical residues or in non-critical regions.
- Figure 2 provides the result of protein analysis that identifies critical domains/regions.
- Functional variants can also contain substitution of similar amino acids that result in no change or an insignificant change in function. Alternatively, such substitutions may positively or negatively affect function to some degree.
- Non-functional variants typically contain one or more non-conservative amino acid substitutions, deletions, insertions, inversions, or truncation or a substitution, insertion, inversion, or deletion in a critical residue or critical region.
- Amino acids that are essential for function can be identified by methods known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham et al, Science
- J introduces single alanine mutations at every residue in the molecule.
- the resulting mutant molecules are then tested for biological activity such as ligand/effector molecule binding or in assays such as an in vitro proliferative activity.
- Sites that are critical for ligand-receptor binding can also be determined by structural analysis such as crystallization, nuclear magnetic resonance or photoaffinity labeling (Smith et al, J. Mol. Biol. 224:899-904 (1992); de Vos et al. Science 255:306-312 (1992)).
- the present invention further provides fragments of the GPCR peptides, in addition to proteins and peptides that comprise and consist of such fragments, particularly those comprising the residues identified in Figure 2.
- the fragments to which the invention pertains are not to be construed as encompassing fragments that may be disclosed publicly prior to the present invention.
- a fragment comprises at least 8, 10, 12, 14, 16, or more contiguous amino acid residues from a GPCR peptide.
- Such fragments can be chosen based on the ability to retain one or more of the biological activities of the GPCR peptide or could be chosen for the ability to perform a function, e.g. ability to bind ligand or effector molecule or act as an immunogen.
- fragments are biologically active fragments, peptides which are, for example, about 8 or more amino acids in length.
- Such fragments will typically comprise a domain or motif of the GPCR peptide, e.g., active site, a G-protein binding site, a transmembrane domain or a ligand- binding domain.
- possible fragments include, but are not limited to, domain or motif containing fragments, soluble peptide fragments, and fragments containing immunogenic structures.
- Predicted domains and functional sites are readily identifiable by computer programs well-known and readily available to those of skill in the art (e.g., PROSITE analysis). The results of one such analysis are provided in Figure 2.
- Polypeptides often contain amino acids other than the 20 amino acids commonly referred to as the 20 naturally occurring amino acids. Further, many amino acids, including the terminal amino acids, may be modified by natural processes, such as processing and other post-translational modifications, or by chemical modification techniques well known in the art. Common modifications that occur naturally in GPCR peptides are described in basic texts, detailed monographs, and the research literature, and they are well known to those of skill in the art(some of these features are identified in Figure 2).
- Known modifications include, but are not limited to, acetylation, acylation, ADP- ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent crosslinks, formation of cystine, formation of pyroglutamate, formylation, gamma carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination.
- the GPCR peptides of the present invention also encompass derivatives or analogs in which a substituted amino acid residue is not one encoded by the genetic code, in which a substituent group is included, in which the mature GPCR peptide is fused with another compound, such as a compound to increase the half-life of the GPCR peptide (for example, polyethylene glycol), or in which the additional amino acids are fused to the mature GPCR peptide, such as a leader or secretory sequence or a sequence for ptirification of the mature GPCR peptide or a pro- protein sequence.
- a substituted amino acid residue is not one encoded by the genetic code, in which a substituent group is included, in which the mature GPCR peptide is fused with another compound, such as a compound to increase the half-life of the GPCR peptide (for example, polyethylene glycol), or in which the additional amino acids are fused to the mature GPCR peptide, such as a leader or secretory sequence or a sequence for p
- the proteins of the present invention can be used in substantial and specific assays related to the functional information provided in the Figures and Back Ground Section; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its binding partner or receptor) in biological fluids; and as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state).
- the protein binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction)
- the protein can be used to identify the binding partner so as to develop a system to identify inhibitors of the binding interaction. Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as commercial products.
- GPCRs isolated from humans and their human/mammalian orthologs serve as targets for identifying agents for use in mammalian therapeutic applications, e.g. a human drug, particularly in modulating a biological or pathological response in a cell or tissue that expresses the GPCR.
- Experimental data as provided in Figure 1 indicates that GPCR proteins of the present invention are expressed in humans in fetal retina (as indicated by virtual northern blot analysis) and a mixed brain/heart/kidney/lung/spleen/testis/leukocyte sample (as indicated by PCR-based tissue screening panels).
- the proteins of the present invention are useful for biological assays related to GPCRs that are related to members of the secretin receptor subfamily.
- Such assays involve any of the known GPCR functions or activities or properties useful for diagnosis and treatment of GPCR-related conditions that are specific for the subfamily of GPCRs that the one of the present invention belongs to, particularly in cells and tissues that express this receptor.
- Experimental data as provided in Figure 1 indicates that GPCR proteins of the present invention are expressed in humans in fetal retina (as indicated by virtual northern blot analysis) and a mixed brairvneart/I dney/lung/spleen/testis/leukocyte sample (as indicated by PCR-based tissue screening panels).
- the proteins of the present invention are also useful in drug screening assays, in cell-based or cell-free systems.
- Cell-based systems can be native, i.e., cells that normally express the receptor protein, as a biopsy or expanded in cell culture.
- Experimental data as provided in Figure 1 indicates expression in humans in fetal retina and a mixed braij ⁇ /neart kidney/lung/spleen testis/leukocyte sample.
- cell-based assays involve recombinant host cells expressing the receptor protein.
- the polypeptides can be used to identify compounds that modulate receptor activity of the protein in its natural state, or an altered form that causes a specific disease or pathology associated with the receptor.
- Both the GPCRs of the present invention and appropriate variants and fragments can be used in high-throughput screens to assay candidate compounds for the ability to bind to the receptor. These compounds can be further screened against a functional receptor to determine the effect of the compound on the receptor activity. Further, these compounds can be tested in animal or invertebrate systems to determine activity/effectiveness. Compounds can be identified that activate (agonist) or inactivate (antagonist) the receptor to a desired degree.
- the proteins of the present invention can be used to screen a compound for the ability to stimulate or inhibit interaction between the receptor protein and a molecule that normally interacts with the receptor protein, e.g. a ligand or a component of the signal pathway that the receptor protein normally interacts (for example, a G-protein or other interactor involved in cAMP or phosphatidylinositol turnover and/or adenylate cyclase, or phospholipase C activation).
- a ligand or a component of the signal pathway that the receptor protein normally interacts for example, a G-protein or other interactor involved in cAMP or phosphatidylinositol turnover and/or adenylate cyclase, or phospholipase C activation.
- Such assays typically include the steps of combining the receptor protein with a candidate compound under conditions that allow the receptor protein, or fragment, to interact with the target molecule, and to detect the formation of a complex between the protein and the target or to detect the biochemical consequence of the interaction with the receptor protein and the target, such as any of the associated effects of signal transduction such as G-protein phosphorylation, cAMP or phosphatidylinositol turnover, and adenylate cyclase or phospholipase C activation.
- signal transduction such as G-protein phosphorylation, cAMP or phosphatidylinositol turnover, and adenylate cyclase or phospholipase C activation.
- Candidate compounds include, for example, 1) peptides such as soluble peptides, including Ig-tailed fusion peptides and members of random peptide libraries (see, e.g., Lam et al, Nature 554:82-84 (1991); Houghten etal, Nature 354:84-86 (1991)) and combinatorial chemistry-derived molecular libraries made of D- and/or L- configuration amino acids; 2) phosphopeptides (e.g., members of random and partially degenerate, directed phosphopeptide libraries, see, e.g., Songyang et al, Cell 72:767-778 (1993)); 3) antibodies (e.g., polyclonal, monoclonal, humanized, anti- idiotypic, chimeric, and single chain antibodies as well as Fab, F(ab') 2 , Fab expression library fragments, and epitope-binding fragments of antibodies); and 4) small organic and inorganic molecules (e.g., molecules
- One candidate compound is a soluble fragment of the receptor that competes for ligand binding.
- Other candidate compounds include mutant receptors or appropriate fragments containing mutations that affect receptor function and thus compete for ligand. Accordingly, a fragment that competes for ligand, for example with a higher affinity, or a fragment that binds ligand but does not allow release, is encompassed by the invention.
- the invention further includes other end point assays to identify compounds that modulate (stimulate or inhibit) receptor activity.
- the assays typically involve an assay of events in the signal transduction pathway that indicate receptor activity.
- a cellular process such as proliferation, the expression of genes that are up- or down-regulated in response to the receptor protein dependent signal cascade, can be assayed.
- the regulatory region of such genes can be operably linked to a marker that is easily detectable, such as luciferase. Any of the biological or biochemical functions mediated by the receptor can be used as an endpoint assay.
- Binding and/or activating compounds can also be screened by using chimeric receptor proteins in which the amino terminal extracellular domain, or parts thereof, the entire transmembrane domain or subregions, such as any of the seven transmembrane segments or any of the intracellular or extracellular loops and the carboxy terminal intracellular domain, or parts thereof, can be replaced by heterologous domains or subregions.
- a G-protein-binding region can be used that interacts with a different G-protein then that which is recognized by the native receptor. Accordingly, a different set of signal transduction components is available as an end-point assay for activation.
