WO2002079197A1 - Inhibitors of c-jun n-terminal kinases (jnk) and other protein kinases - Google Patents

Inhibitors of c-jun n-terminal kinases (jnk) and other protein kinases Download PDF

Info

Publication number
WO2002079197A1
WO2002079197A1 PCT/US2002/009554 US0209554W WO02079197A1 WO 2002079197 A1 WO2002079197 A1 WO 2002079197A1 US 0209554 W US0209554 W US 0209554W WO 02079197 A1 WO02079197 A1 WO 02079197A1
Authority
WO
WIPO (PCT)
Prior art keywords
disease
agent
independently selected
ring
treating
Prior art date
Application number
PCT/US2002/009554
Other languages
French (fr)
Inventor
Randy Bethiel
John Cochran
Young-Choon Moon
Susanthini Nanthakumar
Original Assignee
Vertex Pharmaceuticals Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vertex Pharmaceuticals Incorporated filed Critical Vertex Pharmaceuticals Incorporated
Priority to DE60223790T priority Critical patent/DE60223790T4/en
Priority to MXPA03008888A priority patent/MXPA03008888A/en
Priority to EP02725391A priority patent/EP1373257B9/en
Priority to DE60223790A priority patent/DE60223790D1/en
Priority to CA002441733A priority patent/CA2441733A1/en
Priority to JP2002577822A priority patent/JP4160401B2/en
Publication of WO2002079197A1 publication Critical patent/WO2002079197A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/74Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon radicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/08Antiseborrheics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/14Drugs for dermatological disorders for baldness or alopecia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/16Otologicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/12Drugs for disorders of the metabolism for electrolyte homeostasis
    • A61P3/14Drugs for disorders of the metabolism for electrolyte homeostasis for calcium homeostasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/14Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/32One oxygen, sulfur or nitrogen atom
    • C07D239/42One nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • the present invention relates to inhibitors of protein kinase, especially c-Jun N-terminal kinases (JNK) and Src-family of kinases, which are members of the mitogen-activated protein (MAP) kinase family.
  • JNK c-Jun N-terminal kinases
  • MAP mitogen-activated protein
  • Members of the JNK family regulate signal transduction in response to environmental stress and proinflammatory cytokines and have been implicated in the mediation of a number of different disorders.
  • Members of the Src family are implicated in a number of human diseases.
  • the invention also relates to inhibitors of GSK3 kinase, which is implicated in diabetes and other disorders, and CDK2 kinase which plays a role in the regulation of the cell division cycle.
  • the invention also provides pharmaceutical compositions comprising the inhibitors of the invention and methods of utilizing those compositions in the treatment and prevention of various disorders.
  • MAP mitogen-activated protein
  • Mammalian cells respond to extracellular stimuli by activating signaling cascades that are mediated by members of the mitogen-activated protein (MAP) kinase family, which include the extracellular signal regulated kinases (ERKs) , the p38 MAP kinases and the c-Jun N-terminal kinases (JNKs) .
  • MAP mitogen-activated protein
  • MAPKs MAP kinases
  • MAPKs are activated by a variety of signals including growth factors, cytokines, UV radiation, and stress-inducing agents.
  • MAPKs are serine/threonine kinases and their activation occurs by dual phosphorylation of threonine and tyrosine at the Thr-X-Tyr segment in the activation loop.
  • MAPKs phosphorylate various substrates including transcription factors, which in turn regulate the expression of specific sets of genes and thus mediate a specific response to the stimulus.
  • JNKs In the c-Jun NH 2 -terminal protein kinases, also known as JNKs, three distinct genes, JNK1, JNK2 , JNK3 have been identified and at least ten different splicing isoforms of JNKs exist in mammalian cells [Gupta et al . , EMBO J. , 15:2760-70 (1996)].
  • JNKs proinflammatory cytokines, such as tumor necrosis factor- ⁇ (TNF ⁇ ) and interleukin-1 ⁇ (IL-l ⁇ ) , as well as by environmental stress, including anisomycin, UV irradiation, hypoxia, and osmotic shock [Minden et al .
  • JNKs include transcription factors c-Jun, ATF-2, Elkl, p53 and a cell death domain protein (DENN) [Zhang et al . Proc . Natl . Acad. Sci. USA, 95:2586-91 (1998)].
  • ENN cell death domain protein
  • Each JNK isoform binds to these substrates with different affinities, suggesting a regulation of signaling pathways by substrate specificity of different JNKs in vivo (Gupta et al . , supra) .
  • JNKs have been implicated in the mediation of cellular response to cancer, thrombin-induced platelet aggregation, immunodeficiency disorders, autoimmune diseases, cell death, allergies, osteoporosis and heart disease.
  • the therapeutic conditions related to activation of the JNK pathway include chronic myelogenous leukemia (CML) , rheumatoid arthritis, asthma, osteoarthritis, ischemia, cancer and neurodegenerative diseases.
  • CML chronic myelogenous leukemia
  • rheumatoid arthritis asthma, osteoarthritis, ischemia, cancer and neurodegenerative diseases.
  • JNK JNK inhibitors
  • constitutively activated JNK is associated with HTLV-1 mediated tumorigenesis [Oncogene 13:135-42 (1996)].
  • the proliferative effects of bFGF and OSM on Kaposi's sarcoma (KS) cells are mediated by their activation of the JNK signaling pathway [J. Clin. Invest. 99:1798-804 (1997)].
  • Other proliferative effects of other cytokines implicated in KS proliferation such as vascular endothelial growth factor (VEGF) , IL-6 and TNF ⁇ , are also mediated by JNK.
  • VEGF vascular endothelial growth factor
  • JNK1 and JNK2 are widely expressed in a variety of tissues.
  • JNK3 is selectively expressed in the brain and to a lesser extent in the heart and testis [Gupta et al . , supra ; Mohit et al . , Neuron 14:67- 78 (1995); Martin et al . , Brain Res . Mol . Brain Res . 35:47-57 (1996)].
  • JNK3 has been linked to neuronal apoptosis induced by kainic acid, indicating a role of JNK in the pathogenesis of glutamate neurotoxicity.
  • JNK3 expression is localized to a subpopulation of pyramidal neurons in the CA1, CA4 and subiculum regions of the hippocampus and layers 3 and 5 of the neocortex [Mohit et al . , supra] .
  • the CA1 neurons of patients with acute hypoxia showed strong nuclear JNK3-immunoreactivity compared to minimal, diffuse cytoplasmic staining of the hippocampal neurons from brain tissues of normal patients [Zhang et al . , supra] .
  • JNK3 appears to be involved involved in hypoxic and ischemic damage of CA1 neurons in the hippocampus.
  • JNK3 co-localizes immunochemically with neurons vulnerable in Alzheimer's disease [Mohit et al . , supra] .
  • Disruption of the JNK3 gene caused resistance of mice to the excitotoxic glutamate receptor agonist kainic acid, including the effects on seizure activity, AP-1 transcriptional activity and apoptosis of hippocampal neurons, indicating that the JNK3 signaling pathway is a critical component in the pathogenesis of glutamate neurotoxicity (Yang et al . , Nature, 389:865-870 (1997)] .
  • JNK signaling especially that of JNK3 , has been implicated in the areas of apoptosis-driven neurodegenerative diseases such as Alzheimer's Disease, Parkinson's Disease, ALS (Amyotrophic Lateral Sclerosis) , epilepsy and seizures, Huntington's Disease, traumatic brain injuries, as well as ischemic and hemorrhaging stroke.
  • apoptosis-driven neurodegenerative diseases such as Alzheimer's Disease, Parkinson's Disease, ALS (Amyotrophic Lateral Sclerosis) , epilepsy and seizures, Huntington's Disease, traumatic brain injuries, as well as ischemic and hemorrhaging stroke.
  • JNK specific inhibitors that are useful in treating the various conditions associated with JNK activation, especially considering the currently available, relatively inadequate treatment options for the majority of these conditions .
  • the Src-family of kinases are implicated in cancer, immune system dysfunction, and bone remodeling diseases.
  • Thomas and Brugge Annu . Rev. Cell Dev. Biol . (1997) 13, 513; Lawrence and Niu, Pharmacol . Ther. (1998) 77, 81; Tatosyan and Mizenina, Biochemistry (Moscow) (2000) 65, 49; Boschelli et al., Drugs of the Future 2000, 25(7), 717, (2000).
  • Src Src homology domain 4
  • SH4 Src homology domain 4
  • SH3 domain unique domain
  • SH2 domain unique domain
  • SHI catalytic domain
  • C-terminal regulatory region Tatosyan et al . Biochemistry (Moscow) 65, 49-58 (2000) .
  • Src kinases are considered as potential therapeutic targets for various human diseases. Mice that are deficient in Src develop osteopetrosis, or bone build-up, because of depressed bone resorption by osteoclasts. This suggests that osteoporosis resulting from abnormally high bone resorption can be treated by inhibiting Src. Soriano et al . , Cell , 69 , 551 (1992) and Soriano et al . , Cell , 64, 693 (1991) .
  • Src also plays a role in the replication of hepatitis B virus.
  • the virally encoded transcription factor HBx activates Src in a step required for propagation of the virus. Klein et al . , EMBO J. , 18, 5019, (1999) and Klein et al . , Mol . Cell . Biol . , 17, 6427 (1997) .
  • Lck plays a role in T-cell signaling. Mice that lack the Lck gene have a poor ability to develop thymocytes. The function of Lck as a positive activator of T-cell signaling suggests that Lck inhibitors may be useful for treating autoimmune disease such as rheumatoid arthritis. Molina et al . , Nature, 357, 161 (1992) . Hck, Fgr and Lyn have been identified as important mediators of integrin signaling in myeloid leukocytes. Lowell et al . , J. Leukoc . Biol . , 65, 313 (1999) .
  • Glycogen synthase kinase-3 (GSK-3) is a serine/threonine protein kinase comprised of ⁇ and ⁇ isoforms that are each encoded by distinct genes [Coghlan et al . , Chemistry & Biology, 7, 793-803 (2000); Kim and Ki mel, Curr. Opinion Genetics Dev. , 10, 508-514 (2000)].
  • GSK-3 has been implicated in various diseases including diabetes, Alzheimer's disease, CNS disorders such as manic depressive disorder and neurodegenerative diseases, and cardiomyocete hypertrophy [WO 99/65897; WO 00/38675; and Haq et al . , J. Cell Biol . (2000) 151, 117]. These diseases may be caused by, or result in, the abnormal operation of certain cell signaling pathways in which GSK-3 plays a role. GSK-3 has been found to phosphorylate and modulate the activity of a number of regulatory proteins.
  • glycogen synthase which is the rate limiting enzyme necessary for glycogen synthesis
  • the microtubule associated protein Tau the gene transcription factor ⁇ -catenin
  • the translation initiation factor elF2B as well as ATP citrate lyase
  • axin heat shock factor-1
  • c-Jun c-Myc
  • c-Myb c-Myb
  • CEPB ⁇ CEPB ⁇
  • glycogen synthesis and glucose uptake Normally, the presence of insulin causes inhibition of GSK-3 mediated phosphorylation and deactivation of glycogen synthase.
  • the inhibition of GSK-3 leads to increased glycogen synthesis and glucose uptake [Klein et al . , PNAS, 93, 8455-9 (1996); Cross et al . , Biochem . J. , 303, 21-26 (1994); Cohen, Biochem. Soc. Trans. , 21, 555-567 (1993); Massillon et al . , Biochem J. 299, 123-128 (1994)].
  • glycogen synthesis and glucose uptake fail to increase despite the presence of relatively high blood levels of insulin.
  • GSK-3 is overexpressed [WO 00/38675] .
  • Therapeutic inhibitors of GSK-3 are therefore potentially useful for treating diabetic patients suffering from an impaired response to insulin.
  • GSK-3 activity has also been associated with Alzheimer's disease. This disease is characterized by the well-known ⁇ -amyloid peptide and the formation of intracellular neurofibrillary tangles.
  • the neurofibrillary tangles contain hyperphosphorylated Tau protein where Tau is phosphorylated on abnormal sites. GSK-3 has been shown to phosphorylate these abnormal sites in cell and animal models. Furthermore, inhibition of GSK-3 has been shown to prevent hyperphosphorylation of Tau in cells [Lovestone et al . , Current Biology 4, 1077-86 (1994); Brownlees et al . , Neuroreport 8, 3251-55 (1997)]. Therefore, it is believed that GSK-3 activity may promote generation of the neurofibrillary tangles and the progression of Alzheimer's disease.
  • ⁇ -catenin Another substrate of GSK-3 is ⁇ -catenin which is degradated after phosphorylation by GSK-3. Reduced levels of ⁇ -catenin have been reported in schizophrenic patients and have also been associated with other diseases related to increase in neuronal cell death
  • Cyclin-dependent kinases are serine/threonine protein kinases consisting of a ⁇ -sheet rich amino-terminal lobe and a larger carboxy-terminal lobe which is largely ⁇ -helical.
  • the CDKs display the 11 subdomains shared by all protein kinases and range in molecular mass from 33 to 44 kD.
  • This family of kinases which includes CDK1, CKD2 , CDK4 , and CDK6 , requires phosphorylation at the residue corresponding to CDK2 Thrl60 in order to be fully active [Meijer, L., Drug Resistance Updates, 3, 83-88 (2000)].
  • Each CDK complex is formed from a regulatory cyclin subunit (e.g., cyclin A, Bl, B2, Dl, D2 , D3 , and E) and a catalytic kinase subunit (e.g., CDK1, CDK2 , CDK4, CDK5, and CDK6) .
  • a regulatory cyclin subunit e.g., cyclin A, Bl, B2, Dl, D2 , D3 , and E
  • a catalytic kinase subunit e.g., CDK1, CDK2 , CDK4, CDK5, and CDK6 .
  • Each different kinase/cyclin pair functions to regulate the different and specific phases of the cell cycle known as the GI, S, G2, and M phases [Nigg, E., Nature Reviews, 2 , 21-32 (2001); Flatt, P., Pietenpol, J., Drug Metabolism Reviews, 32, 283-305 (2000) ] .
  • the CDKs have been implicated in cell proliferation disorders, particularly in cancer.
  • Cell proliferation is a result of the direct or indirect deregulation of the cell division cycle and the CDKs play a critical role in the regulation of the various phases of this cycle.
  • the over-expression of cyclin Dl is commonly associated with numerous human cancers including breast, colon, hepatocellular carcinomas and gliomas [Flatt, P., Pietenpol, J., Drug Metabolism Reviews, 32, 283-305 (2000)].
  • the CDK2/cyclin E complex plays a key role in the progression from the early G_ to S phases of the cell cycle and the overexpression of cyclin E has been associated with various solid tumors.
  • CDKs especially CDK2
  • CDK2 also play a role in apoptosis and T-cell development.
  • CDK2 has been identified as a key regulator of thymocyte apoptosis [Williams, 0., et al, European Journal of Immunology, 709-713 (2000)]. Stimulation of CDK2 kinase activity is associated with the progression of apoptosis in thymocytes, in response to specific stimuli.
  • CDK2 kinase activity blocks this apoptosis resulting in the protection of thymocytes .
  • CDKs are directly involved in the process of transcription. Numerous viruses require CDKs for their replication process. Examples where CDK inhibitors restrain viral replication include human cytomegakovirus, herpes virus, and varicella-zoster virus [Meijer, L., Drug Resistance Updates, 3, 83-88 (2000)].
  • CDK5/p25 Paired Helical Filaments
  • JNKs and Src family kinases including JNK3 , Src, and Lck inhibitors, and of GSK3 and CDK2 inhibitors that are useful in treating various diseases or conditions associated with JNK3 , Src, Lck, GSK3, and CDK2 activation.
  • compositions thereof are useful for treating or preventing a variety of disorders, such as heart disease, diabetes, Alzheimer's disease, immunodeficiency disorders, inflammatory diseases, allergic diseases, autoimmune diseases, destructive bone disorders such as osteoporosis, proliferative disorders, infectious diseases and viral diseases.
  • the compositions are also useful in methods for preventing cell death and hyperplasia and therefore may be used to treat or prevent reperfusion/ischemia in stroke, heart attacks, and organ hypoxia.
  • the compositions are also useful in methods for preventing thrombin-induced platelet aggregation.
  • compositions are especially useful for disorders such as chronic myelogenous leukemia (CML) , rheumatoid arthritis, asthma, osteoarthritis , ischemia, cancer, liver disease including hepatic ischemia, heart disease such as myocardial infarction and congestive heart failure, pathologic immune conditions involving T cell activation and neurodegenerative disorders.
  • CML chronic myelogenous leukemia
  • rheumatoid arthritis rheumatoid arthritis
  • asthma chronic myelogenous leukemia
  • osteoarthritis ischemia
  • ischemia cancer
  • liver disease including hepatic ischemia
  • heart disease such as myocardial infarction and congestive heart failure
  • pathologic immune conditions involving T cell activation and neurodegenerative disorders pathologic immune conditions involving T cell activation and neurodegenerative disorders.
  • each W is independently selected from nitrogen or CH; each R 1 , R 2 , and R 3 is independently selected from halogen, QR, Q (n) CN, Q( n )N0 2 , or Q( n )Ar 2 ; wherein:
  • R 1 and R 2 or R 2 and R 3 are optionally taken together to form a 4-8 membered saturated, partially unsaturated, or fully unsaturated ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur; n is zero or one;
  • Q is a C. 4 alkylidene chain wherein one methylene unit of Q is optionally replaced by 0, S, NR, NRCO, NRCONR, NRC0 2 , CO, C0 2 , CONR, 0C(O)NR, S0 2 , S0 2 NR, NRS0 2 , NRS0 2 NR, C(0)C(0), or C (O) CH 2 C (0) ; each R is independently selected from hydrogen or an optionally substituted C 1 -C 4 aliphatic, wherein: two R bound to the same nitrogen atom are optionally taken together with the nitrogen atom to form a 3- 7 membered saturated, partially unsaturated, or fully unsaturated ring having 1-2 additional heteroatoms independently selected from nitrogen, oxygen, or sulfur; R 4 is Ar 1 , T-Ar 2 , or T (n )-Ar 3 ;
  • T is a C 1 - 2 alkylidene chain wherein one methylene unit of T is optionally replaced by O, NR, NRCO, NRCONR, NRC0 2 , CO, C0 2 , CONR, OC(0)NR, S0 2 , S0 2 NR, NRS0 2 , NRS0 2 NR, C(0)C(0), or C(0)CH 2 C(0) ;
  • Ar 1 is a 5-6 membered monocyclic or 8-10 membered bicyclic saturated, partially unsaturated, or fully unsaturated ring system; wherein:
  • Ar 1 is optionally substituted with up to five substituents, wherein the first substituent is selected from R x or R 5 and wherein any additional substituents are independently selected from R 5 ; each R x is independently selected from a 5-6 membered aryl ring having 0-3 heteroatoms selected from nitrogen, oxygen, or sulfur, wherein:
  • R x is optionally substituted with 1-3 R 5 ; each R 5 is independently selected from R, halogen, N0 2 , CN, OR, SR, N(R) 2 , NRC(0)R, NRC(0)N(R) 2 , NRC0 2 R, C(0)R, C0 2 R, C(0)N(R) 2 , 0C(0)N(R) 2 , SOR, S0 2 R, S0 2 N(R) 2 , NRS0 2 R, NRS0 2 N(R) 2 , C(0)C(0)R, or C (O) CH 2 C (O) R;
  • Ar 2 is a 5-6 membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or an 8-10 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur; wherein: Ar 2 is optionally substituted with up to five substituents, wherein the first substituent is selected from R x or R 5 and wherein any additional substituents are independently selected from R 5 ; Ar 3 is a 6-membered aryl ring having 0-2 nitrogens, wherein:
  • Ar 3 is substituted with one Z-R 6 group and optionally substituted with 1-3 R 5 ;
  • Z is a C ⁇ -C 6 alkylidene chain wherein up to two non- adjacent methylene units of Z are optionally replaced by CO, C0 2 , COCO, CONR, OCONR, NRNR, NRNRCO, NRCO, NRC0 2 , NRCONR, SO, S0 2 , NRS0 2 , S0 2 NR, NRS0 2 NR, 0, S, or NR; and
  • R 6 is selected from Ar 2 , R, halogen, N0 2 , CN, OR, SR, N(R) 2 , NRC(0)R, NRC(0)N(R) 2 , NRC0 2 R, C(0)R, C0 2 R, OC(0)R, C(0)N(R) 2 , 0C(0)N(R) 2 , SOR, S0 2 R, S0 2 N(R) 2 , NRS0 2 R, NRS0 2 N(R) 2 , C(O)C(0)R, or C (O) CH 2 C (O) R; provided that:
  • A is a phenyl ring substituted with one or more groups selected from halogen, CN, OC(0)NH 2 , C0 2 R 10 , COR 10 , SO 2 N(R 10 ) 2 , N(R 10 ) 2 , OR 10 , or fluoro-alkyl, wherein each R 10 is independently selected from hydrogen or a C 1 -C 7 alkyl group optionally substituted with NH 2 , NH(C ⁇ -C 7 alkyl), or N(C X -C 7 alkyl) 2 ; and B is selected from halogen, CN, OC(0)NH 2 , C0 2 R 10 , COR 10 , SO 2 N(R 10 ) 2 , N(R 10 ) 2 , OR 10 , or fluoro- (C ⁇ -C 7 alkyl).
  • an optionally substituted group may have a substituent at each substitutable position of the group, and each substitution is independent of the other.
  • aliphatic or "aliphatic group” as used herein means a straight-chain or branched C ⁇ -C 12 hydrocarbon chain that is completely saturated or that contains one or more units of unsaturation, or a monocyclic C 3 -C 8 hydrocarbon or bicyclic C 8 -C ⁇ 2 hydrocarbon that is completely saturated or that contains one or more units of unsaturation, but which is not aromatic (also referred to herein as “carbocycle” or "cycloalkyl”), that has a single point of attachment to the rest of the molecule wherein any individual ring in said bicyclic ring system has 3-7 members.
  • suitable aliphatic groups include, but are not limited to, linear or branched or alkyl, alkenyl, alkynyl groups and hybrids thereof such as (cycloalkyl) alkyl, (cycloalkenyl) alkyl or
  • alkyl used alone or as part of a larger moiety includes both straight and branched chains containing one to twelve carbon atoms.
  • alkenyl and “alkynyl” used alone or as part of a larger moiety shall include both straight and branched chains containing two to twelve carbon atoms .
  • haloalkyl means alkyl, alkenyl or alkoxy, as the case may be, substituted with one or more halogen atoms.
  • halogen means F, Cl, Br, or I .
  • heteroatom means nitrogen, oxygen, or sulfur and includes any oxidized form of nitrogen and sulfur, and the quaternized form of any basic nitrogen.
  • nitrogen includes a substitutable nitrogen of a heterocyclic ring.
  • the nitrogen may be N (as in 3 , 4-dihydro-2H- pyrrolyl) , NH (as in pyrrolidinyl) or NR + (as in N-substituted pyrrolidinyl) .
  • aryl used alone or as part of a larger moiety as in “aralkyl”, “aralkoxy” , or
  • aryloxyalkyl refers to monocyclic, bicyclic and tricyclic ring systems having a total of five to fourteen ring members, wherein at least one ring in the system is aromatic and wherein each ring in the system contains 3 to 7 ring members.
  • aryl may be used interchangeably with the term “aryl ring” .
  • aryl also refers to heteroaryl ring systems as defined hereinbelow.
  • heterocycle means non-aromatic, monocyclic, bicyclic or tricyclic ring systems having five to fourteen ring members in which one or more ring members is a heteroatom, wherein each ring in the system contains 3 to 7 ring members .
  • heteroaryl used alone or as part of a larger moiety as in “heteroaralkyl” or “heteroarylalkoxy” , refers to monocyclic, bicyclic and tricyclic ring systems having a total of five to fourteen ring members, wherein at least one ring in the system is aromatic, at least one ring in the system contains one or more heteroatoms, and wherein each ring in the system contains 3 to 7 ring members.
  • heteroaryl may be used interchangeably with the term “heteroaryl ring” or the term “heteroaromatic” .
  • An aliphatic group or a non-aromatic heterocyclic ring may contain one or more substituents. Suitable substituents on the saturated carbon of an aliphatic group or of a non-aromatic heterocyclic ring are selected from halogen, oxo, -R°, -0R°, -SR°, 1, 2-methylene-dioxy, 1, 2-ethylenedioxy, phenyl (Ph) optionally substituted with R°, -O(Ph) optionally substituted with R°, -CH 2 (Ph) optionally substituted with R°, -CH 2 CH 2 (Ph) , optionally substituted with R°, -N0 2 , -CN, -N(R°) 2 , -NR°C(0)R°, -NR°C(0)N(R°) 2 , -NR°C0 2 R°, -NR°NR°C (O) R°, -NR°NR°C(0)N(R°) 2 , -
  • Optional substituents on the aliphatic group of R° are selected from NH 2 , NH(Ci_ aliphatic), N(C ⁇ - 4 aliphatic) 2 , halogen, C ⁇ - aliphatic, OH, 0(C ⁇ _ 4 aliphatic), N0 2 , CN, C0 2 H, C0 2 (C 1 . 4 aliphatic), O(halo C ⁇ _ 4 aliphatic), or halo C ⁇ _ 4 aliphatic.
  • alkylidene chain refers to a straight or branched carbon chain that may be fully saturated or have one or more units of unsaturation.
  • a combination of substituents or variables is permissible only if such a combination results in a stable or chemically feasible compound.
  • a stable compound or chemically feasible compound is one that is not substantially altered when kept at a temperature of 40 °C or less, in the absence of moisture or other chemically reactive conditions, for at least a week.
  • structures depicted herein are also meant to include all stereochemical forms of the structure; i.e., the R and S configurations for each asymmetric center. Therefore, single stereochemical isomers as well as enantiomeric and diastereomeric mixtures of the present compounds are within the scope of the invention.
  • structures depicted herein are also meant to include compounds which differ only in the presence of one or more isotopically enriched atoms. For example, compounds having the present structures except for the replacement of a hydrogen by a deuterium or tritium, or the replacement of a carbon by a 13 C- or 14 C-enriched carbon are within the scope of this invention.
  • R 1 , R 2 , and R 3 groups of formulae I and II are selected from halogen, QR or QAr 2 , wherein Q is a C ⁇ -3 alkylidene chain wherein one methylene unit of Q is optionally replaced by -0-, -S-, -NHCO- , or -NR- , and Ar 2 is an optionally substituted 5-6 membered saturated, partially unsaturated, or fully unsaturated ring having 0-2 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
  • R 1 , R 2 , and R 3 groups are selected from OH, OCH 3 , OCH 2 CH 3 , NHCOMe, NH 2 , H(C ⁇ _ 4 aliphatic), N(C ⁇ - 4 aliphatic) 2 , 0 (CH 2 ) 2 morpholin-4-yl, 0(CH 2 ) 2 NH 2 , 0(CH 2 ) 2 NH(Ci- 4 aliphatic) , O (CH 2 ) 2 N (C ⁇ - aliphatic) _ , bromo, chloro, or fluoro.
  • R 1 , R 2 , and R 3 groups are selected from OH, OCH 3 , OCH 2 CH 3 , NHCOMe, NH 2 , H(C ⁇ _ 4 aliphatic), N(C ⁇ - 4 aliphatic) 2 , 0 (CH 2 ) 2 morpholin-4-yl, 0(CH 2 ) 2 NH 2 , 0(CH 2 ) 2
  • Ar 2 groups are morpholin-4-yl, pyrrolidin-1-yl, piperidin-1-yl, thiomorpholin-4-yl, pyrazol-1-yl, or imidazol-1-yl .
  • Preferred R 4 groups of formulae I and II are selected from a 6-membered saturated, partially unsaturated, or aryl ring having 0-3 nitrogens, a 9-10 membered bicyclic aryl ring having 0-2 nitrogens, or a 5 membered heteroaryl ring having 2-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, wherein each ring is optionally substituted.
  • R 4 groups of formulae I and II are substituted rings selected from phenyl, cyclohexyl, naphthyl , pyridyl, pyrimidinyl, triazinyl, thiazolyl, thiadiazolyl, pyrazolyl, isoxazolyl, indazolyl, or benzimidazolyl .
  • Preferred substituents on R 4 are independently selected from R, halogen, N0 2 , OR, N(R) 2 , RA or Z-R 6 , wherein R is hydrogen or optionally substituted C-4 aliphatic.
  • Preferred Z groups of formulae I and II are selected from a C ⁇ - 4 alkylidene chain wherein one methylene unit of Z is optionally replaced by -0-, -S-, -S0 2 -, or -NH- .
  • Preferred R 6 groups are selected from optionally substituted phenyl, pyridyl, and pyrimidinyl .
  • R substituents on R 4 are selected from phenyl, pyridyl, and pyrimidinyl wherein R x is optionally substituted with 1-2 R 5 . More preferred substituents on R 4 are selected from chloro, fluoro, bromo, methyl, ethyl, t-butyl, isopropyl, cyclopropyl , nitro, OMe, OEt, CF 3 , NH 2 , benzyl, benzyloxy, OH, methylene dioxy, S0 2 NH 2 , phenoxy, O-pyridinyl, S0phenyl , nitrophenoxy, aminophenoxy, S- dimethylpyrimidine, NHphenyl, NH-methoxyphenyl, pyridinyl, aminophenyl, phenol, chloro-fluoro-phenyl, dimethylaminophenyl, CF 3 -phenyl, dimethyIpheny1 ,
  • R 1 , R 3 , R 4 , Ar 2 , and Q are as described above for compounds of formulae I and II .
  • R 1 , R 3 , and R 4 groups of formulae I-a' and II-a' are those described above for compounds of formulae I and II .
  • R 1 , R 2 , R 3 , Z, and R 6 are as described above for compounds of formulae I and II.
  • the present compounds may be prepared in general by methods known to those skilled in the art for analogous compounds, as illustrated by the general Schemes I through IV, and the synthetic examples shown below.
  • Reagents and conditions (a) MeMgCl, THF, -78 °C; (b) Mn0 2 , CH 2 C1 2 , reflux,-
  • Scheme I above shows a general synthetic route used for preparing the intermediate compound 3_.
  • a solution of aldehyde (jL) in THF at -78 °C, is added a solution of methyl magnesium chloride in THF.
  • the reaction is quenched with cold HC1 (IN) , then aqueous work-up followed by chromatography affords alcohol (ii) - Manganese dioxide is added to a solution of ii_ in CH 2 C1 2 and the resulting mixture is heated to reflux.
  • Reagents and conditions (a) NH 2 NCN, HCl, 1, 4-dioxane; (b) DMF-DMA, 80 °C, 12-18 hours; (c) acetonitrile, reflux.
  • Enaminone 4 was combined with guanidine 2_ and acetonitrile and the resulting mixture heated at 80 °C. After aqueous work-up, the crude product is purified by chromatography to afford I in 50-95% yield, depending upon the guanidine derivative used.
  • R 1 , R 2 , R 3 , and R 4 are amenable to the reaction conditions described above for Scheme II, including those listed above in Table 1.
  • Reagents and conditions (a) Mg, I 2 , THF, trimethylborate; room temperature, 12-18 hours; (b) Na 2 C0 3 , Pd(PPh 3 ) 4 , toluene :methanol (4:1), reflux, 24 hours; (c) NaH (60% dispersion in mineral oil) , Pd(PPh 3 ) 4 , THF, reflux, 3 hours.
  • Scheme III above shows an alternate method for preparing compounds of formula I.
  • the aryl boronic acid ⁇ _) is prepared from treating the bromide iii with magnesium turnings, and a catalytic amount of iodine, in THF at reflux for 12-18 hours.
  • the reaction is cooled to 0°C then trimethyl borate is added and the resulting mixture stirred at room temperature for 12-18 hours.
  • the reaction is hydrolyzed with HCl (6N, aqueous) at 60°C then aqueous work-up afforded the desired boronic acid ⁇ _.
  • the boronic acid _6 is combined with the dichloropyrimidine (5), Na 2 C0 3 , and Pd(PPh 3 ) 4 in a solution of toluene :methanol (4:1).
  • the resulting mixture is heated at reflux for 24 hours then filtered through silica gel.
  • the crude product is purified by flash chromatography to afford chloropyrimidine 7_.
  • the chloropyrimidine 7_ is combined with the aniline 1 , NaH (60% dispersion in mineral oil) , and Pd(PPh 3 ) 4 in THF and the resulting mixture heated at reflux for 3 hours. The reaction is cooled then poured into water. Aqueous work-up, followed by flash chromatography affords I.
  • R 1 , R 2 , R 3 , and R 4 are amenable to the reaction conditions described above for Scheme III, including those listed above in Table 1.
