WO2002066422A1 - Phenethanolamine derivatives for treatment of respiratory diseases - Google Patents
Phenethanolamine derivatives for treatment of respiratory diseases Download PDFInfo
- Publication number
- WO2002066422A1 WO2002066422A1 PCT/EP2002/001387 EP0201387W WO02066422A1 WO 2002066422 A1 WO2002066422 A1 WO 2002066422A1 EP 0201387 W EP0201387 W EP 0201387W WO 02066422 A1 WO02066422 A1 WO 02066422A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oxy
- formula
- hexyl
- phenyl
- benzodioxin
- Prior art date
Links
- 0 CC(C)C=CC(C)*(C)C(CC1)CC(*)C1C1*C1 Chemical compound CC(C)C=CC(C)*(C)C(CC1)CC(*)C1C1*C1 0.000 description 2
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D295/00—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
- C07D295/22—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with hetero atoms directly attached to ring nitrogen atoms
- C07D295/26—Sulfur atoms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/02—Nasal agents, e.g. decongestants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/06—Antiasthmatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
- A61P15/06—Antiabortive agents; Labour repressants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/06—Antipsoriatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/24—Antidepressants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
- A61P27/14—Decongestants or antiallergics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/04—Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C311/00—Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
- C07C311/22—Sulfonamides, the carbon skeleton of the acid part being further substituted by singly-bound oxygen atoms
- C07C311/23—Sulfonamides, the carbon skeleton of the acid part being further substituted by singly-bound oxygen atoms having the sulfur atoms of the sulfonamide groups bound to acyclic carbon atoms
- C07C311/27—Sulfonamides, the carbon skeleton of the acid part being further substituted by singly-bound oxygen atoms having the sulfur atoms of the sulfonamide groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C311/00—Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
- C07C311/22—Sulfonamides, the carbon skeleton of the acid part being further substituted by singly-bound oxygen atoms
- C07C311/29—Sulfonamides, the carbon skeleton of the acid part being further substituted by singly-bound oxygen atoms having the sulfur atom of at least one of the sulfonamide groups bound to a carbon atom of a six-membered aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C311/00—Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
- C07C311/50—Compounds containing any of the groups, X being a hetero atom, Y being any atom
- C07C311/52—Y being a hetero atom
- C07C311/54—Y being a hetero atom either X or Y, but not both, being nitrogen atoms, e.g. N-sulfonylurea
- C07C311/57—Y being a hetero atom either X or Y, but not both, being nitrogen atoms, e.g. N-sulfonylurea having sulfur atoms of the sulfonylurea groups bound to carbon atoms of six-membered aromatic rings
- C07C311/58—Y being a hetero atom either X or Y, but not both, being nitrogen atoms, e.g. N-sulfonylurea having sulfur atoms of the sulfonylurea groups bound to carbon atoms of six-membered aromatic rings having nitrogen atoms of the sulfonylurea groups bound to hydrogen atoms or to acyclic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D295/00—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
- C07D295/04—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
- C07D295/12—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly or doubly bound nitrogen atoms
- C07D295/125—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly or doubly bound nitrogen atoms with the ring nitrogen atoms and the substituent nitrogen atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings
- C07D295/13—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly or doubly bound nitrogen atoms with the ring nitrogen atoms and the substituent nitrogen atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings to an acyclic saturated chain
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/04—Systems containing only non-condensed rings with a four-membered ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/12—Systems containing only non-condensed rings with a six-membered ring
- C07C2601/14—The ring being saturated
Definitions
- the present invention is concerned with phenethanolamine derivatives, processes for their preparation, compositions containing them and their use in medicine, particularly in the prophylaxis and treatment of respiratory diseases.
- phenethanolamine compounds are known in the art as having selective stimulant action at ⁇ 2 -adrenoreceptors and therefore having utility in the treatment of bronchial asthma and related disorders.
- GB 2 140 800 describes phenethanolamine compounds including 4- hydroxy- ⁇ '-[[[6-(4-phenylbutoxy)hexyl]amino]methyl]-l,3-benzenedimethanol l-hydroxy-2- naphthalenecarboxylate (salmeterol xinafoate) which is now used clinically in the treatment of such medical conditions.
- n is an integer of from 3 to 1 1 , preferably from 3 to 7; with the proviso that m + n is 5 to 19, preferably 5 to 12;
- R 1 is -XS0 2 NR 6 R 7
- X is -(CH ) P - or C 2 -e alkenylene
- R 6 and R 7 are independently selected from hydrogen, C 3 . 7 cycloalkyl, C(O)NR 8 R 9 , phenyl, and phenyl (C ⁇ alkyl)-, or R 6 and R 7 , together with the nitrogen to which they are bonded, form a 5-, 6-, or 7- membered nitrogen containing ring, and R 6 and R 7 are each optionally substituted by one or two groups selected from halo, C,. 6 alkyl, C,. 6 haloalkyl, C,. 6 alkoxy, hydroxy-substituted C,.
- R 8 and R 9 are independently selected from hydrogen, C ⁇ _ 6 alkyl, C 3 . 6 cycloalkyl, phenyl, and phenyl (C alkyl)-; and p is an integer of from 0 to 6, preferably from 0 to 4;
- R 2 and R 3 are independently selected from hydrogen, halo, phenyl, and C
- R 4 and R 5 are independently selected from hydrogen and C]. alkyl with the proviso that the total number of carbon atoms in R 4 and R 5 is not more than 4.
- the group R 1 is preferably attached to the meta-position relative to the -0-(CH 2 ) n - link.
- R 1 preferably represents -S0 2 NR 6 R 7 wherein R 6 and R 7 are independently selected from hydrogen and more preferably R 1 is -SO 2 NH 2 .
- R 4 and R 5 are preferably independently selected from hydrogen and methyl, more preferably R 4 and R 5 are both hydrogen.
- n is suitably 4, 5, or 6, and n is suitably 3, 4, 5 or 6.
- m is 5 or 6 and n is 3 or 4, such that m + n is 8, 9 or 10, preferably 9.
- R 1 is as defined above for formula (I).
- R 1 is as defined above for formula (I).
- the group R 1 is preferably attached to the rneta- position relative to the -0-(CH 2 ) n -, -O-(CH 2 ) - or -0-(CH 2 ) 3 - link respectively.
- R 1 is preferably -S0 2 NR 6 R 7 wherein R 6 and R 7 are independently selected from hydrogen and more preferably R 1 is -SO 2 NH 2 .
- Preferred compounds of the invention include:
- Particularly preferred compounds of the invention include:
- R 1 where 'R 6 and R 7 together with the nitrogen atom to which they are bonded, form a 5-, 6-, or 7- membered nitrogen containing ring'
- the term "5-, 6-, or 7- membered nitrogen containing ring” means a 5-, 6-, or 7- membered saturated or unsaturated ring which includes the sulfonamide nitrogen atom and optionally 1 or 2 other heteroatoms independently selected from nitrogen, sulphur, and oxygen.
- Suitable examples of such a ring include piperidinyl, morpholinyl, and piperazinyl.
- the term "5-, 6-, or 7- membered heterocyclic ring” means a 5-, 6-, or 7- membered fully or partially saturated or unsaturated ring which includes 1, 2, 3 or 4 heteroatoms independently selected from nitrogen, sulphur, and oxygen.
- Suitable examples of such a ring include pyrrolyl, furyl, thienyl, pyridinyl, pyrazinyl, pyridazinyl, imidazolyl, tetrazolyl, tetrahydrofuranyl, oxazolyl, thiazolyl, thiadiazolyl, piperidinyl, morpholinyl, and piperazinyl.
- the compounds of formulae (I), (la) and (lb) include an asymmetric centre, namely the carbon atom of the
- the present invention includes both (S) and (R) enantiomers either in substantially pure form or admixed in any proportions.
- R 4 and R 5 are different groups
- the carbon atom to which they are attached is an asymmetric centre and the present invention includes both (S) and (R) enantiomers at this centre either in substantially pure form or admixed in any proportions.
- Salts and solvates of compounds of formulae (I), (la) and (lb) which are suitable for use in medicine are those wherein the counterion or associated solvent is pharmaceutically acceptable.
- salts and solvates having non-pharmaceutical ly acceptable counterions or associated solvents are within the scope of the present invention, for example, for use as intermediates in the preparation of other compounds of formulae (I), (la) and (lb) and their pharmaceutically acceptable salts, solvates, and physiologically functional derivatives.
- physiologically functional derivative is meant a chemical derivative of a compound of formula (I), (la) or (lb) having the same physiological function as the parent compound of formula (I), (la) or (lb), for example, by being convertible in the body thereto.
- physiologically functional derivatives include esters.
- Suitable salts according to the invention include those formed with both organic and inorganic acids or bases.
- Pharmaceutically acceptable acid addition salts include those formed from hydrochloric, hydrobromic, sulphuric, citric, tartaric, phosphoric, lactic, pyruvic, acetic, trifluoroacetic, triphenyl acetic, sulphamic, sulphanilic, succinic, oxalic, fumaric, maleic, malic, glutamic, aspartic, oxaloacetic, methanesulphonic, ethanesulphonic, arylsulphonic (for example p-toluenesulphonic, benzenesulphonic, naphthalenesulphonic or naphthalenedisulphonic), salicylic, glutaric, gluconic, tricarballylic, cinnamic, substituted cinnamic (for example, phenyl, methyl , methoxy or halo substitute
- Pharmaceutically acceptable base salts include ammonium salts, alkali metal salts such as those of sodium and potassium, alkaline earth metal salts such as those of calcium and magnesium and salts with organic bases such as dicyclohexyl amine and N-methyl-D-glucamine.
- preferred compounds of the invention such as 3-(4- ⁇ [6-( ⁇ (2R)-2-hydroxy-2-[4- hydroxy-3-(hydroxymethyl)-phenyl]ethyl ⁇ amino)hexyl]oxy ⁇ butyl)benzenesulfonamide and 3- (3 - ⁇ [7-( ⁇ (2R)-2-hydroxy-2- [4-hydroxy-3 -hydroxymethyl)phenyl]ethyl ⁇ - amino)heptyl]oxy ⁇ propyl)benzenesulfonamide are provided in the form of a crystalline salt, for example selected from those exemplified in the experimental section below. Said crystalline salts have favourable physical properties such as low hygroscopicity and/or improved stability.
- Particularly preferred salts include the cinnamate, 4-methoxycinnamate, 4-methylcinnamate, naphthalenepropenoate and 4-phenylcinnamate salts.
- esters of the compounds of formulae (I), (la) and (lb) may have a hydroxyl group converted to a C ⁇ alkyl, aryl, aryl C ⁇ . 6 alkyl, or amino acid ester.
- the compounds of formulae (I), (la) and (lb) are selective ⁇ 2 - adrenoreceptor agonists as demonstrated using functional or reporter gene readout from cell lines transfected with human beta-adrenoreceptors as described below.
- Compounds according to the present invention also have the potential to combine long duration of effect with rapid onset of action.
- certain compounds have shown an improved therapeutic index in animal models relative to existing long-acting ⁇ 2 -agonist bronchodilators. As such, compounds of the invention may be suitable for once-daily administration.
- Compounds of formulae (I), (la) and (lb) and their pharmaceutically acceptable salts, solvates, and physiologically functional derivatives have use in the prophylaxis and treatment of clinical conditions for which a selective ⁇ 2 -adrenoreceptor agonist is indicated.
- Such conditions include diseases associated with reversible airways obstruction such as asthma, chronic obstructive pulmonary diseases (COPD) (e.g. chronic and whez bronchitis, emphysema), respiratory tract infection and upper respiratory tract disease (e.g. rhinitis, including seasonal and allergic rhinitis).
- COPD chronic obstructive pulmonary diseases
- rhinitis e.g. chronic and whez bronchitis, emphysema
- respiratory tract infection e.g. rhinitis, including seasonal and allergic rhinitis.
- Other conditions which may be treated include premature labour, depression, congestive heart failure, skin diseases (e.g. inflammatory, allergic, psoriatic, and proliferative skin diseases), conditions where lowering peptic acidity is desirable (e.g. peptic and gastric ulceration) and muscle wasting disease.
- skin diseases e.g. inflammatory, allergic, psoriatic, and proliferative skin diseases
- conditions where lowering peptic acidity is desirable e.g. peptic and gastric ulceration
- muscle wasting disease e.g. peptic and gastric ulceration
- the present invention provides a method for the prophylaxis or treatment of a clinical condition in a mammal, such as a human, for which a selective ⁇ 2 -adrenoreceptor agonist is indicated, which comprises administration of a therapeutically effective amount of a compound of formula (I), (la) or (lb), or a pharmaceutically acceptable salt, solvate, or physiologically functional derivative thereof.
- a mammal such as a human
- a selective ⁇ 2 -adrenoreceptor agonist is indicated
- the present invention provides such a method for the prophylaxis or treatment of a disease associated with reversible airways obstruction such as asthma, chronic obstructive pulmonary disease (COPD), respiratory tract infection or upper respiratory tract disease.
- COPD chronic obstructive pulmonary disease
- the present invention provides such a method for the prophylaxis or treatment of a clinical condition selected from premature labour, depression, congestive heart failure, skin diseases (e.g. inflammatory, allergic, psoriatic, and proliferative skin diseases), conditions where lowering peptic acidity is desirable (e.g. peptic and gastric ulceration) or muscle wasting disease.
- a clinical condition selected from premature labour, depression, congestive heart failure, skin diseases (e.g. inflammatory, allergic, psoriatic, and proliferative skin diseases), conditions where lowering peptic acidity is desirable (e.g. peptic and gastric ulceration) or muscle wasting disease.
- a compound of formula (I), (la) or (lb) or a pharmaceutically acceptable salt, solvate, or physiologically functional derivative thereof for use in medical therapy, particularly, for use in the prophylaxis or treatment of a clinical condition in a mammal, such as a human, for which a selective ⁇ 2 -adrenoreceptor agonist is indicated.
- a compound of formula (I), (la) or (lb) or a pharmaceutically acceptable salt, solvate, or physiologically functional derivative thereof for the prophylaxis or treatment of a disease associated with reversible airways obstruction such as asthma, chronic obstructive pulmonary disease (COPD), respiratory tract infection or upper respiratory tract disease.
- COPD chronic obstructive pulmonary disease
- a clinical condition selected from premature labour, depression, congestive heart failure, skin diseases (e.g. inflammatory, allergic, psoriatic, and proliferative skin diseases), conditions where lowering peptic acidity is desirable (e.g. peptic and gastric ulceration) or muscle wasting disease.
- the present invention also provides the use of a compound of formula (I), (la) or (lb), or a pharmaceutically acceptable salt, solvate, or physiologically functional derivative thereof in the manufacture of a medicament for the prophylaxis or treatment of a clinical condition for which a selective ⁇ 2 -adrenoreceptor agonist is indicated, for example a disease associated with reversible airways obstruction such as asthma, chronic obstructive pulmonary disease (COPD), respiratory tract infection or upper respiratory tract disease.
- COPD chronic obstructive pulmonary disease
- a clinical condition selected from premature labour, depression, congestive heart failure, skin diseases (e.g. inflammatory, allergic, psoriatic, and proliferative skin diseases), conditions where lowering peptic acidity is desirable (e.g. peptic and gastric ulceration) and muscle wasting disease.
- the amount of a compound of formula (I), (la) or (lb), or a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof which is required to achieve a therapeutic effect will, of course, vary with the particular compound, the route of administration, the subject under treatment, and the particular disorder or disease being treated.
- the compounds of the invention may be administered by inhalation at a dose of from 0.0005mg to 10 mg, preferably 0.005mg to 0.5mg.
- the dose range for adult humans is generally from 0.0005 mg to lOOmg per day and preferably 0.01 mg to lmg per day.
- the present invention further provides a pharmaceutical formulation comprising a compound of formula (I), (la) or (lb) or a pharmaceutically acceptable salt, solvate, or physiologically functional derivative thereof, and a pharmaceutically acceptable carrier or excipient, and optionally one or more other therapeutic ingredients.
- active ingredient means a compound of formula (I), (la) or (lb), or a pharmaceutically acceptable salt, solvate, or physiologically functional derivative thereof.
- the formulations include those suitable for oral, parenteral (including subcutaneous, intradermal, intramuscular, intravenous and intraarticular), inhalation (including fine particle dusts or mists which may be generated by means of various types of metered dose pressurised aerosols, nebulisers or insufflators), rectal and topical (including dermal, buccal, sublingual and intraocular) administration although the most suitable route may depend upon for example the condition and disorder of the recipient.
- the formulations may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy. All methods include the step of bringing the active ingredient into association with the carrier which constitutes one or more accessory ingredients. In general the formulations are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers or finely divided solid carriers or both and then, if necessary, shaping the product into the desired formulation.
- Formulations of the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient; as a powder or granules; as a solution or a suspension in an aqueous liquid or a non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil liquid emulsion.
- the active ingredient may also be presented as a bolus, electuary or paste.
- a tablet may be made by compression or moulding, optionally with one or more accessory ingredients.
- Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with a binder, lubricant, inert diluent, lubricating, surface active or dispersing agent.
- Moulded tablets may be made by moulding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent.
- the tablets may optionally be coated or scored and may be formulated so as to provide slow or controlled release of the active ingredient therein.
- Formulations for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents.
- the formulations may be presented in unit-dose or multi-dose containers, for example sealed ampoules and vials, and may be stored in a freeze-dried (lyophilised) condition requiring only the addition of the sterile liquid carrier, for example saline or water-for-injection, immediately prior to use.
- Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets of the kind previously described.
- Dry powder compositions for topical delivery to the lung by inhalation may, for example, be presented in capsules and cartridges of for example gelatine, or blisters of for example laminated aluminium foil, for use in an inhaler or insufflator.
- Formulations generally contain a powder mix for inhalation of the compound of the invention and a suitable powder base (carrier substance) such as lactose or starch. Use of lactose is preferred.
- Carrier substance such as lactose or starch.
- lactose lactose or starch.
- Each capsule or cartridge may generally contain between 20 ⁇ g-10mg of the compound of formula (I) optionally in combination with another therapeutically active ingredient.
- the compound of the invention may be presented without excipients.
- Packaging of the formulation may be suitable for unit dose or multi-dose delivery.
- the formulation can be pre- metered (eg as in Diskus, see GB 2242134 or Diskhaler, see GB 2178965, 2129691 and 2169265) or metered in use (eg as in Turbuhaler, see EP 69715).
- An example of a unit-dose device is Rotahaler (see GB 2064336).
- the Diskus inhalation device comprises an elongate strip formed from a base sheet having a plurality of recesses spaced along its length and a lid sheet hermetically but peelably sealed thereto to define a plurality of containers, each container having therein an inhalable formulation containing a compound of formula (I) preferably combined with lactose.
- the strip is sufficiently flexible to be wound into a roll.
- the lid sheet and base sheet will preferably have leading end portions which are not sealed to one another and at least one of the said leading end portions is constructed to be attached to a winding means.
- the hermetic seal between the base and lid sheets extends over their whole width.
- the lid sheet may preferably be peeled from the base sheet in a longitudinal direction from a first end of the said base sheet.
- Spray compositions for topical delivery to the lung by inhalation may for example be formulated as aqueous solutions or suspensions or as aerosols delivered from pressurised packs, such as a metered dose inhaler, with the use of a suitable liquefied propellant.