- the entire transmembrane portion or subregions can be replaced with the entire transmembrane portion or subregions specific to a host cell that is different from the host cell from which the amino terminal extracellular domain and/or the G-protein-binding region are derived.
- This allows for assays to be performed in other than the specific host cell from which the receptor is derived.
- the amino terminal extracellular domain (and/or other ligand-binding regions) could be replaced by a domain (and/or other binding region) binding a different ligand, thus, providing an assay for test compounds that interact with the heterologous amino terminal extracellular domain (or region) but still cause signal transduction.
- activation can be detected by a reporter gene containing an easily detectable coding region operably linked to a transcriptional regulatory sequence that is part of the native signal transduction pathway.
- the proteins of the present invention are also useful in competition binding assays in methods designed to discover compounds that interact with the receptor.
- a compound is exposed to a receptor polypeptide under conditions that allow the compound to bind or to otherwise interact with the polypeptide (Hodgson, Bio/technology, 1992, Sept 10(9);973-80). Soluble receptor polypeptide is also added to the mixture. If the test compound interacts with the soluble receptor polypeptide, it decreases the amount of complex formed or activity from the receptor target. This type of assay is particularly useful in cases in which compounds are sought that interact with specific regions of the receptor.
- the soluble polypeptide that competes with the target receptor region is designed to contain peptide sequences corresponding to the region of interest.
- immobilize either the receptor protein, or fragment, or its target molecule to facilitate separation of complexes from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay.
- a fusion protein can be provided which adds a domain that allows the protein to be bound to a matrix.
- glutathione-S-transferase fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, MO) or glutathione derivatized microtitre plates, which are then combined with the cell lysates (e.g., 35 S-labeled) and the candidate compound, and the mixture incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH).
- the beads are washed to remove any unbound label, and the matrix immobilized and radiolabel determined directly, or in the supernatant after the complexes are dissociated.
- the complexes can be dissociated from the matrix, separated by SDS-PAGE, and the level of receptor-binding protein found in the bead fraction quantitated from the gel using standard electrophoretic techniques.
- the polypeptide or its target molecule can be immobilized utilizing conjugation of biotin and streptavidin using techniques well known in the art.
- antibodies reactive with the protein but which do not interfere with binding of the protein to its target molecule can be derivatized to the wells of the plate, and the protein trapped in the wells by antibody conjugation.
- Preparations of a receptor-binding protein and a candidate compound are incubated in the receptor protein-presenting wells and the amount of complex trapped in the well can be quantitated.
- Methods for detecting such complexes include immunodetection of complexes using antibodies reactive with the receptor protein target molecule, or wliich are reactive with receptor protein and compete with the target molecule, as well as enzyme-linked assays which rely on detecting an enzymatic activity associated with the target molecule.
- Agents that modulate one of the GPCRs of the present invention can be identified using one or more of the above assays, alone or in combination. It is generally preferable to use a cell-based or cell free system first and then confirm activity in an animal or other model system. Such model systems are well known in the art and can readily be employed in this context.
- Modulators of receptor protein activity identified according to these drug screening assays can be used to treat a subject with a disorder mediated by the receptor pathway, by treating cells or tissues that express the GPCR.
- Experimental data as provided in Figure 1 indicates expression in humans in fetal retina and a mixed brain eart kidney/lung/spleen/testis/leukocyte sample.
- These methods of treatment include the steps of administering a modulator of the GPCR's activity in a pharmaceutical composition to a subject in need of such treatment, the modulator being identified as described herein.
- the GPCR proteins can be used as "bait proteins" in a two-hybrid assay or three-hybrid assay (see, e.g., U.S. Patent No. 5,283,317; Zervos et al. (1993) Cell 72:223-232; Madura et al. (1993) J. Biol. Chem. 268:12046-12054; Bartel et al. (1993) Biotechniques 14:920-924; Iwabuchi et al. (1993) Oncogene 8:1693-1696; and Brent WO94/10300), to identify other proteins, which bind to or interact with the GPCR and are involved in GPCR activity.
- a two-hybrid assay see, e.g., U.S. Patent No. 5,283,317; Zervos et al. (1993) Cell 72:223-232; Madura et al. (1993) J. Biol. Chem. 268:12046-12054
- GPCR-binding proteins are also likely to be involved in the propagation of signals by the GPCR proteins or GPCR targets as, for example, downstream elements of a GPCR-mediated signaling pathway. Alternatively, such GPCR-binding proteins are likely to be GPCR inhibitors.
- the two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains.
- the assay utilizes two different DNA constructs.
- the gene that codes for a GPCR protein is fused to a gene encoding the DNA binding domain of a known transcription factor (e.g., GAL-4).
- a DNA sequence, from a library of DNA sequences, that encodes an unidentified protein (“prey" or "sample”) is fused to a gene that codes for the activation domain of the known transcription factor.
- the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ) which is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene which encodes the protein which interacts with the GPCR protein.
- a reporter gene e.g., LacZ
- This invention further pertains to novel agents identified by the above-described screening assays. Accordingly, it is within the scope of this invention to further use an agent identified as described herein in an appropriate animal model.
- an agent identified as described herein e.g., a GPCR modulating agent, an antisense GPCR nucleic acid molecule, a GPCR-specific antibody, or a GPCR-binding partner
- an agent identified as described herein can be used in an animal or other model to determine the efficacy, toxicity, or side effects of treatment with such an agent.
- an agent identified as described herein can be used in an animal or other model to determine the mechanism of action of such an agent.
- this invention pertains to uses of novel agents identified by the above-described screening assays for treatments as described herein.
- the GPCR proteins of the present invention are also useful to provide a target for diagnosing a disease or predisposition to disease mediated by the peptide. Accordingly, the invention provides methods for detecting the presence, or levels of, the protein (or encoding mRNA) in a cell, tissue, or organism.
- Experimental data as provided in Figure 1 indicates expression in humans in fetal retina and a mixed brain/heart/kidney/lung/spleen/testis/leukocyte sample.
- the method involves contacting a biological sample with a compound capable of interacting with the receptor protein such that the interaction can be detected.
- Such an assay can be provided in a single detection format or a multi-detection format such as an antibody chip array.
- a biological sample includes tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject.
- the peptides of the present invention also provide targets for diagnosing active protein activity, disease, or predisposition to disease, in a patient having a variant peptide, particularly activities and conditions that are known for other members of the family of proteins to which the present one belongs.
- the peptide can be isolated from a biological sample and assayed for the presence of a genetic mutation that results in aberrant peptide. This includes amino acid substitution, deletion, insertion, rearrangement, (as the result of aberrant splicing events), and inappropriate post-translational modification.
- Analytic methods include altered electrophoretic mobility, altered tryptic peptide digest, altered receptor activity in cell-based or cell-free assay, alteration in ligand or antibody-binding pattern, altered isoelectric point, direct amino acid sequencing, and any other of the known assay techniques useful for detecting mutations in a protein.
- Such an assay can be provided in a single detection format or a multi-detection format such as an antibody chip array.
- peptide detection techniques include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations and immunofluorescence using a detection reagent, such as an antibody or protein binding agent.
- a detection reagent such as an antibody or protein binding agent.
- the peptide can be detected in vivo in a subject by introducing into the subject a labeled anti-peptide antibody or other types of detection agent.
- the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques. Particularly useful are methods that detect the allelic variant of a peptide expressed in a subject and methods which detect fragments of a peptide in a sample.
- the peptides are also useful in pharmacogenomic analysis.
- Pharmacogenomics deal with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See, e.g., Eichelbaum, M. (Clin. Exp. Pharmacol. Physiol. 23(10-11):983-985 (1996)), and Linder, M.W. (Clin. Chem. 43(2):254-266 (1997)).
- the clinical outcomes of these variations result in severe toxicity of therapeutic drugs in certain individuals or therapeutic failure of drugs, in certain individuals as a result of individual variation in metabolism.
- the genotype of the individual can determine the way a therapeutic compound acts on the body or the way the body metabolizes the compound.
- the activity of drug metabolizing enzymes effects both the intensity and duration of drug action.
- the pharmacogenomics of the individual permit the selection of effective compounds and effective dosages of such compounds for prophylactic or therapeutic treatment based on the individual's genotype.
- the discovery of genetic polymorphisms in some drug metabolizing enzymes has explained why some patients do not obtain the expected drug effects, show an exaggerated drug effect, or experience serious toxicity from standard drug dosages. Polymorphisms can be expressed in the phenotype of the extensive metabolizer and the phenotype of the poor metabolizer. Accordingly, genetic polymorphism may lead to allelic protein variants of the receptor protein in which one or more of the receptor functions in one population is different from those in another population.
- polymorphism may give rise to amino terminal extracellular domains and/or other ligand- binding regions that are more or less active in ligand binding, and receptor activation. Accordingly, ligand dosage would necessarily be modified to maximize the therapeutic effect within a given population containing a polymorphism.
- genotyping specific polymorphic peptides could be identified.
- the peptides are also useful for treating a disorder characterized by an absence of, inappropriate, or unwanted expression of the protein.
- Experimental data as provided in Figure 1 indicates expression in humans in fetal retina and a mixed brain eart/kidney/lung/spleen/testis/leukocyte sample. Accordingly, methods for treatment include the use of the GPCR protein or fragments.