  • Reagents and conditions (a) NCCH 2 P (O) (OEt ) 2 , NaH, THF; (b) lithium hexamethyldisilazide , THF then trimethyl silyl chloride ; (c) dimethylf ormamide dimethylacetal ; (d) gaseous HBr, CHC1 3 ; e) R 4 NH 2 , NaH, dimethylformamide, 80°C.
  • the activity of a compound utilized in this invention as an inhibitor of NK3 , GSK-3, CDK2, Lck, or Src may be assayed in vitro, in vivo or in a cell line.
  • In vitro assays include assays that determine inhibition of either the phosphorylation activity or ATPase activity of activated JNK3 , GSK-3, CDK2, Lck, or Src. Alternate in vitro assays quantitate the ability of the inhibitor to bind to JNK3 , GSK-3, CDK2 , Lck, or Src.
  • Inhibitor binding may be measured by radiolabelling the inhibitor prior to binding, isolating the inhibitor/JNK3 , inhibitor/GSK-3 , inhibitor/CDK2 , inhibitor/Lck, or inhibitor/Src complex and determining the amount of radiolabel bound.
  • inhibitor binding may be determined by running a competition experiment where new inhibitors are incubated with JNK3 , GSK-3, CDK2 , Lck, or Src bound to known radioligands .
  • the invention provides a composition comprising a compound of this invention or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier, adjuvant, or vehicle .
  • the amount of compound in the compositions of this invention is such that is effective to detectably inhibit a protein kinase, particularly NK3 , GSK-3, CDK2 , Lck, or Src in a biological sample or in a patient.
  • a protein kinase particularly NK3 , GSK-3, CDK2 , Lck, or Src
  • the composition of this invention is formulated for administration to a patient in need of such composition.
  • the composition of this invention is formulated for oral administration to a patient .
  • patient means an animal, preferably a mammal, and most preferably a human.
  • pharmaceutically acceptable carrier, adjuvant, or vehicle refers to a non-toxic carrier, adjuvant, or vehicle that does not destroy the pharmacological activity of the compound with which it is formulated.
  • compositions of this invention include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat.
  • ion exchangers alumina, aluminum stearate, lecithin
  • serum proteins such as human serum albumin
  • buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate,
  • detectably inhibit means a measurable change in NK3, GSK-3, CDK2, Lck, or Src activity between a sample comprising said composition and a JNK3 , GSK-3, CDK2, Lck, or Src kinase and an equivalent sample comprising JNK3 , GSK-3, CDK2 , Lck, or Src kinase in the absence of said composition.
  • a “pharmaceutically acceptable salt” means any non-toxic salt, ester, salt of an ester or other derivative of a compound of this invention that, upon administration to a recipient, is capable of providing, either directly or indirectly, a compound of this invention or an inhibitorily active metabolite or residue thereof .
  • Pharmaceutically acceptable salts of the compounds of this invention include those derived from pharmaceutically acceptable inorganic and organic acids and bases.
  • suitable acid salts include acetate, adipate, alginate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, citrate, camphorate, camphorsulfonate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptanoate, glycerophosphate, glycolate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, malonate, methanesulfonate, 2- naphthalenesulfonate, nicotinate, nitrate, oxalate, palmoate, pe
  • Salts derived from appropriate bases include alkali metal (e.g., sodium and potassium), alkaline earth metal (e.g., magnesium), ammonium and N + (C ⁇ _ 4 alkyl) 4 salts.
  • alkali metal e.g., sodium and potassium
  • alkaline earth metal e.g., magnesium
  • ammonium and N + (C ⁇ _ 4 alkyl) 4 salts e.g., sodium and potassium
  • N + (C ⁇ _ 4 alkyl) 4 salts e.g., sodium and potassium
  • This invention also envisions the quaternization of any basic nitrogen-containing groups of the compounds disclosed herein. Water or oil-soluble or dispersible products may be obtained by such quaternization.
  • the compositions of the present invention may be administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir.
  • parenteral includes subcutaneous, intravenous, intramuscular, intra-articular, intra-synovial, intrasternal , intrathecal, intrahepatic, intralesional and intracranial injection or infusion techniques.
  • the compositions are administered orally, intraperitoneally or intravenously.
  • Sterile injectable forms of the compositions of this invention may be aqueous or oleaginous suspension. These suspensions may be formulated according to techniques known in the art using suitable dispersing or wetting agents and suspending agents.
  • the sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example as a solution in 1, 3-butanediol .
  • a non-toxic parenterally-acceptable diluent or solvent for example as a solution in 1, 3-butanediol .
  • acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution.
  • sterile, fixed oils are conventionally employed as a solvent or suspending medium .
  • any bland fixed oil may be employed including synthetic mono- or di-glycerides .
  • Fatty acids such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions.
  • These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant, such as carboxymethyl cellulose or similar dispersing agents that are commonly used in the formulation of pharmaceutically acceptable dosage forms including emulsions and suspensions.
  • Other commonly used surfactants such as Tweens, Spans and other emulsifying agents or bioavailability enhancers which are commonly used in the manufacture of pharmaceutically acceptable solid, liquid, or other dosage forms may also be used for the purposes of formulation.
  • compositions of this invention may be orally administered in any orally acceptable dosage form including, but not limited to, capsules, tablets, aqueous suspensions or solutions.
  • carriers commonly used include lactose and corn starch.
  • Lubricating agents such as magnesium stearate, are also typically added.
  • useful diluents include lactose and dried cornstarch.
  • aqueous suspensions are required for oral use, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening, flavoring or coloring agents may also be added.
  • compositions of this invention may be administered in the form of suppositories for rectal administration.
  • suppositories for rectal administration.
  • suppositories can be prepared by mixing the agent with a suitable non- irritating excipient that is solid at room temperature but liquid at rectal temperature and therefore will melt in the rectum to release the drug.
  • suitable non- irritating excipient include cocoa butter, beeswax and polyethylene glycols.
  • compositions of this invention may also be administered topically, especially when the target of treatment includes areas or organs readily accessible by topical application, including diseases of the eye, the skin, or the lower intestinal tract .
  • Suitable topical formulations are readily prepared for each of these areas or organs .
  • Topical application for the lower intestinal tract can be effected in a rectal suppository formulation (see above) or in a suitable enema formulation .
  • Topically- transdermal patches may also be used.
  • the pharmaceutically acceptable compositions may be formulated in a suitable ointment containing the active component suspended or dissolved in one or more carriers .
  • Carriers for topical administration of the compounds of this invention include , but are not limited to, mineral oil , liquid petrolatum, white petrolatum, propylene glycol , polyoxyethylene, polyoxypropylene compound, emulsifying wax and water .
  • the pharmaceutically acceptable compositions can be formulated in a suitable lotion or cream containing the active components suspended or dissolved in one or more pharmaceutically acceptable carriers .
  • Suitable carriers include, but are not limited to, mineral oil , sorbitan monostearate , polysorbate 60 , cetyl esters wax, cetearyl alcohol , 2 -octyldodecanol , benzyl alcohol and water.
  • the pharmaceutically acceptable compositions may be formulated as micronized suspensions in isotonic, pH adjusted sterile saline , or, preferably, as solutions in isotonic, pH adjusted sterile saline, either with or without a preservative such as benzylalkonium chloride .
  • the pharmaceutically acceptable compositions may be formulated in an ointment such as petrolatum.
  • compositions of this invention may also be administered by nasal aerosol or inhalation.
  • Such compositions are prepared according to techniques well-known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other conventional solubilizing or dispersing agents.
  • the pharmaceutically acceptable compositions of this invention are formulated for oral administration.
  • the amount of the compounds of the present invention that may be combined with the carrier materials to produce a composition in a single dosage form will vary depending upon the host treated, the particular mode of administration.
  • the compositions should be formulated so that a dosage of between 0.01 - 100 mg/kg body weight/day of the inhibitor can be administered to a patient receiving these compositions.
  • a specific dosage and treatment regimen for any particular patient will depend upon a variety of factors, including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, rate of excretion, drug combination, and the judgment of the treating physician and the severity of the particular disease being treated.
  • the amount of a compound of the present invention in the composition will also depend upon the particular compound in the composition.
  • chemotherapeutic agents or other anti-proliferative agents may be combined with the compounds of this invention to treat proliferative diseases and cancer.
  • chemotherapeutic agents include, but are not limited to, GleevecTM, adriamycin, dexamethasone, vincristine, cyclophosphamide, fluorouracil , topotecan, taxol, interferons, and platinum derivatives .
  • the amount of additional therapeutic agent present in the compositions of this invention will be no more than the amount that would normally be administered in a composition comprising that therapeutic agent as the only active agent.
  • the amount of additional therapeutic agent in the presently disclosed compositions will range from about 50% to 100% of the amount normally present in a composition comprising that agent as the only therapeutically active agent.
  • the invention relates to a method of inhibiting JNK3 , GSK-3, CDK2 , Lck, or Src kinase activity in a biological sample comprising the step of contacting said biological sample with a compound of this invention, or composition comprising said compound.
  • biological sample includes, without limitation, cell cultures or extracts thereof; biopsied material obtained from a mammal or extracts thereof; and blood, saliva, urine, feces, semen, tears, or other body fluids or extracts thereof.
  • the invention provides a method for treating or lessening the severity of a JNK3-, GSK-3 -, CDK2-, Lck- , or Src-mediated disease or condition in a patient comprising the step of administering to said patient a composition according to the present invention.
  • the present invention relates to a method of treating cancer comprising the step of blocking the transition of cancer cells into their proliferative phase by inhibiting CDK2 with a compound according to the present invention, or a pharmaceutcially acceptable composition comprising said compound.
  • NK-mediated disease means any disease or other deleterious condition in which JNK is known to play a role.
  • Such conditions include, without limitation, inflammatory diseases, autoimmune diseases, destructive bone disorders, proliferative disorders, cancer, infectious diseases, neurodegenerative diseases, allergies, reperfusion/ischemia in stroke, heart attacks, angiogenic disorders, organ hypoxia, vascular hyperplasia, cardiac hypertrophy, thrombin- induced platelet aggregation, and conditions associated with prostaglandin endoperoxidase synthase-2.
  • Inflammatory diseases which may be treated or prevented by the compounds of this invention include, but are not limited to, acute pancreatitis, chronic pancreatitis, asthma, allergies, and adult respiratory distress syndrome.
  • Autoimmune diseases which may be treated or prevented by the compounds of this invention include, but are not limited to, glomerulonephritis, rheumatoid arthritis, systemic lupus erythematosus , scleroderma, chronic thyroiditis, Graves' disease, autoimmune gastritis, diabetes, autoimmune hemolytic anemia, autoimmune neutropenia, thrombocytopenia, atopic dermatitis, chronic active hepatitis, myasthenia gravis, multiple sclerosis, inflammatory bowel disease, ulcerative colitis, Crohn's disease, psoriasis, or graft vs. host disease.
  • Destructive bone disorders which may be treated or prevented by the compounds of this invention include, but are not limited to, osteoporosis, osteoarthritis and multiple myeloma-related bone disorder.
  • Proliferative diseases which may be treated or prevented by the compounds of this invention include, but are not limited to, acute myelogenous leukemia, chronic myelogenous leukemia, metastatic melanoma, Kaposi's sarcoma, multiple myeloma and HTLV-1 mediated tumorigenesis .
  • Angiogenic disorders which may be treated or prevented by the compounds of this invention include solid tumors, ocular neovasculization, infantile haemangiomas .
  • Infectious diseases which may be treated or prevented by the compounds of this invention include, but are not limited to, sepsis, septic shock, and Shigellosis.
  • Viral diseases which may be treated or prevented by the compounds of this invention include, but are not limited to, acute hepatitis infection (including hepatitis A, hepatitis B and hepatitis C) , HIV infection and CMV retinitis.
  • Neurodegenerative diseases which may be treated or prevented by the compounds of this invention include, but are not limited to, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis (ALS) , epilepsy, seizures, Huntington's disease, traumatic brai injury, ischemic and hemorrhaging stroke, cerebral ischemias or neurodegenerative disease, including apoptosis-driven neurodegenerative disease, caused by traumatic injury, acute hypoxia, ischemia or glutamate neurotoxicity.
  • ALS amyotrophic lateral sclerosis
  • JNK-mediated diseases also include ischemia/reperfusion in stroke, heart attacks, myocardial ischemia, organ hypoxia, vascular hyperplasia, cardiac hypertrophy, hepatic ischemia, liver disease, congestive heart failure, pathologic immune responses such as that caused by T cell activation and thrombin-induced platelet aggregation.
  • JNK-mediated conditions which may be treated by the compounds of this invention include edema, analgesia, fever and pain, such as neuromuscular pain, headache, cancer pain, dental pain and arthritis pain.
  • the compounds of this invention are also useful as inhibitors of Src-family kinases, especially Src and Lck.
  • Src-family kinases especially Src and Lck.
  • Src-mediated or Lck-mediated disease means any disease or other deleterious condition in which Src or Lck is known to play a role. Accordingly, these compounds are useful for treating diseases or conditions that are known to be affected by the activity of one or more Src-family kinases. Such diseases or conditions include hypercalcemia, restenosis, osteoporosis, osteoarthritis, symptomatic treatment of bone metastasis, rheumatoid arthritis, inflammatory bowel disease, multiple sclerosis, psoriasis, lupus, graft vs.
  • T-cell mediated hypersensitivity disease Hashimoto's thyroiditis, Guillain-Barre syndrome, chronic obtructive pulmonary disorder, contact dermatitis, cancer, Paget's disease, asthma, ischemic or reperfusion injury, allergic disease, atopic dermatitis, and allergic rhinitis.
  • Diseases that are affected by Src activity include hypercalcemia, osteoporosis, osteoarthritis, cancer, symptomatic treatment of bone metastasis, and Paget's disease.
  • Diseases that are affected by Lck activity include autoimmune diseases, allergies, rheumatoid arthritis, and leukemia.
  • GSK3-mediated disease means any disease or other deleterious condition in which GSK3 is known to play a role. Accordingly, these compounds are useful for treating diseases or conditions that are known to be affected by the activity of GSK3 kinase. Such diseases or conditions include diabetes, Alzheimer's disease, Huntington' s, Parkinson's, AIDS associated dementia, amyotrophic lateral sclerosis (AML) , multiple sclerosis (MS) , schizophrenia, cardiomycete hypertrophy, and baldness.
  • diseases or conditions include diabetes, Alzheimer's disease, Huntington' s, Parkinson's, AIDS associated dementia, amyotrophic lateral sclerosis (AML) , multiple sclerosis (MS) , schizophrenia, cardiomycete hypertrophy, and baldness.
  • CDK2-mediated disease means any disease or other deleterious condition in which CDK2 is known to play a role. Accordingly, these compounds are useful for treating diseases or conditions that are known to be affected by the activity of CDK2 kinase. Such diseases or conditions include viral infections, neurodegenerative disorders, disorders associated with thymocyte apoptosis, or proliferative disorders resulting from the deregulation of the cell cycle, especially of the progression from G x to S phase.
  • a preferred embodiment relates to the method used to treat or prevent a JNK-mediated disease selected from inflammatory diseases, autoimmune diseases, destructive bone disorders, neurodegenerative diseases, allergies, reperfusion/ischemia in stroke, heart attacks, angiogenic disorders, organ hypoxia, vascular hyperplasia, cardiac hypertrophy, or thrombin-induced platelet aggregation.
  • a Src- or Lck-mediated disease selected from hypercalcemia, osteoperosis, osteoarthritis, or sympomatic treatment of bone metastasis.
  • Another preferred embodiment relates to the method used to treat or prevent a GSK3-mediated disease selected from diabetes, Alzheimer's disease, Huntington's disease, Parkinson's disease, multiple sclerosis (MS), or amyotrophic lateral sclerosis (AML) .
  • a GSK3-mediated disease selected from diabetes, Alzheimer's disease, Huntington's disease, Parkinson's disease, multiple sclerosis (MS), or amyotrophic lateral sclerosis (AML) .
  • the method is used to treat or prevent a CDK2 -mediated disease selected from viral infections, neurodegenerative disorders, or disorders associated with thymocyte apoptosis.
  • compositions may also be employed in compositions to treat or prevent the above-identified disorders.
  • methods of this invention that utilize compositions that do not contain an additional therapeutic agent comprise the additional step of separately administering to said patient an additional therapeutic agent.
  • additional therapeutic agents When these additional therapeutic agents are administered separately they may be administered to the patient prior to, sequentially with or following administration of the compositions of this invention.
  • the compounds of this invention or pharmaceutical compositions thereof may also be incorporated into compositions for coating an implantable medical device, such as prostheses, artificial valves, vascular grafts, stents and catheters.
  • an implantable medical device such as prostheses, artificial valves, vascular grafts, stents and catheters.
  • Vascular stents for example, have been used to overcome restenosis (re-narrowing of the vessel wall after injury) .
  • patients using stents or other implantable devices risk clot formation or platelet activation. These unwanted effects may be prevented or mitigated by pre-coating the device with a pharmaceutically acceptable composition comprising' a kinase inhibitor.
  • Suitable coatings and the general preparation of coated implantable devices are described in US Patents 6,099,562; 5,886,026; and 5,304,121.
  • the coatings are typically biocompatible polymeric materials such as a hydrogel polymer, polymethyldisiloxane, polycaprolactone, polyethylene glycol, polylactic acid, ethylene vinyl acetate, and mixtures thereof.
  • the coatings may optionally be further covered by a suitable topcoat of fluorosilicone, polysaccarides, polyethylene glycol, phospholipids or combinations thereof to impart controlled release characteristics in the composition.
  • Implantable devices coated with a compound of this invention are another embodiment of the present invention.
  • N-Phenyl-guanidine A mixture of aniline (11 mmol), cyanamide (420 mg, 10 mmol) , and HCl (3 mL of 4N in dioxane, 12 mmol) in 1, 4-dioxane (10 mL) was heated in a sealed tube at 60 °C overnight. The reaction was concentrated in vacuo and the residue partitioned between NaOH (2N) and dichloromethane . The organic layer was dried over Na 2 S0 4 and concentrated in vacuo to afford N- phenyl-guanidine .
  • 2-Chloro-4- (2,3,4-trimethoxyphenyD yrimidine (5) In a 250 mL round-bottomed flask, 1.49 grams (10 mmol) of 2,4- dichloropyrimidine was combined with 2,3,4- tri ethoxyphenylboronic acid (2.12 g, 10 mmol), sodium carbonate (2.12 g, 2 equivalents), and 1.15 g (0.1 equivalents) of tetrakis-triphenylphosphinepalladium. Toluene (50 mL) and water (5 mL) were added. The reaction was allowed to reflux under nitrogen overnight.
  • 11-14 (3,5-Dimethylphenyl) - [4- (2 ,3, 4-trimethoxyphenyl) - pyrimid-2-yl] -amine (11-14) : In a vial was placed 28 mg (100 ⁇ mol) of chloropyrimidine 5, 3,5 dimethylaniline (24 mg, 200 ⁇ mol) , 60% NaH (6 mg, excess) , and tetrakis (triphenylphospine) palladium (6 mg, catalytic). Tetrahydrofuran (2 mL) was added and the vial was sealed and heated to reflux for two hours. The reaction was diluted with diethyl ether and washed with IN hydrochloric acid.
  • HBr was bubbled into a solution of 1_3 (3.6 g, 16.1 mmol) in chloroform for 15 minutes .
  • the reaction was diluted with dichloromethane, washed with water, washed with brine, dried (MgS0 4 ) , and evaporated in vacuo to afford
  • R t refers to the retention time, in minutes, associated with the compound.
  • NK3 Protein Cloning, Expression and Purification of NK3 Protein
  • BLAST search of the EST database using the published JNK3 ⁇ l cDNA as a query identified an EST clone (#632588) that contained the entire coding sequence for human JNK3 l .
  • Polymerase chain reactions (PCR) using pfu polymerase (Strategene) were used to introduce restriction sites into the cDNA for cloning into the pET- 15B expression vector at the Ncol and BamHl sites.
  • the protein was expressed in E. coli . Due to the poor solubility of the expressed full-length protein (Met 1- Gln 422) , an N-terminally truncated protein starting at Ser residue at position 40 (Ser 40) was produced.
  • This truncation corresponds to Ser 2 of JNK1 and JNK2 proteins, and is preceded by a methionine (initiation) and a glycine residue.
  • the glycine residue was added in order to introduce an Ncol site for cloning into the expression vector.
  • systematic C-terminal truncations were performed by PCR to identify a construct that give rise to diffraction-quality crystals.
  • One such construct encodes amino acid residues Ser40-Glu402 of JNK30C1 and is preceded by Met and Gly residues.
  • the construct was prepared by PCR using deoxyoligonucleotides : 5' GCTCTAGAGCTCCATGGGCAGCAAAAGCAAAGTTGACAA 3' (forward primer with initiation codon underlined) (SEQ ID NO:l) and
  • E. coli strain BL21 (DE3) (Novagen) was transformed with the JNK3 expression construct and grown at 30°C in LB supplemented with 100 ⁇ g/ml carbenicillin in shaker flasks until the cells were in log phase (OD 6 oo ⁇ 0.8). Isopropylthio- ⁇ -D-galactosidase (IPTG) was added to a final concentration of 0.8 mM and the cells were harvested 2 hours later by centrifugation.
  • IPTG Isopropylthio- ⁇ -D-galactosidase
  • E. coli cell paste containing NK3 was resuspended in 10 volumes/g lysis buffer (50 mM HEPES, pH 7.2, containing 10% glycerol (v/v), 100 mM NaCl, 2 mM
  • JNK3 5 mg was diluted to 0.5 mg/ml in 50 mM HEPES buffer, pH 7.5, containing 100 mM NaCl, 5 mM DTT, 20 mM MgCl 2 and 1 mM ATP.
  • GST-MKK7 (DD) was added at a molar ratio of 1:2.5 GST-MKK7 : NK3.
  • the reaction mixture was concentrated 5-fold by ultrafiltration in a Centriprep-30 (Amicon, Beverly, MA) , diluted to 10 ml and an additional 1 mM ATP added. This procedure was repeated three times to remove ADP and replenish ATP. The final addition of ATP was 5 mM and the mixture incubated overnight at 4°C.
  • the activated JNK3/GST-MKK7 (DD) reaction mixture was exchanged into 50 mM HEPES buffer, pH 7.5, containing 5 mM DTT and 5% glycerol (w/v) by dialysis or ultrafiltration.
  • the reaction mixture was adjusted to 1.1 M potassium phosphate, pH 7.5, and purified by hydrophobic interaction chromatography (at 25 °C) using a Rainin Hydropore column.
  • GST-MKK7 and unactivated JNK3 do not bind under these conditions such that when a 1.1 to 0.05 M potassium phosphate gradient is developed over 60 minutes at a flow rate of 1 ml/minute, doubly phosphorylated JNK3 is separated from singly phosphorylated JNK.
  • Activated JNK3 i.e. doubly phosphorylated JNK3 was stored at -70°C at 0.25-1 mg/ml.
  • Example 29 JNK Inhibition Assay Compounds were assayed for the inhibition of JNK3 by a spectrophotometric coupled-enzyme assay.
  • a fixed concentration of activated JNK3 (10 nM) was incubated with various concentrations of a potential inhibitor dissolved in DMSO for 10 minutes at 30°C in a buffer containing 0.1 M HEPES buffer, pH 7.5, containing 10 mM MgCl 2 , 2.5 mM phosphoenolpyruvate , 200 ⁇ M N7ADH, 150 ⁇ g/mL pyruvate kinase, 50 ⁇ g/mL lactate dehydrogenase, and 200 ⁇ M EGF receptor peptide.
  • the EGF receptor peptide has the sequence KRELVEPLTPSGEAPNQALLR, and is a phosphoryl acceptor in the JNK3-catalyzed kinase reaction.
  • the reaction was initiated by the addition of 10 ⁇ M ATP and the assay plate is inserted into the spectrophotometer' s assay plate compartment that was maintained at 30°C.
  • the decrease of absorbance at 340 nm was monitored as a function of time.
  • the rate data as a function of inhibitor concentration was fitted to competitive inhibition kinetic model to determine the K ⁇ .
  • Table 5 shows the results of the activity of selected compounds of this invention in the JNK inhibition assay.
  • the compound numbers correspond to the compound numbers in Tables 1, 2, and 3.
  • the assay plate was incubated at 30 °C for 10 min before initiating the reaction with 33 P-ATP. After 20 min of reaction, the reactions were quenched with 150 ⁇ l of 10% trichloroacetic acid (TCA) containing 20 mM Na 3 P0. The quenched samples were then transferred to a 96-well filter plate (Whatman, UNI-Filter GF/F Glass Fiber Filter, cat no. 7700-3310) installed on a filter plate vacuum manifold. Filter plates were washed four times with 10% TCA containing 20 mM Na 3 P0 4 and then 4 times with methanol. 200 ⁇ l of scintillation fluid was then added to each well. The plates were sealed and the amount of radioactivity associated with the filters was quantified on a TopCount scintillation counter.
  • TCA trichloroacetic acid
  • Table 6 shows the results of the activity of selected compounds of this invention in the SRC inhibition assay.
  • the compound numbers correspond to the compound numbers in Tables 1, 2, and 3.
  • Compounds having a Ki less than 0.1 micromolar ( ⁇ M) are rated “A”
  • compounds having a K ⁇ between 0.1 and 1 ⁇ M are rated “B”
  • compounds having a K ⁇ greater than 1 ⁇ M are rated “C” .
  • Activity ratings "D”, "E”, and “F” correspond to percent inhibition at a 2 ⁇ M inhibitor concentration.
  • all the reaction components with the exception of ATP were pre-mixed and aliquoted into assay plate wells.
  • Inhibitors dissolved in DMSO were added to the wells to give a final DMSO concentration of 2.5%.
  • the assay plate was incubated at 30 °C for 10 min before initiating the reaction with 33 P- ATP.
  • Table 7 shows the results of the activity of selected compounds of this invention in the Lck inhibition assay.
  • the compound numbers correspond to the compound numbers in Tables 1, 2, and 3.
  • Compounds having a i less than 0.1 micromolar ( ⁇ M) are rated “A”
  • compounds having a K ⁇ between 0.1 and 1 ⁇ M are rated “B”
  • compounds having a Ki greater than 1 ⁇ M are rated “C” .
  • Activity ratings "D”, "E”, and “F” correspond to percent inhibition at a 5 ⁇ M inhibitor concentration.
  • Example 32 GSK-3 Inhibition Assay Compounds were screened in the following manner for their ability to inhibit Glycogen Synthase Kinase 3 (GSK-3) using a standard coupled enzyme assay (Fox et al (1998) Protein Sci , 2249) . To an assay stock buffer solution containing 0.
  • IM HEPES 7.5 10 mM MgCl 2 , 25 mM NaCl, 2.5 mM phosphoenolpyruvate , 300 ⁇ M NADH, ImM DTT, 30 ⁇ g/mL pyruvate kinase, 10 ⁇ g/mL lactate dehydrogenase, 300 ⁇ M peptide (HSSPHQp-SEDEEE, American Peptide, Sunnyvale, CA) , and 60 nM GSK-3, was added a 30 ⁇ M solution of the compound in DMSO and the resulting mixture incubated at 30°C for 5 min. The reaction was initiated by the addition of 10 ⁇ M ATP.
  • the rates of reaction were obtained by monitoring absorbance at 340 nM over a 5 minute read time at 30 °C using a Molecular Devices plate reader (Sunnyvale, CA) .
  • the IC 50 was determined from the rate data as a function of inhibitor concentration.
  • Table 8 shows the results of the activity of selected compounds of this invention in the GSK-3 inhibition assay.
  • the compound numbers correspond to the compound numbers in Tables 1, 2, and 3.
  • Compounds having a Ki less than 0.1 micromolar ( ⁇ M) are rated "A”
  • compounds having a Ki between 0.1 and 1 ⁇ M are rated "B”
  • compounds having a Ki greater than 1 ⁇ M are rated "C” .
  • Example 33 CDK2 Inhibition Assay Compounds were screened in the following manner for their ability to inhibit CDK2 using a standard coupled enzyme assay (Fox et al (1998) Protein Sci 7, 2249) .
  • the reaction was initiated by the addition of 10 ⁇ L of CDK-2/Cyclin A stock solution to give a final concentration of 25 nM in the assay.
  • the rates of reaction were obtained by monitoring absorbance at 340 nm over a 5-minute read time at 30 °C using a BioRad Ultramark plate reader (Hercules, CA) .
  • the Ki values were determined from the rate data as a function of inhibitor concentration.
  • Table 9 shows the results of the activity of selected compounds of this invention in the CDK2 inhibition assay.
  • the compound numbers correspond to the compound numbers in Tables 1, 2, and 3.
  • Compounds having a Ki less than 2 micromolar ( ⁇ M) are rated “A”
  • compounds having a i between 2 and 5 ⁇ M are rated “B”
  • compounds having a K greater than 5 ⁇ M are rated “C” .