- Aerosol compositions suitable for inhalation can be either a suspension or a solution and generally contain the compound of formula (I) optionally in combination with another therapeutically active ingredient and a suitable propellant such as a fluorocarbon or hydrogen-containing chlorofluorocarbon or mixtures thereof, particularly hydrofluoroalkanes, e.g. dichlorodifluoromethane, trichlorofluoromethane, dichlorotetra-fluoroethane, especially 1,1,1,2-tetrafluoroethane, 1,1,1,2,3,3,3-heptafluoro-n-propane or a mixture thereof.
- a suitable propellant such as a fluorocarbon or hydrogen-containing chlorofluorocarbon or mixtures thereof, particularly hydrofluoroalkanes, e.g. dichlorodifluoromethane, trichlorofluoromethane, dichlorotetra-fluoroethane, especially 1,1,1,2-tetrafluoroethan
- the aerosol composition may be excipient free or may optionally contain additional formulation excipients well known in the art such as surfactants eg oleic acid or lecithin and cosolvents eg ethanol.
- Pressurised formulations will generally be retained in a canister (eg an aluminium canister) closed with a valve (eg a metering valve) and fitted into an actuator provided with a mouthpiece.
- Medicaments for administration by inhalation desirably have a controlled particle size.
- the optimum particle size for inhalation into the bronchial system is usually 1-1 O ⁇ m, preferably 2- 5 ⁇ m. Particles having a size above 20 ⁇ m are generally too large when inhaled to reach the small airways.
- the particles of the active ingredient as produced may be size reduced by conventional means eg by micronisation.
- the desired fraction may be separated out by air classification or sieving.
- the particles will be crystalline.
- an excipient such as lactose is employed, generally, the particle size of the excipient will be much greater than the inhaled medicament within the present invention.
- the excipient is lactose it will typically be present as milled lactose, wherein not more than 85% of lactose particles will have a MMD of 60-90 ⁇ m and not less than 15% will have a MMD of less than 15 ⁇ m.
- Intranasal sprays may be formulated with aqueous or non-aqueous vehicles with the addition of agents such as thickening agents, buffer salts or acid or alkali to adjust the pH, isotonicity adjusting agents or anti-oxidants.
- agents such as thickening agents, buffer salts or acid or alkali to adjust the pH, isotonicity adjusting agents or anti-oxidants.
- Solutions for inhalation by nebulation may be formulated with an aqueous vehicle with the addition of agents such as acid or alkali, buffer salts, isotonicity adjusting agents or antimicrobials. They may be sterilised by filtration or heating in an autoclave, or presented as a non-sterile product.
- Formulations for rectal administration may be presented as a suppository with the usual carriers such as cocoa butter or polyethylene glycol.
- Formulations for topical administration in the mouth include lozenges comprising the active ingredient in a flavoured basis such as sucrose and acacia or tragacanth, and pastilles comprising the active ingredient in a basis such as gelatin and glycerin or sucrose an acacia.
- Preferred unit dosage formulations are those containing an effective dose, as hereinbefore recited, or an appropriate fraction thereof, of the active ingredient.
- formulations of this invention may include other agents conventional in the art having regard to the type of formulation in question, for example those suitable for oral administration may include flavouring agents.
- the compounds and pharmaceutical formulations according to the invention may be used in combination with or include one or more other therapeutic agents, for example selected from anti-inflammatory agents, anticholinergic agents (particularly an M
- anti-inflammatory agents for example selected from anti-inflammatory agents, anticholinergic agents (particularly an M
- the invention thus provides, in a further aspect, a combination comprising a compound of formula (I) or a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof together with one or more other therapeutically active agents, for example selected from an anti-inflammatory agent (for example a corticosteroid or an NSAID), an anticholinergic agent, another ⁇ 2 -adrenoreceptor agonist, an antiinfective agent (e.g. an antibiotic or an antiviral), or an antihistamine.
- an anti-inflammatory agent for example a corticosteroid or an NSAID
- an anticholinergic agent for example a corticosteroid or an NSAID
- an antiinfective agent e.g. an antibiotic or an antiviral
- an antihistamine e.g. an antibiotic or an antiviral
- PDE-4 inhibitor Preferred combinations are those comprising one or two other therapeutic agents.
- the other therapeutic ingredient(s) may be used in the form of salts, (e.g. as alkali metal or amine salts or as acid addition salts), or prodrugs, or as esters (e.g. lower alkyl esters), or as solvates (e.g. hydrates) to optimise the activity and/or stability and/or physical characteristics (e.g. solubility) of the therapeutic ingredient.
- the therapeutic ingredients may be used in optically pure form.
- Suitable anti-inflammatory agents include corticosteroids and NSAIDs.
- Suitable corticosteroids which may be used in combination with the compounds of the invention are those oral and inhaled corticosteroids and their pro-drugs which have anti-inflammatory activity. Examples include methyl prednisolone, prednisolone, dexamethasone, fluticasone propionate, 6 ⁇ ,9 ⁇ - difluoro-17 ⁇ -[(2-furanylcarbonyl)oxy]-l 1 ⁇ -hydroxy-16 ⁇ -methyl-3-oxo-androsta-l,4-diene-l 7 ⁇ - carbothioic acid S-fluoromethyl ester, 6 ⁇ ,9 ⁇ -difluoro-l l ⁇ -hydroxy-16 ⁇ -methyl-3-oxo-17 ⁇ - propionyloxy- androsta-l,4-diene-17 ⁇ -carbothioic acid S-(2-oxo-tetrahydro-furan-3S-yl) ester, beclomet
- the 17-propionate ester or the 17,21-dipropionate ester the 17-propionate ester or the 17,21-dipropionate ester
- budesonide flunisolide
- mometasone esters e.g. the furoate ester
- triamcinolone acetonide e.g. the furoate ester
- rofleponide triamcinolone acetonide
- ciclesonide butixocort propionate
- RPR- 106541 the 17-propionate ester or the 17,21-dipropionate ester
- ST- 126 the 17-propionate ester or the 17,21-dipropionate ester
- flunisolide e.g. the furoate ester
- triamcinolone acetonide e.g. the furoate ester
- rofleponide triamcinolone acetonide
- ciclesonide butixocort propionat
- Preferred corticosteroids include fluticasone propionate, 6 ⁇ ,9 ⁇ -difluoro-l l ⁇ -hydroxy-16 ⁇ -methyl-17 ⁇ -[(4-methyl-l,3-thiazole-5- carbonyl)oxy]-3-oxo-androsta-l,4-diene-17 ⁇ -carbothioic acid S-fluoromethyl ester and 6 ⁇ ,9 ⁇ - difluoro- 17 ⁇ -[(2-furanylcarbonyl)oxy]- 1 1 ⁇ -hydroxy- 16 ⁇ -methyl-3-oxo-androsta- 1 ,4-diene- 17 ⁇ - carbothioic acid S-fluoromethyl ester, more preferably 6 ⁇ ,9 ⁇ -difluoro-17 ⁇ -[(2- furanylcarbonyl)oxy]- 1 1 ⁇ -hydroxy-16 ⁇ -methyl-3-oxo-androsta- 1 ,4-diene- 17 ⁇ -carbothioic acid S-fluoromethyl ester.
- Suitable NSAIDs include sodium cromoglycate, nedocromil sodium, phosphodiesterase (PDE) inhibitors (e.g. theophylline, PDE4 inhibitors or mixed PDE3/PDE4 inhibitors), leukotriene antagonists, inhibitors of leukotriene synthesis, iNOS inhibitors, tryptase and elastase inhibitors, beta-2 integrin antagonists and adenosine receptor agonists or antagonists (e.g. adenosine 2a agonists), cytokine antagonists (e.g. chemokine antagonists) or inhibitors of cytokine synthesis.
- Suitable other ⁇ 2 -adrenoreceptor agonists include salmeterol (e.g. as the xinafoate), salbutamol
- the PDE4-specific inhibitor useful in this aspect of the invention may be any compound that is known to inhibit the PDE4 enzyme or which is discovered to act as a PDE4 inhibitor, and which are only PDE4 inhibitors, not compounds which inhibit other members of the PDE family as well as PDE4.
- a PDE4 inhibitor which has an IC50 ratio of about 0.1 or greater as regards the IC50 for the PDE4 catalytic form which binds rolipram with a high affinity divided by the IC50 for the form which binds rolipram with a low affinity.
- the cAMP catalytic site which binds R and S rolipram with a low affinity is denominated the "low affinity” binding site (LPDE 4) and the other form of this catalytic site which binds rolipram with a high affinity is denominated the "high affinity” binding site (HPDE 4).
- LPDE 4 low affinity binding site
- HPDE 4 high affinity binding site
- Isolated human monocyte PDE4 and hrPDE human recombinant PDE4 was determined to exist primarily in the low affinity form. Hence, the activity of test compounds against the low affinity form of PDE4 can be assessed using standard assays for PDE4 catalytic activity employing 1 ⁇ M
- [ 3 H]-roli ⁇ ram (Torphy eLaf, J. of Biol. Chem., Vol. 267, No. 3 pp 1798- 1804, 1992).
- the assay was run for 1 hour at 30° C.
- the reaction was terminated and bound ligand was separated from free ligand using a Brandel cell harvester. Competition for the high affinity binding site was assessed under conditions that were identical to those used for measuring low affinity PDE activity, expect that [ 3 H]-cAMP was not present.
- PDE activity was assayed using a [ 3 H]cAMP SPA or [ 3 H]cGMP SPA enzyme assay as described by the supplier (Amersham Life Sciences).
- the reactions were conducted in 96-well plates at room temperature, in 0.1 ml of reaction buffer containing (final concentrations): 50 M Tris-HCI, pH 7.5, 8.3 mM MgCl 2 , 1.7 mM EGTA, [ 3 H]cAMP or [ 3 H] cGMP (approximately 2000 dpm/pmol), enzyme and various concentrations of the inhibitors.
- the assay was allowed to proceed for 1 hr and was terminated by adding 50 ⁇ l of SPA yttrium silicate beads in the presence of zinc sulfate. The plates were shaken and allowed to stand at room temperature for 20 min. Radiolabeled product formation was assessed by scintillation spectrometry.
- the assay was performed at 30°C for 1 hr in 0.5 ⁇ l buffer containing (final concentrations): 50 mM Tris-HCI, pH 7.5, 5 mM MgCI 2 , 0.05% bovine serum albumin, 2 nM [ 3 H]R-rolipram (5.7 x 104 dpm/pmol) and various concentrations of non- radiolabeled inhibitors.
- the reaction was stopped by the addition of 2.5 ml of ice-cold reaction buffer (without [ 3 H]-R-rolipram) and rapid vacuum filtration (Brandel Cell Harvester) through Whatman GF/B filters that had been soaked in 0.3% polyethylenimine.
- the filters were washed with an additional 7.5 ml of cold buffer, dried, and counted via liquid scintillation spectrometry.
- the preferred PDE4 inhibitors of use in this invention will be those compounds which have a salutary therapeutic ratio, i.e., compounds which preferentially inhibit cAMP catalytic activity where the enzyme is in the form that binds rolipram with a low affinity, thereby reducing the side effects which apparently are linked to inhibiting the form which binds rolipram with a high affinity.
- the preferred compounds will have an IC 50 ratio of about 0.1 or greater as regards the IC5 Q for the PDE4 catalytic form which binds rolipram with a high affinity divided by the IC50 for the form which binds rolipram with a low affinity.
- a further refinement of this standard is that of one wherein the PDE4 inhibitor has an IC50 ratio of about 0.1 or greater; said ratio is the ratio of the IC5 Q value for competing with the binding of InM of [ 3 H]R-rolipram to a form of PDE4 which binds rolipram with a high affinity over the IC50 value for inhibiting the PDE4 catalytic activity of a form which binds rolipram with a low affinity using 1 ⁇ M[ 3 H]-cAMP as the substrate.
- PDE4 inhibitors examples include: (R)-(+)-l-(4-bromobenzyl)-4-[(3-cyclopentyloxy)-4-methoxyphenyl]-2-pyrrolidone; (R)-(+)-l-(4-bromobenzyl)-4-[(3-cyclopentyIoxy)-4-methoxyphenyl]-2-pyrrolidone; 3-(cyclopentyloxy-4-methoxyphenyl)-l-(4-N'-[N2-cyano-S-methyl-isothioureido]benzyl)-2- pyrrolidone; cis 4-cyano-4-(3-cyclopentyloxy-4-methoxyphenyl)cyclohexan-l-carboxylic acid]; cis-[4-cyano-4-(3-cyclopropylmethoxy-4-difluoromethoxyphenyl)cyclohexan-l-ol]
- PDE4 inhibitors which have an IC50 ratio of greater than 0.5, and particularly those compounds having a ratio of greater than 1.0.
- Preferred compounds are cis 4- cyano-4-(3-cyclopentyloxy-4-methoxyphenyl)cyclohexan-l-carboxylic acid, 2-carbomethoxy-4- cyano-4-(3-cyclopropylmethoxy-4-difluoromethoxyphenyl)cyclohexan-l-one and c _-[4-cyano- 4-(3-cyclopropylmethoxy-4-difluoromethoxyphenyl)cyclohexan-l-ol]; these are examples of compounds which bind preferentially to the low affinity binding site and which have an IC50 ratio of 0.1 or greater.
- PDE-4 and mixed PDE3/PDE4 inhibitors include those listed in WOO 1/13953, the disclosure of which is hereby incorporated by reference.
- Suitable anticholinergic agents are those compounds that act as antagonists at the muscarinic receptor, in particular those compounds which are antagonists of the Mi and M receptors.
- exemplary compounds include the alkaloids of the belladonna plants as illustrated by the likes of atropine, scopolamine, homatropine, hyoscyamine; these compounds are normally administered as a salt, being tertiary amines.
- drugs are readily available from a number of commercial sources or can be made or prepared from literature data via, to wit: Atropine - CAS-51-55-8 or CAS-51-48-1 (anhydrous form), atropine sulfate - CAS-5908-99-6; atropine oxide - CAS-4438-22-6 or its HCI salt - CAS-4574-60-1 and methylatropine nitrate - CAS-52-88-0.
- Preferred anticholinergics include ipratropium (e.g. as the bromide), sold under the name Atrovent, oxitropium (e.g. as the bromide) and tiotropium (e.g. as the bromide) (CAS-139404-
- methantheline (CAS-53-46-3), propantheline bromide (CAS- 50-34- 9), anisotropine methyl bromide or Valpin 50 (CAS- 80-50-2), clidinium bromide (Quarzan, CAS-3485-62-9), copyrrolate (Robinul), isopropamide iodide (CAS-71-81-8), mepenzolate bromide (U.S. patent 2,918,408), tridihexethyl chloride (Pathilone, CAS-4310-35-4), and hexocyclium methylsulfate (Tral, CAS-1 15-63-9). See also cyclopentolate hydrochloride (CAS-53-46-3), propantheline bromide (CAS- 50-34- 9), anisotropine methyl bromide or Valpin 50 (CAS- 80-50-2), clidinium bromide (Quarzan, CAS-3485-62-9), copyrrolate (Robinul), isopropamide
- Suitable antihistamines include any one or more of the numerous antagonists known which inhibit H receptors, and are safe for human use. All are reversible, competitive inhibitors of the interaction of histamine with Hpreceptors. The majority of these inhibitors, mostly first generation antagonists, have a core structure, which can be represented by the following formula:
- This generalized structure represents three types of antihistamines generally available: ethanolamines, ethylenediamines, and alkylamines.
- first generation antihistamines include those which can be characterized as based on piperizine and phenothiazines.
- Second generation antagonists which are non-sedating, have a similar structure-activity relationship in that they retain the core ethylene group (the alkylamines) or mimic the tertiary amine group with piperizine or piperidine.
- Exemplary antagonists are as follows: Ethanolamines: carbinoxamine maleate, clemastine fumarate, diphenylhydramine hydrochloride, and dimenhydrinate.
- Ethylenediamines pyrilamine amleate, tripelennamine HCI, and tripelennamine citrate.
- Alkylamines chlropheniramine and its salts such as the maleate salt, and acrivastine.
- Piperazines hydroxyzine HCI, hydroxyzine pamoate, cyclizine HCI, cyclizine lactate, meclizine HCI, and cetirizine HCI.
- Piperidines Astemizole, levocabastine HCI, loratadine or its descarboethoxy analogue, and terfenadine and fexofenadine hydrochloride or another pharmaceutically acceptable salt.
- Azelastine hydrochloride is yet another H] receptor antagonist which may be used in combination with a PDE4 inhibitor.
- Examples of preferred anti-histamines include methapyrilene and loratadine.
- the invention thus provides, in a further aspect, a combination comprising a compound of formula (I) a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof together with a PDE4 inhibitor.
- the invention thus provides, in a further aspect, a combination comprising a compound of formula (I) a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof together with a corticosteroid.
- the invention thus provides, in a further aspect, a combination comprising a compound of formula (I) a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof together with an anticholinergic.
- the invention thus provides, in a further aspect, a combination comprising a compound of formula (I) a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof together with an antihistamine.
- the invention thus provides, in a further aspect, a combination comprising a compound of formula (I) a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof together with a PDE4 inhibitor and a corticosteroid.
- the invention thus provides, in a further aspect, a combination comprising a compound of formula (I) a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof together with an anticholinergic and a PDE-4 inhibitor.
- compositions comprising a combination as defined above together with a physiologically acceptable diluent or carrier represent a further aspect of the invention.
- the individual compounds of such combinations may be administered either sequentially or simultaneously in separate or combined pharmaceutical formulations. Appropriate doses of known therapeutic agents will be readily appreciated by those skilled in the art.
- a process for preparing a compound of formula (I), (la) or (lb) or a salt, solvate, or physiologically functional derivative thereof which comprises a process (a) (b) (c) or (d) as defined below followed by the following steps in any order:
- a compound of formula (I), (la) or (lb) may be obtained by deprotection of a protected intermediate, for example of formula (II):
- R 1 , R 2 , R 3 , R 4 , R 5 , m, and n are as defined for the compound of formula (I), (la) or (lb)
- R 8 , R 9 , and R 10 are each independently either hydrogen or a protecting group provided that at least one of R 8 , R 9 , and R 10 is a protecting group
- R 14 is either hydrogen or a protecting group.
- Suitable protecting groups may be any conventional protecting group such as those described in
- R 8 and R 9 are esters such as acetate ester, aralkyl groups such as benzyl, diphenylmethyl, or triphenylmethyl, and tetrahydropyranyl.
- suitable amino protecting groups represented by R'° include benzyl, ⁇ -methylbenzyl, diphenylmethyl, triphenylmethyl, benzyloxycarbonyl, tert-butoxycarbonyl, and acyl groups such as trichloroacetyl or trifluoroacetyl.
- protecting groups may include orthogonal protection of groups in the compounds of formula (II) to facilitate the selective removal of one group in the presence of another, thus enabling selective functionalisation of a single amino or hydroxyl function.
- the -CH(OH) group may be orthogonally protected as -CHOR 14 using, for example, a trialkylsilyl group such as triethylsilyl.
- a trialkylsilyl group such as triethylsilyl.
- orthogonal protection strategies available by conventional means as described in Theodora W Greene (see above).
- the deprotection to yield a compound of formula (I), (la) or (lb) may be effected using conventional techniques.
- R 8 , R 9 , and/or R 10 is an aralkyl group, this may be cleaved by hydrogenolysis in the presence of a metal catalyst (e.g. palladium on charcoal).
- a metal catalyst e.g. palladium on charcoal
- R 8 and/or R 9 When R 8 and/or R 9 is tetrahydropyranyl this may be cleaved by hydrolysis under acidic conditions.