- the invention also provides antibodies that selectively bind to one of the peptides of the present invention, a protein comprising such a peptide, as well as variants and fragments thereof.
- an antibody selectively binds a target peptide when it binds the target peptide and does not significantly bind to unrelated proteins.
- An antibody is still considered to selectively bind a peptide even if it also binds to other proteins that are not substantially homologous with the target peptide so long as such proteins share homology with a fragment or domain of the peptide target of the antibody. In this case, it would be understood that antibody binding to the peptide is still selective despite some degree of cross-reactivity.
- an antibody is defined in terms consistent with that recognized within the art: they are multi-subunit proteins produced by a mammalian organism in response to an antigen challenge.
- the antibodies of the present invention include polyclonal antibodies and monoclonal antibodies, as well as fragments of such antibodies, including, but not limited to, Fab or F(ab') 2 , and Fv fragments.
- an isolated peptide is used as an immunogen and is administered to a mammalian organism, such as a rat, rabbit or mouse.
- the full-length protein, an antigenic peptide fragment or a fusion protein can be used.
- Particularly important fragments are those covering functional domains, such as the domains identified in Figure 2, and domain of sequence homology or divergence amongst the family, such as those that can readily be identified using protein alignment methods and as presented in the Figures.
- Antibodies are preferably prepared from regions or discrete fragments of the GPCR proteins. Antibodies can be prepared from any region of the peptide as described herein. However, preferred regions will include those involved in function/activity and/or receptor/binding partner interaction. Figure 2 can be used to identify particularly important regions while sequence alignment can be used to identify conserved and unique sequence fragments.
- An antigenic fragment will typically comprise at least 8 contiguous amino acid residues.
- the antigenic peptide can comprise, however, at least 10, 12, 14, 16 or more amino acid residues.
- Such fragments can be selected on a physical property, such as fragments correspond to regions that are located on the surface of the protein, e.g., hydrophilic regions or can be selected based on sequence uniqueness (see Figure 2).
- Detection on an antibody of the present invention can be facilitated by coupling (i.e., physically linking) the antibody to a detectable substance.
- detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials.
- suitable enzymes include horseradish peroxidase, alkaline phosphatase, ⁇ -galactosidase, or acetylcholinesterase;
- suitable prosthetic group complexes include streptavidin/biotin and avidin biotin;
- suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dic orotriazinylamine fluorescein, dansyl chloride or phycoerythrin;
- an example of a luminescent material includes luminol;
- examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include I, I, S or H.
- the antibodies can be used to isolate one of the proteins of the present invention by standard techniques, such as affinity chromatography or immunoprecipitation.
- the antibodies can facilitate the purification of the natural protein from cells and recombinantly produced protein expressed in host cells.
- such antibodies are useful to detect the presence of one of the proteins of the present invention in cells or tissues to determine the pattern of expression of the protein among various tissues in an organism and over the course of normal development.
- Experimental data as provided in Figure 1 indicates that GPCR proteins of the present invention are expressed in humans in fetal retina (as indicated by virtual northern blot analysis) and a mixed brain/heart/kidney/lung/spleentestis/leukocyte sample (as indicated by PCR-based tissue screening panels).
- antibodies can be used to detect protein in situ, in vitro, or in a cell lysate or supernatant in order to evaluate the abundance and pattern of expression. Also, such antibodies can be used to assess abnormal tissue distribution or abnormal expression during development or progression of a biological condition. Antibody detection of circulating fragments of the full length protein can be used to identify turnover.
- the antibodies can be used to assess expression in disease states such as in active stages of the disease or in an individual with a predisposition toward disease related to the protein's function.
- a disorder is caused by an inappropriate tissue distribution, developmental expression, level of expression of the protein, or expressed/processed form
- the antibody can be prepared against the normal protein.
- Experimental data as provided in Figure 1 indicates expression in humans in fetal retina and a mixed brain ⁇ eart/kidney/lung/spleen/testis/leukocyte sample. If a disorder is characterized by a specific mutation in the protein, antibodies specific for this mutant protein can be used to assay for the presence of the specific mutant protein.
- the antibodies can also be used to assess normal and aberrant subcellular localization of cells in the various tissues in an organism.
- Experimental data as provided in Figure 1 indicates expression in humans in fetal retina and a mixed brain/heart/kidney/lung/spleen/testis/leukocyte sample.
- the diagnostic uses can be applied, not only in genetic testing, but also in monitoring a treatment modality. Accordingly, where treatment is ultimately aimed at correcting expression level or the presence of aberrant sequence and aberrant tissue distribution or developmental expression, antibodies directed against the protein or relevant fragments can be used to monitor therapeutic efficacy. Additionally, antibodies are useful in pharmacogenomic analysis. Thus, antibodies prepared against polymorphic proteins can be used to identify individuals that require modified treatment modalities.
- the antibodies are also useful as diagnostic tools as an immunological marker for aberrant protein analyzed by electrophoretic mobility, isoelectric point, tryptic peptide digest, and other physical assays known to those in the art.
- the antibodies are also useful for tissue typing. Experimental data as provided in Figure 1 indicates expression in humans in fetal retina and a mixed brain/heart/kidney/lung spleen/testis/leukocyte sample. Thus, where a specific protein has been correlated with expression in a specific tissue, antibodies that are specific for this protein can be used to identify a tissue type.
- the antibodies are also useful for inhibiting protein function, for example, blocking the binding of the GPCR peptide to a binding partner such as a ligand. These uses can also be applied in a therapeutic context in which treatment involves inhibiting the protein's function.
- An antibody can be used, for example, to block binding, thus modulating (agonizing or antagonizing) the peptides activity.
- Antibodies can be prepared against specific fragments containing sites required for function or against intact protein that is associated with a cell or cell membrane. See Figure 2 for structural information relating to the proteins of the present invention.
- the invention also encompasses kits for using antibodies to detect the presence of a protein in a biological sample.
- the kit can comprise antibodies such as a labeled or labelable antibody and a compound or agent for detecting protein in a biological sample; means for determining the amount of protein in the sample; means for comparing the amount of protein in the sample with a standard; and instructions for use.
- Such a kit can be supplied to detect a single protein or epitope or can be configured to detect one of a multitude of epitopes, such as in an antibody detection array. Arrays are described in detail below for nucleic acid arrays and similar methods have been developed for antibody arrays.
- nucleic Acid Molecules The present invention further provides isolated nucleic acid molecules that encode a GPCR peptide or protein of the present invention (cDNA, transcript and genomic sequence). Such nucleic acid molecules will consist of, consist essentially of, or comprise a nucleotide sequence that encodes one of the GPCR peptides of the present invention, an allelic variant thereof, or an ortholog or paralog thereof. As used herein, an "isolated" nucleic acid molecule is one that is separated from other nucleic acid present in the natural source of the nucleic acid.
- an "isolated" nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived.
- flanking nucleotide sequences for example up to about 5KB, 4KB, 3KB, 2KB, or 1KB or less, particularly contiguous peptide encoding sequences and peptide encoding sequences within the same gene but separated by introns in the genomic sequence.
- nucleic acid is isolated from remote and unimportant flanking sequences such that it can be subjected to the specific manipulations described herein such as recombinant expression, preparation of probes and primers, and other uses specific to the nucleic acid sequences.
- an "isolated" nucleic acid molecule such as a transcript/cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized.
- the nucleic acid molecule can be fused to other coding or regulatory sequences and still be considered isolated.
- recombinant DNA molecules contained in a vector are considered isolated.
- isolated DNA molecules include recombinant DNA molecules maintained in heterologous host cells or purified (partially or substantially) DNA molecules in solution.
- isolated RNA molecules include in vivo or in vitro RNA transcripts of the isolated DNA molecules of the present invention.
- Isolated nucleic acid molecules according to the present invention further include such molecules produced synthetically.
- nucleic acid molecules that consist of the nucleotide sequence shown in Figure 1 or 3 (SEQ ID NO: 1 , transcript sequence and SEQ ID NO:3, genomic sequence), or any nucleic acid molecule that encodes the protein provided in Figure 2, SEQ ID NO:2.
- a nucleic acid molecule consists of a nucleotide sequence when the nucleotide sequence is the complete nucleotide sequence of the nucleic acid molecule.
- the present invention further provides nucleic acid molecules that consist essentially of the nucleotide sequence shown in Figure 1 or 3 (SEQ ID NO: 1 , transcript sequence and SEQ ID NO:3, genomic sequence), or any nucleic acid molecule that encodes the protein provided in Figure 2, SEQ ID NO:2.
- a nucleic acid molecule consists essentially of a nucleotide sequence when such a nucleotide sequence is present with only a few additional nucleic acid residues in the final nucleic acid molecule.
- the present invention further provides nucleic acid molecules that comprise the nucleotide sequences shown in Figure 1 or 3 (SEQ ID NO:l, transcript sequence and SEQ ID NO:3, genomic sequence), or any nucleic acid molecule that encodes the protein provided in Figure 2, SEQ ID NO:2.
- a nucleic acid molecule comprises a nucleotide sequence when the nucleotide sequence is at least part of the final nucleotide sequence of the nucleic acid molecule.