Landscapes

  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Neurology (AREA)
  • Immunology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Diabetes (AREA)
  • Rheumatology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Dermatology (AREA)
  • Cardiology (AREA)
  • Endocrinology (AREA)
  • Hematology (AREA)
  • Pulmonology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Hospice & Palliative Care (AREA)
  • Obesity (AREA)
  • Vascular Medicine (AREA)
  • Transplantation (AREA)
  • Pain & Pain Management (AREA)
  • Emergency Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention provide a compound of formula I or II:or a pharmaceutically acceptable derivative thereof, wherein R1, R2, R3, and R4 are as described in the specification. These compounds are inhibitors of protein kinase, particularly inhibitors of JNK, a mammalian proteinkinase involved cell proliferation, cell death and response to extracellular stimuli; and Src-family kinases, especially Src and Lck kinases. These compounds are also inhibitors of GSK3 and CDK2 kinases. The invention also relates to methods for producing these inhibitors. The invention also provides pharmaceutical compositions comprising the inhibitors of the invention and methods of utilizing those compositions in the treatment and prevention of various disorders.

Description

INHIBITORS OF c-JUN N-TERMINAL KINASES (JNK) AND OTHER
PROTEIN KINASES
CROSS REFERENCE TO RELATED APPLICATION This application claims priority to US Provisional Patent Application 60/279,961 filed March 29, 2001, the contents of which is incorporated herein by reference.
TECHNICAL FIELD OF INVENTION The present invention relates to inhibitors of protein kinase, especially c-Jun N-terminal kinases (JNK) and Src-family of kinases, which are members of the mitogen-activated protein (MAP) kinase family. There are a number of different genes and isoforms which encode JNKs . Members of the JNK family regulate signal transduction in response to environmental stress and proinflammatory cytokines and have been implicated in the mediation of a number of different disorders. Members of the Src family are implicated in a number of human diseases. The invention also relates to inhibitors of GSK3 kinase, which is implicated in diabetes and other disorders, and CDK2 kinase which plays a role in the regulation of the cell division cycle. The invention also provides pharmaceutical compositions comprising the inhibitors of the invention and methods of utilizing those compositions in the treatment and prevention of various disorders. BACKGROUND OF THE INVENTION Mammalian cells respond to extracellular stimuli by activating signaling cascades that are mediated by members of the mitogen-activated protein (MAP) kinase family, which include the extracellular signal regulated kinases (ERKs) , the p38 MAP kinases and the c-Jun N-terminal kinases (JNKs) . MAP kinases (MAPKs) are activated by a variety of signals including growth factors, cytokines, UV radiation, and stress-inducing agents. MAPKs are serine/threonine kinases and their activation occurs by dual phosphorylation of threonine and tyrosine at the Thr-X-Tyr segment in the activation loop. MAPKs phosphorylate various substrates including transcription factors, which in turn regulate the expression of specific sets of genes and thus mediate a specific response to the stimulus.
In the c-Jun NH2-terminal protein kinases, also known as JNKs, three distinct genes, JNK1, JNK2 , JNK3 have been identified and at least ten different splicing isoforms of JNKs exist in mammalian cells [Gupta et al . , EMBO J. , 15:2760-70 (1996)]. Members of the JNK family are activated by proinflammatory cytokines, such as tumor necrosis factor-α (TNFα) and interleukin-1 β (IL-lβ) , as well as by environmental stress, including anisomycin, UV irradiation, hypoxia, and osmotic shock [Minden et al . , Biochemica et Biophysica Acta, 1333 :F85-F104 (1997)]. The down-stream substrates of JNKs include transcription factors c-Jun, ATF-2, Elkl, p53 and a cell death domain protein (DENN) [Zhang et al . Proc . Natl . Acad. Sci. USA, 95:2586-91 (1998)]. Each JNK isoform binds to these substrates with different affinities, suggesting a regulation of signaling pathways by substrate specificity of different JNKs in vivo (Gupta et al . , supra) .
JNKs, along with other MAPKs, have been implicated in the mediation of cellular response to cancer, thrombin-induced platelet aggregation, immunodeficiency disorders, autoimmune diseases, cell death, allergies, osteoporosis and heart disease. The therapeutic conditions related to activation of the JNK pathway include chronic myelogenous leukemia (CML) , rheumatoid arthritis, asthma, osteoarthritis, ischemia, cancer and neurodegenerative diseases.
Several reports have detailed the importance of JNK activation associated with liver disease or episodes of hepatic ischemia [Nat. Genet. 21:326-9 (1999); FEBS Lett. 420:201-4 (1997); J. Clin. Invest. 102:1942-50 (1998); Hepatology 28:1022-30 (1998)].
A role for JNK in cardiovascular disease such as myocardial infarction or congestive heart failure has also been reported as it has been shown JNK mediates hypertrophic responses to various forms of cardiac stress [Circ. Res. 83:167-78 (1998); Circulation 97:1731-7 (1998); J. Biol. Chem. 272:28050-6 (1997); Circ. Res. 79:162-73 (1996); Circ. Res. 78:947-53 (1996) ; J. Clin. Invest. 97:508-14 (1996)]. It has been demonstrated that the JNK cascade also plays a role in T-cell activation, including activation of the IL-2 promoter. Thus, inhibitors of JNK have potential therapeutic value in altering pathologic immune responses [J. Immunol. 162:3176-87 (1999); Eur. J. Immunol . 28:3867-77 (1998); J. Exp. Med. 186:941-53 (1997); Eur. J. Immunol. 26:989-94 (1996)].
A role for JNK activation in various cancers has also been established, suggesting the potential use of JNK inhibitors in cancer. For example, constitutively activated JNK is associated with HTLV-1 mediated tumorigenesis [Oncogene 13:135-42 (1996)]. The proliferative effects of bFGF and OSM on Kaposi's sarcoma (KS) cells are mediated by their activation of the JNK signaling pathway [J. Clin. Invest. 99:1798-804 (1997)]. Other proliferative effects of other cytokines implicated in KS proliferation, such as vascular endothelial growth factor (VEGF) , IL-6 and TNFα, are also mediated by JNK. In addition, regulation of the c-jun gene in p210 BCR-ABL transformed cells corresponds with activity of JNK, suggesting a role for JNK inhibitors in the treatment for chronic myelogenous leukemia (CML) [Blood 92:2450-60 (1998)] . JNK1 and JNK2 are widely expressed in a variety of tissues. In contrast, JNK3, is selectively expressed in the brain and to a lesser extent in the heart and testis [Gupta et al . , supra ; Mohit et al . , Neuron 14:67- 78 (1995); Martin et al . , Brain Res . Mol . Brain Res . 35:47-57 (1996)]. JNK3 has been linked to neuronal apoptosis induced by kainic acid, indicating a role of JNK in the pathogenesis of glutamate neurotoxicity. In the adult human brain, JNK3 expression is localized to a subpopulation of pyramidal neurons in the CA1, CA4 and subiculum regions of the hippocampus and layers 3 and 5 of the neocortex [Mohit et al . , supra] . The CA1 neurons of patients with acute hypoxia showed strong nuclear JNK3-immunoreactivity compared to minimal, diffuse cytoplasmic staining of the hippocampal neurons from brain tissues of normal patients [Zhang et al . , supra] .
Thus, JNK3 appears to be involved involved in hypoxic and ischemic damage of CA1 neurons in the hippocampus. In addition, JNK3 co-localizes immunochemically with neurons vulnerable in Alzheimer's disease [Mohit et al . , supra] . Disruption of the JNK3 gene caused resistance of mice to the excitotoxic glutamate receptor agonist kainic acid, including the effects on seizure activity, AP-1 transcriptional activity and apoptosis of hippocampal neurons, indicating that the JNK3 signaling pathway is a critical component in the pathogenesis of glutamate neurotoxicity (Yang et al . , Nature, 389:865-870 (1997)] .
Based on these findings, JNK signaling, especially that of JNK3 , has been implicated in the areas of apoptosis-driven neurodegenerative diseases such as Alzheimer's Disease, Parkinson's Disease, ALS (Amyotrophic Lateral Sclerosis) , epilepsy and seizures, Huntington's Disease, traumatic brain injuries, as well as ischemic and hemorrhaging stroke.
There is a high unmet medical need to develop JNK specific inhibitors that are useful in treating the various conditions associated with JNK activation, especially considering the currently available, relatively inadequate treatment options for the majority of these conditions .
The Src-family of kinases are implicated in cancer, immune system dysfunction, and bone remodeling diseases. For general reviews, see Thomas and Brugge, Annu . Rev. Cell Dev. Biol . (1997) 13, 513; Lawrence and Niu, Pharmacol . Ther. (1998) 77, 81; Tatosyan and Mizenina, Biochemistry (Moscow) (2000) 65, 49; Boschelli et al., Drugs of the Future 2000, 25(7), 717, (2000).
Members of the Src family include the following eight kinases in mammals: Src, Fyn, Yes, Fgr, Lyn, Hck, Lck, Blk and Yrc. These are nonreceptor protein kinases that range in molecular mass from 52 to 62 kD. All are characterized by a common structural organization that is comprised of six distinct functional domains: Src homology domain 4 (SH4) , a unique domain, SH3 domain, SH2 domain, a catalytic domain (SHI) , and a C-terminal regulatory region. Tatosyan et al . Biochemistry (Moscow) 65, 49-58 (2000) .
Based on published studies, Src kinases are considered as potential therapeutic targets for various human diseases. Mice that are deficient in Src develop osteopetrosis, or bone build-up, because of depressed bone resorption by osteoclasts. This suggests that osteoporosis resulting from abnormally high bone resorption can be treated by inhibiting Src. Soriano et al . , Cell , 69 , 551 (1992) and Soriano et al . , Cell , 64, 693 (1991) .
Suppression of arthritic bone destruction has been achieved by the overexpression of CSK in rheumatoid synoviocytes and osteoclasts. Takayanagi et al . , J. Clin . Invest . , 104, 137 (1999). CSK, or C-terminal Src kinase, phosphorylates and thereby inhibits Src catalytic activity. This implies that Src inhibition may prevent joint destruction that is characteristic in patients suffering from rheumatoid arthritis. Boschelli et al . , Drugs of the Future 2000, 25(7), 717, (2000).
Src also plays a role in the replication of hepatitis B virus. The virally encoded transcription factor HBx activates Src in a step required for propagation of the virus. Klein et al . , EMBO J. , 18, 5019, (1999) and Klein et al . , Mol . Cell . Biol . , 17, 6427 (1997) .
A number of studies have linked Src expression to cancers such as colon, breast, hepatic and pancreatic cancer, certain B-cell leukemias and lymphomas. Talamonti et al . , J. Clin . Invest . , 91, 53 (1993); Lutz et al . , Biochem . Biophys . Res . 243, 503 (1998); Rosen et al . , J. Biol . Chem. , 261, 13754 (1986); Bolen et al . , Proc . Natl . Acad. Sci . USA, 84, 2251 (1987); Masaki et al . , Hepatology, 27, 1257 (1998); Biscardi et al . , Adv. Cancer Res . , 76, 61 (1999); Lynch et al . , Leukemia, 7, 1416 (1993) ; Furthermore, antisense Src expressed in ovarian and colon tumor cells has been shown to inhibit tumor growth. Wiener et al 1., Clin . Cancer Res . , 5, 2164 (1999); Staley et al . , Cell Growth Diff . , 8, 269 (1997).
Other Src family kinases are also potential therapeutic targets. Lck plays a role in T-cell signaling. Mice that lack the Lck gene have a poor ability to develop thymocytes. The function of Lck as a positive activator of T-cell signaling suggests that Lck inhibitors may be useful for treating autoimmune disease such as rheumatoid arthritis. Molina et al . , Nature, 357, 161 (1992) . Hck, Fgr and Lyn have been identified as important mediators of integrin signaling in myeloid leukocytes. Lowell et al . , J. Leukoc . Biol . , 65, 313 (1999) . Inhibition of these kinase mediators may therefore be useful for treating inflammation. Boschelli et al . , Drugs of the Future 2000, 25(7), 717, (2000). Glycogen synthase kinase-3 (GSK-3) is a serine/threonine protein kinase comprised of α and β isoforms that are each encoded by distinct genes [Coghlan et al . , Chemistry & Biology, 7, 793-803 (2000); Kim and Ki mel, Curr. Opinion Genetics Dev. , 10, 508-514 (2000)]. GSK-3 has been implicated in various diseases including diabetes, Alzheimer's disease, CNS disorders such as manic depressive disorder and neurodegenerative diseases, and cardiomyocete hypertrophy [WO 99/65897; WO 00/38675; and Haq et al . , J. Cell Biol . (2000) 151, 117]. These diseases may be caused by, or result in, the abnormal operation of certain cell signaling pathways in which GSK-3 plays a role. GSK-3 has been found to phosphorylate and modulate the activity of a number of regulatory proteins. These include glycogen synthase which is the rate limiting enzyme necessary for glycogen synthesis, the microtubule associated protein Tau, the gene transcription factor β-catenin, the translation initiation factor elF2B, as well as ATP citrate lyase, axin, heat shock factor-1, c-Jun, c-Myc, c-Myb, CREB, and CEPBα. These diverse targets implicate GSK-3 in many aspects of cellular metabolism, proliferation, differentiation and development. In a GSK-3 mediated pathway that is relevant for the treatment of type II diabetes, insulin-induced signaling leads to cellular glucose uptake and glycogen synthesis. Along this pathway, GSK-3 is a negative regulator of the insulin-induced signal. Normally, the presence of insulin causes inhibition of GSK-3 mediated phosphorylation and deactivation of glycogen synthase. The inhibition of GSK-3 leads to increased glycogen synthesis and glucose uptake [Klein et al . , PNAS, 93, 8455-9 (1996); Cross et al . , Biochem . J. , 303, 21-26 (1994); Cohen, Biochem. Soc. Trans. , 21, 555-567 (1993); Massillon et al . , Biochem J. 299, 123-128 (1994)]. However, in a diabetic patient where the insulin response is impaired, glycogen synthesis and glucose uptake fail to increase despite the presence of relatively high blood levels of insulin. This leads to abnormally high blood levels of glucose with acute and long term effects that may ultimately result in cardiovascular disease, renal failure and blindness. In such patients, the normal insulin-induced inhibition of GSK-3 fails to occur. It has also been reported that in patients with type II diabetes, GSK-3 is overexpressed [WO 00/38675] . Therapeutic inhibitors of GSK-3 are therefore potentially useful for treating diabetic patients suffering from an impaired response to insulin.
GSK-3 activity has also been associated with Alzheimer's disease. This disease is characterized by the well-known β-amyloid peptide and the formation of intracellular neurofibrillary tangles. The neurofibrillary tangles contain hyperphosphorylated Tau protein where Tau is phosphorylated on abnormal sites. GSK-3 has been shown to phosphorylate these abnormal sites in cell and animal models. Furthermore, inhibition of GSK-3 has been shown to prevent hyperphosphorylation of Tau in cells [Lovestone et al . , Current Biology 4, 1077-86 (1994); Brownlees et al . , Neuroreport 8, 3251-55 (1997)]. Therefore, it is believed that GSK-3 activity may promote generation of the neurofibrillary tangles and the progression of Alzheimer's disease.
Another substrate of GSK-3 is β-catenin which is degradated after phosphorylation by GSK-3. Reduced levels of β-catenin have been reported in schizophrenic patients and have also been associated with other diseases related to increase in neuronal cell death
[Zhong et al . , Nature, 395, 698-702 (1998); Takashima et al., PNAS, 90, 7789-93 (1993); Pei et al . , J". Neuropathol . Exp, 56 , 70-78 (1997)].
Cyclin-dependent kinases (CDKs) are serine/threonine protein kinases consisting of a β-sheet rich amino-terminal lobe and a larger carboxy-terminal lobe which is largely α-helical. The CDKs display the 11 subdomains shared by all protein kinases and range in molecular mass from 33 to 44 kD. This family of kinases, which includes CDK1, CKD2 , CDK4 , and CDK6 , requires phosphorylation at the residue corresponding to CDK2 Thrl60 in order to be fully active [Meijer, L., Drug Resistance Updates, 3, 83-88 (2000)].
Each CDK complex is formed from a regulatory cyclin subunit (e.g., cyclin A, Bl, B2, Dl, D2 , D3 , and E) and a catalytic kinase subunit (e.g., CDK1, CDK2 , CDK4, CDK5, and CDK6) . Each different kinase/cyclin pair functions to regulate the different and specific phases of the cell cycle known as the GI, S, G2, and M phases [Nigg, E., Nature Reviews, 2 , 21-32 (2001); Flatt, P., Pietenpol, J., Drug Metabolism Reviews, 32, 283-305 (2000) ] .
The CDKs have been implicated in cell proliferation disorders, particularly in cancer. Cell proliferation is a result of the direct or indirect deregulation of the cell division cycle and the CDKs play a critical role in the regulation of the various phases of this cycle. For example, the over-expression of cyclin Dl is commonly associated with numerous human cancers including breast, colon, hepatocellular carcinomas and gliomas [Flatt, P., Pietenpol, J., Drug Metabolism Reviews, 32, 283-305 (2000)]. The CDK2/cyclin E complex plays a key role in the progression from the early G_ to S phases of the cell cycle and the overexpression of cyclin E has been associated with various solid tumors. Therefore, inhibitors of cyclins Dl, E, or their associated CDKs are useful targets for cancer therapy [Kaubisch, A., Schwartz, G. , The Cancer Journal , 6, 192-212 (2000)]. CDKs, especially CDK2 , also play a role in apoptosis and T-cell development. CDK2 has been identified as a key regulator of thymocyte apoptosis [Williams, 0., et al, European Journal of Immunology, 709-713 (2000)]. Stimulation of CDK2 kinase activity is associated with the progression of apoptosis in thymocytes, in response to specific stimuli. Inhibition of CDK2 kinase activity blocks this apoptosis resulting in the protection of thymocytes . In addition to regulating the cell cycle and apoptosis, the CDKs are directly involved in the process of transcription. Numerous viruses require CDKs for their replication process. Examples where CDK inhibitors restrain viral replication include human cytomegakovirus, herpes virus, and varicella-zoster virus [Meijer, L., Drug Resistance Updates, 3, 83-88 (2000)].
Inhibition of CDK is also useful for the treatment of neurodegenerative disorders such as Alzheimer's disease. The appearance of Paired Helical Filaments (PHF), associated with Alzheimer's disease, is caused by the hyperphosphorylation of Tau protein by CDK5/p25 [Meijer, L. , Drug Resistance Updates, 3, 83-88 (2000)] .
As a result of the biological importance of protein kinases, there is current interest in therapeutically effective protein kinase inhbitors . Certain aryl substituted 2-aminopyrimidines are known as protein kinase inhibitors. See [United States patents 5,958,935, 5,863,924, 5,612,340, and PCT publication WO 01/29009] .
Accordingly, there is still a great need to develop potent inhibitors of JNKs and Src family kinases, including JNK3 , Src, and Lck inhibitors, and of GSK3 and CDK2 inhibitors that are useful in treating various diseases or conditions associated with JNK3 , Src, Lck, GSK3, and CDK2 activation.
SUMMARY OF THE INVENTION It has now been found that compounds of this invention and pharmaceutical compositions thereof are effective as inhibitors of c-Jun N-terminal kinases (JNK), Src, Lck, GSK3 , and CDK2. These compounds have the general formulae I and II :
Figure imgf000013_0001
I II or a pharmaceutically acceptable derivative thereof, wherein W is nitrogen or CH and R1, R2, R3, and R4 are as described below. These compounds and pharmaceutical compositions thereof are useful for treating or preventing a variety of disorders, such as heart disease, diabetes, Alzheimer's disease, immunodeficiency disorders, inflammatory diseases, allergic diseases, autoimmune diseases, destructive bone disorders such as osteoporosis, proliferative disorders, infectious diseases and viral diseases. The compositions are also useful in methods for preventing cell death and hyperplasia and therefore may be used to treat or prevent reperfusion/ischemia in stroke, heart attacks, and organ hypoxia. The compositions are also useful in methods for preventing thrombin-induced platelet aggregation. The compositions are especially useful for disorders such as chronic myelogenous leukemia (CML) , rheumatoid arthritis, asthma, osteoarthritis , ischemia, cancer, liver disease including hepatic ischemia, heart disease such as myocardial infarction and congestive heart failure, pathologic immune conditions involving T cell activation and neurodegenerative disorders.
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a compound of formula I or II :
Figure imgf000014_0001
I II or a pharmaceutically acceptable derivative thereof, wherein: each W is independently selected from nitrogen or CH; each R1, R2, and R3 is independently selected from halogen, QR, Q(n)CN, Q(n)N02, or Q(n)Ar2; wherein:
R1 and R2 or R2 and R3 are optionally taken together to form a 4-8 membered saturated, partially unsaturated, or fully unsaturated ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur; n is zero or one;
Q is a C.4 alkylidene chain wherein one methylene unit of Q is optionally replaced by 0, S, NR, NRCO, NRCONR, NRC02, CO, C02, CONR, 0C(O)NR, S02 , S02NR, NRS02, NRS02NR, C(0)C(0), or C (O) CH2C (0) ; each R is independently selected from hydrogen or an optionally substituted C1-C4 aliphatic, wherein: two R bound to the same nitrogen atom are optionally taken together with the nitrogen atom to form a 3- 7 membered saturated, partially unsaturated, or fully unsaturated ring having 1-2 additional heteroatoms independently selected from nitrogen, oxygen, or sulfur; R4 is Ar1, T-Ar2, or T(n)-Ar3;
T is a C1-2 alkylidene chain wherein one methylene unit of T is optionally replaced by O, NR, NRCO, NRCONR, NRC02, CO, C02, CONR, OC(0)NR, S02 , S02NR, NRS02, NRS02NR, C(0)C(0), or C(0)CH2C(0) ; Ar1 is a 5-6 membered monocyclic or 8-10 membered bicyclic saturated, partially unsaturated, or fully unsaturated ring system; wherein:
Ar1 is optionally substituted with up to five substituents, wherein the first substituent is selected from Rx or R5 and wherein any additional substituents are independently selected from R5; each Rx is independently selected from a 5-6 membered aryl ring having 0-3 heteroatoms selected from nitrogen, oxygen, or sulfur, wherein:
Rx is optionally substituted with 1-3 R5; each R5 is independently selected from R, halogen, N02, CN, OR, SR, N(R)2, NRC(0)R, NRC(0)N(R)2, NRC02R, C(0)R, C02R, C(0)N(R)2, 0C(0)N(R)2, SOR, S02R, S02N(R)2, NRS02R, NRS02N(R)2, C(0)C(0)R, or C (O) CH2C (O) R;
Ar2 is a 5-6 membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or an 8-10 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur; wherein: Ar2 is optionally substituted with up to five substituents, wherein the first substituent is selected from Rx or R5 and wherein any additional substituents are independently selected from R5; Ar3 is a 6-membered aryl ring having 0-2 nitrogens, wherein:
Ar3 is substituted with one Z-R6 group and optionally substituted with 1-3 R5;
Z is a Cα-C6 alkylidene chain wherein up to two non- adjacent methylene units of Z are optionally replaced by CO, C02, COCO, CONR, OCONR, NRNR, NRNRCO, NRCO, NRC02, NRCONR, SO, S02, NRS02, S02NR, NRS02NR, 0, S, or NR; and
R6 is selected from Ar2, R, halogen, N02, CN, OR, SR, N(R)2, NRC(0)R, NRC(0)N(R)2, NRC02R, C(0)R, C02R, OC(0)R, C(0)N(R)2, 0C(0)N(R)2, SOR, S02R, S02N(R)2, NRS02R, NRS02N(R)2, C(O)C(0)R, or C (O) CH2C (O) R; provided that:
(i) when R4 is phenyl substituted with two OR, wherein R is not hydrogen, the two OR occupy positions on the phenyl ring other than simultaneously meta and para; and (ii) said compound is other than a compound of formula III
Figure imgf000016_0001
III wherein: A is a phenyl ring substituted with one or more groups selected from halogen, CN, OC(0)NH2, C02R10, COR10, SO2N(R10)2, N(R10)2, OR10, or fluoro-alkyl, wherein each R10 is independently selected from hydrogen or a C1-C7 alkyl group optionally substituted with NH2, NH(Cι-C7 alkyl), or N(CX-C7 alkyl)2; and B is selected from halogen, CN, OC(0)NH2, C02R10, COR10, SO2N(R10)2, N(R10)2, OR10, or fluoro- (Cι-C7 alkyl).
As used herein, the following definitions shall apply unless otherwise indicated.
The phrase "optionally substituted" is used interchangeably with the phrase "substituted or unsubstituted" . Unless otherwise indicated, an optionally substituted group may have a substituent at each substitutable position of the group, and each substitution is independent of the other.
The term "aliphatic" or "aliphatic group" as used herein means a straight-chain or branched Cι-C12 hydrocarbon chain that is completely saturated or that contains one or more units of unsaturation, or a monocyclic C3-C8 hydrocarbon or bicyclic C8-Cι2 hydrocarbon that is completely saturated or that contains one or more units of unsaturation, but which is not aromatic (also referred to herein as "carbocycle" or "cycloalkyl"), that has a single point of attachment to the rest of the molecule wherein any individual ring in said bicyclic ring system has 3-7 members. For example, suitable aliphatic groups include, but are not limited to, linear or branched or alkyl, alkenyl, alkynyl groups and hybrids thereof such as (cycloalkyl) alkyl, (cycloalkenyl) alkyl or
(cycloalkyl) alkenyl .
The terms "alkyl", "alkoxy" , "hydroxyalkyl" , "alkoxyalkyl" , and "alkoxycarbonyl" , used alone or as part of a larger moiety includes both straight and branched chains containing one to twelve carbon atoms. The terms "alkenyl" and "alkynyl" used alone or as part of a larger moiety shall include both straight and branched chains containing two to twelve carbon atoms .
The terms "haloalkyl", "haloalkenyl" and "haloalkoxy" means alkyl, alkenyl or alkoxy, as the case may be, substituted with one or more halogen atoms. The term "halogen" means F, Cl, Br, or I . The term "heteroatom" means nitrogen, oxygen, or sulfur and includes any oxidized form of nitrogen and sulfur, and the quaternized form of any basic nitrogen. Also the term "nitrogen" includes a substitutable nitrogen of a heterocyclic ring. As an example, in a saturated or partially unsaturated ring having 0-3 heteroatoms selected from oxygen, sulfur or nitrogen, the nitrogen may be N (as in 3 , 4-dihydro-2H- pyrrolyl) , NH (as in pyrrolidinyl) or NR+ (as in N-substituted pyrrolidinyl) .
The term "aryl" used alone or as part of a larger moiety as in "aralkyl", "aralkoxy" , or
"aryloxyalkyl" , refers to monocyclic, bicyclic and tricyclic ring systems having a total of five to fourteen ring members, wherein at least one ring in the system is aromatic and wherein each ring in the system contains 3 to 7 ring members. The term "aryl" may be used interchangeably with the term "aryl ring" . The term "aryl" also refers to heteroaryl ring systems as defined hereinbelow.
The term "heterocycle" , "heterocyclyl" , or "heterocyclic" as used herein means non-aromatic, monocyclic, bicyclic or tricyclic ring systems having five to fourteen ring members in which one or more ring members is a heteroatom, wherein each ring in the system contains 3 to 7 ring members .
The term "heteroaryl" , used alone or as part of a larger moiety as in "heteroaralkyl" or "heteroarylalkoxy" , refers to monocyclic, bicyclic and tricyclic ring systems having a total of five to fourteen ring members, wherein at least one ring in the system is aromatic, at least one ring in the system contains one or more heteroatoms, and wherein each ring in the system contains 3 to 7 ring members. The term "heteroaryl" may be used interchangeably with the term "heteroaryl ring" or the term "heteroaromatic" .
An aliphatic group or a non-aromatic heterocyclic ring may contain one or more substituents. Suitable substituents on the saturated carbon of an aliphatic group or of a non-aromatic heterocyclic ring are selected from halogen, oxo, -R°, -0R°, -SR°, 1, 2-methylene-dioxy, 1, 2-ethylenedioxy, phenyl (Ph) optionally substituted with R°, -O(Ph) optionally substituted with R°, -CH2(Ph) optionally substituted with R°, -CH2CH2(Ph) , optionally substituted with R°, -N02, -CN, -N(R°)2, -NR°C(0)R°, -NR°C(0)N(R°)2, -NR°C02R°, -NR°NR°C (O) R°, -NR°NR°C(0)N(R°)2, -NR°NR°C02R0, -C(0)C(0)R°, -C (0) CH2C (O) R°, -C02R°, -C(0)R°, -C(0)N(R°)2, -OC (O) N(R°) 2, -S(0)2R°, -S02N(R°)2, -S(0)R°, -NR°S02N(R°)2, -NR°S02R°, -C (=S) N (R°) _ , -C (=NH) -N (R°) 2, =S, =NNHR°, =NN(R°)2, =NNHC(0)R°, =NNHC02 (alkyl) ,
=NNHS02 (alkyl) , =NR° or - (CH2) yNHC (O) R°, wherein each R° is independently selected from hydrogen, optionally substituted C_~6 aliphatic, an unsubstituted 5-6 membered heteroaryl or heterocyclic ring, phenyl, -O(Ph), or -CH2 (Ph) . Optional substituents on the aliphatic group of R° are selected from NH2, NH(Ci_ aliphatic), N(Cι-4 aliphatic)2, halogen, Cι- aliphatic, OH, 0(Cι_4 aliphatic), N02, CN, C02H, C02(C1.4 aliphatic), O(halo Cι_4 aliphatic), or halo Cι_4 aliphatic.
The term "alkylidene chain" refers to a straight or branched carbon chain that may be fully saturated or have one or more units of unsaturation.
A combination of substituents or variables is permissible only if such a combination results in a stable or chemically feasible compound. A stable compound or chemically feasible compound is one that is not substantially altered when kept at a temperature of 40 °C or less, in the absence of moisture or other chemically reactive conditions, for at least a week.
It will be apparent to one skilled in the art that certain compounds of this invention may exist in tautomeric forms, all such tautomeric forms of the compounds being within the scope of the invention.
Unless otherwise stated, structures depicted herein are also meant to include all stereochemical forms of the structure; i.e., the R and S configurations for each asymmetric center. Therefore, single stereochemical isomers as well as enantiomeric and diastereomeric mixtures of the present compounds are within the scope of the invention. Unless otherwise stated, structures depicted herein are also meant to include compounds which differ only in the presence of one or more isotopically enriched atoms. For example, compounds having the present structures except for the replacement of a hydrogen by a deuterium or tritium, or the replacement of a carbon by a 13C- or 14C-enriched carbon are within the scope of this invention. Preferred R1, R2, and R3 groups of formulae I and II are selected from halogen, QR or QAr2, wherein Q is a Cι-3 alkylidene chain wherein one methylene unit of Q is optionally replaced by -0-, -S-, -NHCO- , or -NR- , and Ar2 is an optionally substituted 5-6 membered saturated, partially unsaturated, or fully unsaturated ring having 0-2 heteroatoms independently selected from nitrogen, oxygen, or sulfur. Most preferred R1, R2, and R3 groups are selected from OH, OCH3, OCH2CH3, NHCOMe, NH2, H(Cι_4 aliphatic), N(Cι-4 aliphatic)2, 0 (CH2) 2morpholin-4-yl, 0(CH2)2NH2, 0(CH2)2NH(Ci-4 aliphatic) , O (CH2) 2N (Cι- aliphatic) _ , bromo, chloro, or fluoro. Other preferred compounds of formulae I and II are those where either R1