- Acyl groups represented by R 10 may be removed by hydrolysis, for example with a base such as sodium hydroxide, or a group such as trichloroethoxycarbonyl may be removed by reduction with, for example, zinc and acetic acid. Other deprotection methods may be found in Theodora W Greene (see above).
- R 8 and R 9 may together represent a protecting group as in the compound of formula (III).
- R 11 and R 12 are independently selected from hydrogen, . 6 alkyl, or aryl. In a preferred aspect, both R 11 and R 12 are methyl.
- a compound of formula (III) may be converted to a compound of formula (I), (la) or (lb) by hydrolysis with dilute aqueous acid, for example acetic acid or hydrochloric acid in a suitable solvent or by transketalisation in an alcohol, for example ethanol, in the presence of a catalyst such as an acid (for example, toluenesulphonic acid) or a salt (such as pyridinium tosylate) at normal or elevated temperature.
- a catalyst such as an acid (for example, toluenesulphonic acid) or a salt (such as pyridinium tosylate) at normal or elevated temperature.
- protecting groups R 8 , R 9 , R 10 and R 14 may be removed in a single step or sequentially.
- the precise order in which protecting groups are removed will in part depend upon the nature of said groups and will be readily apparent to the skilled worker.
- this protecting group is removed together with any protecting group on the CH(OH) moiety, followed by removal of R 10 .
- R 1 , R 2 , R 3 , R 4 , R 5 , R 8 , R 9 m, and n are as defined for the compound of formula (II) or (III).
- a compound of formula (IV) to a compound of formula (II) or (III) may be effected by treatment with a base, for example a non-aqueous base, such as potassium trimethylsilanoate, or an aqueous base such as aqueous sodium hydroxide, in a suitable solvent such as tetrahydrofuran.
- a base for example a non-aqueous base, such as potassium trimethylsilanoate, or an aqueous base such as aqueous sodium hydroxide, in a suitable solvent such as tetrahydrofuran.
- R 1 , R 2 , and R 3 are as defined for the compound of formula (IV) and L is a leaving group, such as a halo group (typically, bromo or iodo) or a sulphonate ester such as a haloalkyl sulphonate (typically, trifluoromethanesulphonate), followed by reduction.
- L is a leaving group, such as a halo group (typically, bromo or iodo) or a sulphonate ester such as a haloalkyl sulphonate (typically, trifluoromethanesulphonate), followed by reduction.
- the coupling of compound of formula (V) with a compound of formula (VI) is conveniently effected in the presence of a catalyst system such as bis (triphenylphosphine) palladium dichloride with an organic base such as a trialkylamine, for example, triethylamine, in a suitable solvent, for example acetonitrile or dimethylformamide.
- a catalyst system such as bis (triphenylphosphine) palladium dichloride with an organic base such as a trialkylamine, for example, triethylamine
- a suitable solvent for example acetonitrile or dimethylformamide.
- the resulting alkyne may then be reduced, either with or without being isolated to form the compound of formula (IV).
- the reduction may be effected by any suitable method such as hydrogenation in the presence of a catalyst, for example, palladium/charcoal or platinum oxide.
- R 1 , R 2 , and R 3 may represent groups convertible into R 1 , R 2 , and R 3 , for example halo groups. This is particularly useful where one of the groups R 1 , R 2 , and R 3 may be affected by any of the subsequent transformations. Thus, for example, where R 1 contains an alkenylene moiety, this is preferably introduced after the reduction of the alkyne formed by reaction of compounds (V) and (VI).
- R , R , m and n are as defined for the compound of formula (V) and L 1 is a leaving group, for example a halo group (typically bromo or iodo) or a sulphonate such as an alkyl sulphonate (typically, methanesulphonate), an arylsulphonate (typically, toluenesulphonate), or a haloalkyl sulphonate (typically, trifluoromethanesulphonate).
- a halo group typically bromo or iodo
- a sulphonate such as an alkyl sulphonate (typically, methanesulphonate), an arylsulphonate (typically, toluenesulphonate), or a haloalkyl sulphonate (typically, trifluoromethanesulphonate).
- the coupling of a compound of formula (VII) with a compound of formula (VIII) may be effected in the presence of a base, such as a metal hydride, for example sodium hydride, or an inorganic base such as cesium carbonate, in an aprotic solvent, for example dimethylformamide.
- a base such as a metal hydride, for example sodium hydride, or an inorganic base such as cesium carbonate
- Compounds of formula (VIII) may be prepared from the corresponding dihaloalkane and hydroxyalkyne by conventional chemistry, typically in the presence of an inorganic base, such as aqueous sodium hydroxide, under phase transfer conditions in the presence of a salt such as tetraalkylammonium bromide.
- an inorganic base such as aqueous sodium hydroxide
- R 8 and R 9 are as defined for the compound of formula (VII) and R 13 is for example tert-butyl, or aryl, for example phenyl.
- the ring closure may be effected by treatment with a base, such as a metal hydride, for example sodium hydride, in the presence of an aprotic solvent, for example, dimethylformamide.
- R 8 and R 9 and R 13 are as defined for the compound of formula (IX), by reduction by any suitable method, for example by treatment with borane, in the presence of a chiral catalyst, such as CBS-oxazaborolidine, in a suitable solvent such as tetrahydrofuran.
- a chiral catalyst such as CBS-oxazaborolidine
- the compound of formula (X) may be prepared from the corresponding halide of formula (XI)
- R 8 and R 9 are as defined for the compound of formula (X) and Y is halo, suitably bromo.
- the conversion of a compound of formula (XI) to a compound of formula (X) may be effected by reaction with the protected amine HN(COOR 13 ) 2 wherein R 13 is as defined for the compound of formula (X) in the presence of an inorganic base such as cesium carbonate, followed by selective removal of one of the COOR 13 groups, for example by treatment with an acid such as trifluoroacetic acid.
- an inorganic base such as cesium carbonate
- Compounds of formula (XI) may be prepared from the corresponding compound having free hydroxymethyl and hydroxy substituents (which itself may be prepared from 2-bromo- 1 -(4- hydroxy)-3-hydroxymethyl-phenethyl)ethanone, the preparation of which is described in GB2140800, by treatment with 2-methoxypropane in acetone in the presence of an acid e.g. p- toluene-sulphonic acid in a nitrogen atmosphere or by other standard methods) by forming the protected groups R 8 OCH 2 - and R 9 0- wherein R 8 and R 9 are as defined for the compound of formula (XI). Such methods are described in DE 3513885 (Glaxo).
- a compound of formula (I) , (la) or (lb) may be obtained by alkylation of an amine of formula (XII):
- R 8 , R 9 , R 10 and R 14 are each independently either hydrogen or a protecting group. Suitable protecting groups are discussed in the definition of compounds of formula (II);
- R 1 , R 2 , R 3 , R 4 , R 5 , m, and n are as defined for the compound of formula (I), (la) or (lb) and L 2 is a leaving group such as halo (typically bromo); followed by removal of any protecting groups present by conventional methods as described above for the deprotection of compounds of formula (II).
- reaction of compounds of formulae (XII) and (XIII) is optionally effected in the presence of an organic base such as a trialkylamine, for example, diisopropylethylamine, and in a suitable solvent for example dimethyl formamide.
- organic base such as a trialkylamine, for example, diisopropylethylamine, and in a suitable solvent for example dimethyl formamide.
- Compounds of formula (XII) are known in the art (for example EP-A 0947498) or may be readily prepared by a person skilled in the art.
- Compounds of formula (XIII) may be prepared by coupling a compound of formula (VI) as defined above, or a precursor thereof (wherein one or more of the substituents R 1 , R 2 or R 3 is a group which is convertible to the desired group R 1 , R 2 , or R 3 ) with a compound of formula (VIII) as shown above wherein R 4 , R 5 , m, and n are as defined for the compound of formula (XIII) and L 1 is a leaving group as defined above.
- substituents R , R , and/or R 3 may be formed by conventional conversions where a precursor is present.
- An alkyne of formula (XIV) may also be prepared by reacting a compound of formula (XV):
- XX with a compound of formula (VI) using methods analogous to those described above for coupling a compound (V) with a compound (VI).
- a compound of formula (I) (la) or (lb) may be prepared by reacting a compound of formula (XVII):
- the reaction may be effected using conventional conditions for such displacement reactions.
- Compounds of formula (XVIII) may be prepared by reacting a compound of formula (XIII) with an amine R I0 NH 2 .
- a compound of formula (I), (la) or (lb) may be prepared by removal of a chiral auxiliary from a compound of formula (Ha):
- R 1 - R 5 , R 8 , R 9 , m and n are as hereinbefore defined and R 15 represents a chiral auxiliary.
- a “chiral auxiliary” is a moiety that is introduced into a molecule to influence the stereochemistry of the product formed, and is removed in whole or part at a later time.
- a chiral auxiliary may simultaneously function as a protecting group.
- Chiral auxiliaries are commercially available, and persons skilled in the art would choose one based on the properties desired i.e. the absolute stereochemistry desired and compatibility with the processes being used.
- Chiral auxiliaries suitable for use in this process include but are not limited to the S-isomer and/or the R-isomer of phenyl glycinol and substituted derivatives thereof.
- the chiral auxiliary is preferably a moiety of the formula:
- R 16 represents C ⁇ alkyl or optionally substituted phenyl or benzyl wherein the optional substitution is one or more independently selected from halogen, hydroxy, or nitro e.g. para-hydroxyphenyl.
- chiral auxiliary is a moiety:
- R 16 is as defined above. Alternatively it may be a moiety of formula:
- R 16 is as defined above.
- R 16 represents phenyl optionally substituted as described above, Most preferably R represents unsubstituted phenyl.
- the chiral auxiliary in this process may typically be removed by hydrogenolysis using for example a palladium on carbon catalyst or preferably using palladium hydroxide (Pearlman's catalyst).
- a palladium on carbon catalyst or preferably using palladium hydroxide (Pearlman's catalyst).
- Pearlman's catalyst the removal of the chiral auxiliary is most efficient. This method of removal is especially suitable where R 1 is phenyl or a substituted phenyl.
- the nitrogen, to which the auxiliary is attached may be derivatised under oxidising conditions to form the N-oxide before elimination by heating to give a secondary amine.
- a compound of formula (Ila) may be prepared by reduction of the corresponding alkyne of formula (XIX):
- the protecting groups R 8 and R 9 together form a group -CR n R 12 - as in the compounds of formula (III).
- Reduction of an alkyne of formula (XIX) may be effected by methods well known in the art, for example by catalytic hydrogenation, using palladium on charcoal or more preferably palladium hydroxide (Pearlman's catalyst).
- the chiral auxiliary may also be removed under reductive conditions.
- the reduction of the alkyne and removal of the chiral auxiliary may be effected concomitantly in a 'one-pot' reaction.
- An alkyne of formula (XIX) may be prepared by reaction of a compound of formula (XX)
- a compound of formula (XX) may be prepared by reacting a compound of formula (Xlla):
- An aldehyde of formula (XXI) may be prepared from a corresponding halide of formula (VIII) using standard techniques such as treatment with sodium bicarbonate in a solvent such as DMSO at elevated temperature, preferably in the range 130-160 ° C.
- a compound of formula (Xlla) may be prepared from a compound of formula (XXII):
- R 8 , R 9 and R 15 are as hereinbefore defined by treatment with a reducing agent such as a hydride source e.g. sodium borohydride.
- a reducing agent such as a hydride source e.g. sodium borohydride.
- this process takes place in the presence of an inert metal salt such as calcium chloride suitably at non-extreme temperatures e.g. below ambient, such as 0°C.
- an inert metal salt such as calcium chloride suitably at non-extreme temperatures e.g. below ambient, such as 0°C.
- a compound of formula (XXII) may be prepared from a compound of formula (XI) as hereinbefore defined by reaction with an appropriate chiral amine, e.g. (S)-phenylglycinol, in the presence of a non-nucleophilic base in an inert solvent at non-extreme temperatures.
- an appropriate chiral amine e.g. (S)-phenylglycinol
- the precise order of the synthetic steps by which the various groups and moieties are introduced into the molecule may be varied. It will be within the skill of the practitioner in the art to ensure that groups or moieties introduced at one stage of the process will not be affected by subsequent transformations and reactions, and to select the order of synthetic steps accordingly.
- the enantiomeric compounds of the invention may be obtained (i) by separation of the components of the corresponding racemic mixture, for example, by means of a chiral chromatography column, enzymic resolution methods, or preparing and separating suitable diastereoisomers, or (ii) by direct synthesis from the appropriate chiral intermediates by the methods described above.
- Optional conversions of a compound of formula (I), (la) or (lb) to a corresponding salt may conveniently be effected by reaction with the appropriate acid or base.
- Optional conversion of a compound of formula (I), (la) or (lb) to a corresponding solvate or physiologically functional derivative may be effected by methods known to those skilled in the art.
- the present invention provides novel intermediates for the preparation of compounds of formula (I), (la) or (lb), for example: compounds of formula (II) and (III) as defined above, or an optical isomer, a salt, or a protected derivative thereof; particularly, a compound selected from:
- Silica gel refers to Merck silica gel 60 Art number 7734.
- Flash silica gel refers to Merck silica gel 60 Art number 9385.
- Biotage refers to prepacked silica gel cartridges containing KP-Sil run on flash 12i chromatography module.
- Bond Elut are prepacked cartridges used in parallel purifications, normally under vacuum. These are commercially available from Varian.
- LCMS was conducted on a Supelcosil LCABZ+PLUS column (3.3 cm x 4.6 mm ID) eluting with 0.1% HC0 2 H and 0.01 M ammonium acetate in water (solvent A), and 0.05% HC0 2 H 5% water in acetonitrile (solvent B), using the following elution gradient 0-0.7 min 0%B, 0.1-4.2 min 100%B, 4.2-5.3 min 0%B, 5.3-5.5 min 0%B at a flow rate of 3 ml/min.
- the mass spectra were recorded on a Fisons VG Platform spectrometer using electrospray positive and negative mode (ES+ve and ES-ve).
- the XRPD analysis shown in the Figures were performed on a Phillips X'pert Pro powder diffractometer, Model PW3040/60, serial number DY1379. The method runs from 2 to 45 degrees 2Theta with 0.02 degree 2Theta step size and a 2 second collection time at each step.
- Example 1 3-(4-(r6-(((2R)-2-Hvdroxy-2-r4-hvdroxy-3-(hvdroxymethyl)phenyl]ethyl>amino)- hexyl]oxy ⁇ butyl)benzenesulfonamide acetate
- Cesium carbonate (70.4g) was added to a stirred suspension of 2-bromo-l-(2,2-dimethyl-4H-l,3- benzodioxin-6-yl)ethanone, (Glaxo, DE 3513885, 1985) (61.8g) and di-t-butyl iminodicarboxylate (47.15g) in acetonitrile (600ml) under nitrogen.
- Example 4 3-(4-(r6-( ⁇ ( " 2RV2-Hvdroxy-2-r4-hvdroxy-3-( ' hvdroxymethyl)phenyl1ethvU- amino)hexyl]oxy .
- butvD-N-methylbenzenesulfonamide acetate i_ 3-r4-(l6-r(5RV5-(2.2-Dimethyl-4H-1.3-benzodioxin-6-yl.-2-oxo-1.3-oxazolidin-3- yl]hexyl > oxy)but- 1 -ynyll-N-methylbenzenesulfonamide was prepared using methods similar to those described in Example 1 vii.
- Example S 2-(Hvdroxymethyl)-4- ⁇ (lR)-l-hydroxy-2-r_6- .4-r3-(morpholin-4- ylsulfonyOphenvUbutoxylhexyOaminolethvU phenol acetate iU5RV5- .2-Dimethyl-4H-1.3-benzodioxin-6-vn-3-r6-f (4-r3-(morpholin-4- ylsulfony ⁇ phenyl1but-3-vnyl>oxy)hexyl]-1.3-oxazolidin-2-one was prepared using methods similar to those described in Example 1 vii.
- Example 6 3-(4- ⁇ r6-(((2R)-2-Hvdroxy-2-r4-hvdroxy-3-(hydroxymethyl)phenyl]ethyl. - amino)hexyl]oxylbutyl)-N.N-dimethylbenzenesulfonamide acetate i) 3-r4-((6-r( " 5RV5-(2.2-Dimethyl-4H-1.3-benzodioxin-6-vn-2-oxo-1.3-oxazolidin-3- yl]hexyl ⁇ oxy,but-l-ynyl]-N,N-dimethylbenzenesulfonamide
- Example 7 3-(4- ⁇ r6-( ⁇ (2RV2-Hvdroxy-2-r4-hvdroxy-3-(hydroxymethyl)phenyl]ethyl ⁇ - amino)hexyl]oxy)butyl)-N-isopropylbenzenesulfonamide acetate i . 3-r4-.
- Example 8 N-,tert-Butyl.-3-.4- . r6-f .f2R)-2-hvdroxy-2-r4-hvdroxy-3- (hvdroxymethyl)phenyl]ethy amino)hexyl]oxylbutyl)benzenesulfonamide acetate i .
- Example 9 2-(Hvdroxymethyl)-4- ⁇ f lR ' )-l-hvdroxy-2-r(6- ⁇ 4-[3-fpiperidin-l- ylsulfonyl)phenyl1butoxy ⁇ hexyl)amino]ethy phenol acetate i .5RV5-( , 2.2-Dimethyl-4H-1.3-benzodioxin-6-vn-3-r6-( ' (4-r3-( ' piperidin-l- ylsulfonyl)phenyribu.-3-ynyl . oxy,hexyl]-1.3-oxazolidin-2-one was prepared using methods similar to those described in Example 6 i. ES+ve 625 (MH) + .
- Example 10 l-.3-(4- ..6-( .(2R.-2-Hvdroxy-2-r4-hvdroxy-3- (hvdroxymethyl)phenyl]ethy amino,-hexyl1oxy)butyl)phenyl]methanesulfonamide i , Sodium (3-iodophenyl)methanesulfonate
- Example 11 3-, 5- . r5-( ⁇ (2R)-2-Hydroxy-2-r4-hvdroxy-3-
- Example 13 3- .6-r4- ⁇ .2R)-2-Hvdroxy-2-r4-hvdroxy-3- (hydroxymethyl)phenyllethv ⁇ amino)butoxy]hexyl.
- Example 14 4-.3-(4- . r6-( ' ,( ' 2R)-2-Hvdroxy-2-r4-hvdroxy-3- (hvdroxymethvDphenyllethyl ⁇ amino .hexylloxy) butvDphenyl] butane- 1 -sulfonamide i) 4-(3-Iodophenyl)butyl methanesulfonate
- Example 19 N-r3-(Aminosulfonyl)phenvn-3-( , 4-(r6- (2R)-2-hvdroxy-2-r4-hvdroxy-3- (hvdroxymethyl)phenyl]ethyl)amino)hexyl]oxy ⁇ butyl)benzenesulfonamide acetate N-r3-(Aminosulfonyl)phenyl1-3-r4-((6-r(5R)-5-(2.2-dimethyl-4H-1.3-benzodioxin-6-yl)-2-oxo- 1.3-oxazolidin-3-yl]hexyl)oxy)but-l -vnyl]benzenesulfonamide was prepared using methods similar to those described in Example 1 vii.
- LCMS RT 2.95min, ES+ve 650 (MH) + .