- the nucleic acid molecule can be only the nucleotide sequence or have additional nucleic acid residues, such as nucleic acid residues that are naturally associated with it or heterologous nucleotide sequences.
- Such a nucleic acid molecule can have a few additional nucleotides or can comprises several hundred or more additional nucleotides. A brief description of how various types of these nucleic acid molecules can be readily made/isolated is provided below.
- both coding and non-coding sequences are provided. Because of the source of the present invention, human genomic sequences ( Figure 3) and cDNA/transcript sequences ( Figure 1), the nucleic acid molecules in the Figures will contain genomic intronic sequences, 5' and 3' non-coding sequences, gene regulatory regions and non-coding intergenic sequences. In general such sequence features are either noted in Figures 1 and 3 or can readily be identified using computational tools known in the art. As discussed below, some of the non- coding regions, particularly gene regulatory elements such as promoters, are useful for a variety of purposes, e.g. control of heterologous gene expression, target for identifying gene activity modulating compounds, and are particularly claimed as fragments of the genomic sequence provided herein.
- the isolated nucleic acid molecules can encode the mature protein plus additional amino or carboxyl-terminal amino acids, or amino acids interior to the mature peptide (when the mature form has more than one peptide chain, for instance).
- Such sequences may play a role in processing of a protein from precursor to a mature form, facilitate protein trafficking, prolong or shorten protein half-life or facilitate manipulation of a protein for assay or production, among other things.
- the additional amino acids may be processed away from the mature protein by cellular enzymes.
- the isolated nucleic acid molecules include, but are not limited to, the sequence encoding the GPCR peptide alone, the sequence encoding the mature peptide and additional coding sequences, such as a leader or secretory sequence (e.g., a pre-pro or pro-protein sequence), the sequence encoding the mature peptide, with or without the additional coding sequences, plus additional non-coding sequences, for example introns and non-coding 5' and 3' sequences such as transcribed but non-translated sequences that play a role in transcription, mRNA processing (including splicing and polyadenylation signals), ribosome binding and stability of mRNA.
- the nucleic acid molecule may be fused to a marker sequence encoding, for example, a peptide that facilitates purification.
- Isolated nucleic acid molecules can be in the form of RNA, such as mRNA, or in the form DNA, including cDNA and genomic DNA obtained by cloning or produced by chemical synthetic techniques or by a combination thereof.
- the nucleic acid, especially DNA can be double-stranded or single-stranded. Single-stranded nucleic acid can be the coding strand (sense strand) or the non- coding strand (anti-sense strand).
- the invention further provides nucleic acid molecules that encode fragments of the peptides of the present invention as well as nucleic acid molecules that encode obvious variants of the GPCR proteins of the present invention that are described above.
- nucleic acid molecules may be naturally occurring, such as allelic variants (same locus), paralogs (different locus), and orthologs (different organism), or may be constructed by recombinant DNA methods or by chemical synthesis.
- non-naturally occurring variants may be made by mutagenesis techniques, including those applied to nucleic acid molecules, cells, or organisms. Accordingly, as discussed above, the variants can contain nucleotide substitutions, deletions, inversions and insertions. Variation can occur in either or both the coding and non-coding regions. The variations can produce both conservative and non-conservative amino acid substitutions.
- the present invention further provides non-coding fragments of the nucleic acid molecules provided in Figures 1 and 3.
- Preferred non-coding fragments include, but are not limited to, promoter sequences, enhancer sequences, gene modulating sequences and gene termination sequences. Such fragments are useful in controlling heterologous gene expression and in developing screens to identify gene-modulating agents.
- a promoter can readily be identified as being 5' to the ATG start site in the genomic sequence provided in Figure 3.
- a fragment comprises a contiguous nucleotide sequence greater than 12 or more nucleotides. Further, a fragment could at least 30, 40, 50, 100, 250 or 500 nucleotides in length. The length of the fragment will be based on its intended use. For example, the fragment can encode epitope bearing regions of the peptide, or can be useful as DNA probes and primers. Such fragments can be isolated using the known nucleotide sequence to synthesize an oligonucleotide probe. A labeled probe can then be used to screen a cDNA library, genomic DNA library, or mRNA to isolate nucleic acid corresponding to the coding region. Further, primers can be used in PCR reactions to clone specific regions of gene.
- a probe/primer typically comprises substantially a purified oligonucleotide or oligonucleotide pair.
- the oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 20, 25, 40, 50 or more consecutive nucleotides.
- Orthologs, homologs, and allelic variants can be identified using methods well known in the art. As described in the Peptide Section, these variants comprise a nucleotide sequence encoding a peptide that is typically 60-70%, 70-80%, 80-90%, and more typically at least about 90-95%) or more homologous to the nucleotide sequence shown in the Figure sheets or a fragment of this sequence. Such nucleic acid molecules can readily be identified as being able to hybridize under moderate to stringent conditions, to the nucleotide sequence shown in the Figure sheets or a fragment of the sequence. Allelic variants can readily be determined by genetic locus of the encoding gene. The gene encoding the novel GPCR protein of the present invention is located on a genome component that has been mapped to human chromosome X (as indicated in Figure 3), which is supported by multiple lines of evidence, such as STS and BAC map data.
- Figure 3 provides information on SNPs that have been found in the gene encoding the GPCR protein of the present invention. SNPs were identified at 25 different nucleotide positions. Some of these SNPs that are located outside the ORF and in introns may affect gene transcription.
- hybridizes under stringent conditions is intended to describe conditions for hybridization and washing under which nucleotide sequences encoding a peptide at least 60-70% homologous to each other typically remain hybridized to each other. The conditions can be such that sequences at least about 60%, at least about 70%, or at least about 80% or more homologous to each other typically remain hybridized to each other.
- stringent conditions are known to those skilled in the art and can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6.
- One example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45C, followed by one or more washes in 0.2 X SSC, 0.1% SDS at 50-65C. Examples of moderate to low stringency hybridization conditions are well known in the art.
- the nucleic acid molecules of the present invention are useful for probes, primers, chemical intermediates, and in biological assays.
- the nucleic acid molecules are useful as a hybridization probe for messenger RNA, transcript/cDNA and genomic DNA to isolate full-length cDNA and genomic clones encoding the peptide described in Figure 2 and to isolate cDNA and genomic clones that correspond to variants (alleles, orthologs, etc.) producing the same or related peptides shown in Figure 2.
- SNPs were identified at 25 different nucleotide positions.
- the probe can correspond to any sequence along the entire length of the nucleic acid molecules provided in the Figures. Accordingly, it could be derived from 5' noncoding regions, the coding region, and 3 ' noncoding regions. However, as discussed, fragments are not to be construed as encompassing fragments disclosed prior to the present invention.
- the nucleic acid molecules are also useful as primers for PCR to amplify any given region of a nucleic acid molecule and are useful to synthesize antisense molecules of desired length and sequence.
- the nucleic acid molecules are also useful for constructing recombinant vectors.
- Such vectors include expression vectors that express a portion of, or all of, the peptide sequences.
- Vectors also include insertion vectors, used to integrate into another nucleic acid molecule sequence, such as into the cellular genome, to alter in situ expression of a gene and/or gene product.
- an endogenous coding sequence can be replaced via homologous recombination with all or part of the coding region containing one or more specifically introduced mutations.
- the nucleic acid molecules are also useful for expressing antigenic portions of the proteins.
- the nucleic acid molecules are also useful as probes for determining the chromosomal positions of the nucleic acid molecules by means of in situ hybridization methods.
- the gene encoding the novel GPCR protein of the present invention is located on a genome component that has been mapped to human chromosome X (as indicated in Figure 3), which is supported by multiple lines of evidence, such as STS and BAC map data.
- nucleic acid molecules are also useful in making vectors containing the gene regulatory regions of the nucleic acid molecules of the present invention.
- the nucleic acid molecules are also useful for designing ribozymes corresponding to all, or a part, of the mRNA produced from the nucleic acid molecules described herein.
- the nucleic acid molecules are also useful for making vectors that express part, or all, of the peptides.
- the nucleic acid molecules are also useful for constructing host cells expressing a part, or all, of the nucleic acid molecules and peptides.
- the nucleic acid molecules are also useful for constructing transgenic animals expressing all, or a part, of the nucleic acid molecules and peptides.
- the nucleic acid molecules are also useful as hybridization probes for determining the presence, level, form and distribution of nucleic acid expression.
- Experimental data as provided in Figure 1 indicates that GPCR proteins of the present invention are expressed in humans in fetal retina (as indicated by virtual northern blot analysis) and a mixed brajn/heart/kidney/lung/spleen/testis/leukocyte sample (as indicated by PCR-based tissue screening panels). Accordingly, the probes can be used to detect the presence of, or to determine levels of, a specific nucleic acid molecule in cells, tissues, and in organisms.
- the nucleic acid whose level is determined can be DNA or RNA. Accordingly, probes corresponding to the peptides described herein can be used to assess expression and/or gene copy number in a given cell, tissue, or organism. These uses are relevant for diagnosis of disorders involving an increase or decrease in GPCR protein expression relative to normal results.
- In vitro techniques for detection of mRNA include Northern hybridizations and in situ hybridizations.
- In vitro techniques for detecting DNA includes Southern hybridizations and in situ hybridization.