and R , or R and R are taken together to form
Figure imgf000021_0001
or
Figure imgf000021_0002
Most preferred Ar2 groups are morpholin-4-yl, pyrrolidin-1-yl, piperidin-1-yl, thiomorpholin-4-yl, pyrazol-1-yl, or imidazol-1-yl .
Preferred R4 groups of formulae I and II are selected from a 6-membered saturated, partially unsaturated, or aryl ring having 0-3 nitrogens, a 9-10 membered bicyclic aryl ring having 0-2 nitrogens, or a 5 membered heteroaryl ring having 2-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, wherein each ring is optionally substituted. More preferred R4 groups of formulae I and II are substituted rings selected from phenyl, cyclohexyl, naphthyl , pyridyl, pyrimidinyl, triazinyl, thiazolyl, thiadiazolyl, pyrazolyl, isoxazolyl, indazolyl, or benzimidazolyl .
Preferred substituents on R4 are independently selected from R, halogen, N02, OR, N(R)2, RA or Z-R6, wherein R is hydrogen or optionally substituted C-4 aliphatic. Preferred Z groups of formulae I and II are selected from a Cι-4 alkylidene chain wherein one methylene unit of Z is optionally replaced by -0-, -S-, -S02-, or -NH- . Preferred R6 groups are selected from optionally substituted phenyl, pyridyl, and pyrimidinyl . Preferred R substituents on R4 are selected from phenyl, pyridyl, and pyrimidinyl wherein Rx is optionally substituted with 1-2 R5. More preferred substituents on R4 are selected from chloro, fluoro, bromo, methyl, ethyl, t-butyl, isopropyl, cyclopropyl , nitro, OMe, OEt, CF3, NH2, benzyl, benzyloxy, OH, methylene dioxy, S02NH2, phenoxy, O-pyridinyl, S0phenyl , nitrophenoxy, aminophenoxy, S- dimethylpyrimidine, NHphenyl, NH-methoxyphenyl, pyridinyl, aminophenyl, phenol, chloro-fluoro-phenyl, dimethylaminophenyl, CF3-phenyl, dimethyIpheny1 , chlorophenyl, fluorophenyl, methoxyphenoxy, chlorophenoxy, ethoxyphenoxy, and fluorophenoxy. Most preferred R4 groups of formulae I and II are those depicted in Tables 1, 2, and 3.
A preferred embodiment relates to a compound of formula -a or II-a :
Figure imgf000022_0001
I-a Il-a or a pharmaceutically acceptable derivative thereof, wherein R1, R3, R4, Q, and Ar2 are as defined above.
Preferred R1, R3, R4, Ar2, and Q are as described above for compounds of formulae I and II .
Most preferred compounds of I-a and Il-a are those of formula I-a' and Il-a' :
Figure imgf000023_0001
I-a' Il-a' or a pharmaceutically acceptable derivative thereof, wherein R1, R3, and R4 are as defined above.
Preferred R1, R3, and R4 groups of formulae I-a' and II-a' are those described above for compounds of formulae I and II .
Another preferred embodiment relates to a compound of formula I-b or II-b:
Figure imgf000023_0002
I-b II-b or a pharmaceutically acceptable derivative thereof, wherein R1, R2, R3, Z, and R6 are as defined above.
Preferred R1, R2, R3, Z, and R6 are as described above for compounds of formulae I and II.
Exemplary structures of formula I, wherein W is nitrogen, are set forth in Table 1 below. Table 1. Compounds of Formula I
Figure imgf000024_0001
Figure imgf000025_0001
Figure imgf000026_0001
Figure imgf000027_0001
Figure imgf000028_0001
Figure imgf000029_0001
Figure imgf000030_0001
Figure imgf000031_0001
Figure imgf000032_0001
Figure imgf000033_0001
Figure imgf000034_0001
Exemplary structures of formula I, wherein W is CH, are set forth in Table 2 below.
Table 2. Compounds of Formula I
Figure imgf000034_0002
Figure imgf000035_0001
Figure imgf000036_0001
Figure imgf000037_0001
Figure imgf000038_0001
Figure imgf000039_0001
Figure imgf000040_0001
Figure imgf000041_0001
Exemplary structures of formula II, wherein W is nitrogen, are set forth in Table 3 below.
Table 3. Compounds of Formula II
Figure imgf000041_0002
Figure imgf000042_0001
Figure imgf000043_0001
Figure imgf000044_0001
Figure imgf000045_0001
Figure imgf000046_0001
Figure imgf000047_0001
Figure imgf000048_0001
Figure imgf000049_0001
Figure imgf000050_0001
The present compounds may be prepared in general by methods known to those skilled in the art for analogous compounds, as illustrated by the general Schemes I through IV, and the synthetic examples shown below.
Scheme I
Figure imgf000051_0001
Reagents and conditions: (a) MeMgCl, THF, -78 °C; (b) Mn02, CH2C12, reflux,-
Scheme I above shows a general synthetic route used for preparing the intermediate compound 3_. To a solution of aldehyde (jL) in THF, at -78 °C, is added a solution of methyl magnesium chloride in THF. The reaction is quenched with cold HC1 (IN) , then aqueous work-up followed by chromatography affords alcohol (ii) - Manganese dioxide is added to a solution of ii_ in CH2C12 and the resulting mixture is heated to reflux.
After 3 hours, the suspension is filtered through Celite® and the filtrate concentrated in vacuo to afford ketone (3) .
Scheme II
Figure imgf000052_0001
Reagents and conditions: (a) NH2NCN, HCl, 1, 4-dioxane; (b) DMF-DMA, 80 °C, 12-18 hours; (c) acetonitrile, reflux.
Scheme II above shows a general synthetic route used for preparing compounds of formula I. Aniline 1 is combined with cyanamide, HCl (4N in 1, 4-dioxane) , and 1,4- dioxane in sealed tube and the resulting mixture heated at 60 °C. After 12-18 hours, aqueous work-up affords the desired guanidine derivative (2_) .
Intermediate 4 is prepared from dissolving 3_ in N,N-dimethylformamide dimethylacetal (DMF-DMA) and heating the resulting solution at 80 °C. The reaction is concentrated in vacuo and the crude product recrystallized to afford enaminone 4.
Enaminone 4 was combined with guanidine 2_ and acetonitrile and the resulting mixture heated at 80 °C. After aqueous work-up, the crude product is purified by chromatography to afford I in 50-95% yield, depending upon the guanidine derivative used.
A variety of R1, R2, R3, and R4 are amenable to the reaction conditions described above for Scheme II, including those listed above in Table 1.
Scheme III
Figure imgf000053_0001
Reagents and conditions: (a) Mg, I2, THF, trimethylborate; room temperature, 12-18 hours; (b) Na2C03, Pd(PPh3)4, toluene :methanol (4:1), reflux, 24 hours; (c) NaH (60% dispersion in mineral oil) , Pd(PPh3)4, THF, reflux, 3 hours. Scheme III above shows an alternate method for preparing compounds of formula I. The aryl boronic acid {§_) is prepared from treating the bromide iii with magnesium turnings, and a catalytic amount of iodine, in THF at reflux for 12-18 hours. The reaction is cooled to 0°C then trimethyl borate is added and the resulting mixture stirred at room temperature for 12-18 hours. The reaction is hydrolyzed with HCl (6N, aqueous) at 60°C then aqueous work-up afforded the desired boronic acid §_. The boronic acid _6 is combined with the dichloropyrimidine (5), Na2C03, and Pd(PPh3)4 in a solution of toluene :methanol (4:1). The resulting mixture is heated at reflux for 24 hours then filtered through silica gel. The crude product is purified by flash chromatography to afford chloropyrimidine 7_.
The chloropyrimidine 7_ is combined with the aniline 1 , NaH (60% dispersion in mineral oil) , and Pd(PPh3)4 in THF and the resulting mixture heated at reflux for 3 hours. The reaction is cooled then poured into water. Aqueous work-up, followed by flash chromatography affords I. A variety of R1, R2 , R3, and R4 are amenable to the reaction conditions described above for Scheme III, including those listed above in Table 1.
Compounds of formula I wherein is CH may also be synthesized by methods essentially similar to those described above at Scheme III, by methods shown in Scheme IV below, and by methods known to one of skill in the art .
Scheme IV
Figure imgf000054_0001
Figure imgf000054_0003
Figure imgf000054_0002
Reagents and conditions : (a) NCCH2P (O) (OEt ) 2 , NaH, THF; (b) lithium hexamethyldisilazide , THF then trimethyl silyl chloride ; (c) dimethylf ormamide dimethylacetal ; (d) gaseous HBr, CHC13; e) R4NH2, NaH, dimethylformamide, 80°C.
The details of the conditions used for producing these compounds are set forth in the Examples. One having ordinary skill in the art may synthesize other compounds of this invention following the teachings of the specification using reagents that are readily synthesized or commercially available.
The activity of a compound utilized in this invention as an inhibitor of NK3 , GSK-3, CDK2, Lck, or Src, may be assayed in vitro, in vivo or in a cell line. In vitro assays include assays that determine inhibition of either the phosphorylation activity or ATPase activity of activated JNK3 , GSK-3, CDK2, Lck, or Src. Alternate in vitro assays quantitate the ability of the inhibitor to bind to JNK3 , GSK-3, CDK2 , Lck, or Src. Inhibitor binding may be measured by radiolabelling the inhibitor prior to binding, isolating the inhibitor/JNK3 , inhibitor/GSK-3 , inhibitor/CDK2 , inhibitor/Lck, or inhibitor/Src complex and determining the amount of radiolabel bound. Alternatively, inhibitor binding may be determined by running a competition experiment where new inhibitors are incubated with JNK3 , GSK-3, CDK2 , Lck, or Src bound to known radioligands . According to another embodiment, the invention provides a composition comprising a compound of this invention or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier, adjuvant, or vehicle . The amount of compound in the compositions of this invention is such that is effective to detectably inhibit a protein kinase, particularly NK3 , GSK-3, CDK2 , Lck, or Src in a biological sample or in a patient. Preferably the composition of this invention is formulated for administration to a patient in need of such composition. Most preferably, the composition of this invention is formulated for oral administration to a patient .
The term "patient", as used herein, means an animal, preferably a mammal, and most preferably a human. The term "pharmaceutically acceptable carrier, adjuvant, or vehicle" refers to a non-toxic carrier, adjuvant, or vehicle that does not destroy the pharmacological activity of the compound with which it is formulated. Pharmaceutically acceptable carriers, adjuvants or vehicles that may be used in the compositions of this invention include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat.
The term "detectably inhibit" , as used herein means a measurable change in NK3, GSK-3, CDK2, Lck, or Src activity between a sample comprising said composition and a JNK3 , GSK-3, CDK2, Lck, or Src kinase and an equivalent sample comprising JNK3 , GSK-3, CDK2 , Lck, or Src kinase in the absence of said composition.
A "pharmaceutically acceptable salt" means any non-toxic salt, ester, salt of an ester or other derivative of a compound of this invention that, upon administration to a recipient, is capable of providing, either directly or indirectly, a compound of this invention or an inhibitorily active metabolite or residue thereof .
Pharmaceutically acceptable salts of the compounds of this invention include those derived from pharmaceutically acceptable inorganic and organic acids and bases. Examples of suitable acid salts include acetate, adipate, alginate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, citrate, camphorate, camphorsulfonate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptanoate, glycerophosphate, glycolate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, malonate, methanesulfonate, 2- naphthalenesulfonate, nicotinate, nitrate, oxalate, palmoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, salicylate, succinate, sulfate, tartrate, thiocyanate, tosylate and undecanoate. Other acids, such as oxalic, while not in themselves pharmaceutically acceptable, may be employed in the preparation of salts useful as intermediates in obtaining the compounds of the invention and their pharmaceutically acceptable acid addition salts.
Salts derived from appropriate bases include alkali metal (e.g., sodium and potassium), alkaline earth metal (e.g., magnesium), ammonium and N+ (Cι_4 alkyl)4 salts. This invention also envisions the quaternization of any basic nitrogen-containing groups of the compounds disclosed herein. Water or oil-soluble or dispersible products may be obtained by such quaternization. The compositions of the present invention may be administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir. The term "parenteral" as used herein includes subcutaneous, intravenous, intramuscular, intra-articular, intra-synovial, intrasternal , intrathecal, intrahepatic, intralesional and intracranial injection or infusion techniques. Preferably, the compositions are administered orally, intraperitoneally or intravenously. Sterile injectable forms of the compositions of this invention may be aqueous or oleaginous suspension. These suspensions may be formulated according to techniques known in the art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example as a solution in 1, 3-butanediol . Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium .
For this purpose, any bland fixed oil may be employed including synthetic mono- or di-glycerides . Fatty acids, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions. These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant, such as carboxymethyl cellulose or similar dispersing agents that are commonly used in the formulation of pharmaceutically acceptable dosage forms including emulsions and suspensions. Other commonly used surfactants, such as Tweens, Spans and other emulsifying agents or bioavailability enhancers which are commonly used in the manufacture of pharmaceutically acceptable solid, liquid, or other dosage forms may also be used for the purposes of formulation.
The pharmaceutically acceptable compositions of this invention may be orally administered in any orally acceptable dosage form including, but not limited to, capsules, tablets, aqueous suspensions or solutions. In the case of tablets for oral use, carriers commonly used include lactose and corn starch. Lubricating agents, such as magnesium stearate, are also typically added. For oral administration in a capsule form, useful diluents include lactose and dried cornstarch. When aqueous suspensions are required for oral use, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening, flavoring or coloring agents may also be added.
Alternatively, the pharmaceutically acceptable compositions of this invention may be administered in the form of suppositories for rectal administration. These can be prepared by mixing the agent with a suitable non- irritating excipient that is solid at room temperature but liquid at rectal temperature and therefore will melt in the rectum to release the drug. Such materials include cocoa butter, beeswax and polyethylene glycols.
The pharmaceutically acceptable compositions of this invention may also be administered topically, especially when the target of treatment includes areas or organs readily accessible by topical application, including diseases of the eye, the skin, or the lower intestinal tract . Suitable topical formulations are readily prepared for each of these areas or organs .
Topical application for the lower intestinal tract can be effected in a rectal suppository formulation (see above) or in a suitable enema formulation . Topically- transdermal patches may also be used.
For topical applications , the pharmaceutically acceptable compositions may be formulated in a suitable ointment containing the active component suspended or dissolved in one or more carriers . Carriers for topical administration of the compounds of this invention include , but are not limited to, mineral oil , liquid petrolatum, white petrolatum, propylene glycol , polyoxyethylene, polyoxypropylene compound, emulsifying wax and water . Alternatively, the pharmaceutically acceptable compositions can be formulated in a suitable lotion or cream containing the active components suspended or dissolved in one or more pharmaceutically acceptable carriers . Suitable carriers include, but are not limited to, mineral oil , sorbitan monostearate , polysorbate 60 , cetyl esters wax, cetearyl alcohol , 2 -octyldodecanol , benzyl alcohol and water.
For ophthalmic use, the pharmaceutically acceptable compositions may be formulated as micronized suspensions in isotonic, pH adjusted sterile saline , or, preferably, as solutions in isotonic, pH adjusted sterile saline, either with or without a preservative such as benzylalkonium chloride . Alternatively, for ophthalmic uses , the pharmaceutically acceptable compositions may be formulated in an ointment such as petrolatum.
The pharmaceutically acceptable compositions of this invention may also be administered by nasal aerosol or inhalation. Such compositions are prepared according to techniques well-known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other conventional solubilizing or dispersing agents.
Most preferably, the pharmaceutically acceptable compositions of this invention are formulated for oral administration. The amount of the compounds of the present invention that may be combined with the carrier materials to produce a composition in a single dosage form will vary depending upon the host treated, the particular mode of administration. Preferably, the compositions should be formulated so that a dosage of between 0.01 - 100 mg/kg body weight/day of the inhibitor can be administered to a patient receiving these compositions. It should also be understood that a specific dosage and treatment regimen for any particular patient will depend upon a variety of factors, including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, rate of excretion, drug combination, and the judgment of the treating physician and the severity of the particular disease being treated. The amount of a compound of the present invention in the composition will also depend upon the particular compound in the composition.
Depending upon the particular condition, or disease, to be treated or prevented, additional therapeutic agents, which are normally administered to treat or prevent that condition, may also be present in the compositions of this invention. For example, chemotherapeutic agents or other anti-proliferative agents may be combined with the compounds of this invention to treat proliferative diseases and cancer. Examples of known chemotherapeutic agents include, but are not limited to, Gleevec™, adriamycin, dexamethasone, vincristine, cyclophosphamide, fluorouracil , topotecan, taxol, interferons, and platinum derivatives .
Other examples of agents the compounds of this invention may also be combined with include, without limitation, anti-inflammatory agents such as corticosteroids, TNF blockers, IL-1 RA, azathioprine, cyclophosphamide, and sulfasalazine; immunomodulatory and immunosuppressive agents such as cyclosporin, tacrolimus, rapamycin, mycophenolate mofetil, interferons, corticosteroids, cyclophophamide, azathioprine, and sulfasalazine; neurotrophic factors such as acetylcholinesterase inhibitors, MAO inhibitors, interferons, anti-convulsants, ion channel blockers, riluzole, and anti-Parkinsonian agents; agents for treating cardiovascular disease such as beta-blockers, ACE inhibitors, diuretics, nitrates, calcium channel blockers, and statins; agents for treating liver disease such as corticosteroids, cholestyramine, interferons, and anti-viral agents; agents for treating blood disorders such as corticosteroids, anti-leukemic agents, and growth factors; agents for treating diabetes such as insulin, insulin analogues, alpha glucosidase inhibitors, biguanides, and insulin sensitizers; and agents for treating immunodeficiency disorders such as gamma globulin.
The amount of additional therapeutic agent present in the compositions of this invention will be no more than the amount that would normally be administered in a composition comprising that therapeutic agent as the only active agent. Preferably the amount of additional therapeutic agent in the presently disclosed compositions will range from about 50% to 100% of the amount normally present in a composition comprising that agent as the only therapeutically active agent.
According to another embodiment, the invention relates to a method of inhibiting JNK3 , GSK-3, CDK2 , Lck, or Src kinase activity in a biological sample comprising the step of contacting said biological sample with a compound of this invention, or composition comprising said compound.
The term "biological sample", as used herein, includes, without limitation, cell cultures or extracts thereof; biopsied material obtained from a mammal or extracts thereof; and blood, saliva, urine, feces, semen, tears, or other body fluids or extracts thereof.
Inhibition of NK3 , GSK-3, CDK2, Lck, or Src kinase activity in a biological sample is useful for a variety of purposes which are known to one of skill in the art. Examples of such purposes include, but are not limited to, blood transfusion, organ-transplantation, biological specimen storage, and biological assays. According to another embodiment, the invention provides a method for treating or lessening the severity of a JNK3-, GSK-3 -, CDK2-, Lck- , or Src-mediated disease or condition in a patient comprising the step of administering to said patient a composition according to the present invention.
According to another embodiment, the present invention relates to a method of treating cancer comprising the step of blocking the transition of cancer cells into their proliferative phase by inhibiting CDK2 with a compound according to the present invention, or a pharmaceutcially acceptable composition comprising said compound. The term " NK-mediated disease", as used herein means any disease or other deleterious condition in which JNK is known to play a role. Such conditions include, without limitation, inflammatory diseases, autoimmune diseases, destructive bone disorders, proliferative disorders, cancer, infectious diseases, neurodegenerative diseases, allergies, reperfusion/ischemia in stroke, heart attacks, angiogenic disorders, organ hypoxia, vascular hyperplasia, cardiac hypertrophy, thrombin- induced platelet aggregation, and conditions associated with prostaglandin endoperoxidase synthase-2.
Inflammatory diseases which may be treated or prevented by the compounds of this invention include, but are not limited to, acute pancreatitis, chronic pancreatitis, asthma, allergies, and adult respiratory distress syndrome.
Autoimmune diseases which may be treated or prevented by the compounds of this invention include, but are not limited to, glomerulonephritis, rheumatoid arthritis, systemic lupus erythematosus , scleroderma, chronic thyroiditis, Graves' disease, autoimmune gastritis, diabetes, autoimmune hemolytic anemia, autoimmune neutropenia, thrombocytopenia, atopic dermatitis, chronic active hepatitis, myasthenia gravis, multiple sclerosis, inflammatory bowel disease, ulcerative colitis, Crohn's disease, psoriasis, or graft vs. host disease.
Destructive bone disorders which may be treated or prevented by the compounds of this invention include, but are not limited to, osteoporosis, osteoarthritis and multiple myeloma-related bone disorder.
Proliferative diseases which may be treated or prevented by the compounds of this invention include, but are not limited to, acute myelogenous leukemia, chronic myelogenous leukemia, metastatic melanoma, Kaposi's sarcoma, multiple myeloma and HTLV-1 mediated tumorigenesis .
Angiogenic disorders which may be treated or prevented by the compounds of this invention include solid tumors, ocular neovasculization, infantile haemangiomas . Infectious diseases which may be treated or prevented by the compounds of this invention include, but are not limited to, sepsis, septic shock, and Shigellosis.
Viral diseases which may be treated or prevented by the compounds of this invention include, but are not limited to, acute hepatitis infection (including hepatitis A, hepatitis B and hepatitis C) , HIV infection and CMV retinitis.
Neurodegenerative diseases which may be treated or prevented by the compounds of this invention include, but are not limited to, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis (ALS) , epilepsy, seizures, Huntington's disease, traumatic brai injury, ischemic and hemorrhaging stroke, cerebral ischemias or neurodegenerative disease, including apoptosis-driven neurodegenerative disease, caused by traumatic injury, acute hypoxia, ischemia or glutamate neurotoxicity. "JNK-mediated diseases" also include ischemia/reperfusion in stroke, heart attacks, myocardial ischemia, organ hypoxia, vascular hyperplasia, cardiac hypertrophy, hepatic ischemia, liver disease, congestive heart failure, pathologic immune responses such as that caused by T cell activation and thrombin-induced platelet aggregation.
In addition, compounds of the instant invention may be capable of inhibiting the expression of inducible pro-inflammatory proteins. Therefore, other "JNK-mediated conditions" which may be treated by the compounds of this invention include edema, analgesia, fever and pain, such as neuromuscular pain, headache, cancer pain, dental pain and arthritis pain.
The compounds of this invention are also useful as inhibitors of Src-family kinases, especially Src and Lck. For a general review of these kinases see Thomas and Brugge, Annu . Rev. Cell Dev. Biol . (1997) 13, 513; Lawrence and Niu, Pharmacol. Ther. (1998) 77, 81;
Tatosyan and Mizenina, Biochemistry (Moscow) (2000) 65, 49. The term "Src-mediated or Lck-mediated disease", as used herein means any disease or other deleterious condition in which Src or Lck is known to play a role. Accordingly, these compounds are useful for treating diseases or conditions that are known to be affected by the activity of one or more Src-family kinases. Such diseases or conditions include hypercalcemia, restenosis, osteoporosis, osteoarthritis, symptomatic treatment of bone metastasis, rheumatoid arthritis, inflammatory bowel disease, multiple sclerosis, psoriasis, lupus, graft vs. host disease, T-cell mediated hypersensitivity disease, Hashimoto's thyroiditis, Guillain-Barre syndrome, chronic obtructive pulmonary disorder, contact dermatitis, cancer, Paget's disease, asthma, ischemic or reperfusion injury, allergic disease, atopic dermatitis, and allergic rhinitis. Diseases that are affected by Src activity, in particular, include hypercalcemia, osteoporosis, osteoarthritis, cancer, symptomatic treatment of bone metastasis, and Paget's disease. Diseases that are affected by Lck activity, in particular, include autoimmune diseases, allergies, rheumatoid arthritis, and leukemia.
The term "GSK3-mediated disease", as used herein means any disease or other deleterious condition in which GSK3 is known to play a role. Accordingly, these compounds are useful for treating diseases or conditions that are known to be affected by the activity of GSK3 kinase. Such diseases or conditions include diabetes, Alzheimer's disease, Huntington' s, Parkinson's, AIDS associated dementia, amyotrophic lateral sclerosis (AML) , multiple sclerosis (MS) , schizophrenia, cardiomycete hypertrophy, and baldness.
The term "CDK2-mediated disease", as used herein means any disease or other deleterious condition in which CDK2 is known to play a role. Accordingly, these compounds are useful for treating diseases or conditions that are known to be affected by the activity of CDK2 kinase. Such diseases or conditions include viral infections, neurodegenerative disorders, disorders associated with thymocyte apoptosis, or proliferative disorders resulting from the deregulation of the cell cycle, especially of the progression from Gx to S phase. A preferred embodiment relates to the method used to treat or prevent a JNK-mediated disease selected from inflammatory diseases, autoimmune diseases, destructive bone disorders, neurodegenerative diseases, allergies, reperfusion/ischemia in stroke, heart attacks, angiogenic disorders, organ hypoxia, vascular hyperplasia, cardiac hypertrophy, or thrombin-induced platelet aggregation. Another preferred embodiment relates to the method used to treat or prevent a Src- or Lck-mediated disease selected from hypercalcemia, osteoperosis, osteoarthritis, or sympomatic treatment of bone metastasis.
Another preferred embodiment relates to the method used to treat or prevent a GSK3-mediated disease selected from diabetes, Alzheimer's disease, Huntington's disease, Parkinson's disease, multiple sclerosis (MS), or amyotrophic lateral sclerosis (AML) .
According to another preferred embodiment, the method is used to treat or prevent a CDK2 -mediated disease selected from viral infections, neurodegenerative disorders, or disorders associated with thymocyte apoptosis.
In addition to the compounds of this invention, pharmaceutically acceptable derivatives the compounds of this invention may also be employed in compositions to treat or prevent the above-identified disorders. In an alternate embodiment, the methods of this invention that utilize compositions that do not contain an additional therapeutic agent, comprise the additional step of separately administering to said patient an additional therapeutic agent. When these additional therapeutic agents are administered separately they may be administered to the patient prior to, sequentially with or following administration of the compositions of this invention.
The compounds of this invention or pharmaceutical compositions thereof may also be incorporated into compositions for coating an implantable medical device, such as prostheses, artificial valves, vascular grafts, stents and catheters. Vascular stents, for example, have been used to overcome restenosis (re-narrowing of the vessel wall after injury) . However, patients using stents or other implantable devices risk clot formation or platelet activation. These unwanted effects may be prevented or mitigated by pre-coating the device with a pharmaceutically acceptable composition comprising' a kinase inhibitor. Suitable coatings and the general preparation of coated implantable devices are described in US Patents 6,099,562; 5,886,026; and 5,304,121. The coatings are typically biocompatible polymeric materials such as a hydrogel polymer, polymethyldisiloxane, polycaprolactone, polyethylene glycol, polylactic acid, ethylene vinyl acetate, and mixtures thereof. The coatings may optionally be further covered by a suitable topcoat of fluorosilicone, polysaccarides, polyethylene glycol, phospholipids or combinations thereof to impart controlled release characteristics in the composition. Implantable devices coated with a compound of this invention are another embodiment of the present invention.