- Example 22 N-Benzyl-3-(4- . r6-( , .(2R)-2-hvdroxy-2-r4-hvdroxy-3- (hydroxymethyl)phenyl]ethv ⁇ amino)hexynoxy>butyl)benzenesulfonamide acetate i) N-Benzyl-3-r4-. ⁇ 6-r(5R)-5-(2.2-dimethyl-4H-1.3-benzodioxin-6-yl)-2-oxo-1.3-oxazolidin-3- yllhexyl ) oxy)but- 1 -ynyl] benzenesulfonamide was prepared using methods similar to those described in Example 6 i. ES+ve 647 (MH) +
- N-benzyl-3 -(4- , ⁇ 6-( . , 2R)-2-hvdroxy-2-r4-hvdroxy-3 - was prepared using methods similar to those described in Example 1 x.
- LCMS RT 2.72 min,
- Ethyl isocyanate (0.015g) was added to a stirred mixture of 3-[4-( ⁇ 6-[(5R)-5-(2,2-dimethyl-4H- l,3-benzodioxin-6-yl)-2-oxo-l,3-oxazolidin-3-yl]hexyl ⁇ oxy)butyl]benzenesulfonamide (0.1 lg) and K 2 C0 3 (0.055g) in acetone (2ml). The mixture was heated at reflux for 2h then ethyl isocyanate (0.005g) was added. After 0.5h the reaction mixture was cooled and quenched with water (lml). The mixture was partitioned between EtOAc (20ml) and H 2 0 (20ml). The aqueous phase was extracted with EtOAc (20ml). The combined EtOAc phases were washed with brine
- Example 25 3-(4- ⁇ r6-( ,( , 2S)-2-Hvdroxy-2-r4-hvdroxy-3- (hydroxymethyl ,phenyl]ethyl)amino)hexyl ⁇ oxy ⁇ buWl)benzenesulfonamide acetate
- Example 26 N-I -. .1X4- . re-f .dR. ⁇ -Hvdroxy ⁇ -K-hvdroxy-S- acetate i) N-(4-r. (3-r4-f(6-r(5R)-5-(2.2-Dimethyl-4H-1.3-benzodioxin-6-yl)-2-oxo-1.3-oxazolidin-3- yl1hexyl)oxy)but-l-vnyllphenyl>sulfonyl)amino]phenyl ⁇ acetamide was prepared using methods similar to those described in Example 1 vii. ES-ve 688 (M-HV
- Example 27 N-Cvclobutyl-3-.4- . r6-( _(2R)-2-hvdroxy-2-r4-hvdroxy-3- (hydroxymethyl)phenyl]ethv amino)hexyl]oxy>butyl)benzenesulfonamide acetate (i) N-Cvclobutyl-3-r4-((6-r(5R)-5-.2.2-dimethyl-4H-1.3-benzodioxin-6-yl)-2-oxo-1.3- oxazolidin-3-yl]hexyl ⁇ oxy)but-l-ynyl]benzenesulfonamide was prepared using methods similar to those described in Example 1 vii. ES+ve 61 1 (MH) +
- Example 28 N-Cvclohexyl-3-.4- ⁇ r6-( ,(2R)-2-hvdroxy-2-r4-hvdroxy-3- (hvdroxymethyl)phenyl]ethyl , amino)hexyl]oxy. butyl)benzenesulfonamide acetate i) N-Cyclohexyl-3 - ⁇ 4-( j 6- .
- Example 30 N-r2-(2-Hvdroxyethoxy)ethyll-3-(4-(r6-(((2R)-2-hvdroxy-2-r4-hvdroxy-3- (hydroxymethyl)phenyl]ethyl . amino)hexyl]oxylbutyl)benzenesulfonamide i) 3-[4-( ⁇ 6-[(5R)-5-(2.2-Dimethyl-4H-1.3-benzodioxin-6-yl)-2-oxo-1.3-oxazolidin-3- yl]hexyl .
- Example 31 N-(4-Fluorophenyl)-3-(4- ⁇ r6-( .(2R)-2-hvdroxy-2-r4-hvdroxy-3- (hydroxymethyl )phenyll ethyl > am i no)hexyll oxy ⁇ butvDbenzenesulfonamide acetate i) 3-[4-( ⁇ 6- (5R)-5-(2,2-Dimethyl-4H-1.3-benzodioxin-6-yl)-2-oxo-1.3-oxazolidin-3- yl]hexyl . oxy)but-l-vnyll-N-(4-fluorophenyl)benzenesulfonamide was prepared using methods similar to those described in Example 1 vii. ES+ve 651 (MH) +
- Example 32 N-r4-(Aminosulfonyl)phenyl1-3-.4-(r6-(((2R)-2-hvdroxy-2-r4-hvdroxy-3- (hvdroxymethyl)phenyl1ethyl)amino)hexyl]oxy, butyl)benzenesulfonamide acetate i) N-r4-.Aminosulfonyl)phenyll-3-r4-( ' ⁇ 6-r(5R)-5-( ' 2.2-dimethyl-4H-1.3-benzodioxin-6-yl)-2- oxo-1.3-oxazolidin-3-yl1hexy ⁇ oxy)but-l-vnyl]benzenesulfonamide was prepared using methods similar to those described in Example 1 vii.
- Example 33 2-(Hvdroxymethyl)-4- ⁇ ( 1 R)- 1 -hvdroxy-2-r(6- , 4-f 3-(piperazin- 1 - ylsulfonyl)phenyl]butoxylhexyl)aminolethvU phenol acetate i) .5R)-5-(2.2-Dimethyl-4H-1.3-benzodioxin-6-yl)-3-r6-(l4- 3-fpiperazin-l- ylsulfonyl)phenyllbut-3-ynv oxy)hexyl1-l,3-oxazolidin-2-one was prepared using methods similar to those described in Example 1 vii. ES+ve 626 (MH) +
- Example 34 3-C4- . f6-( , ((2R)-2-Hvdroxy-2-r4-hvdroxy-3- (hydroxymethyl)phenyl]ethy amino)hexyl1oxylbutyl)-N-fl-methyl-l- phenylethyDbenzenesulfonamide acetate i) 3-r4-r(6-r(5R)-5-(2.2-Dimethyl-4H-1.3-benzodioxin-6-yl)-2-oxo-1.3-oxazolidin-3- yl]hexy oxy)but- 1 -ynyl]-N-( 1 -methyl- 1 -phenylethyDbenzenesulfonamide was prepared using methods similar to those described in Example 1 vii. ES-ve 673 (M-HV
- Example 35 5-f4-(r6-( ' (f2R)-2-Hvdroxy-2-r4-hvdroxy-3-fhvdroxymethvD- phenv ⁇ ethyl _ amino)hexyl1oxy_ butyl)-2-methoxybenzenesulfonamide acetate i) 5-r4-( ⁇ 6-r(5R)-5-(2.2-Dimethyl-4H-1.3-benzodioxin-6-yl)-2-oxo-1.3-oxazolidin-3- yl]hexyl . oxy)but- 1 -vnyl]-2-methoxybenzenesulfonamide was prepared using methods similar to those described in Example 1 vii. ES+ve 587 (MH) +
- Example 36 (E)-2-f3-(4- ⁇ r6-( .(2R)-2-Hvdroxy-2-r4-hvdroxy-3- (hydroxymethyl)phenyllethyUamino)hexyl]oxy ⁇ butyl)phenyl]-N-methylethenesulfonamide i) 4-(3-Bromophenyl)but-3-yn- 1 -ol
- Di-tert-butyldicarbonate (8.62g) was added to a stirred, cooled (ice bath) solution of ethenesulphonamide (S. Hirooka, Bull. Chem. Soc. Jpn. 1991, 64, 1431) (3.4g ), 4- (dimethylamino)pyridine (410mg) and triethylamine (7ml) in dichloromethane (40ml) under nitrogen.
- the solution was stirred for 30min, washed with 2M hydrochloric acid (30ml), water
- Example 39 3-(4- ⁇ r6-(((2R)-2-Hvdroxy-2-r4-hvdroxy-3-(hvdroxymethyl)phenyllethyl)- amino)hexyl]oxy, butyl)-5-pentylbenzenesuIfonamide acetate i) tert-Butyl ⁇ 3-r4-((6-r(5R)-5-(2.2-dimethyl-4H-1.3-benzodioxin-6-yl)-2-oxo-1.3-oxazolidin-3- yl] hexyl ) oxy)but- 1 -ynyl] -5 -pent- 1 -ynylphenyl ⁇ sulfonyl ⁇ [2- (trimethylsilyl)ethoxy]methyDcarbamate
- the mixture was cooled to 5°C and then treated portionwise with the diazonium salt prepared above. After stirring at room temperature for lh ice (50g) was added. The mixture was extracted with ether (100ml) and the organic phases washed with NaHC0 3 solution (2 100ml) then water ( 100ml), dried ( MgS0 4 ) and concentrated. The residue was dissolved in THF (30ml) at 0°C and aqueous ammonia (0.880; 5ml) was added. After stirring at room temperature the mixture was partitioned between EtOAc (100ml) and water (100ml). The organic phase was washed with brine (50ml), dried (MgS0 4 ) and concentrated.
- Example 42 5-(4- . r6-( .(2R)-2-Hydroxy-2-r4-hvdroxy-3- (hvdroxymethyl)phenyl]ethyUamino)hexyl]oxy)butyD-3-trifluoromethylbenzenesulfonamide
- 3-Bromo-5-trifluoromethylbenzenesulfonamide was prepared using methods similar to those described in Example i. ES-ve 302,304 (M-H) "
- Example 44 N- ..3-(4- . r6-( .(2R)-2-Hvdroxy-2-r4-hvdroxy-3- (hydroxymethyl)phenvHethvUamino)hexyHoxy)butyl)phenyllsulfonyl ⁇ glycine acetate
- Cinnamic acid 0.3g was added to a solution of 3-(4- ⁇ [6-( ⁇ (2R)-2-Hydroxy-2-[4-hydroxy-3- (hydroxymethyl)phenyl]ethyl ⁇ amino)hexyl]oxy ⁇ butyl)benzenesulfonamide (l .Og) in methanol
- Example 47 3-(3- ⁇ .7-( .(2R)-2-Hvdroxy-2-.4-hvdroxy-3- (hvdroxymethvDphenyllethyl ⁇ amino)heptyl1oxy>propyl)benzenesulfonamide
- Cuprous iodide (0.0 lg) and dichlorobis(triphenylphosphine)palladium (0.02g) were added and the stirring continued for 2h.
- the solution was evaporated to dryness and applied to a Bond Elut cartridge (5g) in dichloromethane.
- the cartridge was eluted with dichloromethane and diethyl ether to give the title compounds (0.165g), LCMS RT 3.93min (bromide) and 4.02min (iodide).
- reaction mixture was extracted with ether and the organic layer was washed with 2M HCI, NaHC0 3 , brine, dried (MgS0 4 ). The solvent was removed by evaporation and the residue was chromatographed on a Biotage column eluting with diethyl ether-petrol (40-60°C)
- Example 50 6 ⁇ . 9 ⁇ -Difluoro-17 ⁇ -[(2-furanylcarbonvDoxy]-l l ⁇ -hvdroxy-16 ⁇ -methyl-3-oxo- androsta-l,4-diene-17 ⁇ -carbothioic acid S-fluoromethyl ester Unsolvated Form 1
- the resulting solid was collected by filtration, washed successively with 3.5% aqueous sodium hydrogen carbonate solution, water, IM hydrochloric acid, and water and dried in vacuo at 60 °C to give a cream coloured solid.
- the dichloromethane filtrate was washed successively with 3.5% sodium hydrogen carbonate solution, water, IM hydrochloric acid, water, dried (Na 2 S0 4 ) and evaporated to give a cream coloured solid which was combined with that isolated above.
- the combined solids (26.9g) were suspended in acetone (450ml) and stirred. Diethylamine (16.8ml, 162mmol) was added and the mixture stirred at room temperature for 4.5h.
- a suspension of the product of part (a) (2.5g, 4.94mmol) was dissolved in anhydrous N, N- dimethylformamide (25ml) and sodium hydrogen carbonate (465mg, 5.53mmol) was added. The mixture was stirred at -20°C and bromofluoromethane (0.77ml, 6.37mmol) was added and the mixture was stirred at -20°C for 2h. Diethylamine (2.57ml, 24.7mmole) was added and the mixture stirred at -20°C for 30min. The mixture was added to 2M hydrochloric acid (93ml) and stirred for 30min.
- Example 51 6 ⁇ .9 ⁇ -Difluoro-l l ⁇ -hvdroxy-16 ⁇ -methyl-17 ⁇ -[(4-methyl-l,3-thiazole-5- carbonyl)oxy1-3-oxo-androsta-l,4-diene-17 ⁇ -carbothioic acid S-fluoromethyl ester
- Example 51 was prepared using a method analogous to that described for Example 50: LCMS retention time 3.51min, m/z 570 MH +
- BIOLOGICAL ACTIVITY The potencies of the aforementioned compounds were determined using frog melanophores transfected with the human beta 2 adrenoreceptor. The cells were incubated with melatonin to induce pigment aggregation. Pigment dispersal was induced by compounds acting on the human beta 2 adrenoreceptor. The beta 2 agonist activity of test compounds was assessed by their ability to induce a change in light transmittance across a melanophore monolayer (a consequence of pigment dispersal). At the human beta 2 adrenoreceptor, compounds of examples 1- 49 had IC 50 values below 1 ⁇ M.
- Potency at other beta adrenoreceptor subtypes was determined using Chinese hamster ovary cells transfected with either the human beta 1 adrenoreceptor or the human beta 3 adrenoreceptor. Agonist activity was assessed by measuring changes in intracellular cyclic AMP.
Landscapes
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pulmonology (AREA)
- Cardiology (AREA)
- Dermatology (AREA)
- Neurology (AREA)
- Ophthalmology & Optometry (AREA)
- Pregnancy & Childbirth (AREA)
- Biomedical Technology (AREA)
- Pain & Pain Management (AREA)
- Neurosurgery (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Physical Education & Sports Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Gynecology & Obstetrics (AREA)
- Psychiatry (AREA)
- Endocrinology (AREA)
- Reproductive Health (AREA)
- Hospice & Palliative Care (AREA)
- Otolaryngology (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Steroid Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicinal Preparation (AREA)
Abstract
Description
Claims
Priority Applications (23)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB0103630.0A GB0103630D0 (en) | 2001-02-14 | 2001-02-14 | Chemical compounds |
HU0400699A HUP0400699A2 (en) | 2001-02-14 | 2002-02-11 | Phenethanolamine derivatives, process for their preparation and pharmaceutical compositions containing the same compounds |
AU2002240924A AU2002240924B2 (en) | 2001-02-14 | 2002-02-11 | Phenethanolamine derivatives for treatment of respiratory diseases |
NZ527404A NZ527404A (en) | 2001-02-14 | 2002-02-11 | Phenethanolamine derivatives for treatment of respiratory diseases |
CA002437977A CA2437977A1 (en) | 2001-02-14 | 2002-02-11 | Phenethanolamine derivatives for treatment of respiratory diseases |
MXPA03007262A MXPA03007262A (en) | 2001-02-14 | 2002-02-11 | Phenethanolamine derivatives for treatment of respiratory diseases. |
BR0207694-2A BR0207694A (en) | 2001-02-14 | 2002-02-11 | Compound or a physiologically functional salt, solvate or derivative thereof, method for the prophylaxis or treatment of a clinical condition in a mammal, pharmaceutical formulation, combination, use of a pharmaceutically acceptable salt, solvate or derivative thereof, process for the preparation of a compound or a physiologically functional salt, solvate or derivative thereof, and intermediates |
DZ023500A DZ3500A1 (en) | 2001-02-14 | 2002-02-11 | PHENETHANOLAMINE DERIVATIVES FOR THE TREATMENT OF RESPIRATORY DISEASES |
IL15714902A IL157149A0 (en) | 2001-02-14 | 2002-02-11 | Phenethanolamine derivatives for treatment of respiratory diseases |
KR1020037010667A KR100880763B1 (en) | 2001-02-14 | 2002-02-11 | Phenethanolamine derivatives for treatment of respiratory diseases |
JP2002565940A JP4029042B2 (en) | 2001-02-14 | 2002-02-11 | Phenetanolamine derivatives for the treatment of respiratory diseases |
EP02706735A EP1360174A1 (en) | 2001-02-14 | 2002-02-11 | Phenethanolamine derivatives for treatment of respiratory diseases |
SK1021-2003A SK10212003A3 (en) | 2001-02-14 | 2002-02-11 | Phenethanolamine derivatives, a process for their manufacture, pharmaceutical compositions containing them, their use and an intermediate |
US10/467,733 US7135600B2 (en) | 2001-02-14 | 2002-02-11 | Phenethanolamine derivatives for treatment of respiratory diseases |
APAP/P/2003/002842A AP2088A (en) | 2001-02-14 | 2002-02-11 | Phenethanolamine derivatives for treatment of respiratory diseases |
EA200300776A EA006646B1 (en) | 2001-02-14 | 2002-02-11 | Phenethanolamine derivatives for treatment of respiratory diseases |
UA2003087450A UA76443C2 (en) | 2001-02-14 | 2002-11-02 | Phenetanolamine derivatives for the treatment of respiratory diseases, a method for producing thereof (variants), intermediary compounds, pharmaceutical composition, combination and a method for prophylaxis or treatment of state to which selective agonist of ?2- adrenoreceptor is prescribed |
ZA200306234A ZA200306234B (en) | 2001-02-14 | 2003-08-12 | Phenethanolamine derivatives for treatment of respiratory diseases. |
NO20033594A NO20033594L (en) | 2001-02-14 | 2003-08-13 | Phenethanolamine derivatives for the treatment of respiratory diseases |
EC2003004732A ECSP034732A (en) | 2001-02-14 | 2003-08-14 | DERIVATIVE OF PHENETHANOLAMINE FOR THE TREATMENT OF RESPIRATORY DISEASES |
US11/207,967 US7442719B2 (en) | 2001-02-14 | 2005-08-19 | Methods using phenethanolamine derivatives for treatment of respiratory diseases |
US11/426,661 US7442837B2 (en) | 2001-02-14 | 2006-06-27 | Phenethanolamine derivatives for treatment of respiratory diseases |
US11/426,657 US7442836B2 (en) | 2001-02-14 | 2006-06-27 | Phenethanolamine derivatives for treatment of respiratory diseases |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB0103630.0A GB0103630D0 (en) | 2001-02-14 | 2001-02-14 | Chemical compounds |
GB0103630.0 | 2001-02-14 | ||
GB0126998.4 | 2001-11-09 | ||
GB0126998A GB0126998D0 (en) | 2001-11-09 | 2001-11-09 | Chemical compounds |
Related Child Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10467733 A-371-Of-International | 2002-02-11 | ||
US11/207,967 Continuation US7442719B2 (en) | 2001-02-14 | 2005-08-19 | Methods using phenethanolamine derivatives for treatment of respiratory diseases |
US11/426,657 Continuation US7442836B2 (en) | 2001-02-14 | 2006-06-27 | Phenethanolamine derivatives for treatment of respiratory diseases |
US11/426,661 Continuation US7442837B2 (en) | 2001-02-14 | 2006-06-27 | Phenethanolamine derivatives for treatment of respiratory diseases |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002066422A1 true WO2002066422A1 (en) | 2002-08-29 |
Family
ID=26245711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2002/001387 WO2002066422A1 (en) | 2001-02-14 | 2002-02-11 | Phenethanolamine derivatives for treatment of respiratory diseases |
Country Status (30)
Country | Link |
---|---|
US (4) | US7135600B2 (en) |
EP (1) | EP1360174A1 (en) |
JP (1) | JP4029042B2 (en) |
KR (1) | KR100880763B1 (en) |
CN (1) | CN1266126C (en) |
AP (1) | AP2088A (en) |
AR (1) | AR035617A1 (en) |
AU (1) | AU2002240924B2 (en) |
BG (1) | BG108086A (en) |
BR (1) | BR0207694A (en) |
CA (1) | CA2437977A1 (en) |
CZ (1) | CZ20032189A3 (en) |
DZ (1) | DZ3500A1 (en) |
EA (1) | EA006646B1 (en) |
EC (1) | ECSP034732A (en) |
GB (1) | GB0103630D0 (en) |
HU (1) | HUP0400699A2 (en) |