- Probes can be used as a part of a diagnostic test kit for identifying cells or tissues that express a GPCR protein, such as by measuring a level of a receptor-encoding nucleic acid in a sample of cells from a subject e.g., mRNA or genomic DNA, or determining if a receptor gene has been mutated.
- Experimental data as provided in Figure 1 indicates that GPCR proteins of the present invention are expressed in humans in fetal retina (as indicated by virtual northern blot analysis) and a mixed brain/heart/lddney/lung/spleen testis/leukocyte sample (as indicated by PCR- based tissue screening panels).
- Nucleic acid expression assays are useful for drug screening to identify compounds that modulate GPCR nucleic acid expression.
- the invention thus provides a method for identifying a compound that can be used to treat a disorder associated with nucleic acid expression of the GPCR gene, particularly biological and pathological processes that are mediated by the GPCR in cells and tissues that express it.
- Experimental data as provided in Figure 1 indicates expression in humans in fetal retina and a mixed brain heart/kidney/lung/spleen testis/leukocyte sample.
- the method typically includes assaying the ability of the compound to modulate the expression of the GPCR nucleic acid and thus identifying a compound that can be used to treat a disorder characterized by undesired GPCR nucleic acid expression.
- the assays can be performed in cell-based and cell-free systems.
- Cell- based assays include cells naturally expressing the GPCR nucleic acid or recombinant cells genetically engineered to express specific nucleic acid sequences.
- the assay for GPCR nucleic acid expression can involve direct assay of nucleic acid levels, such as mRNA levels, or on collateral compounds involved in the signal pathway. Further, the expression of genes that are up- or down-regulated in response to the GPCR protein signal pathway can also be assayed. In this embodiment the regulatory regions of these genes can be operably linked to a reporter gene such as luciferase.
- modulators of GPCR gene expression can be identified in a method wherein a cell is contacted with a candidate compound and the expression of mRNA determined.
- the level of expression of GPCR mRNA in the presence of the candidate compound is compared to the level of expression of GPCR mRNA in the absence of the candidate compound.
- the candidate compound can then be identified as a modulator of nucleic acid expression based on this comparison and be used, for example to treat a disorder characterized by aberrant nucleic acid expression.
- expression of mRNA is statistically significantly greater in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of nucleic acid expression.
- nucleic acid expression is statistically significantly less in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of nucleic acid expression.
- the invention further provides methods of treatment, with the nucleic acid as a target, using a compound identified through drug screening as a gene modulator to modulate GPCR nucleic acid expression, particularly to modulate activities within a cell or tissue that expresses the proteins.
- Experimental data as provided in Figure 1 indicates that GPCR proteins of the present invention are expressed in humans in fetal retina (as indicated by virtual northern blot analysis) and a mixed brain/heart/kidney/lung/spleen/testis/leukocyte sample (as indicated by PCR-based tissue screening panels). Modulation includes both up-regulation (i.e. activation or agonization) or down-regulation (suppression or antagonization) or nucleic acid expression.
- a modulator for GPCR nucleic acid expression can be a small molecule or drug identified using the screening assays described herein as long as the drug or small molecule inhibits the GPCR nucleic acid expression in the cells and tissues that express the protein.
- Experimental data as provided in Figure 1 indicates expression in humans in fetal retina and a mixed brain/heartkidney/lung/spleen testis/leukocyte sample.
- the nucleic acid molecules are also useful for monitoring the effectiveness of modulating compounds on the expression or activity of the GPCR gene in clinical trials or in a treatment regimen.
- the gene expression pattern can serve as a barometer for the continuing effectiveness of treatment with the compound, particularly with compounds to which a patient can develop resistance.
- the gene expression pattern can also serve as a marker indicative of a physiological response of the affected cells to the compound. Accordingly, such monitoring would allow either increased administration of the compound or the administration of alternative compounds to which the patient has not become resistant. Similarly, if the level of nucleic acid expression falls below a desirable level, administration of the compound could be commensurately decreased.
- the nucleic acid molecules are also useful in diagnostic assays for qualitative changes in GPCR nucleic acid, and particularly in qualitative changes that lead to pathology.
- the nucleic acid molecules can be used to detect mutations in GPCR genes and gene expression products such as mRNA.
- the nucleic acid molecules can be used as hybridization probes to detect naturally- occurring genetic mutations in the GPCR gene and thereby to determine whether a subject with the mutation is at risk for a disorder caused by the mutation. Mutations include deletion, addition, or substitution of one or more nucleotides in the gene, chromosomal rearrangement, such as inversion or transposition, modification of genomic DNA, such as aberrant methylation patterns or changes in gene copy number, such as amplification. Detection of a mutated form of the GPCR gene associated with a dysfunction provides a diagnostic tool for an active disease or susceptibility to disease when the disease results from overexpression, underexpression, or altered expression of a GPCR protein.
- Figure 3 provides information on SNPs that have been found in the gene encoding the GPCR protein of the present invention. SNPs were identified at 25 different nucleotide positions. Some of these SNPs that are located outside the ORF and in introns may affect gene transcription.
- the gene encoding the novel GPCR protein of the present invention is located on a genome component that has been mapped to human chromosome X (as indicated in Figure 3), which is supported by multiple lines of evidence, such as STS and BAC map data. Genomic DNA can be analyzed directly or can be amplified by using PCR prior to analysis. RNA or cDNA can be used in the same way.
- detection of the mutation involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g. U.S. Patent Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran et al, Science 241:1077-1080 (1988); and Nakazawa etal, PNAS 91:360-364 (1994)), the latter of which can be particularly useful for detecting point mutations in the gene (see Abravaya et al, Nucleic Acids Res. 23:675-682 (1995)).
- PCR polymerase chain reaction
- LCR ligation chain reaction
- This method can include the steps of collecting a sample of cells from a patient, isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers which specifically hybridize to a gene under conditions such that hybridization and amplification of the gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. Deletions and insertions can be detected by a change in size of the amplified product compared to the normal genotype. Point mutations can be identified by hybridizing amplified DNA to normal RNA or antisense DNA sequences. Alternatively, mutations in a GPCR gene can be directly identified, for example, by alterations in restriction enzyme digestion patterns determined by gel electrophoresis.
- nucleic acid e.g., genomic, mRNA or both
- sequence-specific ribozymes can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site. Perfectly matched sequences can be distinguished from mismatched sequences by nuclease cleavage digestion assays or by differences in melting temperature.
- Sequence changes at specific locations can also be assessed by nuclease protection assays such as RNase and SI protection or the chemical cleavage method.
- sequence differences between a mutant GPCR gene and a wild-type gene can be determined by direct DNA sequencing.
- a variety of automated sequencing procedures can be utilized when performing the diagnostic assays (Naeve, C.W., (1995) Biotechniques iP:448), including sequencing by mass spectrometry (see, e.g., PCT International Publication No. WO 94/16101; Cohen et al, Adv. Chromatogr. 36:127-162 (1996); and Griffin et al, Appl. Biochem. Biotechnol 38:147-159 (1993)).
- RNA/RNA or RNA/DNA duplexes Other methods for detecting mutations in the gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA duplexes (Myers et al, Science 230:1242 (1985)); Cotton et al, PNAS 85:4397 (1988); Saleeba et al, Meth. Enzymol. 217:286-295 (1992)), electrophoretic mobility of mutant and wild type nucleic acid is compared (Orita et al, PNAS 86:2766 (1989); Cotton et al, Mutat. Res. 255:125-144 (1993); and Hayashi et al, Genet. Anal. Tech. Appl.
- the nucleic acid molecules are also useful for testing an individual for a genotype that while not necessarily causing the disease, nevertheless affects the treatment modality.
- the nucleic acid molecules can be used to study the relationship between an individual's genotype and the individual's response to a compound used for treatment (pharmacogenomic relationship).
- the nucleic acid molecules described herein can be used to assess the mutation content of the GPCR gene in an individual in order to select an appropriate compound or dosage regimen for treatment.
- SNPs were identified at 25 different nucleotide positions.
- nucleic acid molecules displaying genetic variations that affect treatment provide a diagnostic target that can be used to tailor treatment in an individual. Accordingly, the production of recombinant cells and animals containing these polymorphisms allow effective clinical design of treatment compounds and dosage regimens.
- the nucleic acid molecules are thus useful as antisense constructs to control GPCR gene expression in cells, tissues, and organisms.
- a DNA antisense nucleic acid molecule is designed to be complementary to a region of the gene involved in transcription, preventing transcription and hence production of GPCR protein.
- An antisense RNA or DNA nucleic acid molecule would hybridize to the mRNA and thus block translation of mRNA into GPCR protein.
- a class of antisense molecules can be used to inactivate mRNA in order to decrease expression of GPCR nucleic acid. Accordingly, these molecules can treat a disorder characterized by abnormal or undesired GPCR nucleic acid expression.
- This technique involves cleavage by means of ribozymes containing nucleotide sequences complementary to one or more regions in the mRNA that attenuate the ability of the mRNA to be translated. Possible regions include coding regions and particularly coding regions corresponding to the catalytic and other functional activities of the GPCR protein, such as ligand binding.