In order that the invention described herein may be more fully understood, the following examples are set forth. It should be understood that these examples are for illustrative purposes only and are not to be construed as limiting this invention in any manner.
EXAMPLES .
Figure imgf000069_0001
2 1- (7 -Methoxy-benzo [1,3] dioxol-5-yl) -ethanol (2): A solution of 7-Methoxy-benzo [1, 3] dioxole-5-carbaldehyde (I) (1.8 g, 10 mmol) in THF (20 mL) was cooled to -78°C. A solution of methylmagnesium chloride in THF (5.0 mL of 3M, 15 mmol) was added to the solution of i in THF in a dropwise fashion. The reaction was quenched by the addition of HCl (IN, aqueous) and extracted with ethyl acetate. The organic layer was washed with brine, dried over Na2S04 and concentrated in vacuo . The crude product was purified by flash chromatography (silica gel; 40%-60% ethyl acetate in hexanes) to afford 2 (0.89 g, 45%).
Figure imgf000070_0001
3 1- (7 -Methoxy-benzo [1,3] dioxol-5-yl) -ethanone (3_) : Manganese dioxide (5 g, molar excess) was added to a solution of 2 (0,89 g, 4.5 mmol)- in dichloromethane (10 mL) . The resulting mixture was heated at reflux for 3 hours then filtered through Celite". The filtrate was concentrated in vacuo to afford 3_ as a tan solid.
Figure imgf000070_0002
4 3-Dimthylamino-l- (7 -methoxy-benzo [1, 3] dioxol-5-yl) - propenone (4): A solution of 3 (0.89 g, 4.5 mmol) in N,N- dimethylformamide dimethylacetal (3.5 g, molar excess) was heated at 80 °C overnight. The reaction mixture was then concentrated in vacuo and the crude product recrystallized from ethyl acetate/hexanes to afford 4 (1.0 g, 89%) .
Example 4
Figure imgf000071_0001
N-Phenyl-guanidine: A mixture of aniline (11 mmol), cyanamide (420 mg, 10 mmol) , and HCl (3 mL of 4N in dioxane, 12 mmol) in 1, 4-dioxane (10 mL) was heated in a sealed tube at 60 °C overnight. The reaction was concentrated in vacuo and the residue partitioned between NaOH (2N) and dichloromethane . The organic layer was dried over Na2S04 and concentrated in vacuo to afford N- phenyl-guanidine .
Example 5
Figure imgf000071_0002
1-26 [4- (7 -Methoxy-benzo [1,3] dioxol-5-yl) -pyrimidin-2-yl] - phenyl-a ine (1-26) : In a sealed tube, N-phenyl -guanidine (40 mg, excess) was combined with 4 (50 mg, 0.2 mmol) in acetonitrile and the mixture heated to 80 °C overnight. The reaction mixture was then partitioned between water and ethyl acetate. The organic layer was washed with brine, dried over NaS04 and concentrated in vacuo . The crude product was purified by flash chromatography (silica gel, 40% ethyl acetate in hexanes) to afford 1-26. XH-NMR (CDC13, 500 MHz) δ8.40 (d, IH) , 7.69 (d, 2H) , 7.43 (s, IH) , 7.35 (t, 2H) , 7.21 (s, IH) , 7.05 (m, 2H) , 6.07 (s, 2H) , 3.99 (s, 3H) .
Example 6
Figure imgf000072_0001
2-Chloro-4- (2,3,4-trimethoxyphenyD yrimidine (5): In a 250 mL round-bottomed flask, 1.49 grams (10 mmol) of 2,4- dichloropyrimidine was combined with 2,3,4- tri ethoxyphenylboronic acid (2.12 g, 10 mmol), sodium carbonate (2.12 g, 2 equivalents), and 1.15 g (0.1 equivalents) of tetrakis-triphenylphosphinepalladium. Toluene (50 mL) and water (5 mL) were added. The reaction was allowed to reflux under nitrogen overnight. The reaction was diluted with toluene and water and the organic layer was separated, washed with brine, dried (Na. 2S04) , filtered, and concentrated to afford the crude pyrimidine 5_. The compound was purified on silica gel using an eluent of 30% acetone/hexane to afford 2.08 g (74%) of the product _5 as a white solid. Example 7
Figure imgf000073_0001
11-14 (3,5-Dimethylphenyl) - [4- (2 ,3, 4-trimethoxyphenyl) - pyrimid-2-yl] -amine (11-14) : In a vial was placed 28 mg (100 μmol) of chloropyrimidine 5, 3,5 dimethylaniline (24 mg, 200 μmol) , 60% NaH (6 mg, excess) , and tetrakis (triphenylphospine) palladium (6 mg, catalytic). Tetrahydrofuran (2 mL) was added and the vial was sealed and heated to reflux for two hours. The reaction was diluted with diethyl ether and washed with IN hydrochloric acid. The organic layer was separated, washed with IN NaOH solution, water, and brine. The organic extract was dried (MgS04) , filtered, and evaporated in vacuo to afford the crude product. The compound was purified on silica gel using an eluent of 20% acetone/hexane to afford the pure product 11-14 as a white solid. XH-NMR (CDC13, 500 MHz) δ8.41 (d, IH) , 7.78 (d, IH) , 7.35 (d, IH) , 7.31 (s, IH) , 7.08 (s, IH) , 6.82 (d, IH) , 6.68 (s, IH) , 3.94 (s, 3H) , 3.91 (s, 3H) , 3.83 (s, 3H) , 2.34 (s, 6H) .
Figure imgf000074_0001
6 1- [3,4-Di ethoxy-2- (2-morpholin-4-yl-ethoxy)phenyl- ethanone (6) : In a 500 mL round -bottomed flask, 2,3- dihydroxy-4-methoxyacetophenone (3.39 grams, 17.2 mmol) was combined with 4- (2-chloroethyl)morpholine hydrochloride (3.53 grams, 19.0 mmol), 4 grams of K2C03, and 50 mL of anhydrous DMF. The reaction was heated to 60°C overnight, diluted with diethyl ether, and washed with IN sodium hydroxide solution. The organic layer was washed with separated, washed with brine, dried (Na2S04) , filtered, and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel using an eluent of 5% Me0H-CH2Cl2 to afford the pure acetophenone 6.
Figure imgf000074_0002
7
1- [3,4-Dimethoxy-2- (2-morpholin-4-yl-ethoxy)phenyl-3- dimethyla ino-propenone (7): In a vial, 0.95 g of 6 was treated with 2 mL (excess) of dimethylformamide dimethyl acetal . The reaction was heated to 100°C overnight. The reaction was concentrated to an oil and flash- chromatographed on a silica gel column with an eluent of 5% Me0H/CH2Cl2 to afford 0.57 g (51%) of the enaminone 7.
Example 10
Figure imgf000075_0001
11-21 (4- [3,4-Dimethoxy-2- (2 -morpholin-4-yl-ethoxy) phenyl - pyrimidin-2-yl) - (3-phenoxyphenyl) -amine (11-21) ; In a heavy-walled screw-top glass tube, 50 mg of the enaminone 7_ was combined with 3-phenoxyguanidine and 2 mL of acetonitrile. The reaction tube was sealed and heated to 100°C for two days. The solvent was evaporated in vacuo and the remaining material recrystallized from diethyl ether/hexane to afford pure 11-21 as a white solid. 1H-
NMR (CDCI3, 500 MHz) δ8.32 (d, IH) , 7.62 (d, IH) , 7.60 (s, IH) , 7.48 (d, IH) , 7.32 - 7.22 (m, 5H) , 7.19 (s, IH) , 7.09 - 7.05 (m, 2H) , 6.69 - 6.63 (m, 2H) , 4.05 (t, 2H) , 3.94 (s, 3H) , 3.91 (s, 3H) , 3.68 (t, 4H) , 2.62 (t, 2H) , 2.42 (br s, 4H) . Example 11
Figure imgf000076_0001
8 1- (5-Methoxy-2, 3-dihydro-l, 4-benzodioxin-6-yl) ethan-1-one
(_8) : In a round-bottomed flask, 500 mg of 1- (5-Hydroxy- 2 , 3-dihydro-l, 4-benzodioxin-6-yl) ethan-1-one was dissolved in 1 mL of DMF. To this solution was added, 414 mg of K2C03, and methyl iodide (1 mL, excess) . The reaction was heated to 80°C overnight. The reaction was poured into water and extracted with diethyl ether. The organic extract was washed with brine, dried (Na2S04) , filtered, and concentrated to afford 0.38 g (70%) of the acetophenone 8 .
Figure imgf000076_0002
9
3-Dimethylamino-l- (5- ethoxy-2,3-dihydro- benzo [1, 4] dioxin-6-yl) -propenone ( 9) : In a vial, 0.38 g
(1.8 mmol) of 8 was dissolved in 1 mL of acetonitrile.
Diπiethylformamide dimethyl acetal (321 mg, 2.7 mmol) .
The vial was sealed and heated to 90 °C overnight. The reaction mixture was poured directly onto a silica gel column which was then eluted with 70% ethyl acetate/hexane. Evaporation of the appropriate fractions afforded 0.30 g (61%) of the pure enaminone _9. Example 13
Figure imgf000077_0001
13 : - i7 [4- (5-Methoxy-2 ,3-dihydro-benzo [1,4] dioxin-6-yl) - pyri idin-2-yl] - (3-phenoxyphenyl) -a ine (11-17): The enaminone 9_ was dissolved in 2 mL of acetonitrile in a small vial. An excess of 3-phenoxyphenyl guanidine was added, the vial was sealed, and the mixture was heated to reflux overnight. The reaction mixture was poured directly onto a silica gel column which was then eluted with 50% ethyl acetate/hexane . The appropriate fractions were combined and evaporated in vacuo to give the crude pyrimidine 11-17. The pyrimidine was recrystallized from diethyl ether/hexane to afford pure 1 -17. ^H-NMR (CDC13, 500 MHz) δ 9.78 (s, IH) , 8.45 (d, IH) , 7.75 (s, IH) , 7.48 (d, IH) , 7.35 (m, 2H) , 7.23 (m, 3H) , 7.08 (t, IH) , 6.96 (d, 2H) , 6.62 (d, IH) , 6.52 (d, IH) , 4.30 (s, 4H) , 3.70
(s, 3H)
Example 14
Figure imgf000077_0002
10 8-Methoxy-2,3-dihydro-benzo[l,4] dioxine-6-carbaldehyde (10): In a vial was placed 0.5 g (3.0 mmol) of 3,4- dihydroxy-5-methoxybenzaldehyde, 414 mg (3.0 mmol) of K2C03, and 3 mL of anhydrous DMF . To this mixture was added, 0.56 g (3.0 mmol) of 1, 2-dibromoethane dropwise. The vial was sealed and heated to 100 °C overnight. Water was added to the reaction and the mixture was extracted with diethyl ether. The organic extract was washed with brine, dried (Na2S04) , filtered, and concentrated to give the crude product. The material was purified by silica gel chromatography using 50% ethyl acetate/hexane as the eluent to afford 0.25 g (43%) of the pure aldehyde 10.
Example 15
Figure imgf000078_0001
11 1- (8-Methoxy-2, 3-dihydro-benzo [1,4] dioxin-6-yl) -ethanol (11): In a 250 mL round-bottomed flask, 0.60 g (3.1 mmol) of 1£ was dissolved in 15 mL of anhydrous tetrahydrofuran. The solution was cooled to 0°C and treated with 1.1 mL (3.3 mmol) of 3M methyl magnesium chloride in THF. The reaction was stirred for a few minutes then quenched with a IN HCl solution. The mixture was extracted with ethyl acetate. The organic extract was washed with brine, dried (Na2S04) , filtered, and evaporated in vacuo to afford the alcohol 11.
Example 16
Figure imgf000078_0002
1- (8-Methoxy-2, 3-dihydro-benzo [1,4] dioxin-6-yl) -ethanone (12): In a round-bottomed flask, 0.65 g (3.1 mmol) of the alcohol 11 was dissolved in dichloromethane . To this solution was added an excess of manganese oxide. The suspension was heated to reflux overnight . The mixture was cooled and filtered through Celite. The filtrate was evaporated in vacuo to afford 0.61 g (85%) of 12 as a yellow oil.
Example 17
Figure imgf000079_0001
13 3-Dimethylamino-l- (8-methoxy-2, 3-dihydro- benzo [1, 4] dioxin-6-yl) -propenone (13): In a vial, 548 mg (2.6 mmol) of 12_ was combined with 2 mL of dimethylformamide dimethyl acetal . The vial was sealed and heated to 100°C overnight. The reaction was concentrated to dryness and the crude product was recrystallized from ethyl acetate/hexane to afford 0.5 g (73%) of the pure enaminone 13.
Example 18
Figure imgf000079_0002
1-77 [4- (8-Methoxy-2, 3-dihydro-benzo [1,4] dioxin-6-yl) - pyrimidin-2-yl] - (3-chlorophenyl) -amine (1-77): In a vial, 0.45 g (0.170 mmol) of the enaminone 13_ was combined with 40 mg (excess) of 3-chlorophenyl guanidine. Acetonitrile (1 mL) was added and the mixture was heated to 100 °C overnight. The reaction was diluted with water and extracted with dichloromethane. The organic extract was dried (Na2S04) and concentrated. The concentrated solution was poured directly onto a silica gel column which was eluted with 50% ethyl acetate/hexane. The appropriate fractions were combined and evaporated in vacuo to afford the pure pyrimidine 1-77. ^-NMR (CDC13,
500 MHz) δ 8.42 (m, IH) , 8.13 (s, IH) , 7.48 (s, IH) , 7.32 - 7.20 (m, 5H) , 7.10 (m, IH) , 7.0 (d, IH) , 4.49 ( , 2H) , 4.30 (m, 2H) , 4.03 (s, 3H) .
Example 19
Figure imgf000080_0001
14 1- [3,5-Dimethoxy-4- (2-morpholin-4-yl-ethoxy) - phenyl) ethanone (14): In a vial, 500 mg (2.5 mmol) of 3', 5' -dimethoxy-4' -hydroxyacetophenone was combined with 4- (2-chloroethyl)morpholine hydrochloride (600 mg, 3.2 mmol), and powdered potassium carbonate (1.5 g, excess) . Dimethylformamide (2 mL) was added, the vial was sealed, and the rxn was heated to 80°C overnight. The reaction was diluted with water and extracted with diethyl ether. The organic extract was washed with brine, dried (Na2S04) , and evaporated in vacuo to afford 540 mg (67%) of 14 as a white solid.
Figure imgf000081_0001
15 1- [3,5-Dimethoxy-4- (2-morpholin-4-yl-ethoxy) -phenyl] -3- dimethylamino-propenone (15): In a vial, 540 mg (1.7 mmol) of 14 was combined with 2 mL (excess) of dimethylformamide dimethylacetal . The reaction was sealed and heated to 130°C overnight. The reaction was concentrated to dryness and the residue was triturated with diethyl ether/hexane to afford the pure enaminone 15.
Example 21
Figure imgf000081_0002
1-39
(3 -Chlorophenyl) - (4 [3, 5-di ethoxy-4- (2-morpholin-4-yl- ethoxy) phenyl] yrimidin-2 -yl) -amine (1-39) : In a vial, 60 mg of 3 -chlorophenyl guanidine was combined with 40 mg of 15. Acetonitrile (0.25 mL) was added, the vial was sealed, and the reaction was heated to 8'0°C for three days. The reaction was diluted with ethyl acetate and washed with brine. The organic phase was separated, dried (Na2S04) , and evaporated in vacuo. The crude product was purified by flash chromatography on silica gel using 50% ethyl acetate/methylene chloride as the eluent to afford pure 1-39. XH-NMR (CDC13, 500 MHz) δ 8.48 (d, IH) , 8.22 (s, IH) , 7.38 (s, 2H) , 7.25 - 7.16 (m, 4H) , 7.00 (d, IH) , 4.18 (br s, 2H) , 3.98 (s, 6H) , 3.77 (br s, 2H) , 2.80 (br s, 2H) , 2.59 (br s, 2H) .
Example 22
Figure imgf000082_0001
16 3- (3,4, 5-Trimethoxyphenyl) -but-2-enenitrile (16): To a slurry of 60% NaH (1.46 g, 61.1 mmol) in THF at 0°C was added 10.0 g (56.4 mmol) of ethyl (cyanomethyl) phosphate. A solution of 9.88 g (47.0 mmol) of 3,4,5- trimethoxyacetophenone in THF was added precipitating a yellow solid. The mixture was stirred at room temperature for 30 minutes, quenched with water, and extracted with ethyl acetate . The organic extract was washed with brine, dried (MgS04) , and evaporated in vacuo to afford 9.32 g (85%) of 16 as a yellow oil.
Example 23
Figure imgf000082_0002
17
3- (3,4,5) -Trimethoxyphenyl) -4- (trimethylsilanyl) -but-2- enenitrile (17): To a solution of 16 (3.82 g, 16.3 mmol) in THF was added chlorotrimethylsilane (19.6 mL, 49.17 mmol) . To this solution was added a solution of lithium hexamethyldisilazide in THF (24.6 mL of 1.0M, 24.6 mmol). The solution was stirred for 1 hour, quenched with water, and extracted with dichloromethane . The organic extract was dried (MgS04) , and evaporated in vacuo to afford a yellow oil. The oil was purified by column chromatography on silica gel using an eluent of 10-15% ethyl acetate/hexane to afford 2.6 g (52%) of 17_ as a white solid.
Figure imgf000083_0001
18 5-Dimethylamino-3 - (3,4,5-trimethoxyphenyl) penta-2 , 4- dienenitrile (18): To a solution of 17 (5.8 g, 19.01 mmol) in 30 mL of toluene was added 30 mL (excess) of dimethylformamide dimethylacetal . The slurry was heated to reflux overnight. The mixture was cooled to room temperature and extracted with dichloromethane. The organic extract was washed with brine, dried (MgS04) , and evaporated in vacuo to afford a yellow oil. The oil was purified using column chromatography on silica gel using an eluent of 20-30% ethyl acetate/hexane to afford 3.6 g (83%) of 18 as a yellow oil. Example 25
Figure imgf000084_0001
19
2-Bromo-4- (3,4, 5- trimethoxyphenyl)pyridine (19_) : Gaseous
HBr was bubbled into a solution of 1_3 (3.6 g, 16.1 mmol) in chloroform for 15 minutes . The reaction was diluted with dichloromethane, washed with water, washed with brine, dried (MgS04) , and evaporated in vacuo to afford
3.2 g (62%) of 19 as an off-white solid.
Example 26
Figure imgf000084_0002
1-146
(3 -Chlorophenyl) - [4- (3 , 4, 5-trimethoxyphenyl) -pyridin-2- yl] -amine (1-146) : To a solution of 19 (50 mg) in 3 mL of DMF was added 2 equivalents of aniline, 2 equivalents of NaH and Pd(PPh3)4. The mixture was heated to 80°C overnight, cooled, poured into water, and extracted with ethyl acetate. The organic extract was washed with brine, dried (Na2S04) , and evaporated in vacuo to afford an brown oil. The oil was purified by prep HPLC to afford pure 1-146. Expected Mass = 370.1084; Found Mass (M+l) = 371.0. Retention time = 3.25 minutes. We have prepared other compounds of formula I by methods substantially similar to those described in the above Examples 1-26 and those illustrated in Schemes I-IV. The characterization data for these compounds is summarized in Table 4 below and includes LC/MS (observed), HPLC, and αH NMR data.
As used herein in Table 4 below, "Y" designates the indicated data is available and was found to be consistent with structure. Compound numbers correspond to the compound numbers listed in Tables 1, 2, and 3.
The term "Rt" refers to the retention time, in minutes, associated with the compound.
Table 4. Characterization Data for Selected Compounds
Figure imgf000085_0001
Figure imgf000086_0001
Figure imgf000087_0001
Figure imgf000088_0001
The following examples demonstrate how the compounds of this invention may be tested as inhibitors of JNK3, Src, Lck, GSK3 , and CDK2 kinases.
Example 27
Cloning, Expression and Purification of NK3 Protein A BLAST search of the EST database using the published JNK3αl cDNA as a query identified an EST clone (#632588) that contained the entire coding sequence for human JNK3 l . Polymerase chain reactions (PCR) using pfu polymerase (Strategene) were used to introduce restriction sites into the cDNA for cloning into the pET- 15B expression vector at the Ncol and BamHl sites. The protein was expressed in E. coli . Due to the poor solubility of the expressed full-length protein (Met 1- Gln 422) , an N-terminally truncated protein starting at Ser residue at position 40 (Ser 40) was produced. This truncation corresponds to Ser 2 of JNK1 and JNK2 proteins, and is preceded by a methionine (initiation) and a glycine residue. The glycine residue was added in order to introduce an Ncol site for cloning into the expression vector. In addition, systematic C-terminal truncations were performed by PCR to identify a construct that give rise to diffraction-quality crystals. One such construct encodes amino acid residues Ser40-Glu402 of JNK30C1 and is preceded by Met and Gly residues.
The construct was prepared by PCR using deoxyoligonucleotides : 5' GCTCTAGAGCTCCATGGGCAGCAAAAGCAAAGTTGACAA 3' (forward primer with initiation codon underlined) (SEQ ID NO:l) and
5' TAGCGGATCCTCATTCTGAATTCATTACTTCCTTGTA 3' (reverse primer with stop codon underlined) (SEQ ID NO: 2) as primers and was confirmed by DNA sequencing. Control experiments indicated that the truncated JNK3 protein had an equivalent kinase activity towards myelin basic protein when activated with an upstream kinase MKK7 in vi tro .
E. coli strain BL21 (DE3) (Novagen) was transformed with the JNK3 expression construct and grown at 30°C in LB supplemented with 100 μg/ml carbenicillin in shaker flasks until the cells were in log phase (OD6oo ~ 0.8). Isopropylthio-β-D-galactosidase (IPTG) was added to a final concentration of 0.8 mM and the cells were harvested 2 hours later by centrifugation.
E. coli cell paste containing NK3 was resuspended in 10 volumes/g lysis buffer (50 mM HEPES, pH 7.2, containing 10% glycerol (v/v), 100 mM NaCl, 2 mM
DTT, 0.1 mM PMSF, 2 μg/ml Pepstatin, lμg/ml each of E-64 and Leupeptin) . Cells were lysed on ice using a microfluidizer and centrifuged at 100,000 x g for 30 min at 4 °C. The 100,000 x g supernatant was diluted 1:5 with Buffer A (20 mM HEPES, pH 7.0, 10% glycerol (v/v), 2 M DTT) and purified by SP-Sepharose (Pharmacia) cation- exchange chromatography (column dimensions: 2.6 x 20 cm) at 4 °C. The resin was washed with 5 column volumes of Buffer A, followed by 5 column volumes of Buffer A containing 50 mM NaCl. Bound JNK3 was eluted with a 7.5 column volume linear gradient of 50-300 mM NaCl. NK3 eluted between 150-200 mM NaCl.
Example 28 Activation of JNK3
5 mg of JNK3 was diluted to 0.5 mg/ml in 50 mM HEPES buffer, pH 7.5, containing 100 mM NaCl, 5 mM DTT, 20 mM MgCl2 and 1 mM ATP. GST-MKK7 (DD) was added at a molar ratio of 1:2.5 GST-MKK7 : NK3. After incubation for 30 minutes at 25°C, the reaction mixture was concentrated 5-fold by ultrafiltration in a Centriprep-30 (Amicon, Beverly, MA) , diluted to 10 ml and an additional 1 mM ATP added. This procedure was repeated three times to remove ADP and replenish ATP. The final addition of ATP was 5 mM and the mixture incubated overnight at 4°C.
The activated JNK3/GST-MKK7 (DD) reaction mixture was exchanged into 50 mM HEPES buffer, pH 7.5, containing 5 mM DTT and 5% glycerol (w/v) by dialysis or ultrafiltration. The reaction mixture was adjusted to 1.1 M potassium phosphate, pH 7.5, and purified by hydrophobic interaction chromatography (at 25 °C) using a Rainin Hydropore column. GST-MKK7 and unactivated JNK3 do not bind under these conditions such that when a 1.1 to 0.05 M potassium phosphate gradient is developed over 60 minutes at a flow rate of 1 ml/minute, doubly phosphorylated JNK3 is separated from singly phosphorylated JNK. Activated JNK3 (i.e. doubly phosphorylated JNK3) was stored at -70°C at 0.25-1 mg/ml.
Example 29 JNK Inhibition Assay Compounds were assayed for the inhibition of JNK3 by a spectrophotometric coupled-enzyme assay. In this assay, a fixed concentration of activated JNK3 (10 nM) was incubated with various concentrations of a potential inhibitor dissolved in DMSO for 10 minutes at 30°C in a buffer containing 0.1 M HEPES buffer, pH 7.5, containing 10 mM MgCl2, 2.5 mM phosphoenolpyruvate , 200 μM N7ADH, 150 μg/mL pyruvate kinase, 50 μg/mL lactate dehydrogenase, and 200 μM EGF receptor peptide. The EGF receptor peptide has the sequence KRELVEPLTPSGEAPNQALLR, and is a phosphoryl acceptor in the JNK3-catalyzed kinase reaction. The reaction was initiated by the addition of 10 μM ATP and the assay plate is inserted into the spectrophotometer' s assay plate compartment that was maintained at 30°C. The decrease of absorbance at 340 nm was monitored as a function of time. The rate data as a function of inhibitor concentration was fitted to competitive inhibition kinetic model to determine the K± . Table 5 shows the results of the activity of selected compounds of this invention in the JNK inhibition assay. The compound numbers correspond to the compound numbers in Tables 1, 2, and 3. Compounds having a Ki less than 0.1 micromolar (μM) are rated "A", compounds having a Ki between 0.1 and 1 μM are rated "B" and compounds having a Ki greater than 1 μM are rated "C" . Activity ratings "D", "E", and "F" correspond to percent inhibition at a 2 μM inhibitor concentration. Compounds having an activity designated as "D" provided a percent inhibition less than or equal to 33%; compounds having an activity designated as "E" provided a percent inhibition of between 24% and 66%; and compounds having an activity designated as "F" provided a provided a percent inhibition of between 67% and 100%.
Table 5. Activity in the JNK3 Inhibition Assay.
Figure imgf000092_0001
Figure imgf000093_0001
Example 30 Src Inhibition Assay The compounds were assayed as inhibitors of full length recombinant human Src kinase (from Upstate Biotechnology, cat. no. 14-117) expressed and purified from baculo viral cells. Src kinase activity was monitored by following the incorporation of 33P from ATP into the tyrosine of a random poly Glu-Tyr polymer substrate of composition, Glu-.Tyr = 4:1 (Sigma, cat. no. P-0275) . The following were the final concentrations of the assay components: 0.05 M HEPES, pH 7.6 , 10 mM MgCl2, 2 mM DTT, 0.25 mg/ml BSA, 10 μM ATP (1-2 μCi 33P-ATP per reaction) , 5 mg/ml poly Glu-Tyr, and 1-2 units of recombinant human Src kinase. In a typical assay, all the reaction components with the exception of ATP were pre-mixed and aliquoted into assay plate wells. Inhibitors dissolved in DMSO were added to the wells to give a final DMSO concentration of 2.5%. The assay plate was incubated at 30 °C for 10 min before initiating the reaction with 33P-ATP. After 20 min of reaction, the reactions were quenched with 150 μl of 10% trichloroacetic acid (TCA) containing 20 mM Na3P0. The quenched samples were then transferred to a 96-well filter plate (Whatman, UNI-Filter GF/F Glass Fiber Filter, cat no. 7700-3310) installed on a filter plate vacuum manifold. Filter plates were washed four times with 10% TCA containing 20 mM Na3P04 and then 4 times with methanol. 200μl of scintillation fluid was then added to each well. The plates were sealed and the amount of radioactivity associated with the filters was quantified on a TopCount scintillation counter.
Table 6 shows the results of the activity of selected compounds of this invention in the SRC inhibition assay. The compound numbers correspond to the compound numbers in Tables 1, 2, and 3. Compounds having a Ki less than 0.1 micromolar (μM) are rated "A", compounds having a K± between 0.1 and 1 μM are rated "B" and compounds having a K± greater than 1 μM are rated "C" . Activity ratings "D", "E", and "F" correspond to percent inhibition at a 2 μM inhibitor concentration. Compounds having an activity designated as "D" provided a percent inhibition less than or equal to 33%; compounds having an activity designated as "E" provided a percent inhibition of between 24% and 66%; and compounds having an activity designated as "F" provided a provided a percent inhibition of between 67% and 100%.
Figure imgf000095_0001
Example 31
Lck Inhibition Assay The compounds were assayed as inhibitors of Lck kinase purified from bovine thymus (from Upstate Biotechnology, cat. no. 14-106). Lck kinase activity was monitored by following the incorporation of 33P from ATP into the tyrosine of a random poly Glu-Tyr polymer substrate of composition, Glu : Tyr = 4:1 (Sigma, cat. no. P-0275) . The following were the final concentrations of the assay components: 0.05 M HEPES, pH 7.6, 10 mM MgCl2/ 2 mM DTT, 0.25 mg/ml BSA, 10 μM ATP (1-2 μCi 33P-ATP per reaction) , 5 mg/ml poly Glu-Tyr, and 1-2 units of lck kinase. In a typical assay, all the reaction components with the exception of ATP were pre-mixed and aliquoted into assay plate wells. Inhibitors dissolved in DMSO were added to the wells to give a final DMSO concentration of 2.5%. The assay plate was incubated at 30 °C for 10 min before initiating the reaction with 33P- ATP. After 20 min of reaction, the reactions were quenched with 150 μl of 10% trichloroacetic acid (TCA) containing 20 mM Na3P04. The quenched samples were then transferred to a 96-well filter plate (Whatman, UNI- Filter GF/F Glass Fiber Filter, cat no. 7700-3310) installed on a filter plate vacuum manifold . Filter plates were washed four times with 10% TCA containing 20 mM Na3P04 and then 4 times with methanol. 200μl of scintillation fluid was then added to each well. The plates were sealed and the amount of radioactivity associated with the filters was quantified on a TopCount scintillation counter. Table 7 shows the results of the activity of selected compounds of this invention in the Lck inhibition assay. The compound numbers correspond to the compound numbers in Tables 1, 2, and 3. Compounds having a i less than 0.1 micromolar (μM) are rated "A" , compounds having a K± between 0.1 and 1 μM are rated "B" and compounds having a Ki greater than 1 μM are rated "C" . Activity ratings "D", "E", and "F" correspond to percent inhibition at a 5 μM inhibitor concentration. Compounds having an activity designated as "D" provided a percent inhibition less than or equal to 33%; compounds having an activity designated as "E" provided a percent inhibition of between 24% and 66%; and compounds having an activity designated as "F" provided a provided a percent inhibition of between 67% and 100%.
Figure imgf000097_0001
Example 32 GSK-3 Inhibition Assay Compounds were screened in the following manner for their ability to inhibit Glycogen Synthase Kinase 3 (GSK-3) using a standard coupled enzyme assay (Fox et al (1998) Protein Sci , 2249) . To an assay stock buffer solution containing 0. IM HEPES 7.5, 10 mM MgCl2, 25 mM NaCl, 2.5 mM phosphoenolpyruvate , 300 μM NADH, ImM DTT, 30 μg/mL pyruvate kinase, 10 μg/mL lactate dehydrogenase, 300 μM peptide (HSSPHQp-SEDEEE, American Peptide, Sunnyvale, CA) , and 60 nM GSK-3, was added a 30 μM solution of the compound in DMSO and the resulting mixture incubated at 30°C for 5 min. The reaction was initiated by the addition of 10 μM ATP. The rates of reaction were obtained by monitoring absorbance at 340 nM over a 5 minute read time at 30 °C using a Molecular Devices plate reader (Sunnyvale, CA) . The IC50 was determined from the rate data as a function of inhibitor concentration. Table 8 shows the results of the activity of selected compounds of this invention in the GSK-3 inhibition assay. The compound numbers correspond to the compound numbers in Tables 1, 2, and 3. Compounds having a Ki less than 0.1 micromolar (μM) are rated "A", compounds having a Ki between 0.1 and 1 μM are rated "B" and compounds having a Ki greater than 1 μM are rated "C" .
Table 8. GSK-3 Inhibitory Activity of Selected Compounds
Figure imgf000098_0001
Figure imgf000099_0001
Example 33 CDK2 Inhibition Assay Compounds were screened in the following manner for their ability to inhibit CDK2 using a standard coupled enzyme assay (Fox et al (1998) Protein Sci 7, 2249) .
To an assay stock buffer solution containing 0.1M HEPES 7.5, 10 mM MgCl2, 1 mM DTT, 25 mM NaCl, 2.5 mM phosphoenolpyruvate, 300 mM NADH, 30 mg/ml pyruvate kinase, 10 mg/ml lactate dehydrogenase, 100 mM ATP, and 100 μM peptide (MAHHHRSPRKRAKKK, American Peptide, Sunnyvale, CA) was added a DMSO solution of a compound of the present invention to a final concentration of 30 μM. The resulting mixture was incubated at 30 °C for 10 minutes .
The reaction was initiated by the addition of 10 μL of CDK-2/Cyclin A stock solution to give a final concentration of 25 nM in the assay. The rates of reaction were obtained by monitoring absorbance at 340 nm over a 5-minute read time at 30 °C using a BioRad Ultramark plate reader (Hercules, CA) . The Ki values were determined from the rate data as a function of inhibitor concentration.
Table 9 shows the results of the activity of selected compounds of this invention in the CDK2 inhibition assay. The compound numbers correspond to the compound numbers in Tables 1, 2, and 3. Compounds having a Ki less than 2 micromolar (μM) are rated "A" , compounds having a i between 2 and 5 μM are rated "B" and compounds having a K greater than 5 μM are rated "C" .
Table 9. CDK2 Inhibitory Activity of Selected Compounds
Figure imgf000100_0001
Figure imgf000101_0001
While we have described a number of embodiments of this invention, it is apparent that our basic examples may be altered to provide other embodiments which utilize the compounds and methods of this invention. Therefore, it will be appreciated that the scope of this invention is to be defined by the appended claims rather than by the specific embodiments which have been represented by way of example.