IL (1) | IL157149A0 (en) |
MA (1) | MA26992A1 (en) |
MX (1) | MXPA03007262A (en) |
MY (1) | MY139552A (en) |
NO (1) | NO20033594L (en) |
NZ (1) | NZ527404A (en) |
OA (1) | OA12551A (en) |
PE (1) | PE20020872A1 (en) |
PL (1) | PL367403A1 (en) |
SK (1) | SK10212003A3 (en) |
UA (1) | UA76443C2 (en) |
WO (1) | WO2002066422A1 (en) |
ZA (1) | ZA200306234B (en) |
Cited By (146)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003066024A1 (en) * | 2002-02-04 | 2003-08-14 | Glaxo Group Limited | Pharmaceutical formulation comprising an aqueous suspension of an androstane derivative for the treatment of inflammatory and allergic conditions |
WO2003066033A1 (en) * | 2002-02-04 | 2003-08-14 | Glaxo Group Limited | Formulation for inhalation comprising a glucocorticoid and a beta 2-adrenoreceptor agonist |
WO2003066036A1 (en) * | 2002-02-04 | 2003-08-14 | Glaxo Group Limited | Pharmaceutical formulation for administration by inhalation comprising an androstane derivative and a beta-2-adrenoreceptor for the treatment of inflammatory and allergic conditions |
WO2003066026A1 (en) * | 2002-02-04 | 2003-08-14 | Glaxo Group Limited | Pharmaceutical formulation comprising an androstane derivative and a solubilising agent in an aqueous liquid carrier |
US6653323B2 (en) | 2001-11-13 | 2003-11-25 | Theravance, Inc. | Aryl aniline β2 adrenergic receptor agonists |
US6670376B1 (en) | 2001-11-13 | 2003-12-30 | Theravance, Inc. | Aryl aniline β2 adrenergic receptor agonists |
WO2004037773A1 (en) * | 2002-10-28 | 2004-05-06 | Glaxo Group Limited | Phenethanolamine derivative for the treatment of respiratory diseases |
US6747043B2 (en) | 2002-05-28 | 2004-06-08 | Theravance, Inc. | Alkoxy aryl β2 adrenergic receptor agonists |
WO2004047829A1 (en) * | 2002-11-27 | 2004-06-10 | Altana Pharma Ag | New synergistic combination comprising roflumilast and formoterol |
WO2004047828A1 (en) * | 2002-11-27 | 2004-06-10 | Altana Pharma Ag | Synergistic combination compresing roflumilas and (r.r) -formoterol |
US6750210B2 (en) | 2000-08-05 | 2004-06-15 | Smithkline Beecham Corporation | Formulation containing novel anti-inflammatory androstane derivative |
US6777400B2 (en) | 2000-08-05 | 2004-08-17 | Smithkline Beecham Corporation | Anti-inflammatory androstane derivative compositions |
US6777399B2 (en) | 2000-08-05 | 2004-08-17 | Smithkline Beecham Corporation | Anti-inflammatory androstane derivative compositions |
WO2004105759A2 (en) * | 2003-05-27 | 2004-12-09 | Boehringer Ingelheim International Gmbh | Novel long-acting medicament combinations comprising an anticholinergic agent and a $g(b)2-adrenoreceptor antagonist for the treatment of respiratory tract diseases |
WO2005005451A1 (en) | 2003-07-11 | 2005-01-20 | Glaxo Group Limited | Specific glucocorticosteroid compound having anti- inflammatory activity |
US6858593B2 (en) | 2000-08-05 | 2005-02-22 | Smithkline Beecham Corporation | Anti-inflammatory androstane derivative compositions |
JP2005509642A (en) * | 2001-10-20 | 2005-04-14 | グラクソ グループ リミテッド | Novel anti-inflammatory androstane derivatives |
WO2005065650A2 (en) * | 2003-10-09 | 2005-07-21 | Glaxo Group Limited | Aerosol formulations comprising a carboxylic acid surfactant |
WO2005116037A1 (en) | 2004-05-24 | 2005-12-08 | Glaxo Group Limited | Purine derivative |
WO2006015870A1 (en) | 2004-08-12 | 2006-02-16 | Glaxo Group Limited | Tetrahydro-naphthalene derivatives as glucocorticoid receptor modulators |
WO2006023460A2 (en) | 2004-08-16 | 2006-03-02 | Theravance, Inc. | COMPOUNDS HAVING β2 ADRENERGIC RECEPTOR AGONIST AND MUSCARINIC RECEPTOR ANTAGONIST ACTIVITY |
WO2006056471A1 (en) | 2004-11-29 | 2006-06-01 | Novartis Ag | 5-hydroxy-benzothiazole derivatives having beta-2-adrenorecptor agonist activity |
US7060712B2 (en) | 2003-05-08 | 2006-06-13 | Theravance, Inc. | Crystalline form of aryl aniline β2 adrenergic receptor agonist |
WO2006108643A2 (en) | 2005-04-14 | 2006-10-19 | Novartis Ag | Organic compounds |
US7141671B2 (en) | 2003-02-14 | 2006-11-28 | Theravance, Inc. | Biphenyl derivatives |
WO2007009757A1 (en) | 2005-07-19 | 2007-01-25 | Glaxo Group Limited | Purine derivatives as agonists of the adenosine a2a receptor |
EP1757281A2 (en) * | 2002-02-04 | 2007-02-28 | Glaxo Group Limited | Formulation for inhalation comprising a glucocorticoid and a beta 2-adrenoreceptor agonist |
JP2007509124A (en) * | 2003-10-24 | 2007-04-12 | グラクソ グループ リミテッド | Dry powder composition for inhalation therapy containing calcium stearate and medical device therefor |
WO2007122165A1 (en) | 2006-04-20 | 2007-11-01 | Glaxo Group Limited | Novel compounds |
WO2007121920A2 (en) | 2006-04-21 | 2007-11-01 | Novartis Ag | Purine derivatives for use as adenosin a2a receptor agonists |
US7294650B2 (en) | 2003-12-17 | 2007-11-13 | Glaxo Group Limited | Benzothiophen and thiochrone containing phenethanolamine derivatives for the treatment of respiratory disorders |
WO2007144327A2 (en) | 2006-06-12 | 2007-12-21 | Glaxo Group Limited | Phenyl-pyrazole derivatives as non-steroidal glucocoricoid receptor ligands |
WO2007150016A2 (en) | 2006-06-23 | 2007-12-27 | Smithkline Beecham Corporation | Il-8 receptor antagonist |
US7317102B2 (en) | 2003-04-01 | 2008-01-08 | Theravance, Inc. | Diarylmethyl and related compounds |
WO2008015416A1 (en) | 2006-08-01 | 2008-02-07 | Glaxo Group Limited | Pyrazolo[3,4-b]pyridine compounds, and their use as pde4 inhibitors |
US7332175B2 (en) | 2003-05-27 | 2008-02-19 | Boehringer Ingelheim International Gmbh | Long-acting drug combinations for the treatment of respiratory complaints |
US7358244B2 (en) | 2003-05-28 | 2008-04-15 | Theravance, Inc. | Azabicycloalkane compounds |
US7361787B2 (en) | 2001-09-14 | 2008-04-22 | Glaxo Group Limited | Phenethanolamine derivatives for treatment of respiratory diseases |
EP1930323A1 (en) | 2004-03-11 | 2008-06-11 | Theravance, Inc. | Biphenyl compounds useful in the synthesis of muscarinic receptor antagonists |
WO2008097673A1 (en) | 2007-02-09 | 2008-08-14 | Irm Llc | Compounds and compositions as channel activating protease inhibitors |
WO2008118724A1 (en) | 2007-03-23 | 2008-10-02 | Smithkline Beecham Corporation | Indole carboxamides as ikk2 inhibitors |
US7442837B2 (en) | 2001-02-14 | 2008-10-28 | Glaxo Group Limited | Phenethanolamine derivatives for treatment of respiratory diseases |
US7538127B2 (en) | 2003-02-14 | 2009-05-26 | Glaxo Group Limited | Medicinal compounds |
US7557247B2 (en) | 2003-05-27 | 2009-07-07 | Theravance, Inc. | Crystalline form of β2 adrenergic receptor agonist |
WO2009087224A1 (en) | 2008-01-11 | 2009-07-16 | Novartis Ag | Pyrimidines as kinase inhibitors |
US7579335B2 (en) | 2005-01-10 | 2009-08-25 | Glaxo Group Limited | Androstane 17α-carbonate derivatives for use in the treatment of allergic and inflammatory conditions |
US7582765B2 (en) | 2003-05-08 | 2009-09-01 | Theravance, Inc. | Aryl aniline β2 adrenergic receptor agonists |
WO2009147187A1 (en) | 2008-06-05 | 2009-12-10 | Glaxo Group Limited | 4-carboxamide indazole derivatives useful as inhibitors of p13-kinases |
WO2009150137A2 (en) | 2008-06-10 | 2009-12-17 | Novartis Ag | Organic compounds |
EP2157087A1 (en) | 2005-12-20 | 2010-02-24 | Glaxo Group Limited | 3-(4-{[4-(4-{[3-(3,3-dimethyl-1-piperidinyl)propyl]oxy}phenyl)-1-piperidinyl]carbonyl}-1-naphthalenyl)propanoic or propenoic acid as h1 and h3 receptor antagonists for the treatment of inflammatory and/or allergic disorders |
WO2010068311A1 (en) | 2008-05-23 | 2010-06-17 | Amira Pharmaceuticals, Inc. | 5-lipoxygenase-activating protein inhibitor |
EP2206499A1 (en) | 2004-11-02 | 2010-07-14 | Novartis AG | Quinuclidine derivatives and their use as muscarinic m3 receptor antagonists |
WO2010094643A1 (en) | 2009-02-17 | 2010-08-26 | Glaxo Group Limited | Quinoline derivatives and their uses for rhinitis and urticaria |
WO2010102968A1 (en) | 2009-03-10 | 2010-09-16 | Glaxo Group Limited | Indole derivatives as ikk2 inhibitors |
WO2010102958A1 (en) | 2009-03-09 | 2010-09-16 | Glaxo Group Limited | 4-oxadiazol-2 -yl- indazoles as inhibitors of p13 kinases |
WO2010107957A2 (en) | 2009-03-19 | 2010-09-23 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF GATA BINDING PROTEIN 3 (GATA3) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
WO2010107955A2 (en) | 2009-03-19 | 2010-09-23 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF BTB AND CNC HOMOLOGY 1, BASIC LEUCINE ZIPPER TRANSCRIPTION FACTOR 1 (BACH 1) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) SEQUENCE LISTING |
WO2010107952A2 (en) | 2009-03-19 | 2010-09-23 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF CONNECTIVE TISSUE GROWTH FACTOR (CTGF) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
WO2010106016A1 (en) | 2009-03-17 | 2010-09-23 | Glaxo Group Limited | Pyrimidine derivatives used as itk inhibitors |
WO2010107958A1 (en) | 2009-03-19 | 2010-09-23 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF SIGNAL TRANSDUCER AND ACTIVATOR OF TRANSCRIPTION 6 (STAT6) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
WO2010111471A2 (en) | 2009-03-27 | 2010-09-30 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF SIGNAL TRANSDUCER AND ACTIVATOR OF TRANSCRIPTION 1 (STAT1) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
WO2010111490A2 (en) | 2009-03-27 | 2010-09-30 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF THE THYMIC STROMAL LYMPHOPOIETIN (TSLP) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
WO2010111464A1 (en) | 2009-03-27 | 2010-09-30 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF APOPTOSIS SIGNAL-REGULATING KINASE 1 (ASK1) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
WO2010111497A2 (en) | 2009-03-27 | 2010-09-30 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF THE INTERCELLULAR ADHESION MOLECULE 1 (ICAM-1)GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
WO2010111468A2 (en) | 2009-03-27 | 2010-09-30 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF THE NERVE GROWTH FACTOR BETA CHAIN (NGFß) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (SINA) |
WO2010122088A1 (en) | 2009-04-24 | 2010-10-28 | Glaxo Group Limited | Pyrazole and triazole carboxamides as crac channel inhibitors |
WO2010122089A1 (en) | 2009-04-24 | 2010-10-28 | Glaxo Group Limited | N-pyrazolyl carboxamides as crac channel inhibitors |
WO2010147947A2 (en) | 2009-06-16 | 2010-12-23 | Schering Corporation | NOVEL [3,2-c] HETEROARYL STEROIDS AS GLUCOCORTICOID RECEPTOR AGONISTS, COMPOSITIONS AND USES THEREOF |
WO2010150014A1 (en) | 2009-06-24 | 2010-12-29 | Pulmagen Therapeutics (Inflammation) Limited | 5r- 5 -deuterated glitazones for respiratory disease treatment |
WO2011008809A1 (en) | 2009-07-15 | 2011-01-20 | Theravance, Inc. | Crystalline freebase forms of a biphenyl compound |
EP2280006A1 (en) | 2005-08-08 | 2011-02-02 | Pulmagen Therapeutics (Synergy) Limited | Pharmaceutical composition for inhalation comprising an oxazole or thiazole m3 muscarinic receptor antagonist |
EP2279777A2 (en) | 2007-01-10 | 2011-02-02 | Irm Llc | Compounds and compositions as channel activating protease inhibitors |
EP2281819A1 (en) | 2004-01-21 | 2011-02-09 | Novartis AG | Benzimidazolyl or benzoxazolyl derivatives |
EP2281813A1 (en) | 2005-08-08 | 2011-02-09 | Pulmagen Therapeutics (Synergy) Limited | Bicyclo[2.2.1]hept-7-ylamine derivatives and their uses |
EP2286813A2 (en) | 2006-01-31 | 2011-02-23 | Novartis AG | Use of naphthyridine derivatives as medicaments |
EP2292619A1 (en) | 2004-10-22 | 2011-03-09 | Novartis AG | Purine derivatives for use as adenonsin A-2A receptor agonists |
WO2011050325A1 (en) | 2009-10-22 | 2011-04-28 | Vertex Pharmaceuticals Incorporated | Compositions for treatment of cystic fibrosis and other chronic diseases |
WO2011051671A1 (en) | 2009-10-28 | 2011-05-05 | Vantia Limited | Aminopyridine derivatives as kallikrein inhibitors |
WO2011051672A1 (en) | 2009-10-28 | 2011-05-05 | Vantia Limited | Azaindole derivatives |
WO2011051673A1 (en) | 2009-10-28 | 2011-05-05 | Vantia Limited | Aminothiazole derivatives useful as klk1 inhibitors |
WO2011061527A1 (en) | 2009-11-17 | 2011-05-26 | Astrazeneca Ab | Combinations comprising a glucocorticoid receptor modulator for the treatment of respiratory diseases |
WO2011067365A1 (en) | 2009-12-03 | 2011-06-09 | Glaxo Group Limited | Benzpyrazole derivatives as inhibitors of p13 kinases |
WO2011067364A1 (en) | 2009-12-03 | 2011-06-09 | Glaxo Group Limited | Novel compounds |
WO2011067366A1 (en) | 2009-12-03 | 2011-06-09 | Glaxo Group Limited | Indazole derivatives as pi 3 - kinase inhibitors |
US7960551B2 (en) | 2006-02-10 | 2011-06-14 | Glaxo Group Limited | Compound |
EP2332933A1 (en) | 2007-05-07 | 2011-06-15 | Novartis AG | Epithelial sodium channel (ENaC) inhibitors |
US7964615B2 (en) | 2005-05-20 | 2011-06-21 | Almirall, S.A. | Derivatives of 4-(2-amino-1-hydroxyethyl)phenol as agonists of the β2 adrenergic receptor |
WO2011084316A2 (en) | 2009-12-16 | 2011-07-14 | 3M Innovative Properties Company | Formulations and methods for controlling mdi particle size delivery |
WO2011098746A1 (en) | 2010-02-09 | 2011-08-18 | Pulmagen Therapeutics (Inflammation) Limited | Crystalline acid addition salts of ( 5r) -enanti0mer of pioglitazone |
WO2011098801A1 (en) | 2010-02-10 | 2011-08-18 | Pulmagen Therapeutics (Inflammation) Limited | Inflammatory disease treatment |
WO2011098799A2 (en) | 2010-02-10 | 2011-08-18 | Pulmagen Therapeutics (Inflammation) Limited | Respiratory disease treatment |
WO2011110575A1 (en) | 2010-03-11 | 2011-09-15 | Glaxo Group Limited | Derivatives of 2-[2-(benzo- or pyrido-) thiazolylamino]-6-aminopyridine, useful in the treatment of respiratoric, allergic or inflammatory diseases |
WO2011113894A1 (en) | 2010-03-19 | 2011-09-22 | Novartis Ag | Pyridine and pyrazine derivative for the treatment of cf |
WO2011134971A1 (en) | 2010-04-29 | 2011-11-03 | Glaxo Group Limited | 7-(1h-pyrazol-4-yl)-1,6-naphthyridine compounds as syk inhibitors |
WO2012034091A1 (en) | 2010-09-09 | 2012-03-15 | Irm Llc | Imidazo [1, 2] pyridazin compounds and compositions as trk inhibitors |
WO2012034095A1 (en) | 2010-09-09 | 2012-03-15 | Irm Llc | Compounds and compositions as trk inhibitors |
WO2012032067A1 (en) | 2010-09-08 | 2012-03-15 | Glaxo Group Limited | Polymorphs and salts of n- [5- [4- (5- { [(2r,6s) -2, 6 - dimethyl - 4 -morpholinyl] methyl} - 1, 3 - oxazol - 2 - yl) - 1h- inda zol-6-yl] -2- (methyloxy) - 3 - pyridinyl] methanesulfonamide |
WO2012035055A1 (en) | 2010-09-17 | 2012-03-22 | Glaxo Group Limited | Novel compounds |
WO2012035158A1 (en) | 2010-09-17 | 2012-03-22 | Novartis Ag | Pyrazine derivatives as enac blockers |
EP2436686A1 (en) | 2005-03-25 | 2012-04-04 | Glaxo Group Limited | Pyrimidopyridine compound used as a CSBP/RK/p38 modulator |
EP2436697A1 (en) | 2004-07-01 | 2012-04-04 | Glaxo Group Limited | Chimeric and humanised monoclonal antibodies against interleukin-13 |
WO2012046050A1 (en) | 2010-10-07 | 2012-04-12 | Astrazeneca Ab | Novel combinations |
EP2444120A1 (en) | 2007-12-10 | 2012-04-25 | Novartis AG | Spirocyclic amiloride analogues as ENac blockers |
WO2012052459A1 (en) | 2010-10-21 | 2012-04-26 | Glaxo Group Limited | Pyrazole compounds acting against allergic, inflammatory and immune disorders |
WO2012052458A1 (en) | 2010-10-21 | 2012-04-26 | Glaxo Group Limited | Pyrazole compounds acting against allergic, immune and inflammatory conditions |
WO2012055846A1 (en) | 2010-10-27 | 2012-05-03 | Glaxo Group Limited | Polymorphs and salts of 6-(1h-indol-4-yl)-4-(5- { [4-(1-methylethyl)-1-pi perazinyl] methyl} -1,3-oxazol-2-yl)-1h-indazole as pi3k inhibitors for use in the treatment of e.g. respiratory disorders |