- the nucleic acid molecules also provide vectors for gene therapy in patients containing cells that are aberrant in GPCR gene expression. Thus, recombinant cells, which include the patient's cells that have been engineered ex vivo and returned to the patient, are introduced into an individual where the cells produce the desired GPCR protein to treat the individual.
- the invention also encompasses kits for detecting the presence of a GPCR nucleic acid in a biological sample.
- Experimental data as provided in Figure 1 indicates that GPCR proteins of the present invention are expressed in humans in fetal retina (as indicated by virtual northern blot analysis) and a mixed brain/heart kidney/lung/spleen/testis/leukocyte sample (as indicated by PCR- based tissue screening panels).
- the kit can comprise reagents such as a labeled or labelable nucleic acid or agent capable of detecting GPCR nucleic acid in a biological sample; means for determining the amount of GPCR nucleic acid in the sample; and means for comparing the amount of GPCR nucleic acid in the sample with a standard.
- the compound or agent can be packaged in a suitable container.
- the kit can further comprise instructions for using the kit to detect GPCR protein mRNA or DNA.
- the present invention further provides nucleic acid detection kits, such as arrays or microarrays of nucleic acid molecules that are based on the sequence information provided in Figures 1 and 3 (SEQ ID NOS:l and 3).
- arrays or “Microarrays” refers to an array of distinct polynucleotides or oligonucleotides synthesized on a substrate, such as paper, nylon or other type of membrane, filter, chip, glass slide, or any other suitable solid support.
- the microarray is prepared and used according to the methods described in US Patent 5,837,832, Chee et al., PCT application W095/11995 (Chee et al.), Lockhart, D. J. et al.
- the microarray or detection kit is preferably composed of a large number of unique, single-stranded nucleic acid sequences, usually either synthetic antisense oligonucleotides or fragments of cDNAs, fixed to a solid support.
- the oligonucleotides are preferably about 6-60 nucleotides in length, more preferably 15-30 nucleotides in length, and most preferably about 20- 25 nucleotides in length. For a certain type of microarray or detection kit, it may be preferable to use oligonucleotides that are only 7-20 nucleotides in length.
- the microarray or detection kit may contain oligonucleotides.
- Polynucleotides used in the microarray or detection kit may be oligonucleotides that are specific to a gene or genes of interest.
- the gene(s) of interest (or an ORF identified from the contigs of the present invention) is typically examined using a computer algorithm which starts at the 5' or at the 3' end of the nucleotide sequence.
- Typical algorithms will then identify oligomers of defined length that are unique to the gene, have a GC content within a range suitable for hybridization, and lack predicted secondary structure that may interfere with hybridization. In certain situations it may be appropriate to use pairs of oligonucleotides on a microarray or detection kit.
- the "pairs" will be identical, except for one nucleotide that preferably is located in the center of the sequence.
- the second oligonucleotide in the pair serves as a control.
- the number of oligonucleotide pairs may range from two to one million.
- the oligomers are synthesized at designated areas on a substrate using a light-directed chemical process.
- the substrate may be paper, nylon or other type of membrane, filter, chip, glass slide or any other suitable solid support.
- an oligonucleotide may be synthesized on the surface of the substrate by using a chemical coupling procedure and an ink jet application apparatus, as described in PCT application W095/251116 (Baldeschweiler et al.) which is inco ⁇ orated herein in its entirety by reference.
- a "gridded" array analogous to a dot (or slot) blot may be used to arrange and link cDNA fragments or oligonucleotides to the surface of a substrate using a vacuum system, thermal, UV, mechanical or chemical bonding procedures.
- An array such as those described above, may be produced by hand or by using available devices (slot blot or dot blot apparatus), materials (any suitable solid support), and machines (including robotic instruments), and may contain 8, 24, 96, 384, 1536, 6144 or more oligonucleotides, or any other number between two and one million which lends itself to the efficient use of commercially available instrumentation.
- the RNA or DNA from a biological sample is made into hybridization probes.
- the mRNA is isolated, and cDNA is produced and used as a template to make antisense RNA (aRNA).
- the aRNA is amplified in the presence of fluorescent nucleotides, and labeled probes are incubated with the microarray or detection kit so that the probe sequences hybridize to complementary oligonucleotides of the microarray or detection kit. Incubation conditions are adjusted so that hybridization occurs with precise complementary matches or with various degrees of less complementarity. After removal of nonhybridized probes, a scanner is used to determine the levels and patterns of fluorescence. The scanned images are examined to determine degree of complementarity and the relative abundance of each oligonucleotide sequence on the microarray or detection kit.
- the biological samples may be obtained from any bodily fluids (such as blood, urine, saliva, phlegm, gastric juices, etc.), cultured cells, biopsies, or other tissue preparations.
- a detection system may be used to measure the absence, presence, and amount of hybridization for all of the distinct sequences simultaneously. This data may be used for large scale correlation studies on the sequences, expression patterns, mutations, variants, or polymo ⁇ hisms among samples.
- the present invention provides methods to identify the expression of the GPCR proteins/peptides of the present invention. In detail, such methods comprise incubating a test sample with one or more nucleic acid molecules and assaying for binding of the nucleic acid molecule with components within the test sample.
- Such assays will typically involve arrays comprising many genes, at least one of which is a gene of the present invention and or alleles of the GPCR gene of the present invention.
- Figure 3 provides information on SNPs that have been found in the gene encoding the GPCR protein of the present invention. SNPs were identified at 25 different nucleotide positions. Some of these SNPs that are located outside the ORF and in introns may affect gene transcription. Conditions for incubating a nucleic acid molecule with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the nucleic acid molecule used in the assay.
- any one of the commonly available hybridization, amplification or array assay formats can readily be adapted to employ the novel fragments of the Human genome disclosed herein. Examples of such assays can be found in Chard, T, An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G. R. et al, Techniques in Immunocytochemistry, Academic Press, Orlando, FL Vol. 1 (1 982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of Enzyme Immunoassays: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985).
- test samples of the present invention include cells, protein or membrane extracts of cells.
- the test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing nucleic acid extracts or of cells are well known in the art and can be readily be adapted in order to obtain a sample that is compatible with the system utilized.
- kits which contain the necessary reagents to carry out the assays of the present invention.
- the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the nucleic acid molecules that can bind to a fragment of the Human genome disclosed herein; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound nucleic acid.
- a compartrnentalized kit includes any kit in wliich reagents are contained in separate containers.
- Such containers include small glass containers, plastic containers, strips of plastic, glass or paper, or arraying material such as silica.
- Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another.
- Such containers will include a container wliich will accept the test sample, a container which contains the nucleic acid probe, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound probe.
- wash reagents such as phosphate buffered saline, Tris-buffers, etc.
- the invention also provides vectors containing the nucleic acid molecules described herein.
- the term "vector” refers to a vehicle, preferably a nucleic acid molecule, which can transport the nucleic acid molecules.
- the vector is a nucleic acid molecule, the nucleic acid molecules are covalently linked to the vector nucleic acid.
- the vector includes a plasmid, single or double stranded phage, a single or double stranded RNA or DNA viral vector, or artificial chromosome, such as a BAC, PAC, YAC, OR MAC.
- a vector can be maintained in the host cell as an extrachromosomal element where it replicates and produces additional copies of the nucleic acid molecules.
- the vector may integrate into the host cell genome and produce additional copies of the nucleic acid molecules when the host cell replicates.
- the invention provides vectors for the maintenance (cloning vectors) or vectors for expression (expression vectors) of the nucleic acid molecules.
- the vectors can function in procaryotic or eukaryotic cells or in both (shuttle vectors).
- Expression vectors contain cis-acting regulatory regions that are operably linked in the vector to the nucleic acid molecules such that transcription of the nucleic acid molecules is allowed in a host cell.
- the nucleic acid molecules can be introduced into the host cell with a separate nucleic acid molecule capable of affecting transcription.
- the second nucleic acid molecule may provide a trans-acting factor interacting with the cis-regulatory control region to allow transcription of the nucleic acid molecules from the vector.
- a trans-acting factor may be supplied by the host cell.
- a trans-acting factor can be produced from the vector itself. It is understood, however, that in some embodiments, transcription and/or translation of the nucleic acid molecules can occur in a cell-free system.
- the regulatory sequence to which the nucleic acid molecules described herein can be operably linked include promoters for directing mRNA transcription. These include, but are not limited to, the left promoter from bacteriophage ⁇ , the lac, TRP, and TAG promoters from E. coli, the early and late promoters from S V40, the CMV immediate early promoter, the adenovirus early and late promoters, and retrovirus long-terminal repeats. In addition to control regions that promote transcription, expression vectors may also include regions that modulate transcription, such as repressor binding sites and enhancers.
- expression vectors can also contain sequences necessary for transcription termination and, in the transcribed region a ribosome binding site for translation.
- Other regulatory control elements for expression include initiation and termination codons as well as polyadenylation signals. The person of ordinary skill in the art would be aware of the numerous regulatory sequences that are useful in expression vectors. Such regulatory sequences are described, for example, in Sambrook et al, Molecular Cloning: A
- a variety of expression vectors can be used to express a nucleic acid molecule.