Claims

We claim:
A compound of formula I or II:
Figure imgf000102_0001
I II or a pharmaceutically acceptable derivative thereof, wherein : each W is independently selected from nitrogen or CH; each R1, R2, and R3 is independently selected from halogen, QR, Q(n)CN, Q(n)N02, or Q(n)Ar2; wherein:
R1 and R2 or R2 and R3 are optionally taken together to form a 4-8 membered saturated, partially unsaturated, or fully unsaturated ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur; n is zero or one;
Q is a Ci-4 alkylidene chain wherein one methylene unit of Q is optionally replaced by O, S, NR, NRCO, NRCONR, NRC02, CO, C02, CONR, 0C(0)NR, S02, S02NR, NRS02, NRSO2NR, C(0)C(0), or C(0)CH2C(0) ; each R is independently selected from hydrogen or an optionally substituted Cπ.-C4 aliphatic, wherein: two R bound to the same nitrogen atom are optionally taken together with the nitrogen atom to form a 3- 7 membered saturated, partially unsaturated, or fully unsaturated ring having 1-2 additional heteroatoms independently selected from nitrogen, oxygen, or sulfur; R4 is Arα, T-Ar2, or T(n)-Ar3;
T is a Cι-2 alkylidene chain wherein one methylene unit of T is optionally replaced by O, NR, NRCO, NRCONR, NRC02, CO, C02, CONR, OC(0)NR, S02, S02NR, NRS02, NRS02NR, C(O)C(0), or C(0)CH2C(0); Ar1 is a 5-6 membered monocyclic or 8-10 membered bicyclic saturated, partially unsaturated, or fully unsaturated ring system; wherein:
Ar1 is optionally substituted with up to five substituents, wherein the first substituent is selected from Rx or R5 and wherein any additional substituents are independently selected from R5; each Rx is independently selected from a 5-6 membered aryl ring having 0-3 heteroatoms selected from nitrogen, oxygen, or sulfur, wherein:
Rx is optionally substituted with 1-3 R5; each R5 is independently selected from R, halogen, N02, CN, OR, SR, N(R)2, NRC(0)R, NRC(0)N(R)2, NRC02R, C(0)R, C02R, C(0)N(R)2, OC(0)N(R)2, SOR, S02R, S02N(R)2, NRS02R, NRS02N(R)2, C(0)C(0)R, or C (O) CH2C (O) R; Ar2 is a 5-6 membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or an 8-10 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur; wherein: Ar2 is optionally substituted with up to five substituents, wherein the first substituent is selected from Rx or R5 and wherein any additional substituents are independently selected from R5; Ar3 is a 6-membered aryl ring having 0-2 nitrogens, wherein:
Ar3 is substituted with one Z-R6 group and optionally substituted with 1-3 R5; Z is a Cι-C6 alkylidene chain wherein up to two non- adjacent methylene units of Z are optionally replaced by CO, C02, COCO, CONR, OCONR, NRNR, NRNRCO, NRCO, NRC02, NRCONR, SO, S02, NRS02, S02NR, NRS02NR, O, S, or NR; and R6 is selected from Ar2, R, halogen, N02, CN, OR, SR, N(R)2, NRC(0)R, NRC(0)N(R)2, NRC02R, C(0)R, C02R, 0C(0)R, C(0)N(R)2, OC(0)N(R)2, SOR, S02R, S02N(R)2, NRS02R, NRS02N(R)2, C(0)C(0)R, or C (O) CH2C (O) R; provided that :
(i) when R4 is phenyl substituted with two OR, wherein R is not hydrogen, the two OR occupy positions on the phenyl ring other than simultaneously meta and para; and
(ii) said compound is other than a compound of formula III
Figure imgf000104_0001
III wherein :
A is a phenyl ring substituted with one or more groups selected from halogen, CN, OC(0)NH2, C02R10, COR10,
SO2N(R10)2, N(R10)2, OR10, or fluoro-alkyl, wherein each R10 is independently selected from hydrogen or a Cι-C7 alkyl group optionally substituted with NH2, NH(C1-C7 alkyl), or N(Cι-C7 alkyl)2; and B is selected from halogen, CN, OC(0)NH2, C02R10, COR10, SO2N(R10)2, N(R10)2, OR10, or fluoro- (C1-C7 alkyl).
2. The compound according to claim 1, wherein:
R1, R2, and R3 are independently selected from halogen, QR or QAr2; Q is a Cχ-3 alkylidene chain wherein one methylene unit of
Q is optionally replaced by -0-, -S-, -NHCO-, or -NR- ; and Ar2 is an optionally substituted 5-6 membered saturated, partially unsaturated, or fully unsaturated ring having 0-2 heteroatoms independently selected from nitrogen, oxygen, or sulfur;
3. The compound according to claim 2, wherein: R1, R2, and R3 are independently selected from OH, OCH3,
OCH2CH3, NHCOMe, NH2 , NH (Cι_4 aliphatic) , N(Cα-4 aliphatic)2, 0 (CH2) 2morpholin-4-yl, 0(CH2)2NH2, 0(CH2)2NH(Cι_4 aliphatic) , O (CH2) 2N (C^ aliphatic)2, bromo, chloro, or fluoro; or
R1 and R2 or R2 and R3 are taken together to form
Figure imgf000105_0001
an
Ar is selected from morpholin-4-yl, pyrrolidin-1-yl , piperidin-1-yl, thiomorpholin-4-yl , pyrazol-1-yl , or imidazol-1-yl .
4. The compound according to claim 1, wherein: R4 is selected from: (a) an optionally substitued 6-membered saturated, partially unsaturated, or aryl ring having 0-3 nitrogens;
(b) an optionally substitued 9-10 membered bicyclic aryl ring having 0-2 nitrogens; or
(c) an optionally substitued 5 membered heteroaryl ring having 2-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
5. The compound according to claim 4 , wherein said ring is substituted with 1-3 groups independently selected from Rx, R, halogen, N02, OR, N(R)2, or Z-R6.
6. The compound according to claim 5, wherein Rx is selected from a phenyl, pyridyl, or pyrimidinyl ring optionally substituted with 1-2 R5.
7. The compound according to claim 5, wherein Z is a Cι_4 alkylidene chain wherein one methylene unit of Z is optionally replaced by -0-, -S-, -S02-, or -NH- .
8. The compound according to claim 4 , wherein said ring is selected from a substituted phenyl, cyclohexyl, naphthyl, pyridyl, pyrimidinyl, triazinyl, thiazolyl, thiadiazolyl, pyrazolyl , isoxazolyl, indazolyl, or benzimidazolyl ring.
9. The compound according to claim 8 , wherein said ring is optionally substituted with 1-2 groups independently selected from chloro, fluoro, bromo, methyl, ethyl, t-butyl," isopropyl, cyclopropyl, nitro, OMe, OEt, CF3, NH2, benzyl, benzyloxy, OH, methylene dioxy, S02NH2, phenoxy, O-pyridinyl, S02phenyl, nitrophenoxy, aminophenoxy, S-dimethylpyrimidine, NHphenyl, NH-methoxyphenyl, pyridinyl, aminophenyl, phenol, chloro-fluoro-phenyl , dimethylaminophenyl, CF3- phenyl, dimethylphenyl , chlorophenyl, fluorophenyl, methoxyphenoxy, chlorophenoxy, ethoxyphenoxy, or fluorophenoxy.
10. A compound selected from those listed in any of Tables 1 through 3.
11. A composition comprising a compound according to any of claims 1-10 and a pharmaceutically acceptable carrier, adjuvant, or vehicle.
12. The composition according to claim 11, additionally comprising an additional therapeutic agent selected from an anti-proliferative agent, an anti- inflammatory agent, an immunomodulatory agent, a neurotrophic factor, an agent for treating cardiovascular disease, an agent for treating liver disease, an antiviral agent, an agent for treating blood disorders, an agent for treating diabetes, or an agent for treating immunodeficiency disorders.
13. A method of inhibiting JNK3 , GSK-3, CDK2 , Lck, or Src kinase activity in a biological sample comprising the step of contacting said biological sample with: a) a compound according to claim 1; or b) a composition according to claim 11.
14. A method of treating or lessening the severity of a JNK3-, GSK-3- , CDK2-, Lck-, or Src-mediated disease or condition in a patient comprising the step of administering to said patient a composition according to claim 11.
15. A method of treating or lessening the severity of a disease or condition in a patient selected from an inflammatory disease, autoimmune disease, destructive bone disorder, neurodegenerative disease, reperfusion/ischemia in stroke, heart attack, angiogenic disorder, organ hypoxia, vascular hyperplasia, cardiac hypertrophy, thrombin-induced platelet aggregation or a condition associated with proinflammatory cytokines, comprising the step of administering to said patient a composition according to claim 11.
16. A method of treating or lessening the severity of a disease or condition in a patient selected from selected from hypercalcemia, osteoporosis, osteoarthritis, symptomatic treatment of bone metastasis, rheumatoid arthritis, inflammatory bowel disease, multiple sclerosis, psoriasis, lupus, graft vs. host disease, T-cell mediated hypersensitivity disease, Hashimoto's thyroiditis, Guillain-Barre syndrome, chronic obtructive pulmonary disorder, contact dermatitis, Paget's disease, asthma, ischemic or reperfusion injury, allergic disease, atopic dermatitis, or allergic rhinitis, comprising the step of administering to said patient a composition according to claim 11.
17. A method of treating or lessening the severity of a disease or condition in a patient selected from diabetes, Alzheimer's disease, Huntington' s, Parkinson's, AIDS associated dementia, amyotrophic lateral sclerosis
(AML) , multiple sclerosis (MS) , schizophrenia, cardiomycete hypertrophy, or baldness, comprising the step of administering to said patient a composition according to claim 11.
18. A method of treating or lessening the severity of a cancer comprising the step of blocking the transition of cancer cells into their proliferative phase by inhibiting CDK2 with: a) a compound according to claim 1; or b) a composition according to claim 11.
19. The method according to claim 14, comprising the additional step of administering to said patient an additional therapeutic agent selected from an antiproliferative agent, an anti-inflammatory agent, an immunomodulatory agent, a neurotrophic factor, an agent for treating cardiovascular disease, an agent for treating liver disease, an anti-viral agent, an agent for treating blood disorders, an agent for treating diabetes, or an agent for treating immunodeficiency disorders, wherein: said additional therapeutic agent is appropriate for the disease being treated; and said additional therapeutic agent is administered together with said composition as a single dosage form or separately from said composition as part of a multiple dosage form.
20. A composition for coating an implantable device comprising a compound according to claim 1 and a carrier suitable for coating said implantable device.
21. An implantable device coated with a composition according to claim 20.
PCT/US2002/009554 2001-03-29 2002-03-28 Inhibitors of c-jun n-terminal kinases (jnk) and other protein kinases WO2002079197A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE60223790T DE60223790T4 (en) 2001-03-29 2002-03-28 HEMMER OF C-JUN TERMINAL KINASE (JNK) AND OTHER PROTEIN KINASE
MXPA03008888A MXPA03008888A (en) 2001-03-29 2002-03-28 Inhibitors of c-jun n-terminal kinases (jnk) and other protein kinases.
EP02725391A EP1373257B9 (en) 2001-03-29 2002-03-28 Inhibitors of c-jun n-terminal kinases (jnk) and other protein kinases
DE60223790A DE60223790D1 (en) 2001-03-29 2002-03-28 HEMMER OF C-JUN TERMINAL KINASE (JNK) AND OTHER PROTEIN KINASE
CA002441733A CA2441733A1 (en) 2001-03-29 2002-03-28 Inhibitors of c-jun n-terminal kinases (jnk) and other protein kinases
JP2002577822A JP4160401B2 (en) 2001-03-29 2002-03-28 Inhibitors of C-JUNN terminal kinase (JNK) and other protein kinases