US8178679B2 (en) | 2007-11-28 | 2012-05-15 | Almirall, S.A. | Derivatives of 4-(2-amino-1-hydroxyethyl)phenol as agonists of the β2 adrenergic receptors |
US8236786B2 (en) | 2008-08-07 | 2012-08-07 | Pulmagen Therapeutics (Inflammation) Limited | Respiratory disease treatment |
WO2012116217A1 (en) | 2011-02-25 | 2012-08-30 | Irm Llc | Compounds and compositions as trk inhibitors |
WO2012123311A1 (en) | 2011-03-11 | 2012-09-20 | Glaxo Group Limited | Pyridinyl- and pyrazinyl -methyloxy - aryl derivatives useful as inhibitors of spleen tyrosine kinase (syk) |
WO2012123312A1 (en) | 2011-03-11 | 2012-09-20 | Glaxo Group Limited | Pyrido[3,4-b]pyrazine derivatives as syk inhibitors |
US8283342B2 (en) | 2007-02-09 | 2012-10-09 | Almirall S.A. | Napadisylate salt of 5-(2-{[6-(2,2-difluoro-2-phenylethoxy) hexyl]amino}-1-hydroxyethyl)-8-hydroxyquinolin-2(1H)-one as agonist of the β2 adrenergic receptor |
EP2532679A1 (en) | 2005-10-21 | 2012-12-12 | Novartis AG | Human antibodies against il13 and therapeutic uses |
US8362064B2 (en) | 2008-12-30 | 2013-01-29 | Pulmagen Theraputics (Inflammation) Limited | Sulfonamide compounds for the treatment of respiratory disorders |
WO2013030802A1 (en) | 2011-09-01 | 2013-03-07 | Novartis Ag | Bicyclic heterocycle derivatives for the treatment of pulmonary arterial hypertension |
WO2013038381A1 (en) | 2011-09-16 | 2013-03-21 | Novartis Ag | Pyridine/pyrazine amide derivatives |
WO2013038373A1 (en) | 2011-09-16 | 2013-03-21 | Novartis Ag | Pyridine amide derivatives |
WO2013038390A1 (en) | 2011-09-16 | 2013-03-21 | Novartis Ag | N-substituted heterocyclyl carboxamides |
WO2013038378A1 (en) | 2011-09-16 | 2013-03-21 | Novartis Ag | Pyridine amide derivatives |
WO2013038386A1 (en) | 2011-09-16 | 2013-03-21 | Novartis Ag | Heterocyclic compounds for the treatment of cystic fibrosis |
US8524908B2 (en) | 2009-03-12 | 2013-09-03 | Almirall, S.A. | Process for manufacturing 5-(2-{[6-(2,2-difluoro-2-phenylethoxy)hexyl]amino}-1-hydroxyethyl)-8-hydroxyquinolin-2(1H)-one |
WO2013140319A1 (en) | 2012-03-19 | 2013-09-26 | Novartis Ag | Crystalline form of a succinate salt |
WO2014132220A1 (en) | 2013-03-01 | 2014-09-04 | Novartis Ag | Solid forms of bicyclic heterocyclic derivatives as pdgf receptor mediators |
WO2014140647A1 (en) | 2013-03-15 | 2014-09-18 | Verona Pharma Plc | Drug combination |
US8933060B2 (en) | 2002-06-14 | 2015-01-13 | Cipla Limited | Combination of azelastine and ciclesonide for nasal administration |
WO2015055690A1 (en) | 2013-10-17 | 2015-04-23 | Glaxosmithkline Intellectual Property Development Limited | Pi3k inhibitor for treatment of respiratory disease |
WO2015055691A1 (en) | 2013-10-17 | 2015-04-23 | Glaxosmithkline Intellectual Property Development Limited | Pi3k inhibitor for treatment of respiratory disease |
US9056100B2 (en) | 1999-07-14 | 2015-06-16 | Almirall, S.A. | Quinuclidine derivatives and medicinal compositions containing the same |
EP2899191A1 (en) | 2009-04-30 | 2015-07-29 | Glaxo Group Limited | Oxazole substituted indazoles as pi3-kinase inhibitors |
US9108918B2 (en) | 2011-10-07 | 2015-08-18 | Almirall, S.A. | Process for preparing 5-(2-{[6-(2,2-difluoro-2-phenylethoxy)hexyl]amino}-1(R)-hydroxyethyl)-8-hydroxyquinolin-2(1H)-one via a novel intermediate |
WO2015162459A1 (en) | 2014-04-24 | 2015-10-29 | Novartis Ag | Amino pyrazine derivatives as phosphatidylinositol 3-kinase inhibitors |
WO2015162461A1 (en) | 2014-04-24 | 2015-10-29 | Novartis Ag | Pyrazine derivatives as phosphatidylinositol 3-kinase inhibitors |
WO2015162456A1 (en) | 2014-04-24 | 2015-10-29 | Novartis Ag | Amino pyridine derivatives as phosphatidylinositol 3-kinase inhibitors |
WO2015173701A2 (en) | 2014-05-12 | 2015-11-19 | Glaxosmithkline Intellectual Property (No. 2) Limited | Pharmaceutical compositions for treating infectious diseases |
US9254262B2 (en) | 2008-03-13 | 2016-02-09 | Almirall, S.A. | Dosage and formulation |
US9346759B2 (en) | 2012-03-20 | 2016-05-24 | Almirall, S.A. | Polymorphic crystal forms of 5-(2-{[6-(2,2-difluoro-2-phenylethoxy)hexyl]amino}-1-(R)-hydroxyethyl)-8-hydroxyquinolin-2(1H)-one, heminapadisytlate as agonist of the β2 adrenergic receptor |
WO2017137535A1 (en) | 2016-02-12 | 2017-08-17 | Glaxosmithkline Intellectual Property Development Limited | Chemical compounds as inhibitors of kinase activity |
US9737520B2 (en) | 2011-04-15 | 2017-08-22 | Almirall, S.A. | Aclidinium for use in improving the quality of sleep in respiratory patients |
WO2018029126A1 (en) | 2016-08-08 | 2018-02-15 | Glaxosmithkline Intellectual Property Development Limited | Chemical compounds |
US10085974B2 (en) | 2008-03-13 | 2018-10-02 | Almirall, S.A. | Dosage and formulation |
WO2018192864A1 (en) | 2017-04-18 | 2018-10-25 | Glaxosmithkline Intellectual Property Development Limited | Oxepinopyrazole derivatives as inhibitors of pi3-kinase activity |
WO2019020657A1 (en) | 2017-07-27 | 2019-01-31 | Glaxosmithkline Intellectual Property Development Limited | Pyridine-3-sulfonamide compounds as pi3-kinase inhibitors |
EP3603634A1 (en) | 2004-05-18 | 2020-02-05 | Novartis AG | Pharmaceutical composition containing glycopyrrolate and a beta2 adrenoceptor agonist |
WO2020250116A1 (en) | 2019-06-10 | 2020-12-17 | Novartis Ag | Pyridine and pyrazine derivative for the treatment of cf, copd, and bronchiectasis |
WO2021038426A1 (en) | 2019-08-28 | 2021-03-04 | Novartis Ag | Substituted 1,3-phenyl heteroaryl derivatives and their use in the treatment of disease |
WO2021152488A1 (en) | 2020-01-29 | 2021-08-05 | Novartis Ag | Methods of treating an inflammatory or obstructive airway disease using anti-tslp antibody |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0208608D0 (en) * | 2002-04-13 | 2002-05-22 | Glaxo Group Ltd | Composition |
US20050043343A1 (en) * | 2003-07-28 | 2005-02-24 | Boehringer Ingelheim International Gmbh | Medicaments for inhalation comprising an anticholinergic and a PDE IV inhibitor |
TW200526547A (en) * | 2003-09-22 | 2005-08-16 | Theravance Inc | Amino-substituted ethylamino β2 adrenergic receptor agonists |
TW200531692A (en) * | 2004-01-12 | 2005-10-01 | Theravance Inc | Aryl aniline derivatives as β2 adrenergic receptor agonists |
US20080039495A1 (en) * | 2004-06-03 | 2008-02-14 | Linsell Martin S | Diamine Beta2 Adrenergic Receptor Agonists |
US7566785B2 (en) * | 2004-09-10 | 2009-07-28 | Theravance, Inc. | Amidine substituted aryl aniline compounds |
CN113801029A (en) * | 2020-06-16 | 2021-12-17 | 盈科瑞(天津)创新医药研究有限公司 | Preparation method of levalbuterol hydrochloride |
WO2023097690A1 (en) * | 2021-12-03 | 2023-06-08 | 广东莱佛士制药技术有限公司 | Method for preparing b-nitro or azido alcohol by means of high-selectivity asymmetric catalytic carbonyl reduction |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2140800A (en) * | 1983-04-18 | 1984-12-05 | Glaxo Group Ltd | Phenethanolamine derivatives |
EP0416951A1 (en) * | 1989-09-08 | 1991-03-13 | Glaxo Group Limited | Medicaments comprising salmeterol and fluticason |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB220054A (en) | 1923-05-07 | 1924-08-07 | Morris Weinberg | Improvements in engine piston rings |
US2140800A (en) | 1937-04-26 | 1938-12-20 | Metallurg De Hoboken Soc Gen | Treatment of substances containing tantalum and/or niobium |
US3994974A (en) | 1972-02-05 | 1976-11-30 | Yamanouchi Pharmaceutical Co., Ltd. | α-Aminomethylbenzyl alcohol derivatives |
CY1308A (en) | 1979-12-06 | 1985-12-06 | Glaxo Group Ltd | Device for dispensing medicaments |
EP0069715B1 (en) | 1981-07-08 | 1986-11-05 | Aktiebolaget Draco | Powder inhalator |
GB2169265B (en) | 1982-10-08 | 1987-08-12 | Glaxo Group Ltd | Pack for medicament |
NO160330C (en) | 1982-10-08 | 1989-04-12 | Glaxo Group Ltd | DEVICE FOR AA ADMINISTRATING MEDICINES TO PATIENTS AND MEDICINAL PACKAGING FOR THE DEVICE. |
DE3571808D1 (en) | 1984-04-17 | 1989-08-31 | Glaxo Group Ltd | Ethanolamine compounds |
NL8501124A (en) | 1984-04-17 | 1985-11-18 | Glaxo Group Ltd | PHENETHANOLAMINE COMPOUNDS, THEIR PREPARATION AND PHARMACEUTICAL PREPARATIONS OF WHICH THEY COMPONENT. |
US4853381A (en) | 1984-04-17 | 1989-08-01 | Glaxo Group Limited | Ethanolamine compounds |
GB8426200D0 (en) | 1984-10-17 | 1984-11-21 | Glaxo Holdings Ltd | Chemical compounds |
DE3524990A1 (en) * | 1984-07-13 | 1986-01-23 | Glaxo Group Ltd., London | AMINOPHENOL COMPOUNDS, METHOD FOR THE PRODUCTION THEREOF AND PHARMACEUTICAL PREPARATIONS CONTAINING THE SAME |
NO166268C (en) | 1985-07-30 | 1991-07-03 | Glaxo Group Ltd | DEVICE FOR ADMINISTRATING PATIENTS TO PATIENTS. |
GB8525483D0 (en) | 1985-10-16 | 1985-11-20 | Glaxo Group Ltd | Chemical compounds |
EP0223410A3 (en) | 1985-10-16 | 1987-11-19 | Glaxo Group Limited | Ethanolamine derivatives |
FR2588474B1 (en) | 1985-10-16 | 1987-11-27 | Cird | SYNERGETIC ANTI-INFLAMMATORY COMPOSITIONS BASED ON A CORTICOSTEROID AND AN AGONIST BETA |
EP0220054A3 (en) | 1985-10-16 | 1987-12-02 | Glaxo Group Limited | Ethanolamine derivatives |
JPS6485964A (en) | 1987-03-12 | 1989-03-30 | Glaxo Group Ltd | Compound |
GB8718940D0 (en) | 1987-08-11 | 1987-09-16 | Glaxo Group Ltd | Chemical compounds |
PT88988B (en) | 1987-11-13 | 1993-02-26 | Glaxo Group Ltd | METHOD FOR THE PREPARATION OF PHENETHANOLAMINE DERIVATIVES |
GB8909273D0 (en) | 1989-04-24 | 1989-06-07 | Glaxo Group Ltd | Chemical compounds |
GB9004781D0 (en) | 1990-03-02 | 1990-04-25 | Glaxo Group Ltd | Device |
SK279958B6 (en) * | 1992-04-02 | 1999-06-11 | Smithkline Beecham Corporation | Compounds exhibiting anti-allergic and anti-inflammatory properties, pharmaceutical composition them containing and their use |
GB9313574D0 (en) | 1993-07-01 | 1993-08-18 | Glaxo Group Ltd | Medicaments |
US5998428A (en) | 1995-05-31 | 1999-12-07 | Smithkline Beecham Corporation | Compounds and methods for treating PDE IV-related diseases |
EP0947498B1 (en) | 1996-12-02 | 2004-09-15 | Chisso Corporation | Optically active nitro alcohol derivatives, optically active amino alcohol derivatives, and process for preparing the same |
WO1999016766A1 (en) | 1997-10-01 | 1999-04-08 | Kyowa Hakko Kogyo Co., Ltd. | Benzodioxole derivatives |
DE69918422T2 (en) | 1998-03-14 | 2005-08-11 | Altana Pharma Ag | Phthalazinone as PDE3 / 4 inhibitors |
AR035987A1 (en) | 1999-03-01 | 2004-08-04 | Smithkline Beecham Corp | USE OF A PDE 4 INHIBITING COMPOUND FOR THE MANUFACTURE OF A MEDICINAL PRODUCT AND THE MEDICINAL PRODUCT TO TREAT ASTHMA INDUCED BY EXERCISE |
DE60043318D1 (en) | 1999-08-21 | 2010-01-14 | Nycomed Gmbh | Synergistic combination of pumafentrine and salmeterol |
GB0103630D0 (en) | 2001-02-14 | 2001-03-28 | Glaxo Group Ltd | Chemical compounds |
US7144908B2 (en) | 2001-03-08 | 2006-12-05 | Glaxo Group Limited | Agonists of beta-adrenoceptors |
-
2001
- 2001-02-14 GB GBGB0103630.0A patent/GB0103630D0/en not_active Ceased
-
2002
- 2002-02-11 NZ NZ527404A patent/NZ527404A/en unknown
- 2002-02-11 AU AU2002240924A patent/AU2002240924B2/en not_active Ceased
- 2002-02-11 EA EA200300776A patent/EA006646B1/en unknown
- 2002-02-11 MX MXPA03007262A patent/MXPA03007262A/en not_active Application Discontinuation
- 2002-02-11 JP JP2002565940A patent/JP4029042B2/en not_active Expired - Fee Related
- 2002-02-11 SK SK1021-2003A patent/SK10212003A3/en unknown
- 2002-02-11 US US10/467,733 patent/US7135600B2/en not_active Expired - Fee Related
- 2002-02-11 OA OA1200300201A patent/OA12551A/en unknown
- 2002-02-11 CA CA002437977A patent/CA2437977A1/en not_active Abandoned
- 2002-02-11 DZ DZ023500A patent/DZ3500A1/en active
- 2002-02-11 KR KR1020037010667A patent/KR100880763B1/en not_active IP Right Cessation
- 2002-02-11 EP EP02706735A patent/EP1360174A1/en not_active Withdrawn
- 2002-02-11 WO PCT/EP2002/001387 patent/WO2002066422A1/en active IP Right Grant
- 2002-02-11 PL PL02367403A patent/PL367403A1/en not_active Application Discontinuation
- 2002-02-11 IL IL15714902A patent/IL157149A0/en unknown
- 2002-02-11 AP APAP/P/2003/002842A patent/AP2088A/en active
- 2002-02-11 BR BR0207694-2A patent/BR0207694A/en not_active IP Right Cessation
- 2002-02-11 CN CNB02807923XA patent/CN1266126C/en not_active Expired - Fee Related
- 2002-02-11 HU HU0400699A patent/HUP0400699A2/en unknown
- 2002-02-11 CZ CZ20032189A patent/CZ20032189A3/en unknown
- 2002-02-11 MY MYPI20020474A patent/MY139552A/en unknown
- 2002-02-12 AR ARP020100462A patent/AR035617A1/en unknown
- 2002-02-12 PE PE2002000114A patent/PE20020872A1/en not_active Application Discontinuation
- 2002-11-02 UA UA2003087450A patent/UA76443C2/en unknown
-
2003
- 2003-08-11 MA MA27272A patent/MA26992A1/en unknown
- 2003-08-12 ZA ZA200306234A patent/ZA200306234B/en unknown
- 2003-08-12 BG BG108086A patent/BG108086A/en unknown
- 2003-08-13 NO NO20033594A patent/NO20033594L/en not_active Application Discontinuation
- 2003-08-14 EC EC2003004732A patent/ECSP034732A/en unknown
-
2005
- 2005-08-19 US US11/207,967 patent/US7442719B2/en not_active Expired - Fee Related
-
2006
- 2006-06-27 US US11/426,657 patent/US7442836B2/en not_active Expired - Fee Related
- 2006-06-27 US US11/426,661 patent/US7442837B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2140800A (en) * | 1983-04-18 | 1984-12-05 | Glaxo Group Ltd | Phenethanolamine derivatives |
EP0416951A1 (en) * | 1989-09-08 | 1991-03-13 | Glaxo Group Limited | Medicaments comprising salmeterol and fluticason |
Cited By (218)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9333195B2 (en) | 1999-07-14 | 2016-05-10 | Almirall, S.A. | Quinuclidine derivatives and medicinal compositions containing the same |
US9056100B2 (en) | 1999-07-14 | 2015-06-16 | Almirall, S.A. | Quinuclidine derivatives and medicinal compositions containing the same |
US10588895B2 (en) | 1999-07-14 | 2020-03-17 | Almirall, S.A. | Quinuclidine derivatives and medicinal compositions containing the same |
US10034867B2 (en) | 1999-07-14 | 2018-07-31 | Almirall, S.A. | Quinuclidine derivatives and medicinal compositions containing the same |
US9687478B2 (en) | 1999-07-14 | 2017-06-27 | Almirall, S.A. | Quinuclidine derivatives and medicinal compositions containing the same |
US6858596B2 (en) | 2000-08-05 | 2005-02-22 | Smithkline Beecham Corporation | Formulation containing anti-inflammatory androstane derivative |
US6858593B2 (en) | 2000-08-05 | 2005-02-22 | Smithkline Beecham Corporation | Anti-inflammatory androstane derivative compositions |
US6750210B2 (en) | 2000-08-05 | 2004-06-15 | Smithkline Beecham Corporation | Formulation containing novel anti-inflammatory androstane derivative |
US6759398B2 (en) | 2000-08-05 | 2004-07-06 | Smithkline Beecham Corporation | Anti-inflammatory androstane derivative |
US6777400B2 (en) | 2000-08-05 | 2004-08-17 | Smithkline Beecham Corporation | Anti-inflammatory androstane derivative compositions |
US6777399B2 (en) | 2000-08-05 | 2004-08-17 | Smithkline Beecham Corporation | Anti-inflammatory androstane derivative compositions |
US6787532B2 (en) | 2000-08-05 | 2004-09-07 | Smithkline Beecham Corporation | Formulation containing anti-inflammatory androstane derivatives |
US7442837B2 (en) | 2001-02-14 | 2008-10-28 | Glaxo Group Limited | Phenethanolamine derivatives for treatment of respiratory diseases |
US7442836B2 (en) | 2001-02-14 | 2008-10-28 | Glaxo Group Limited | Phenethanolamine derivatives for treatment of respiratory diseases |
US7442719B2 (en) | 2001-02-14 | 2008-10-28 | Glaxo Group Limited | Methods using phenethanolamine derivatives for treatment of respiratory diseases |
US7439393B2 (en) | 2001-09-14 | 2008-10-21 | Glaxo Group Limited | Phenethanolamine derivatives for treatment of respiratory diseases |
US7776895B2 (en) | 2001-09-14 | 2010-08-17 | Glaxo Group Limited | Inhalation devices for delivering phenethanolamine derivatives for the treatment of respiratory diseases |