- Such vectors include chromosomal, episomal, and virus-derived vectors, for example vectors derived from bacterial plasmids, from bacteriophage, from yeast episomes, from yeast chromosomal elements, including yeast artificial chromosomes, from viruses such as baculoviruses, papovaviruses such as SV40, Vaccinia viruses, adenoviruses, poxviruses, pseudorabies viruses, and retroviruses.
- Vectors may also be derived from combinations of these sources such as those derived from plasmid and bacteriophage genetic elements, eg. cosmids and phagemids.
- Appropriate cloning and expression vectors for prokaryotic and eukaryotic hosts are described in Sambrook et al, Molecular Cloning: A Laboratory Manual. 2nd. ed., Cold Spring Harbor Laboratory Press, Cold
- the regulatory sequence may provide constitutive expression in one or more host cells (i.e. tissue specific) or may provide for inducible expression in one or more cell types such as by temperature, nutrient additive, or exogenous factor such as a hormone or other ligand.
- host cells i.e. tissue specific
- inducible expression in one or more cell types such as by temperature, nutrient additive, or exogenous factor such as a hormone or other ligand.
- a variety of vectors providing for constitutive and inducible expression in prokaryotic and eukaryotic hosts are well known to those of ordinary skill in the art.
- the nucleic acid molecules can be inserted into the vector nucleic acid by well-known methodology. Generally, the DNA sequence that will ultimately be expressed is joined to an expression vector by cleaving the DNA sequence and the expression vector with one or more restriction enzymes and then ligating the fragments together. Procedures for restriction enzyme digestion and ligation are well known to those of ordinary skill in the art.
- the vector containing the appropriate nucleic acid molecule can be introduced into an appropriate host cell for propagation or expression using well-known techniques.
- Bacterial cells include, but are not limited to, E. coli, Streptomyces, and Salmonella typhimurium.
- Eukaryotic cells include, but are not limited to, yeast, insect cells such as Drosophila, animal cells such as COS and CHO cells, and plant cells.
- the invention provides fusion vectors that allow for the production of the peptides.
- Fusion vectors can increase the expression of a recombinant protein, increase the solubility of the recombinant protein, and aid in the purification of the protein by acting for example as a ligand for affinity purification.
- a proteolytic cleavage site may be introduced at the junction of the fusion moiety so that the desired peptide can ultimately be separated from the fusion moiety.
- Proteolytic enzymes include, but are not limited to, factor Xa, thrombin, and enterokinase.
- Typical fusion expression vectors include pGEX (Smith et al, Gene 67:31-40 (1988)), pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ) which fuse glutathione S- tiansferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein.
- GST glutathione S- tiansferase
- suitable inducible non-fusion E. coli expression vectors include pTrc (Amann etal, Gene 69:301-315 (1988)) and p ⁇ T lid (Studier et al, Gene Expression Technology: Methods in Enzymology 185:60-89 (1990)).
- Recombinant protein expression can be maximized in a host bacteria by providing a genetic background wherein the host cell has an impaired capacity to proteolytically cleave the recombinant protein.
- the sequence of the nucleic acid molecule of interest can be altered to provide preferential codon usage for a specific host cell, for example E. coli. (Wada etal, Nucleic Acids Res. 20:2111-2118 (1992)).
- the nucleic acid molecules can also be expressed by expression vectors that are operative in yeast. Examples of vectors for expression in yeast e.g., S.
- cerevisiae include pYepSecl (Baldari, et al, EMBO J. 6:229-234 (1987)), pMFa (Kurjan et al, Cell 30:933-943(1982)), pJRY88 (Schultz et al, Gene 54:113-123 (1987)), and ⁇ YES2 (Invitrogen Co ⁇ oration, San Diego, CA).
- the nucleic acid molecules can also be expressed in insect cells using, for example, baculovirus expression vectors.
- Baculovirus vectors available for expression of proteins in cultured insect cells include the pAc series (Smith et al, Mol. Cell Biol. 3:2156-2165 (1983)) and the pVL series (Lucklowet ⁇ ., Virology 170:31-39 (1989)).
- the nucleic acid molecules described herein are expressed in mammalian cells using mammalian expression vectors. Examples of mammalian expression vectors include ⁇ CDM8 (Seed, B.
- the invention also encompasses vectors in which the nucleic acid sequences described herein are cloned into the vector in reverse orientation, but operably linked to a regulatory sequence that permits transcription of antisense RNA.
- an antisense transcript can be produced to all, or to a portion, of the nucleic acid molecule sequences described herein, including both coding and non-coding regions. Expression of this antisense RNA is subject to each of the parameters described above in relation to expression of the sense RNA (regulatory sequences, constitutive or inducible expression, tissue-specific expression).
- the invention also relates to recombinant host cells containing the vectors described herein.
- Host cells therefore include prokaryotic cells, lower eukaryotic cells such as yeast, other eukaryotic cells such as insect cells, and higher eukaryotic cells such as mammalian cells.
- the recombinant host cells are prepared by introducing the vector constructs described herein into the cells by techniques readily available to the person of ordinary skill in the art. These include, but are not limited to, calcium phosphate transfection, DEAE-dextran-mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, lipofection, and other techniques such as those found in Sambrook, et al. (Molecular Cloning: A Laboratory Manual. 2nd, ed, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989).
- Host cells can contain more than one vector.
- different nucleotide sequences can be introduced on different vectors of the same cell.
- the nucleic acid molecules can be introduced either alone or with other nucleic acid molecules that are not related to the nucleic acid molecules such as those providing trans-acting factors for expression vectors.
- the vectors can be introduced independently, co-introduced or joined to the nucleic acid molecule vector.
- Niral vectors can be replication-competent or replication-defective, h the case in which viral replication is defective, replication will occur in host cells providing functions that complement the defects.
- Vectors generally include selectable markers that enable the selection of the subpopulation of cells that contain the recombinant vector constructs.
- the marker can be contained in the same vector that contains the nucleic acid molecules described herein or may be on a separate vector. Markers include tetracycline or ampicillin-resistance genes for prokaryotic host cells and dihydrofolate reductase or neomycin resistance for eukaryotic host cells. However, any marker that provides selection for a phenotypic trait will be effective.
- mature proteins can be produced in bacteria, yeast, mammalian cells, and other cells under the control of the appropriate regulatory sequences, cell-free transcription and translation systems can also be used to produce these proteins using R ⁇ A derived from the D ⁇ A constructs described herein.
- secretion of the peptide is desired, which is difficult to achieve with multi- transmembrane domain containing proteins such as GPCRs, appropriate secretion signals are inco ⁇ orated into the vector.
- the signal sequence can be endogenous to the peptides or heterologous to these peptides.
- the protein can be isolated from the host cell by standard disruption procedures, including freeze thaw, sonication, mechanical disruption, use of lysing agents and the like.
- the peptide can then be recovered and purified by well-known purification methods including ammonium sulfate precipitation, acid extraction, anion or cationic exchange chromatography, phosphocellulose chromatography, hydrophobic-interaction chromatography, affinity chromatography, hydroxylapatite chromatography, lectin chromatography, or high performance liquid chromatography.
- the peptides can have various glycosylation patterns, depending upon the cell, or maybe non-glycosylated as when produced in bacteria.
- the peptides may include an initial modified methionine in some cases as a result of a host-mediated process.
- the recombinant host cells expressing the peptides described herein have a variety of uses.
- the cells are useful for producing a GPCR protein or peptide that can be further purified to produce desired amounts of GPCR protein or fragments.
- host cells containing expression vectors are useful for peptide production.
- Host cells are also useful for conducting cell-based assays involving the GPCR protein or GPCR protein fragments, such as those described above as well as other formats known in the art.
- a recombinant host cell expressing a native GPCR protein is useful for assaying compounds that stimulate or inhibit GPCR protein function.
- Host cells are also useful for identifying GPCR protein mutants in which these functions are affected. If the mutants naturally occur and give rise to a pathology, host cells containing the mutations are useful to assay compounds that have a desired effect on the mutant GPCR protein (for example, stimulating or inhibiting function) which may not be indicated by their effect on the native GPCR protein.
- Genetically engineered host cells can be further used to produce non-human transgenic animals.
- a transgenic animal is preferably a mammal, for example a rodent, such as a rat or mouse, in which one or more of the cells of the animal include a transgene.
- a transgene is exogenous DNA which is integrated into the genome of a cell from which a transgenic animal develops and which remains in the genome of the mature animal in one or more cell types or tissues of the transgenic animal. These animals are useful for studying the function of a GPCR protein and identifying and evaluating modulators of GPCR protein activity.
- Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, and amphibians.
- a transgenic animal can be produced by introducing nucleic acid into the male pronuclei of a fertilized oocyte, e.g., by microinjection, retroviral infection, and allowing the oocyte to develop in a pseudopregnant female foster animal.
- Any of the GPCR protein nucleotide sequences can be introduced as a transgene into the genome of a non-human animal, such as a mouse.
- Any of the regulatory or other sequences useful in expression vectors can form part of the transgenic sequence. This includes intronic sequences and polyadenylation signals, if not already included.
- a tissue-specific regulatory sequence(s) can be operably linked to the transgene to direct expression of the GPCR protein to particular cells.
- transgenic founder animal can be identified based upon the presence of the transgene in its genome and or expression of transgenic mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene.
- transgenic animals carrying a transgene can further be bred to other transgenic animals carrying other transgenes.