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US27996101P 2001-03-29 2001-03-29
US60/279,961 2001-03-29

Publications (1)

Publication Number Publication Date
WO2002079197A1 true WO2002079197A1 (en) 2002-10-10

Family

ID=23071080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/009554 WO2002079197A1 (en) 2001-03-29 2002-03-28 Inhibitors of c-jun n-terminal kinases (jnk) and other protein kinases

Country Status (8)

Country Link
US (1) US6949544B2 (en)
EP (1) EP1373257B9 (en)
JP (1) JP4160401B2 (en)
CA (1) CA2441733A1 (en)
DE (2) DE60223790T4 (en)
ES (1) ES2292753T4 (en)
MX (1) MXPA03008888A (en)
WO (1) WO2002079197A1 (en)

Cited By (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003078423A1 (en) * 2002-03-15 2003-09-25 Vertex Pharmaceuticals, Inc. Compositions useful as inhibitors of protein kinases
WO2004041789A1 (en) * 2002-11-01 2004-05-21 Vertex Pharmaceuticals Incorporated Compositions useful as inhibitors of jak and other protein kinases
WO2004041810A1 (en) * 2002-11-05 2004-05-21 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of jak and other protein kinases
WO2005003123A1 (en) * 2003-07-02 2005-01-13 Astrazeneca Ab Novel pyridine derivatives as jnk specific inhibitors
WO2005012262A1 (en) * 2003-07-30 2005-02-10 Cyclacel Limited 2-aminophenyl-4-phenylpyrimidines as kinase inhibitors
WO2005040135A1 (en) * 2003-10-24 2005-05-06 Ono Pharmaceutical Co., Ltd. Antistress drug and medical use thereof
JP2006514006A (en) * 2002-11-04 2006-04-27 バーテックス ファーマシューティカルズ インコーポレイテッド Heteroaryl-pyrimidine derivatives as JAK inhibitors
US7053088B2 (en) 2002-05-22 2006-05-30 Amgen Inc. Vanilloid receptor ligands and their use in treatments
WO2006125616A2 (en) * 2005-05-25 2006-11-30 Ingenium Pharmaceuticals Ag Pyrimidine-based cdk inhibitors for treating pain
US7144888B2 (en) 2002-08-08 2006-12-05 Amgen Inc. Vanilloid receptor ligands and their use in treatments
EP1780196A2 (en) * 2001-12-10 2007-05-02 Amgen, Inc Pyridine derivatives for use as vanilloid receptor ligands
WO2007056151A2 (en) * 2005-11-03 2007-05-18 Irm Llc Protein kinase inhbitors
JP2007513093A (en) * 2003-12-03 2007-05-24 サイトピア・リサーチ・ピーティーワイ・リミテッド Tubulin inhibitor
US7223766B2 (en) 2003-03-28 2007-05-29 Scios, Inc. Bi-cyclic pyrimidine inhibitors of TGFβ
JP2007517895A (en) * 2004-01-08 2007-07-05 ミレニアム・ファーマシューティカルズ・インコーポレイテッド 2- (Amino-substituted) -4-arylpyrimidines and related compounds useful for treating inflammatory diseases
WO2007120593A1 (en) * 2006-04-12 2007-10-25 Wyeth Anilino-pyrimidine phenyl and benzothiophene analogs
AU2002364549B2 (en) * 2001-12-10 2007-11-22 Amgen, Inc Vanilloid receptor ligands and their use in treatments
US7301022B2 (en) 2005-02-15 2007-11-27 Amgen Inc. Vanilloid receptor ligands and their use in treatments
US7304071B2 (en) 2002-08-14 2007-12-04 Vertex Pharmaceuticals Incorporated Protein kinase inhibitors and uses thereof
WO2007141224A2 (en) * 2006-06-02 2007-12-13 Laboratoires Serono Sa Jnk inhibitors for treatment of skin diseases
WO2007125405A3 (en) * 2006-05-01 2008-01-17 Pfizer Prod Inc Substituted 2-amino-fused heterocyclic compounds
JP2008510839A (en) * 2004-08-25 2008-04-10 ターゲジェン インコーポレーティッド Heterocyclic compounds and methods of use
WO2008002676A3 (en) * 2006-06-29 2008-05-02 Kinex Pharmaceuticals Llc Biaryl compositions and methods for modulating a kinase cascade
US7390907B2 (en) 2003-09-30 2008-06-24 Amgen Inc. Vanilloid receptor ligands and their use in treatments
WO2008079933A2 (en) * 2006-12-22 2008-07-03 Novartis Ag Heteroaryl-heteroaryl compounds as cdk inhibitors for the treatment of cancer, inflammation and viral infections
EP2026654A2 (en) * 2006-05-26 2009-02-25 University Of Louisville Research Foundation, Inc. Macrophage migration inhibitory factor antagonists and methods of using same
WO2009029998A1 (en) * 2007-09-06 2009-03-12 Cytopia Research Pty Ltd Retrometabolic compounds
US7511044B2 (en) 2004-02-11 2009-03-31 Amgen Inc. Vanilloid receptor ligands and their use in treatments
US7534798B2 (en) 2004-02-11 2009-05-19 Amgen Inc. Vanilloid receptor ligands and their use in treatments
WO2009089042A1 (en) * 2008-01-09 2009-07-16 Signal Pharmaceuticals, Llc Pyrazole pyrazine amine compounds as kinase inhibitors, compositions thereof and methods of treatment therewith
US7691853B2 (en) 2000-09-15 2010-04-06 Vertex Pharmaceuticals Incorporated Pyrazole compounds useful as protein kinase inhibitors
WO2010046780A2 (en) * 2008-10-22 2010-04-29 Institut Pasteur Korea Anti viral compounds
US7799915B2 (en) * 2004-10-13 2010-09-21 Wyeth Llc Anilino-pyrimidine analogs
US7851470B2 (en) 2006-12-28 2010-12-14 Kinex Pharmaceuticals, Llc Composition and methods for modulating a kinase cascade
US7872129B2 (en) 2002-08-02 2011-01-18 Vertex Pharmaceuticals Incorporated Compositions useful as inhibitors of GSK-3
US7935697B2 (en) 2006-12-28 2011-05-03 Kinex Pharmaceuticals, Llc Compositions for modulating a kinase cascade and methods of use thereof
US7939529B2 (en) 2007-05-17 2011-05-10 Kinex Pharmaceuticals, Llc Process for the preparation of compositions for modulating a kinase cascade and methods of use thereof
US7951820B2 (en) 2000-09-15 2011-05-31 Vertex Pharmaceuticals Incorporated Triazole compounds useful as protein kinase inhibitors
US7968574B2 (en) 2004-12-28 2011-06-28 Kinex Pharmaceuticals, Llc Biaryl compositions and methods for modulating a kinase cascade
WO2011077171A1 (en) 2009-12-21 2011-06-30 Vichem Chemie Kutató Kft. 4-phenylamino-pyrimidine derivatives having protein kinase inhibitor activity
US8003641B2 (en) 2004-12-28 2011-08-23 Kinex Pharmaceuticals, Llc Compositions and methods of treating cell proliferation disorders
US8124605B2 (en) 2007-07-06 2012-02-28 Kinex Pharmaceuticals, Llc Compositions and methods for modulating a kinase cascade
EP2440051A1 (en) * 2009-06-08 2012-04-18 Abraxis BioScience, LLC Triazine derivatives and their therapeutical applications
WO2012066065A1 (en) * 2010-11-17 2012-05-24 Novartis Ag Phenyl-heteroaryl amine compounds and their uses
US8304414B2 (en) 2000-12-21 2012-11-06 Vertex Pharmaceuticals Incorporated Pyrazole compounds useful as protein kinase inhibitors
US8309566B2 (en) 2008-02-15 2012-11-13 Rigel Pharmaceuticals, Inc. Pyrimidine-2-amine compounds and their use as inhibitors of JAK kinases
AT511441B1 (en) * 2011-09-21 2012-12-15 Univ Wien Tech TRIAZINE DERIVATIVES AS DIFFERENTIATOR ACCUMULATORS
WO2013074986A1 (en) * 2011-11-17 2013-05-23 Dana-Farber Cancer Institute, Inc. Inhibitors of c-jun-n-terminal kinase (jnk)
US8486941B2 (en) 2007-03-12 2013-07-16 Ym Biosciences Australia Pty Ltd Phenyl amino pyrimidine compounds and uses thereof
US8501812B2 (en) 2005-03-29 2013-08-06 University Of Massachusetts Therapeutic methods for type I diabetes
US8507498B2 (en) 2007-04-24 2013-08-13 Ingenium Pharmaceuticals Gmbh 4, 6-disubstituted aminopyrimidine derivatives as inhibitors of protein kinases
WO2013175415A1 (en) * 2012-05-23 2013-11-28 Piramal Enterprises Limited Substituted pyrimidine compounds and uses thereof
US8748423B2 (en) 2010-04-16 2014-06-10 Kinex Pharmaceuticals, Llc Compositions and methods for the prevention and treatment of cancer
US8809359B2 (en) 2012-06-29 2014-08-19 Ym Biosciences Australia Pty Ltd Phenyl amino pyrimidine bicyclic compounds and uses thereof
US9155790B2 (en) 2010-05-20 2015-10-13 University of Lousiville Research Foundation, Inc. Methods and compositions for modulating ocular damage
US9162987B2 (en) 2009-09-24 2015-10-20 University Of Louisville Research Foundation, Inc. Iodo pyrimidine derivatives useful for the treatment of macrophage migration inhibitory factor (MIF)-implicated diseases and conditions
US9180127B2 (en) 2009-12-29 2015-11-10 Dana-Farber Cancer Institute, Inc. Type II Raf kinase inhibitors
US9505784B2 (en) 2009-06-12 2016-11-29 Dana-Farber Cancer Institute, Inc. Fused 2-aminothiazole compounds
WO2017125530A1 (en) * 2016-01-22 2017-07-27 Janssen Pharmaceutica Nv New substituted cyanoindoline derivatives as nik inhibitors
WO2017125534A1 (en) * 2016-01-22 2017-07-27 Janssen Pharmaceutica Nv New 6-membered heteroaromatic substituted cyanoindoline derivatives as nik inhibitors
US9758522B2 (en) 2012-10-19 2017-09-12 Dana-Farber Cancer Institute, Inc. Hydrophobically tagged small molecules as inducers of protein degradation
KR101808950B1 (en) * 2016-07-27 2017-12-13 충북대학교 산학협력단 Dimethoxyphenyl derivatives, preparation method and composition for anti-inflammatory and skin whitening comprising the same
WO2018002217A1 (en) 2016-06-30 2018-01-04 Janssen Pharmaceutica Nv Heteroaromatic derivatives as nik inhibitors
WO2018002219A1 (en) 2016-06-30 2018-01-04 Janssen Pharmaceutica Nv Cyanoindoline derivatives as nik inhibitors
US9862688B2 (en) 2014-04-23 2018-01-09 Dana-Farber Cancer Institute, Inc. Hydrophobically tagged janus kinase inhibitors and uses thereof
US9926273B2 (en) 2012-08-30 2018-03-27 Athenex, Inc. Composition and methods for modulating a kinase cascade
US10000483B2 (en) 2012-10-19 2018-06-19 Dana-Farber Cancer Institute, Inc. Bone marrow on X chromosome kinase (BMX) inhibitors and uses thereof
US10017477B2 (en) 2014-04-23 2018-07-10 Dana-Farber Cancer Institute, Inc. Janus kinase inhibitors and uses thereof
US10059690B2 (en) 2014-04-04 2018-08-28 Syros Pharmaceuticals, Inc. Inhibitors of cyclin-dependent kinase 7 (CDK7)
US10112927B2 (en) 2012-10-18 2018-10-30 Dana-Farber Cancer Institute, Inc. Inhibitors of cyclin-dependent kinase 7 (CDK7)
WO2019008011A1 (en) 2017-07-06 2019-01-10 Janssen Pharmaceutica Nv New substituted azaindoline derivatives as nik inhibitors
US10196357B2 (en) 2007-04-13 2019-02-05 Athenex, Inc. Biaryl compositions and methods for modulating a kinase cascade
EP3492462A4 (en) * 2016-07-26 2019-07-10 Shenzhen Targetrx, Inc. Amino pyrimidine compound for inhibiting protein tyrosine kinase activity
US10550121B2 (en) 2015-03-27 2020-02-04 Dana-Farber Cancer Institute, Inc. Inhibitors of cyclin-dependent kinases
US10702527B2 (en) 2015-06-12 2020-07-07 Dana-Farber Cancer Institute, Inc. Combination therapy of transcription inhibitors and kinase inhibitors
USRE48285E1 (en) 2014-06-12 2020-10-27 Sierra Oncology, Inc. N-(cyanomethyl)-4-(2-(4-morpholinophenylamino)pyrimidin-4-yl)benzamide
US10870651B2 (en) 2014-12-23 2020-12-22 Dana-Farber Cancer Institute, Inc. Inhibitors of cyclin-dependent kinase 7 (CDK7)
US10906889B2 (en) 2013-10-18 2021-02-02 Dana-Farber Cancer Institute, Inc. Polycyclic inhibitors of cyclin-dependent kinase 7 (CDK7)
EA037358B1 (en) * 2016-03-10 2021-03-17 Янссен Фармасьютика Нв New substituted cyanoindoline derivatives as nik inhibitors
US11040957B2 (en) 2013-10-18 2021-06-22 Dana-Farber Cancer Institute, Inc. Heteroaromatic compounds useful for the treatment of proliferative diseases
US11142507B2 (en) 2015-09-09 2021-10-12 Dana-Farber Cancer Institute, Inc. Inhibitors of cyclin-dependent kinases
CN113549018A (en) * 2020-04-24 2021-10-26 中国药科大学 Protein kinase inhibitor and derivative thereof, preparation method, pharmaceutical composition and application
WO2023150197A1 (en) * 2022-02-03 2023-08-10 Nexys Therapeutics, Inc. Aryl hydrocarbon receptor agonists and uses thereof
KR102720461B1 (en) 2016-01-22 2024-10-21 잔센파마슈티카엔.브이. Novel 6-membered heteroaromatic substituted cyanoindoline derivatives as NIK inhibitors

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7473691B2 (en) * 2000-09-15 2009-01-06 Vertex Pharmaceuticals Incorporated Pyrazole compounds useful as protein kinase inhibitors
ATE339418T1 (en) * 2001-06-01 2006-10-15 Vertex Pharma THIAZOLE COMPOUNDS THAT ARE SUITABLE AS INHIBITORS OF PROTEIN KINASES
US8101629B2 (en) * 2001-08-13 2012-01-24 Janssen Pharmaceutica N.V. Salt of 4-[[4-[[4-(2-cyanoethenyl)-2,6-dimethylphenyl]amino]-2-pyrimidinyl]amino]benzonitrile
US7638522B2 (en) * 2001-08-13 2009-12-29 Janssen Pharmaceutica N.V. Salt of 4-[[4-[[4-(2-cyanoethenyl)-2,6-dimethylphenyl]amino]-2-pyrimidinyl]amino] benzonitrile
JO3429B1 (en) 2001-08-13 2019-10-20 Janssen Pharmaceutica Nv Hiv inhibiting pyrimidines derivatives
SG159380A1 (en) * 2002-02-06 2010-03-30 Vertex Pharma Heteroaryl compounds useful as inhibitors of gsk-3
HUP0402591A2 (en) 2002-02-15 2005-09-28 Cv Therapeutics, Inc. Polymer coating for medical devices
AU2003218215A1 (en) * 2002-03-15 2003-09-29 Vertex Pharmaceuticals, Inc. Azolylaminoazines as inhibitors of protein kinases
MY141867A (en) 2002-06-20 2010-07-16 Vertex Pharma Substituted pyrimidines useful as protein kinase inhibitors
US7399856B2 (en) * 2002-08-09 2008-07-15 Janssen Pharmaceutica N.V. Processes for the preparation of 4-[[4-[[4-(2-cyanoethenyl)-2,6-dimethylphenyl]amino]-2-2pyrimidinyl]amino]benzonitrile
WO2004072029A2 (en) * 2003-02-06 2004-08-26 Vertex Pharmaceuticals Incorporated Pyrazolopyridazines useful as inhibitors of protein kinases
CA2531490A1 (en) * 2003-07-15 2005-02-03 Neurogen Corporation Substituted pyrimidin-4-ylamina analogues as vanilloid receptor ligands
CA2548172A1 (en) * 2003-12-04 2005-06-23 Vertex Pharmaceuticals Incorporated Quinoxalines useful as inhibitors of protein kinases
EP1917259B1 (en) * 2005-08-18 2012-01-25 Vertex Pharmaceuticals Incorporated Pyrazine kinase inhibitors
SG166827A1 (en) * 2005-11-03 2010-12-29 Vertex Pharma Aminopyrimidines useful as kinase inhibitors
BRPI0706747A2 (en) * 2006-01-30 2011-04-05 Exelixis Inc 4-aryl-2-amino-pyrimidines or 4-aryl-2-aminoalkyl-pyrimidines as jak-2 modulators and pharmaceutical compositions containing them
EP2007759A4 (en) * 2006-04-17 2010-12-22 Neuromed Pharmaceuticals Ltd Isoxazole derivatives as calcium channel blockers
JP2010509231A (en) * 2006-11-02 2010-03-25 バーテックス ファーマシューティカルズ インコーポレイテッド Aminopyridines and aminopyrimidines useful as inhibitors of protein kinases
WO2008077086A1 (en) * 2006-12-19 2008-06-26 Vertex Pharmaceuticals Incorporated Aminopyrimidines useful as inhibitors of protein kinases
CA2679701A1 (en) 2007-03-09 2008-09-18 Vertex Pharmaceuticals Incorporated Aminopyridines useful as inhibitors of protein kinases
JP5393489B2 (en) * 2007-03-09 2014-01-22 バーテックス ファーマシューティカルズ インコーポレイテッド Aminopyrimidines useful as inhibitors of protein kinases
JP5520057B2 (en) * 2007-03-09 2014-06-11 バーテックス ファーマシューティカルズ インコーポレイテッド Aminopyrimidines useful as inhibitors of protein kinases
WO2008128009A2 (en) 2007-04-13 2008-10-23 Vertex Pharmaceuticals Incorporated Aminopyrimidines useful as kinase inhibitors
MX2009011811A (en) * 2007-05-02 2010-01-14 Vertex Pharma Aminopyrimidines useful as kinase inhibitors.
JP5389785B2 (en) 2007-05-02 2014-01-15 バーテックス ファーマシューティカルズ インコーポレイテッド Thiazoles and pyrazoles useful as kinase inhibitors
WO2008137621A1 (en) * 2007-05-02 2008-11-13 Vertex Pharmaceuticals Incorporated Aminopyrimidines useful as kinase inhibitors
AU2008257044A1 (en) * 2007-05-24 2008-12-04 Vertex Pharmaceuticals Incorporated Thiazoles and pyrazoles useful as kinase inhibitors
MX2010001137A (en) * 2007-07-31 2010-03-31 Vertex Pharma Process for preparing 5-fluoro-1h-pyrazolo [3, 4-b] pyridin-3-amine and derivatives thereof.
EP2200436B1 (en) * 2007-09-04 2015-01-21 The Scripps Research Institute Substituted pyrimidinyl-amines as protein kinase inhibitors
US20090136473A1 (en) * 2007-11-21 2009-05-28 Decode Genetics Ehf Biaryl pde4 inhibitors for treating pulmonary and cardiovascular disorders
US8445648B2 (en) * 2008-04-30 2013-05-21 University Of Vermont And State Agricultural College Methods and products relating to GSK3β regulation
MX2011002312A (en) * 2008-09-03 2011-04-26 Vertex Pharma Co-crystals and pharmaceutical formulations comprising the same.
NZ601924A (en) * 2010-03-10 2014-10-31 Astrazeneca Ab 4-phenyl pyridine analogues as protein kinase inhibitors
WO2012018639A2 (en) 2010-07-26 2012-02-09 Biomatrica, Inc. Compositions for stabilizing dna, rna and proteins in saliva and other biological samples during shipping and storage at ambient temperatures
WO2012018638A2 (en) 2010-07-26 2012-02-09 Biomatrica, Inc. Compositions for stabilizing dna, rna and proteins in blood and other biological samples during shipping and storage at ambient temperatures
US8609717B2 (en) 2010-08-18 2013-12-17 Samumed, Llc β- and γ-diketones and γ-hydroxyketones as WNT/β-catenin signaling pathway activators
US9242937B2 (en) * 2011-03-02 2016-01-26 Bayer Intellectual Property Gmbh Pharmaceutically active disubstituted pyridine derivatives
NZ731797A (en) 2012-04-24 2018-08-31 Vertex Pharma Dna-pk inhibitors
EP3249054A1 (en) 2012-12-20 2017-11-29 Biomatrica, INC. Formulations and methods for stabilizing pcr reagents
EP2951161A1 (en) * 2013-02-04 2015-12-09 Grünenthal GmbH 4-amino substituted condensed pyrimidine compounds as pde4 inhibitors
BR112015020391B1 (en) 2013-02-22 2022-07-26 Samumed, Llc GAMMA-DICETONES AS WNT/BETA-CATENIN SIGNALING PATHWAY ACTIVATORS
ME03336B (en) 2013-03-12 2019-10-20 Vertex Pharma Dna-pk inhibitors
EP3007556B1 (en) 2013-06-13 2020-05-20 Biomatrica, INC. Cell stabilization
RU2675270C2 (en) 2013-10-17 2018-12-18 Вертекс Фармасьютикалз Инкорпорейтед Co-crystals and pharmaceutical compositions containing same
ES2891555T3 (en) 2014-06-10 2022-01-28 Biomatrica Inc Platelet stabilization at room temperatures
DK3206686T3 (en) 2014-08-20 2019-12-16 Samumed Llc GAMMA DIKETONES FOR TREATMENT AND PREVENTION OF AGING THE SKIN AND WRINKLES
US10655126B2 (en) 2015-07-10 2020-05-19 University Of Vermont And State Agricultural College Methods and compositions to treat drug-induced diseases and conditions
EP4242628A3 (en) 2015-12-08 2023-11-08 Biomatrica, INC. Reduction of erythrocyte sedimentation rate
CA3038657A1 (en) 2016-09-27 2018-04-05 Vertex Pharmaceuticals Incorporated Method for treating cancer using a combination of dna-damaging agents and dna-pk inhibitors
WO2018217766A1 (en) 2017-05-22 2018-11-29 Whitehead Institute For Biomedical Research Kcc2 expression enhancing compounds and uses thereof
EP3732285A1 (en) 2017-12-28 2020-11-04 Tract Pharmaceuticals, Inc. Stem cell culture systems for columnar epithelial stem cells, and uses related thereto
KR20200131246A (en) 2018-02-15 2020-11-23 누베이션 바이오 인크. Heterocyclic compounds as kinase inhibitors
WO2022169897A1 (en) * 2021-02-03 2022-08-11 Nuvation Bio Inc. Crystalline forms of a cyclin-dependent kinase inhibitor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995009847A1 (en) * 1993-10-01 1995-04-13 Ciba-Geigy Ag Pyrimidineamine derivatives and processes for the preparation thereof
WO1997019065A1 (en) * 1995-11-20 1997-05-29 Celltech Therapeutics Limited Substituted 2-anilinopyrimidines useful as protein kinase inhibitors
WO2001029009A1 (en) * 1999-10-20 2001-04-26 Celltech R&D Limited 4,5-disubstituted-2-aminopyrimidines
WO2002020495A2 (en) * 2000-09-06 2002-03-14 Chiron Corporation Inhibitors of glycogen synthase kinase 3
WO2002046170A2 (en) * 2000-12-06 2002-06-13 Signal Pharmaceuticals, Inc. Anilinopyrimidine derivatives as jnk pathway inhibitors and compositions and methods related thereto
WO2002046171A2 (en) * 2000-12-06 2002-06-13 Signal Pharmaceuticals, Inc. Anilinopyrimidine derivatives as ikk inhibitors and compositions and methods related thereto

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995009847A1 (en) * 1993-10-01 1995-04-13 Ciba-Geigy Ag Pyrimidineamine derivatives and processes for the preparation thereof
WO1997019065A1 (en) * 1995-11-20 1997-05-29 Celltech Therapeutics Limited Substituted 2-anilinopyrimidines useful as protein kinase inhibitors
WO2001029009A1 (en) * 1999-10-20 2001-04-26 Celltech R&D Limited 4,5-disubstituted-2-aminopyrimidines
WO2002020495A2 (en) * 2000-09-06 2002-03-14 Chiron Corporation Inhibitors of glycogen synthase kinase 3
WO2002046170A2 (en) * 2000-12-06 2002-06-13 Signal Pharmaceuticals, Inc. Anilinopyrimidine derivatives as jnk pathway inhibitors and compositions and methods related thereto
WO2002046171A2 (en) * 2000-12-06 2002-06-13 Signal Pharmaceuticals, Inc. Anilinopyrimidine derivatives as ikk inhibitors and compositions and methods related thereto