USRE44874E1 (en) | 2001-09-14 | 2014-04-29 | Glaxo Group Limited | Phenethanolamine derivatives for treatment of respiratory diseases |
US7361787B2 (en) | 2001-09-14 | 2008-04-22 | Glaxo Group Limited | Phenethanolamine derivatives for treatment of respiratory diseases |
US7982067B2 (en) | 2001-09-14 | 2011-07-19 | Glaxo Group Limited | Phenethanolamine derivatives for treatment of respiratory diseases |
US8198483B2 (en) | 2001-09-14 | 2012-06-12 | Glaxo Group Limited | Phenethanolamine derivatives for treatment of respiratory diseases |
JP2005509642A (en) * | 2001-10-20 | 2005-04-14 | グラクソ グループ リミテッド | Novel anti-inflammatory androstane derivatives |
US6653323B2 (en) | 2001-11-13 | 2003-11-25 | Theravance, Inc. | Aryl aniline β2 adrenergic receptor agonists |
US7452995B2 (en) | 2001-11-13 | 2008-11-18 | Theravance, Inc. | Aryl aniline β2 adrenergic receptor agonists |
US6670376B1 (en) | 2001-11-13 | 2003-12-30 | Theravance, Inc. | Aryl aniline β2 adrenergic receptor agonists |
US7553971B2 (en) | 2001-11-13 | 2009-06-30 | Theravance, Inc. | Aryl aniline β2 adrenergic receptor agonists |
EP2363121A1 (en) | 2002-02-04 | 2011-09-07 | Glaxo Group Limited | Pharmaceutical formulation for administration by inhalation comprising an androstane derivative and a beta-2-adrenoreceptor agonist for the treatment of inflammatory and allergic conditions |
EP1757281A3 (en) * | 2002-02-04 | 2009-07-15 | Glaxo Group Limited | Formulation for inhalation comprising a glucocorticoid and a beta 2-adrenoreceptor agonist |
JP2005527496A (en) * | 2002-02-04 | 2005-09-15 | グラクソ グループ リミテッド | Pharmaceutical formulation for inhalation administration comprising androstane derivatives and β2-adrenergic receptors for the treatment of inflammatory and allergic conditions |
WO2003066024A1 (en) * | 2002-02-04 | 2003-08-14 | Glaxo Group Limited | Pharmaceutical formulation comprising an aqueous suspension of an androstane derivative for the treatment of inflammatory and allergic conditions |
WO2003066036A1 (en) * | 2002-02-04 | 2003-08-14 | Glaxo Group Limited | Pharmaceutical formulation for administration by inhalation comprising an androstane derivative and a beta-2-adrenoreceptor for the treatment of inflammatory and allergic conditions |
WO2003066026A1 (en) * | 2002-02-04 | 2003-08-14 | Glaxo Group Limited | Pharmaceutical formulation comprising an androstane derivative and a solubilising agent in an aqueous liquid carrier |
JP2010280701A (en) * | 2002-02-04 | 2010-12-16 | Glaxo Group Ltd | PHARMACEUTICAL FORMULATION FOR ADMINISTRATION BY INHALATION CONTAINING ANDROSTANE DERIVATIVE AND beta2-ADRENORECEPTOR FOR TREATMENT OF INFLAMMATORY AND ALLERGIC CONDITIONS |
EP1757281A2 (en) * | 2002-02-04 | 2007-02-28 | Glaxo Group Limited | Formulation for inhalation comprising a glucocorticoid and a beta 2-adrenoreceptor agonist |
WO2003066033A1 (en) * | 2002-02-04 | 2003-08-14 | Glaxo Group Limited | Formulation for inhalation comprising a glucocorticoid and a beta 2-adrenoreceptor agonist |
EP3510994A1 (en) * | 2002-02-04 | 2019-07-17 | Glaxo Group Limited | Pharmaceutical formulation comprising an aqueous suspension of an androstane derivative for the treatment of inflammatory and allergic conditions |
US6747043B2 (en) | 2002-05-28 | 2004-06-08 | Theravance, Inc. | Alkoxy aryl β2 adrenergic receptor agonists |
US9901585B2 (en) | 2002-06-14 | 2018-02-27 | Cipla Limited | Combination of azelastine and fluticasone for nasal administration |
US8933060B2 (en) | 2002-06-14 | 2015-01-13 | Cipla Limited | Combination of azelastine and ciclesonide for nasal administration |
US9259428B2 (en) | 2002-06-14 | 2016-02-16 | Cipla Limited | Combination of azelastine and fluticasone for nasal administration |
US8937057B2 (en) | 2002-06-14 | 2015-01-20 | Cipla Limited | Combination of azelastine and mometasone for nasal administration |
US7442839B2 (en) | 2002-10-28 | 2008-10-28 | Glaxo Group Limited | Phenethanolamine derivative for the treatment of respiratory diseases |
WO2004037773A1 (en) * | 2002-10-28 | 2004-05-06 | Glaxo Group Limited | Phenethanolamine derivative for the treatment of respiratory diseases |
HRP20050579B1 (en) * | 2002-11-27 | 2014-01-31 | Takeda Gmbh | New synergistic combination comprising roflumilast and formoterol |
HRP20050580B1 (en) * | 2002-11-27 | 2014-04-11 | Takeda Gmbh | Synergistic combination comprising roflumilast and (r,r)-formoterol |
AU2003288169B2 (en) * | 2002-11-27 | 2010-01-07 | Astrazeneca Ab | Synergistic combination comprising roflumilast and (R,R) -formoterol |
AU2003292120B2 (en) * | 2002-11-27 | 2010-01-21 | Astrazeneca Ab | New synergistic combination comprising roflumilast and formoterol |
WO2004047829A1 (en) * | 2002-11-27 | 2004-06-10 | Altana Pharma Ag | New synergistic combination comprising roflumilast and formoterol |
WO2004047828A1 (en) * | 2002-11-27 | 2004-06-10 | Altana Pharma Ag | Synergistic combination compresing roflumilas and (r.r) -formoterol |
EA009990B1 (en) * | 2002-11-27 | 2008-04-28 | Никомед Гмбх | Synergistic combination comprising roflumilast and (r,r) -formoterol |
EA009935B1 (en) * | 2002-11-27 | 2008-04-28 | Никомед Гмбх | New synergistic combination comprising roflumilast and formoterol |
AU2003288169B8 (en) * | 2002-11-27 | 2010-08-26 | Astrazeneca Ab | Synergistic combination comprising roflumilast and (R,R) -formoterol |
US7141671B2 (en) | 2003-02-14 | 2006-11-28 | Theravance, Inc. | Biphenyl derivatives |
US8969571B2 (en) | 2003-02-14 | 2015-03-03 | Theravance Respiratory Company, Llc | Biphenyl derivatives |
US7345175B2 (en) | 2003-02-14 | 2008-03-18 | Theravance, Inc. | Biphenyl derivatives |
EP2246345A1 (en) | 2003-02-14 | 2010-11-03 | Theravance Inc | Biphenyl derivatives having beta2 adrenergic receptor agonist and muscarinic receptor antagonist activity |
EP3012254A1 (en) | 2003-02-14 | 2016-04-27 | Theravance Respiratory Company, LLC | Biphenyl derivative and its use for treating pulmonary disorders |
US7879879B2 (en) | 2003-02-14 | 2011-02-01 | Theravance, Inc. | Biphenyl derivatives |
US8618131B2 (en) | 2003-02-14 | 2013-12-31 | Theravance, Inc. | Biphenyl derivatives |
US8242135B2 (en) | 2003-02-14 | 2012-08-14 | Theravance, Inc. | Biphenyl derivatives |
US7514558B2 (en) | 2003-02-14 | 2009-04-07 | Theravance, Inc. | Biphenyl derivatives |
US7521561B2 (en) | 2003-02-14 | 2009-04-21 | Theravance, Inc. | Biphenyl derivatives |
US7524959B2 (en) | 2003-02-14 | 2009-04-28 | Theravance, Inc. | Biphenyl derivatives |
US7355046B2 (en) | 2003-02-14 | 2008-04-08 | Theravance, Inc. | Biphenyl derivatives |
US7538127B2 (en) | 2003-02-14 | 2009-05-26 | Glaxo Group Limited | Medicinal compounds |
US8008278B2 (en) | 2003-04-01 | 2011-08-30 | Theravance, Inc. | Diarylmethyl and related compounds |
US7317102B2 (en) | 2003-04-01 | 2008-01-08 | Theravance, Inc. | Diarylmethyl and related compounds |
US7060712B2 (en) | 2003-05-08 | 2006-06-13 | Theravance, Inc. | Crystalline form of aryl aniline β2 adrenergic receptor agonist |
US7582765B2 (en) | 2003-05-08 | 2009-09-01 | Theravance, Inc. | Aryl aniline β2 adrenergic receptor agonists |
US7557247B2 (en) | 2003-05-27 | 2009-07-07 | Theravance, Inc. | Crystalline form of β2 adrenergic receptor agonist |
US7332175B2 (en) | 2003-05-27 | 2008-02-19 | Boehringer Ingelheim International Gmbh | Long-acting drug combinations for the treatment of respiratory complaints |
WO2004105759A2 (en) * | 2003-05-27 | 2004-12-09 | Boehringer Ingelheim International Gmbh | Novel long-acting medicament combinations comprising an anticholinergic agent and a $g(b)2-adrenoreceptor antagonist for the treatment of respiratory tract diseases |
WO2004105759A3 (en) * | 2003-05-27 | 2005-01-20 | Boehringer Ingelheim Int | Novel long-acting medicament combinations comprising an anticholinergic agent and a $g(b)2-adrenoreceptor antagonist for the treatment of respiratory tract diseases |
US7732441B2 (en) | 2003-05-28 | 2010-06-08 | Theravance, Inc. | Azabicycloalkane compounds |
US7358244B2 (en) | 2003-05-28 | 2008-04-15 | Theravance, Inc. | Azabicycloalkane compounds |
US7893256B2 (en) | 2003-05-28 | 2011-02-22 | Theravance, Inc. | Azabicycloalkane compounds |
WO2005005451A1 (en) | 2003-07-11 | 2005-01-20 | Glaxo Group Limited | Specific glucocorticosteroid compound having anti- inflammatory activity |
US7524970B2 (en) | 2003-07-11 | 2009-04-28 | Glaxo Group Limited | Compounds |
EP2380898A1 (en) | 2003-07-11 | 2011-10-26 | Glaxo Group Limited | Process to make glucocortisoid compounds |
US7291609B2 (en) | 2003-07-11 | 2007-11-06 | Glaxo Group Limited | Specific glucocorticosteroid compound having anti-inflammatory activity |
US7288536B2 (en) | 2003-07-11 | 2007-10-30 | Glaxo Group Limited | Specific glucocorticosteroid compound having anti-inflammatory activity |
WO2005005452A1 (en) | 2003-07-11 | 2005-01-20 | Glaxo Group Limited | Specific glucocorticosteroid compound having anti- inflammatory activity |
US7638508B2 (en) | 2003-07-11 | 2009-12-29 | Glaxo Group Limited | Glucocorticosteroid compound having anti-inflammatory activity |
WO2005065650A3 (en) * | 2003-10-09 | 2006-04-27 | Glaxo Group Ltd | Aerosol formulations comprising a carboxylic acid surfactant |
WO2005065650A2 (en) * | 2003-10-09 | 2005-07-21 | Glaxo Group Limited | Aerosol formulations comprising a carboxylic acid surfactant |
JP2007509124A (en) * | 2003-10-24 | 2007-04-12 | グラクソ グループ リミテッド | Dry powder composition for inhalation therapy containing calcium stearate and medical device therefor |
US7294650B2 (en) | 2003-12-17 | 2007-11-13 | Glaxo Group Limited | Benzothiophen and thiochrone containing phenethanolamine derivatives for the treatment of respiratory disorders |
EP2281819A1 (en) | 2004-01-21 | 2011-02-09 | Novartis AG | Benzimidazolyl or benzoxazolyl derivatives |
EP1930323A1 (en) | 2004-03-11 | 2008-06-11 | Theravance, Inc. | Biphenyl compounds useful in the synthesis of muscarinic receptor antagonists |
EP3603634A1 (en) | 2004-05-18 | 2020-02-05 | Novartis AG | Pharmaceutical composition containing glycopyrrolate and a beta2 adrenoceptor agonist |
WO2005116037A1 (en) | 2004-05-24 | 2005-12-08 | Glaxo Group Limited | Purine derivative |
EP2436697A1 (en) | 2004-07-01 | 2012-04-04 | Glaxo Group Limited | Chimeric and humanised monoclonal antibodies against interleukin-13 |
US7902224B2 (en) | 2004-08-12 | 2011-03-08 | Glaxo Group Limited | Tetrahydro-naphthalene derivatives as glucocorticoid receptor modulators |
WO2006015870A1 (en) | 2004-08-12 | 2006-02-16 | Glaxo Group Limited | Tetrahydro-naphthalene derivatives as glucocorticoid receptor modulators |
WO2006023460A2 (en) | 2004-08-16 | 2006-03-02 | Theravance, Inc. | COMPOUNDS HAVING β2 ADRENERGIC RECEPTOR AGONIST AND MUSCARINIC RECEPTOR ANTAGONIST ACTIVITY |
EP2292619A1 (en) | 2004-10-22 | 2011-03-09 | Novartis AG | Purine derivatives for use as adenonsin A-2A receptor agonists |
EP2206499A1 (en) | 2004-11-02 | 2010-07-14 | Novartis AG | Quinuclidine derivatives and their use as muscarinic m3 receptor antagonists |
EP2305659A1 (en) | 2004-11-29 | 2011-04-06 | Novartis AG | 5-hydroxy-benzothiazole derivatives having beta-2-adrenoreceptor agonist activity |
WO2006056471A1 (en) | 2004-11-29 | 2006-06-01 | Novartis Ag | 5-hydroxy-benzothiazole derivatives having beta-2-adrenorecptor agonist activity |
US7579335B2 (en) | 2005-01-10 | 2009-08-25 | Glaxo Group Limited | Androstane 17α-carbonate derivatives for use in the treatment of allergic and inflammatory conditions |
EP2447266A1 (en) | 2005-03-25 | 2012-05-02 | Glaxo Group Limited | Pyrimidopyridine compound used as a CSBP/RK/p38 modulator |
EP2436686A1 (en) | 2005-03-25 | 2012-04-04 | Glaxo Group Limited | Pyrimidopyridine compound used as a CSBP/RK/p38 modulator |
EP2253612A1 (en) | 2005-04-14 | 2010-11-24 | Novartis AG | Organic compounds |
WO2006108643A2 (en) | 2005-04-14 | 2006-10-19 | Novartis Ag | Organic compounds |
US7964615B2 (en) | 2005-05-20 | 2011-06-21 | Almirall, S.A. | Derivatives of 4-(2-amino-1-hydroxyethyl)phenol as agonists of the β2 adrenergic receptor |
US8242177B2 (en) | 2005-05-20 | 2012-08-14 | Almirall, S.A. | Derivatives of 4-(2-amino-1-hydroxyethyl)phenol as agonists of the β2 adrenergic receptor |
WO2007009757A1 (en) | 2005-07-19 | 2007-01-25 | Glaxo Group Limited | Purine derivatives as agonists of the adenosine a2a receptor |
EP2281813A1 (en) | 2005-08-08 | 2011-02-09 | Pulmagen Therapeutics (Synergy) Limited | Bicyclo[2.2.1]hept-7-ylamine derivatives and their uses |
EP2280006A1 (en) | 2005-08-08 | 2011-02-02 | Pulmagen Therapeutics (Synergy) Limited | Pharmaceutical composition for inhalation comprising an oxazole or thiazole m3 muscarinic receptor antagonist |
EP2532679A1 (en) | 2005-10-21 | 2012-12-12 | Novartis AG | Human antibodies against il13 and therapeutic uses |
EP2532677A1 (en) | 2005-10-21 | 2012-12-12 | Novartis AG | Human antibodies against il13 and therapeutic uses |
EP2157087A1 (en) | 2005-12-20 | 2010-02-24 | Glaxo Group Limited | 3-(4-{[4-(4-{[3-(3,3-dimethyl-1-piperidinyl)propyl]oxy}phenyl)-1-piperidinyl]carbonyl}-1-naphthalenyl)propanoic or propenoic acid as h1 and h3 receptor antagonists for the treatment of inflammatory and/or allergic disorders |
EP2286813A2 (en) | 2006-01-31 | 2011-02-23 | Novartis AG | Use of naphthyridine derivatives as medicaments |
US7960551B2 (en) | 2006-02-10 | 2011-06-14 | Glaxo Group Limited | Compound |
WO2007122165A1 (en) | 2006-04-20 | 2007-11-01 | Glaxo Group Limited | Novel compounds |
WO2007121920A2 (en) | 2006-04-21 | 2007-11-01 | Novartis Ag | Purine derivatives for use as adenosin a2a receptor agonists |
EP2322525A1 (en) | 2006-04-21 | 2011-05-18 | Novartis AG | Purine derivatives for use as adenosin A2A receptor agonists |
WO2007144327A2 (en) | 2006-06-12 | 2007-12-21 | Glaxo Group Limited | Phenyl-pyrazole derivatives as non-steroidal glucocoricoid receptor ligands |
WO2007150016A2 (en) | 2006-06-23 | 2007-12-27 | Smithkline Beecham Corporation | Il-8 receptor antagonist |
WO2008015416A1 (en) | 2006-08-01 | 2008-02-07 | Glaxo Group Limited | Pyrazolo[3,4-b]pyridine compounds, and their use as pde4 inhibitors |
EP2279777A2 (en) | 2007-01-10 | 2011-02-02 | Irm Llc | Compounds and compositions as channel activating protease inhibitors |
US8283342B2 (en) | 2007-02-09 | 2012-10-09 | Almirall S.A. | Napadisylate salt of 5-(2-{[6-(2,2-difluoro-2-phenylethoxy) hexyl]amino}-1-hydroxyethyl)-8-hydroxyquinolin-2(1H)-one as agonist of the β2 adrenergic receptor |
WO2008097673A1 (en) | 2007-02-09 | 2008-08-14 | Irm Llc | Compounds and compositions as channel activating protease inhibitors |
WO2008118724A1 (en) | 2007-03-23 | 2008-10-02 | Smithkline Beecham Corporation | Indole carboxamides as ikk2 inhibitors |
EP2332933A1 (en) | 2007-05-07 | 2011-06-15 | Novartis AG | Epithelial sodium channel (ENaC) inhibitors |
US8178679B2 (en) | 2007-11-28 | 2012-05-15 | Almirall, S.A. | Derivatives of 4-(2-amino-1-hydroxyethyl)phenol as agonists of the β2 adrenergic receptors |
EP2520574A1 (en) | 2007-12-10 | 2012-11-07 | Novartis AG | Amiloride analogues substituted on the cyclic guanidine moiety as ENaC blockers for treating respiratory diseases |
EP2444120A1 (en) | 2007-12-10 | 2012-04-25 | Novartis AG | Spirocyclic amiloride analogues as ENac blockers |
WO2009087224A1 (en) | 2008-01-11 | 2009-07-16 | Novartis Ag | Pyrimidines as kinase inhibitors |
US10085974B2 (en) | 2008-03-13 | 2018-10-02 | Almirall, S.A. | Dosage and formulation |
US9254262B2 (en) | 2008-03-13 | 2016-02-09 | Almirall, S.A. | Dosage and formulation |
US11000517B2 (en) | 2008-03-13 | 2021-05-11 | Almirall, S.A. | Dosage and formulation |
WO2010068311A1 (en) | 2008-05-23 | 2010-06-17 | Amira Pharmaceuticals, Inc. | 5-lipoxygenase-activating protein inhibitor |