- a transgenic animal also includes animals in which the entire animal or tissues in the animal have been produced using the homologously recombinant host cells described herein.
- transgenic non-human animals can be produced which contain selected systems that allow for regulated expression of the transgene.
- One example of such a system is the cre/loxP recombinase system of bacteriophage PI .
- cre/loxP recombinase system of bacteriophage PI .
- a recombinase system is the FLP recombinase system of S. cerevisiae (O'Gorman et al Science 257:1351-1355 (1991). If a cre/loxP recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the Cre recombinase and a selected protein is required. Such animals can be provided through the construction of "double" transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.
- Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut, I. et al. Nature 355:810-813 (1997) and PCT International PubUcationNos. WO 97/07668 and WO 97/07669.
- a cell e.g., a somatic cell
- the quiescent cell can then be fused, e.g., through the use of electrical pulses, to an enucleated oocyte from an animal of the same species from which the quiescent cell is isolated.
- the reconstructed oocyte is then cultured such that it develops to morula or blastocyst and then transferred to pseudopregnant female foster animal.
- the offspring bom of this female foster animal will be a clone of the animal from which the cell, e.g., the somatic cell, is isolated.
- Transgenic animals containing recombinant cells that express the peptides described herein are useful to conduct the assays described herein in an in vivo context. Accordingly, the various physiological factors that are present in vivo and that could effect ligand binding, GPCR protein activation, and signal transduction, may not be evident from in vitro cell-free or cell-based assays. Accordingly, it is useful to provide non-human transgenic animals to assay in vivo GPCR protein function, including ligand interaction, the effect of specific mutant GPCR proteins on GPCR protein function and ligand interaction, and the effect of chimeric GPCR proteins. It is also possible to assess the effect of null mutations, that is mutations that substantially or completely eliminate one or more GPCR protein functions.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Biochemistry (AREA)
- Zoology (AREA)
- Gastroenterology & Hepatology (AREA)
- Toxicology (AREA)
- Immunology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Cell Biology (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002442607A CA2442607A1 (en) | 2001-03-28 | 2002-03-27 | Isolated human g-protein coupled receptors, nucleic acid molecules encoding human gpcr protein, and uses thereof |
US10/473,339 US20040171540A1 (en) | 2002-03-27 | 2002-03-27 | Isolated human g-protein coupled receptors, nucleic acid molecules encoding human gpcr protein, and uses thereof |
EP02726674A EP1383790A4 (en) | 2001-03-28 | 2002-03-27 | Isolated human g-protein coupled receptors, nucleic acid molecules encoding human gpcr protein, and uses thereof |
AU2002257091A AU2002257091A1 (en) | 2001-03-28 | 2002-03-27 | Isolated human g-protein coupled receptors, nucleic acid molecules encoding human gpcr protein, and uses thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/818,264 | 2001-03-28 | ||
US09/818,264 US20020142951A1 (en) | 2001-03-28 | 2001-03-28 | Isolated human G-protein coupled receptors, nucleic acid molecules encoding human GPCR proteins, and uses thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2002079406A2 true WO2002079406A2 (en) | 2002-10-10 |
WO2002079406A3 WO2002079406A3 (en) | 2003-04-24 |
Family
ID=25225095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2002/009317 WO2002079406A2 (en) | 2001-03-28 | 2002-03-27 | Isolated human g-protein coupled receptors, nucleic acid molecules encoding human gpcr protein, and uses thereof |
Country Status (5)
Country | Link |
---|---|
US (1) | US20020142951A1 (en) |
EP (1) | EP1383790A4 (en) |
AU (1) | AU2002257091A1 (en) |
CA (1) | CA2442607A1 (en) |
WO (1) | WO2002079406A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7276372B2 (en) | 2002-12-20 | 2007-10-02 | Pdl Biopharma, Inc. | Antibodies against GPR64 and uses thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1330524A2 (en) * | 2000-10-30 | 2003-07-30 | Lexicon Genetics Incorporated | Novel human 7tm proteins and polynucleotides encoding the same |
WO2002061083A1 (en) * | 2001-01-30 | 2002-08-08 | Takeda Chemical Industries, Ltd. | Novel g protein-coupled receptor protein and dna thereof |
AU2002361177A1 (en) * | 2001-12-19 | 2003-06-30 | Bayer Healthcare Ag | Human secretin-type gpcr (latrophilin) |
-
2001
- 2001-03-28 US US09/818,264 patent/US20020142951A1/en not_active Abandoned
-
2002
- 2002-03-27 EP EP02726674A patent/EP1383790A4/en not_active Withdrawn
- 2002-03-27 AU AU2002257091A patent/AU2002257091A1/en not_active Abandoned
- 2002-03-27 CA CA002442607A patent/CA2442607A1/en not_active Abandoned
- 2002-03-27 WO PCT/US2002/009317 patent/WO2002079406A2/en active Search and Examination
Non-Patent Citations (2)
Title |
---|
DATABASE GENBANK [Online] 07 April 2000 CHAPMAN ET AL.: 'Human DNA sequence from clone RP1-299 I16 on chromosome Xq 26.1-27.3. Contains w GSSs', XP002961283 Retrieved from EMBL Database accession no. (AL136167) * |
See also references of EP1383790A2 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7276372B2 (en) | 2002-12-20 | 2007-10-02 | Pdl Biopharma, Inc. | Antibodies against GPR64 and uses thereof |
US7547544B2 (en) | 2002-12-20 | 2009-06-16 | Facet Biotech Corporation | Antibodies against GPR64 and uses thereof |
US7807163B2 (en) | 2002-12-20 | 2010-10-05 | Facet Biotech Corporation | Antibodies against GPR64 and uses thereof |
Also Published As
Publication number | Publication date |
---|---|
EP1383790A2 (en) | 2004-01-28 |
WO2002079406A3 (en) | 2003-04-24 |
US20020142951A1 (en) | 2002-10-03 |
CA2442607A1 (en) | 2002-10-10 |
AU2002257091A1 (en) | 2002-10-15 |
EP1383790A4 (en) | 2006-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20030036089A1 (en) | Isolated human G-protein coupled receptors, nucleic acid molecules encoding human GPCR proteins, and uses thereof | |
US6890731B1 (en) | Isolated human G-protein coupled receptors that are members of the aminergic subfamily, nucleic acid molecules encoding human GPCR proteins, and uses thereof | |
US20030077734A1 (en) | Isolated human G-protein coupled receptors, nucleic acid molecules encoding human GPCR proteins, and uses thereof | |
US20020019347A1 (en) | Isolated human G-protein coupled receptors, nucleic acid molecules encoding human GPCR proteins, and uses thereof | |
EP1287032A2 (en) | Isolated human g-protein coupled receptors, nucleic acid molecules encoding human gpcr proteins, and uses thereof | |
US20030113789A1 (en) | Isolated human G-protein coupled receptors, nucleic acid molecules encoding human GPCR proteins, and uses thereof | |
EP1319073A2 (en) | Isolated human g-protein coupled receptors, nucleic acid molecules encoding them, and uses thereof | |
EP1330521A2 (en) | Isolated human g-protein coupled receptors, nucleic acid molecules encoding human gpcr proteins, and uses thereof | |
WO2002030981A1 (en) | Gene encoding a human g-protein coupled receptor and its use | |
US20020100067A1 (en) | Isolated human G-protein coupled receptors, nucleic acid molecules encoding human GPCR proteins, and uses thereof | |
US7186812B2 (en) | Isolated human G-protein coupled receptors, nucleic acid molecules encoding human GPCR proteins, and uses thereof | |
WO2002079406A2 (en) | Isolated human g-protein coupled receptors, nucleic acid molecules encoding human gpcr protein, and uses thereof | |
WO2002068651A2 (en) | Isolated human g-protein coupled receptors, nucleic acid molecules encoding human gpcr proteins, and uses thereof | |
US20040076951A1 (en) | Isolated human G-protein coupled receptors, nucleic acid molecules encoding human GPCR proteins, and uses thereof | |
Chandramouliswaran et al. | WITHDRAWN APPLICATION AS PER THE LATEST USPTO WITHDRAWN LIST | |
US20030119144A1 (en) | Isolated human G-protein coupled receptors, nucleic acid molecules encoding human GPCR proteins, and uses thereof | |
US20030129705A1 (en) | Isolated human G-protein coupled receptors, nucleic acid molecules encoding human GPCR proteins, and uses thereof | |
US20040197856A1 (en) | Isolated human g-protein coupled receptors, nucleic acid molecules encoding human gpcr proteins, and uses thereof | |
EP1362103A2 (en) | Isolated human g-protein coupled receptors, nucleic acid molecules encoding human gpcr proteins, and uses thereof | |
WO2002059151A2 (en) | Isolated human g-protein coupled receptors, nucleic acid molecules encoding human gpcr proteins, and uses thereof | |
EP1280823A2 (en) | Isolated human g-protein coupled receptors, nucleic acid molecules encoding human gpcr proteins, and uses thereof | |
WO2002063001A2 (en) | Isolated human g-protein coupled receptors, nucleic acid molecules encoding human gpcr proteins, and uses thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2442607 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2002726674 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2002726674 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10473339 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2002726674 Country of ref document: EP |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) |