Cited By (161)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7691853B2 (en) 2000-09-15 2010-04-06 Vertex Pharmaceuticals Incorporated Pyrazole compounds useful as protein kinase inhibitors
US7951820B2 (en) 2000-09-15 2011-05-31 Vertex Pharmaceuticals Incorporated Triazole compounds useful as protein kinase inhibitors
US8697698B2 (en) 2000-12-21 2014-04-15 Vertex Pharmaceuticals Incorporated Pyrazole compounds useful as protein kinase inhibitors
US8304414B2 (en) 2000-12-21 2012-11-06 Vertex Pharmaceuticals Incorporated Pyrazole compounds useful as protein kinase inhibitors
US7582657B2 (en) 2001-12-10 2009-09-01 Amgen Inc. Vanilloid receptor ligands and their use in treatments
AU2002364549B2 (en) * 2001-12-10 2007-11-22 Amgen, Inc Vanilloid receptor ligands and their use in treatments
US7579347B2 (en) 2001-12-10 2009-08-25 Amgen Inc. Vanilloid receptor ligands and their use in treatments
EP1780196A3 (en) * 2001-12-10 2007-05-09 Amgen, Inc Pyridine derivatives for use as vanilloid receptor ligands
EP1780196A2 (en) * 2001-12-10 2007-05-02 Amgen, Inc Pyridine derivatives for use as vanilloid receptor ligands
US6846928B2 (en) 2002-03-15 2005-01-25 Vertex Pharmaceuticals Incorporated Compositions useful as inhibitors of protein kinases
WO2003078423A1 (en) * 2002-03-15 2003-09-25 Vertex Pharmaceuticals, Inc. Compositions useful as inhibitors of protein kinases
US7396831B2 (en) 2002-05-22 2008-07-08 Amgen Inc. Vanilloid receptor ligands and their use in treatments
US7053088B2 (en) 2002-05-22 2006-05-30 Amgen Inc. Vanilloid receptor ligands and their use in treatments
US7524874B2 (en) 2002-05-22 2009-04-28 Amgen Inc. Vanilloid receptor ligands and their use in treatments
US7872129B2 (en) 2002-08-02 2011-01-18 Vertex Pharmaceuticals Incorporated Compositions useful as inhibitors of GSK-3
US7144888B2 (en) 2002-08-08 2006-12-05 Amgen Inc. Vanilloid receptor ligands and their use in treatments
US7332511B2 (en) 2002-08-08 2008-02-19 Amgen Inc. Vanilloid receptor ligands and their use in treatments
US7148221B2 (en) 2002-08-08 2006-12-12 Amgen Inc. Vanilloid receptor ligands and their use in treatments
US7304071B2 (en) 2002-08-14 2007-12-04 Vertex Pharmaceuticals Incorporated Protein kinase inhibitors and uses thereof
WO2004041789A1 (en) * 2002-11-01 2004-05-21 Vertex Pharmaceuticals Incorporated Compositions useful as inhibitors of jak and other protein kinases
US7312227B2 (en) 2002-11-01 2007-12-25 Vertex Pharmaceuticals Incorporated Compositions useful as inhibitors of JAK and other protein kinases
JP2006512314A (en) * 2002-11-01 2006-04-13 バーテックス ファーマシューティカルズ インコーポレイテッド Use of the compositions as JAK inhibitors and other protein kinase inhibitors
EP2172460A1 (en) * 2002-11-01 2010-04-07 Vertex Pharmaceuticals Incorporated Compositions useful as inhibitors of JAK and other protein kinases
JP4688498B2 (en) * 2002-11-04 2011-05-25 バーテックス ファーマシューティカルズ インコーポレイテッド Heteroaryl-pyrimidine derivatives as JAK inhibitors
JP2011016839A (en) * 2002-11-04 2011-01-27 Vertex Pharmaceuticals Inc Heteroaryl-pyrimidine derivative as jak inhibitor
JP2006514006A (en) * 2002-11-04 2006-04-27 バーテックス ファーマシューティカルズ インコーポレイテッド Heteroaryl-pyrimidine derivatives as JAK inhibitors
JP2006508107A (en) * 2002-11-05 2006-03-09 バーテックス ファーマシューティカルズ インコーポレイテッド Compounds useful as inhibitors of JAK and other protein kinases
US7348335B2 (en) 2002-11-05 2008-03-25 Vertex Pharmaceuticals Incorporated Compositions useful as inhibitors of JAK and other protein kinases
WO2004041810A1 (en) * 2002-11-05 2004-05-21 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of jak and other protein kinases
AU2010246324B2 (en) * 2002-11-05 2011-12-15 Vertex Pharmaceuticals Incorporated Compounds Useful as Inhibitors of Jak and Other Protein Kinases
US7223766B2 (en) 2003-03-28 2007-05-29 Scios, Inc. Bi-cyclic pyrimidine inhibitors of TGFβ
WO2005003123A1 (en) * 2003-07-02 2005-01-13 Astrazeneca Ab Novel pyridine derivatives as jnk specific inhibitors
WO2005012262A1 (en) * 2003-07-30 2005-02-10 Cyclacel Limited 2-aminophenyl-4-phenylpyrimidines as kinase inhibitors
US7390907B2 (en) 2003-09-30 2008-06-24 Amgen Inc. Vanilloid receptor ligands and their use in treatments
WO2005040135A1 (en) * 2003-10-24 2005-05-06 Ono Pharmaceutical Co., Ltd. Antistress drug and medical use thereof
JP2011093930A (en) * 2003-12-03 2011-05-12 Ym Biosciences Australia Pty Ltd Tubulin inhibitor
US9139560B2 (en) 2003-12-03 2015-09-22 Ym Biosciences Australia Pty Ltd. Substituted pyrazines as tubulin inhibitors
JP2007513093A (en) * 2003-12-03 2007-05-24 サイトピア・リサーチ・ピーティーワイ・リミテッド Tubulin inhibitor
US9732046B2 (en) 2003-12-03 2017-08-15 Ym Biosciences Australia Pty Ltd. Substituted 1,2,4-triazines as tubulin inhibitors
JP4772690B2 (en) * 2003-12-03 2011-09-14 ワイエム・バイオサイエンシズ・オーストラリア・ピーティーワイ・リミテッド Tubulin inhibitor
US7732444B2 (en) * 2004-01-08 2010-06-08 Millennium Pharmaceuticals, Inc. 2-(amino-substituted)-4-aryl pyrimidines and related compounds useful for treating inflammatory diseases
JP2007517895A (en) * 2004-01-08 2007-07-05 ミレニアム・ファーマシューティカルズ・インコーポレイテッド 2- (Amino-substituted) -4-arylpyrimidines and related compounds useful for treating inflammatory diseases
US8268822B2 (en) 2004-01-08 2012-09-18 Millennium Pharmaceuticals, Inc. 2-(amino-substituted)-4-aryl pyrimidines and related compounds useful for treating inflammatory diseases
US7511044B2 (en) 2004-02-11 2009-03-31 Amgen Inc. Vanilloid receptor ligands and their use in treatments
US8227469B2 (en) 2004-02-11 2012-07-24 Amgen Inc. Vanilloid receptor ligands and their use in treatments
US7534798B2 (en) 2004-02-11 2009-05-19 Amgen Inc. Vanilloid receptor ligands and their use in treatments
JP2008510839A (en) * 2004-08-25 2008-04-10 ターゲジェン インコーポレーティッド Heterocyclic compounds and methods of use
US7799915B2 (en) * 2004-10-13 2010-09-21 Wyeth Llc Anilino-pyrimidine analogs
US7968574B2 (en) 2004-12-28 2011-06-28 Kinex Pharmaceuticals, Llc Biaryl compositions and methods for modulating a kinase cascade
US8598169B2 (en) 2004-12-28 2013-12-03 Kinex Pharmaceuticals, Llc Biaryl compositions and methods for modulating a kinase cascade
US8003641B2 (en) 2004-12-28 2011-08-23 Kinex Pharmaceuticals, Llc Compositions and methods of treating cell proliferation disorders
US8980890B2 (en) 2004-12-28 2015-03-17 Kinex Pharmaceuticals, Llc Compositions and methods of treating cell proliferation disorders
US8236799B2 (en) 2004-12-28 2012-08-07 Kinex Pharmaceuticals, Llc Biaryl compositions and methods for modulating a kinase cascade
US9580387B2 (en) 2004-12-28 2017-02-28 Athenex, Inc. Biaryl compositions and methods for modulating a kinase cascade
US9655903B2 (en) 2004-12-28 2017-05-23 Athenex, Inc. Compositions and methods of treating cell proliferation disorders
US7301022B2 (en) 2005-02-15 2007-11-27 Amgen Inc. Vanilloid receptor ligands and their use in treatments
US8501812B2 (en) 2005-03-29 2013-08-06 University Of Massachusetts Therapeutic methods for type I diabetes
WO2006125616A3 (en) * 2005-05-25 2007-04-19 Ingenium Pharmaceuticals Ag Pyrimidine-based cdk inhibitors for treating pain
WO2006125616A2 (en) * 2005-05-25 2006-11-30 Ingenium Pharmaceuticals Ag Pyrimidine-based cdk inhibitors for treating pain
WO2007056151A2 (en) * 2005-11-03 2007-05-18 Irm Llc Protein kinase inhbitors
WO2007056151A3 (en) * 2005-11-03 2007-08-02 Irm Llc Protein kinase inhbitors
WO2007120593A1 (en) * 2006-04-12 2007-10-25 Wyeth Anilino-pyrimidine phenyl and benzothiophene analogs
US7998978B2 (en) 2006-05-01 2011-08-16 Pfizer Inc. Substituted 2-amino-fused heterocyclic compounds
WO2007125405A3 (en) * 2006-05-01 2008-01-17 Pfizer Prod Inc Substituted 2-amino-fused heterocyclic compounds
US8999984B2 (en) 2006-05-26 2015-04-07 University Of Louisville Research Foundation, Inc. Macrophage migration inhibitory factor antagonists and methods of using same
EP2026654A4 (en) * 2006-05-26 2013-07-17 Univ Louisville Res Found Macrophage migration inhibitory factor antagonists and methods of using same
EP2026654A2 (en) * 2006-05-26 2009-02-25 University Of Louisville Research Foundation, Inc. Macrophage migration inhibitory factor antagonists and methods of using same
WO2007141224A2 (en) * 2006-06-02 2007-12-13 Laboratoires Serono Sa Jnk inhibitors for treatment of skin diseases
WO2007141224A3 (en) * 2006-06-02 2008-04-17 Serono Lab Jnk inhibitors for treatment of skin diseases
WO2008002676A3 (en) * 2006-06-29 2008-05-02 Kinex Pharmaceuticals Llc Biaryl compositions and methods for modulating a kinase cascade
WO2008079933A2 (en) * 2006-12-22 2008-07-03 Novartis Ag Heteroaryl-heteroaryl compounds as cdk inhibitors for the treatment of cancer, inflammation and viral infections
WO2008079933A3 (en) * 2006-12-22 2008-12-04 Novartis Ag Heteroaryl-heteroaryl compounds as cdk inhibitors for the treatment of cancer, inflammation and viral infections
US8901297B2 (en) 2006-12-28 2014-12-02 Kinex Pharmaceuticals, Llc Compositions for modulating a kinase cascade and methods of use thereof
US8293739B2 (en) 2006-12-28 2012-10-23 Kinex Pharmaceuticals, Llc Process for the preparation of compositions for modulating a kinase cascade and methods of use thereof
US8309549B2 (en) 2006-12-28 2012-11-13 Kinex Pharmaceuticals, Llc Compositions for modulating a kinase cascade and methods of use thereof
US10323001B2 (en) 2006-12-28 2019-06-18 Athenex, Inc. Compositions for modulating a kinase cascade and methods of use thereof
US7851470B2 (en) 2006-12-28 2010-12-14 Kinex Pharmaceuticals, Llc Composition and methods for modulating a kinase cascade
US9556120B2 (en) 2006-12-28 2017-01-31 Athenex, Inc. Compositions for modulating a kinase cascade and methods of use thereof
US7935697B2 (en) 2006-12-28 2011-05-03 Kinex Pharmaceuticals, Llc Compositions for modulating a kinase cascade and methods of use thereof
US8486941B2 (en) 2007-03-12 2013-07-16 Ym Biosciences Australia Pty Ltd Phenyl amino pyrimidine compounds and uses thereof
US9233934B2 (en) 2007-03-12 2016-01-12 Ym Biosciences Australia Pty Ltd Phenyl amino pyrimidine compounds and uses thereof
US9238628B2 (en) 2007-03-12 2016-01-19 YM Biosicences Australia PTY LTD Phenyl amino pyrimidine compounds and uses thereof
US10196357B2 (en) 2007-04-13 2019-02-05 Athenex, Inc. Biaryl compositions and methods for modulating a kinase cascade
US8507498B2 (en) 2007-04-24 2013-08-13 Ingenium Pharmaceuticals Gmbh 4, 6-disubstituted aminopyrimidine derivatives as inhibitors of protein kinases
US7939529B2 (en) 2007-05-17 2011-05-10 Kinex Pharmaceuticals, Llc Process for the preparation of compositions for modulating a kinase cascade and methods of use thereof
US8124605B2 (en) 2007-07-06 2012-02-28 Kinex Pharmaceuticals, Llc Compositions and methods for modulating a kinase cascade
WO2009029998A1 (en) * 2007-09-06 2009-03-12 Cytopia Research Pty Ltd Retrometabolic compounds
WO2009089042A1 (en) * 2008-01-09 2009-07-16 Signal Pharmaceuticals, Llc Pyrazole pyrazine amine compounds as kinase inhibitors, compositions thereof and methods of treatment therewith
US9624229B2 (en) 2008-02-15 2017-04-18 Rigel Pharmaceuticals, Inc. Pyrimidine-2-amine compounds and their use as inhibitors of JAK kinases
US8735418B2 (en) 2008-02-15 2014-05-27 Rigel Pharmaceuticals, Inc. Pyrimidine-2-amine compounds and their use as inhibitors of JAK kinases
US8309566B2 (en) 2008-02-15 2012-11-13 Rigel Pharmaceuticals, Inc. Pyrimidine-2-amine compounds and their use as inhibitors of JAK kinases
WO2010046780A2 (en) * 2008-10-22 2010-04-29 Institut Pasteur Korea Anti viral compounds
WO2010046780A3 (en) * 2008-10-22 2011-01-13 Institut Pasteur Korea Anti viral compounds
EP2440051A1 (en) * 2009-06-08 2012-04-18 Abraxis BioScience, LLC Triazine derivatives and their therapeutical applications
EP2440051A4 (en) * 2009-06-08 2012-12-19 California Capital Equity Llc Triazine derivatives and their therapeutical applications
US9505784B2 (en) 2009-06-12 2016-11-29 Dana-Farber Cancer Institute, Inc. Fused 2-aminothiazole compounds
US9162987B2 (en) 2009-09-24 2015-10-20 University Of Louisville Research Foundation, Inc. Iodo pyrimidine derivatives useful for the treatment of macrophage migration inhibitory factor (MIF)-implicated diseases and conditions
WO2011077171A1 (en) 2009-12-21 2011-06-30 Vichem Chemie Kutató Kft. 4-phenylamino-pyrimidine derivatives having protein kinase inhibitor activity
US9180127B2 (en) 2009-12-29 2015-11-10 Dana-Farber Cancer Institute, Inc. Type II Raf kinase inhibitors
US8748423B2 (en) 2010-04-16 2014-06-10 Kinex Pharmaceuticals, Llc Compositions and methods for the prevention and treatment of cancer
US9155790B2 (en) 2010-05-20 2015-10-13 University of Lousiville Research Foundation, Inc. Methods and compositions for modulating ocular damage
WO2012066065A1 (en) * 2010-11-17 2012-05-24 Novartis Ag Phenyl-heteroaryl amine compounds and their uses
US9611457B2 (en) 2011-09-21 2017-04-04 Technische Universitaet Wien Triazine derivatives as differentiation catalysts
AT511441B1 (en) * 2011-09-21 2012-12-15 Univ Wien Tech TRIAZINE DERIVATIVES AS DIFFERENTIATOR ACCUMULATORS
AT511441A4 (en) * 2011-09-21 2012-12-15 Univ Wien Tech TRIAZINE DERIVATIVES AS DIFFERENTIATOR ACCUMULATORS
US9382239B2 (en) 2011-11-17 2016-07-05 Dana-Farber Cancer Institute, Inc. Inhibitors of c-Jun-N-terminal kinase (JNK)
US10981903B2 (en) 2011-11-17 2021-04-20 Dana-Farber Cancer Institute, Inc. Inhibitors of c-Jun-N-terminal kinase (JNK)
AU2012340200B2 (en) * 2011-11-17 2017-10-12 Dana-Farber Cancer Institute, Inc. Inhibitors of c-Jun-N-Terminal Kinase (JNK)
US10144730B2 (en) 2011-11-17 2018-12-04 Dana-Farber Cancer Institute, Inc. Inhibitors of c-Jun-N-terminal kinase (JNK)
WO2013074986A1 (en) * 2011-11-17 2013-05-23 Dana-Farber Cancer Institute, Inc. Inhibitors of c-jun-n-terminal kinase (jnk)
WO2013175415A1 (en) * 2012-05-23 2013-11-28 Piramal Enterprises Limited Substituted pyrimidine compounds and uses thereof
US8809359B2 (en) 2012-06-29 2014-08-19 Ym Biosciences Australia Pty Ltd Phenyl amino pyrimidine bicyclic compounds and uses thereof
US9926273B2 (en) 2012-08-30 2018-03-27 Athenex, Inc. Composition and methods for modulating a kinase cascade
US10106505B2 (en) 2012-08-30 2018-10-23 Athenex, Inc. Composition and methods for modulating a kinase cascade
US10112927B2 (en) 2012-10-18 2018-10-30 Dana-Farber Cancer Institute, Inc. Inhibitors of cyclin-dependent kinase 7 (CDK7)
US10787436B2 (en) 2012-10-18 2020-09-29 Dana-Farber Cancer Institute, Inc. Inhibitors of cyclin-dependent kinase 7 (CDK7)
US9758522B2 (en) 2012-10-19 2017-09-12 Dana-Farber Cancer Institute, Inc. Hydrophobically tagged small molecules as inducers of protein degradation
US10000483B2 (en) 2012-10-19 2018-06-19 Dana-Farber Cancer Institute, Inc. Bone marrow on X chromosome kinase (BMX) inhibitors and uses thereof
USRE48175E1 (en) 2012-10-19 2020-08-25 Dana-Farber Cancer Institute, Inc. Hydrophobically tagged small molecules as inducers of protein degradation
US11040957B2 (en) 2013-10-18 2021-06-22 Dana-Farber Cancer Institute, Inc. Heteroaromatic compounds useful for the treatment of proliferative diseases
US10906889B2 (en) 2013-10-18 2021-02-02 Dana-Farber Cancer Institute, Inc. Polycyclic inhibitors of cyclin-dependent kinase 7 (CDK7)
US10059690B2 (en) 2014-04-04 2018-08-28 Syros Pharmaceuticals, Inc. Inhibitors of cyclin-dependent kinase 7 (CDK7)
US10106526B2 (en) 2014-04-04 2018-10-23 Syros Pharmaceuticals, Inc. Inhibitors of cyclin-dependent kinase 7 (CDK7)
US9862688B2 (en) 2014-04-23 2018-01-09 Dana-Farber Cancer Institute, Inc. Hydrophobically tagged janus kinase inhibitors and uses thereof
US10017477B2 (en) 2014-04-23 2018-07-10 Dana-Farber Cancer Institute, Inc. Janus kinase inhibitors and uses thereof
USRE49445E1 (en) 2014-06-12 2023-03-07 Sierra Oncology, Inc. N-(cyanomethyl)-4-(2-(4-morpholinophenylamino)pyrimidin-4-yl)benzamide
USRE48285E1 (en) 2014-06-12 2020-10-27 Sierra Oncology, Inc. N-(cyanomethyl)-4-(2-(4-morpholinophenylamino)pyrimidin-4-yl)benzamide
US10870651B2 (en) 2014-12-23 2020-12-22 Dana-Farber Cancer Institute, Inc. Inhibitors of cyclin-dependent kinase 7 (CDK7)
US12098154B2 (en) 2015-03-27 2024-09-24 Dana-Farber Cancer Institute, Inc. Inhibitors of cyclin-dependent kinases
US10550121B2 (en) 2015-03-27 2020-02-04 Dana-Farber Cancer Institute, Inc. Inhibitors of cyclin-dependent kinases
US11325910B2 (en) 2015-03-27 2022-05-10 Dana-Farber Cancer Institute, Inc. Inhibitors of cyclin-dependent kinases
US10702527B2 (en) 2015-06-12 2020-07-07 Dana-Farber Cancer Institute, Inc. Combination therapy of transcription inhibitors and kinase inhibitors
US11142507B2 (en) 2015-09-09 2021-10-12 Dana-Farber Cancer Institute, Inc. Inhibitors of cyclin-dependent kinases
WO2017125534A1 (en) * 2016-01-22 2017-07-27 Janssen Pharmaceutica Nv New 6-membered heteroaromatic substituted cyanoindoline derivatives as nik inhibitors
US11001569B2 (en) 2016-01-22 2021-05-11 Janssen Pharmaceutica Nv 6-membered heteroaromatic substituted cyanoindoline derivatives as NIK inhibitors
US11180487B2 (en) 2016-01-22 2021-11-23 Janssen Pharmaceutica Nv Substituted cyanoindoline derivatives as NIK inhibitors
WO2017125530A1 (en) * 2016-01-22 2017-07-27 Janssen Pharmaceutica Nv New substituted cyanoindoline derivatives as nik inhibitors
KR102720461B1 (en) 2016-01-22 2024-10-21 잔센파마슈티카엔.브이. Novel 6-membered heteroaromatic substituted cyanoindoline derivatives as NIK inhibitors
EA037358B1 (en) * 2016-03-10 2021-03-17 Янссен Фармасьютика Нв New substituted cyanoindoline derivatives as nik inhibitors
CN109641882A (en) * 2016-06-30 2019-04-16 杨森制药有限公司 Heteroaromatic derivative as NIK inhibitor
CN109689645B (en) * 2016-06-30 2022-06-03 杨森制药有限公司 Cyanoindoline derivatives as NIK inhibitors
AU2017289317B2 (en) * 2016-06-30 2021-04-01 Janssen Pharmaceutica Nv Cyanoindoline derivatives as NIK inhibitors
WO2018002219A1 (en) 2016-06-30 2018-01-04 Janssen Pharmaceutica Nv Cyanoindoline derivatives as nik inhibitors
WO2018002217A1 (en) 2016-06-30 2018-01-04 Janssen Pharmaceutica Nv Heteroaromatic derivatives as nik inhibitors
KR102517352B1 (en) 2016-06-30 2023-03-31 잔센파마슈티카엔.브이. Heteroaromatic derivatives as NIK inhibitors
AU2017289315B2 (en) * 2016-06-30 2021-04-01 Janssen Pharmaceutica Nv Heteroaromatic derivatives as NIK inhibitors
US11136311B2 (en) 2016-06-30 2021-10-05 Janssen Pharmaceutica Nv Heteroaromatic derivatives as NIK inhibitors
CN109689645A (en) * 2016-06-30 2019-04-26 杨森制药有限公司 Cyanoindole quinoline derivant as NIK inhibitor
CN109641882B (en) * 2016-06-30 2022-10-28 杨森制药有限公司 Heteroaromatic derivatives as NIK inhibitors
KR20190025644A (en) * 2016-06-30 2019-03-11 잔센파마슈티카엔.브이. Heteroaromatic derivatives as NIK inhibitors
US11186589B2 (en) 2016-06-30 2021-11-30 Janssen Pharmaceutica Nv Cyanoindoline derivatives as NIK inhibitors
US11111233B2 (en) 2016-07-26 2021-09-07 Shenzhen Targetrx, Inc. Amino pyrimidine compound for inhibiting protein tyrosine kinase activity
CN110818690B (en) * 2016-07-26 2021-08-10 深圳市塔吉瑞生物医药有限公司 Aminopyrimidines useful for inhibiting protein tyrosine kinase activity
EP3492462A4 (en) * 2016-07-26 2019-07-10 Shenzhen Targetrx, Inc. Amino pyrimidine compound for inhibiting protein tyrosine kinase activity
CN110818690A (en) * 2016-07-26 2020-02-21 深圳市塔吉瑞生物医药有限公司 Aminopyrimidines useful for inhibiting protein tyrosine kinase activity
KR101808950B1 (en) * 2016-07-27 2017-12-13 충북대학교 산학협력단 Dimethoxyphenyl derivatives, preparation method and composition for anti-inflammatory and skin whitening comprising the same
WO2019008011A1 (en) 2017-07-06 2019-01-10 Janssen Pharmaceutica Nv New substituted azaindoline derivatives as nik inhibitors
US11236084B2 (en) 2017-07-06 2022-02-01 Janssen Pharmaceutica Nv Substituted azaindoline derivatives as NIK inhibitors
CN113549018A (en) * 2020-04-24 2021-10-26 中国药科大学 Protein kinase inhibitor and derivative thereof, preparation method, pharmaceutical composition and application
CN113549018B (en) * 2020-04-24 2024-02-27 中国药科大学 Protein kinase inhibitor and derivative thereof, preparation method, pharmaceutical composition and application
WO2023150197A1 (en) * 2022-02-03 2023-08-10 Nexys Therapeutics, Inc. Aryl hydrocarbon receptor agonists and uses thereof

Also Published As

Publication number Publication date
EP1373257B1 (en) 2007-11-28
JP2004529140A (en) 2004-09-24
EP1373257B9 (en) 2008-10-15
DE60223790D1 (en) 2008-01-10
US20030087922A1 (en) 2003-05-08
CA2441733A1 (en) 2002-10-10
MXPA03008888A (en) 2005-03-07
JP4160401B2 (en) 2008-10-01
DE60223790T4 (en) 2009-05-07
ES2292753T4 (en) 2009-02-16
DE60223790T2 (en) 2008-10-30
US6949544B2 (en) 2005-09-27
ES2292753T3 (en) 2008-03-16
EP1373257A1 (en) 2004-01-02

Similar Documents

Publication Publication Date Title
EP1373257B1 (en) Inhibitors of c-jun n-terminal kinases (jnk) and other protein kinases
US7361665B2 (en) Inhibitors of c-Jun N-terminal kinases (JNK) and other protein kinases
EP1417205B1 (en) Isoxazolyl-pyrimidines as inhibitors of src and lck protein kinases
US7084159B2 (en) Inhibitors of c-Jun N-terminal kinases (JNK) and other protein kinases
US7304071B2 (en) Protein kinase inhibitors and uses thereof
JP4316893B2 (en) Inhibitors of Src and other protein kinases
US20030207873A1 (en) Inhibitors of Src and other protein kinases
WO2004072063A1 (en) Heteroaryl substituted pyrolls useful as inhibitors of protein kinases
WO2002083668A1 (en) Isoxaxole derivatives as inhibitors of src and other protein kinases

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2441733

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2002577822

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2003/008888

Country of ref document: MX

Ref document number: 2002725391

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002725391

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2002725391

Country of ref document: EP