WO2009147187A1 (en) | 2008-06-05 | 2009-12-10 | Glaxo Group Limited | 4-carboxamide indazole derivatives useful as inhibitors of p13-kinases |
WO2009150137A2 (en) | 2008-06-10 | 2009-12-17 | Novartis Ag | Organic compounds |
US9078885B2 (en) | 2008-08-07 | 2015-07-14 | Pulmagen Therapeutics (Inflammation) Limited | Respiratory disease treatment |
US8236786B2 (en) | 2008-08-07 | 2012-08-07 | Pulmagen Therapeutics (Inflammation) Limited | Respiratory disease treatment |
US8815837B2 (en) | 2008-08-07 | 2014-08-26 | Pulmagen Therapeutics (Inflammation) Limited | Respiratory disease treatment |
US8362064B2 (en) | 2008-12-30 | 2013-01-29 | Pulmagen Theraputics (Inflammation) Limited | Sulfonamide compounds for the treatment of respiratory disorders |
WO2010094643A1 (en) | 2009-02-17 | 2010-08-26 | Glaxo Group Limited | Quinoline derivatives and their uses for rhinitis and urticaria |
WO2010102958A1 (en) | 2009-03-09 | 2010-09-16 | Glaxo Group Limited | 4-oxadiazol-2 -yl- indazoles as inhibitors of p13 kinases |
WO2010102968A1 (en) | 2009-03-10 | 2010-09-16 | Glaxo Group Limited | Indole derivatives as ikk2 inhibitors |
US8524908B2 (en) | 2009-03-12 | 2013-09-03 | Almirall, S.A. | Process for manufacturing 5-(2-{[6-(2,2-difluoro-2-phenylethoxy)hexyl]amino}-1-hydroxyethyl)-8-hydroxyquinolin-2(1H)-one |
WO2010106016A1 (en) | 2009-03-17 | 2010-09-23 | Glaxo Group Limited | Pyrimidine derivatives used as itk inhibitors |
WO2010107955A2 (en) | 2009-03-19 | 2010-09-23 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF BTB AND CNC HOMOLOGY 1, BASIC LEUCINE ZIPPER TRANSCRIPTION FACTOR 1 (BACH 1) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) SEQUENCE LISTING |
WO2010107958A1 (en) | 2009-03-19 | 2010-09-23 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF SIGNAL TRANSDUCER AND ACTIVATOR OF TRANSCRIPTION 6 (STAT6) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
WO2010107957A2 (en) | 2009-03-19 | 2010-09-23 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF GATA BINDING PROTEIN 3 (GATA3) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
WO2010107952A2 (en) | 2009-03-19 | 2010-09-23 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF CONNECTIVE TISSUE GROWTH FACTOR (CTGF) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
WO2010111468A2 (en) | 2009-03-27 | 2010-09-30 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF THE NERVE GROWTH FACTOR BETA CHAIN (NGFß) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (SINA) |
WO2010111490A2 (en) | 2009-03-27 | 2010-09-30 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF THE THYMIC STROMAL LYMPHOPOIETIN (TSLP) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
WO2010111464A1 (en) | 2009-03-27 | 2010-09-30 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF APOPTOSIS SIGNAL-REGULATING KINASE 1 (ASK1) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
WO2010111471A2 (en) | 2009-03-27 | 2010-09-30 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF SIGNAL TRANSDUCER AND ACTIVATOR OF TRANSCRIPTION 1 (STAT1) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
WO2010111497A2 (en) | 2009-03-27 | 2010-09-30 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF THE INTERCELLULAR ADHESION MOLECULE 1 (ICAM-1)GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
WO2010122089A1 (en) | 2009-04-24 | 2010-10-28 | Glaxo Group Limited | N-pyrazolyl carboxamides as crac channel inhibitors |
WO2010122088A1 (en) | 2009-04-24 | 2010-10-28 | Glaxo Group Limited | Pyrazole and triazole carboxamides as crac channel inhibitors |
EP2899191A1 (en) | 2009-04-30 | 2015-07-29 | Glaxo Group Limited | Oxazole substituted indazoles as pi3-kinase inhibitors |
EP3260453A1 (en) | 2009-04-30 | 2017-12-27 | Glaxo Group Limited | Oxazole substituted indazoles as pi3-kinase inhibitors |
WO2010147947A2 (en) | 2009-06-16 | 2010-12-23 | Schering Corporation | NOVEL [3,2-c] HETEROARYL STEROIDS AS GLUCOCORTICOID RECEPTOR AGONISTS, COMPOSITIONS AND USES THEREOF |
WO2010150014A1 (en) | 2009-06-24 | 2010-12-29 | Pulmagen Therapeutics (Inflammation) Limited | 5r- 5 -deuterated glitazones for respiratory disease treatment |
WO2011008809A1 (en) | 2009-07-15 | 2011-01-20 | Theravance, Inc. | Crystalline freebase forms of a biphenyl compound |
EP2987490A1 (en) | 2009-07-15 | 2016-02-24 | Theravance Biopharma R&D IP, LLC | Crystalline freebase forms of a biphenyl compound |
EP2813227A1 (en) | 2009-10-22 | 2014-12-17 | Vertex Pharmaceuticals Incorporated | Compositions for treatment of cystic fibrosis and other chronic diseases |
WO2011050325A1 (en) | 2009-10-22 | 2011-04-28 | Vertex Pharmaceuticals Incorporated | Compositions for treatment of cystic fibrosis and other chronic diseases |
WO2011051671A1 (en) | 2009-10-28 | 2011-05-05 | Vantia Limited | Aminopyridine derivatives as kallikrein inhibitors |
WO2011051672A1 (en) | 2009-10-28 | 2011-05-05 | Vantia Limited | Azaindole derivatives |
WO2011051673A1 (en) | 2009-10-28 | 2011-05-05 | Vantia Limited | Aminothiazole derivatives useful as klk1 inhibitors |
WO2011061527A1 (en) | 2009-11-17 | 2011-05-26 | Astrazeneca Ab | Combinations comprising a glucocorticoid receptor modulator for the treatment of respiratory diseases |
WO2011067366A1 (en) | 2009-12-03 | 2011-06-09 | Glaxo Group Limited | Indazole derivatives as pi 3 - kinase inhibitors |
WO2011067364A1 (en) | 2009-12-03 | 2011-06-09 | Glaxo Group Limited | Novel compounds |
WO2011067365A1 (en) | 2009-12-03 | 2011-06-09 | Glaxo Group Limited | Benzpyrazole derivatives as inhibitors of p13 kinases |
WO2011084316A2 (en) | 2009-12-16 | 2011-07-14 | 3M Innovative Properties Company | Formulations and methods for controlling mdi particle size delivery |
EP3020393A1 (en) | 2009-12-16 | 2016-05-18 | 3M Innovative Properties Company of 3M Center | Formulations and methods for controlling mdi particle size delivery |
WO2011098746A1 (en) | 2010-02-09 | 2011-08-18 | Pulmagen Therapeutics (Inflammation) Limited | Crystalline acid addition salts of ( 5r) -enanti0mer of pioglitazone |
WO2011098799A2 (en) | 2010-02-10 | 2011-08-18 | Pulmagen Therapeutics (Inflammation) Limited | Respiratory disease treatment |
WO2011098801A1 (en) | 2010-02-10 | 2011-08-18 | Pulmagen Therapeutics (Inflammation) Limited | Inflammatory disease treatment |
WO2011110575A1 (en) | 2010-03-11 | 2011-09-15 | Glaxo Group Limited | Derivatives of 2-[2-(benzo- or pyrido-) thiazolylamino]-6-aminopyridine, useful in the treatment of respiratoric, allergic or inflammatory diseases |
EP2845593A1 (en) | 2010-03-19 | 2015-03-11 | Novartis AG | Pyridine and pyrazine derivative for the treatment of chronic obstructive pulmonary disease |
WO2011113894A1 (en) | 2010-03-19 | 2011-09-22 | Novartis Ag | Pyridine and pyrazine derivative for the treatment of cf |
WO2011134971A1 (en) | 2010-04-29 | 2011-11-03 | Glaxo Group Limited | 7-(1h-pyrazol-4-yl)-1,6-naphthyridine compounds as syk inhibitors |
WO2012032067A1 (en) | 2010-09-08 | 2012-03-15 | Glaxo Group Limited | Polymorphs and salts of n- [5- [4- (5- { [(2r,6s) -2, 6 - dimethyl - 4 -morpholinyl] methyl} - 1, 3 - oxazol - 2 - yl) - 1h- inda zol-6-yl] -2- (methyloxy) - 3 - pyridinyl] methanesulfonamide |
WO2012034091A1 (en) | 2010-09-09 | 2012-03-15 | Irm Llc | Imidazo [1, 2] pyridazin compounds and compositions as trk inhibitors |
WO2012034095A1 (en) | 2010-09-09 | 2012-03-15 | Irm Llc | Compounds and compositions as trk inhibitors |
WO2012035055A1 (en) | 2010-09-17 | 2012-03-22 | Glaxo Group Limited | Novel compounds |
WO2012035158A1 (en) | 2010-09-17 | 2012-03-22 | Novartis Ag | Pyrazine derivatives as enac blockers |
WO2012046050A1 (en) | 2010-10-07 | 2012-04-12 | Astrazeneca Ab | Novel combinations |
WO2012052459A1 (en) | 2010-10-21 | 2012-04-26 | Glaxo Group Limited | Pyrazole compounds acting against allergic, inflammatory and immune disorders |
WO2012052458A1 (en) | 2010-10-21 | 2012-04-26 | Glaxo Group Limited | Pyrazole compounds acting against allergic, immune and inflammatory conditions |
EP3447055A1 (en) | 2010-10-27 | 2019-02-27 | Glaxo Group Limited | Combinations of polymorphs and salts of 6-(1h-indol-4-yl)-4-(5-{[4-(1-methylethyl)-1-piperazinyl]methyl}-1,3-oxazol-2-yl)-1h-indazole as pi3k inhibitors for use in the treatment of e.g. respiratory disorders |
WO2012055846A1 (en) | 2010-10-27 | 2012-05-03 | Glaxo Group Limited | Polymorphs and salts of 6-(1h-indol-4-yl)-4-(5- { [4-(1-methylethyl)-1-pi perazinyl] methyl} -1,3-oxazol-2-yl)-1h-indazole as pi3k inhibitors for use in the treatment of e.g. respiratory disorders |
WO2012116217A1 (en) | 2011-02-25 | 2012-08-30 | Irm Llc | Compounds and compositions as trk inhibitors |
WO2012123312A1 (en) | 2011-03-11 | 2012-09-20 | Glaxo Group Limited | Pyrido[3,4-b]pyrazine derivatives as syk inhibitors |
EP2937344A1 (en) | 2011-03-11 | 2015-10-28 | Glaxo Group Limited | Pyridinyl- and pyrazinyl -methyloxy - aryl derivatives useful as inhibitors of spleen tyrosine kinase (syk) |
WO2012123311A1 (en) | 2011-03-11 | 2012-09-20 | Glaxo Group Limited | Pyridinyl- and pyrazinyl -methyloxy - aryl derivatives useful as inhibitors of spleen tyrosine kinase (syk) |
US9737520B2 (en) | 2011-04-15 | 2017-08-22 | Almirall, S.A. | Aclidinium for use in improving the quality of sleep in respiratory patients |
WO2013030802A1 (en) | 2011-09-01 | 2013-03-07 | Novartis Ag | Bicyclic heterocycle derivatives for the treatment of pulmonary arterial hypertension |
WO2013038386A1 (en) | 2011-09-16 | 2013-03-21 | Novartis Ag | Heterocyclic compounds for the treatment of cystic fibrosis |
WO2013038381A1 (en) | 2011-09-16 | 2013-03-21 | Novartis Ag | Pyridine/pyrazine amide derivatives |
WO2013038373A1 (en) | 2011-09-16 | 2013-03-21 | Novartis Ag | Pyridine amide derivatives |
WO2013038390A1 (en) | 2011-09-16 | 2013-03-21 | Novartis Ag | N-substituted heterocyclyl carboxamides |
WO2013038378A1 (en) | 2011-09-16 | 2013-03-21 | Novartis Ag | Pyridine amide derivatives |
US9108918B2 (en) | 2011-10-07 | 2015-08-18 | Almirall, S.A. | Process for preparing 5-(2-{[6-(2,2-difluoro-2-phenylethoxy)hexyl]amino}-1(R)-hydroxyethyl)-8-hydroxyquinolin-2(1H)-one via a novel intermediate |
WO2013140319A1 (en) | 2012-03-19 | 2013-09-26 | Novartis Ag | Crystalline form of a succinate salt |
US9346759B2 (en) | 2012-03-20 | 2016-05-24 | Almirall, S.A. | Polymorphic crystal forms of 5-(2-{[6-(2,2-difluoro-2-phenylethoxy)hexyl]amino}-1-(R)-hydroxyethyl)-8-hydroxyquinolin-2(1H)-one, heminapadisytlate as agonist of the β2 adrenergic receptor |
WO2014132220A1 (en) | 2013-03-01 | 2014-09-04 | Novartis Ag | Solid forms of bicyclic heterocyclic derivatives as pdgf receptor mediators |
WO2014140647A1 (en) | 2013-03-15 | 2014-09-18 | Verona Pharma Plc | Drug combination |
WO2015055691A1 (en) | 2013-10-17 | 2015-04-23 | Glaxosmithkline Intellectual Property Development Limited | Pi3k inhibitor for treatment of respiratory disease |
WO2015055690A1 (en) | 2013-10-17 | 2015-04-23 | Glaxosmithkline Intellectual Property Development Limited | Pi3k inhibitor for treatment of respiratory disease |
WO2015162461A1 (en) | 2014-04-24 | 2015-10-29 | Novartis Ag | Pyrazine derivatives as phosphatidylinositol 3-kinase inhibitors |
WO2015162459A1 (en) | 2014-04-24 | 2015-10-29 | Novartis Ag | Amino pyrazine derivatives as phosphatidylinositol 3-kinase inhibitors |
WO2015162456A1 (en) | 2014-04-24 | 2015-10-29 | Novartis Ag | Amino pyridine derivatives as phosphatidylinositol 3-kinase inhibitors |
WO2015173701A2 (en) | 2014-05-12 | 2015-11-19 | Glaxosmithkline Intellectual Property (No. 2) Limited | Pharmaceutical compositions for treating infectious diseases |
WO2017137535A1 (en) | 2016-02-12 | 2017-08-17 | Glaxosmithkline Intellectual Property Development Limited | Chemical compounds as inhibitors of kinase activity |
WO2018029126A1 (en) | 2016-08-08 | 2018-02-15 | Glaxosmithkline Intellectual Property Development Limited | Chemical compounds |
WO2018192864A1 (en) | 2017-04-18 | 2018-10-25 | Glaxosmithkline Intellectual Property Development Limited | Oxepinopyrazole derivatives as inhibitors of pi3-kinase activity |
WO2019020657A1 (en) | 2017-07-27 | 2019-01-31 | Glaxosmithkline Intellectual Property Development Limited | Pyridine-3-sulfonamide compounds as pi3-kinase inhibitors |
WO2020250116A1 (en) | 2019-06-10 | 2020-12-17 | Novartis Ag | Pyridine and pyrazine derivative for the treatment of cf, copd, and bronchiectasis |
WO2021038426A1 (en) | 2019-08-28 | 2021-03-04 | Novartis Ag | Substituted 1,3-phenyl heteroaryl derivatives and their use in the treatment of disease |
WO2021152488A1 (en) | 2020-01-29 | 2021-08-05 | Novartis Ag | Methods of treating an inflammatory or obstructive airway disease using anti-tslp antibody |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2002240924B2 (en) | Phenethanolamine derivatives for treatment of respiratory diseases | |
AU2002240924A1 (en) | Phenethanolamine derivatives for treatment of respiratory diseases | |
EP1370521B1 (en) | Formanilide derivatives as beta2-adrenoreceptor agonists | |
EP2042168B1 (en) | Inhalation formulation comprising phenethanolamine derivatives for the treatment of respiratory diseases | |
EP1497261B1 (en) | Phenethanolamine derivatives | |
AU2002326026A1 (en) | Phenethanolamine derivatives for treatment of respiratory diseases | |
WO2004039762A1 (en) | Phenethanolamine derivatives for the treatment of respiratory diseases | |
ZA200401990B (en) | Phenethanolamine derivatives for treatment or respiratory diseases. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 157149 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2002240924 Country of ref document: AU Ref document number: 971/KOLNP/2003 Country of ref document: IN Ref document number: 00970/KOLNP/2003 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2002706735 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 527404 Country of ref document: NZ |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200300776 Country of ref document: EA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2002565940 Country of ref document: JP Ref document number: 2437977 Country of ref document: CA Ref document number: 1200300704 Country of ref document: VN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003/06234 Country of ref document: ZA Ref document number: 10212003 Country of ref document: SK Ref document number: 200306234 Country of ref document: ZA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1-2003-500737 Country of ref document: PH Ref document number: 1020037010667 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2003/007262 Country of ref document: MX Ref document number: AP/P/2003/002842 Country of ref document: AP Ref document number: PV2003-2189 Country of ref document: CZ |
|
WWE | Wipo information: entry into national phase |
Ref document number: DZP2003000204 Country of ref document: DZ |
|
WWP | Wipo information: published in national office |
Ref document number: 1020037010667 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 02807923X Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 2002706735 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWP | Wipo information: published in national office |
Ref document number: PV2003-2189 Country of ref document: CZ |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10467733 Country of ref document: US |
|
WWG | Wipo information: grant in national office |
Ref document number: 2002240924 Country of ref document: AU |
|
WWP | Wipo information: published in national office |
Ref document number: 527404 Country of ref document: NZ |
|
WWG | Wipo information: grant in national office |
Ref document number: 527404 Country of ref document: NZ |